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Heat wave intensity Duration 
frequency curve: A Multivariate 
Approach for Hazard and 
Attribution Analysis
omid Mazdiyasni1, Mojtaba Sadegh  2, felicia chiang1 & Amir AghaKouchak1,3

Atmospheric warming is projected to intensify heat wave events, as quantified by multiple descriptors, 
including intensity, duration, and frequency. While most studies investigate one feature at a time, heat 
wave characteristics are often interdependent and ignoring the relationships between them can lead 
to substantial biases in frequency (hazard) analyses. We propose a multivariate approach to construct 
heat wave intensity, duration, frequency (HiDf) curves, which enables the concurrent analysis of all 
heat wave properties. Here we show how HiDf curves can be used in various locations to quantitatively 
describe the likelihood of heat waves with different intensities and durations. We then employ HIDF 
curves to attribute changes in heat waves to anthropogenic warming by comparing GcM simulations 
with and without anthropogenic emissions. for example, in Los Angeles, cA, HiDf analysis shows that 
we can attribute the 21% increase in the likelihood of a four-day heat wave (temperature > 31 °C) to 
anthropogenic emissions.

Heat waves have significant negative implications on human health, urban air quality, ecological and environmen-
tal conditions, as well as agricultural and energy sectors1–5. In addition, heat waves have been connected to the 
increased risk of forest fires6. Heat waves are also considered to be one of the deadliest natural hazards, and cause 
high mortality rates in both developed and developing countries7. For example, the 2003 European heat wave and 
2010 Russian heat wave killed over 70,000 and 56,000 people, respectively8–12. The 2003 European heat wave also 
caused electricity demand to soar and energy efficiency to plummet13. France, Europe’s main electricity exporter, 
was forced to cut power exports by more than half during the heat wave, because power plants were operating at 
significantly reduced capacity14,15. Extreme temperatures and heat wave events have also caused problems in the 
transportation sector. Phoenix Sky Harbor Airport was forced to cancel nearly 50 flights due to extreme tempera-
tures in the summer of 2017, when temperatures soared as high as 120 °F. These cancellations produced a domino 
effect on the entire air transportation system, which demonstrate how impacts of regional heat waves can expand 
to a national or even global level.

Rising global temperatures are expected to increase the intensity, duration, and frequency of heat waves 
around the world16–21,22–24. Most studies investigate different features of heat waves independently, and ignore 
their relationships25–28. Although there is no universal definition, heat waves are typically described as a consecu-
tive period of hot days with temperatures above a given threshold7,29. The threshold is often based on a percentile 
of each month’s daily temperatures or a fixed value30–32. For a comprehensive review of traditional heatwave 
definitions, and a toolbox to identify heatwaves and their statistics at a global scale refer to Raei, 201832. Current 
metrics evaluate individual heat wave characteristics, such as the hottest day of each year or longest duration 
of consecutive hot days7,17,22,29,31,33. However, current univariate indicators often underestimate the impacts of 
heat waves because they fail to characterize the extreme event in a comprehensive manner23,34,35. The impacts of 
individual heat wave characteristics can be amplified when considered concurrently (e.g. high intensity and long 
duration vs high intensity and short duration heat wave events). The significant impacts along with the increasing 
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intensity and duration of extreme heat wave events highlight the need for a comprehensive metric, accounting for 
all heat wave characteristics simultaneously.

