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Abstract

Measuring the fine structure constant with a state-of-the-art atom interferometer

by

Chenghui Yu

Doctor of Philosophy in Physics

University of California, Berkeley

Associate Professor Holger Müller, Chair

Measurements of the fine-structure constant α require methods from across subfields and
are thus powerful tests of the consistency of theory and experiment in physics. Using the
recoil frequency of Cesium-133 atoms in a matter-wave interferometer, we recorded the most
accurate measurement of the fine-structure constant to date: α = 1/137.035999046(27) at
2.0 × 10−10 accuracy. Using multiphoton interactions (Bragg diffraction and Bloch oscilla-
tions), we demonstrate the largest phase (12 million radians) of any Ramsey-Bordé interfer-
ometer and control systematic effects at a level of 0.12 part per billion. Comparison with
Penning trap measurements of the electron gyromagnetic anomaly ge − 2 via the Standard
Model of particle physics is now limited by the uncertainty in ge − 2; a 2.5σ tension rejects
dark photons as the reason for the unexplained part of the muon’s magnetic moment at a
99% confidence level. Implications for dark-sector candidates and electron substructure may
be a sign of physics beyond the Standard Model that warrants further investigation.
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of each pulse vs. two-photon detuning . . . . . . . . . . . . . . . . . . . . . . . 52
2.26 Comparison of diffraction phase dependence on two-photon detuning with and

without Bloch oscillations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.27 Comparison of diffraction phase dependence on two-photon Rabi frequency with

and without Bloch oscillations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
2.28 Each pulse’s contribution to Ramsey Bordé atom interferometer diffraction phase
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Chapter 1

Introduction

1.1 The Fine-Structure Constant

The fine-structure constant is one of the most important fundamental constants in
physics. It is a dimensionless constant characterizing the strength of electromagnetic in-
teraction, i.e. how charged particles interact with light. It is the basic building block (the
coupling constant) of Quantum Electrodynamics (QED) [1]. Quantitatively, α is given as
the square root of the ratio of Hartree energy to electron rest-mass energy as follows.

α =

√
2hR∞
mec

(1.1)

where R∞, h, c,me are Rydberg constant, Planck constant, speed of light, electron mass
respectively.

Measurement of the fine-structure constant is important in fundamental science. Since
the fine-structure constant is very fundamental, its value is an important input parameter
in many precision measurements to test existing physics as well as to explore new physics.
Even in other areas of science and engineering, the fine-structure constant is widely used in
research and technical applications.

The most precise determination of the fine-structure constant (α) before this work was
through an indirect approach of measuring electron magnetic-moment g factor [2]. Based on
Dirac equation, electron’s spin magnetic moment g factor was predicted to be exactly 2 [3].
But, more precise experiment showed a significant discrepancy between the measured value
and Dirac’s prediction. It drew a lot of attention of physicists at that time and eventually
QED was developed as a new theoretic framework within which this puzzle was successfully
resolved. This discrepancy was then called anomalous electron magnetic moment or g − 2
in short. Now after a few decades of development, g − 2 could be calculated and predicted
with QED and other branches of Quantum Field Theory altogether. In other words, given
an accurate measurement of g− 2, the fine-structure-constant could be determined reversely
through lengthy theoretic calculation involving evaluating thousands of Feynman diagrams
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in QED as well as other physics theories of electroweak and strong interactions. It’s a very
challenging task to do and a few minor theoretical errors have already been reported over
the past decades. On the other hand, although these existing established theories, now
known as the Standard Model of physics, are very successful in predicting vast majority of
phenomena in modern physics, they are still incomplete. There are a handful of observations
like dark matter, dark energy, neutrino oscillations beyond the Standard Model. There is no
reason that we should fully trust all these theories as well as the value of the fine-structure
constant obtained through them. Rather, using a different method to measure α becomes
an important test of the Standard Model, even enabling us to peep into unexplored territory
of new physics beyond the Standard Model [4]. In the next section we will go a little further
to explain how α is obtained by g − 2 measurement and how it allows us to test all these
theories involved.

1.2 Test of the Standard Model through Alpha

Measurement

Anomalous electron magnetic moment is mostly contributed by Quantum ElectroDy-
namics (QED). The reason why there is such anomalous moment is because in Quantum
Field Theory vacuum is not empty. It contains fields of virtual particles. When electrons
go through scattering process with virtual photons, it would produce correction of elec-
tron magnetic-moment. Based on theory of QED, the QED contribution to the electron
magnetic-moment anomaly ae is

ae(QED) = A1 + A2(me/mµ) + A2(me/mτ ) + A3(me/mµ,me/mτ ) (1.2)

where A1 is a mass independent term and A2, A3 are mass-dependent terms depending on
mass ratios among electron, muon and tauon. Each of these terms can be expanded into a
power series of α:

Ai =
∞∑

n=1

A
(2n)
i (

α

π
)n (1.3)

Each ith term of α here is essentially the sum of all ith order Feynman diagram loop correc-
tions. The mass-independent coefficients A

(2n)
1 have been precisely calculated up to the 4th

order. And a numerical calculation of the 5th order with certain theoretical uncertainty is
also available [5, 6, 7]. The mass-dependent coefficients A2 and A3 require input of mass
ratio measurements from experiments, which results in a small uncertainty in their values.

At current level of electron g−2 measurement accuracy [2], it’s also important to include
theories beyond QED (electroweak and strong interaction) into consideration. If we put all
these terms together, it is how electron magnetic-moment anomaly is theoretically predicted
to our knowledge:

ae(theory) = ae(QED) + ae(weak) + ae(hadron). (1.4)
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Figure 1.1: The normalized contribution to electron magnetic-moment anomaly (aterm/atotal)
in blue along with relative uncertainty (δaterm/atotal) in orange is plotted here. Each dash
line indicates the relative uncertainty of α measurement from three best measurements to
date.

Here is a plot showing magnitude of contribution of each term to electron magnetic-moment
anomaly in order to visualize what theories we can test at current accuracy of experiments.
From the figure we can see that the best g − 2 measurement in Harvard set an uncertainty
of α to 0.24 ppb [2, 1, 5], which means at this stage we can test theories up to 0.24 ppb at
best. From our most recent α measurement, we have achieved an uncertainty of 0.20 ppb
[8], which allows us to test the 5th order QED correction for the first time. Beyond that
it also allows us to set limit on theories like electron substructure as well as dark photon.
More will be discussed in Chapter 6.

1.3 Measuring α through h/M Measurement

In the previous section, we have briefly mentioned the indirect way to measure α through
electron g − 2 measurement and theories. Here in order to establish a test of theories, we
need to have additional measurements independent of the theory we are testing. Historically
various methods like AC Josephson effect [9], Quantum Hall effect [10] as well as atomic
h/M measurements [11, 12, 13] have been employed to measure α. Here is a plot showing
some significant measurements done in recent decades. The fine-structure constant measure-
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Figure 1.2: Results of selected α measurements are plotted in δα/α relative scale in parts-
per-billion (ppb) [1]. A few accurate measurements are also zoomed in as an inset plot.

ment comes to a point that only two methods (atomic h/M measurement and electron g− 2
measurement) are able to reach parts-per-billion (ppb) level. It means the weighted average
obtained by the Committee on Data for Science and Technology (CODATA) is heavily dom-
inated by few available data entries. It’s fairly important to have more measurement done
at similar accuracy to avoid human errors. That’s another purpose of our α measurement.
Atomic h/M - the quotient of the Planck constant and mass of atoms have been measured
through atom interferometry technologies. Based on the formula of α below, there are a few
constants entering into the determination of α through this methods.

α2 =
hR∞
mec

=
R∞
c

h

M

M

u

u

me

(1.5)

Here R∞ is the Rydberg constant, M the mass of an atom, u atomic mass unit, h the Planck
constant, me the mass of electron. In theory it can be any type of atoms. But limited by
laser cooling technologies, alkali atoms, especially atoms like Rubidium and Cesium are most
commonly used. The Rydberg constant is known to 0.0059 ppb accuracy through Hydrogen
spectroscopy [1, 14]; the mass of electron, Rubidium atom as well as Cesium atom are also
determined to 0.029 ppb, 0.075 ppb, 0.065 ppb accuracy in atomic mass unit u through
Penning trap techniques [1, 15, 16, 17, 18]. The last remaining piece here is h/M . It is
noted that the measurement of the Planck constant (12 ppb) and atomic mass in SI unit
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(>10 ppb) are not as accurate as h/M measurement [1]. The best way to measure this
piece is to measure it altogether in atom interferometry. Two groups in the world have
demonstrated ppb level measurement of the fine-structure constant with this method. One
is a group in Laboratoire Kastler Brossel (LKB), France lead by François Biraben and Säıda
Guellati-Khélifa where α was determined through Rubidium atom h/M measurement to 0.62
ppb accuracy [11]. The other is the predecessor of our group led by Dr. Chu in Stanford
University and where a preliminary measurement of α through Cesium atom h/M to 8.0
ppb accuracy was reported [12]. Recently in 2017 we have finished a new measurement of α
to 0.20 ppb accuracy [8].

In our experiment, what we directly measure is called recoil frequency of Cesium atom.
It is defined as the frequency associated with the recoil energy of an atom when it absorbs
a photon. i.e. quantitatively it is defined as

~ωr =
p2

2M
=

~2k2

2M
(1.6)

where p = ~k is the momentum of photon, and M the mass of atom. The recoil frequency
can be read out from phase measurement of atom interferometers. The wave number of laser
k could be accurately measured by a frequency comb. h/M could thus be determined. The
details of our measurement would be topics of the rest of the thesis.

1.4 Outline of this Thesis

Here is the outline of the rest of this thesis. The basic theory of atom interferometry
technique in the context of our α measurement will be introduced in chapter 2. Experiment
setup and implementation can be found in chapter 3. The result of our recent α measure-
ment will be discussed in chapter 4 and 5. In chapter 4 we will mostly focus on sensitivity
and statistical uncertainty of our measurement. And chapter 5 will be devoted to the sys-
tematic uncertainty analysis of our measurement. The conclusion and implication of this
measurement compared with g − 2 measurement would be discussed in chapter 6.
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Chapter 2

Atom Interferometry

2.1 Basics of Atom Interferometry: an Analogy to

Light Interferometry

Atom interferometer is a powerful tool for precision measurement. Since its invention,
it has been used as an important tool for precision measurement of gravity [19, 20], gravity
gradient [21, 22, 23, 24], inertial force [25, 26], photon recoil [11, 12, 8, 27], Newtonian
gravitational constant [28, 29], microscopic mass [30]. It has also been used to test Einstein
equivalence principle [31], local Lorentz invariance [32], general relativity [33, 34], dark energy
[35, 36] and dark matter theories [8]. Its basic working principles are founded on wave-matter
duality of quantum mechanics. Interference is one of the basic properties of wave. Both
light and matter have interference phenomena. In this sense, matter wave interferometer
is quite similar to its counterpart in light. Here we mostly focus on the most basic two-
armed interferometer. Mach-Zehnder light interferometer is one of the typical examples,

BS1

M1

BS2

D1

D2

M2

Coherent Light

Source

(a) Mach-Zehnder light interferometer

BS1

M1

BS2

D1

D2

M2

Coherent Atom 
Source

(b) Mach-Zehnder atom interferometer

Figure 2.1: Analogy between the light interferometer and the atom interferometer
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as shown in Figure 2.1 (a). It has a coherent light source, a beam splitter, two mirrors, a
beam recombiner, detectors. (A beam recombiner is identical to a beam splitter as beam
recombining is merely the reverse of beam splitting by the same device.) Coherent light from
the source is spitted into two path by the first beam splitter. And then they are deflected
by mirrors so they can intersect with each other again at the second beam splitter, where
they recombine and mix with each other. Normally there are two output ports after the
second beam splitter. We can set two detectors to detect the intensity of light (or count
the number of photons) at two output ports. If we vary the length of either interferometer
arm, variance of intensity at the output ports will be observed. And the intensity variation
can be described by cos2(Φd) where Φd is the phase difference accumulated between two
arms as light passing through. Here if we change the light source to atomic source, light
beam-splitters to atomic beam-splitters, light mirrors to atom mirrors, light detectors to
atom detectors, it’s essentially an atom interferometer. Atom interferometry is based on the
basic postulate of quantum mechanics: wave-particle duality. It asserts that all particles
behave not only like particles but also like wave. There is no way to fully describe it in
the classical concepts of particle and wave. We can send atom into the interferometer one
by one. And they can be counted by the detector one by one. In the classical picture, a
single atom can only go through either path 1 or 2. The count ratio at the detectors should
only be dependent on the nature of the splitters. And a small change in one path locally
shouldn’t affect the other path. But experiments showed that the atom counts at detectors
vary based on the phase difference between the two paths in a very similar way to the light
interferometer. It shows the wave nature of atoms. In the picture of quantum mechanics,
when an atom enters into the interferometer, it doesn’t just go through a single path. It’s
like wave going through both paths at the same time though atom itself cannot be split
into halves. If somehow by any means we can know which way the atom goes, quantum
interference would be completely gone. The intrigue nature of quantum mechanics is that
all quantum phenomena are based on the protection of ”quantum-which-way information”
from being leaked out. It is the essential key principle we will apply in Section 4.1 to discuss
decoherence mechanism and ways to improve quantum coherence [37].

2.2 Phase Calculation of Atom Interferometry

In the last section, we described the nature of interference qualitatively. We mentioned
that interference is related to phase difference between two arms. In this section, we will try
to use a Mach-Zehnder atom interferometer shown in Figure 2.2 as an example to describe
atom interferometry quantitatively. Assuming there is no decoherence, we can use wave
functions to calculate the states throughout the entire interferometer. Suppose the initial
state right before the beam splitter is |ψi〉. The beam splitter or mirror is essentially a
unitary operator to rotate the state to a different orientation in Hilbert space. We denote
the operator for beam splitters and mirrors are ÛBS and ÛM respectively. Detectors are
defined as Hermitian operators Ô1 and Ô2 through which we can measure the expectation
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Figure 2.2: Mach-Zehnder Atom Interferometer

value of observables (counts at detector 1 and 2). And we can choose path 1 (colored red)
and path 2 (colored blue) as basis of the system |1〉 , |2〉. So the system can be simplified
into such a basic quantum two-level system. At time t = t0, the atom is at path 1. We
can assume its wave function |ψi〉 = |1〉. After passing through the first beam splitter, the
overall wave function at time t = t1 becomes

|Ψ(t1)〉 = ÛBS(t0) |1〉 = 〈1| ÛBS(t0) |1〉 |1〉+ 〈2| ÛBS(t0) |1〉 |2〉 (2.1)

From time t1 to time t2 the atom goes through free evolution Û12
f .

|Ψ(t2)〉 = Û12
f |Ψ(t1)〉 = 〈1| Û12

f |1〉 〈1| ÛBS(t0) |1〉 |1〉+ 〈2| Û12
f |2〉 〈2| ÛBS(t0) |1〉 |2〉 (2.2)

Following this procedure, after going through mirror (ÛM) and free evolution from t3 to t4
(Û34

f ), we can get the wave function right before the second beam splitter as

|Ψ(t4)〉 = 〈1| Û |1〉 〈1| ÛBS(t0) |1〉 |1〉+ 〈2| Û |2〉 〈2| ÛBS(t0) |1〉 |2〉 (2.3)

where Û = Û34
f ÛM Û

12
f is the product of three operators along the path from the first beam

splitter to the second beam splitter. At the second beam splitter two states would be mixed
by this beam splitter operator,

(
〈1|Ψ(t5)〉
〈2|Ψ(t5)〉

)
=

(
〈1| ÛBS(t4) |1〉 〈1| ÛBS(t4) |2〉
〈2| ÛBS(t4) |1〉 〈2| ÛBS(t4) |2〉

)(
〈1| Û |1〉 〈1| ÛBS(t0) |1〉
〈2| Û |2〉 〈2| ÛBS(t0) |1〉

)
(2.4)



CHAPTER 2. ATOM INTERFEROMETRY 9

i.e.

〈1|Ψ(t5)〉 = 〈1| ÛBS(t4) |1〉 〈1| Û |1〉 〈1| ÛBS(t0) |1〉+ 〈1| ÛBS(t4) |2〉 〈2| Û |2〉 〈2| ÛBS(t0) |1〉
(2.5)

and

〈2|Ψ(t5)〉 = 〈2| ÛBS(t4) |1〉 〈1| Û |1〉 〈1| ÛBS(t0) |1〉+ 〈2| ÛBS(t4) |2〉 〈2| Û |2〉 〈2| ÛBS(t0) |1〉
(2.6)

After that, there is no more mixing between the two states. The detector 1 only detects
state |1〉 and detector 2 detect state |2〉. So from t5 to t6 it only adds an common phase to
both states that won’t change the phase difference. If we ignore that free evolution phase,
the observable detected at the detector 1 is

〈Ô1〉 = 〈Ψ(t5)| Ô1 |Ψ(t5)〉 = | 〈1|Ψ(t5)〉 |2 (2.7)

〈Ô1〉 = | 〈1| ÛBS(t4) |1〉 〈1| Û |1〉 〈1| ÛBS(t0) |1〉 |2
+ | 〈1| ÛBS(t4) |2〉 〈2| Û |2〉 〈2| ÛBS(t0) |1〉 |2

+ 2Re
(

(〈1| ÛBS(t4) |1〉 〈1| Û |1〉 〈1| ÛBS(t0) |1〉)∗ 〈1| ÛBS(t4) |2〉 〈2| Û |2〉 〈2| ÛBS(t0) |1〉
)

(2.8)

The first two terms contribute to a constant offset independent of phase variation. All the
interference phenomena comes in through the third term. It depends on the phase differ-
ence between 〈1| ÛBS(t4) |1〉 〈1| Û |1〉 〈1| ÛBS(t0) |1〉 and 〈1| ÛBS(t4) |2〉 〈2| Û |2〉 〈2| ÛBS(t0) |1〉.
Likewise, the observable detected at the detector 2 can be calculated. This is the basic frame-
work of atom interferometer phase calculation. More substances regarding how to calculate
each operator will be filled in under specific contexts in subsequent sections.

Beam Splitters and Atom Mirrors

In theory, beam splitters and atom mirrors could be essentially any special unitary oper-
ators in SU(2). This is a group of all 2-dimensional unitary matrices with determinant +1 to
preserve chirality of the coordinates. It can be generated by identity matrix and three Pauli
matrices. In analogy to rotation in real space where its quantum unitary transformation can
be generally written as [38]

Ûn̂(θ) = e
i
~ Ĵn̂θ = ei

θ
2

(n̂·~σ) = I cos
(θ

2

)
+ i(n̂ · ~σ) sin

(θ
2

)
(2.9)

where n̂ is the unit vector of the axis along which rotation of angle θ is performed. Ĵn̂ is the
2-dimensional (spin-1

2
) angular momentum operator

Ĵn̂ =
~
2

(n̂ · ~σ) (2.10)
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And the Pauli matrices ~σ is given by

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
(2.11)

So rotation along a general axis ~n = (sinψ cosφ, sinψ sinφ, cosψ) by θ can be described by
the unitary transformation matrix

Ûn̂(θ) =

(
cos θ + i sin θ cosψ i sin θ sinψe−iφ

i sin θ sinψeiφ cos θ − i sin θ cosψ

)
(2.12)

Similarly a beam splitter is a rotation operator in the Hilbert space spanned by two paths
of an interferometer. The general form of a beam splitter can be written in this way. In
the context of atom interferometry, many types of beam splitters have been invented and
implemented [39]. Among all these techniques, beam splitters by interacting with laser light
is one of the most common and robust types. It is a pretty straightforward technique in
atomic physics to use laser to drive atom transition in a two-level system. Considering a
two-level atomic system in the electromagnetic fields E = E0 cos(ωt− kz), its Hamiltonian
can be roughly written as [38, 40]

Ĥ =
P̂ 2

COM

2M
+
∑

i

((p̂i − eÂ)2

2me

+ V̂i + ...
)

(2.13)

where PCOM is the center-of-mass momentum, M atomic mass, pi ith electron momentum, e
electron charge, me electron mass, A vector potential, Vi Coulomb potential of ith electron.
The first term describes the center-of-mass motion of the atom, which determines external
degrees of freedom for the atom. The second term describes electron dynamics inside the
atom, which determines internal degrees of freedom of the atom. In the presence of elec-
tromagnetic wave, the momentum of charged particles like electron would be substitute by
its canonical momentum. Under dipole approximation we can drop higher order terms of
Â, and approximate the Â · p̂i term into x̂i · Ê [40]. After reducing the internal Hilbert
space into a simplified two-level system of a ground state |g〉 and an excited state |e〉, the
Hamiltonian can be written as

H =
P̂ 2

COM

2M
+

~
2

(
−ω0 Ω0 cos(ωt− kz)

Ω0 cos(ωt− kz) ω0

)
(2.14)

where ~ω0 is the internal energy level separation, and Ω0 the Rabi frequency defined as

Ω0 =
∑

i

−exi ·E0

~
. (2.15)

In fact, the atom external degree of freedom is coupled to the internal degree of freedom in
this case. When the atom absorbs a photon, due to conservation of momentum, it has to
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gain ~k momentum and change its external momentum state accordingly. So we can absorb
the first term into the second term. Suppose the atom is initially at rest, after it absorb
a photon, it would gain kinetic energy exactly by the amount of recoil energy ~2k2

2M
. So the

external degrees of freedom can be couple to internal degree of freedom in the Hamiltonian,

H =
~
2

(
−ω0 − ωr Ω0 cos(ωt− kz)

Ω0 cos(ωt− kz) ω0 + ωr

)
(2.16)

where ωr is the recoil frequency defined as

~ωr =
~2k2

2M
(2.17)

In order to simplify calculation, we can apply a unitary transformation U to rotate the
state |Ψ〉 to the laser rotating frame.

|Ψ̃〉 = U |Ψ〉 = e−i
σz
2

(ωt−kz) |Ψ〉 (2.18)

Thus the Schrödinger equation

i~
∂ |Ψ〉
∂t

= H |Ψ〉 (2.19)

could be rewritten into the form

i~(U †
∂ |Ψ̃〉
∂t
− iω

2
σzU

† |Ψ̃〉) = HU † |Ψ̃〉 (2.20)

i.e.

i~
∂ |Ψ̃〉
∂t

= (UHU † − ~ω
2
σz) |Ψ̃〉 (2.21)

Under the new basis, the effective Hamiltonian becomes

H̃ =

(
1
2
~δ ~Ω0 cos(ωt− kz)ei(ωt−kz)

~Ω0 cos(ωt− kz)e−i(ωt−kz) −1
2
~δ

)
(2.22)

where the angular frequency difference between the laser and the internal energy splitting
δ = ω − ω0 − ωr is called detuning. The cross terms could be further simplified as

cos(ωt− kz)ei(ωt−kz) =
1

2
(1 + ei2(ωt−kz))

cos(ωt− kz)e−i(ωt−kz) =
1

2
(1 + e−i2(ωt+kz)) (2.23)

Since the laser frequency is way faster than the dynamics of this atomic transition, the e±i2ωt

terms would be averaged to 0 at the time scale of atom dynamics. This approach is called



CHAPTER 2. ATOM INTERFEROMETRY 12

Rotating Wave Approximation (RWA) in atomic physics. After this step, we get a simplified
Hamiltonian very much similar to a nuclear magnetic resonance (NMR) system [41].

H̃ =
~
2

(
δ Ω0

Ω0 −δ

)
(2.24)

It is exactly the case of a spin-1
2

system under the magnetic field along the direction n̂ =
(sinψ, 0, cosψ) and ψ = arctan(Ω0/δ). i.e.

H̃ =
~
2

(n̂ · ~σ)
√
δ2 + Ω2

0 = Ωeff n̂ · Ĵ(s =
1

2
) (2.25)

where the effective Rabi frequency is defined as
√
δ2 + Ω2

0. The solution of this Hamiltonian
is exactly the solution of Larmor precession. In this context, this phenomena is called Rabi
flopping. We can get an evolution matrix similar to that of Larmor precession.

Ũevo = e−
i
~Ht = e−i

n̂·Ĵ
~ Ωefft =

(
cos(Ωefft

2
)− i δ

Ωeff
sin(Ωefft

2
) −i Ω0

Ωeff
sin(Ωefft

2
)

−i Ω0

Ωeff
sin(Ωefft

2
) cos(Ωefft

2
) + i δ

Ωeff
sin(Ωefft

2
)

)
(2.26)

Keep in mind that this evolution operator is under the new basis. In order to apply it
to beam splitters and atom mirrors, we need to reverse the unitary transformation we did
before. The new evolution matrix under the original basis would be

Uevo = e−i
σz
2

(kz−ωt)Ũevoe
iσz

2
(kz−ωt)

=

(
cos(Ωeffτ

2
)− i δ

Ωeff
sin(Ωeffτ

2
) −i Ω0

Ωeff
sin(Ωeffτ

2
)e−i(kz−ωt)

−i Ω0

Ωeff
sin(Ωeffτ

2
)ei(kz−ωt) cos(Ωeffτ

2
) + i δ

Ωeff
sin(Ωeffτ

2
)

)
(2.27)

where τ is used here as the pulse duration to distinguish the absolute time t of the pulse in
the transformation matrix. Note that all the model discussed above assumed a square pulse
with duration τ . For arbitrary pulses, under the adiabatic condition, we can use the integral
of Rabi frequency over time to substitute the factor Ωeff instead.

The most common 50-50 beam splitter can be generated in the case when detuning δ = 0
and Ω0τ = π

2
(called π

2
pulse). In that case, the beam splitter operator would be simplified

to

ÛBS =

( √
2

2
−i
√

2
2
e−i(kz−ωt)

−i
√

2
2
ei(kz−ωt)

√
2

2

)
(2.28)

Similarly for an ideal atom mirror with 100% efficiency, the operator would be the case when
δ = 0 and Ω0τ = π

ÛM =

(
0 −ie−i(kz−ωt)

−iei(kz−ωt) 0

)
(2.29)

It is to be noted that the basis we are using here is (|g〉 , |e〉), different from the basis we
were using in the beginning of this section (|path1〉 , |path2〉). So when we apply it to the
real case, we need to adjust the operator accordingly to match the state of each path.
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Free Evolution

During free evolution, the quantum state evolves under free particle Hamiltonian with
the presence of gravity, i.e.

Ĥ =
P̂ 2

2M
+mgẑ (2.30)

In the presence of gravity, the direct treatment through free particle quantum mechanics is
not quite trivial. The free particle state is not an eigenstate of the Hamiltonian. It takes
quite a bit efforts to calculate the free evolution phase in this way. In this context, another
approach called Feynman’s path integral works better. It’s an equivalent but quite intuitive
formulation of quantum mechanics. In order to evaluate the evolution from initial state
|zi, ti〉 to final state |zf , tf〉, the basic idea here is to slice the entire time period from ti to tf
to multiple time slices and calculate the evolution during each slice and integrate them all
together. Suppose the entire time is sliced into N slices equally, then

〈zf , tf |Uf |zi, ti〉 =

∫ ∞

z1=−∞
dz1

∫ ∞

z2=−∞
dz2...

∫ ∞

zN−1=−∞
dzN−1 〈zf , tf | e−i

Hδt
~ |zN−1, tN−1〉

... 〈z2, t2| e−i
Hδt
~ |z1, t1〉 〈z1, t1| e−i

Hδt
~ |zi, ti〉 (2.31)

where δt = (tf − ti)/N [38]. Feynman showed that when N → ∞ it is equivalent to the
functional integral of all the path over the phase factor of the action.

〈zf , tf |Uf |z0, t0〉 =

∫ zN=zf

z0=zi

Dz exp

[
i

~
S(z, ż)

]
(2.32)

where the action S is defined as integral of Lagrangian over time,

S(z, ż) =

∫
dtL(z, ż) =

∫
dt(pż −H) =

∫
dt(

1

2
mż2 −mgz) (2.33)

If we integrate the path integral along its classical path where Euler-Lagrangian equation
( d
dt

(∂L
∂ż

) − ∂L
∂z

= 0) is satisfied, then the phase contribution from path deviated from the
classical path would cause higher order oscillation, which only contributes to an amplitude
factor, i.e. ∫ zN=zf

z0=zi

Dz exp

[
i

~
S(z, ż)

]
= A exp

[
i

~
Scl(z, ż)

]
(2.34)

For most atom interferometer applications calculating the action along its classical paths is
sufficient.

Ûf =

(
e
i
~
∫
path1 dt(

1
2
mż2−mgz) 0

0 e
i
~
∫
path2 dt(

1
2
mż2−mgz)

)
(2.35)
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Ingredient Matrix form in the current case under ideal conditions

ÛBS(t0)

( √
2

2
−i
√

2
2
e−i(kz0−ωt0)

−i
√

2
2
ei(kz0−ωt0)

√
2

2

)

Ûf

(
e
i
~
∫
path1 dt(

1
2
mż2−mgz) 0

0 e
i
~
∫
path2 dt(

1
2
mż2−mgz)

)

ÛM(t2)

(
−iei(kz2−ωt2) 0

0 −ie−i(kz2−ωt2)

)

ÛBS(t4)

( √
2

2
−i
√

2
2
ei(kz4−ωt4)

−i
√

2
2
e−i(kz4−ωt4)

√
2

2

)

Table 2.1: Ingredients for a simple Mach-Zehnder atom interferometer phase calculation

A Simple Mach-Zehnder Atom Interferometer

Now we have the recipe ready to calculate the phase of the simple Mach-Zehnder (MZ)
atom interferometer we started in the beginning of the section. Before starting, we need to
add state labels in the original scheme to adjust the transformation matrix accordingly. The
ground state is plotted with solid line and the excited state dash line. Here is a table to
summarize all the ingredients we have. After applying all these formulas to this specific case,
and categorizing phases into free evolution phase φf accumulated through free evolution and
laser phase φγ accumulated at each laser pulse, we can get the final states

〈1|Ψ(t5)〉 =
1

2
(ei(φf1+φ11

γ0+φ11
γ2+φ11

γ4) + ei(φf2+φ21
γ0+φ22

γ2+φ12
γ4)) (2.36)

〈2|Ψ(t5)〉 =
1

2
(ei(φf1+φ11

γ0+φ11
γ2+φ21

γ4) + ei(φf2+φ22
γ0+φ22

γ2+φ22
γ4)) (2.37)

(2.38)

where φi is the free evolution phase through path i; φkjγi is the laser phase induced by a pulse
(either a beam splitter or a mirror) at time ti under which atom transition from path j to
path k. So the detected signal at both detectors would be

〈Ô1〉 =
1

2

(
1 + cos(φf1 + φ11

γ0 + φ11
γ2 + φ11

γ4 − φf2 − φ21
γ0 − φ22

γ2 − φ12
γ4)
)

=
1

2

(
1 + cos(∆φ1)

)

〈Ô2〉 =
1

2

(
1 + cos(φf1 + φ11

γ0 + φ11
γ2 + φ21

γ4 − φf2 − φ22
γ0 − φ22

γ2 − φ22
γ4)
)

=
1

2

(
1 + cos(∆φ2)

)

In the end the most interesting information is in the phase difference ∆φ. Following this
algebra and plug in specific parameter for the simple Mach-Zehnder atom interferometer
shown in Figure 2.2, the phase difference could be calculated as

∆φ1 = π + kgT 2 and ∆φ2 = kgT 2 (2.39)
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We see that Mach Zehnder atom interferometer is very useful to measure gravity precisely,
as will be used in this experiment to measure gravity gradient in Section 2.6 and 5.2.

