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ABSTRACT OF THE THESIS

Ensemble-Based Adaptive Observation

by

Mark Wong

Master of Science in Engineering Sciences: Mechanical Engineering

University of California San Diego, 2018

Professor Thomas Bewley, Chair

Adaptive observation seeks to move sensor vehicles in order to accurately es-

timate and forecast the state of a system. This thesis seeks to formulate an adaptive

observation algorithm around the Ensemble Kalman Filter. The Monte Carlo ap-

proach of the Ensemble Kalman filter allows for the approximation of the variance

of the system estimate, which can be used to move the vehicles in a manner that

minimizes this variance. After an introduction to the problem, this thesis gives a

brief history of the Ensemble Kalman filter before describing the formulation of the

adaptive observation algorithm. It then goes on to describe the numerical simula-

tion setup that is used to perform experiments that test the algorithm’s performance.

The results show the success of my adaptive observation algorithm in reducing the

variance of the system estimate and therefore the ability of my algorithm to produce

an accurate estimate of a model two-dimensional convective flow.
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Chapter 1

Introduction

Forecasting is an important tool in predicting future events from current

knowledge. On a large scale, forecasting is used to predict atmospheric conditions

and give insight into future weather and natural disaster possibilities. On a smaller

scale, we can use forecasting to predict fluid flow in order to track something that is

moving in that flow (i.e. radioactive plume in air, or oil spill in water). To do this

there needs to be some kind of sensors that can measure the current state of a fluid

flow and the presence of something in that flow. Traditionally, sensors are placed

somewhere in the region that you are trying to measure. Although there is work that

can describe optimal placement of these sensors, it is often the case that moving the

sensors throughout the domain will help achieve a more accurate forecast with fewer

sensors.

Adaptive observation is an important tool in the field of forecasting. As

opposed to traditional observation where sensors are placed statically in a given

space, adaptive observation uses moving sensors to collect information at different

locations over time. Sensors are typically placed on some sort of vehicle that is fit

for moving in the environment that they exist. The goal in adaptive observation is

to control these sensor vehicles in a manner that minimizes the forecast error.
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1.1 Motivation

The Coordinated Robotics Laboratory began research into the estimation and

forecasting of environmental plumes several years ago. The original problem involved

calculating unmanned aerial vehicle (UAV) flight trajectories to improve the estima-

tion and forecast of airborne biological or chemical agents released in an urban area.

Since then, the research scope has broadened to incorporate the dynamics of any type

of sensor vehicle and the dynamics of any plume moving convectively in a chaotic flow

field. Such plume dynamics can be seen in different types of environmental disasters

such as a radioactive plume from nuclear reactor failure, oil spills, and biological

weapon attacks. Similar dynamics can even be seen in the spread of wildfires, which

has had increased interest as the western United States sees an increased risk of fire

damage. All of these situations present a unique challenge because forecasting a fluid

flow often requires complex dynamic modeling with relatively large uncertainties.

The scale at which environmental plumes tend to occur presents its own issues.

Unlike global scale atmospheric or ocean patterns that may change over the course of

a day or two, the time-scale of the change in fluid flow at a smaller scale is much faster

and therefore on the same time-scale as sensor vehicles measuring the environment.

This means that instead of planning way points that the sensor vehicles should get to

at a certain hour or on a certain day, the trajectories of the vehicles should be planned

for only the upcoming short period of time because the flow field may change.

1.2 Background

There are a number of theories on how to control sensor vehicles in adaptive

observation, but they can generally be divided into two distinct methods: centralized

and decentralized. The goal of many decentralized algorithms is to achieve the

maximum coverage over an area. Algorithms do this by formulating an error function

and moving the sensor vehicles in a negative gradient to optimally cover the planar

area. Much work has been done to make decentralized algorithms applicable to real

world environments by incorporating vehicle dynamics and sensor constraints [2].

2



Figure 1.1: Example of how a coverage control algorithm works. a) Initial sensor
vehicle positions, b) Sensor vehicle trajectories, c) Final sensor vehicle positions

The problem, however, is that decentralized methods do their computing on each

individual sensor vehicle, which limits the complexity of the calculations that can be

done and, therefore, has obvious limitations for large-scale complex systems such as

environmental flows.

Centralized methods use a central computer that has access to all sensor in-

formation and can broadcast commands to the entire fleet of sensor vehicles. This

allows for a more complex computing platform such as a cluster of supercomputers

that are fit to handle high complexity, large-scale systems. Algorithms such as those

described in [3] [4] and [5] use the higher capacity computing in order to properly

position sensor vehicles when forecasting ocean environments. The algorithm in [3]

uses a centralized adaptive observation algorithm to find the source of a chemical

plume. The algorithm in [5] attempts to tackle the plume tracking problem; how-

ever, it relies on satellite data to determine the initial conditions of the plume and

external sensors to develop the ocean forecast model. While these algorithms are

promising for positioning vehicles over a longer horizon such as a full day, they do

not consider situations in which the flow is evolving at a time scale similar to the

vehicle movement.

This thesis is based on initial research done by David Zhang. In [1], Zhang

outlines an algorithm that was developed to accomplish adaptive observation by seek-

ing to minimize the variance of the system estimate for complex convective systems

3



Figure 1.2: Example of how a network can be set up for use of centralized algorithms
to control multiple vehicles.

with vehicles subject to specific vehicle dynamics. Zhang’s previous work simplified

the process of propagating the covariance matrix by simply growing the covariance

linearly in time during the prediction horizon. The new method I am proposing

is to implicitly propagate the covariance matrix using the Ensemble Kalman Filter

based on the ensemble spread at each discrete time step. This new method more

accurately describes the propagation of the covariance matrix by taking advantage

of the information obtained by the measurement vehicles.