In this paper, we propose a heat wave intensity-duration-frequency (HIDF) model. This model differs from 
the typical definition of heat waves, as we model the annual occurrence probability of consecutive hot days. We 
define HIDF to be similar to traditional precipitation IDF curves, obtaining the occurrence probability (or the 
corresponding return period) of annual maximum temperatures over durations between one to ten days. We use 
multivariate copula functions to link heat wave durations and intensities. The use of these functions allows for 
presentation of heat wave frequency information with different combinations of intensity and severity. Copulas 
have been used for linking different features of drought and precipitation extremes such as duration and sever-
ity36–40. In this paper, we consider heat wave intensity as the average of mean daily temperature throughout the 
duration of heat wave. We use mean temperatures (instead of maximum temperature) is to account for night-time 
cooling (or lack of it), since the cumulative impacts of high temperatures (e.g. the lack of night-time cooling 
during a heat wave) can be detrimental to human health. Our results portray and compare HIDF curves for six 
cities in the United States, using daily mean temperature data from 1979–2016. We also compare HIDF curves 
generated from historical model simulations (including anthropogenic emissions) against natural-only historical 
(e.g., pre-industrial emissions level) model simulations to investigate the impacts of anthropogenic emissions on 
extreme heat events, using daily mean temperature data from 1850–2005. Using this approach, we concurrently 
compare the differences in heat wave intensity, duration, and frequency for a more comprehensive analysis of 
anthropogenic climate change impacts on heat waves.

Results
Figure 1 shows the heat wave IDF curves for Atlanta, Chicago, Denver, Houston, Los Angeles, and Phoenix. 
Each subplot depicts the joint non-exceedance probabilities for different combinations of heat wave duration 
and intensity. In addition to providing heat wave hazard (frequency) information, HIDF curves can be used for 
comparing the hazard of heat waves in different locations. For example, Fig. 1 portrays that Chicago heat waves 
with durations of up to six-days and average temperatures of 38 °C or less correspond to a 2-year return period 
(probability = 0.5), while a similar six-day heat wave with a 2-year return period in Phoenix would have a much 
higher intensity of 47.5 °C (see the OR hazard scenario entailed by Eq. 3, and the related references concerning the 
calculation of multivariate return periods). Similar comparisons can be made based on the duration or frequency 
of events in different regions. Figure 1 demonstrates the flexibility of the proposed HIDF curves for describing 
the probability of occurrence of different combinations of heat wave duration and intensity. The figure also shows 
different combinations of heat wave duration and intensity that lead to the same return period. For example, Fig. 1 
shows that a 7-day heat wave with an intensity of 47 °C is equally likely as a 10-day heat wave with an intensity 
of 45 °C (here, both are 2.5 year events) in Phoenix, AZ. As mentioned in the Methods Section, the HIDF can be 
described based on the concept of joint exceedance probabilities (instead of non-exceedance probabilities) for 
different combinations of heat wave intensity and duration (Eq. 4). Figure 2 shows an example of HIDF based on 
the joint exceedance probabilities for the city of Chicago. The figure shows that joint exceedance probabilities of 
a heat wave event lasting six days or more with an average temperature exceeding 38 °C in Chicago has a return 
period greater than 100 years (less than 0.01 exceedance probability).

As mentioned earlier, HIDF curves can be derived based on joint exceedance probability (AND hazard sce-
nario; see Eq. 4). Figure 2 presents a HIDF analysis based on joint exceedance probabilities (i.e., both intensity 
and duration being above their thresholds). HIDF curves displaying exceedance probabilities for different cit-
ies as well as CMIP5 historical and natural-only model simulations are presented in Supplementary Materials 
(Figs S12–S21).

In addition to describing characteristics of heat waves in different locations, the HIDF can be used to inves-
tigate how heat wave features have changed over time, or in response to other factors (e.g., anthropogenic emis-
sions). Here we employ HIDF curves to attribute changes in heat wave intensity, duration, and frequency to 
anthropogenic emissions. Figure 3 compares HIDF curves in Los Angeles, CA using the mean of the historical 
(black) and natural-only (red) CMIP5 simulations. Figure 3 shows differences in the joint non-exceedance prob-
ability of heat wave duration and intensity between historical and natural-only simulations (1950–2005). This 
figure demonstrates that heat wave events are generally shorter and less intense under the natural-only forcing 
(without anthropogenic emissions) in relation to the historical forcing (with anthropogenic emissions). In other 
words, a heat wave with the same intensity and duration under natural-only historical conditions has a lower 
frequency (and probability of occurrence) than a heat wave occurring under historical conditions perturbed by 
anthropogenic emissions. For example, this figure shows that an extreme ten-year, ten-day heat wave event have 
an intensity of 31.9 °C under natural-only conditions, while the event would have an intensity of 32.2 °C under 
historical conditions. This is a statistically significant difference at 0.05 significance level (see Supplementary 
Materials). Mazdiyasni et al., 2017 show that an increase of only 0.5 °C in summer mean temperatures leads to a 
146% increase in the probability of mass mortality events in India. The study also shows that an increase of heat 
wave days from six to eight days over the summer season leads to an 84% increase in the probability of mass mor-
tality events. We can infer than the effects of a rise of 0.3 °C in a 10-year heat wave event over 10 consecutive days 
will have significant implications on human health, agriculture, the environment, and the electric grid7. Figure S1, 
in Supplementary Materials, portrays the HIDF curves of the individual climate models.