2.3 Raman Transition Beam Splitter

In the previous section, we discussed the simple Mach-Zehnder atom interferometry under
ideal condition where a single photon transition is used as a beam splitter to achieve the ideal
50-50 beam-splitting and 100% efficiency atom mirror. But this kind of scenario doesn’t really
exist in most of the experiments. In the real case of atoms, it is limited by very short excited
state lifetime. Take Cesium for example, the lifetime of its D2 transition (62S1/2 → 62P3/2)
is only about 30 ns [42], which means we have to close the atom interferometer before
spontaneous emission happens. Otherwise when spontaneous emission happens, atom itself
gives away its quantum information so there would be no interference. In order to extend
coherence time, we have to choose an excited state with long lifetime. For conventional
alkali atoms, a good option would be to use a different hyperfine state as the excited state.
But it’s impossible to drive a single photon transition from a hyperfine state to another
one since it’s dipole forbidden. That’s also the reason why it has long lifetime. But a
technique called Raman transition allows it to happen with a two-photon process. It couples
one hyperfine state through some dipole allowed excited states (virtual states) as bridges
to another hyperfine state as illustrated in Figure 2.3 (a). However, it doesn’t mean it’s
impossible to operate single-photon transition atom interferometer. Recent development in
Strontium cooling and trapping and optical atomic clock technologies makes it possible to do
single-photo-transition atom interferometry with its super-narrow-linewidth clock transition.
It has promising applications for space-based atom interferometer [43]. But it’s beyond the
scope of the thesis. For most of the thesis we will be only focusing on Raman transition
and Bragg diffraction as will be introduced later as tools for beam splitting. In this section
particular, we will be discussing the dynamics of atom in two counter-propagating laser
beams with specially chosen frequencies as shown in Figure 2.3 (b), as well as how it can
be used as a beam splitter for atom interferometer. Consider two counter-propagating laser
fields E1 = E10 cos(k1z − ω1t) and E2 = E20 cos(k2z + ω2t) to drive Raman transition
between the first hyperfine ground state |ga〉 and the second hyperfine ground state |gb〉 via
the intermediate excited state |i〉. The frequencies are chosen to be very far-detuned from
resonate with any excited state. Following the similar procedure of two-level system, we
start with the Hamiltonian with light-atom interaction terms [44, 45]:

ĤRaman =
P̂ 2

COM

2M
+




~ωa 0 −d · (E1 +E2)
0 ~ωb −d · (E1 +E2)

−d · (E1 +E2) −d · (E1 +E2) ~ωi


 (2.40)



CHAPTER 2. ATOM INTERFEROMETRY 16

0 1 2
Momentum (h̄k)

h̄ωa

h̄ωb

h̄ωi

E
ne

rg
y

δ

∆

ω1

ω2

(a) Raman transition energy-momentum diagram

h̄k1 h̄k2

h̄k2

h̄k2

h̄(k1 + k2)

E10 cos(k1z − ω1t) E20 cos(k2z + ω2t)

(b) Effects of Raman transition on atomic motion

Figure 2.3

where ~ωa, ~ωb and ~ωi are internal energy levels of the three states and the basis of the
system chosen to be {|a〉 , |b〉 , |i〉}. Similarly we can define Rabi frequencies as

~Ω1a = 〈i| − d ·E10 |ga〉 (2.41)

~Ω2a = 〈i| − d ·E20 |ga〉 (2.42)

~Ω1b = 〈i| − d ·E10 |gb〉 (2.43)

~Ω2b = 〈i| − d ·E20 |gb〉 (2.44)

Under this Hamiltonian, we can write down Schrödinger equations as

i~
∂ 〈i|ψ〉
∂t

=
P̂ 2

COM

2M
+ ~ωi 〈i|ψ〉+ (~Ω1a cos(k1z − ω1t) + ~Ω2a cos(k2z + ω2t)) 〈ga|ψ〉

+ (~Ω1b cos(k1z − ω1t) + ~Ω2b cos(k2z + ω2t)) 〈gb|ψ〉 (2.45)
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i~
∂ 〈ga|ψ〉
∂t

=
P̂ 2

COM

2M
+ ~ωa 〈ga|ψ〉+ (~Ω1a cos(k1z − ω1t) + ~Ω2a cos(k2z + ω2t)) 〈i|ψ〉 (2.46)

i~
∂ 〈gb|ψ〉
∂t

=
P̂ 2

COM

2M
+ ~ωb 〈gb|ψ〉+ (~Ω1b cos(k1z − ω1t) + ~Ω2b cos(k2z + ω2t)) 〈i|ψ〉 (2.47)

For simplicity, we can shift the overall energy by −~ωi−~(ω1−ωi+ωa) and apply the similar
unitary transformation to rotate the basis to its ”laser rotating frame”

(|g̃a〉 , |g̃b〉 , |i〉) = (|ga〉 , |gb〉 , |i〉)



eiω1t 0 0

0 eiω2t 0
0 0 1


 (2.48)

There would be terms associated with fast oscillation at frequency 2ω1, 2ω2 and ω1 + ω2.
Based on rotating wave approximation (RWA), these fast dynamics will be averaged to zero
at a slower time scale. So the Schrödinger equations can be simplified in the new basis as

i~
∂ 〈i|ψ〉
∂t

=
P̂ 2

COM

2M
− ~∆1ai 〈i|ψ〉+

~Ω1a

2
eik1z 〈g̃a|ψ〉+

~Ω2b

2
e−ik2z 〈g̃b|ψ〉 (2.49)

i~
∂ 〈g̃a|ψ〉
∂t

=
P̂ 2

COM

2M
+

~Ω1a

2
e−ik1z 〈i|ψ〉 (2.50)

i~
∂ 〈g̃b|ψ〉
∂t

=
P̂ 2

COM

2M
+ ~(∆2bi −∆1ai) 〈gb|ψ〉+

~Ω2b

2
eik2z 〈i|ψ〉 (2.51)

where we define the detuning ∆1ai = ω1 − (ωi − ωa) and ∆2bi = ω2 − (ωi − ωb).
Since the laser is far-detuned from resonating with the excited state, mathematically it means
the detuning ∆1ai � Rabi frequencies Ω1a,Ω2b and the recoil frequency ωr. Consider the
dynamics of the excited state under the equation (2.49). From the basic picture of the two-
level system, we know the excited state will be undergoing a very fast ”Larmor precession”
and a much slower population exchange with ground states. So what the ground states see at
the slower dynamics is only the average value of 〈i|ψ〉. It means if we solve the problem only
for the slower dynamics, we can approximately consider the excited state as ”stationary”.
i.e.

0 = i~
∂ 〈i|ψ〉
∂t

= −~∆1ai 〈i|ψ〉+
~Ω1a

2
eik1z 〈g̃a|ψ〉+

~Ω2b

2
e−ik2z 〈g̃b|ψ〉 (2.52)

This process is called adiabatic elimination through which faster and irrelevant dynamics
can be adiabatically eliminated. Based on the previous equation, the average value of 〈i|ψ〉
could be solved and substituted into original equations.

〈i|ψ〉ave =
~Ω1a

2
eik1z 〈g̃a|ψ〉+ ~Ω2b

2
e−ik2z 〈g̃b|ψ〉

~∆1ai

(2.53)

Then the effective Hamiltonian could be written as

Heff =
P̂ 2

COM

2M
+ ~ωACa |g̃a〉 〈g̃a|+ ~(∆2bi −∆1ai + ωACb) |g̃b〉 〈g̃b|

+
Ω0

2
e−i(k1+k2)z |g̃a〉 〈g̃b|+

Ω0

2
ei(k1+k2)z |g̃b〉 〈g̃a| (2.54)
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where the effective two-photon Rabi frequency Ω0 is defined as

Ω0 =
Ω1aΩ2b

∆1ai

(2.55)

and the two-photon AC Stark shift as

ωACa =
Ω2

1a

4∆1ai

(2.56)

ωACb =
Ω2

2b

4∆1ai

(2.57)

Essentially it becomes a two-level system again. An atom in the state |ga〉 could absorb a
photon from laser field E1 and simultaneously stimulated emit another photon into laser field
E2. As a result, the atom would be transferred into the state |gb〉 and gain a momentum
of ~(k1 + k2) due to conservation of momentum. In the same way, an atom in the state
|gb〉 could transition into |ga〉 and lose a momentum of ~(k1 + k2). The external momentum
states are thus coupled to the internal states. So we can label the two states as |ga, PCOM〉
and |gb, PCOM + 2~k〉 where k is defined as k = (k1 + k2)/2. So we can evaluate the external
kinetic energy term and get the final Hamiltonian after proper shifting of global energy level,

˜̂
Heff =− 1

2
~δ |g̃a, PCOM〉 〈g̃a, PCOM|+

1

2
~δ |g̃b, PCOM + 2~k〉 〈g̃b, PCOM + 2~k| (2.58)

+
Ω0

2
e−i2kz |g̃a, PCOM〉 〈g̃b, PCOM + 2~k|+ Ω0

2
ei2kz |g̃b, PCOM + 2~k〉 〈g̃a, PCOM| (2.59)

where the two-photon detuning δ is defined as

δ = ∆2bi −∆1ai + ωACb − ωACa +
(PCOM + 2~k)2

2M~
− P 2

COM

2M~
(2.60)

The Hamiltonian then in its original basis can be written as

ĤRaman, eff =
~
2

(
−δ Ω0e

−i(2kz−(ω1−ω2)t)

Ω0e
i(2kz−(ω1−ω2)t) δ

)
(2.61)

So the general evolution matrix under Raman transition would follow the form as in the
two-level system,

Uevo(τ) =

(
cos(Ωeffτ

2
) + i δ

Ωeff
sin(Ωeffτ

2
) −i Ω0

Ωeff
sin(Ωeffτ

2
)e−i(2kz−(ω1−ω2)t)

−i Ω0

Ωeff
sin(Ωeffτ

2
)ei(2kz−(ω1−ω2)t) cos(Ωeffτ

2
)− i δ

Ωeff
sin(Ωeffτ

2
)

)
(2.62)

where τ is the pulse duration and Ωeff is defined as Ωeff =
√

Ω2
0 + δ2. The most simple 50-50

beam splitter would be modified to

ÛBS =

( √
2

2
−i
√

2
2
e−i(2kz−(ω1−ω2)t)

−i
√

2
2
ei(2kz−(ω1−ω2)t)

√
2

2

)
(2.63)

With this type of beam splitter, the phase difference read out by a Mach-Zehnder interfer-
ometer would be modified accordingly to

∆φMZ = 2kgT 2 (2.64)
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2.4 Bragg Diffraction Beam Splitter

Raman transition has been very successfully applied and becomes one of the most popular
beam splitting techniques in atom interferometry. But as the demands for the precision and
accuracy is higher and higher, Raman transition starts to fall short in many ways. First
of all, Raman transition always deals with two different electronic states which normally
contributes to AC Stark shift differently. So in the real atom interferometry measurement,
differential AC Stark shift would be a significant source of systematic uncertainty. And it
depends on laser power and detuning, so it’s quite hard to monitor and control it to a very
precise level. Secondly, Raman transition is only a two-photon transition so the total phase
is only gained by a factor of 2 compared with the single-photon atom interferometer. But is
there a way to boost momentum transfer at each beam splitter so the overall sensitivity would
be improved significantly? The answer is yes. Back in 2000s, the group led by Dr. Chu who
first implemented Raman transition into atom interferometry [20] again pioneered the quest
into large momentum transfer atom interferometry techniques [46, 47]. The technique they
started investigating is called Bragg diffraction. The term Bragg diffraction was originally
used to describe constructive interference of x-ray diffraction on a periodic lattice structure.
But the idea could be extended to constructive interference of any wave scattered by a
periodic structure. Compared with Raman transition, it drives the transition from one
momentum state to another within the same electronic state of atoms. And it enables
momentum transfer to exceed 2~k set by Raman transition. The scenario is quite similar
to Raman transition. Consider two counter-propagating laser fields E1 = E10 cos(k1z−ω1t)
and E2 = E20 cos(k2z + ω2t) to form optical lattices to drive Bragg diffraction as shown in
Figure 2.4. The frequencies here are chosen to be very far-detuned from any resonance as
well. But the two-photon detuning is quite different from that in Raman transition. Assume
the atom wave function is defined as

|ψ〉 = g(z, t) |g〉+ e(z, t) |e〉 (2.65)

Following the similar procedure, we can start with the Hamiltonian [46]

ĤBragg =
P̂ 2

COM

2M
+

(
0 ~Ω1 cos(k1z − ω1t) + ~Ω2 cos(k2z + ω2t)

~Ω1 cos(k1z − ω1t) + ~Ω2 cos(k2z + ω2t) ~ω0

)

(2.66)
under the similar definitions of Rabi frequencies

~Ω1 = 〈e| − d ·E10 |g〉 (2.67)

~Ω2 = 〈e| − d ·E20 |g〉 (2.68)

After rotating the original state to its ”laser rotating frame” by the unitary transformation
below and applying appropriate Rotating Wave Approximation (RWA), the Hamiltonian will
be simplified to

˜̂
HBragg =

P̂ 2
COM

2M
+

~
2

(
0 Ω1e

i(− δ
2
t+k1z) + Ω2e

i( δ
2
t−k2z)

Ω1e
i( δ

2
t−k1z) + Ω2e

i(− δ
2
t+k2z) −2∆

)
(2.69)
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Figure 2.4: Energy-momentum diagram for a 5th order Bragg diffraction. The initial velocity
is taken to be −5~k.

where the new basis is chosen to be

(|g̃〉 , |ẽ〉) = (|g〉 , |e〉)
(
e−i

(ω1+ω2)t
2 0

0 ei
(ω1+ω2)t

2

)
(2.70)

The two-photon detuning δ here is defined as δ = ω1 − ω2 and the single photon detuning
∆ = (ω1 + ω2)/2 − ω0. The Schrödinger equations for the wave function of each state are
given as

i~
∂

∂t
e(z, t) = − ~2

2M

∂2

∂z2
e(z, t) +

~
2

(Ω1e
i( δ

2
t−k1z) + Ω2e

i(− δ
2
t+k2z))g(z, t)− ~∆e(z, t) (2.71)

i~
∂

∂t
g(z, t) = − ~2

2M

∂2

∂z2
g(z, t) +

~
2

(Ω1e
i(− δ

2
t+k1z) + Ω2e

i( δ
2
t−k2z))e(z, t) (2.72)

In the regime of large single-photon detuning ∆ � Ω � ωr, adiabatic elimination could be
applied in the same way, i.e. (∂/∂t)e(z, t) = 0. The average value of e(z, t) at a slower time
scale would be

e(z, t)ave =
Ω1e

i( δ
2
t−k1z) + Ω2e

i(− δ
2
t+k2z)

2∆
g(z, t) (2.73)
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It simplified the question to a single Schrödinger equation

i
∂

∂t
g(z, t) = − ~

2M

∂2

∂z2
g(z, t) +

Ω2
1 + Ω2

2 + 2Ω1Ω2 cos(δt− (k1 + k2)z)

4∆
g(z, t). (2.74)

According to Bloch’s theorem, the energy eigenfunction of Hamiltonian in a periodic poten-
tial can be written as a Bloch wave, which is the product of a periodic function and a plane
wave, namely

ψn(r) = eikq ·run,kq(r) (2.75)

The ground state wave function could thus be expanded as a sum of Fourier series

g(z, t) = eikqz
∞∑

m=−∞

gm(t)e2imkz (2.76)

where kq is the quasi-wave number and k = (k1 + k2) is the effective wave number. It could
be written as a series of coupled differential equations for each gm component.

iġm(t) =
~(kq + 2mk)2

2M
gm(t) + ωACgm(t) +

Ω

2
(e−iδtgm−1(t) + eiδtgm+1(t)) (2.77)

where the quasi-wave vector kq is restricted in the first Brillouin zone [−k, k]. Each Fourier
component gm(t) represents a momentum state with momentum ~(kq + 2mk). Equations
(2.77) is essentially a series of infinite Schrödinger equations of each momentum state with
potential energy given by a common AC Stark shift ωAC and hopping interaction by the
two-photon Rabi frequency Ω. The hopping can only happen between nearest momentum
states separated by 2~k. Here ωAC and Ω are defined as [46]

ωAC =
Ω2

1 + Ω2
2

4∆
. (2.78)

Ω =
Ω1Ω2

2∆
. (2.79)

Analytic Solution

In order to obtain an analytical solution, certain approximations are required. There are
two commonly used approximations in this context.

Raman-Nath Regime

When the pulse length is quite short such that its frequency spread is larger than recoil
frequency scale, i.e. 1/τ � ωr, the kinetic energy difference between different momentum
state would be unimportant. Under that condition, we can just simplify the equation to be

iġm(t) =
Ω

2
(gm−1(t) + gm+1(t)) (2.80)
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There is known solution to this differential equations [46].

gm = (−i)mJm(Ωt) (2.81)

The initial condition is defined as g0 = 1 and gm 6=0 = 0 at t = 0. So after the pulse,
the population in all momentum states would be symmetrically distributed based on the
value of each order of Bessel function. This is not the regime commonly used for most
large-momentum-transfer atom interferometers.

Bragg Regime

Another approximation happens in Bragg regime in which the pulse is so long that its
frequency spread would be very narrow. Unless conservation of momentum and energy are
both strictly satisfied, no Bragg diffraction could happen. In this regime, Ω would be typically
small to keep Ωτ roughly the same. Mathematically it means Ω ∼ 1/τ � m2ωr. So we can
apply the same technique of adiabatic elimination to eliminate far-detuned intermediate
states. Consider the same situation as shown in Figure 2.3, where the state initially at
|−n~k〉 is undergoing a nth order Bragg diffraction to the final state |n~k〉. It is resonant
when ω1 = ω2. Note that the order n here is different from the subscription m in gm.
Depending on whether n is odd or even, kq should be chosen as 0 or k to match resonance
condition. For simplicity we will consider a new way to define the states as g̃n where n means
real momentum index. So in this new definition the Schrödinger equation reads

i ˙̃gn(t) = n2ωrg̃n(t) +
Ω

2
(g̃n−2(t) + g̃n+2(t)) (2.82)

A hand waving way to solve this would be to break it into n ”Raman transitions” and
adiabatically eliminate each state successively. Suppose initially g̃−n = 1 and g̃k 6=−n = 0.
For each intermediate state k 6= ±n we can assume ˙̃gk(t) = 0 and eliminate it one by one
following the direction of the population transfer. Thus we have simplified equations (the
overall energy shifted by −n2~ωr)

i ˙̃g−n(t) =
Ω

2
(g̃−n+2(t)) (2.83)

i ˙̃g−n+2(t) = (4− 4n)ωrg̃−n+2(t) +
Ω

2
(g̃−n(t)) = 0 (2.84)

...

i ˙̃gn−2(t) = (4− 4n)ωrg̃n−2(t) +
Ω

2
(g̃n−4(t)) = 0 (2.85)

i ˙̃gn(t) =
Ω

2
(g̃n−2(t)) (2.86)

(2.87)
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This problem could be simplified to a simple two-level system again with the Schrödinger
equation

i~ ˙̃g−n(t) =
1

2
~Ωeffg̃n (2.88)

i~ ˙̃gn(t) =
1

2
~Ωeffg̃−n (2.89)

and effective Rabi frequency [46]

Ωeff =
Ωn

(8ωr)n−1

1

[(n− 1)!]2
. (2.90)

So after including the Fourier phase factor, the general matrix form for nth order Bragg
beam splitter in Bragg regime could be written as

ÛBS =

(
cos(1

2
Ωeffτ) −i sin(1

2
Ωeffτ)e−i2nkz

−i sin(1
2
Ωeffτ)ei2nkz cos(1

2
Ωeffτ)

)
(2.91)

One can perform Lorentz transformation to shift it to a general reference frame.

Numerical Solution

Realistically speaking, neither of the approximations above really describes the real beam
splitter we are using in the experiment. Firstly, the real Bragg pulse is between the Raman-
Nath regime and the Bragg regime. The approximation isn’t sufficient at the precision
required by the experiment. Secondly, a square Bragg pulse doesn’t quite work in the
experiment. The Fourier spectrum of a square pulse is a sinc function, which produces
significant sideband that drives unwanted transitions unless the pulse length is unrealistically
long. In the experiment we use a Gaussian pulse to generate Bragg diffraction, which gives
a clean Gaussian spectrum in the frequency domain. It’s more convenient to use numerical
method to study Bragg diffraction under realistic experimental conditions. In the experiment
we use truncated Gaussian from −3σ to 3σ to drive Bragg diffraction. The real pulse shape
is obtained through intensity servo so there is certain amount distortion. By adjusting the
lockbox settings, we can achieve the optimal pulse shape as shown in Figure 5.7. In theory we
can put arbitrary pulse shape into the program to generate the beam splitter matrix. But in
this section only the ideal truncated Gaussian waveform would be used in the calculation and
discussion. For the real pulse form, it would be discussed under the chapter for systematic
uncertainties. For simplicity, numerical calculation is generally done through a dimensionless
form of the equation. After rescaling the time in the unit of ω−1

r , the equation becomes

i
∂gm(τ)

∂τ
= (m0 + 2m)2gm(τ) + αgm(τ) + β(e−iδ

′τgm−1(τ) + eiδ
′τgm+1(τ)) (2.92)

where kq = m0k, t = ω−1
r τ , αωr = ωAC , βωr = Ω

2
, δ′ = δω−1

r = (ω1 − ω2)ω−1
r . Note that it

is the general form of equation with non-zero laser detuning taken into account. Normally
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Figure 2.5: Atom population distribution in momentums states after a Bragg diffraction at
various 2-photon Rabi frequencies

we can set α to be 0 as it produces no differential AC Stark shift unless we consider the
beam profile (see Section 5.6 for details). Sometimes it’s easier to use interaction picture to
eliminate the first term by the unitary transformation,

gm(t) = gIm(t)e−i(m0+2m)2ωrt (2.93)

The Schrödinger equation would be modified in that picture to

i
∂gIm(τ)

∂τ
= β(e−iδ

′τei4(m0+2m−1)τgIm−1(τ) + eiδ
′τe−i4(m0+2m+1)τgIm+1(τ)) (2.94)

For the best performance, a code in C was written to implement Runge-Kutta algorithm
to solve these ordinary differential equations (ODEs) [48]. Here we take 5th order Bragg
diffraction as an example to show specific effects of Bragg diffraction beam splitters. And
we choose Tpulse = 109 µs = 1.41532ω−1

r as our the pulse duration, which is obtained to
minimize parasitic interferometer (see Section 5.5 for details). Under this condition, it’s
closer to Bragg regime. In order to obtain the effective 2-photon Rabi frequency Ω for
π/2 transition for a beam splitter, we scan the Rabi frequency to see how atom population
transfer among different momentum states as a function of 2-photon Rabi frequency. The
result is shown in Figure 2.5. A distinctive feature is that it’s not an ideal two-level system.
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Bragg order n Rabi frequency Ω (ωr) Bragg order n Rabi frequency Ω (ωr)
1 2.735 5 30.291
2 5.656 6 43.035
3 11.524 7 58.155
4 19.798 8 75.566

Table 2.2: The effective two-photon Rabi frequency Ω1Ω2

2∆
of a π

2
Bragg diffraction at various

Bragg orders
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Figure 2.7: Time evolution solution of a 5th order Bragg π/2 pulse

The population at intermediate momentum states are non-zero. This is especially obvious if
we want to drive a π pulse. The maximum transfer efficiency is only about 80% in this case.
The point of π/2 and π transitions are indicated in the figure based on the definition that
a π/2 pulse reaches equal population between the initial and the final state and a π pulse
delivers the maximum transfer into the final state. The effective two-photon Rabi frequency
for π/2 pulse for different Bragg orders are also listed and plotted below, which is quite
useful for experiment. The two-photon Rabi-frequencies can be well fitted by a parabola as
shown in the Figure 2.6.

In the experiment, we usually use 5th order Bragg diffraction as beam splitters for its
best performance in sensitivity and contrast. So here we will be only focusing on 5th order
Bragg π/2 pulse. Its time evolution solution is also shown here in Figure 2.7.

It shows that under this condition the Bragg π/2 pulse is very close to Bragg regime
where intermediate states can be well adiabatically eliminated, which makes it a good beam
splitter. But it’s not an ideal two-level system as we can see from the phase plots shown
in Figure 2.8 and Figure 2.9. An ideal π/2 pulse gives exactly −π/2 phase in a two-level
system. But it here varies a lot depending on the detuning and Rabi frequency of the laser
input into the system. In the real experiment, we are dealing a large ensemble of atoms in the
atom cloud. And the laser beam forms Gaussian beam instead of an ideal plane wave. And
atom also has non-zero velocity distribution. A large number of atoms would be addressed
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Figure 2.8: Bragg beam splitter phase vs two-photon Rabi frequency. Here the phase dif-
ference is defined as the phase difference between |5~k〉 and |−5~k〉 after a transition from
|−5~k〉 to |5~k〉.

by Bragg diffraction in non-resonant condition, which is equivalent to atom with the same
initial velocity addressed by Bragg diffraction with certain detuning after shifting the frames
of reference. Realistically to model the real Bragg diffraction we need to take into account
effective power and detuning each atom sees. It becomes a quite complicated simulation
work. We will talk about this briefly in Section 2.7 and 2.8. In the subsequent section, we
will introduce a more complex type of Bragg diffraction where two atom clouds with different
velocity could be driven to different final states simultaneously. This is another very useful
beam splitter in doing simultaneously conjugated interferometers we will discuss in Section
2.6.

Simultaneous Bragg Diffraction Beam Splitter

In the case of what we called simultaneous conjugated interferometer we will introduce
in Section 2.6, we need a kind of Bragg diffraction to simultaneously drive transitions from
|−5~k〉 to |−15~k〉 and from |5~k〉 to |15~k〉 . Here we use a dual frequency laser beam
E2 = E20+ cos((k2 + km)z + (ω2 + ωm)t) +E20− cos((k2 − km)z + (ω2 − ωm)t) to replace the
original E2 and keep E1 the same. The pair with ω1 and ω2 + ωm would drive |−5~k〉 to
|−15~k〉 and the pair with ω1 and ω2 − ωm will drive another transition. It is configured in
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Figure 2.9: Bragg beam splitter phase vs two-photon detuning. Here the phase difference
in blue is defined as the phase difference between |5~k〉 and |−5~k〉 after a transition from
|−5~k〉 to |5~k〉; and that in orange is defined as the phase difference between |−5~k〉 and
|5~k〉 after a transition from |5~k〉 to |−5~k〉

this way in order to match our experiment conventions. Based on conservation of momentum
and energy, the modulation frequency ωm is chosen to be

ωm = 8nωr (2.95)

Following the same procedure of approximations, and adiabatic elimination, we can write
the Schrödinger equation for the ground states,

i
∂

∂t
g(z, t) = − ~

2M

∂2

∂z2
g(z, t) +

Ω2
1 + Ω2

2+ + Ω2
2− + 2Ω2+Ω2− cos(2kmz + 2ωmt)

4∆
g(z, t)

+
Ω1Ω2+ cos(2kz + kmz + ωmt− δt) + Ω1Ω2− cos(2kz − kmz − ωmt− δt)

2∆
g(z, t)

(2.96)

where Rabi frequency Ω2± are defined in a very similar way. Consider the real situation
where the size of atom wave packet is as small as the thermal de Brogile wavelength at 0.2
recoil temperature

λthermal =
h√

3mkBT
= 1.58 µm (2.97)
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Figure 2.10: Time evolution solution of a 5th order dual-frequency Bragg π/2 pulse

In this regime, we find that kmλthermal � kz and kmλthermal � ωmτ where τ is the length
of the pulse. So the contribution from km is insignificant and thus could be neglected. And
assuming Ω2+ = Ω2− = Ω2 for simplicity in the scheme we perform dual frequencies, we can
simplify the equation as

i
∂

∂t
g(z, t) = − ~

2M

∂2

∂z2
g(z, t)+

2Ω2
1 + Ω2

2 + 2Ω2
2 cos(2ωmt)

4∆
+

Ω1Ω2 cos(2kz − δt) cos(ωmt)

∆
g(z, t)

(2.98)
Since the potential still has λ = π/k translational invariance symmetry, we can apply Bloch’s
theorem again to expand the wavefunction in Fourier series. And each Fourier component
of the Bloch wave satisfies the equation

iġm(t) =
~(kq + 2mk)2

2M
gm(t) +

2Ω2
2(1 + cos(2ωmt)) + Ω2

1

4∆
gm(t)

+
Ω1Ω2 cos(ωmt)

2∆
(e−iδtgm−1(t) + eiδtgm+1(t)) (2.99)

For the convenience of numerical simulation, it can be rewritten as

iġm(τ) =(λ0 + 2m)2gm(τ) + (α + γ cos(2ωmt))gm(τ)

+ 2β cos(ωmt)(e
−iδ′τgm−1(τ) + eiδ

′τgm+1(τ)), (2.100)
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Figure 2.11: Dual frequency Bragg beam splitter phase vs two-photon Rabi frequency. Here
the phase difference in blue is defined as the phase difference between |−15~k〉 and |−5~k〉
after a transition from |−5~k〉 to |−15~k〉.

or in the interaction picture as

i
∂gIm(τ)

∂τ
= 2β cos(ωmt)(e

−iδ′τei4(m0+2m−1)τgIm−1(τ) + eiδ
′τe−i4(m0+2m+1)τgIm+1(τ)) (2.101)

where α =
2Ω2

2+Ω2
1

4∆
, γ =

Ω2
2

2∆
, β = Ω1Ω2

2
, and δ′ = δω−1

r . Normally we can assume α = γ = 0
for the same reason as discussed earlier. Based on the simulation result, the population
evolution during the pulse is oscillating a lot but it reaches a stable distribution similar to
the single frequency Bragg pulse as shown in Figure 2.10. The effective two-photon Rabi
frequency at π/2 pulse is about Ω = 30.359, a little larger than single Bragg result. But
the population distribution as we scan the Bragg power is about the same as in Figure 2.5.
The relative phase dependence on power and detuning is a little bit different in this case.
They are shown in Figure 2.11 and Figure 2.12. The conclusion here is that simultaneous
Bragg diffraction serves well as a beam splitter. But it has different phase dependence on
experiment parameters, which may introduce additional phase into the system that won’t
be canceled throughout the entire interferometer.
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Figure 2.12: Dual frequency Bragg beam splitter phase vs two-photon detuning. Here the
phase difference in blue is defined as the phase difference between |−15~k〉 and |−5~k〉 after
a transition from |−5~k〉 to |−15~k〉; and that in orange is defined as the phase difference
between |15~k〉 and |5~k〉 after a transition from |5~k〉 to |15~k〉.

2.5 Bloch Oscillations

Ideally, Bragg diffraction should be able to improve the sensitivity of atom interferom-
etry by orders of magnitude. But in reality, when large order Bragg diffraction is applied,
significant decoherence is observed at moderate pulse separation time. In order to recover
coherence, the pulse separation time has to be shortened significantly. So there is a trade-off
between the Bragg order n and the pulse separation time T we can use. We found that 5th
order Bragg diffraction gives the best overall sensitivity in our application. But that’s still
not enough to reach the sub-ppb level of the fine-structure constant measurement. That’s
where a new technique called Bloch oscillations were brought in. Again Bloch oscillation is
a concept first introduced in solid-state physics. It describes the dynamics of the electron
placed in a periodic lattice potential with a constant force on. It was predicted by the theory
first that instead of constant acceleration like a free electron, the electron bounded in the
lattices would undergo certain kind of oscillation. But it’s quite challenging to observe it in
normal solids as the relaxation time of solids is way smaller than the period of Bloch oscil-
lations. But in the cold atomic system, it’s quite a lot easier observe it in optical lattices as
decoherence happens way slower than Bloch oscillations [49, 50]. Due to this reason, Bloch
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oscillations have been a very useful tool in atom optics to transfer more than hundreds of
photon momentum. In this section, we will look into some details and application specifically
in atom interferometry [51].