1.3 The Ensemble Kalman Filter

The Ensemble Kalman Filter (EnKF) has become a very useful tool since its

introduction by Evensen in 1994 [6]. It has become a staple for data assimilation in

the oceanic and atmospheric sciences communities. The EnKF was introduced as a

computationally efficient alternative to the Extended Kalman Filter (EKF) for high

dimensional systems. The EnKF takes a Monte Carlo approach by propagating an

ensemble of perturbed trajectories of the system. Using this ensemble of trajectories,

4



Figure 1.3: Simulation produced in previous work [1]. Top) Truth simulation of
plume driven by a vector field. Bottom) Vehicle trajectories plotted on estimation
of vector field and plume.
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a low rank approximation of the error covariance can be calculated. This approxi-

mation approaches the exact error covariance as the number of ensemble members

approaches infinity. The approximation of the error covariance is then used in an

update similar to an update of a standard Kalman Filter (KF).

This thesis uses the EnKF in two ways. First it is used as it was intended (and

as David Zhang used it in his work [1]), as a data assimilation technique to produce a

system estimate from multiple sensor vehicles. Second, it is used in the formulation

of the adaptive observation algorithm so that an approximation of the covariance

matrix is available whenever it is needed during the computation of the gradient

of the cost function. This new ensemble formulation of an adaptive observation

algorithm is the innovation of this thesis.

As mentioned previously, past work [1] used the KF for discrete updates

to the system during the prediction horizon of the adaptive observation algorithm.

The problem with this method is that, to compute the gradient to optimize vehicle

control, the full covariance matrix would need to be propagated in time during the

prediction horizon. This is not feasible in real-world applications. The work-around

used in previous work was to propagate the covariance matrix linearly through the

prediction horizon.

1.3.1 Formulation

The EnKF is initialized with a state estimate x̂. An ensemble, x̂n, is created

with mean x̂ and covariance consistant with the error covariance of the estimate.

The N ensemble members are then propagated using a nonlinear model equation

with the addition of random forcing wn(t) that is statistically consistent with real

state disturbances.
dx̂n(t)

dt
= f(x̂(t),nw(t)n) (1.1)

At discrete times tk, an observation yk is taken. Each ensemble member

is updated using this observation with the addition of random forcing vn
k that is

6



statistically consistent with those of the actual measurement noise, vk .

ŷn
k = yk + vn

k (1.2)

x̂n
k+ = x̂n

k− + P e
k−H

T
k (HkP

e
k−H

T
k +Rk)−1(ŷn

k −Hkx̂
n
k−) (1.3)

where H is the linearization of the output operator h() which depends on the mea-

surement sensor. This update is very similar to a KF or EKF update with two

key differences. The first difference is the additional random forcing applied to the

measurement of each ensemble member. The second is that the matrix P e is an

estimate of the covariance matrix. Unlike the EKF, which uses a Riccati equation

to propagate the covariance matrix P , the EnKF computes an estimate, P e, based

on the second moment of the ensemble members from the ensemble mean.

x̄(t) =
1

N

∑
x̂n(t), δx̂n(t) = x̂n(t)− x̄(t), δX = [δx̂1 δx̂2 ... δx̂N ] (1.4)

P e(t) =
(δX)(δX)T

N − 1
(1.5)

In summary, the EnKF works very similarly to the KF and the EKF. The

ensemble members x̂n(t) are propagated forward in time using the nonlinear model

equation with state disturbances wn(t) until a new measurement yk is obtained.

Then each ensemble member is updated to include this new information with mea-

surement noise vn
k . The covariance matrix is not propagated as it is in the EKF. It

is instead calculated implicitly using the evolution of the ensemble.

1.3.2 Practical Considerations

As mentioned, the EnKF can outperform the KF and EKF in high-dimensional

systems. While this can be attributed to a few different aspects of the EnKF, it is

important to note the computational benefit from the structure of the covariance

estimate, as seen in equation 1.5. This structure allows for the separation of the n

x n matrix P e(t) into two smaller matrices of size n x l and m x l, where n is the

number of ensemble members and l is the size of the state of the system. Typically in

7



estimation problems involving the EnKF systems, state size can be 10,000 or more,

while the size of the ensemble is 2 to 3 orders of magnitude less. This can make a

big difference in both computation time and storage requirements.

Another aspect to consider when implementing an EnKF is covariance local-

ization. As mentioned earlier, the number of ensemble members is often 2-3 orders

of magnitude or more smaller than the size of the state of the system. This results

in an undersampling of the system and can lead to spurious correlations. Essentially,

spurious correlations arise because there are not measurements in a grid close enough

to comensate for the errors that arise in the covariance estimate. To counteract this

problem, covaricance localization can be used to ensure that only grid points phys-

ically close to each other are correlated. Covariance localization is carried out by a

scaling matrix ρ as seen in equation 1.6.

P̃ e(t) = ρ ◦ P e(t) (1.6)

(where ◦ represents the Schur product)

While there are multiple interpretations of how to calculate ρ, the idea is to

create a function that results in the scaling matrix having values between 1 and 0.

When grid points are physically close to each other, the corresponding element in

ρ will approach 1; and vice versa. The work in [7] presents a piecewise function to

compute ρ, as seen in equation 1.7.

ρ =


−1

4
( z
c
)5 + 1

2
( z
c
)4 + 5

8
( z
c
)3 − 5

3
( z
c
)2 + 1, if 0 ≤ z ≤ c

1
12

( z
c
)5 − 1

2
( z
c
)4 + 5

8
( z
c
)3 + 5

3
( z
c
)2 − 5( z

c
) + 4− 2

3
( c
z
), if c ≤ z ≤ 2c

0, if 2c ≤ z

(1.7)

(where z is the distance between grid points and c is the desired localization variable)

As you can see from equation 1.6, covariance localization can be computa-

8



tionally inefficient because it involves the Schur product of two large matrices. Work

such as in [8] has been done to formulate the EnKF in a new way in order to reduce

the computational inefficiencies that occur when applying localization. In the ex-

perimentation done in this thesis, these methods were not used to increase efficiency

because the test case we are using has a relatively small system state size (256).