Given that the HIDF curve is based on a multivariate framework, we can extract information about one var-
iable (e.g., heat wave intensity) conditioned on a second variable (e.g., heat wave duration) – Eq. 5. Figure 4, for 
example, displays the difference in heat wave intensity given heat wave duration between historical vs natural-only 
conditions, using the mean of the four CMIP5 models (Fig. S2 shows similar results for each individual CMIP5 
model). We show that the probability of heat wave intensity being greater than 30 °C given a duration of four days 
is eight percent greater under historical conditions in comparison to natural-only conditions (81% vs 75%). We 
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also show that the probability of intensity being greater than 31 °C given a heat wave duration of four days is 24 
percent greater under historical conditions vs natural-only conditions (41% vs 33%, respectively). Note that we 
are considering relative percent change with respect to natural-only conditions. These increases in the probability 
of intense heat over several consecutive days can be attributed to anthropogenic warming. Figure S3 also shows 
similar results for six-day heat waves. As shown, anthropogenic warming has increased the likelihood of a six-day 
heat wave (temperature > 30 °C) by 10% and a six-day heat wave (temperature > 31 °C) by 29%. Figures 4 and S3 
imply greater increases in the likelihood of longer and more intense heat waves in the historical simulations rela-
tive to the natural-only. Therefore, we can conclude that greater increases in the likelihood of extreme (in intensity 
and duration) heat wave events may have been driven by anthropogenic warming.

Figure 1. Heat wave intensity-duration-frequency (HIDF) curves for six major cities across the United States 
(Atlanta, Chicago, Denver, Houston, Los Angeles, and Phoenix) using non-exceedance probabilities. The red 
values on the right axis represent non-exceedance probabilities.

https://doi.org/10.1038/s41598-019-50643-w
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Discussion
Global warming is causing an increase in the frequency and severity of heat wave events, which increases the 
importance of using a robust model in understanding heat waves and quantifying heat wave properties. We pro-
pose a multivariate approach to construct heat wave intensity, duration, frequency (HIDF) curves, which enables 
robust frequency (hazard) analysis of extreme heat events, while concurrently accounting for both intensity and 
duration of heat waves. Since these heat wave features are interdependent, it is important to model the relation-
ship in a manner that avoids biases in the frequency analyses. The main objective of this paper is to present the 
HIDF methodology and show different types of applications including describing heat wave features and con-
ducting attribution analyses. An attribution analysis using the proposed HIDF curves shows that the anthropo-
genic emissions have increased the likelihood of a four-day heat wave (temperature > 31 °C) by 24%. We further 
show a six-day heat wave (temperature > 31 °C) has a 29% higher likelihood under the anthropogenic emission 

Figure 2. Heat wave intensity-duration-frequency (HIDF) curves for Chicago using exceedance probabilities. 
The red values on the left axis represent exceedance probabilities.

Figure 3. Mean heat wave intensity-duration-frequency (HIDF) curves for historical (including anthropogenic 
forcing) vs natural-only historical simulations from selected CMIP5 models using non-exceedance probabilities 
in Los Angeles, CA. The red values on the right axis represent non-exceedance probabilities.

https://doi.org/10.1038/s41598-019-50643-w
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scenario relative to the natural-only scenario. The proposed method is general and can be applied to different 
locations and different combinations for heat wave durations and intensities.