Consider a standing optical lattice formed by strongly detuned counter-propagating laser
beams E1 = E0 cos(kz − ωt) and E2 = E0 cos(kz + ωt). Following the same tricks of
approximation in the section of Bragg diffraction, we can simplified the Hamiltonian for the
ground state wavefunction g(z, t) as

H0 =
P̂ 2

COM

2M
+ ~ωAC + ~Ω cos(2kz) (2.102)

The AC Stark shift and effective 2-photon Rabi frequency ωAC and Ω are defined in the
same way as in Section 2.4. We know that the solution of this Hamiltonian can be written
as Bloch waves,

gn,kq(z) = eikqzun,kq(z) (2.103)

where n is the band index and kq is the quasi-wave number taken from the first Brillouin
zone [−π

d
, π
d
). Here d is the distance between the nearest lattice sites. In this case of optical

lattices, it’s given by

d = λoptical lattice =
π

k
(2.104)

Now in the problem of Bloch oscillations, an additional term −Fz is added for an uniform
force field. In total, the Hamiltonian becomes

ĤBO =
P̂ 2

COM

2M
+ ~Ω cos(2kz)− Fz (2.105)

Note that the AC Start shift term is omitted as it doesn’t change the dynamics of physics
here. The physics is quite rich and complicated here. In the weak field regime, where the field
potential term can be treated as a small perturbation. The solution is mostly constructed
based on the eigenstate of the force-free Hamiltonian, i.e. Bloch states. That solution is
called Houston functions [52]. Whereas in the strong field regime when the field potential
difference between the nearest sites becomes larger than the lattice potential, Bloch wave
would be localized to each site. In this regime it starts with localized Wannier state and
treat the lattice as perturbation and the solution is the so-called Wannier-Stark lattice [53].
In the application of atom interferometry, we stay in the weak field regime to preserve atom’s
coherence.

Weak Field Approximation

When there is no lattice, the particle will follow the force to increase its momentum con-
stantly. However with the lattice potential, momentum is not a good quantum number. But
quasi-momentum is conserved based on the discrete translational invariance. So intuitively
speaking, we may guess that in this situation, instead of momentum, quasi-momentum would
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constantly accelerate. Following this idea, Houston proposed a attempted wave function as
[52]

ψ(z, t) = eikq(t)zun,kq(t)(z)e−
i
~
∫ t Ekq(τ)dτ (2.106)

where Ekq(t) is the eigen energy of Bloch wave with a quasi-wave number kq(t) and kq(t)
follows the constant acceleration

kq(t) = kq(t = 0) +
Ft

~
(2.107)

It shows that this solution would be a good approximation as long as

|F ∂un,kq
∂kq

| � 1 (2.108)

What the force does is to make a transition from Bloch wave gn,kq to gn,kq+F∆t/~. This
condition means the process is not fast enough to make a transition that the atom cannot
follow. It is essentially the quantitative definition of adiabatic condition in this context.
Since quasi-momentum is not real momentum, it follows a periodic boundary condition
gn,kq+ 2π

d
(z) = gn,kq(z). So in real space, atom is undergoing Bloch oscillations with oscillation

period TB given by
FTB
~

=
2π

d
(2.109)

Landau-Zener Tunnelling

So far all the discussion above is based on an assumption that there is no interband
transition, which is not true in the real case. This kind of interband transition is called
Landau-Zener tunneling. When the atom cannot follow the force field adiabatically, Laudau-
Zener tunnelling happens. Using Houston’s formulations above, we can write the real wave
function as a superposition of multiple bands,

ψ(z, t) =
∑

n

cn(t)e−
i
~
∫ t dτEn,kq(τ)eikq(t)zun,kq(t)(z) (2.110)

Putting it into Schrödinger equation we have [54]

〈n, kq(t)| i~
∂

∂t
|ψ〉 = 〈n, kq(t)| (H0 − Fz) |ψ〉 (2.111)

ċn(t) = −
∫
dz
∑

m

cm(t)
F

~
u∗n,kq(t)(z)

∂

∂kq
um,kq(t)(z)e−

i
~
∫ t dτ(Em,kq(τ)−En,kq(τ)) (2.112)

The famous Laudau-Zener tunneling formula is based on a toy model where a quantum state
is swept through an avoided crossing of two energy levels. The tunneling rate depends on
the coupling between two states as well as how fast the quantum system is sweeping through
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a varying parameter. In the case of Bloch oscillations, the interband transition probability
can be written as [55]

P ≈ exp(− π∆2
n,m

8~(|εm|+ |εn|)F
) (2.113)

where ∆n,m is the energy gap between the band n and m; εm is the slope of the bands at the
avoided crossing in the no-band-gap limit. It built upon the assumption of weak lattices,
which may not be true in real cases. In the following section we will try to simulate Bloch
oscillations of cold atoms in optical lattices with numerical methods.

Numerical Simulation

Coming back to our original optical lattices model where the potential is ~Ω cos(2kz),
the solution with zero-force field can be written as Bloch waves

gn,kq(z) = eikqzun,kq(z) (2.114)

Since un,kq(z + d) = un,kq(z), we can expand it into Fourier series as

gn,kq(z, t) = eikqz
∑

m

cn,m(t)ei2mkz (2.115)

Plugging it to the Schrödinger equation with force-free Hamiltonian H0 we have the central
equations

~2(kq + 2mk)2

2M
cm +

~Ω

2
(cm−1 + cm+1) = En,kqcm (2.116)

Eigenvalues of these equations give the band structure and eigenvectors give Bloch state of
each band. For example in the system with Ω = ωr, band structure can be given as shown in
Figure 2.13. Bloch oscillations sweep through the first band over and over again. But at the
edge of the first Brillouin zone, the atom goes through the avoided crossing between the first
band and the second band where Landau-Zener tunneling is the strongest. For each Bloch
order, when the atom runs through the Brillouin zone once, it gains 2~k momentum kick at
the edge so that the real momentum of the atom is oscillating in the lattice rest frame.

In optical lattices the way to control the constant force field is through ramping the lattice
frequency. Based on Doppler shift, we know that optical lattices with ramping frequency is
moving with a constant acceleration in the lab frame. So in the rest frame of the lattices
atoms would experience a inertial force F = −ma which drives the Bloch oscillations. If
we go back to the lab frame, Bloch oscillations essentially accelerate atoms coherently and
transfer large momentum 2N~ depending on the Bloch order N . Suppose the frequency is
ramping such that

d

dt
(ω1 − ω2) = r (2.117)
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Figure 2.13: Energy band structure of an atom in optical lattices with lattice depth Ω = ωr

where r is the ramp rate. Then based on Doppler shift, the lattices rest-frame velocity is
related to the frequency difference as

ω1 − ω2 = 2kv (2.118)

So the inertial force with frequency ramp is

F = −Ma = −rM
2k

(2.119)

The Bloch period can thus be determined as

TB =
2~k
|F | =

4~k2

rM
(2.120)

In our experiment, we use the same system as the dual-frequency Bragg diffraction beam
splitter to drive simultaneous Bloch oscillations for those two simultaneously conjugated
interferometers in opposite directions. The only difference is that in Bloch oscillations, the
modulation frequency ωm is a ramp and the pulse shape is a square pulse with adiabatic
ramp on and off. But simply using the simulation for Bragg diffraction with frequency ramp
added wouldn’t work as the Bloch wave basis used in Bragg diffraction is not a complete
basis for Bloch oscillation. The good basis to use here is Houston functions

gn,kq(t)(z, t) = e−
i
~
∫ t En,kq(τ)dτeikq(t)zun,kq(t)(z) = eikq(t)zũn,kq(t)(z, t) (2.121)
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Since all these periodic functions ũn,kq(z, t) could be expanded as Fourier series
∑

m gme
i2mkz,

we can express all the bands together as a sum of the Fourier series. So the general solution
for Bloch oscillations could be written as

gn,kq(t)(z, t) = eikq(t)z
∑

m

gm(t)ei2mkz (2.122)

Substitute this solution to Schrödinger equation of Bloch oscillations, we can get the the
following differential equations in Schrödinger picture for simulation,

iġm(τ) =(λ(τ) + 2m)2gm(τ) + (α + γ cos(2ωm0 + r′τ 2))gm(τ) + β(ei(ωmτ+r′τ2) + e−iωmτ )gm−1(τ)

+ β(e−i(ωmτ+r′τ2) + eiωmτ )gm+1(τ) (2.123)

where λ(τ) = kq(τ)/k and ramp rate in the recoil unit r′ = rω−1
r . The modulation frequency

is ramped up with a constant rate. i.e. ωm = ωm0 + rt. All the other parameters are defined
in the same way as in the previous sections. The force doesn’t have to be constant force.
This method applies to any slow varying force that satisfies the adiabatic condition. In this
case for simplicity, we apply a constant force such that

λ(τ) =
1

k
(kq0 +

∫ τ

dτ̃
F (τ̃)

~
) = λ0 +

1

4
r′τ (2.124)

For Bloch oscillations, the effective two-photon Rabi frequency and ramp rate are the most
important two parameters to optimize its performance. Generally the larger the effective
two-photon Rabi frequency and the slower the ramp, the more efficient Bloch oscillations
would be. But there is a trade-off in the real interferometer where larger intensity and
longer pulse tend to cause decoherence of atoms. More details would be discussed in Section
4.1. With a set of parameters used in the real experiment where the two-photon Rabi
frequency ΩBO = 0.2ΩBragg π/2 and the ramp rate r = 11rg where gravity ramp rate rg = 23
MHz/s, a simulation of 125th order Bloch oscillations is performed under simultaneous Bloch
oscillations configuration as shown in Figure 2.14. The calculation is performed in the atom
rest frame where 0 and ±2~k are momentum states in this frame of reference. We can see
Bloch efficiency drop caused by Landau-Zener tunneling as we increase the Bloch oscillations
order.

In the experiment, Bloch oscillations are used to boost the interferometer phase. So it’s
important to know how much phase atom would receive from the pulse. Intuitively speaking,
besides the general phase due to AC Stark shift when the light is on, the atom gain phase
when it’s kicked at the wall of the Brillouin zone through absorption of a photon from one
beam and stimulated emission of a photon to another beam, which means for this specific
”kick” the atom gains phase by

∆φ = k1z − ω1t− (−k2z − ω2t) = 2keffz −∆ωt (2.125)

In the specific case of our atom interferometer geometry, atoms in both arms are moving with
the same velocity during Bloch oscillations. Consider the classical model of Bloch oscillations
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Figure 2.14: Time evolution solution of dual-frequency Bloch Oscillations
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Figure 2.15: Bloch oscillations efficiency vs Bloch pulse intensity
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Figure 2.16: Classical model of Bloch oscillations for two arms of the interferometer

as shown in Figure 2.16. Atom 1 and 2 are kicked by 2~k simultaneously at tm = (m− 1
2
)TB

where TB is the Bloch oscillations period. So the total phase difference is added up to be

∆ΦBO = ∆φ1 −∆φ2 =
∑

m

2keff(tm)(z1(tm)− z2(tm)) (2.126)

Note that as we ramp the frequency, effective k would no longer be the same. Suppose
initially ω1 = ω2 = ω = kc and we know that the position difference of both atoms under
gravity remains the same as the initial position difference, so we have

∆ΦBO =
N∑

m=1

(2k + 4
ωr
c
− 8

mωr
c

)∆z0 = (2Nk − 4N2ωr
c

)∆z0 (2.127)

In the next section, we will apply this formula to calculate the full phase formula of the atom
interferometers commonly used in our experiments.

2.6 Various Atom Interferometer Configurations

Now we have prepared all the ingredients ready for this section to calculate the phase of
several atom interferometer configurations used in this experiment. The phase calculation
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for the real experiment could be very complicated as many experiment parameters could
potentially change the phase. But based on the precision of the experiment, we don’t have
to know phase terms below the experiment precision. So we can adopt perturbation methods
to calculate the phase in general. We can calculate the phase based on the toy model where
laser beam is treated as plane wave and atom trajectory is taken to be simple quadratic form
under constant gravitational acceleration. And all other influences will be taken as a small
perturbation added as phase corrections (e.g. gravity gradient, Guoy phase and so on) [56].
This methods allows us to evaluate the phase accurately at the precision we want.
Two typical of perturbations are common in our atom interferometer systems. One is per-
turbation added to the free particle Lagrangian. The other is perturbation added to pulse.
In this section we will only be focusing on the first type and the second type will be discussed
in Chapter 5.
The Lagrangian of a free atom with gravity gradient could be written as

L =
1

2
mż2 −mgz +

1

2
mγz2 (2.128)

where gravity gradient γ is defined as

γ = −dg
dz

(2.129)

Before going into specific configurations, here we will present a brief summary of basic
procedures to calculate the phase of an atom interferometer.

Basic Procedure

In this section we will summarize basic ingredients we have from previous sections as well
as discuss the basic procedure to calculate atom interferometer phase. Atom interferometer
phase consists of free evolution phase, light atom interaction phase as well as splitting phase
in general. The first two types are already discussed in the previous sections. The third type
comes from atom interferometers in which the path doesn’t close at the last pulse. This type
will be discussed in detail here.

Free Evolution Phase

Free evolution phase is simply the matter wave phase from Feynman integral. Based on
the perturbation theory, we can use the classical path without perturbation to calculate free
evolution phase

φf =
1

~

∫

unperturbed path

(
1

2
mż2 −mgz +

1

2
mγz2)dt (2.130)

Light-Atom Interaction Phase

We have also carefully studied the phase from light atom interaction during at beam
splitters and atom mirrors. The phases were obtained by solving Schrödinger Equation with
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Figure 2.17: Pulse types in a general atom interferometer configuration

Type Momentum Transfer Light Atom Interaction Phase
a) Raman upward kick ~(k1 + k2) k1z + k2z − (ω1 − ω2)t+ φBS

b) Raman downward kick −~(k1 + k2) −k1z − k2z + (ω1 − ω2)t+ φBS

c) Bragg upward kick n~(k1 + k2) nk1z + nk2z − n(ω1 − ω2)t+ φBS

d) Bragg downward kick n~(k1 + k2) −nk1z − nk2z + n(ω1 − ω2)t+ φBS

e) Bloch upward kick N~(k1 + k2) ∆φBO = (2Nk − 4N2ωr
c

)∆z

f) Bloch downward kick −N~(k1 + k2) ∆φBO = (2Nk − 4N2ωr
c

)∆z

Table 2.3: Summary of momentum and phase transfer for different pulse types. For type a-d,
they are transferred to the deflected path. For type e-f, momentum is transferred to both
paths. ∆φBO is defined as phase difference between two paths added by Bloch oscillations.
The sign of the phase difference is defined in the same way as the sign of ∆z.

the presence light atom interaction. Integrating Schrödinger Equation for general atom inter-
ferometer phase calculation could be cumbersome. Here are some simplified rules that could
be generalized from solving Schrödinger Equations as we did before. They are summarized
here in Table 2.3 and shown in Figure 2.17

During a pulse, if a photon is absorbed, atom will gain exactly the same phase the
absorbed photon is carrying. Likewise, if a photon is emitted, atom will lose exactly the same
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Figure 2.18: Splitting phase in non-closure interferometers

phase the the emitted photon is carrying. The photon phase could be obtained by the phase of
the laser fields (only in the case of stimulated emission for the emitted photon). For Raman
and Bragg beam splitter, the process could be simplified as absorbing and spontaneous
emitting photon pairs, except that there is an additional diffraction phase given by the
transition matrix elements. We have also analyzed Bloch oscillations momentum and phase
transfer and presented here.

Splitting Phase

Splitting phase is a special type of phase introduced in interferometers where two paths
don’t exactly close. Theoretically when two paths don’t close, we may be able to distinguish
which-way the atom went through so there would be no interference. But in reality, atom
is not an infinitesimal point particle. It is a wave packet with certain coherent length. As
long as the separation between two paths at the last (or the first) pulse is smaller than the
coherent length ( 100nm given atom temperature in our experiments) [57], we could still
observe interference. But the offset in space will introduce another phase term from the
matter wave itself as there is a phase difference between different parts of the matter wave.
That is the so-called splitting phase. Practically this can be calculated in either case (a) or
case (b) as shown in the figure, considering the open end at the first pulse or the past pulse.
The splitting phase is equal to the matter wave phase difference between two paths. If we
label paths according to the figure, then the total phase difference of the whole interferometer
for both cases would be

∆Φ =

{
φ1 − φ2 + plast

~ (z1, last − z2, last) case a

φ1 − φ2 + pfirst

~ (z1, first − z2, first) case b,
(2.131)

where pfirst and plast are the momentum of atom at the first or the last pulse, zi, first and zi, last

the location of path i at the first or the last pulse.
Note that this phase term is not Lorentz invariant. It depends on the reference frame we

are choosing. But it doesn’t bring crisis to the phase calculation. It can be proved that the
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phase difference of a non-closure atom interferometer is reference frame dependent. Adding
the splitting phase exactly cancels this dependence so the system is Lorentz invariant as
expected. It has also to be noted that both cases are not equivalent when atom trajectories
under consideration are influenced by gravity gradient. But based on the perturbation
theory, using non-perturbed trajectories is sufficient for us [56]. Therefore both eases shown
in Figure 2.18 give equivalent result in our calculation.

Mach-Zehnder Atom Interferometer

Mach-Zehnder is the most basic atom interferometer geometry we have introduced in the
previous section. With gravity gradient included, we can get the following formula for the
phase difference [45].

∆Φ = 2nkT 2(g + γ(
7

12
gT 2 − z0 − (v0 +

n~k
m

)T )) (2.132)

where n is the Bragg order, k laser wavenumber, T pulse separation time, z0/v0 initial
location/velocity. In our experiment, we don’t run single Mach-Zehnder atom interferometer
simply because there is no vibration isolation built in our system. Any vibration will be
coupled to gravity acceleration so when pulse separation T is large, vibration phase noise
will wash out visible fringes.

Dual Mach-Zehnder Gravity Gradiometer

But vibration noise won’t be a problem for dual Mach-Zehnder configuration. Dual
Mach-Zehnder interferometer is simply two Mach-Zehnder interferometers running at the
same time. So phase noise from laser or vibration would be common for both and the
phase difference between two interferometer would be vibrational noise independent. This
configuration is commonly used by us to measure gravity gradient γ. In our experiment, such
a gravity gradiometer is configured as shown in the Figure 2.19. We use a single Bragg beam
splitter to split the initial wave packet into two different velocity classes. After delaying for
T1 we apply dual Bloch lattices which simultaneously accelerate two wave packets in opposite
directions so as to further split them. After delaying for T2, two wave packets are spatially
separated by roughly 2~k

m
(nT1 + NT2) where n and N are Bragg and Bloch orders. Due

to different initial velocities of two interferometers, simultaneous Bragg beam splitters are
required to address both interferometers at the same time. In order for Bragg diffractions to
be resonant, we shift the lower beam frequency by 4ωr (recoil frequency ωr = ~k2

2m
) and run

the upper beam in dual frequency mode (ω2±ωm where ωm = 4ωr(2N +n)). The last three
simultaneous Bragg diffractions consist the dual Mach-Zehnder atom interferometer. After
all pulses, we can detect all four output port to extract the phase. If we define the phase of
the upper and the lower interferometers as ∆Φu and ∆Φl respectively, the population of all
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Figure 2.19: Dual Mach-Zehnder Gravity Gradiometer Configuration

four output ports could be written as

〈D1〉 =
al
2

(1 + cos(∆Φl)) + b1 (2.133)

〈D2〉 =
al
2

(1− cos(∆Φl)) + b2 (2.134)

〈D3〉 =
al
2

(1 + cos(∆Φu)) + b3 (2.135)

〈D4〉 =
al
2

(1− cos(∆Φu)) + b4 (2.136)

We can define

X =
〈D1〉 − 〈D2〉
〈D1〉+ 〈D2〉

=
al

al + b1 + b2

cos(∆Φl) +
b1 − b2

al + b1 + b2

= Cl cos(∆Φl) +Ol (2.137)

Y =
〈D3〉 − 〈D4〉
〈D3〉+ 〈D4〉

=
au

au + b3 + b4

cos(∆Φu) +
b3 − b4

au + b3 + b4

= Cu cos(∆Φu) +Ou (2.138)

Thus we have defined the contrasts Cl, Cu and offsets Ol, Ou of the interferometers accord-
ingly. Meanwhile, the upper and lower phase can be written as a combo of common mode
phase and differential mode phase. i.e.

∆Φl =Φc +
Φd

2
(2.139)

∆Φu =Φc −
Φd

2
(2.140)
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Figure 2.20: Ellipse Fitting Technique

In the experiment, the differential phase is generally extracted through ellipse fitting [58]. As
we plot the quantities X and Y in a cartesian coordinate while we scan the common mode
phase, we can obtain a ellipse as shown in Figure 2.20. And the differential phase could
be obtained by the orientation of the ellipse. In the experiment, the common mode phase
is automatically scanned by vibration noise so we don’t need to add one artificially. More
details about the ellipse fitting techniques can be found in the literatures [58, 59, 60, 61, 62]

The ellipse fitting technique we are using gives minimum systematic error when the
differential phase is close to π/2. For this purpose we add a ramp rm to the modulation
frequency ωm to give an artificial phase. In general the differential phase due to gravity
gradient tends to be small (∼100 mrad). So we add ±π/2 through the ramp and take the
average value to cancel the ramp. With the ramp added, the differential phase is given as
[62]

Φd = −2nT 2rm+
8gn(n+ 2N)T 2ωr

c
+8nT 2γωr(n(T+T ′1+T ′2)+N(2T−NTB+2T ′2)) (2.141)

where pulse separation time T, T ′1, T
′
2 is defined as shown in the figure. TB is Bloch oscilla-

tions pulse duration. We have used this Dual Mach-Zehnder interferometer to successfully
determine the local gravity gradient γ below 1% accuracy as required by the fine-structure
constant measurement. More analysis will be discussed in Section 5.2.
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Figure 2.21: Ramsey Bordé Atom Interferometer Configuration

Ramsey-Bordé Atom Interferometer

Ramsey-Bordé is the main configuration we use to measure the fine-structure constant.
As we mentioned earlier that what we are measuring directly with atom interferometer is
recoil frequency ωr. Through the recoil frequency measurement we can determine the quo-
tient h/M and thus the fine-structure constant with the input of the Rydberg constant and
electron mass and Cesium mass. In a symmetric configuration like Mach-Zehnder atom
interferometer, major phase terms depending on the recoil frequency would be canceled in
the phase difference. So asymmetric geometry is essential to probe the recoil frequency in
Ramsey-Bordé interferometer. It consists of four π/2 pulses for beam splitting and recombin-
ing as shown in Figure 2.21. With Bragg diffraction beam splitters, if we keep the frequency
of upward going Bragg beam constant, we need to add a frequency shift ωm to the downward
going beam for the 3rd and the 4th beam in order to keep them resonant. The final phase
difference of this type of interferometer is [44, 61, 62]
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∆Φ =− nTωm(1 +
v0

c
) +

gnωm
2c

(3T 2 + 2TT ′)

+ 8n2Tωr(1 +
γ

12
(2T 2 + 3TT ′ + 3T ′2))

+ 2gknT (T + T ′)(1 +
γ

12
(7T 2 + 7TT ′ + 2T ′2))

+ knTγ(T + T ′)((2T + T ′)v0 + 2z0) + 4n2ωrT
ωm
ω

(2.142)

The higher order terms have been discarded here. Note that gravitational acceleration has
a major contribution to the phase difference. In order to determine the recoil frequency
accurately, we also need to determine the local gravitational acceleration accurately. And
this gravity dependence also means vibration noise will be coupled to the system as well.
So we need a good vibration isolation system to do this measurement well. Given these
thoughts, a new technique of simultaneously conjugated Ramsey Bordé configuration was
proposed and realized by Holger Müller et al. [63]. It uses the same four Bragg pulses to
drive two Ramsey Bordé atom interferometers at the same time as shown in Figure 2.22. In
order to drive the conjugated interferometer, we add another frequency component ω2− ωm
to the downward going beam at the 3rd and 4th pulses so it’s running at dual frequency
mode. Under this configuration, the junk atoms we used to discard after the 2nd pulse are
used for this conjugated interferometer. We can define interferometer fringe parameters for
the four output port signals as

X =
〈D1〉 − 〈D2〉
〈D1〉+ 〈D2〉

= Cl cos(∆Φl) +Ol (2.143)

Y =
〈D3〉 − 〈D4〉
〈D3〉+ 〈D4〉

= Cu cos(∆Φu) +Ou (2.144)

And the phase difference of the upper interferometer (∆Φl) and the lower interferometer
(∆Φu) could also be decomposed to the common mode phase Φc and the differential mode
phase Φd in the same way as we did in the previous section. It turns out that the differential
mode phase cancels the major contribution from gravitational acceleration, giving

Φd =− 2nTωm(1 +
v0

c
) +

3gnωm
c

(3T 2 + 2TT ′)

+ 16n2ωrT (1 +
γ

12
(2T 2 + 3TT ′ + 3T ′2))

− 4n2ωrT
ωm
ω

(2.145)

So while we are scanning the common mode phase, the differential mode phase can be
extracted by ellipse fitting. As the common mode phase is canceled, so also the vibration
and laser noise that enter through the common mode phase would be canceled. So in this
configuration, even though each interferometer is very noisy, we can still obtain very good
signal to noise ratio in the differential mode phase extraction. The other important ingredi-
ents like gravity gradient or initial velocity will be discussed in detail in Chapter 5. We have
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Figure 2.22: Simultaneously Conjugated Ramsey Bordé Atom Interferometers Configuration

demonstrated the recoil measurement down to parts per billion (ppb) precision with this con-
figuration. But in order to push sub-ppb precision, we need even more sensitive configuration
to do the measurement. That’s the reason why we introduced Bloch oscillations between
the second and third pulse so as to add common mode acceleration to each interferometer
as shown in Figure 2.23. With Bloch oscillations inserted, an additional major term linearly
dependent on Bloch order N is added. In our experiment, a large Bloch order (N > 100)
can be implemented compared to the small Bragg order (n=5) so we gain sensitivity quite a
bit through Bloch oscillations. Further analysis of sensitivity would be discussed in Chapter
4. Here with Bloch oscillations the differential mode phase is given as

Φd =− 2nTωm(1 +
v0

c
) +

gnT (3T + 2T ′1 + 2T ′2)ωm
c

− 4n2ωrT
ωm
ωL

+ 16n(n+N)ωrT

[
1 +

γ

12

[
n

n+N

(
2T 2 + 3TT ′2 + 3(T ′1 + T ′2)2)

)

2N

n+N

(
T 2 + 3T (T ′2 −

NTB
2

) + 3T ′2(T ′2 −NTB) + (N2 − 1

4
)T 2

B

)]]
(2.146)

where TB is the period of one Bloch oscillation defined in Equation 2.120 and v0 the initial
velocity at the first pulse. This is the main phase formula we will be using to extract recoil
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Figure 2.23: Simultaneously Conjugated Ramsey Bordé Atom Interferometers Configuration
with Bloch Oscillations

frequency for the fine-structure-constant measurement. Given such a complex phase formula,
it’s also important to know the physical meaning of each major phase term.

Recoil Phase Term

16n(n+N)ωrT (2.147)

This is the main phase of Ramsey Bordé atom interferometers we are measuring. Through
measuring this phase term we can determine the recoil frequency.

Modulation frequency Phase Term

−2nTωm (2.148)

This is the phase added due to the modulation frequency ωm during the last two dual
frequencies Bragg pulses. This is the phase term to counterbalance the main phase term. In
the experiment, we try to tune ωm so that the overall phase is measured to be zero. Under
this condition, ωm = 8(n+N)ωr + small corrections.
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Gravity Gradient Phase Term

4

3
γn(n+N)ωrT

[
n

n+N

(
2T 2 + 3TT ′2 + 3(T ′1 + T ′2)2)

)

2N

n+N

(
T 2 + 3T (T ′2 −

NTB
2

) + 3T ′2(T ′2 −NTB) + (N2 − 1

4
)T 2

B

)]]
(2.149)

This is the important phase term to determine the systematic effect due to gravity gradient.
Gravity gradient is one of the major systematic uncertainties we need to take into account
in this system. It will be discussed in details in Section 5.2.

Splitting/Doppler Phase Term

−2nTωm
v0

c
+
gnT (3T + 2T ′1 + 2T ′2)ωm

c
− 4n2ωrT

ωm
ωL

(2.150)

This is a new term we verified recently [8]. It’s very unique to our interferometer geometry
where each Ramsey Bordé interferometer does not close at the last pulse. It’s because the last
two pulses transfer a momentum ±~ωm/kc different from the momentum transferred by the
first two pulses. It’s unavoidable in the way we operate the dual frequency splitters. We can
view this from different reference frames. When we turn to the lab frame, atoms are moving
with a quite large velocity relative to the lab frame (∼ v0). It contributes to a large splitting
phase. This splitting phase term plus correction from open atom interferometer gives this
phase term. We can also view it from the atom rest frame. In that frame the splitting phase
is small. But there is an additional phase due to Doppler shift of the modulation frequency
ωm when we transform the reference frame from the lab frame by the velocities of atoms at
last two pulses. One can show that the two pictures under different frames of reference are
equivalent.

2.7 Diffraction Phase

In this section, we will apply Bragg diffraction phase we modeled earlier to Ramsey
Bordé atom interferometer specifically in order to explain some experimental phenomena.
In a Ramsey Bordé interferometer, we can define ∆φji (where j = u or l) as diffraction phase
difference the upper(u) or the lower(l) atom interferometer received at the ith beam splitter.
So for simultaneously conjugated interferometers, these phase relation can be explicitly given
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as (the atom interferometer configuration under consideration could be found in Figure 2.23.)