1.3.3 Applications

As previously mentioned, the EnKF was created as an alternative to the EKF

for high-dimensional systems. To compare the EnKF with the standard EKF there

was initial testing done on highly nonlinear model equations such as the Lorenz

Equation [9]. Soon after, researchers started applying the EnKF to problems in

atmospheric and oceanic data assimilation [10] [11]. In [10], Mitchell and Houtekamer

determined from simulations of a global atmospheric model that atmospheric flow

could be estimated quite accurately from an EnKF with a relatively small number of

ensemble members and 80,000 observations a day. The work in [12] shows that work

has continued to progress in the atmospheric sciences, and the EnKF has become an

integral tool in global forecasting.

More recent and novel work has taken the success of the EnKF in oceanic

and atmospheric sciences and applied it to new fields. The work in [13] shows that

the EnKF can be a useful data assimilation tool for crop yield estimation. The work

in [14] uses the EnKF to estimate the state of a ballistic target during re-entry.

Results from that paper show that the EnKF with an ensemble size larger than 25

significantly outperforms the EKF in estimating the position, velocity, and ballistic

coefficient of an airborne ballistic missile.

These examples show that, much like the traditional KF, the EnKF can be

used in a variety of ways. Creative uses can be found by understanding the advan-

tages of the EnKF over other types of Kalman filters. In the case of this thesis,

we take advantage of the error covariance approximation that naturally arises from

computing an ensemble of system trajectories.

9



Figure 1.4: Ballistic target tracking using the Ensemble Kalman Filter. Left) Real
world setup. Right) Filter position estimate error comparing the Extended Kalman
Filter to the Ensemble Kalman Filter with various numbers of ensemble members.
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Chapter 2

Ensemble Adaptive Observation

The Ensemble Adaptive Observation (EnAO) algorithm presented in this

work is an algorithm that solves the problem of sensor vehicles estimating and fore-

casting the state of a plume moving convectively in a fluid. I begin this chapter

by formulating the algorithm. I then introduce my experimental setup including

the model equation used, the data assimilation process, and the implementation of

the algorithm to compute vehicle trajectories. The chapter ends with details of the

results from this experimentation.

2.1 Formulation

Assume a continuous time (CT) discretization x(t) of an infinite-dimensional

system describing, e.g., a flow of air and smoke over a domain Ω, excited by state

disturbances w(t) [CT, white, zero mean, and spectral density Q(t)], governed by:

dx(t)

dt
= f(x(t),w(t)) (2.1)

Assume also that there are M sensor vehicles (m = 1, . . . , M ) moving

(in CT) throughout Ω, with positions mq(t) and control inputs mu(t), and taking

measurements myk (in discrete time (DT) at times tk = kh with h = T/K for k =

1,...,K) corrupted by measurement noise mvk [DT, white, Gaussian, zero mean, and

11



covariance mRk(mqk)], according to:

for m = 1,...,M :
dmq(t)

dt
= g(mq(t),m u(t)) (2.2)

myk = mhk(xk,
mqk) + mvk = mHk(mqk)xk + mvk (2.3)

That is, we assume the (DT) measurements mhk(xk,
mqk) are linear functions

of the state x(tk) = xk, but both the measurement matrix mHk(mqk) and the covari-

ance matrix mRk(mqk) corresponding to the mth sensor vehicle are functions of its

configuration (position, heading, velocity) at time tk, denoted mq(tk) = mqk [which,

in turn, can be changed by modifying the control inputs mu(t) in (2.2)]. It is assumed

for the purpose of this derivation that the CT trajectories of the sensor vehicles can

be modeled accurately, and thus a disturbance input to (2.2) is not included in the

model, and an estimator for the vehicle positions mq(t) is not needed.

The Ensemble Kalman filter assumes there are N ensemble members (n =

1,...,N), with individual ensemble members x̂n(t) evolving according to the modeled

state equation (2.1) with excitation by ŵn(t), and individual ensemble measurements

mŷn
k are taken according to (2.2)-(2.3) with additional excitation by mv̂n

k in each up-

date, where ŵn(t) and mv̂n
k are generated in a manner that is statistically consistent

with the models of the state disturbances w(t) and measurement noise mvk (i.e.,

with spectral density Q(t) and covariance mRk(mqk), and zero mean):

for n = 1,...,N :

dxn(t)

dt
= f(x̂n(t), ŵn(t)),mŷn

k = myk + mv̂n
k (2.4)

(between measurement times tk)

ŷn
k = [1ŷn

k ;2 ŷn
k ; ...; M ŷn

k ], v̂n
k = [1v̂n

k ;2 v̂n
k ; ...; M v̂n

k ] (2.5)

Hk = [1Hk; 2Hk; ...; MHk], Rk = diag[1Rk; 2Rk; ...; MRk], (2.6)

x̂n
k+ = x̂n

k− + P e
k−H

T
k (HkP

e
k−H

T
k +Rk)−1(ŷn

k −Hkx̂
n
k−) (2.7)

12



(at measurement times tk)

where x̂n
k−denotes the value of x̂n at time t before its DT update during its forward

march, x̂n
k+ is its value after this update, and the low-rank ensemble approximation

P e(t) of the covariance P (t) = E [[x(t)− x̄(t)][x(t)− x̄(t)]T ] is

x̄(t) =
1

N

∑
x̂n(t), δx̂n(t) = x̂n(t)− x̄(t), δX = [x̂1 δx̂2 ... δx̂N ] (2.8)