The HIDF curve can potentially be used by for design of infrastructure systems such as electric grids and 
power plants. For example, an electric grid is designed for peak demand and must consider both the duration and 
intensity of heat wave events simultaneously, similar to the use of precipitation IDF curves for highway culvert 
design. Although analyzing heat waves with univariate indices have provided useful information in the past, our 
proposed metric can change how we view the extremeness of a heat wave event moving forward.

Methods
We create the HIDF curves by determining the non-exceedance probability of heat wave duration and intensity, 
although HIDF can also be defined based on exceedance probability. We define heat wave intensity using the aver-
age daily temperature throughout the duration of the event. The HIDF model differs from the typical heat wave 
definition as it lacks a certain temperature threshold to define heat waves. Instead, similar to traditional precipi-
tation IDF curves, we use the block maxima method to produce the HIDF curves. We determine the hottest heat 
wave events in each year with durations ranging from one to ten consecutive days. We do this by first determining 
the hottest, two consecutive hottest, three consecutive hottest, …, ten consecutive hottest days for each year, and 
then modeling the joint probabilities of all those block maxima temperature values with their corresponding 
durations. We consider the highest mean temperature over the duration period. We subsequently calculate the 
intensity of each event using,
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where y is the year, i is the first day in the moving window that ranges between one and the number of days in the 
year, ti

y is the average daily temperature at day i of year y, and D is the length of the running window (i.e. heat 
wave duration). Note that the data used to create HIDF curves consists of heat waves with one, two, …, ten days 
duration and associated average daily temperature during the event. Hence, each year in the period of observation 
yields 10 pairs of duration and intensity data.

In other words, we first determine the average temperature of the one to ten hottest consecutive days in each 
year to model HIDF curves. We then use multivariate copula functions to find the non-exceedance (or exceed-
ance) joint probability cumulative distribution function of heat wave duration and intensity41–46. We first deter-
mine the admissible models via suitable Goodness-of-Fit tests, at 0.05 significance level, out of the 25 copula 
families and the 17 distributions built into the Multivariate Copula Analysis Toolbox. Then, we choose the best 
fitting (admissible) model based on the Bayesian Information Criterion47,48, based on the Bayesian Information 
Criterion which could not be rejected as determined by the associated p-values at 0.05 significance level49–51. Refer 

Figure 4. Comparison between historical (including anthropogenic forcing) vs natural-only historical 
parametric conditional probability density functions (PDFs) using the mean of CMIP5 simulations for heat 
wave intensity given heat wave duration equal to four days in Los Angeles, CA.

https://doi.org/10.1038/s41598-019-50643-w
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to Table S1 of47 for more information regarding the copula families and find the list of marginal distributions used 
in this study in the Supplementary Information (SI). Also see the Supplementary Table S2 for information on the 
metrics of the best fitting copula and marginal distributions. Table S2 shows a summary of the selected marginal 
distributions, best-fitted copula families, and their performance in terms of Root Mean Square Error (RMSE) and 
Nash-Sutcliffe Efficiency (NSE). We acknowledge that duration cannot be considered as a pure random variable 
which may affect the results. Given that the marginal distribution for duration is a non-continuous function, we 
added a small random noise; i.e. Gaussian distributed perturbations centered on the data with a standard devi-
ation of 0.0552–54. This makes the marginal cumulative distribution a continuous function and randomizes the 
duration variable. Figures S4–S11 show that there is no significant change in the multivariate cumulative distribu-
tion function when adding noise to heat wave duration (continuous function) as compared to the original discrete 
distribution. Another method to transform the marginal cumulative distribution into a continuous function is 
to add uniform perturbations centered on the data along (−0.5, 0.5)52,55,56. We have also performed this analysis, 
and included it in Figs S29–S38.

We can specify a probability model for dependent multivariate observations, by expressing the d dimensional 
joint cumulative distribution F in terms of its marginals F1,…Fd, and the associated copula C, following Sklar’s 
theorem57,58.