∆φ
l|u
1 =φ|−5~k〉→|−5~k〉 − φ|−5~k〉→|5~k〉 (2.151)

∆φl2 =φ|−5~k〉→|−5~k〉 − φ|5~k〉→|−5~k〉 (2.152)

∆φu2 =φ|−5~k〉→|5~k〉 − φ|5~k〉→|5~k〉 (2.153)

∆φl3 =φ|−5~k〉→|−5~k〉 − φ|−5~k〉→|−15~k〉 (2.154)

∆φu3 =φ|5~k〉→|15~k〉 − φ|5~k〉→|5~k〉 (2.155)

The phase difference for the last pulse is a bit tricky to define. If we define the phase
of the states |−15~k〉, |−5~k〉, |5~k〉, |15~k〉 right before the last pulse as φ1, φ2, φ3, φ4

respectively. The last pulse diffraction phase can be defined as

∆φl41 =φ|−5~k〉→|−15~k〉 − φ|−15~k〉→|−15~k〉 (2.156)

∆φl42 =φ|−5~k〉→|−5~k〉 − φ|−15~k〉→|−5~k〉 (2.157)

∆φu43 =φ|15~k〉→|5~k〉 − φ|5~k〉→|5~k〉 (2.158)

∆φu44 =φ|15~k〉→|15~k〉 − φ|5~k〉→|15~k〉 (2.159)

such that the wavefunction of each output port after the last pulse can be written as

|−15~k〉 =C1e
iφ1 + C2e

iφ2+∆φl41 (2.160)

|−5~k〉 =C1e
iφ1 + C2e

iφ2+∆φl42 (2.161)

|5~k〉 =C3e
iφ3 + C4e

iφ4+∆φu43 (2.162)

|15~k〉 =C3e
iφ3 + C4e

iφ4+∆φu44 (2.163)

So the interference signal X and Y are,

X =
| 〈−15~k|Φ〉 |2 − | 〈−5~k|Φ〉 |2
| 〈−15~k|Φ〉 |2 + | 〈−5~k|Φ〉 |2 ≈

±C1C2 sin(φ2 − φ1 +
∆φl41+φl42

2
)

|C1|2 + |C2|2
(2.164)

Y =
| 〈5~k|Φ〉 |2 − | 〈15~k|Φ〉 |2
| 〈15~k|Φ〉 |2 + | 〈5~k|Φ〉 |2 ≈

±C3C4 sin(φ4 − φ3 +
∆φu43+φu44

2
)

|C3|2 + |C4|2
(2.165)

where we have applied approximation based on the facts that ∆φl41 − ∆φl42 ≈ ±π and
∆φu43 − ∆φu44 ≈ ±π. And the sign in the formula for X and Y are determined by the sign
in these two approximation conditions. Based on the definition above, the diffraction phase
contribution for each interferometer can be calculated as

∆φldiffraction =∆φl1 + ∆φl2 + ∆φl3 +
1

2
(∆φl41 + ∆φl42)∓ π

2
(2.166)

∆φudiffraction =∆φu1 + ∆φu2 + ∆φu3 +
1

2
(∆φu43 + ∆φu44)∓ π

2
(2.167)
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Figure 2.24: Ramsey Bordé atom interferometer diffraction phase vs. two-photon detuning
at Bragg order n=5, Bloch order N=0

where the minus sign in this formula corresponds to the plus sign in the formula above
for X and Y . Taking the difference between the lower interferometer phase and the upper
interferometer phase, we can get the equation of diffraction phase contribution to the overall
phase difference,

Φd, diffraction = (∆φl2 −∆φu2) + (∆φl3 −∆φu3) +
1

2
(∆φl41 + ∆φl42 −∆φu43 −∆φu44) (2.168)

It shows that diffraction phase from the first pulse does not contribute to the overall con-
jugated interferometer phase difference. So we don’t have to consider that in the analysis
below. With these equations, we can scan Bragg two-photon detuning (equivalent to scan-
ning atom velocity) and two-photon Rabi frequency to get Ramsey Bordé simultaneously
conjugated interferometers overall diffraction phase dependence on Bragg two-photon de-
tuning and intensity [62].

Take Bragg order n=5, Bloch order N=0 (without Bloch oscillations), we can plot the
total diffraction phase of the upper interferometer and the lower interferometer individually
as well as their difference as shown in Figure 2.24. We can see that besides the parabola
shape, there is an additional phase shift even at zero detuning. If we plot each pulse’s
contribution to the diffraction phase as a function of two-photon detuning as shown in
Figure 2.25, we could notice that the parabola shape is the nature of Bragg diffraction
but that additional phase shift mostly comes from the last two pulses. This additional
phase shift could be suppressed when we operate it with large Bloch oscillations as shown
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Figure 2.25: Each pulse’s contribution to Ramsey Bordé atom interferometer diffraction
phase of each pulse vs. two-photon detuning
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Figure 2.26: Comparison of diffraction phase dependence on two-photon detuning with and
without Bloch oscillations
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Figure 2.27: Comparison of diffraction phase dependence on two-photon Rabi frequency with
and without Bloch oscillations
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Figure 2.28: Each pulse’s contribution to Ramsey Bordé atom interferometer diffraction
phase vs. two-photon Rabi frequency
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in Figure 2.26. That is because Bloch oscillations further increase the velocity difference
between two interferometers so that cross-talk between dual-frequency Bragg diffraction
would be highly suppressed. In this case, the third pulse contribution would coincide with
the second pulse contribution, which results in a very small overall phase shift as shown
in Figure 2.26. Diffraction phase dependence on two-photon detuning will be very useful
for us to find the optimal Bragg frequency as shown in Section 3.6 Figure 3.36. We could
also study the diffraction phase dependence on Bragg intensity as shown in Figure 2.27.
Again, adding Bloch oscillations would shift the zero detuning diffraction phase closer to 0
as shown in Figure 2.27. Another interesting thing we found is that applying large order
Bloch oscillations would significantly remove 4th pulse diffraction phase dependence on beam
intensity as shown in Figure 2.28 In practice, Bragg beam intensity could vary according to
absolute time T of the pulse or absolute location of atoms at that moment. But since
intensity doesn’t matter for the 4th pulse, we can align the 2nd and the 3rd pulses such that
they would happen at the same absolute time for all pulse separation time Ts. In this way
even though there is still a large diffraction phase caused by the 2nd and the 3rd pulse, it
will be the same for all Ts. So it won’t add additional higher order diffraction phase linear
to T .

2.8 Monte Carlo Simulation

All the theories mentioned above is based on the ideal picture of a single atom addressed
by plane waves. That’s not how experiment is realized in the lab. When we prepare a sample,
it’s always an atom cloud with Gaussian-like spatial and velocity distribution. And the beam
we use for Raman, Bragg and Bloch processes are close to Gaussian beam. It means atoms
at different location relative to the beam center and move with different longitudinal velocity
would experience different detuning and Rabi frequency. It’s hard to use any single atom
theory to quantitatively characterize the behavior of the interferometer. So it’s important
to have a Monte Carlo simulation system not only to understand some collective behavior of
the interferometer, but also to help calculate certain systematic uncertainties for precision
measurement.

Monte Carlo simulation is a quite broad term in this project. Depending on the needs, we
could add in different factors into consideration. But three basic necessary building blocks are
atom state distribution, beam characterization and amplitude-phase function for a certain
process. Most of the time we only apply 2D Monte Carlo simulation where atom position
and velocity distribution along the z-axis is ignored. It is sufficient when the distribution
on the third dimension is irrelevant or the spreads is too narrow to make a difference. Only
in one case when we study the influence of atom thermal motion on diffraction phase do
we apply 3D Monte Carlo simulation. In general we can use Gaussian distribution to set
initial position and velocity of each individual atom. Most programming languages have such
built-in library that supports normal distribution sampling. But in case we need precision
for the simulation result, we can use an arbitrary distribution obtained from experiment
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Simulation Type Atom Distribution Beam Required Processes
SS Efficiency 2D, Gaussian from CCD data Gaussian from beam profile Raman
VS Efficiency 3D, Distribution from SS simulation Gaussian from beam profile Raman

Atom Interferometer Contrast 2D, Distribution from VS simulation CCD measurement Bragg, Bloch
Thermal Effects on Diffraction Phase 3D, Gaussian from CCD data Gaussian from beam profile Bragg

Guoy Phase 2D, Distribution from SS simulation CCD measurement Bragg, Bloch

Table 2.4: List of Monte Carlo simulations and specific techniques involved

data or another simulation. This can be done by calculating inverse cumulative distribution
function, which establishes a relation between cumulative probability and the value of a
random variable. For example, since there is rotational symmetry with respect to the z-axis
for atom distribution, we can calculate the inverse cumulative distribution function as a
function of the polar radius r. And we can use computer to generate a random number from
0 to 1 to find the corresponding r. The polar angle can be separately generated by a random
number from 0 to 2π. Thus we can generate arbitrary atom distribution with rotational
symmetry.

For beam characterization, in general, a pure Gaussian beam is sufficient for most simu-
lations. The parameters of the Gaussian beam model can be determined by a beam profile
measurement. But for simulation of atom interferometer contrast or Gouy phase, the local
structure of beam is critical. So we directly use CCD beam measurement as input to simulate
the beam. The local intensity determines the local Rabi frequency so as to determine the
amplitude and phase of a certain pulse. For Raman process, this functional form could be
obtained analytically as in Section 2.3. But for Bragg and Bloch processes, we relies on the
numerical simulation as in Section 2.4 and 2.5 to establish such a function with methods of
interpolation, which helps speed up the simulation as well.

The implementation of the Monte Carlo simulation is fairly simple. We precompute the
atom distribution function, beam intensity function from measurement. And we also generate
amplitude-phase responses for Raman, Bragg and Bloch processes either from analytical
function or from an interpolated numerical function. And we use random function generator
to generate atom position and velocity based on given distributions. And we let atoms evolve
following Newtonian mechanics for exact the same time length until detection according to
the experiment. At certain times in the simulation, we also apply certain pulses to exactly
follow what we do in the experiment. The Rabi frequency of the pulse is determined by
the position of the atom at that specific time relative to the pulse. The detuning could also
be determined by atom longitudinal velocity and input frequency of laser beams at that
moment. Based on the Rabi frequency and detuning, we multiply an appropriate amplitude
and phase factor onto the atom wave function and apply proper momentum transfer to their
motional state. After the evolution time, if the atom falls into the detection region at the
detection time, it would be read out and added to certain simulated output ports. So we
repeat this process millions of times for millions of atoms for one shot of the experiment.
In this way we can get the simulated output for each shot. If we are simulating the whole
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interferometer process, we will use the same ellipse fitting technique to distract the phase
after several shots of data. We use Matlab, Mathematica, Python and C to carry out the
simulation depending on the work load. The fastest speed could be realized with C where
a full atom interferometer shot with 1 million atoms could be simulated within 1s. But for
general purpose, simulations with Matlab or Python are sufficient in speed and are also easy
to write and maintain. The details of each type of simulation is summarized in Table 2.4.
The results of different types of simulations would be intersperse in Chapter 3-5.
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Chapter 3

Experiment Setup and Procedure

3.1 Overview

From this chapter, we will be focusing on the experiment side of this project. In this
chapter, we will cover basic setup and operating principles of the experiment. Interference
of light has been observed experimentally through Young double-slit experiment in early
1800s [64]. It has also been applied as Michelson-Morley interferometer in early 1900s which
laid the foundation of special relativity [65]. But it has been truly a challenge for decades
to realize matter wave interferometers experimentally after postulation of matter wave was
proposed in early days of quantum mechanics [39]. The major challenges revolve around the
question how to maintain matter wave coherence as it evolves and splits.

Light and matter wave are very different by nature. Photon has linear dispersion relation
so that vacuum is non-dispersive for photons. But atom has quadratic dispersion relation so
its wave packet spreads as it propagates. It fundamentally limits the total coherence time
of matter wave. The rate the wave packet spreads is related to the momentum distribution
of atoms, i.e. its temperature. One way to improve its coherent time is to cool down atoms
to lower temperature, which was made possible through the invention of laser cooling and
trapping techniques for atoms [66, 67, 68].

Low temperature is also the key to maintain coherence during beam splitters. For atom
interferometers, if we are using well-controlled optical lattice as our beam splitters (Bragg
or Raman), momentum transfer is on the order of magnitude of ~k. In order to resolve
different momentum states especially for Bragg beam splitters, atom momentum spread
along the direction of momentum transfer should be way less than the order of ~k. Laser
cooling is sufficient to cool down specific atom species below the temperature required. We
will revisit laser cooling and trapping in Section 3.3.

For convenience of laser cooling and trapping, atom species like Rubidium or Cesium in
the alkali group are the most favored. We chose Cesium in our experiment for the same
purpose. Among all alkali atoms, though a smaller recoil frequency may seem to be a
disadvantage, Cesium has the smallest recoil temperature as well as the smallest thermal
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Diode Laser Tapered Amplifier Isolator
Polarizing

Beam Splitter
Mirror

Ti-sapphire laser λ/2 Waveplate λ/4 Waveplate Beam Splitter Optical Fiber

Acoustic Optical
Modulator (AOM)

Electric Optical
Modulator (EOM)

Photodetector

Table 3.1: List of symbols used in the optical schematics.

expansion at the same temperature due to its heavy mass. So with only standard laser
cooling and without evaporative cooling, Cesium gives the best performance in extending
the total coherence time [44]. Though evaporative cooling is able to further cool down atoms,
it also makes the experiment cycle a lot slower and may introduce additional systematic errors
[69, 62]. So for our specific experiment of the fine-structure constant measurement, Cesium
seems to be one of the best choices.

In order to make a Cesium atom interferometer sensitive enough to measure the fine
structure constant, we need a vacuum system producing ultra high vacuum required by laser
cooling techniques, a optics system delivering all required laser frequencies with enough
power for cooling and beam splitting, and an electronics system to generate right control
signals at the right time. Among these systems, the most complex is the optics system,
which we will be focusing on for most of this chapter.

The optics system can naturally be divided into three subsystems in our experiment:
frequencies preparation system, laser cooling system, and coherent manipulation system.
They are shown in the system optical schematics below and labelled in red, green and yellow
respectively. It is to be noted that this is a simplified optical scheme. All lenses, additional
Ti-sapphire components, additional mirrors, additional PBS for polarization purifications
are neglected. And the scheme does not show how optics are exactly arranged on the table,
and some PBS splitting direction may be inverted for simplicity of drawing. But it shows
the essential parts of the experiment and how it works. For details about the entire setup,
one can refer to literatures like [62, 61]. All symbols used in the scheme are listed in Table
3.1.

Most of the laser frequencies relevant to our experiment are around Cesium D2 line as
shown in Figure 3.2. Cesium D2 line is the transition from its ground state 62S 1

2
to one
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Figure 3.1: Simplified optical schematics. Reference frequencies preparation system, laser
cooling and trapping system, and coherent manipulation system are labeled red, green and
yellow respectively.
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MOT Magneto-Optical Trap
RSC Raman Sideband Cooling
PGC Polarization Gradient Cooling
ARP Adiabatic Rapid Passage
SS State Selection
VS Velocity Selection

ECDL External Cavity Diode Laser
TA Tapered Amplifier

Ti:Sa Titanium dopped Sapphire Laser
AOM Acoustic Optical Modulator
EOM Electric Optical Modulator

3-state blow-away laser beam that is resonate with atoms in F=3 state and blows them away
4-state blow-away laser beam that is resonate with atoms in F=4 state and blows them away

Table 3.2: List of terms commonly used for this experiment

F ′ = 5

F ′ = 4
F ′ = 3
F ′ = 2

F = 4

F = 3

62P3
2

62S1
2

Ref
Repump

MOT PGC
RSC

Lattice

RSC
Pumping

3-State
Blow-away

Detection
4-State

Blow-away

SS
VS

Bragg
Bloch

852.347nm

9.192GHz

Figure 3.2: Cesium D2 line energy levels and laser frequencies [42]. See Section ?? for actual
detunings.
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excited state 62P 3
2
. The transition frequency corresponds to 852 nm in wavelength. It is

accessible by semiconductor lasers as well as Ti-sapphire lasers. These are two basic types
we are using in our experiment. These two states further split to 6 hyperfine states. The
two hyperfine ground states are separated by the clock frequency about 9.19 GHz. And four
hyperfine excited states are separated by hundreds of MHz [42]. We starts from an External
Cavity Diode Laser (ECDL) locked to transition (F = 3 → F ′ = 4) as reference for other
frequencies. This is also exactly the frequency needed for repump, an essential ingredient of
laser cooling. And we use an electric optical modulator (EOM) to generate sidebands 9.2
GHz away from the reference laser and use one of the shifted sidebands to injection lock
the diode laser (close to F = 4 → F ′ = 5) for cooling. And we further use acoustic optical
modulator (AOM) with various shift frequencies to reach different desired frequencies within
hundreds of MHz. And part of the reference laser is sent to phase lock the Ti-sapphire laser
at a variable detuning within ±15 GHz. And the second Ti-sapphire laser which injection
locked to the first one would be used to generate state preparation and interferometer beam
splitting pulses with various pulse shapes and frequencies. More details will be in subsequent
sections.

Once all frequencies are prepared, we send them to different parts of the experiment at
different time through optical fibers. The experiment setup is shown in Figure 3.3. In order
to avoid systematic effect as much as we want, we choose to perform the atom interferometer
in free space. It means the atom would drop under gravity. In order to extend usable time
for interferometry, we build the atom interferometer with atomic fountain and extend the
vertical dimension as much as we can. So we have a vacuum structure about 3 meters tall.
There are two main chambers and two secondary chambers. One main chamber is for laser
cooling and trapping at 3D Magneto-Optical Trap (MOT) stage; the other one is for Raman
Sideband Cooling (RSC) when atoms are moving upward and for detection when atoms are
falling back after interferometer sequence. The main science of atom interferometry happens
inside the tube above the RSC/detection chamber. We intentionally add Mu Metal to shields
this tube from magnetic fields outside the vacuum to avoid additional systematic error. And
we put a small solenoid inside to create a small magnetic fields to define the quantization
axis so that the polarization of State Selection (SS), Velocity Selection (VS) and Bragg
diffraction are well defined. We send the coherent manipulation beam (SS, VS, Bragg) from
the bottom chamber. And we put a retro-reflection mirror and a quarter wave plate in
the top chamber to generate the retro-reflect beam, which forms a lattice with the original
upgoing beam to address atoms in the tube. We use ion pump to maintain the vacuum at
the order of magnitude of 10−10 torr for both laser cooling and maintaining atom coherence
by reducing the scattering from background atoms. More details about the vacuum design
will be covered in these references [61, 62].

The experiment sequence is running repetitively. Each cycle takes about 2.1 seconds.
The science part (atom interferometry) only takes no longer than 350ms in general so the
duty cycle is less than 17%. The whole process can be divided into 5 stages. The first
stage is MOT stage. Cesium atoms are stored in the bellows near the 2DMOT glass cell.
Cesium atoms are slowly evaporating into the background for the whole time. During the
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first stage, we turn on 2DMOT beams to perform basic Doppler cooling to cool and capture
the background atoms transversely in the 2DMOT glass cell. It generates a high atomic
flux and thus high loading rate for 3DMOT. At the same time we turn on 3DMOT beams
and MOT coils to cool and trap atoms at the center of the 3DMOT chamber. After 1s of
cooling, we turn off MOT coils and start the next stage: Launch and Polarization Gradient
Cooling (PGC) stage. During this stage we turn on the extra detuning for the top and
bottom 3DMOT beam so atoms are launched at the velocity about 4 m/s based on the
detuning set. Right after the launch, we shift the laser to far detune to start polarization
gradient cooling below Doppler limit. After atoms reach the RSC/detection chamber, we
enter Raman Sideband Cooling (RSC)/ Adiabatic Rapid Passage (ARP) stage. Atoms are
further cooled below recoil limit in the RSC lattice and we transfer atom from mF 6= 0
Zeeman state to mF = 0 state with microwave through ARP techniques. Afterwards, we
started state preparation stage with State Selection (SS) and Velocity Selection (VS). The
purpose of SS is to select mF = 0 Zeeman state only so that it would be insensitive to the
first-order Zeeman effect. And we use VS to further narrow the longitudinal momentum
distribution so that it would be well below recoil limit to increase Bragg diffraction efficiency
for interferometry. After state preparation, we start atom interferometer sequences based on
our need mostly during the rising part of the fountain. After all interferometer pulses, atoms
fall down to the RSC/detection chamber again. At that point we use a detection beam to
excite atoms and collect fluorescence signals.

The whole sequence of the experiment is controlled by a series of digital and analog
control signals as shown in Figure 3.4. Different channels are used at different time to control
different stages of the experiment shaded in the same color as shown in the experiment setup
figure. Not all control signals are shown there. Some channels are consolidated for simplicity.
We use National Instrument high-speed digital pattern I/O board NI-PCI-6534 and NI-PCI-
6533-DIO-32HS to generate the digital control signals [70]. They are programmed with home
built Labview programs. The two board could have been running in sync. But for historical
reasons, we run NI6534 as the master board and use one of its channel to generate pattern to
trigger the slave board NI6533. It has been working reliably enough in this way to provide
digital control signals for more than 40 digital channels. This gives us the basic framework
of the timing system. On top of this, we have analog control signals as well as accurate pulse
timing signals triggered by the basic digital timing system. Two analog control signals are
shown here. One is MOT TA intensity controlled by NI-PCIe-6321 board [71]. The other
one is double pass gravity ramp used to compensate the Doppler shift change during free fall.
This is generated with AD9954 Direct Digital Synthesizer (DDS) [72]. We have referenced
the time base of the timing system to a Rubidium atom clock SRS FS725 in short term and
GPS in long term [73]. But the resolution of NI digital boards are only about 1µs. For
more precise timing related to beam splitter pulses, we use SRS DG535 and DG645 delay
generator to control pulse timing [74]. More details about the timing will be covered in the
following sections.
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3.2 Frequency Stabilization and Preparation for

Reference

In this section we will go over frequency generation scheme in details. A reliable system
starts with a reliable reference frequency source. And it serves as reference source for cooling
and Bragg lasers.
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As shown in Figure 3.5, we use Newfocus TLB-6917 Vortex II External Cavity Diode
Laser as our reference laser labeled Diode 1 [75]. Our goal is to lock it to the repump
frequency (Cesium D2 line F = 3 → F ′ = 4 transition). But for the purpose of better
Signal to Noise Ratio (SNR) in the spectroscopy signal, we shift reference laser with AOMs
to Cesium D2 line F = 3 → F ′ = 2 transition. To be more precise, we send part of the
reference laser to AOM1 to shift its frequency lower with a double pass scheme and fiber
coupled for spectroscopy.

And then we use saturation spectroscopy to lock it as shown in Figure 3.6. We send
the spectroscopy beam to AOM19 and take -1 and 0 order as the pump and probe beams
respectively. Each beam is expanded with a set of telescope (not shown in the figure) and
enter the Cesium cell in a pump-probe counter-propagating configuration. The probe is
also modulated by EOM3 with modulation frequency ωm. The pump and probe beam each
individually shows a Doppler broadened absorption line. But when both beams are resonate
with the same velocity class of atoms, there would be a nonlinear effect showing a Doppler
free peak. The width of the peak is dominated by the transition natural linewidth. In this
way we could lock the laser to a Doppler-free frequency reference [76, 77].

We can use the resonance condition to calculate the actual reference laser frequency. If
we define the reference laser frequency as fL, AOM1 frequency as fAOM1, AOM19 frequency
as fAOM19, the transition frequency as f3→2′ , the wavelength of the laser λ, the velocity of
atoms that resonate with both pump and probe is v, then we have the resonance condition,

fL − 2fAOM1 +
v

λ
= f3→2′ = fL − 2fAOM1 − fAOM19 −

v

λ
. (3.1)

Thus the reference laser would be locked to

fL = f3→2′ + 2fAOM1 +
1

2
fAOM19 ≈ f3→4′ . (3.2)

We send 141 MHz RF to both AOM1 and AOM19, which makes the reference laser very close
to the repump frequency we want. Two methods are used here to extract the error signal
from saturation spectroscopy. One is called Frequency Modulation Spectroscopy (FMS) [76,
77], and the other is called Modulation Transfer Spectroscopy (MTS) [78, 79]. For FMS we
detect the signal of the probe beam after the Cesium cell. The probe beam mostly consists
of the carrier and two sidebands. Each component has slightly different response on Cesium
atoms. Part of the response is modulated by the frequency of EOM3 ωm. After demodulation
with proper phase added, the signal would be turned into the absorption difference between
the two sidebands, yielding a sharp error signal for locking. MTS looks similar but the
operating principle is quite different. For MTS we detect the unmodulated pump beam.
Due to nonlinear effects cross resonance, modulation in the probe beam could be transferred
to the pump. Similarly after proper demodulation, we can get error signal for locking. The
reason that we use both techniques in our experiments is that each one has advantages
and disadvantages. FMS error signal is sharper but subject to saturation absorption line
background shift due to long-term environment change like temperature drift. It’s good for
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short-term locking but not as reliable for the long term. MTS is good for the long-term
performance because its error signal is background free. We AC-couple the FMS signal and
DC-couple the MTS signal to utilize the advantages of each. We have thus reached drift
below 10 kHz for both short-term and long-term performance [79].

Once the reference laser is locked, it serves as the absolute frequency reference for the
rest of the experiment. Part of the reference laser is used to phase lock the Ti sapphire laser;
part of it seeds the Tapered Amplifier (TA) for repump; part of the double pass shifted
reference beam is further shifted by AOM2 and AOM3 to a frequency close to Cesium
F = 3 → F ′ = 2 transition for 3-state blow-away and Raman Sideband Cooling (RSC)
Pumping. We also sample the output of TA1 for monitoring frequency with a frequency
comb. It is necessary for our precision measurement as we need to keep it controlled within
0.1ppb accuracy.

3.3 Laser Cooling

Basic Theory

As we mentioned before, low temperature is the key to do atom interferometry based on
laser pulses as beam splitters. There have been a lot of cooling techniques in atomic physics
to cool dilute atomic gas to the order of magnitude of nK and even reach the quantum
degeneracy regime. Here is a brief survey of what typical techniques are available. Typically
atoms are at room temperature or even higher in a oven. And the first step is to slow
down [80] and cool atom transversely [81] to provide a large atom flux with small velocity
spreads so that they could be efficiently loaded into a 3D Magneto-Optical Trap for Doppler
cooling and trapping [67]. After Doppler cooling, atoms are cooled to above the Doppler
temperature about hundreds of µK. And then MOT coils would be typically turned off and
atoms are further cooled by some sub-Doppler cooling techniques to cool it down to above
the recoil temperature limit about several hundreds of nK [68]. Below the recoil temperature
limit, there are a few fast sub-recoil cooling methods. Evaporative cooling is one of them
widely used among cold atom community to reach the degeneracy temperature [69]. But it
has some disadvantages for us as we mentioned earlier. Instead, we use Raman sideband
cooling [82] to cool atoms closer to the recoil temperature and use Raman velocity selective
[83] process to further reduce the longitudinal (the direction of beam splitter beams) velocity
spreads of atoms way below the recoil limit so that it is well resolved during Bragg beam
splitters as well as detection.

Doppler Cooling and MOT

Doppler Cooling is the basic step of laser cooling. We essentially need a two level system
with proper natural linewidth. And we use laser beams close to resonance to this transition
for laser cooling. As the atom absorbs a photon and reemit it spontaneously, due to con-
servation of momentum, atom receives a force by the laser beam. The force equals to the
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product of the momentum transferred by a single photon and the scattering rate [41]:

F (v) = −~kΓ
Ω2/4

(ω + kv − ω0)2 + (Γ2/4) + (Ω2/2)
(3.3)

where k is the laser wave number; ω laser angular frequency; ω0 transition frequency; Ω single
photon transition Rabi frequency; Γ the natural linewidth; v atom velocity. This formula is
given in the situation where atom is moving with velocity v on the opposite direction of the
laser beam. Due to the special dependence of velocity through the Doppler effect, when we
use a counter-propagating beam in σ+ − σ− configuration, it generates a net frictional force
as [41]

F = −αv = −~k2 s

(1 + s)2

(−∆)Γ

∆2 + (Γ2/4)
(3.4)

where s = (Ω2/2)/(∆2 + Γ2/4) is the saturation parameter; ∆ = ω − ω0 the single photon
detuning. Doppler cooling only provides a damping force to slow down atoms. But there
is no trapping at specific location. Atoms are just slowing down in the area called optical
molasses where cooling lights overlap [66]. With a pair of anti-Helmholtz coils set up and
3 pairs of circularly polarization light specially chosen, we can achieve cooling and trapping
simultaneously in the so-called Magneto-Optical Trap [67]. The anti-Helmholtz coil will
produce a quadrupole trap with magnetic field B = (b′x, b′y,−2b′z) near the center. The
magnetic field will create Zeeman-state dependent potential for the excited state. When we
drive the transition F = Fg → F ′ = Fg + 1 with red detuned light, it’s more likely to absorb
one particular σ polarization light than the other one depending on the location. Thus it
produces a location dependent force, namely trapping force. So the full force term in 1D is

Fz = −αvz − κz (3.5)

where κ = 2kµb′s −∆Γ
∆2+(Γ2/4)

and mu is the magnetic moment of the excited state and s the
saturation parameter.

Based on the design of MOT and the force formula, we need to find a closed two level
transition F = Fg → F ′ = Fg + 1 to form a cycling transition where no atom would be
lost into other states. For Cesium this cycling transition is D2 F = 4 → F ′ = 5. We use
cooling frequency about Γ/2 ≈ 2π × 2.6 MHz red detuned from that transition with power
close to saturation intensity (where s = 1). In the experiment, these parameters are subject
to optimization based on real experimental parameters. But it’s the good place to start.
However, it’s not so ideal yet. It’s still possible to have F = 4→ F ′ = 4 transition so some
atoms on F ′ = 4 would end up in the dark state F = 3 ground state. So we use a weak
laser resonant to transition F = 3 → F ′ = 4 to drive those lost atoms back to the cycling
transition. This weak laser is called repump laser.

MOT doesn’t have infinite capture range to capture all atoms in the vacuum background.
So we need a step to pre-cool atom within the capture range to significantly improve the
loading rate of MOT. 2DMOT is one of the easy ways to do this step [81, 84, 85]. The princi-
ple is quite similar to MOT. Instead of using one pair of anti-Helmholtz coil in z-direction, it
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uses two pairs of anti-Helmholtz coils to form a two-dimensional magnetic quadrupole trap
B = (b′x,−b′y, 0). It is essentially a MOT without cooling and trapping along the third
dimension. It effectively cool atoms down transversely so that atoms are collimated to inject
into 3DMOT with large atom flux. Though it doesn’t have cooling on the third dimension, it
effectively select colder atoms along z direction in the way that hot atoms will pass through
the 2DMOT chamber quickly without effective transverse cooling, so most of the fast atoms
would be filtered by an aperture at the exit of the 2DMOT chamber. After 2DMOT, atom
velocity width would be significantly reduced to the order of magnitude of 10 m/s, so most
atoms would be captured by 3DMOT. The laser requirement for 2DMOT is quite similar to
3DMOT.

Polarization Gradient Cooling

The cooling limit of MOT is the Doppler temperature TD = ~Γ
kB

, which is originated mo-
mentum recoil from random spontaneous emission [86]. In Cesium the Doppler temperature
of D2 line is about 125 µK. It is possible to cool atoms below this limit with sub-Doppler
cooling techniques. Polarization Gradient Cooling (PGC) is the common one for Alkali
atoms [87]. The basic idea is to make the spontaneous emission more regular with cer-
tain polarization pattern instead of being completely random. For systems with transition
F = 1/2 → F ′ = 3/2, it is the famous Sisyphus cooling mechanism with lin⊥lin counter-
propagating beams. But in systems with F ≥ 1, the mechanism tends to be more complex.
We use σ+ − σ− counter-propagating beams to achieve PGC in such systems. For Doppler
cooling, the force is generated by Doppler shift difference in counter-propagating beams due
to atom velocity. But this force won’t be effective when the heating rate dominated by
random spontaneous emission is faster than the cooling rate. In this regime, we need a more
efficient driving force for cooling. Atom polarization gradient could drive such a force. If we
consider all Zeeman sublevels of the ground state F = Fg, different state has different prob-
ability to absorb σ+ and σ− photons. This probability is determined by Clebsch-Gordan
coefficients. For example, state |F = Fg,mF = Fg〉 is more likely to absorb a σ+ photon
than a σ− photon. So if we can encode velocity into atom polarization gradient, it’s another
mechanism to generate damping force. It turns out that atom motion would induce such
polarization gradient and generate a damping force under σ+ and σ− configuration. The
damping force is a few times larger but the cooling temperature is about 1-2 orders of mag-
nitude smaller. That’s because the spontaneously emission has specific polarization pattern
in PGC. The cooling temperature at equilibrium is about the order of magnitude of ~Ω2/|∆|
[87]. It means experimentally we need to further shift the cooling laser detuning and lower
its intensity. It’s not that so hard to do on top of existing MOT system.