P e(t) =
(δX)(δX)T

N − 1
(2.9)

The indices have been put in distinct locations in order to keep the notation

clear (as much as possible); for example, the vector mŷn
k represents the value of ŷ

for the mth vehicle, the nth ensemble member, and the kth timestep. Starting from

the current time (taken as t = 0 in the discussion that follows), [1], which assumed a

different model for the evolution of P and used a slightly different notation, developed

an iterative framework to optimize the trajectory of the sensor vehicles to minimize

the uncertainty of the state estimate at time T . We follow the general approach

of that paper here, modifying this formulation to apply to the Ensemble Kalman

formulation (2.4)-(2.7) for the evolution of P e(t). To accomplish this, consider the

problem of minimizing a cost function J with respect to the control inputs mu(t)

over the time interval t ε (0, T ), which, taking Z > 0, we write here in the form

J =
1

2
trace[P e(T )] +

1

2

M∑
m=1

∫ T

0

muT (t)Zmu(t)dt (2.10)

Note that J quantifies the forecast uncertainty (i.e., the trace of the ensemble

approximation of the covariance matrix at time T ). We now lay out the equations

to optimize the control inputs mu(t) over the interval (0, T ) in order to minimize J

via an iterative adjoint-based updating strategy (a.k.a. model predictive control).

Applying perturbations mu′ to the set of control inputs mu over t ε [0, T ]

causes the following chain reaction:

1. perturbations mq′k to the M vehicle state vectors mqk,

13



2. perturbations mH ′k = (dmHk/d
mqk)mq′k to the measurement operators mHk,

3. perturbations mR′k = (dmRk/d
mqk)mq′k to the covariance of the measurement

noise mRk,

4. perturbations x̂′n to the N ensemble members x̂n,

5. perturbations P e′ to the ensemble approximation P e of the covariance, and,

ultimately,

6. perturbations J ′ to the cost function J .

Adjoint arithmetic may now be used to trace back through this cascade, in

order to write

J ′ =
M∑

m=1

∫ T

0

[mg]Tmu′dt (2.11)

thus identifying the gradient, mg(t), of the cost J with respect to the control inputs

mu(t) over t ε (0, T ); gradient-based optimization may then be used to minimize J

with respect to mu(t) over this interval. To accomplish this, we first need to write the

first-order perturbations of (2.2)-(2.10). Applying the chain rule for differentiation

gives the following relations quantifying the chain reaction mentioned above, all of

which are linear in the primed quantities:

dmq′(t)

dt
= mAmq′(t) + mBmu′(t), mq′(0) = 0, mA =

∂g

∂mq
, mB =

∂g

∂mu
, (2.12)

my′k = mH ′kxk,
mH ′k =

dmHk

dmqk

mq′k,

mR′ =
dmRk

dmqk

mq′k, R
′
k = diag[1R′k;2R′k; ...;M R′k], (2.13)

dx̂n′(t)

dt
= Ânx̂n′(t), x̂n′(t+k−1) = x̂n′

(k−1)+ , Â
n =

∂f

∂x̂n
, (2.14)

(between times t+k−1 and t−k for k=1,...,K)

x̄′ =
1

N

∑
x̂n′, δx̂n′ = x̂n′ − x̄′, δX′ = [δx̂1′ δx̂2′ ... δx̂N ′] (2.15)

14



P e′ =
(δX′)(δX)T + (δX)(δX′)T

N − 1
(2.16)

x̂n
k+
′ = L1,n

k− (x̂k−
′) + L2,n

k− (y′k) + L3,n
k− (P e

k−) + L4,n
k− (H ′k) + L5,n

k− (R′k), (2.17)

(at times tk for k=1,...,K)

J ′ =
1

2
trace(P e

K+
′) +

M∑
m=1

∫ T

0

muT (t)Zmu(t)dt (2.18)

where the five linear operators Li
k(.) in (2.17) may be derived as follows: noting (2.7)

and applying the chain rule together with the fact that

∂A−1/∂α = −A−1(∂A/∂α)A−1, and thus (A−1)′ = −A−1A′A−1, we may write

x̂n
k+
′ = x̂n

k−
′ + P e

k−
′HT

k Dk−e
n
k + P e

k−
′(H ′k)TDk−e

n
k + Ck−Dk−(y′k −Hkx̂

n
k−
′ −H ′kx̂n

k−)

−Ck−Dk− [H ′kP
e
k−H

T
k +HkP

e
k−
′HT

k +HkP
e
k−(H ′k)T +R′k]Dk−e

n
k

where Ck− = P e
k−H

T
k , Dk− = (HkP

e
k−H

T
k + Rk)−1, and enk− = ŷn

k − Hkx̂
n
k− ; defining

Ek− = I − Ck−Dk−Hk and fnk− = P e
k−H

T
k Dk−e

n
k− + x̂n

k− , the linear operators Li,n
k−(.)

in (2.17) may thus be written

L1,n
k− (x̂k−

′) = Ek−x̂
n
k−
′, L2,n

k− (y′k) = Ck−Dk−y
′
k, L

3,n
k− (P e

k−
′) = Ek−P

e
k−
′HT

k Dk−e
n
k− ,

(2.19)

L4,n
k− (H ′k) = Ek−P

e
k−(H ′k)TDk−e

n
k− − Ck−Dk−H

′
kf

n
k− , L

5,n
k− (R′k) = Ck−Dk−R

′
kDk−e

n
k−

(2.20)

Noting (2.15)-(2.16) allows us to write the first term of (2.18) as

1

2
trace(P e

K+
′) =

N∑
n=1

(sn)T x̂n
K+
′ (2.21)

where sn = 1
N−1(x̂n

K+ − x̄K+)