… = …F Cx x F x F x( , , ) ( ( ), , ( )) (2)d d d1 1 1

We use bivariate copula to estimate HIDF curve by calculating the joint non-exceedance probability distribu-
tion of heat wave duration (X), and intensity (Y),

∪> > = − = −FP X x X x x x xC( ) 1 ( , ) 1 [F ( ), F (x )] (3)1 1 2 2 1 2 1 1 2 2

We then calculate the joint return periods for different duration and frequency following48, first outlined in59, 
and mathematically formalized in60. This formulation is also known as the OR hazard scenarios in which either 
duration or intensity exceed their corresponding thresholds.

We can also derive HIDF curves by calculating the joint exceedance probabilities (also known as AND hazard 
scenario), as61

∩> >
= − − +
= − − + .

F
P X x X x

x x
C

( )
1 F (x ) F (x ) ( , )
1 F (x ) F (x ) [F (x ), F (x )] (4)

1 1 2 2

1 1 2 2 1 2

1 1 2 2 1 1 2 2

Both HIDF derivations (exceedance vs non-exceedance joint probabilities) are acceptable for determining 
joint return periods. We show example applications based on both approaches, however, we estimate HIDF using 
joint non-exceedance probabilities in the majority of the analyses conducted in this paper.

We also determine the conditional density function of heat wave intensity at a certain duration (X1 = x1), that 
is ||f (x x )X X 2 12 1

 through62,63:

| = .| cf (x x ) [F (x ), F (x )] f (x ) (5)X X 2 1 1 1 2 2 x 22 1 2

using non-exceedance joint probabilities, in which, c is the copula probability density function (PDF) and f (x )X 22
 

is the heat wave intensity density function. Once we construct a conditional marginal PDF from Eq. 5, we can 
calculate the probability of intensity (X2) exceeding a particular threshold (x2) from the area under the curve, 
delineated by: > ||f X x x( )X X 2 2 12 1

. We apply this technique to calculate ||f x x( )X X 2 12 1
 for different values of x1 

(e.g., duration = 5 days).

Data
The proposed methodology is generalized and can be applied to different locations. Here, we use daily aver-
age temperatures for Atlanta (33.7490°N, 84.3880°W), Chicago (41.8781°N, 87.6298°W), Denver (39.7392°N, 
104.9903°W), Houston (29.7604°N, 95.3698°W), Los Angeles (34.0522°N, 118.2437°W), and Phoenix 
(33.4484°N, 112.0740°W) from the Climate Prediction Center (CPC) global air temperature dataset provided 
by NOAA/OAR/ESRL PSD, Boulder, Colorado, USA (http://www.esrl.noaa.gov/psd/). This dataset includes near 
surface air temperature with a 0.5 degree spatial resolution and daily temporal resolution. We interpret observed 
temperature data from the grid encompassing each city to be representative of that particular city.

For attribution analysis, we use the Coupled Model Intercomparison Project Phase 5 (CMIP5) historical and 
natural-only historical simulations from 1850–2005 to quantify the impact of anthropogenic climate change on 
daily average temperature values64. CMIP5 is an ensemble of climate model experiments intended to improve our 
understanding of pre-industrial, historical, and projected climate64; the spatial resolution of the models used in 
our study are listed in Table S1. The historical experiment imposes conditions – such as anthropogenic and natu-
ral trends and variability – that reflect what has been seen in the observations, including changes in atmosphere 
due to human and volcanic emissions, solar forcing, aerosols, and human land use64. The natural-only historical 
simulations capture natural trends and variability without anthropogenic forcing64. With the climate simulations, 
we could attribute differences between the two simulations to anthropogenic climate change. We show an exam-
ple application for the city of Los Angeles, California (34.0522, −118.2437) using the grid cell encompassing Los 
Angeles from five GCMs.

Data Availability
All data used in this study is open to the public.

https://doi.org/10.1038/s41598-019-50643-w
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