Raman Sideband Cooling

The quantum limit of sub-Doppler cooling is the recoil temperature (Tr = ~k/kB) asso-
ciated with incoherent momentum transfer of a single photon absorption or emission [88].
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In order to achieve sub-recoil cooling, we need to prevent atom with sub-recoil velocity from
absorbing another photon from laser or spontaneous emission. That is the idea to introduce
a velocity-selective dark state. Raman Sideband Cooling (RSC) is one of the universal way
for sub-recoil cooling [82, 89]. It sets up an optical lattice to confine atoms on each lattice
site. Each lattice site is approximately a harmonic trap. In Quantum Mechanics, the mo-
tion of particles in the harmonic trap could be quantized into equally separated vibrational
states. Here we need a mechanism to make the harmonic trap ground state a dark state.
Raman Sideband Cooling (RSC) is such technique. After Polarization Gradient Cooling,
atoms are distributed in all Zeeman sublevels of the ground state. For degenerate Raman
Sideband Cooling, a magnetic field is specially tuned to match the energy level separation
between nearest vibrational states with the energy difference between nearest Zeeman states
as shown in Figure 3.7. And we use the same lattice beams as Raman beam to drive de-
generate Raman transition among different Zeeman states. So through this Raman process,
if we lower the Zeeman state by 1 unit, we simultaneously lower the vibrational state by 1
unit. But Raman process is bi-directional. It does cooling and heating at the same time.
So on top of this, a pumping beam could utilize the selection rules to drive transition in
one direction. In Cesium, we chose F = 3 → F ′ = 2 for RSC in order to play with the
selection rules to make a dark state. We use σ+ mixed with weak π for the pumping beam.
Under this configuration, the vibrational ground state of |mF = 3, ν = 0〉 is the dark state.
Neither Raman transition nor optical pumping is coupled to this state. (ν is the vibrational
quantum number to label its state.) Atom from |F = 3,mF = 1, ν = 0〉 could absorb a σ+
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photon to |F ′ = 2,mF = 2, ν = 0〉 and re-emit it spontaneously into the dark state. Atom
from |F = 3,mF = 2, ν = 0〉 could also enter the same excited state by absorbing a π photon.
That’s why π polarization is important to make RSC more efficient.

The idea of Raman Sideband Cooling is quite straightforward. But in order to make
it experimentally feasible and efficient, a lot of experimental parameters need to be well
adjusted. Polarization and orientation of each lattice beam (i.e. Raman beam) needs to
be optimized to maximize Raman coupling based on Clebsch-Gordan coefficients. The ratio
between σ+ and π in the pumping beam also needs to be optimized to achieve efficient
pumping. And the depth of the lattice also needs to be large enough to suppress non-
degenerated Raman transition to protect the dark state. RSC can be implemented in 1D,
2D and 3D cases. In our experiment we use 3D Raman Sideband Cooling to cool all 3
dimensions. We implement this step after Polarization Gradient Cooling in which atoms end
up in F = 4 state. So we need a beam to depump atom to F = 3 state. The easy choice for
us is to use laser resonant to F = 4 → F ′ = 4 transition to both depump and serve as the
far-detuned Raman sideband lattice. On top of that we add F = 3→ F ′ = 2 laser beam for
pumping. Both frequencies are enough to do RSC. More details on experiment setup will be
discussed later.

Setup and Timing

In this section, we will mostly focus on the experiment side how to implement cooling
based on the ideas discussed above. One important part is to prepare all required frequencies
with enough power in laser beams. It all starts from repump frequency (Cesium D2 F =
3→ F ′ = 4) we generated from the reference laser and amplified through TA1 as mentioned
earlier. The cooling frequency (Cesium D2 F = 4 → F ′ = 5) is about 9 GHz detuned from
the repump frequency. We need a separate laser source to generate the cooling frequency
and reference to the repump frequency.

One way is to lock this new laser with offset to the reference frequency using frequency
lock or phase lock. It’s straightforward but also requires a good laser system and a good
design for servo feedback. For us we chose injection locking as an easier and cheaper yet
reliable option instead. The main challenge is how to shift the repump frequency to cooling
frequency. It starts with fiber coupled repump laser beam from TA1 as shown in Figure 3.8.
Part of the repump power was taken from the zeroth order after AOM4 and sent through the
fiber Electric Optical Modulator 1 (EOM1). EOM1 is modulated at about 9.2 GHz. The RF
source is generated from frequency tripling of a function generator output running at 3.07
GHz with amplifiers and bandpass filters. After EOM1, most laser power goes to one carrier
and two ±9 GHz sidebands in the beam. In order to get only the -9 GHz sideband for the
cooling frequency, we properly align the beam through a temperature controlled etalon with
linewidth below 9 GHz. This selectivity could be tuned by beam alignment and temperature
of the etalon. We used a double pass configuration to further improve the selectivity of
the etalon to suppress other frequency components by more than 20 dB. In theory, that’s
enough to injection lock a slave laser and get the cooling frequency. But considering the need
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Figure 3.8: Laser Cooling Optical Schematics

to further shift detuning for PGC and RSC, we add a double pass scheme through AOM5
to conveniently switch detuning between Doppler cooling and PGC/RSC. The frequency
source of AOM5 comes from octupling a function generator frequency by a Phase Locked
Loop (PLL). We send 16.3 MHz from the function generator to get the cooling frequency
for Doppler cooling at about fF=4→F ′=5− 15 MHz and we shift it to 14.5 MHz by Frequency
Shift Key (FSK) to get the cooling frequency for PGC at about fF=4→F ′=5− 44 MHz. After
these steps, the injection beam is sent into Qphotonics QLD-850-150S/SB laser diode (Diode
2) through an isolater for injection lock. This diode laser (Diode 2) is used as a slave diode
laser to provide cooling frequency for 2 Dimensional Magneto-Optical Trap (2DMOT). Most
of its power is combined with repump from TA1 to seed TA2 and TA3 for 2DMOT. 2DMOT
cooling beam is operating at about 7.5 MHz red detuned from fF=4→F ′=5. And a small
part of the power from Diode 2 is shifted down by AOM6 by about 88 MHz to injection
lock the same kind of slave diode laser (Diode 3). Diode 3 provides the cooling frequency
for 3DMOT. It is combined with repump-80 MHz from -1 order of AOM4 to seed TA4 for
3DMOT, Raman Sideband Cooling (RSC), Detection and 4-state blow-away. The reason
why it is further shifted down by 80 MHz is because we would use 80 MHz AOM (AOM9-11)
as switches to shift it back up to the right frequency. Along its path, we also use AOM7-8 to
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generate RSC xy and z lattice frequencies (close to fF=4→F ′=4) respectively. We also generate
detection and 4-state blow-away beams (close to fF=4→F ′=5) with the same laser source by
AOM12-13.

MOT

2DMOT is the first step of the experiment. It is set up in the way very similar to
traditional MOT (3DMOT) we mentioned earlier as shown in Figure 3.9. Instead of using
1 pair of anti-Helmholtz coils, it uses two pairs anti-Helmholtz coils to form a 2D magnetic
quadrupole trap (B = (b′x,−b′y, 0)). And we send the same σ+ − σ− counter-propagating
laser beams with polarization properly chosen to match the direction of the magnetic field
gradient such that it forms cooling and trapping potential in those two dimensions and the
third dimension remains free of control.

The timing sequence of MOT Stage is also shown here in Figure 3.10. At the beginning
of the cycle, we turn on both 2DMOT and 3DMOT, which include cooling, repump lasers as
well as magnetic coils for each one. We use mechanical shutters to control 2DMOT beams,
AOM9-11 to control 3 pairs of 3DMOT beams, and AOM4 to control whether or not to mix
repump frequency into TA4. 2DMOT repump laser and coils are constantly on as they won’t
interfere with the experiment.

Cesium ampoule is loaded into a bellow. After the vacuum system was pumped and
baked, we broke the ampoule and let Cesium vapor fill the entire chamber. The vapor
pressure of Cesium at room temperature is way larger than the background vacuum pressure
so the natural evaporation of Cesium supplies more than enough Cesium atoms for cooling.
When 2DMOT is on, we turn on large cigar shape 2DMOT cooling/repump beam. Cesium
vapor starts to get cooled transversely. Though there is no cooling mechanism in the third
dimension, the aperture at the exit of the 2DMOT chamber serves as a filter to filter out
atoms with large transverse velocity. Atoms with large longitudinal velocity pass through
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Figure 3.10: MOT Stage Timing

the 2DMOT chamber too fast to be effectively cooled transversely. So most of these atoms
will be filtered by the aperture. Effectively 2DMOT provides a good source of collimated
atom flux with longitudinal velocity spreads about 20 m/s.

3DMOT is also turned on simultaneously when 2DMOT is on. Most atoms from 2DMOT
flux fall into the capture range of the 3DMOT and get cooled and trapped. So with the help
of 2DMOT, the number of atoms trapped in 3DMOT could increase by more than 2 orders
of magnitude. Before we turn off 3DMOT, we turn on 3 pairs of compensation coils. These
are coils to compensate earth magnetic fields as well as any asymmetric quadrupole fields
generated by MOT coils. Effectively it shifts the location of the magnetic zero point of the
quadrupole trap to match the center of MOT beams. At t=1 s, we turn off 3DMOT coils
and keep 3DMOT beams on to allow subsequent cooling stages. But turning off such coils
with high inductance generates Eddy currents, which lasts about 30ms. So we set a 30ms
pause before we start the next stage.

Launch and PGC

At t = 1.03 s as shown in Figure 3.11, we start the launching stage. It is the key step to
make atomic fountain happen. In our experiment, we use moving molasses to launch atoms
[84, 90]. During MOT stage, the top and bottom MOT beams have the same frequency so
they cool atoms toward zero velocity relative to the lab frame. But during launch stage, we
turn on the launch frequency, which shifts the bottom MOT frequency by +4 MHz and the
top MOT frequency by -4 MHz. This is done by mixing the launch frequency 4 MHz with
the MOT switch frequency (80 MHz). And we use special RF splitter with phase delays to
make both sidebands asymmetric. So we can preferably select one of them and lock it with
a tracking VCO. Thus we generate bottom and top launch frequencies separately and feed
them to AOM 9 and AOM 10 respectively. The new molasses beams are moving up at about
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Figure 3.12: RSC and ARP Setup

4 m/s. In its ”rest” frame, most of Doppler cooled atoms are moving downward at about
-4 m/s and thus within the capture range of the new molasses. During this stage, atoms
are adiabatically cooled to the new moving molasses and start moving up. At t = 1.033 s,
we start Polarization Gradient Cooling, during which we essentially increase the detuning of
the cooling laser and turn down its power. The detuning switch is done by frequency shift
key of the function generator that controls the frequency of the double pass AOM5. At the
same time we use the analog timing control board NI-PCIe-6321 to generate the waveform
to feedback to TA4 current to reduce its power accordingly. We also add a slow ramp down
at the end to adiabatically turn down the laser power to 0 to avoid additional heating. After
launch and PGC we turn off 3DMOT beams and repump AOM4. It is to be noted that we
keep PGC frequency on for the next stage as well.
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RSC and ARP

When atoms are passing through the upper chamber, we start the stage for Raman
Sideband Cooling (RSC). It happens at about t = 1.12 s. Before atoms reach this point,
we turn on RSC coils beforehand to prepare the magnetic fields to cancel earth magnetic
fields as well as to provide Zeeman splitting to satisfy degenerate RSC condition. The beam
configuration is shown in Figure 3.12. We switch on AOM7 running at about 120 MHz for
RSC xy-lattice and AOM8 running at about 116 MHz for RSC z-lattice. RSC z-lattice is
coupled to the vacuum chamber through the same fiber we use for Bragg beam splitter. This
generates a lattice close to F = 4 → F ′ = 4 transition frequency, which is used to depump
atoms from |F = 4〉 to |F = 3〉 and served as the far-detuned lattice for RSC as well. The
z-lattice (vertical) is slightly detuned from xy-lattice (horizontal) such that it’s co-moving at
the same velocity as atoms in order to effectively trap them. This 3D lattices are constructed
with 4 beams, one vertically going up as z-lattice, one pair counter-propagating along x-axis,
one along y-axis. The magnetic field is prepared along y axis as well. At the same time
the pumping beam is also turned on by AOM3. Its frequency is close to F = 3 → F ′ = 2
transition. The pumping beam is oriented at a small angle to the direction of the magnetic
field in order to mix weak π polarization into its σ+ polarization. The whole RSC lasts about
3 ms. We turn off the pumping beam at 2.8 ms and start to ramp down lattices intensity by
TA current adiabatically for another 0.4 ms to avoid additional heating.
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After RSC, most atoms are in |F = 3,mF = 3〉 state, which is not the zero mF state we
want to use for the interferometer. So we add another sequence to adiabatically transfer
atom population from |F = 3,mF = 3〉 to |F = 4,mF = 3〉. This process is called Adiabatic
Rapid Passage (ARP), in which we use microwave antenna to drive transition between F = 3
and F = 4 while sweeping frequency from 9193.5 MHz to 9192.5 MHz. In order to make
this process more efficient, we also further increase the magnetic field along y direction to
increase the Zeeman splitting between nearest mF states. Since Landé gF -factor are opposite
in sign for F = 3 and F = 4 states, as we sweep the frequency, we can cover transitions
from |F = 3,mF = 3〉 → |F = 4,mF = 3〉 all the way to |F = 3,mF = 0〉 → |F = 4,mF = 0〉
one by one. The microwave frequency is generated from a Dielectric Resonator Oscillator
(DRO) locked to the 51th comb line of 180 MHz plus an RF offset ramping from 13.5
MHz to 12.5 MHz in 5 ms. This microwave frequency is then fed into a 10 W Hughes
1177H03F000 Traveling Wave Tube Amplifier and sent to the antenna. Experimentally the
overall efficiency of ARP could reach 30%-50%. After ARP, atoms keep moving up into the
region where magnetic field generated by solenoid inside the vacuum chamber is along z axis.
Atoms adiabatically follow the change in magnetic field direction into |F = 4,mF = 0〉 state
defined by z axis as the quantization axis. From this moment, we enter the next stage for
state preparation and atom interferometry that will be discussed in the next section.

Detection

Detection is an important step for us to read out atom population at different output
port or characterize fountain performance. In our experiment, we use an apertured detection
beam to detect atoms that are going through the detection region as shown in Figure 3.12.
There are two windows to detect atom signal: one when atoms are moving up, the other
when atoms are falling back. But we can not use both simultaneously as our detection
scheme is destructive. We use laser beam resonant to F = 4→ F ′ = 5 cycling transition to
detect atoms by collecting fluorescence. We also mix repump into detection beam to prevent
atoms from falling into the dark state. The reason to use this cycling transition instead of
F = 3→ F ′ = 2 is to boost the scattering rate in order to have a high signal to noise ratio,
even though we use F = 3 atoms for interferometer.

The detection beam comes from the same source as 3DMOT. We use AOM12 to switch it
on and shift it to be resonant with the cycling transition. After it get coupled to the detection
region, we first aperture it horizontally with a pinhole and vertically with an optical slit.
After these, the beam becomes roughly 1.5 mm wide, 0.5 mm high rectangularly shaped.
We then send it to a PBS to purify its polarization. We use σ+ − σ− optical molasses
configuration for detection in order to increase the scattering rate as well as avoid atom
from being pushed away by either side. This polarization scheme could be done with two
quarter wave plates as well as a retro-reflect mirror as shown in Figure 3.12. If we define
the direction of detection beam as x-axis to be consistent with the definition in RSC, we
put our detector along y axis facing the chamber. In order to be as sensitive as possible,
we use large 100 mm diameter, 100 mm focal length lenses to collect fluorescence light to a
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Figure 3.14: The first fountain signal compared with the second fountain signal with and
without RSC. The first fountain signal is fitted with a Gaussian.

photodiode (Thorlabs FDS100). Previously we have been using a photomultiplier. But for
the application here, photodiode with large trans-impedance gain would be a cheap, easy
and low-noise choice. We also put a ”daylight filter” to block visible light in front of the
sensor. In our setup, signal to noise in detection is mostly limited by strayed detection light
inside the chamber. It can be improved by better coating of the vacuum chamber windows.

When atoms are passing through (normally at 4 m/s), we turn on the detection beam
and start to collect fluorescence. Normally it only takes at most 10 ms (depending on the
size of atom cloud) for an atom cloud to pass through. That’s also the reason why we choose
photodetector instead of CMOS/CCD camera. Camera definitely has advantages for its
spatial resolution, but at a cost of losing temporal resolution as well as signal to noise ratio.
Since the exposure time is quite short, signal to noise ratio is relatively poor at each pixel
level. For our application, different interferometer output ports are spatially separated in
vertical direction and have to be read out at different time, so temporal resolution is more
important for us. That’s why we prefer photodiode to read out signals. At the same time,
we do have another camera collecting part of the fluorescence from another direction at the
same time when we detect atoms. We can read out any signal before state preparation. It
gives us important information about atom cloud size, temperature, and fountain alignment.

Performance

In the experiment, we use 1-2 Isat intensity as well as about 10G/cm magnetic field
gradient for 2DMOT. It supplies more than 109 atoms/s flux for 3DMOT. And we use
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Figure 3.15: The second fountain signal with and without RSC. Both of them are fitted with
a double Gaussian.

roughly 3-5Isat and about 8.6G/cm for 3DMOT to trap about 109 − 1010 atoms. The exact
number of atoms has never been carefully calibrated but it’s enough for our purpose. Here
Isat is defined as [42]

Isat =
cε0Γ2~2

4|ε̂ · d|2 (3.6)

such that the saturation parameter s in Equation 3.4 is equal to I/Isat when the detuning
∆ = 0.

Here are some data we collect with our detection scheme to characterize the performance
of atom cooling. We take detection trace and CCD images when fountain is passing through
the detection region during launching and falling separately. We call its first passing (during
launching) the first fountain and its second passing (during falling) the second fountain. The
second fountain could be either with Raman Sideband Cooling (RSC) or without. We can
plot these three signal traces in the same scale as shown in Figure 3.14. During atoms’ first
passing, the majority of atoms fall into the range of the detection beam. But after about 800
ms during its second passing, only few are still within the range. Typically the ratio between
the launching and falling fountain is about 12 for a well aligned fountain. It can also be
visually shown in the camera pictures below. The shape of the signal is cigar-like because
of the shape of the detection beam. In order to quantitatively analyze the performance of
laser cooling, we have also fit all these data traces shown in Figure 3.14 and 3.15 to Gaussian
(the first fountain) and double Gaussian (the second fountain). The second fountain signals
(either with or without RSC) only fits well with double Gaussian model. It suggests that
a group of hot atoms that are not effectively cooled are also mixed in the signal. However
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Figure 3.16: CCD images of the first fountain and the second fountain with and without
RSC



CHAPTER 3. EXPERIMENT SETUP AND PROCEDURE 81

0 200 400 600 800 1000
Pixel

0

10

20

30

40

50

60

70

80

Si
gn

al
 (a

.u
.)

CCD image slice
2D Gaussian fit slice

(a) 1st Fountain

0 200 400 600 800 1000
Pixel

10

20

30

40

50

60

70

Si
gn

al
 (a

.u
.)

CCD image slice
2D Gaussian fit slice

(b) 2nd fountain without RSC



CHAPTER 3. EXPERIMENT SETUP AND PROCEDURE 82

0 200 400 600 800 1000
Pixel

0

10

20

30

40

50

60

70
Si

gn
al

 (a
.u

.)
CCD image slice
2D Gaussian fit slice

(c) 2nd fountain with RSC

Figure 3.17: CCD images slices and their 2D Gaussian fit respectively

Signal Name Fit Model σz (mm) σx (mm) σy (mm)

1st Fountain Ne
−( x

2

2σ2
x

+ y2

2σ2
y

+ z2

2σ2
z

)
3.91 3.86 1.44

2nd Fountain without RSC Ne
−( x

2

2σ2
x

+ y2

2σ2
y

+ z2

2σ2
z

)
+hot atoms Gaussian 8.76 8.70 1.02

3rd Fountain with RSC Ne
−( x

2

2σ2
x

+ y2

2σ2
y

+ z2

2σ2
z

)
+hot atoms Gaussian 7.34 5.87 0.74

Table 3.3: Fitting parameters for the first and the second fountain

these data traces from photodetectors only tell us information along vertical direction. But
we can get good estimate for atom distribution in the transverse directions through CCD
images. Since the Signal/Noise is not relatively poor for CCD images, we cannot distinguish
the difference between a double Gaussian or a single Gaussian so we have only applied a
single 2D Gaussian to fit them. All the fitting results are summarized in Table 3.3. It’s to
be noted that the unit of σz has already been converted to length unit with the measured
atom velocity about 4 m/s.

Based on these data, we can estimate the number of atoms and the cooling temperature
of the fountain. Since the launching fountain are mostly within the detection region, we can
use the CCD data to estimate the number of atoms launched. We use weak 852 nm laser
beam with known power to calibrate the camera’s photon conversion rate η to be about 400
photons/count. The f-stop of the lens is 0.95 and its focal length is 50 mm. And the distance
from the atom to the lens is about 250 mm. So only about r = 0.3% of fluorescent photons
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are collected by the lens. The single photon scattering rate for on resonance detection beam
is given as

R =
Γ

2

s

1 + s
(3.7)

where the saturation number is about 1. Each atom is flying through the 0.5 mm thin
detection beam with a velocity about 4 m/s, which means that the effective exposure time
t is about 0.125 ms. The total count C of the CCD signal subtract the background noise
is about 2.8 × 106. So taking all these factors into account, the number of atoms detected
during launching is about

N =
the total number of photons emitted

the number of photons emitted by one atom

=
Cη/r

Rt
(3.8)

=3.6× 108 (3.9)

It’s not the total number of atoms launched since only atoms within the detection range
are detected. If we suppose that the original shape of atom cloud is symmetric, we can
roughly multiply a shape factor σx/σy, yielding 9.8× 108. It is to be noted that it’s not an
accurate estimation of the atom number since some parameters list above are not accurately
measured. It could be a small numeric factor off. But it serves as a good order-of-magnitude
estimation not only for the first fountain, but also for interferometer. We can use the relative
signal ratio from photodetectors to estimate the number of atoms detected for the second
fountain with RSC or without or after state preparation.

For atom temperature, we can use Time-of-Flight (ToF) method to estimate [91]. It’s
a very straightforward method given Maxwell distribution of atoms. Take 1D for example,
the atom follows the initial distribution after MOT

n = Ne
− x2

2σ2
x e
− v2

2σ2
v (3.10)

where N is the normalization factor. After time t of thermal expansion, the distribution
becomes N exp(−(x− vt)2/(2σ2

x)) exp(−v2/(2σ2
v)). If we integrate over all velocity, the real

space distribution follows a new Gaussian distribution with a new σ′x = σx + σvt. So if we
have measurement of atom real space Gaussian distribution at two different time, we can

solve it to get atom temperature T = mσ2
v

kB
according to Maxwell distribution. This methods

can be extended to all three dimensions. In our experiment, the longitudinal temperature
would be the most accurate because of high signal/noise in the photodetector signal. We
can also estimate the transverse temperature along the direction of the detection beam.
But it would be less accurate. We won’t be able to estimate the temperature along the
direction limited by the size of the detection beam. Following the procedure above, given
the time separation between the first and the second fountain to be 0.81s, we can obtain
the results listed in Table 3.4. It is to be noted that the actual RSC happens after atom
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Cooling Type Tz (nK) Tx (nK)
MOT and PGC 573 571

MOT and PGC and RSC 287 93

Table 3.4: Measured atom temperatures

passing through the detection region. In theory we won’t be able to determine the effective
atom distribution at its first passing of the detection beam. The result here relies on the
assumption that atoms selected by RSC follows the same distribution at the first passing.
This assumption might not hold for estimation of transverse velocity since the size of RSC
lattice filters atom distribution horizontally. That’s why the transverse temperature of RSC
is surprisingly small.

3.4 Coherent Manipulation

Basic Theory

As is briefly mentioned earlier, coherent manipulation includes all the pulses for state
preparation and atom interferometry. The physics processes behind, Raman transition,
Bragg diffraction and Bloch oscillations have been extensively discussed in the previous
chapter. Here we are more focused on how to implement them in the context of our experi-
ment. After Raman Sideband Cooling (RSC) and Adiabatic Rapid Passage (ARP), we need
to only select atoms in |mF = 0〉 state with significantly narrow velocity spread to participate
atom interferometry in order to eliminate systematic effects from first-order Zeeman effect
and improve Bragg diffraction efficiency.

After ARP, most atoms are transferred to |F = 4,mF = 0〉 state while some remains in
wrong states. We use Raman transition to selection atoms in the right state while blow
away atoms in wrong states. We use the so-called blow-away beam to blow away atoms.
We tune a laser beam to F = 3 → F ′ = 2 transition frequency plus detuning required to
compensate Doppler shift to blow away atoms in F = 3 states, which is called 3-state blow-
away. By selection rules, this transition is a closed transition as F ′ = 2 atoms can only decay
to F = 3 by spontaneous emission. After one cycle, an atom would absorb a photon from
the blow-away beam and emit another photon spontaneously, receiving momentum transfer
by two-photon recoil kicks. Since photons emitted by spontaneous emission is randomly
oriented, atoms would experience a force along the direction of the blow-away beam in
average. As a result, it pushes atoms away. We normally turn on the blow-away pulse for
2 ms, which will transfer more than a few meters-per-second velocity on resonant atoms
to blow them away from the rest of selected atoms. We do the same kind of blow-away
for F = 4 state as well called 4-state blow-away, with laser beam tuned to another closed
transition F = 4→ F ′ = 5. However, it’s not 100% ideal, since there is non-zero probability
to excite atoms to wrong states and later decay to the dark state. Based on the energy level



CHAPTER 3. EXPERIMENT SETUP AND PROCEDURE 85

structure, it’s more likely to happen for 3-state blow-away due to smaller detuning so it’s
less ideal in the experiment.

We use Raman transitions with appropriate blow-away pulses in-between to realize state
preparation. Since there would be a small magnetic field generated by solenoid along z axis
inside the chamber, there would be non-zero Zeeman splitting among all Zeeman sublevels.
A Raman transition with specially chosen polarization and frequency could drive atoms be-
tween |F = 3,mF = 0〉 and |F = 4,mF = 0〉 back and forth and leave the rest atoms in the
original Zeeman states. Thus by driving such Raman transition and blow away the rest,
we could effectively select atoms in |mF = 0〉 states. We normally perform State Selection
(SS) with Doppler insensitive co-propagating Raman beams. But if we choose the counter-
propagating configuration, it would be Doppler sensitive, i.e. velocity selective [83]. Thus
only a small fraction of velocity class of atoms that resonant with the Raman transition
would be selected. Once state preparation is done, we finally enter the stage of atom in-
terferometry. We use Bragg diffraction as beam splitters and Bloch oscillations to further
increase common mode acceleration as discussed in the previous chapter. We will be focus-
ing on some theoretical considerations on polarization and frequency requirement to achieve
these experimentally.

Polarization Requirement

Let’s first review the selection rule for the Raman process in Cesium. It starts from the
selection rule for electric dipole transition of atoms with hyperfine interaction. For electric
dipole transition, one photon is directly involved. Because the photon carries an angular
momentum 1~, it imposes that ∆L = ±1,∆F = 0,±1. And for circularly polarized light
(σ±), ∆mF = ±1; for linearly polarized light (π), ∆mF = 0 [42]. Raman transition could
be view as connecting two electric dipole transitions via virtual excited states. For Cesium,
if we start from F = 3 ground hyperfine state to F = 4 ground hyperfine state via a Raman
transition, the most probable intermediate virtual states would be F ′ = 3 and F ′ = 4
excited hyperfine states based on selection rules. As mentioned earlier, we want to keep
selected atoms in |mF = 0〉 throughout the state selection and atom interferometry stage, no
matter it’s Raman transition, Bragg diffraction or Bloch oscillations. So this put us under
restrains on polarization to maximize the transition Rabi frequency that keeps atoms staying
at mF = 0 and to minimize the transition Rabi frequency that makes atoms leak to other
mF states. Based on this criteria, we can test those common polarization configurations
such as σ± − σ±, σ± − σ∓, lin‖lin, lin⊥lin for both Raman and Bragg processes to decide
what type of configuration to use in our experiment.

The matrix element of single photon electric dipole transition from the ground state to
the excited state is

H = 〈e|d ·E0 |g〉 = degE0 = ~Ω (3.11)

where the matrix element of the dipole moment

deg = −e 〈e| ε̂ · r |g〉 . (3.12)
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Figure 3.18: Cesium D2 transition matrix elements relevant for Raman/Bragg processes as
multiples of 〈J ′ = 3

2
||er||J = 1

2
〉

The unit vector ε̂ represents the polarization of the light. Here we choose the spherical units
[92, 93],

ε̂±1 = ∓ 1√
2

(ε̂x ± iε̂y) (3.13)

ε̂0 = ε̂z (3.14)

such that

ε̂ · r = ε̂q · r =

√
4π

3
rY q

1 (θ, φ). (3.15)

where Y m
l (θ, φ) is spherical harmonics in quantum mechanics definition. If we write specifi-

cally the ground state and the excited state as |g〉 = |F,mF 〉 and |e〉 = |F ′,m′F 〉. Then the
matrix element can be calculated according to Wigner-Eckart theorem [42].

deg = e 〈F ′,m′F |êq · r|F,mF 〉 = 〈F ′||er||F 〉 (−1)F−1+m′F
√

2F ′ + 1

(
F 1 F ′

mF q −m′F

)
(3.16)

= 〈J ′||er||J〉 (−1)J
′+I+m′F

√
(2F ′ + 1)(2F + 1)(2J ′ + 1)

{
J ′ J 1
F F ′ I

}(
F 1 F ′

mF q −m′F

)

(3.17)

All the relevant matrix elements are calculated and shown in Figure 3.18. For Raman
transition from F = 3,mF = 0 to F = 4,mF = 0 or the other way around, it is obvious that
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σ± − σ± would work according to the selection rule. It requires a little bit calculations for
the case of lin‖lin and lin⊥lin. Based on definitions above, the linear polarization in ε̂x and
ε̂y could be decomposed as

ε̂x =
1√
2

(−ε̂+1 + ε̂−1) (3.18)

ε̂y =
i√
2

(ε̂+1 + ε̂−1) (3.19)

For example, if we drive from the ground state |F = 3,mF = 0〉 to an intermediate virtual
state |F ′,m′F 〉 with the electric field E10ε̂x and drive from the intermediate state to the other
ground state |F = 4,mF = 0〉 with another electric field E20ε̂x, then the combined 2-photon
Rabi frequency via this pathway is

Ω
(2)

F ′,m′F
=

Ω3,0→F ′,m′FΩF ′,m′F→4,0

2∆F ′,m′F

(3.20)

where single photon Rabi frequencies could be calculated based on the formula above with
circular polarized light, e.g

Ω3,0→F ′,m′F =
degE10

~

= −eE10√
2~

(−〈F ′,m′F |ε̂+1|3, 0〉+ 〈F ′,m′F |ε̂−1|3, 0〉) (3.21)

So if we add all possible pathways based on selection rules (F ′ = 3, 4, m′F = ±1), we can
get the 2-photon Rabi frequency for Raman processes under lin‖lin configuration as

Ω
(2)
3,0→4,0, lin‖lin = 0 (3.22)

This Raman process is destructively interfering among all pathways under lin‖lin configura-
tion. In the same way, we can switch the polarization of E20 to ε̂y so we have

Ω
(2)
3,0→4,0, lin⊥lin = (

e 〈J ′ = 3
2
||er||J = 1

2
〉

~
)2E10E20(

1
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+
5

24∆F ′=4

) (3.23)

If it’s sufficiently far detuned, then the detuning for different intermediate F ′ state would be
about the same. In that case this can be reduced to

Ω
(2)
3,0→4,0, lin⊥lin = (

e 〈J ′ = 3
2
||er||J = 1

2
〉

~
)2E10E20

3∆
(3.24)

It is exactly the same as the Rabi frequency generated by σ± − σ± beams.
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As for the leakage into other Zeeman states under lin⊥lin configuration. Based on selec-
tion rules, the only other possible states are |F = 4,mF = ±2〉. We can calculate the Rabi
frequency in the same way to get

Ω
(2)
3,0→4,±2, lin⊥lin = (

e 〈J ′ = 3
2
||er||J = 1

2
〉

~
)2E10E20

16

√
5

2
(− 1

∆F ′=3

+
1

∆F ′=4

) (3.25)

This result is almost 0 if the detuning is sufficiently large. Same conclusions could be reached
for the Raman process from F = 4→ F = 3. In conclusion, lin⊥lin is a good configuration to
drive Raman transition between F = 3 and F = 4 while retaining mF = 0 under sufficiently
large detuning but lin‖lin does not work for this purpose.