Noting (2.13), (2.15)-(2.16), and (2.19)-(2.20) and taking q = [1q;2 q; ...;M q]
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allows us to rewrite (2.17), leveraging the rank-3 tensors ∆qH and ∆qR, as

x̂n
k+
′ = Ek−x̂

n
k−
′ + Ck−Dk−H

′
k(xk − fnk−) + Ek−P

e
K−(H ′k)TDk−e

n
k−

+Ek−P
e
K−
′HT

k Dk−e
n
k− + Ck−Dk−R

′
kDk−e

n
k−

= L6,n
k− (x̂′k−) + L7,n

k− (q′k−)

where

P e′ =
N∑
l=1

(x̂l′[δx̂l]T + δx̂l[x̂l′]T ), x̂′k− = [x̂1
k−
′; x̂2

k−
′; ...; x̂N

k−
′]

H ′ =
dH

dq
· q′ = ∆qH · q′

R′ =
dR

dq
· q′ = ∆qR · q′

thus,

L6,n
k− (x̂k−

′) = Ek−x̂
n
k−
′ + Ek−

N∑
l=1

(x̂l′[δx̂l]T + δx̂l[x̂l′]T )HT
k Dk−e

n
k− (2.22)

L7,n
k− (q̂′k) = Ck−Dk−(∆qHk · q′k)(xk − fnk−) + Ek−P

e
k−(∆qHk · q′k)TDk−e

n
k−

−Ck−Dk−(∆qRk · q′k)Dk−e
n
k− (2.23)

Taking ẑk+ = [ẑ1k+ ; ẑ2k+ ; ...; ẑNk+ ], we will also make use below of the adjoints of the

linear operators L6,n
k− (·)and L7,n

k− (·), defined as follows

N∑
n=1

[ẑnk+ ]TL6,n
k− (x̂′k−) =

N∑
n=1

[L6,n∗
k− (ẑk+)]T x̂n

k−
′,

N∑
n=1

[ẑnk+ ]TL7,n
k− (q̂′k) = [L7∗

k−(ẑk+)]T q̂′k,

(2.24)

thus,

L6,n∗
k− (ẑk+) = ET

k− ẑ
n
k+ +ET

k−

N∑
l=1

ẑlk+ [δx̂n
k− ]THT

k Dk−e
n
k− +ET

k−

N∑
l=1

δx̂n
k− [ẑlk+ ]THT

k Dk−e
n
k−

(2.25)
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L7∗
k−(ẑk+) =

N∑
n=1

[(xk−fnk−)T (∆qHk·)TDT
k−C

T
k− ẑk++[enk− ]TDT

k−(∆qHk·)[P e
k− ]T [Ek− ]T ẑk+

−[enk− ]TDT
k−(∆qRk·)TDT

k−C
T
k− ẑk+ ] (2.26)

where we have introduced the notation [aT (∆B·)Tc]Tq′ = cT (∆B · q′)a
and [aT (∆B·)c]Tq′ = cT (∆B · q′)Ta

The perturbation problem (2.12)-(2.18) now reduces to significantly simplified

form. The perturbations of the states of the sensor vehicles, q′(t), evolve in CT from

t = 0 to t = T , forced by u′(t) according to the CT system

dmq′(t)

dt
= mA(t)mq′(t) + mBmu′(t), mq′(0) = 0, ⇒ mL(t)mq′(t) = mB(t)mu′(t),

mL(t) =
d

dt
− mA(t) (2.27)

while the perturbations of the ensemble members, x̂n′(t), evolve in a mixed CT/DT

framework over the same time interval, forced by the mq′(t): defining x̂n
0|0
′ = 0, they

evolve between t+k−1 and t−k (for k = 1, ..., K) according to

x̂n′(t)

dt
= Ân(t)x̂n′(t), x̂n′(t+k−1) = x̂n

(k−1)+
′, ⇒ L̂n(t)x̂n′(t) = 0,

L̂n(t) =
d

dt
− Ân(t) (2.28)

and, upon completion of the k’th march of (2.28), defining x̂n
k−
′ = x̂n′(tk), are up-

dated at time tk according to

x̂n
k+
′ = L6,n

k− (x̂k−
′) + L7,n

k− (q̂′k) (2.29)

finally, the corresponding perturbation to the cost function is given by

J ′ =
N∑

n=1

(sn)T x̂n
K+
′ +

M∑
m=1

∫ T

0

muT (t)Zmu′(t)dt (2.30)

We have thus identified a simplified cascade of linear relations,(2.27)-(2.30),
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that relate any perturbation of the controls mu′ to the corresponding cost perturba-

tion J ′. What remains is to pose the appropriate adjoint identities to turn these four

relations around, thereby expressing J ′ in the form given in (2.11) to identify the

gradient mg(t). To proceed, denote mr(t) as the adjoint of mq′(t) and ẑn(t) as the

adjoint of x̂n′(t), take r = [1r;2 r; ...;M r], and define the necessary duality pairings

and adjoint identities piecewise on each time interval from t+k−1 to t−k as follows:

〈mr(t),m q′(t)〉k =

∫ tk

tk−1

[mr(t)]Tmq′(t)dt,

〈mr(t),m L(t)mq′(t)〉k = 〈mL∗(t)mr(t),m q′(t)〉k +m bk (2.31)

⇒m L∗(t) = − d

dt
− [mA(t)]T , mbk = [mrk− ]Tmq′k − [mr(k−1)+ ]Tmq′k−1 (2.32)

〈ẑn(t), x̂n′(t)〉k =

∫ tk

tk−1

[ẑn(t)]T x̂n′(t)dt,

〈ẑn(t), L̂n(t)x̂n′(t)〉k = 〈L̂n∗(t)ẑn(t), x̂n′(t)〉k + b̂nk (2.33)

⇒ L̂n∗(t) = − d

dt
− [Ân(t)]T , b̂nk = [ẑnk− ]T x̂n

k−
′ − [ẑn(k−1)+ ]T x̂n

(k−1)+
′ (2.34)

Leveraging the adjoint operators mL∗(t) and Ln∗(t) and identities above, we now

perform the necessary adjoint analysis. To begin, initialize rK+ = 0 and ẑnK+ = s.

Then, for k = K,K − 1, ..., 1 consider the DT updates

rk− = rk+ + L7∗
k−(ẑk+), ẑk− = L6,n∗

k− (ẑk+) (2.35)

coupled with the appropriate CT marches of mr(t) and ẑn(t) in reverse time on each

interval, from t = t−k to t = t+k−1 for k = K,K − 1, ..., 1, as follows:

mL∗(t)mr(t) = 0⇒ −d
mr(t)

dt
= [mA(t)]Tmr(t), mr(t−k ) =m rk− (2.36)

L̂n∗(t)ẑn(t) = 0⇒ −dẑ
n(t)

dt
= [Ân(t)]T ẑn(t), ẑn(t−k ) = ẑnk− (2.37)

where mrk+ =m r(t+k ) and ẑnk+ = ẑ(t+k ) indicate the values of mr and ẑn at time t+k ,
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just before their k’th DT updates on this backward march, and mrk− =m r(tk−) and

ẑnk− = ẑn(tk−) indicate their values at t−k , just after these updates.

Note that, by (2.29), (2.35), and (2.24) it follows that

M∑
m=1

[mrk+ ]T (mq′k) +
N∑

n=1

[ẑnk+ ]T (x̂n
k+
′)

=
M∑

m=1

[mrk− ]T (mq′k) +
N∑

n=1

[ẑk− ]T x̂n
k−
′ (2.38)

This fact, together with the initial conditions mq′0 = 0 and x̂n
0+
′ = 0, the terminal

conditions mrK+ = 0 and ẑnK+ = sn, the perturbation equations (2.27)-(2.29), and

the adjoint equations (2.35)-(2.37) allow us to leverage the identities in (2.31)-(2.34)

to express the first term in the cost perturbation J ′ in (2.11) in the desired form,

thus identifying the gradient:

N∑
n=1

[sn]T x̂n
K+
′ =

M∑
m=1

∫ T

0

[mr(t)]TmB(t)mu′(t)dt

⇒ J ′ =
M∑

m=1

∫ T

0

[mBT (t)mr(t) + Zmu(t)]Tmu′(t)dt (2.39)

⇒ mg(t) = mBT (t)mr(t) + Zmu(t) (2.40)

where the adjoint (mr(t), ẑn(t)) is determined from the piecewise-continuous

backward-in-time march given in (2.35)-(2.37), the operators of which are func-

tions of the result of the piecewise-continuous forward-in-time march of the system

(mq(t), x̂n(t)) defined by (2.2)-(2.10).

2.2 Experimentation

To test this EnAO algorithm, a simulation was set up using MATLAB. Al-

though MATLAB lacks the speed and portability of languages like C or Fortran,

it was chosen for ease of use and was found to be sufficient for this small proof of
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concept experiment.

The simulation structure is as follows:

1. A truth simulation of a model equation is initialized and propagated in time

using tested numerical methods. This experiment uses the two-dimensional

Convective Cahn-Hilliard Equation as a model equation and simulates it using

appropriate spectral methods.

2. Sensor vehicles are placed in the truth simulation with the ability to measure

the scalar value of the model equation at the vehicle’s current location in the

grid. The measurements taken have additional zero mean white Gaussian mea-

surement noise vk with covariance Rk. These vehicles have the ability to move

with point mass dynamics with damping and their control inputs come from

the EnAO algorithm.

3. An EnKF is used to create an estimate of the model using the measurement

data from the sensor vehicles. All ensembles are initialized as zero and are

updated according to the measurement data and propagated according to the

model equation and additional zero mean white disturbances w(t) with spectral

density Q(t). In practice, this is done in discrete time with disturbances wk at

each time step.

4. The EnAO algorithm runs to optimize the vehicle trajectory over a specified

time horizon. The optimization attempts to minimize the variance of the en-

semble that is used to estimate the model equation. Gradient-based minimiza-

tion methods are used to minimize the cost function.

5. When the EnAO algorithm is finished, it sends the control inputs to the sensor

vehicles.

6. The model equation marches forward in time using the chosen numerical meth-

ods and the vehicles march forward in time with the new control inputs and

specified vehicle dynamics.
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7. The simulation continues in a similar manner with the EnAO computing control

inputs, the truth simulation marching in time, and the EnKF estimating the

truth simulation.

Figure 2.1: A figure describing the steps of the simulation process.

You can see that this experimental simulation proceeds linearly without any

parallelization. This is the downside of using the standard MATLAB package where

coarse-grain parallelization is not available. Future experiments should take advan-

tage of many coarse-grain parallelizable tasks. However this experimental setup was

found to be sufficient for a proof of concept of the algorithm.

There are many different parameters associated with this experimental setup,

including the size of the grid, the number of ensemble members, the variance of

the measurement noise and ensemble perturbations, and the optimization horizon.

All of these parameters were chosen to accomplish two main goals: 1) to create an

experiment that is consistent with potential real world uses; and 2) to create an

experiment that can be performed with my current computational resources.
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2.2.1 Convective Cahn-Hilliard Equation As A Model Equa-

tion

This work uses the two-dimensional Convective Cahn-Hilliard Equation as a

model equation to test the effectiveness of the newly formulated EnAO algorithm.

The two-dimensional Convective Cahn-Hilliard equation is typically used as a model

equation to represent several physical phenomena, including specific types of crys-

tal growth and phase separation. This equation is a useful model because, with a

large enough driving force, the two-dimensional Convective Cahn-Hilliard Equation

exhibits chaotic convective behavior [15]. This aligns well with problems that involve

plumes driven by environmental forces (e.g. radioactive clouds in air or oil in water)

where the evolution of the plume is convective rather than diffusive and typically

exhibits chaotic behavior.