Likewise, we can also calculate the Rabi frequency for Bragg diffraction and Bloch os-
cillations. These are different from Raman in the way that the final state is in the same
electronic state. The σ± − σ± configuration works for the obvious reason too. But we get
the opposite conclusion for the linearly polarized light. The Rabi frequencies are calculated
as follows:

Ω
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3,0→3,0, lin‖lin = (
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2
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Ω
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≈ 0 (3.27)

Ω
(2)
3,0→3,0, lin⊥lin = 0 (3.28)

It concludes that lin‖lin configuration works well with Bragg diffraction and Bloch oscillations
for our purpose under sufficiently large detuning but lin⊥lin doesn’t.

Frequency Requirement

Based on the discussion above, the best polarization configuration works for both Raman
transition and Bragg diffraction is σ±− σ± configuration. As shown in Figure 3.19, we send
one beam with orthogonal circular polarization vertically up into the vacuum chamber. Each
polarization carries independently prepared frequency. In this section we want to figure out
how to play tricks on frequency to realize resonance conditions (essentially energy-momentum
conservation) for all Raman, Bragg and Bloch processes.

There are two different types of Raman transition configurations used in the experiment.
The first type is Doppler insensitive co-propagating Raman transition. Suppose the angular
frequencies and wave numbers for both co-propagating beams are ω1, k1 and ω2, k2 respec-
tively, and we are going to drive Raman transition from |F = 3,mF = 0〉 to |F = 4,mF = 0〉
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Figure 3.19: Raman/Bragg beam configuration used in the experiment.

with these two beams. If an atom is moving with velocity v up vertically, then the conserva-
tion of energy-momentum for the Raman process (absorbing ~ω1 photon and emitting ~ω2

photon) would imply

E|F=3,mF=0〉 +
1

2
Mv2 + ~ω1 − ~ω2 = E|F=4,mF=0〉 +

1

2
M(v +

~k1

M
− ~k2

M
)2 (3.29)

Since k1 − k2 � (k1 + k2)/2, taking only the leading order terms, it yields

ω1 − ω2 =
1

~
(E|F=4,mF=0〉 − E|F=3,mF=0〉) (3.30)

So this process is Doppler shift insensitive (or velocity insensitive) at the leading order. We
just need to tune the frequency difference between these two beams to the hyperfine splitting
between F = 3 and F = 4 plus small AC Sark shift (∼9.192 GHz). We use this type for
State Selection (SS).

The other type is Doppler sensitive counter-propagating Raman transition. Using the
same scenario with the direction of ω2, k2 inverted, we have the following resonance equation,

E|F=3,mF=0〉 +
1

2
Mv2 + ~ω1 − ~ω2 = E|F=4,mF=0〉 +

1

2
M(v +

~k1

M
+

~k2

M
)2, (3.31)
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which gives

ω1 − ω2 =
1

~
(E|F=4,mF=0〉 − E|F=3,mF=0〉) + 2kv + 8ωr (3.32)

where k = (k1 + k2)/2 and the recoil frequency ωr = ~k2/2M . This is clearly Doppler
sensitive. We use it for Velocity Selection (VS). Since atom velocity keeps changing due
to gravity, it would be convenient to add a frequency ramp in ω1 − ω2 so that the same
resonance condition can be satisfied everywhere along the atom trajectory.

Based on the need for both co-propagating and counter-propagating Raman transition,
we prepare one beam to pass through an Electric-Optical Modulator (EOM) running close to
9.19 GHz to get one carrier and two sidebands labelled 1−, 10 and 1+ in Figure 3.19. At the
same time, we add a frequency ramp through Acoustic-Optical Modulator (AOM) double
pass scheme. In this way, when we are doing SS under the co-propagating configuration, we
tune EOM frequency resonate with the hyperfine splitting plus AC Stark shift to drive SS
with any pair from 1+−10, 1−−10, 1′+−1′0, 1′+−1′0. We noted that though any matching pair
could drive Raman transition, the Raman processes with beams going up and with beams
going down are interfering with each other. That’s what we noticed in the experiment as
spatial modulation of 2-photon Rabi frequency.

And when we run Velocity Selection (VS) under the counter-propagating configuration,
we detune EOM frequency significantly from resonating with the hyperfine splitting in order
to suppress co-propagating Raman processes. The absolute frequency of beam 1 is deliber-
ately tuned through the double pass frequency ramp so that the beam pair 1− − 2′ would
be resonant for counter-propagating Raman transition. We use square pulses for Raman
processes. It’s not only easy to generate experimentally, but also necessary for VS. Though
Gaussian waveform offers cleaner Fourier spectrum, any variation in intensity would vary AC
Stark shift. AC Stark shift is very important for VS process as it determines what velocity
class of atoms would be selected. So in practice, Gaussian Raman pulse would broaden the
selected velocity width. For square Raman pulse, its velocity selectivity could be calculated
quite straightforward as follows.

Based on the solution of Raman square pulse in Section 2.3, if we drive an atom from
|F = 3,mF = 0〉 (labeled |1〉) to |F = 4,mF = 0〉 (labeled |2〉) with a Raman square π pulse
of length τ , the final state would be

|Φ(τ)〉 = cos(
Ωeffτ

2
) + i

δ

Ωeff

sin(
Ωeffτ

2
) |1〉 − i Ω0

Ωeff

sin(
Ωeffτ

2
)ei(2kz−∆ωt) |2〉 (3.33)

where Ω0 is the 2-photon Rabi frequency in the absence of detuning; δ is the detuning; the
effective 2-photon Rabi frequency is Ωeff =

√
Ω2

0 + δ2; ∆ω is the frequency difference of two
laser beams. If the Raman process is on resonance, then the detuning is simply determined
by atom velocity spreads, so

Ω0τ = π (π pulse definition) (3.34)

δ = 2kv (detuning definition for non-resonant atoms) (3.35)
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Here we can define velocity selectivity by the full velocity width at half Raman transition
probability into state |2〉. i.e. we need to find velocity width ∆v satisfying 〈2|Φ(τ)〉 ≥ 1

2
. By

solving

(
Ω0

Ωeff

)2 sin2(
Ωeffτ

2
) =

1

2
(3.36)

we can get the simple numerical relation of the velocity selectivity as a function of Raman
π pulse length τ .

∆v

vr
=

1.2546

ωrτ
(3.37)

where recoil velocity vr = ~k/M .
The resonance condition for Bragg diffraction is quite similar. The difference is that the

initial and final states are now in the same electronic state so there is no internal energy
difference as well as differential AC Stark shift. And now instead of a two-photon process,
the nth order Bragg diffraction is a 2n-photon process.

1

2
Mv2 + n~ω1 − n~ω2 =

1

2
M(v +

n~k1

M
+
n~k2

M
)2 (3.38)

which yields
ω1 − ω2 = 2kv + 8nωr. (3.39)

where k = (k1 + k2)/2.
For Bloch oscillations, the resonance condition is set by optical lattices such that it’s

co-moving with atoms, which means atoms always see the lattice roughly at rest. Based on
the Doppler shift atoms see for each lattice beam, the resonance condition simply implies

ω1 − ω2 = 2kv. (3.40)

Based on the Simultaneously Conjugated Ramsey Bordé atom interferometer with Bloch
oscillations configuration we discussed in the previous chapter, we need two kinds of Bragg
pulses for single Bragg diffraction and dual Bragg diffraction, which were also shown in Figure
3.19. Unlike the Raman process, we don’t need to turn on EOM for sidebands. Instead, we
shift the absolute frequency of the gravity ramp for beam 1 so that the beam pair 1 − 2′

could be resonant for single Bragg diffraction. For dual Bragg mode, we want to drive
the transition from nvr to 3nvr for upper interferometer and −nvr to −3nvr for the lower
interferometer in the reference frame symmetric for both upper and lower interferometers.
Based on the resonance condition, we need ω1−ω2 = (ω1−ω2)single Bragg−8(n+N)ωr for the
upper interferometer and ω1 − ω2 = (ω1 − ω2)single Bragg + 8(n + N)ωr for the lower one. (n
is the order of Bragg diffraction and N the order of Bloch oscillations.) We achieve this by
running the beam 2 in dual frequency mode with frequency separation by 2ωm. So the beam
pair 1−2′− and 1−2′+ would be resonant for the upper and lower interferometers respectively.
ωm is set very close but not exactly to 8(n+N)ωr so that ωm would be a tunable parameter
entering the phase of the atom interferometer. Essentially the atom interferometer is a
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Figure 3.20: Coherent Manipulation Optical Schematics

phase lock system to lock recoil frequency in a complex way to the modulation frequency
ωm through measuring zero phase in the interferometer.

Given this setup, Bloch oscillations could be realized with the same configuration as
the dual Bragg with modification of the value of ωm. Instead of a single value ωm close to
8(n + N)ωr, we use ramp ωm from 4nωr to 4nωr + 8Nωr in order to accelerate the upper
interferometer from nvr to (n+ 2N)vr and the lower one from −nvr to −(n+ 2N)vr in the
reference frame symmetric to both interferometers.

Setup and Timing

The setup starts with a laser source with high power and clean mode because of the
demands of Bragg diffraction. So we use Ti-sapphire lasers as such a source at 852 nm. In
our experiment as shown in Figure 3.20, we use two Ti-sapphire lasers to generate 852 nm
laser beam for this purpose. The first one (Ti:Sa1) is the old Coherent 899 Ring Ti-sapphire
laser pumped by 10 W Coherent V10 pump laser to phase lock to the reference frequency
and to provide an accurate and stable frequency source. The second one (Ti:Sa2) is a special
one customized based on M Squared SolsTiS [94]. Compared with its base model, frequency
filtering components like birefringence filter, etalon as well as optical diode are removed to
ensure highest possible output power. This customized Ti-sapphire laser is pumped by 18
W Coherent V18 pump laser and is able to output more than 8 W in free running mode
and more than 6 W at 852 nm. Ti:Sa2 is locked to Ti:Sa1 with injection locking scheme
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[95]. To be more specific, the whole locking scheme is done as follows. We send a sampled
beam from Ti:Sa1 and beat with the beam from the reference laser. The beating signal is
mixed with a local oscillator generated by a microwave function generator. The RF after
mixing at the intermediate frequency port (<100 MHz) is phase locked to the gravity ramp
frequency generated by a Direct Digital Synthesizer (DDS). The feedback is applied at a
reference cavity to which Ti:Sa1 is locked. So the frequency of the Ti:Sa is

fTi:Sa = f3→4′ + fδ − fDDS (3.41)

The microwave function generator is used to set the single photon detuning of the Ra-
man/Bragg/Bloch beam. Limited by the phase lock detector as well as actual Ti:Sa power
available for Bragg diffraction, we normally set it either red or blue detuned from 4.5 GHz
to 15 GHz. The DDS is used to add a frequency ramp into the system to cancel Doppler fre-
quency shift due to gravity as we mentioned earlier. We define this frequency ramp (gravity
ramp) as fg ramp = 2fDDS. The reason to lock Ti:Sa1 to the gravity ramp is to make beam
1 ramp with fg ramp/2 and beam 2 ramp with −fg ramp/2 so that the average wave number
k = (k1 + k2)/2 would be ramp independent. It eliminates the dependence of ramp in the
measured phase. Ti:Sa1 then is directly fed into Ti:Sa2 ring cavity as shown in Figure 3.20
for injection lock. This is different from diode laser injection lock. Since the ring cavity in
Ti:Sa2 is longer and has higher finesse, if the cavity is off resonance, the injection beam will
mostly be rejected. So we use polarization spectroscopy to lock the cavity to be resonant
with the injection beam. This method is called Hänsch-Couillaud technique [96]. When we
inject a beam into the ring cavity through the output coupler, part of the beam will enter
the ring cavity, while the rest got reflected based on the inject beam orientation, polarization
as well as the coating of the output coupler. The ring cavity itself is polarization selective.
Only the light with the correct linear polarization would pass through and be built up inside
the cavity due to some polarization selective elements inside. The orthogonal polarization
would be fully reflected. At the output we combine both reflected and injected polarization
and send to device made by a quarter wave plate and a Wollaston prism to detect if the
cavity is on resonance or not. When it is on resonance (giving a phase delay of either π
or 2π), the cavity output combined with the reflected injection beam with orthogonal po-
larization would result in a linear polarized beam as the total output. The quarter wave
plate is properly aligned such that when the output beam is linearly polarized, it would be
converted to orthogonal circularly polarized lights with equal amplitude. Thus it will get
split into two beams with equal amplitude by the Wollaston prism, resulting in a zero signal
in the differential detection scheme. When the cavity is not on resonance, it gives a non-zero
error signal. By applying feedback to the Ti:Sa cavity mirror piezo with a properly designed
servo lockbox, we can tightly injection lock Ti:Sa2 in this way. The key to stably injection
lock the Ti:Sa laser is to have enough injection power, which in our case is more than about
200mW.

After such a high power, narrow linewidth, accurate frequency source is prepared, we
use AOM14 to generate pulses in different shapes we want, i.e square pulses for Raman
transition, Gaussian pulses for Bragg diffraction, square pulses with ramp on and ramp off
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for Bloch oscillations. When it’s in idle we dump all its power to the zeroth order of AOM14.
Though it’s extremely powerful, the duty cycle is rather low so it doesn’t damage the fiber
or cause any other thermal effect. We pick up a fraction of power after the fiber coupling to
detect the real pulse shape so as to compare with the intended pulse shape programmed with
function generators and feedback to AOM14. It is to be noted that the feedback speed is
limited by the sound speed of AOM14. It takes a few microseconds for the generated sound
wave to reach the laser beam. The only way is to move the crystal closer to the actuator
but it also increase the risk to burn the AOM under high power operation. For this reason,
we can clearly see distortion of a Bragg pulse from a pure Gaussian pulse at around 10us
time scale (see Figure 5.7). This might potentially contribute to our systematic error. We
will cover it in Section 5.5.

After the pulse is ready, we need to prepare frequencies to match the resonance condition
for Raman, Bragg and Bloch processes as we discussed earlier. We use AOM15 (running at
180 MHz) to generate beam 2 (called counter-propagating beam) shown in Figure 3.19. In
single frequency mode (VS and single frequency Bragg), we only use 180 MHz synthesized
by Phase Lock Loop (PLL) through 10 MHz reference with proper amplification. In dual
frequency mode, AOM15 generates a beating signal, leaving inverted intensity modulation
in the zeroth beam as well. So we use AOM16 running at the same beat frequency as
AOM15 in quadrature to compensate that residual amplitude modulation in dual frequency
mode. It is achieved by rerouting 180 MHz with RF switches to mix with the modulation
frequency fm = ωm/2π ∼ 8(n+N)ωr/2π in phase and in quadrature for AOM15 and AOM16
respectively. More details can be found in these references [61, 62].

The zeroth order beam after AOM15 passes through AOM16 and AOM17. During single
frequency mode, AOM16 is also running to cut some power from the beam in order to match
the Rabi frequency of the Bragg diffraction in dual frequency mode. AOM17 is running
in double pass scheme to generate the gravity ramp in beam 1 (called double pass beam)
shown in Figure 3.19. A double pass scheme is chosen in order to have larger bandwidth
to cover all pulses in the experiment. It switches between two ramps with the same ramp
rate but slightly different offset frequency for Raman and Bragg respectively due to different
resonance conditions. The ramp for Raman starts at t=1.033 s, ramping roughly from 93.66
MHz to 82.16 MHz at a rate of -11.4978 MHz/s to match the required Doppler frequency
ramp rate given by 2kg where g is the gravitational acceleration. The ramp for Bragg
starts at the same time, but ramping roughly from 95.68 MHz to 84.18 MHz. These ramps
are generated by two channels of a Direct Digital Synthesizer (DDS) AD9954. In order to
precisely control the ramp rate, we use an externally referenced function generator running
at 15.7135 MHz to serve as the external reference for the DDS so that two units of the ramp
rate control bits gives exactly the same ramp rate we want. And we use a Raspberry Pi to
generate SPI control serial signal to control the absolute frequency of the DDS for Raman
and Bragg modes as we need to optimize these frequency from time to time to match the
fountain velocity to ensure the best VS and Bragg efficiency. After the double pass, this
beam go through EOM2 running at about 9.19263 GHz for SS and 9.18863 GHz for VS.
This microwave frequency is generated by the same circuit we use to generate the microwave
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frequency for Adiabatic Rapid Passage (ARP), namely a Dielectric Resonator Oscillator
(DRO) locked at the mixing frequency of the 51st comb line of a microwave comb with
repetition frequency 180 MHz and a offset frequency from a function generator. So we can
simply use frequency shift keying of this function generator to shift the frequency between
SS and VS. We only turn on EOM2 for Raman transitions. After EOM2, the double pass
beam will be combined with the counter-propagating beam in orthogonal linear polarization
with a PBS and send to the vacuum chamber with a polarization maintaining fiber. We also
inserted another beam through AOM18 as AC Stark compensation beam, which is generated
by an independent diode running at a frequency with opposite single photon detuning to
reduce decoherence effect due to AC Stark effect in Bloch oscillations. More details about
AC Stark compensation would be discussed in Section 4.1.

After the Raman/Bragg/Bloch beam is coupled to the experiment side, we put a quarter
wave plate to convert orthogonal linear polarizations into orthogonal circular polarizations
to form σ± − σ± configuration as we discussed earlier. We also insert the Raman Sideband
Cooling z-lattice beam to the first order output of AOM15 (when it’s turned off) and con-
veniently send it to the vacuum through the same Bragg beam fiber port. Both 3-state and
4-state blow-away beams are coupled separately to a different fiber such that it has signif-
icant overlap with the Bragg beam at the region for state preparation as shown in Figure
3.21. We also add a lens to make it divergent so that it would be easier to overlap with
atoms.

The timing of state preparation and atom interferometry is basically configured as shown
in Figure 3.22 and 3.23. After ARP, most atoms are prepared to |F = 4,mF = 0〉, while some
still remain in the wrong state. So the purpose of SS is to keep atoms in the right states
and get rid of the rest. Firstly, we turn on the gravity ramp at t=1.033 s. Then at t=1.17 s
we apply a 3-state blow-away beam for 2 ms to clear all F = 3 atoms. At t=1.19 s, we turn
on EOM and get ready for SS. The basic building blocks of a pulse consists a pulse trigger,
turning on the pulse shaping AOM (AOM14), In order to generate a pulse, we normally need
to turn on the pulse shaping AOM (AOM14), the intensity servo, the counter-propagating
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beam AOM (AOM15) sometimes. After turning on these devices, we trigger it by either
sending the reference pulse directly to the intensity servo (for square pulses like SS and VS)
or sending the trigger to function generators to generate a pulse waveform stored in it (for
Bragg and Bloch). The intensity servo would feedback the pulse shaping AOM to generate
the waveform that matches the reference waveform. After the pulse, we turn off all these
devices in order to avoid any bit light leaking through the AOM or spikes due to transient
effects of the intensity servo.

So at t=1.20 s, we generate such a square pulse for SS. During SS, the counter-propagating
beam is off as it is unnecessary. SS pulse is a square pulse with a pulse length fixed to 70µs.
But we can still fine tune the pulse intensity to control where we want to drive to on Bloch
sphere. Ideally π pulse would given maximum transfer efficiency, but in reality since the
beam intensity is not uniform we tend to over drive it a little bit to maximize the number of
atoms transferred to the new state. Subsequently we apply a 4-state blow-away at t=1.21 s
to clean up the remaining atoms at F = 4. After SS, almost all atoms would be in the right
state (|F = 3,mF = 3〉) ready for VS. VS requires a different EOM frequency so we use FSK
to switch it to VS mode at t=1.21 s. In practice, we use two VS pulses at t = 1.22s, 1.23s
respectively to ensure a small velocity spreads. Though the selectivity of each VS pulse is
the same, if the atom velocity spreads at the input is already small, an additional VS could
make it even smaller. We turn on the same triggers plus the counter-propagating beam AOM
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for each VS pulse. The pulse is a square pulse of 400 µs. Based on the formula we had, the
velocity FWHM for its transition probability is about 0.24vr, much smaller than the width
we had after Raman Sideband cooling. After each VS pulse, we also apply appropriate blow-
away beam to clean those non-selected atoms. Because the input atom velocity width is
already quite small, after two VS pulses, we expect a even smaller width than this theoretic
value 0.24vr. At the end of state preparation, we turn off EOM and switch the double pass
frequency to Bragg mode, ready for atom interferometry sequence.

We start the atom interferometer sequence at t=1.24 s. Since it’s very critical in timing
accuracy, we use SRS DG535 and DG645 to generate the relative timing sequence. The only
absolute timing is defined by the computer timing trigger at t = 1.239 s, triggering the whole
interferometer timing system. One delay generator is used to trigger Bragg pulse groups.
The first group contains the first two Bragg pulses running in single frequency mode. The
second group contains the last two Bragg pulses running in dual frequency mode. The delay
generator generates a trigger for each pulse group to trigger a second pulse generator to
prepare pulse triggers for each individual pulse within the pulse group. The advantage of
this configuration is that the timing for the second pulse group is the exact copy of the timing
for the first pulse group, eliminating potential systematics coupled through asymmetries in
timing between two groups. For each Bragg pulse, we use the same control switches as those
used for VS pulses. The difference is that we trigger a function generator to generate a
Gaussian reference pulse for the intensity servo. Realistically the Gaussian pulse has to be
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truncated in time. So we only drive it from −3σ to 3σ with σ ≈ 18 ms. After the first
group of Bragg pulses are done, we switch on dual frequency mode for Bloch oscillations
and the last two Bragg pulses. Normally 5 ms after the second pulse, we turn on Bloch
oscillations. Bloch oscillations pulse is a square pulse that lasts for τ = NTB with 100 µs
ramp on and 100 µs ramp off, where TB is the Bloch period defined in Equation 2.120 and
here is controlled by Bloch ramp rate (normally set to be 250 MHz/s). Bloch frequency ramp
is generated by another DDS other than the one for gravity ramp. During Bloch oscillations,
we also switch on an RF switch to disconnect the Bragg fm and connect the Bloch frequeny
ramp to the RF switch yard to mix with 180 MHz for AOM15. We also turn on a shutter
as well as AOM18 to get AC Stark compensation beam mixed in to compensate AC Stark
shift generated by Bloch oscillations so as to restore coherence to some extent. Another
trick to improve atom coherence as shown here is Coriolis compensation. Basically during
the whole period of atom interferometry, we ramp the top retro-reflect mirror simultaneously
with specially chosen ramp rate to cancel Coriolis effect due to the Earth’s rotation. More
of these tricks will be discussed in Section 4.1.

Performance

In the actual experiment, we use a 70 µs long square pulse to drive a Raman pulse
for State Selection (SS). The CCD image after SS is quite weak so it won’t give us useful
information about atom cloud spatial distribution. But we can still use the SS signal from
photodetector to estimate the cloud temperature. SS signal can also be fitted with a double
Gaussian of width σz = 5.68 mm as shown in Figure 3.24. If we holds the assumption that
Raman Sideband Cooling (RSC), Adiabatic Rapid Passage (ARP) and SS won’t change the
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Figure 3.25: State Selection pulse efficiency vs. peak two-photon Rabi frequency given by a
Monte Carlo simulation

effective atom distribution along z direction at the first passing of the detection, we can get
longitudinal temperature Tz = 76 nK. The efficiency of SS won’t be perfect 100% because the
intensity of the actual Gaussian-like beam won’t be uniform. So the Raman pulse efficiency
varies depending on the transverse location of the atom relative to the beam center. If the
pulse is π pulse at the peak intensity, it might not be as efficient. Here with Monte Carlo
simulation we can estimate the Raman SS efficiency as a function of the peak Rabi frequency
of the beam as shown in Figure 3.25. This efficiency here is defined as the ratio between
the number of Raman selected atoms and the number of all atoms in the correct Zeeman
states. The Raman beam used in the simulation is assumed to be a pure Gaussian beam
with waist w = 3.37 mm measured by a beam profiler. The atoms before SS are assumed to
follow Gaussian distribution with σx = σy = 4.4 mm from CCD measurement. And we vary
the peak intensity of the beam in the unit of its theoretic π pulse Rabi frequency Ωπ = π/τ
where the pulse length τ = 70 µs. In the experiment we typically optimize the efficiency
of SS around the first peak in this plot, where the peak Rabi frequency is about 1.6Ωπ. It
means we overdrive the center atoms past π pulse so the SS efficiency at the center would
be lower than the side. It is as expected in the simulated transverse distribution after SS
shown in Figure 3.26.

After SS we apply two 400 µs long Raman square pulses to drive Raman π pulse for
Velocity Selection (VS). Based on equation, the VS selectivity is about ∆v = 0.24vr. Atom
clouds are completely invisible by CCD camera after this stage. But we can still detect it with
the photodetector as shown in Figure 3.27. Since the hot atom class would be filtered out, VS
signal can typically be well fitted to a single Gaussian. Here σz in the plot is estimated to be
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Figure 3.26: Simulated atom distribution along x axis before and after SS
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Figure 3.27: Velocity Selection signal and its Gaussian fit

about 3.18 mm. It’s actually even smaller than the width of the first fountain, so we cannot
use ToF to estimate the temperature. But we can still input the atom spatial and velocity
distribution after SS into the Monte Carlo to estimate the efficiency of VS and atom phase
space distribution after VS. Again we use the same Gaussian beam profile for VS Raman
pulse. VS efficiency as a function of peak Rabi frequency is plotted here in Figure 3.28. We
also typically optimize the efficiency around the first peak where the peak Rabi frequency
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Figure 3.28: Velocity Selection pulse efficiency vs. peak two-photon Rabi frequency given
by a Monte Carlo simulation

is about 1.4Ωπ. The donut-like spatial distribution is even more obvious after VS as shown
in Figure 3.29. The longitudinal velocity distribution could also be obtained as shown in
Figure 3.30. The main peak can be fitted by Gaussian with σv = 0.074vr, which corresponds
to about 1.1nK. We can also see small ”sidebands” on both sides of the main peak in the
velocity distribution due to the Fourier spectrum of the VS square pulse. The signal size
after SS, according to the photodetector, is about 1/5-1/2 of RSC signal size. The efficiency
here is different from the one defined in Figure 3.25, since not all atoms selected by SS
would eventually be detected, nor does we take atom distribution of all Zeeman states into
consideration in the simulation. Other things like how RSC is performed would significantly
affect the detected SS signal size. VS signal is about 1/20 of SS signal, which is pretty close
to the simulated efficiency. That is because what VS mostly does is selection in velocity
space, which can be quite accurately reflected in the detected signal ratio. Based on these
relative ratios, we can roughly estimate the number of atoms detected after each of these
steps applied as shown in Table 3.5.

After all state preparation, we start the atom interferometry stage. All Bragg diffraction
beam splitters used are Gaussian-shaped pulses with σ = 18.2 µs in time domain. The pulse
width is chosen to minimize parasitic interferometer effect as will be discussed in Section
5.5. A single Bragg diffraction pulse would transfer 2n~k momentum to deflected atoms,
resulting in spatial separation after certain time of free evolution as shown in Figure 3.31.
It is what a π/2 pulse would normally look like. Due to beam intensity variation across
the beam cross section, atoms in certain areas would experience Bragg pulses closer to π/2
pulses than others. Effectively the ratio of the deflected peak to the original peak would
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Figure 3.29: Simulated atom distribution along x axis before and after VS
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Figure 3.30: Simulated atom velocity distribution along z axis before and after VS
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Figure 3.31: Bragg diffraction signal and its Gaussian fit

Signal Type Estimated Atom Number
The First Fountain 3.6× 108

The Second Fountain (with PGC) 3× 107

The Second Fountain (with PGC, RSC and ARP) 3.6× 107

The Second Fountain (with PGC, RSC and SS) 1.2× 107

The Second Fountain (with PGC, RSC, SS and VS) 6× 105

Table 3.5: Rough estimation of atom number detected by the photodetector with each
procedure applied

be less than 1:1. In the experiment, the frequency and intensity of Bragg diffraction are
determined by phase and contrast measurement through atom interferometers respectively,
which will be discussed Section 3.6.

Between the second and the third Bragg beam splitter in the Ramsey Bordé interferom-
eter, we sometimes insert Bloch oscillations. It has a square pulse shape with 100 µs ramp
on and 100 µs ramp off. Typically the ramp rate is chosen to be about 250 MHz/s, which
means a N = 125 Bloch pulse lasts about 8.27 ms. Bloch oscillations ramp start and stop
frequencies are determined by the measured recoil frequency. It won’t make a difference if
it’s differ by a fraction of recoil frequency. But the ramp rate as well as Bloch intensity
affects both Bloch efficiency (how much fraction of atoms would be transferred) and atom
interferometer contrasts. They would be optimized based on both metrics, which will be
further explained in Section 4.1.
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Figure 3.32: Frequency generation diagram

3.5 Summary

We have covered basic technical details of the whole experiment in this chapter. One diffi-
culty of the experiment is the complicated frequency generation scheme. Here we summarize
the whole scheme to make it clear for readers. Starting from the reference laser frequency,
the block diagram in Figure 3.32 shows how each frequency we used in the experiment is
generated and how it is referenced to other frequencies. Note that the AOM, EOM frequen-
cies labeled here could take different values depending on different mode of operation. More
details about the frequencies can be found in Table 3.6.
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Notation Component Frequency
fDiode1 Reference Laser f(F = 3→ F ′ = 4)
fDiode2 2DMOT Slave f(F = 4→ F ′ = 5)-7.5 MHz
fDiode3 3DMOT Slave f(F = 4→ F ′ = 5) -14.5 MHz (MOT) or -43.3 MHz (PGC/RSC)
fTi:Sa1-2 Ti:Sa 1-2 f(F = 3→ F ′ = 4) + fδ − fg ramp/2
fDiode4 AC Stark Compensation Laser f(F = 3→ F ′ = 4)− f∆(∼ 50 GHz)
fAOM1 Reference Laser Double Pass AOM 141 MHz
fAOM2 3-state blow-away AOM 66 MHz
fAOM3 RSC Pumping AOM 65 MHz
fAOM4 3DMOT Repump Shift AOM 80 MHz
fAOM5 Trapping Frequency Double Pass AOM 130.4 MHz (MOT) or 116 MHz (PGC/RSC)
fAOM6 2D-3DMOT Relative Shift AOM 88 MHz
fAOM7 RSC xy Lattice AOM 120.4 MHz
fAOM8 RSC z Lattice AOM 115.8 MHz
fAOM9 3DMOT bottom beam AOM 80 MHz
fAOM10 3DMOT top beam AOM 80 MHz
fAOM11 3DMOT side beam AOM 80 MHz
fAOM12 Detection beam AOM 93.6 MHz
fAOM13 4-state blow-away AOM 93.6 MHz
fAOM14 Pulse Shaping AOM 80 MHz
fAOM15 Counter-propagating AOM 180 MHz (single f) or 180 MHz±fm (dual f)
fAOM16 Intensity Compensation AOM 180 MHz (single f) or 180 MHz±fm (dual f)

fAOM17 = fg ramp/2 Gravity Ramp Double Pass AOM (Raman mode) 93.66 MHz → 82.16 MHz, with Ramp Rate -11.4978 MHz/s
fAOM17 = fg ramp/2 Gravity Ramp Double Pass AOM (Bragg mode) 95.68 MHz → 84.18 MHz, with Ramp Rate -11.4978 MHz/s

fAOM18 AC Stark Compensation AOM Switch 40 MHz
fEOM1 Repump to Trap Frequency Shift EOM 9.21 GHz
fEOM2 Raman EOM 9.1926 GHz (SS) or 9.1886 GHz (VS)

Table 3.6: List of frequencies of main lasers and modulators. The components are labeled
according to Figure 3.1.