The specific mathematical form of the two-dimensional Convective Cahn-

Hilliard Equation that was used in this work is:

ht =
1

2
D|∇h|2−|∇2h|− |∇4h|+3(h2x +αh2y)hxx +3(αh2x +h2y)hyy +βhxhyhxy (2.41)

Where the coefficients α, β, and D were chosen to be 0, 0, and 10 to exhibit

the chaotic behavior seen in [15].

Appropriate numerical methods were used to simulate the two-dimensional

Convective Cahn-Hilliard Equation. The spatial discretization was done pseudospec-

trally on a periodic domain, meaning all derivatives were done in Fourier space and

all nonlinear products were done in physical space. The system was time stepped us-

ing a mixed implicit/explicit scheme where Crank-Nicholson was used for the linear

terms and Runga-Kutta 3 was used for the non-linear terms.

A contour plot was used to plot the two-dimensional Convective Cahn-Hilliard

equation so that it would be easier to see vehicles moving in the same two dimensional

grid.
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Figure 2.2: Example of the solution to the two-dimensional Convective Cahn-Hilliard
Equation. This snapshot is representative of the peaks and valleys that move around
the grid as the equation marches in time. Left) Surface plot to better illustrate the
peaks and valleys of the equation. Right) Contour plot which will be used in the
demonstration of the adaptive observation algorithm.

2.2.2 Estimating Truth Simulation

An EnKF is used to create an estimate of the model using the measurement

data from the sensor vehicles. The EnKF works as described in section 1.2. At

the beginning of each simulation, the number of ensemble members, N , is specified

and all ensemble members are initialized at zero with no initial variance. The en-

semble members are propagated in the same manner as the model equation with

an additional disturbance wn
k applied to each ensemble member. wn

k is a zero mean

Gaussian disturbance with a covariance specified at the beginning of each simula-

tion. At specified measurement times, the ensemble members are updated according

to the measurement data with additional measurement noise vnk . The noise, vnk , is a

zero mean Gaussian white noise with covariance R that is specified at the beginning

of the simulation.

The estimate of the truth simulation is then calculated as the average of the

ensemble. Because the ensemble is initialized at zero, the estimate takes time to

approach the truth model. The speed at which the estimation approaches the truth

model and the overall estimation error is dependent on the control technique used

to move the vehicles.
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2.2.3 Controlling Sensor Vehicles

Control of the sensor vehicles is calculated using the EnAO algorithm de-

scribed in section 2.1. The number of vehicles is specified at the beginning of each

simulation and the vehicles are initialized evenly in the middle of the domain. It is

assumed that the vehicle states can be accurately tracked so there is no uncertainty

in the vehicle states. A finite prediction time horizon is specified at the beginning of

each simulation and the EnAO optimizes a control output for the horizon according

to the cost function described in section 2.1. At the beginning of each horizon, the

EnAO is initialized with the best current estimate of the model equation. As said

before, the best current estimate of the model equation is the average of the ensemble

taken from the EnKF running in parallel with the truth simulation.

Numerically, the EnAO algorithm is fairly simple to implement. The EnAO

starts with a prediction in which the vehicles are propagated forward in time using

point mass dynamics with damping, and an ensemble of flow predictions is prop-

agated forward in time using the same technique as in the truth simulation with

additional state disturbances for each ensemble member. Discrete updates to the

flow are made according to the EnKF at specified update intervals. Once the vehi-

cles and flow are propagated to the end of the prediction horizon, then their adjoints

are propagated backwards in time from the end of the horizon to the beginning. The

adjoint of the linear operator for the vehicle movement is straightforward; however,

the model equation for the flow must be linearized and discretized in order to find

its adjoint.

To do this the two-dimensional Convective Cahn-Hilliard Equation (2.41) was

first linearized. This equation was then discretized in space using finite difference

techniques. Central difference was used for the first derivatives, second order cen-

tral difference for the second derivatives, and the classic 13-point approximation for

the bi-harmonic oscillator equation. All discretizations assumed periodic boundary

conditions.

Once the gradient is identified as described in the EnAO algorithm in section

2.1 then the minimization of the cost function is achieved through gradient descent
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methods. Our results were produced using the Polak-Ribiere conjugate gradient

method.

2.3 Results

All simulations were run as outlined in the previous section. To test the

algorithm, each simulation was run, not only with the vehicles moving according to

the EnAO algorithm, but also with vehicles sweeping across the entire domain and

vehicles moving randomly in the domain. All flow estimates were produced in exactly

the same way using an EnKF with 20 ensemble members running in parallel with

the truth simulation of the flow. The measurement noise and ensemble disturbances

remained consistent between the three vehicle movement cases. The simulation was

run with two vehicles in a 16x16 grid. This was chosen to be an adequate size for a

proof of concept while still able to be carried out on a standard computer. In each

movement case, the vehicles were initialized at the same positions and control inputs

were normalized so that the magnitude of control is consistent between all movement

cases.