3.6 Atom Interferometer

As each part of the experiment is put together, here we are ready to present the ex-
perimental procedure of the entire atom interferometry. We use two computers to control
the system. One is for timing sequence control. It programs the National Instrument digi-
tal/analog control cards to generate a set of control signal every 2.4 s as a cycle. Normally
the timing sequence is fixed and we don’t change it while running the experiment [70, 71].
At the same time we use a separate computer to control those experiment parameters that
we want to change from cycle to cycle and also to read data from the photodetector as well.
While the timing sequence is continuously on, this computer can update experiment parame-
ters during dead time by controlling slave devices via General Purpose Interface Bus (GPIB)
[97] and Local Area Network (LAN). Eventually how we set these parameters depends on
how we want to group the experiment running processes.

The experiment is typically grouped like this. The largest unit the program can handle
at one time is a dataset. A dataset consists of multiple instruction entries. Using instruction
entries we can scan parameters to discover potential correlation between a certain parameter
and the measured recoil frequency. The program can go through instruction entry list once
or repetitively. Each instruction entry is the smallest unit to control experiment parameters.
The parameters we typically control include the modulation frequency fm = ωm/2π, pulse
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Figure 3.33: Ramsey Bordé Interferometer Scheme with Bloch Oscillations

separation time T, T ′, T ′1, Tdelay as shown in the figure, Velocity Selection (VS) frequency and
intensity, Bragg diffraction frequency and intensity. Within each instruction entry, there are
a few repeats of data bins. A data bin is the smallest unit to give one measured value of
recoil frequency. The program will average the measured recoil frequencies from each data
bin to calculate the expectation value and the error bar. As we mentioned earlier, we use
ellipse fitting to extract the differential phase to get the recoil frequency. A caveat for ellipse
fitting is that when the ellipse phase significantly deviates from 90◦, it generates an ellipse
fitting systematic error. In an extreme case when the phase is close to 0 the ellipse becomes
like a line and the ellipse fitting algorithm would fail to get an accurate phase. To solve this
problem, we introduce another small frequency modulation on top of large fm such that it
keeps the ellipse angle roughly ±90◦. We label the new frequency fm± = fm ± δm where
an additional phase ±2n(2πδm)T = ±π/2 is added into the ellipse readout phase. A data
bin consists two separated ellipses running at fm±. Each ellipse consists a number of data
points. The number of data points for each ellipse is defined as the bin size. During the data
run we alternate between fm+ and fm− to eliminate possible systematic error due to drifting
phase within one data bin. After finishing a data bin, the program would automatically fit
each ellipse to get the differential phase of each data bin. Based on the phase formula of
Ramsey Bordé interferometer, we have

Φd± = 2nT (ωm ± 2πδm)− 16n(n+N)ωrT + Φextra (3.42)
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Figure 3.34: Raw data trace of a Ramsey Bordé interferometer without Bloch oscillations

If we solve this equation, we can get the recoil frequency term

8(n+N)ωr = ωm −
Φd+ + Φd−

4nT
+

Φextra

2nT
(3.43)

Note that when we actually take the average of Φd±, we would put another minus sign before
Φd− as the ellipse fitting algorithm cannot tell the difference between a positive phase and a
negative phase.

For each data run, the program updates fm to fm± during the MOT loading time based
on the sign of the current run. If it is the first run of a data bin, all other parameters will also
be updated. Pulse separating timing T, T ′, Tdelay would be updated through delay generators
DG535. VS and Bragg frequencies would be updated as the absolute frequency of gravity
ramp through DDS. VS intensity would be updated through a precision programmable volt-
age reference. Bragg intensity would be updated through Gaussian waveform generating
function generator. After this step, the experiment would proceed until it’s ready to record
data. Then a trigger signal would be generated from the timing sequence to trigger an
analog input card NI-PCI-4474 to record data. NI-PCI-4474 is a high-resolution (24bits)
analog to digital data acquisition card [98]. The amplified signal at the photodetector as
photocurrent-time trace would be low-pass filtered and analog-to-digital converted by the
analog card. The cutoff frequency is typically between 2 kHz-10 kHz as the details of each
atom peak below 500 µs (compared to 1.5 ms FWHM of each peak) won’t be as important.
In this way we can further filter out high frequency noise. The signal would typically contains
a few peaks as different output ports of the interferometer as shown in Figure 3.34.

Given each data trace, it’s not as easy to extract the signal we want for each output port as
many non-coherent atoms are also buried inside. If we read all atoms in one peak, contrast
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Figure 3.35: Ellipse data and fit

would be too small to be measured. And the signal would be buried in the background
noise. So we use Gaussian masks at each interfering peak to evaluate an overlap integral
with the signal trace to extract the signal at this output port as shown in Figure 3.34.
The position of the four Gaussian masks are not arbitrarily chosen. We fit the original
non-deflected peak (or peak of original VS) to get the absolute positions of four Gaussians
and use theoretic calculation of atom trajectory to get relative peak positions. In order
to get an accurate theoretic trajectory calculation, we also need accurate information of
atom velocity and gravitational acceleration. Gravitational gravitation has been accurately
measured with onsite interferometer to be 9.798 m/s [35], which was used to set gravity
ramp rate. The absolute velocity could also be obtain by Bragg diffraction frequency and its
resonance condition (see Section 5.6 for details). The width (Gaussian σ) is typically set to
0.2 ms as a trade-off between contrast and signal size. After atom population at four output
ports are extracted, we can follow the same procedure described in the last chapter to get
X-Y coordinates of the ellipse. Thus following these procedures we can get fitted ellipse for
phase measurement as shown in Figure 3.35.

As we mentioned earlier, we typically use actual atom interferometer phase and contrast
measurements to determine Bragg frequency and intensity. As we scan the Bragg frequency
to measure phase difference at certain T , we can get a parabola-like curve as shown in Figure
3.36. It well agrees with the theory of diffraction phase we developed in Section 2.7. So by
fitting the data by a parabola, we can find the resonant Bragg frequency at the center of the
parabola.

For Bragg intensity, it is determined by contrast measurements. As we scan Bragg
intensity, the measured X and Y contrast shows a peak at different intensities, as shown in
Figure 3.36. Though the peak doesn’t give us exactly a π/2 pulse, it’s a good calibration
to evaluate the actual Bragg two-photon Rabi frequency so that it would be consistent
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Figure 3.36: Measured phase difference between conjugated interferometers vs. Bragg 2-
photon detuning. Data were taken at Bragg order n = 5, Bloch order N = 0, pulse separation
time T = 10 ms.
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Figure 3.38: Measured recoil frequency vs. pulse separation time T

throughout the entire data taking.
After we find an optimized set of Bragg parameters, we can measure the recoil frequency

at different pulse separation time T . In theory, the measured recoil frequency should be
independent of pulse separation time T . But we noticed a clear evidence that the measured
recoil frequencies are inversely proportional to T , as shown in Figure 3.38. It can be explained
by a phase constant in the formula,

Φd

T
= −2nωm + 16n(n+N)ωr +

φ0

T
(3.44)

where φ0 is the phase constant. We now know that it is caused by diffraction phase that we
discussed in Section 2.7. The diffraction phase could be directly measured by the slope of
recoil frequency vs. 1/T curve, while the recoil frequency could be extracted as y-interception
when T →∞.
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Chapter 4

Alpha Measurement - Statistical
Uncertainty

4.1 On the Road to Better Sensitivity

Precision measurement always contains both challenges of experimentation, namely preci-
sion and accuracy. Precision is related to the sensitivity of the experiment. If the experiment
is sensitive enough, we can average down the statistical uncertainty below what we desire in
a reasonable time. This reasonable time is determined by how much time we can allocate
our resources for the experiment and also how fast the measurement may drift due to envi-
ronment parameters change. The other aspect of precision measurement is accuracy, which
relates to systematic uncertainties of the experiment. We will be focusing on that in Chapter
5. For this chapter we will discuss some technical improvement over the years that help us
improve the sensitivity to reach the level for our sub-ppb measurement.

When the experiment was just constructed in Berkeley, it was barely able to extract
phase from Ramsey Bordé interferometer with Bragg order n = 5 and pulse separation time
T = 90 ms. Bloch oscillations were not included at that time. But contrast significantly
dropped when we tried to further increase T. Since then a few new techniques have been
developed and now we are able to extract phase from Ramsey Bordé atom interferometer
with Bragg order n = 5 and Bloch order N = 200 and pulse separation time T = 60 ms,
which sets a new record on the largest measurable phase achieved in Ramsey Bordé atom
interferometer to be 12 Mrad. Over the past 7 years the sensitivity has been increased by
more than 20 folds. We will give brief discussions about some important develops we made.

Coriolis Compensation

Coriolis compensation was applied to eliminate decoherence due to the Earth’s rotation.
We realized that during atom interferometry, Bragg lattice set by the beam keeps changing
its direction following the Earth’s rotation, while atoms are only experiencing the gravity
without any influence of the Earth’s rotation. Or in the rotating Earth reference frame, atoms
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Figure 4.1: Contrast vs. pulse separation time T of a Ramsey Bordé atom interferometer
without Bloch oscillations

would experience Coriolis force as an inertial force. As a result, atom interferometer couldn’t
close at the last pulse. The Earth’s rotation will shift one atom interferometer arm slightly
away from the other, making a small displacement ~δ at the last pulse. Whether atoms
are still coherent, or in other words how large contrast we can get, depends on Gaussian
overlap integral of two atom wave functions displaced by such an amount. For a short
pulse separation time T , this displacement is not large enough to produce visible change
in contrast. But it limits the largest pulse separation time T we can operate this atom
interferometer. In the literature [57], we reported a new technique to ramp the retro-reflect
mirror in its orientation to compensate this effect due to the Earth’s rotation. We used two
Thorlabs AE0505D16F piezoelectric actuators to rotate the retro-reflect mirror. These two
piezoelectric actuators are able to rotate the mirror in two different axis. (The two axes form
an angle of 82◦, very close to be orthogonal so that they are almost independent [57, 61].) We
use two independent function generators to generate two voltage ramps with independent
tunable ramp rate to feed into Thorlabs high voltage PZT driving circuit. By optimizing the
ramp rate, we were able to extract ellipse phase at pulse separation time T up to 270 ms. The
contrast as a function of pulse separation time T with Coriolis compensation is shown here
in Figure 4.1. We can still see contrast drop as we increase T in the region where T > 100
ms. This decay is limited by transverse thermal expansion of atoms at current cooling
temperature. This have been experimentally verified as we observed significant improvement
in contrast when we implemented Raman Sideband Cooling.
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Figure 4.2: Bloch oscillations efficiency vs. Bloch intensity and Bloch ramp rate at Bragg
order n=4 and Bloch order N=50. Bloch efficiency here is defined as the ratio between the
number of atoms arrived within the Gaussian masks of the four interferometer output ports
and the total number of atoms detected in the entire data trace.

Bloch Oscillations Optimization

Another trick we did is to add Bloch oscillations between the middle two pulses as we
described in Chapter 2-3. The reason to add Bloch oscillations is to increase the overall phase
linearly and to suppress relative systematic uncertainties that does not scale with Bloch
order N [51, 11]. It turns out that though the overall phase in Ramsey Bordé interferometer
(16n(n + N)ωrT ) gained by Bloch oscillations goes linearly with Bloch order N and the
phase gained by Bragg diffraction goes quadratically with Bragg order n, it’s a lot easier to
keep the atom interferometer coherent with large N Bloch oscillations rather than a large
n Bragg diffraction. A large order Bragg diffraction is not only technically limited by laser
power, but also limited by decoherence. So we found the most ideal n is about 5 as we
optimize Bragg parameters. But for Bloch oscillations, the contrast decays a lot slower as
we increase N . More than N = 100 Bloch oscillations have been demonstrated in Ramsey
Bordé interferometers with Raman beam splitters [51, 11]. So also N > 100 Bloch oscillations
works well in the same kind of atom interferometer with Bragg beam splitters as well [8].

Here we use a quasi-square pulse with 100 µs ramp on and 100 µs ramp off to drive Bloch
oscillations. The free parameters available to optimize Bloch oscillations are Bloch ramp rate
and Bloch intensity (Rabi frequency). We found that a slower ramp rate and a higher Bloch
intensity are always helpful to get higher Bloch efficiency within the parameters space we are
operating our experiment as shown in Figure 4.2, which exactly agrees with the numerical
result in Section 2.5. But we also noticed that as we slow down the ramp rate or turn up
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Figure 4.3: Atom interferometer Y-contrast vs. Bloch intensity and Bloch ramp rate at
Bragg order n=4 and Bloch order N=50

Bloch intensity, the atom interferometer contrast goes in the opposite direction as shown in
Figure 4.3. Part of that could be due to single photon scattering as the scattering rate is
proportional to the intensity at large detuning limit. But it cannot explain most part of that
because single photon scattering rate should be independent of the pulse separation time
T. But we noticed a significant decay in contrast as we increase the pulse separation time
T with Bloch oscillations applied. Based on our limited knowledge at that time, we simply
optimized the useful ”signal”, i.e. the product of Bloch efficiency and atom interferometer
contrast. Since the contrast at 80 ms is the bottleneck of the experiment, we use that
contrast to optimize as shown in Figure 4.4. Following this general procedure, the maximum
sensitivity we were able to get was at Bragg order n = 4 and Bloch order N = 50 and pulse
separation time T = 80 ms, yielding 3 Mrad total phase.

Based on the data, we have also noticed that when we apply Bloch oscillations, the
contrast drops a lot faster as we increase pulse separation time T than that in the absence of
Bloch oscillations. We believe it was not caused by single-photon scattering since decoherence
due to that should be T independent. There are additional decoherence mechanisms involved.
These will be topics of discussion in the subsequent sections.

AC Stark Shift Compensation

One idea was brought to our attention in the literature [99] that AC Stark shift varia-
tion on beam due to wavefront intensity variation may cause decoherence. It can be tested
experimentally in a quite straightforward way. We prepare another laser beam called AC
Stark shift compensation beam with the opposite detuning and get it coupled into the same
fiber port with the normal Bragg/Bloch beam. Since intensity variation of AC Stark shift
compensation beam follows the same pattern as normal Bragg/Bloch beam does, by choosing
appropriate single-photon detuning as well as intensity, we can cancel AC Stark shift atoms
see at the leading order. Experimentally we use a Distributed FeedBack (DFB) diode laser
(Diode4) as a frequency source to feed into another Tapered Amplifier (TA5) to generate



CHAPTER 4. ALPHA MEASUREMENT - STATISTICAL UNCERTAINTY 116

220 240 260 280 300
Bloch Pulse Intensity (a.u.)

1.5

2.0

2.5

3.0

3.5

4.0

4.5

B
lo

ch
E

ffi
ci

en
cy
×

C
on

tr
as

t

Ramp Rate = 538MHz/s

Ramp Rate = 461MHz/s

Ramp Rate = 384MHz/s

Ramp Rate = 307MHz/s

Figure 4.4: Bloch oscillations efficiency × atom interferometer Y-contrast vs. Bloch intensity
and Bloch ramp rate at Bragg order n=4, Bloch order N=50 and pulse separation time T=80
ms

−0.2 −0.1 0.0 0.1 0.2 0.3 0.4 0.5
Ellipse X

−0.5

−0.4

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

E
lli

ps
e

Y

Compensation Off

Compensation Off

Compensation On

Compensation On

Figure 4.5: Ellipses directly from data with and without AC Stark shift compensation at
Bragg order n=5, Bloch order N=25



CHAPTER 4. ALPHA MEASUREMENT - STATISTICAL UNCERTAINTY 117

0 20 40 60 80 100 120 140 160
Pulse Separation Time T(ms)

5

10

15

20

25

30

35

40
C

on
tr

as
t

(%
)

N=25, Compensation Off

N=25, Compensation On

N=75, Compensation Off

N=75, Compensation On

Figure 4.6: Atom interferometer contrast as a function of pulse separation time T with and
without AC Stark shift compensation. Data taken with n=5, N=75, T=80 ms

enough power for the compensation beam as shown in Figure 3.20. This beam is coupled
into the Bragg fiber through the first order input port of an Acoustic Optical Modulator
(AOM18). The pulse timing and shape are controlled by TA current, a mechanical shutter,
and the AOM switch. With this compensation beam, we observed recovery of atom coher-
ence as increase of contrast visually shown in Figure 4.5. This compensation effect applies
to both Bragg diffraction and Bloch oscillations. But in the presence of Bloch oscillations,
decoherence is dominated by Bloch oscillations. So compensating Bragg diffraction in this
case won’t bring visible improvement in contrast. For this reason, we only apply compen-
sation to Bloch oscillations in practice. It also turns out that this compensation effect is
not so sensitive to compensation beam detuning, intensity, pulse shape, pulse timing and so
on. It makes experiment a lot easier as there is no need to lock the frequency and stabilize
the intensity of the compensation beam. The compensation pulse is roughly a square pulse
overlapping with Bloch oscillations pulse in time. In order to reduce single photon scattering,
we further increased the single photon detuning as well as intensity as long as it’s technically
allowed. In the end we reach about three times as large detuning in magnitude as the Bloch
beam detuning (14GHz blue detuned) as well as about three times as large intensity as Bloch
beam intensity for compensation. The improved contrast vs. pulse separation time is shown
in Figure 4.6, which enabled us to further increase overall measurable phase of our system to
6.6 Mrad at Bragg order n = 5, Bloch order N = 75 and pulse separation time T = 80 ms.
The data also suggests that AC Stark shift isn’t the only decoherence mechanism. There are
more decoherence mechanisms at play.
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phase is defined as the difference of measured phase and the fitted phase based on a constant
diffraction phase model.

4.2 Preliminary Measurement

After implementing AC Stark shift compensation, the system has already reached the
sensitivity required for α measurement better than 0.25 ppb. It took about a day to reach
0.25 ppb in α for at a single pulse separation time. Ideally if the diffraction phase is a constant
independent of T, we only need to measure the recoil frequency at two different Ts to get the
recoil frequency, following the procedure discussed in Section 3.6. Unfortunately we noticed
that there is a pulse separation time T dependent phase at about 10 mrad level (about 1/10
of the diffraction phase), shown as blue data points in Figure 4.7, which prevented us from
proceeding toward precision measurement as it posed an parts-per-billion level uncertainty.
Part of it is from diffraction phase, and another part is related to the speckle pattern of the
beam. The details of these two sources will be further discussed in Chapter 5. There might
be more sources unknown so we call it anomalous phase.

Since we cannot well calculate or measure this anomalous phase to the precision we need,
our strategy is to suppress it until its relative uncertainty is no longer important at the
accuracy we want. Bloch oscillations are one of the key solutions. As we have simulated in
Section 2.7, Bloch oscillations will further increase velocity separation of two interferometers
during the dual-frequency Bragg diffraction at the last two pulses, thus suppressing crosstalk
from non-resonant frequencies. It is also experimentally verified to be effective shown as the
orange points in Figure 4.7. Bloch oscillations at the same time also significantly boost the
overall phase we measure. So the relative uncertainty of the anomalous phase is further
suppressed.
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Figure 4.8: Ramsey Bordé atom interferometer contrast vs. pulse separation time T. Mode
cleaning techniques have been applied. Other conditions are indicated in the legend.

Another method is to clean the mode of the beam to reduce the speckle phase. Speckle
phase was identified when we observed significant change in the anomalous phase vs. T
pattern by changing the Bragg fiber port to a larger one. Based on that insight, we did
further investigation of the beam and discovered that the beam profile is only close to
Gaussian when r < w. It significantly deviates from Gaussian beyond 1 waist. One idea to
clean the mode is to filter atoms transverse velocity so that only the center part of atoms will
contribute to interference signals. We started it by using a separate thinner Raman beam
for state preparation. And we also shrink the detection beam size as well as detector size by
pinholes. In this way only atoms with small transverse velocity will be read out. Another
way is to directly clean the mode of the Bragg fiber port. To this end, we used an Thorlabs
Gaussian apodizing filter NDYR20A to suppress the speckle pattern. It was proved to be
also very effective. Even without Bloch oscillations, it is able to suppress the anomalous
phase by a factor of 5 shown as the green points in Figure 4.7. Since the apodizing filter
effectively shrinks the Bragg beam from about 6 mm to 3 mm, it can be functioning well as
the thin Raman beam and there is no need for a separate thin Raman beam any more. With
both Bloch oscillations and the beam cleaning technique, we were able to suppress it below
3 mrad at its peak. Surprisingly we also discovered further improvement in interferometer
contrast through mode cleaning. We were able to extend the Bloch order to beyond N=200.
The maximum measurable phase we could achieve is realized at Bragg order n=5, Bloch
order N=200, pulse separation time T=60 ms, yielding a total of 12 Mrad. It allows us to
further suppress the relative uncertainty of the anomalous phase below 0.04 ppb [8]. More
data of contrast vs. T with mode cleaning is shown in Figure 4.8. It is to be noted that
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Figure 4.9: Moore’s law of our atom interferometer performance

at large Bloch oscillations, the contrast of the lower interferometer (X-contrast in the plot)
tends to be the bottleneck of signal to noise ratio in the measurement. So these contrasts
are also included in the plot. And all other contrasts mentioned before and plotted here are
exclusively the contrast of the upper interferometer (Y-contrast).

With all these innovations and progresses over the year shown as ”the Moore’s law” in the
Figure 4.9, we eventually reach the level of precision as well as accuracy for the measurement
of the fine-structure constant below 0.25 ppb.

4.3 The Fine-Structure-Constant Measurement

Data

We started data taking for α measurement since Dec 2016 when our system reaches
sensitivity and control of systematic errors required. The data taking lasts for a span of 7
months. All the data taken has Bloch oscillations with order ranging from 125 to 200 in
order to control anomalous phase. Here to visualize how the detected data looks like, we
plot a few data traces with different Bloch orders shown in Figure 4.10 (A). In the presence
of Bloch oscillations, atoms participating in interferometer move further and further away
on both side. There is up to 800~k momentum difference between the two interferometer,
resulting in up to 1.7m difference at the time of detection. There are in total 28 datasets
included in the measurement as shown in Figure 4.10 (C). Each dataset has roughly 1 day
of data. We alternate among different pulse separation time Ts for each dataset in order to
average down the anomalous phase at the same time. Most datasets have 6 different Ts; 9
datasets have 3 Ts; 4 datasets have 4 Ts. All Ts are chosen within the set T={5 ms, 10 ms,
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Figure 4.10: Data to characterize the system and to measure the fine-structure constant. (A)
Detected fluorescence with various Bloch oscillations orders. For visibility, an arbitrary offset
is applied for each trace. Data were taken at T=5 ms. (B) A sample of interference ellipses
used for the measurement. Data were taken at n=5, N=125, T=5, 20, 40, 80 ms. (C) Actual
α measurement result. Each point shown is the measured value from each dataset.The pink
band represents the overall ±1σ statistical error. These three figures are directly taken from
reference [8].

20 ms, 30 ms, 40 ms, 60 ms, 70 ms, 75 ms, 80 ms}. A sample of interference ellipse data of a
dataset at Bragg order n=5, Bloch order N=125 and T=5, 20, 40, 80 ms is shown in Figure
4.10 (B).

As described in Section 3.6, each dataset contains a list of instruction entries. Each
instruction entry would change the pulse separation time T. After a cycle of entire instruction
entries, it repeats itself over and over again. In order to minimize anomalous phase, we
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intentionally add different Tdelay to the sequence so all the second and the third pulses
happen at the same time for all Ts. The reason to alternate among different Ts instead of
taking different Ts at different times is to avoid biased result due to diffraction phase drift.
Suppose the average ellipse phase ((Φd+ + Φd−)/2) for the ith repeat of the instruction entry
with T = Tj is Φd,ij. Based on the phase equation for Ramsey Bordé atom interferometer,

Φd,ij =− 2nTjωm(1 +
v2

c
) +

gnTj(Tj + 2T ′1 + 2T ′2)ωm
c

− 2n2~k2
L

M
Tj
ωm
ωL

(4.1)

+ 8n(n+N)
~k2

L

M
Tj

[
1 +

γ

12

[ n

n+N

(
2T 2

j + 3TjT
′
2 + 3(T ′1 + T ′2)2

)
(4.2)

+
2N

n+N

(
T 2
j + 3Tj(T

′
2 −

NTB
2

) + 3T ′2(T ′2 −NTB) + (N2 − 1

4
)T 2

B

)]]
(4.3)

+ Φsys
ij + Φsys

0 + φdiff
i (4.4)

where v2 = v0− gT is the velocity of non-diffracted atom at the second pulse; ωL, kL are an-
gular frequency and wave number of specified laser frequency; Φsys

ij is the real-time systematic

uncertainty correction term; Φsys
0 is the overall systematic uncertainty correction term; φdiff

i

is the diffraction phase for the ith repeat. All other parameters are defined in the same way
as in Section 2.6. Due to the scheme to align the second and the third pulse, v2 is a constant
within a dataset that can be calculated by Bragg frequency and gravity ramp. ωL, kL are not
the real laser frequency and wavenumber. They are a close estimation as an unperturbed
number put into the model. Real laser frequency and wave number correction will be added
into systematic correction terms. Suppose if we have n repeats and m Ts, there would be
in total n × m equations. All parameters in the equation could be determined as a input
measurement parameter or separate systematic measurement, except n + 1 undetermined
variables, i.e. h/M and all diffraction phase terms φdiff

i . In this overdetermined system, we
use Levenberg-Marquardt method to find out the mean value and error of each of them. The
reason why we make n different diffraction phase is to take into account possible drift in it,
which is more realistic in the real experiment. In practice we use FMINUIT developed by
CERN [100] to carry out this optimization to obtain the mean and statistical uncertainty of
h/M for each dataset.

It is to be noted that some systematic uncertainties are measured in the real time with
monitors. Typically those systematic uncertainty would drift significantly beyond the uncer-
tainty we want throughout the experiment. Since we cannot control them that accurately,
we have to keep monitoring and apply correction in real time. Those corrections will be
included in the term Φsys

ij . Systematics like laser frequency, beam alignment are being mon-
itored in real time to provide information to calculate Φsys

ij . Other systematics that won’t
drift will be subtracted in the overall systematic phase Φsys

0 . How to calculate the systematic
correction and uncertainties would be the topic to discuss in Chapter 5.

With this algorithm we got 28 measurements of α with specified errorbars shown in
Figure 4.10 (C). The mean value of measured α is obtained by weighted average of all
28 measurements. The overall ±1σ is shown as the pink band in Figure 4.10 (C). The
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Figure 4.11: Residual phase from α measurement data vs. pulse separation time T. It is
adapted from reference [8]. It is used to estimate speckle phase systematic uncertainty in
Section 5.2

reduced χ2 for the combined data is 1.2, with a p-value of 0.2. h/M is measured to be
3.0023694721(12)× 10−9 m2/s, with a relative statistical uncertainty of 0.16 ppb. Note that
this value of h/M has corrected all systematic effects as this is part of the procedure of
Levenberg-Marquardt method mentioned above. We also plot the overall residual at each T
in Figure 4.11 to test if there is still persisting anomalous phase. We see that the anomalous
phase is unresolved under the statistical uncertainty, which enters into the error budget with
only 0.04 ppb uncertainty. More details will be discussed in Section 5.2.

Blind Analysis

One of the caveat for precision measurement is that measurement in the past could
bias experimenters when they analyze data and systematic uncertainty in the way trying
to make it “consistent” with previous measurement. Specifically even if people are totally
honest, they could be subjectively biased to decide which dataset to use and which not to use
and which systematic effect to include or not. What typically happens is that people stop
looking for more systematic effects when the result is “close” enough to the previous one.
The general treatment here is blind analysis. Typically people add a “random” number that
is blind to all experimenters somewhere in the experiment so that no one is able to determine
the measured value unless this number is given. We asked Prof. Rana Adhikari from Caltech
to add a random frequency uniformly distributed in the range from -1 MHz to +1 MHz to
the laser frequency vs. spectroscopy monitor power calibration function which we use to
determine laser frequency systematic uncertainty and add correction to the measurement
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(more details will be covered in Section 5.3). And he obfuscated this blinded calibration into
a Matlab p-code to prevent experimenters from deciphering the random number. But the
experimenters are allow to calculate the measured value to test if there is any mistake in the
experiment procedure. But there is an uncertain error of ±3 ppb added to the result. So in
this way we cannot bias the result at sub-ppb level.

In order to reduce the chances of human error, two independent data analysis codes,
with different fitting algorithms were used. These two codes gave the same result for the
fine-structure-constant given the same raw data. After all data were taken and analyzed,
we “unblind” it with the random offset provided by Prof. Adhikari. The result was then
submitted for publication without further modification, other than the correction of a typo
in the phase calculation and the addition of an analysis of a new systematic effect reported
recently [101]. This effect will be reported in Section 5.4.
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Chapter 5

Alpha Measurement - Systematic
Uncertainties

5.1 Overview of Systematic Uncertainties

We have reported our α measurement with 0.16 ppb statistical uncertainty in Chapter
4. It’s not enough for an accurate determination of α yet. It’s as important to analyze all
relevant systematic effects to correct our measurement value and assign systematic uncer-
tainties. There are already a few well known systematic effects common in Ramsey Bordé
atom interferometers as in the LKB Rubidium h/M measurement, such as laser frequency,
gravity gradient, Gouy phase, Zeeman effect, AC Stark light shift and so on. Some of them
like Zeeman effect and AC Stark light shift are highly suppressed in our systems of Simulta-
neously Conjugated Interferometer (SCI) with Bragg diffraction as beam splitters. But a few
new systematic effects such as the diffraction phase arise in our specific experiment. Though
major component of the diffraction phase can be eliminated by fitting recoil frequency vs.
T−1 (T is pulse separation time) data at multiple different Ts, there are T-dependent com-
ponents called anomalous phase in the previous chapter in need to be properly addressed.
Some of these systematic effects will drift over the course of the experiment. In this case we
set monitors in real time to monitor those values and correct them in the phase term Φsys

ij .
Some of them won’t drift so we assign an overall correction in the phase terms Φsys

0 . Some
of them are quite small and it’s not necessary to evaluate the exact correction so we only
assign a conservative uncertainty. Here are all the relevant systematic effects as well as the
measurement listed in the error budget below. With measurements of electron mass, Cesium
mass and Rydberg constant from other groups we have demonstrated a measurement of the
fine-structure constant to 0.20 ppb overall uncertainty.