As stated before, the goal of this algorithm is to move vehicles in a given

domain in order to achieve an accurate estimate and forecast of a convective flow

that the vehicles are measuring. This algorithm attempts to achieve the goal by

minimizing the estimate error variance through the minimization of a corresponding

cost function. To show that the vehicles are attempting to minimize the error vari-

ance, figure 2.3 shows the trajectory of two vehicles during one horizon plotted over

a color map of the error variance at the beginning of the prediction horizon. The

figure shows that, as expected, the optimization of the vehicle paths over a given

horizon results in the vehicles moving to areas of high variance.
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Figure 2.3: Plot of vehicle trajectories over a horizon plotted over the variance at
the beginning of the horizon
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Figure 2.4: Plot of the ensemble variance approximation over time produced from
the average of 6 simulations

Table 2.1: The average total variance and standard deviation averaged from time
t=2 to t=20 of 7 simulations

Average Total Variance Standard Deviation
Random Vehicles 14.5680 1.5187
Sweeping Vehicles 13.5925 0.8135
EnAO Vehicles 13.3104 1.0427

While figure 2.3 provides evidence that vehicles move toward areas of high

variance over a single horizon, the goal is to keep the variance to a minimum for

longer periods of time. To this end, figure 2.4 shows a line graph of the total error

variance approximation over a specified time. Total error variance is calculated as

the sum of the variance at each grid point, (i.e. the trace of the covariance matrix).

vartot = trace(P e) (2.42)

These results were produced from an average of 7 trials. You can see that
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the EnAO algorithm along with the other vehicle movement strategies keep the total

variance from growing in time. However, the line graph does not clearly show that

one strategy is better than another. To better interpret the data, it can be seen that

the variance remains relatively constant from time t = 2 to t = 20. The average

and standard deviation of this period is shown in table 2.1. The table shows that

the EnAO has the lowest variance, but has a higher standard deviation than the

sweeping vehicles.

These results are promising because, although sweeping vehicles seem to keep

the variance more constant in time, it is not feasible to have sweeping vehicles in a

larger domain. This means that sweeping vehicles can be thought of as a best case

scenario and the EnAO nearly matches or even slightly outperforms this idealized

situation.

In a similar way to figure 2.4, figure 2.5 shows the estimation error over time

of the flow estimates from the three different sensor vehicle movement strategies. The

estimation error is calculated as the normalized 2-norm of the difference between the

truth state and the state estimate.

E =
|x̂− x|2
|x|2

(2.43)

Figure 2.5 shows that all three cases produce a fairly accurate estimate of the

flow after some time. To assess this more visually, image c in figure 2.6 shows what

the estimates look like towards the end of the simulation. Based only on looking

at figure 2.6, one could say that all estimates are of high quality. But figure 2.5

indicates that the EnAO does in fact produce the best estimate of the flow in the

end.

Although results are promising, it is obvious that the limited size of the

experiment is holding back more definitive conclusions. For example, a larger domain

would make it such that vehicles could not sweep across the entire domain like the

ones in the test simulations. To test this, a much larger grid must be used so that the

vehicles cannot cover the entire grid in any reasonable period of time. This should

favor the EnAO algorithm where the vehicles are trying to find a local area that they
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Figure 2.5: Plot of estimation error over time produced from the average of 7
simulations

can move to in order to minimize the variance as opposed to sweeping vehicles that

are attempting to cover the entire domain.
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a) b)

c)

Figure 2.6: Screenshots of the simulation a) Beginning: all vehicles start in the same
place and estimates are not good. b) Middle: vehicles move around the domain and
estimates start to approach the truth. c) End: estimates from all vehicles look very
accurate

2.3.1 Covariance Localization

All previous experimental results were produced without covariance localiza-

tion. To test the effect of covariance localization on my experimental setup, simula-

tions were run where static sensors were used along with an EnKF to estimate the

same CCH equation on the same size grid. Using the function from equation 1.7 to

compute ρ, figure 2.7 shows how reducing c decreases the overall steady state error

of the flow estimate. What cannot be seen is that c values lower than 6 resulted

in divergence of the covariance matrix and therefore could not estimate the system

accurately.
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Figure 2.7: Estimation error when estimating flow using EnKF with different
amounts of localization

As you can see from figure 2.7, although covariance localization does seem to

reduce the error of the flow estimate, it is not by a significant amount. This result is

most likely due to the relatively small size of the system state. This shows that the

previous testing of the algorithm without covariance localization is still valid.
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Chapter 3

Conclusion

3.1 Summary

This thesis presented an algorithm (EnAO) that can be used to plan the

trajectory of sensor vehicles moving in a flow field. While the end goal is to use

this algorithm to track environmental plumes, this thesis presented initial findings

based on numerical simulations. The numerical simulations allowed sensor vehicles to

move in a grid containing a model flow equation. The sensors gathered measurements

from the grid to estimate the current state of the flow and the algorithm used the

estimate to create a forecast to determine the best vehicle trajectory to acquire new

measurements.

Initial results show that the algorithm does in fact have the ability to ac-

curately estimate a flow field, and it shows advantages over strategies that sweep

vehicles and randomly control vehicles across the grid. These initial experiments

were performed on size-limiting software and hardware. However, the results suggest

that the algorithm could be just as effective at a larger scale. To test this, further

simulation is required on larger domains with flow model equations more consistent

with real world situations.
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3.2 Future Work

As I have mentioned previously, the success of this work has largely been lim-

ited by the capabilities of the hardware and software used in the experimentation.

For this reason, I believe future work should be programmed in C or Fortran. From

a software perspective, this will allow for more efficient fine-grained parallelization,

which is known to be better when using C or Fortran rather than MATLAB. Uti-

lizing C or Fortran will also make it possible for the simulations to be performed

on multi-CPU super computers. This makes it possible to code for coarse-grained

parallelization. Specifically it means that the calculations for each ensemble member

can be split up onto different CPUs, significantly decreasing computation time.

Aside from allowing for larger simulations, more computing power would make

it possible to do more complex simulations. The model equation used in this thesis

was adequate to test the algorithm on a convective flow, but real life fluid flows are

always modeled using the Navier-Stokes equation. Running simulations with the

Navier-Stokes equation will bring the algorithm even closer to being run in real time

in real-world environments.

Finally, after large-scale simulations using Navier-Stokes equation are per-

formed and found to be successful, it is a logical next step to design a real-world

experiment to test the algorithm.
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