In the rest of the chapter, we will discuss each systematic uncertainties in their categories
such as systematic effects due to spatial fields gradient, due to correction in the effective laser
wavenumber, or due to the diffraction phase. Some small yet important systematic effects
will be lumped together into Miscellaneous systematic effects.
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Effect Direct Measured Value δα/α(ppb)

Laser frequency (Section 5.3) real time monitoring −0.24± 0.03
Acceleration gradient (Section 5.2) γ = (2256± 14) E −1.79± 0.02

Gouy phase (Section 5.4) N/A −2.60± 0.03
Beam alignment (Section 5.3) real time monitoring 0.05± 0.03

Bloch oscillations light shift (Section 5.6) N/A 0.000± 0.002
Density shift (Section 5.6) N/A 0.000± 0.003

Index of refraction (Section 5.3) N/A 0.00± 0.03
Speckle phase shift (Section 5.2) N/A 0.00± 0.04

Sagnac effect (Section 5.6) N/A 0.000± 0.001
Modulation frequency wavenumber (Section 5.6) N/A 0.000± 0.001

Thermal motion of atoms (Section 5.5) N/A 0.00± 0.08
Non-Gaussian waveform (Section 5.5) N/A 0.00± 0.03
Parasitic interferometers (Section 5.5) N/A 0.00± 0.03

Total systematic uncertainty N/A −4.58± 0.12
Statistical uncentainty (Section 5.3) h/M = 3.0023694721× 10−9 m2/s ±0.16

Electron mass [1, 15] me = 5.4857990907× 10−4 u ±0.020
Cesium mass [16] mCs = 132.9054519615 u ±0.030

Rydberg constant [1] R∞ = 1.0973731568508× 107 m−1 ±0.003

Total uncertainty in α α−1 = 137.035999046 ±0.020

Table 5.1: Error budget of the fine-structure-constant measurement. Related measurements
are listed in the second column. And relative systematic corrections and uncertainties in α
are listed in the third column. 1 E= 10−9 s−2. u is atomic mass unit.

5.2 Spatially Dependent Potentials

Spatially varying potentials may cause phase shift in Ramsey-Bordé atom interferome-
ter, significantly contributing to the systematic uncertainty of our fine-structure constant
measurement. There are potentials well known to us such as gravity gradient and magnetic
fields. There are also sources not well known and studied, which results in anomalous phase
as a function of pulse separation time T as we mentioned earlier. Speckle phase is one of
this type. We will discuss each type in a little bit more details.

Gravity Gradient

As we have shown in the earlier chapter, though phase from gravity would be cancelled
in the Ramsey Bordé Simultaneously Conjugated Interferometer (RB-SCI) in the differential
mode phase, gravity gradient remains in the phase formula (Equation 2.146). It results in a
phase shift of more than 10 mrad or a few ppb in α. So it is an important phase we need to
measure and understand well. Based on the definition of the matter wave Lagrangian, the
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Figure 5.1: Dual Mach Zehnder atom interferometer phase vs. pulse separation time T
measurement from one dataset. Data were taken at n = 5, N = 125, T ′1=5 ms, T ′2=45 ms.

gravity gradient can be related to γ as

γ = −dg
dz

(5.1)

where g is the magnitude of the gravitational acceleration. Gravity gradient can be directly
measured by setting up a dual Mach-Zenhder atom interferometer as shown in Figure 2.19.
The dual Mach-Zenhder atom interferometer consists of five pulses. There are three π/2
pulses for Mach-Zenhder interferometer itself. A Bragg and a Bloch pulses are used to
split the initial atom cloud into two and further accelerate them apart from each other so
that they are sufficiently spatially separated before the interferometer sequence. After the
interferometer, we use the same ellipse fitting technique to get the differential phase between
the two interferometers. The differential phase could be calculated theoretically (Equation
2.137) as

Φd = −2nT 2rm+
8gn(n+ 2N)T 2ωr

c
+8nT 2γωr(n(T +T ′1 +T ′2)+N(2T −NTB +2T ′2)) (5.2)

where pulse timing T , T ′1, T ′2 are defined in Figure 2.19; TB is one Bloch oscillation period;
N is the Bloch order; n is the Bragg order; rm is the additional ramp rate added to make
ellipse phase closer to 90◦. We alternate rm between rm± = ± π

4nT 2 in the same way as we
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Figure 5.2: Overall gravity gradient measurements. The red band indicates the mean value
and ±1σ.

modulate ωm in the Ramsey Bordé interferometer. Since there is a minus sign before the
ramp rate term, when we get the average (Φd++Φd−)/2 from the program, we need to add an
additional minus sign such that we won’t get a γ with the wrong sign. (γ should be positive
based on Newtonian gravity theory.) We took 10 datasets in January 2017 and April 2017,
interspersed within the entire fine-structure constant data taking period. Data were taken at
N = 125, T ′1 +T ′2=50 ms, with pulse separation time varying from 60 to 100 ms. We chose a
few Ts for each dataset to fit γ. One such dataset is shown in Figure 5.1. And we calculated
the weighted average of all 10 datasets shown in Figure 5.2 and get γ = (2256± 14)E where
1E = 10−9 s−2.

Magnetic Fields and Zeeman Effect

Similarly, magnetic fields could cause phase shift by a spatially varying force gradient.
More specifically, magnetic fields are coupled into the system through Zeeman effect. Consid-
ering the hyperfine interaction Hamiltonian Hhfs and magnetic fields coupling Hamiltonian
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HB [42],

Hhfs =AhfsI · J +Bhfs

3(I · J)2 + 3
2
I · J − I(I + 1)J(J + 1)

2I(2I − 1)J(2J − 1)
(5.3)

HB =
µB
~

(gJJ + gII) ·B (5.4)

Only in small fields approximation can we use the magnitude and z-component of F =
J + I as a good quantum number. In general we need to diagonalize the total Hamiltonian
numerically. But in the case where J = 1/2, there is a analytical formula called Breit-Rabi
formula [102, 42], which well applies to the hyperfine ground states of alkali D transition.

E|J= 1
2
mJ I mI〉 = − ∆Ehfs

2(2I + 1)
+ gIµBmB ±

∆Ehfs

2

(
1 +

4mx

2I + 1
+ x2

) 1
2

(5.5)

where the hyperfine splitting ∆Ehfs = Ahfs(I + 1/2), m = mI ±mJ = mI ± 1/2, and

x =
(gJ − gI)µBB

∆Ehfs

(5.6)

Specifically we select mF = 0 Zeeman states to avoid linear Zeeman effect. But there is
non-zero second-order Zeeman effect, i.e.

E|F mF=0〉 = − ∆Ehfs

2(2I + 1)
± ∆Ehfs

2
(1 +

1

2
x2) (5.7)

The plus sign is for |F = 4〉 and the minus sign for |F = 3〉. Applying it to the state
|F = 3,mF = 0〉 we use for our interferometer, we get

E|F=3,mF=0〉(2nd-order Zeeman) = −(gJ − gI)2µ2
B

4∆Ehfs

B2 (5.8)

If we Taylor expand magnetic field squared as a function of vertical location z, we get

B2 = B2

∣∣∣∣
z=0

+ 2B
∂B

∂z

∣∣∣∣
z=0

z +

((∂B
∂z

)2

+B
∂2B

∂z2

)∣∣∣∣
z=0

z2 +O(z3) (5.9)

So the overall energy is

E = E0 −
1

4

g2
Jµ

2
B

∆Ehfs

(
2B

∂B

∂z

∣∣∣∣
z=0

z +

((∂B
∂z

)2

+B
∂2B

∂z2

)∣∣∣∣
z=0

z2

)
(5.10)

The Lagrangian of Zeeman effect can be mapped to that of gravity gradient defined in section
with

g → − 1

2m

g2
Jµ

2
B

∆Ehfs

B
∂B

∂z

∣∣∣∣
z=0

(5.11)

γ → 1

2m

g2
Jµ

2
B

∆Ehfs

((∂B
∂z

)2

+B
∂2B

∂z2

)∣∣∣∣
z=0

(5.12)
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where m is the mass of the Cesium atom. In fact, we used 3 layers of magnetic field shields
to minimize residual magnetic fields inside the tube where we perform atom interferometer
(see Figure 3.3). The remaining magnetic field inside is mostly from the solenoid we used
to define the quantization axis, which is about 0.3 G. Even if there is any residual left,
our Simultaneous Conjugated configuration helps eliminate the linear gradient components.
Eventually only the second-order gradient or gradient squared will enter into the final phase.
But it will be taken cared of by gravity gradient measurement.

As an independent verification, we also took data with solenoid bias B-fields of 0.38 G
and 3.7 G. The measured recoil frequencies are within 1σ (1.4 ppb). This puts an upper-
bound on any systematic due to the bias magnetic fields at 0.014 ppb. (We don’t separately
report this part as it has been included in the gravity gradient measurement.)

Speckle Phase and Others

As we mentioned earlier, we observed pulse separation time T dependent anomalous
phase in the phase residuals as shown in Figure 4.11. Speckle phase, diffraction phase
and gradient of gravity gradient and so on could be the source of it. We don’t have full
knowledge of this type of systematic uncertainty. But thanks to Bloch oscillations and beam
cleaning techniques, we were able to suppress it below resolution of statistical uncertainty.
Though there is no clear evidence that a statistically resolved residual remains, to be more
conservative, we implement a stochastic model following the residual distribution to estimate
the potential shift it causes in α. It causes a shift less than 0.04 ppb of α at ±1σ confidence
level.

5.3 Effective Wavenumber Correction

Another type of systematic effects affects our measurement through shifting the effective
wavenumber k used in the recoil frequency definition.

ωr =
~k2

2M
(5.13)

This type includes systematic effects due to laser frequency, beam alignment, index of re-
fraction and Gouy phase. Since the discussion of Gouy phase is quite lengthy, we put it into
a separate section.

Laser Frequency

Laser frequency directly determines what wavenumber k we should use to extract h/M .
In theory the effective laser frequency to determine the effective wavenumber k = (k1 +k2)/2
is

f =
kc

2π
= fDiode1 + fδ + fAOM14 + fAOM15/2 (5.14)
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where k1, k2 are wavenumbers of Bragg beams going up and down respectively. All other
definitions can be found in Table 3.6. We typically lock the reference laser to Cesium D2

F = 3 → F ′ = 4 transition line. Frequencies of AOM14 and AOM15 are chosen to be 80
MHz and 180 MHz respectively. The single photon detuning for our fine-structure constant
measurement is chosen to be 14 GHz. So putting those data in, the theoretical laser frequency
could be determined as

fth = 351.7309021 THz + 14.17 GHz (5.15)

But in reality, there is always an offset frequency added on

fexp = fth + foffset (5.16)

We need to control its drifting and measure it accurately below 0.1 ppb level. In order to
suppress its drift, all RF and microwave frequencies used in this experiment is phase locked to
a 10 MHz reference signal. The 10 MHz reference signal is locked to a Rubidium atom clock
SRS FS725 [73]. The Rubidium clock in the long term is corrected by Global Positioning
System (GPS) clocks as well. Based on references [73, 103], it’s able to provide short-term
precision better than 2 × 10−11 in a second and long-term stability better than 10−12 in a
day, which is sufficient for our experiment. However, drift at 0.1 ppb level still remains due
to reference laser (Diode1) spectroscopy. In order to control it below 0.1 ppb accuracy, we
need to have a way to monitor the laser frequency in real-time. Since RF and microwave
frequencies are ultra-stable, we can measure fδ, fAOM14, fAOM15 occasionally with a counter.
They can be measured with accuracy better than 1mHz accuracy. For fDiode1, we send part
of the repump power after TA1 to beat with a Titanium Sapphire based frequency comb
(Menlo System FC8004 [104]). The frequency comb generates comb lines at frequencies [105,
106]

fnth comb line = nfrep + fcomb offset (5.17)

The Ti:Sa laser is mode-locked at a repetition rate of 200 MHz. Then it is sent to a photonic
crystal fiber to broaden the spectrum so that it covers a whole octave of frequency range.
Part of it is doubled by a crystal to beat with the original so that the beat frequency is

foffset beat = (2mfnth comb line + 2fcomb offset)− nfrep − fcomb offset (5.18)

After proper low-pass filtering, it gives exactly the comb offset frequency. Knowing both
repetition frequency and offset frequency, it becomes a powerful tool to measure any laser
frequency within its spectrum. So we beat the repump frequency with the comb to measure
the reference laser frequency as

fDiode1 = nfrep + fcomb offset + ∆f (5.19)

Ideally we could use the comb to monitor the laser frequency in real time. But it doesn’t work
as reliably as we want. However, we noticed a correlation between the signal of a spectroscopy
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Figure 5.3: Comb calibration raw data from three measurements and the fitted calibration
model

power monitor and the locked laser frequency. We use it to establish a calibration shown in
Figure 5.3 as

foffset =
1019 kHz

39.9× (Pspectroscopy

1V
) + 4.04

+ 41.4 kHz + fX (5.20)

where fX is the blind parameter we asked Prof. Adhikari to generate for us for blind analysis.
After full unblinding, fX = 0. In this way by real-time monitoring the spectroscopy signal,
we can get a real-time information of laser frequency to apply a dynamic correction to the
atom interferometer phase. More specifically, in Equation 4.1 for data analysis, we set kL to
be 2πfth/c. And the frequency offset can be added into the dynamic correction term Φsys

ij as

Φsys, laser freq
ij = 32πn(n+N)

~kL
Mc

Tjfoffset (5.21)

where foffset is given above by Equation 5.20. The uncertainty of this approach could be
evaluated by evaluating the standard deviation of the comb calibration residual, which is
found to be better than 10 kHz (or equivalently 0.03 ppb in α). As a result, we assigned the
systematic uncertainty from laser frequency to be −0.24± 0.03 in δα/α.
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Beam Alignment

Misalignment of the retro-reflected Bragg beam could cause effective wavenumber to
change. If there is a small angle θ between the input and reflected Bragg beam, the effective
wavenumber would be shifted by

δk =
1

2

√
(~k1 + ~k2)2 − 1

2
(k1 + k2) = −1

2

k1k2

k1 + k2

(1− cos θ) ≈ −1

8
kθ2 (5.22)

We set a photodetector to pick up the back-coupling light of the retro-reflected beam after
the original Bragg fiber. Then we can use a piezoelectric transducer installed on the retro-
reflection mirror to calibrate the tilt angle as a function of the relative back-coupling efficiency
η = Pback coupling/Pback coupling, max, which is given as [62]

|θ| =
√
− ln η · 50.4 µrad (5.23)

Thus by monitoring the back-coupling efficiency in real time, we can apply a dynamic cor-
rection to the measurement by

Φsys, beam alignment
ij = −2n(n+N)

~k2
L

M
Tjθ

2 (5.24)

The systematic uncertainty of this one is assigned by the standard error of the monitored
back-coupling efficiency in the time span of a data bin, which is 0.03 ppb in α. Retro-reflect
mirror ramp for Coriolis compensation will also contribute to this systematic effect. But
since it makes a reduction of the relative efficiency by less than 50%, using this formula we
can get another bound of 0.01 ppb. Adding them in quadrature, we assign this systematic
uncertainty to be 0.05± 0.03 ppb in δα/α.

Index of Refraction

The vacuum in our chamber is not pure vacuum. Due to the presence of background
Cesium atoms, the index of refraction is not exactly 1. An effective index of refraction will
shift the effective wavenumber by

δk

k
= n− 1 (5.25)

The index of refraction near resonance can be solved by Maxwell-Bloch equations. It’s the
semiclassical treatment of classical electromagnetic fields and quantum atomic transitions.
Based on Maxwell equations in dielectrics, the index of refraction can be calculated by [64]

n =
c

v
=

√
εµ

ε0µ0

≈ √εr =
√

1 + χ (5.26)

where χ is electric susceptibility defined by the relation between electric field and polariza-
tion.

P = ε0χE (5.27)
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In the microscopic view, polarization comes from induced dipole moments of particles under
electric field, i.e.

P =
1

V

∑

i

di = ρ 〈d〉 (5.28)

where ρ is the particle density. In our context, the dipole moment comes from atoms, which
can be calculated by optical Bloch equations. Optical Bloch equations are ”Schrödinger”
equation of density matrix for a two-level system. It’s not exactly identical since density
matrix can be used to describe both pure and mixed quantum states, while Schrödinger
equation can only used to applied to pure quantum states. Using the same rotating frame
defined in Section 2.2,

|Ψ̃〉 = e−i
σz
2
ωt |Ψ〉 (5.29)

where σz is the z-component of Pauli matrix. We can get optical Bloch equations for the
dynamics of density matrix ρ̃ = |Ψ̃〉 〈Ψ̃| with spontaneous decay channels added in [40].

ρ̇gg =
iΩ

2
(ρ̃ge − ρ̃eg) + Γρee (5.30)

ρ̇ee =− iΩ

2
(ρ̃ge − ρ̃eg)− Γρee (5.31)

˙̃ρge =− (
Γ

2
+ i∆)ρ̃ge −

iΩ

2
(ρee − ρgg) (5.32)

The steady-state solution for ˙̃ρ = 0 at t→∞ gives

ρ̃eg =− iΩ

Γ

1 + i2∆
Γ

1 + 4∆2

Γ2 + 2Ω2

Γ2

(5.33)

ρ̃ge =ρ̃∗eg (5.34)

(5.35)

For a single atom, the expectation value of the dipole moment is

〈d〉 = tr(ρd) = ρeg 〈g|d|e〉+ ρge 〈e|d|g〉 (5.36)

Based on the definition of the Rabi frequency Ω = 1
~ 〈g|d|e〉 · E and the relation ρeg =

ρ̃eg exp(−iωt), we have the following relation between the induced dipole moment and electric
filed

〈di〉 = − i

~Γ

1 + i2∆
Γ

1 + 4∆2

Γ2 + 2Ω2

Γ2

〈e|dj|g〉 〈g|di|e〉Ejeiωt+
i

~Γ

1− i2∆
Γ

1 + 4∆2

Γ2 + 2Ω2

Γ2

〈g|dj|e〉 〈e|di|g〉Eje−iωt

(5.37)
where index j follows the summation rule. In general, as we see, the polarizability constant
α is a tensor (defined by 〈d〉 = αE). But for isotropic media like atomic gas considered
here, non-diagonal elements are all zero and three diagonal elements are the same, i.e.

〈e|dj|g〉 〈g|di|e〉 =
1

3
δij| 〈g|di|e〉 |2 (5.38)
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Now we can come back to the macroscopic polarization and separate positive frequency
component E+ = Ee−iωt from the negative frequency component E− = Eeiωt, and it yields

P =
1

2
(P+ + P−) = ε0(χE+ + χ∗E−) (5.39)

where the complex susceptibility is given as

χ = 2ρ
i| 〈g|d|e〉 |2

3ε0~Γ

1− i2∆
Γ

1 + 4∆2

Γ2 + 2Ω2

Γ2

(5.40)

So the index of refraction for E+ = E0 exp(i(kx− ωt)) is

n =
√

1 + χ ≈ 1+ρ
| 〈g|d|e〉 |2

3ε0~Γ2

2∆

1 + 4∆2

Γ2 + 2Ω2

Γ2

+ρ
| 〈g|d|e〉 |2

3ε0~Γ

i

1 + 4∆2

Γ2 + 2Ω2

Γ2

= nR+inI (5.41)

Applying the index of refraction to the original electric field, we can get the dispersion and
absorption expression of the electric field in the media,

E+ = E0e
−knIz+i(knRz−ωt) (5.42)

In the case of our experiment, our laser frequency is far detuned from single photon resonance.
The formula could be further simplified as

δk

k
= nR − 1 = ρ

| 〈g|d|e〉 |2
6ε0~∆

=
ρσ0Γ

4k∆
=
ρλ3

D2

16π2

2J ′ + 1

2J + 1

Γ

∆
(5.43)

where we have used the relation between the natural linewidth and dipole moment matrix
elements [42]

Γ =
2J + 1

2J ′ + 1

ω3
0

3πε0~c3
| 〈g|d|e〉 |2 (5.44)

and the definition of the on-resonance cross section σ0,

σ0 =
~ω0Γ

2Isat

(5.45)

Isat =
cε0Γ2~2

4|ε̂ · d|2 (5.46)

For Cesium D2 line, the natural linewidth Γ = 2π · 5.2227 MHz, and in the experiment we
set the single photon detuning ∆ = 2π · 14 GHz for the Bragg beam. An estimate of 106

atoms/cm3 can be made as an upper density bound for cold Cesium atoms, which gives
n − 1 = 0.003 ppb. For background atoms, a very conservative bound was made to be 107

atoms/cm3 [8], which can set a bound of 0.03 ppb in α. Adding these two in quadrature, we
can bound of this systematic uncertainty conservatively to 0.03 ppb.
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5.4 Gouy Phase

The name Gouy phase comes from a term in the Gaussian beam phase factor. The
electric field of a Gaussian beam can be written as [107]

E(r, t) = E0
w0

w(z)
exp

(
− r2

w(z)2

)
exp

(
i
(
kz + k

r2

2R(z)
+ ψ(z)

))
(5.47)

where the radius of the beam w(z) can be related to beam waist w0 by

w(z) = w0

√
1 +

( z
zR

)2

; (5.48)

the Rayleigh range zR is given as

zR =
πw2

0

λ
; (5.49)

the radius of curvature which characterize the spherical wavefront is

R(z) = z

[
1 +

(zR
z

)2
]
; (5.50)

and the last term ψ(z) is the so-called Gouy phase given as

ψ(z) = arctan
( z
zR

)
. (5.51)

This Gouy phase comes from on-axis (r = 0) effective k change due to wavefront curvature.
Another phase term called curvature phase,

k
r2

2R(z)
(5.52)

would also enter into the systematic uncertainty when atoms are off-axis (r > 0). These
terms could potentially contribute to a few ppbs of systematic uncertainties so we need to
measure and characterize the beam well.

Beam Characterization

In the past, the beam coming out from an optical fiber was assumed to be a well-defined
Gaussian, so basic razor blade measurements would be sufficient to determine the waist.
Recently we noticed that the real beam is significant deviated from the Gaussian beam
by Thorlabs scanning-slit beam profiler BP209-VIS and CCD beam profiler BC106N-VIS.
So Gaussian model won’t be sufficient to characterize beam profiles. We try to use a more
generalized model, a Hermite-Gaussian model to fit the scanning-slit data as shown in Figure
5.4. The electric field of Hermite-Gaussian mode can be written as [107]
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Figure 5.4: Beam profile measured by scanning-slit device. Data were taken at 4 inches
out of the fiber port. The Hermite-Gaussian model is obtained by fitting all the data with
consistent parameters up to the 2nd order.

El,m(x, y, z) = E0
w0

w(z)
Hl

(√2x

w(z)

)
Hm

(√2y

w(z)

)
exp

(
−x

2 + y2

w(z)2

)
exp

(
i
(
kz+

kr2

2R(z)
+ψl,m(z)

))

(5.53)

where new Gouy phase term ψl,m = (l + m + 1) arctan
(

z
zR

)
and Hl(x) is the lth order

Hermite polynomial. We have used the beam profile from scanning slit data to fit a 2D
Hermite Gaussian function up to 2nd order. Since the scanning-slit data gives independent
x-scan, and y-scan beam profile, we can fit them independently while restricting the overall
parameters like w(z), R(z) to be the same. So the fitting model can be written as

E(x) =c0xE0(x) + c1xE1(x) + c2E2x(x) (5.54)

E(y) =c0yE0(y) + c1yE1(y) + c2E2y(y) (5.55)

where

Em(x) =Ex0

( w0

w(z)

)2

Hm

(√2x

w(z)

)
exp

(
− x2

w(z)2

)
(5.56)

Em(y) =Ey0

( w0

w(z)

)2

Hm

(√2y

w(z)

)
exp

(
− y2

w(z)2

)
(5.57)

We have measured the beam profile at 4”, 30”, 60”, 148”, 184”, 217” from the fiber port
and a sample of them along with its fitting curve is shown in Figure 5.4. The overall fitting
results gives w0 = 2.29 mm, z0 = 1.59 m, zR = 19.33 m.

Though it fits well to the overall shape of the beam, it’s not accurate enough yet for real
Gouy phase calculation for atom interferometer. In a more generalized Gouy phase theory
below, we will see not only the overall structure but also small-scale structure matters.
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Generalized Gouy Phase

Based on our beam profile measurement from scanning slit and CCD, we know that our
Bragg beam is not quite Gaussian. In this case, how can we evaluate Gouy phase systematic
uncertainty? In general for an electromagnetic wave, it satisfies the wave equation,

∇2U − 1

c2

∂2U

∂t2
= 0 (5.58)

where U could be any component of electric fields or magnetic fields. If we put the phase
factor in such that U = A(r)ei(kz−ωt), assuming the laser beam satisfies paraxial condition
where

∂A

∂z
�kA (5.59)

∂2A

∂z2
�k2A (5.60)

then we can get the paraxial wave equation [107]

∇2
TA+ 2ik

∂A

∂z
= 0 (5.61)

where ∇2
T = ∂2

∂x2 + ∂2

∂y2 . Based on this equation we can try to calculate the correction it makes

to the effective k due to Gouy phase and wavefront curvature. Suppose A(r) = A0 exp(iφ),
then the correction made to the wavenumber k can be calculated as [101]

δk =
∂φ

∂z
(5.62)

=Im
( ∂
∂z

(ln(A0e
iφ))
)

=Im
( 1

A

∂A

∂z

)

=
1

2k
Re
(∇2

TA

A

)
(5.63)

This correction has included Gouy phase, curvature phase, as it can be shown in the case of
the Gaussian beam. If we plug in the Gaussian beam field amplitudeA = A0 exp(− r2

w2 ) exp(i(kz+

k r2

2R
+ ψ(z))), this formula gives

δk =
1

2k
(− 4

w(z)2
+

4r2

w(z)4
− k2r2

R(z)2
) (5.64)

which gives exactly the same contribution from Gouy phase (the first term) and the curvature
phase (the last two terms) defined in the traditional way.



CHAPTER 5. ALPHA MEASUREMENT - SYSTEMATIC UNCERTAINTIES 139

Monte Carlo Simulation

The overall phase contribution from the generalized Gouy phase of each pulse can be
calculated as

δΦd =4n2ωrT
δk↑2 + δk↓2

k
+ 2n2ωrT

δk↑3l + δk↓3l + δk↑3u + δk↓3u
k

+ 4nNωrT
δk↑Bl + δk↓Bl + δk↑Bu + δk↓Bu

k
+ 4n(n+N)ωrT

δk↑4l + δk↓4l + δk↑4u + δk↓4u
k

+ 2nωr(nT
′
1 + nT ′2 + 2NT ′2)

δk↑4l + δk↓4l + δk↑4u + δk↓4u − δk↑3l − δk↓3l − δk↑3u − δk↓3u
k

+ 8nNωrT
′
1

δk↑2 + δk↓2 − δk↓1 − δk↑1
k

(5.65)

where δk
↑/↓
ij represents the generalized Gouy phase effective k shift due to the ith pulse acting

on the j = {upper (u) or lower (l)} interferometer by the upgoing (↑) or downgoing beam
(↓). Note that both upper and lower interferometers overlap during the first or the second
pulse so no specific j is labelled.

Here we have used the CCD beam profiler to measure both upgoing and downgoing beam
profiles at the specific locations where Bragg and Bloch pulses are applied so that we can
map out intensity as well as generalized Gouy phase δk correction locally as a function atom
transverse location for each individual pulse based on 5.63. And we apply this intensity and
phase map to a Monte Carlo simulation to calculate Gouy phase of each individual atom
generated from a specified spatial and velocity distribution. After adding Gouy phase for
about 1 million atoms, we can get one point on the ellipse as we defined in Section 3.6.
After averaging many data points and ellipses, it gives us an estimate of overall generalized
Gouy phase at −2.60 ± 0.03 ppb in α. Note that additional noise from the CCD image
could be eliminated by proper low pass filter as we try to fit the simulated contrast with the
experimental value. The error bar is set by averaging with multiple CCD images as well as
varying experiment parameters.

Theoretical Verification

In the literature [101], it is reported potential ppb level phase shift due to small-scale
beam wavefront distortion, which is described as the generalized Gouy phase here. To be
sure that we do not suffer from this problem, we have specifically tested it by analytical
calculation as well as experimental data. Analytically following [101], we can calculate the
effective δk by averaging this generalized Gouy phase over the beam cross section, i.e.

〈δk〉 =
1

2k

〈P (I)∇2
TA/A〉

〈P (I)〉 (5.66)

where P (I) is probability of Bragg or Bloch pulses (complex wavefunction absolute square) as
a function of local intensity I. In [101], an overoptimistic Heaviside-shaped P (I) = θ(I− Ic)
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Figure 5.5: Shift in α as a function of Bloch efficiency. The blue line shows the final
reported value of α, assuming no dependence on Bloch intensity. The red lines assumes a
linear dependence. Both red and blue band represent ±1σ error bars. This figure is directly
taken from supplementary materials of reference [8].

were given. Here Ic is the critical intensity where Bloch oscillations would be turned on.
We instead use a Heaviside-shaped Bloch efficiency function integrated with Gaussian atom
distribution to estimate this effect. The result is given as

δk

k
=

r
(2)
I w2

0

16k2σ2
c

(
Ic
I0

)w2
0/4σ

2
c−1

(5.67)

where r
(2)
I = ∇2

T rI(0) is the Laplacian of the 2-D autocorrelation function
rI(d) = 〈I∗(x+ d)I(x)〉; I0 the beam intensity at the center; σc atom Gaussian distribution
σ. The autocorrelation function can be calculated from CCD intensity profile mentioned
earlier, from which an estimate r

(2)
I ≈ 2.44 × 10−9 µm−2 can be obtained. With Ic =

(0.85± 0.05)I0 and σc ≈ 0.6 mm, the magnitude of this effect is found to be −0.030± 0.019
ppb.

Experimental Evidences

This has also been further verified experimentally. We directly measured the shift in α
as we scan the Bloch intensity. The measured data and fitting result are shown in Figure
5.5. We did not observe any statistically resolved dependence, which further confirmed
our analytical calculation as well as Monte Carlo simulation. We have also included some
previous α measurement data in a plot shown in Figure 5.6, which was taken without the
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Figure 5.6: The fine-structure-constant measurement with unapodized beam compared with
other measurements. This figure is directly taken from supplementary materials of reference
[8].

apodizing filter. The original beam without the apodizing filter gives a 5.7 mm beam waist.
The α value between measurement with unapodized and apodized beams are within 1σ.

5.5 Diffraction Phase Correction

Thermal motion of atoms

As we mentioned earlier, there is a pulse separation time T independent phase produced
by Bragg diffraction at the leading order. Based on the phase equation,

Φd = −2nωmT + 16n(n+N)ωrT + Φ0 + Φothers (5.68)

it can be subtracted when we vary the pulse separation time T and fit Φd/T vs. 1/T line to
find the interception. But at higher order when we take both thermal expansion of atoms
and diffraction phase into account, a new term ∂Φ0

∂T
T arises, which would directly shift the

recoil frequency measurement.
To calculate ∂Φ0/∂T , a 3D Monte Carlo mentioned earlier was used. In this Monte Carlo

program, we assume atom density and velocity follow 3D Gaussian distribution. We also
model the beam as a Gaussian beam. As atom expand, we would take the Bragg diffraction
phase interpolated from a precomputed table based on atom detuning and local beam inten-
sity. After the simulation, we use the same ellipse fitting technique to extract this additional
phase due to atom thermal expansion. All parameter were chosen from experiment param-
eters and we added ±1σ variation to take into account experimental parameters fluctuation
during the experiment run. The simulation was run enough times so that the numerical
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Effect Value δα/α(ppb)
Cloud radius (mm) 2.2± 1.0 ±0.026

Vertical velocity width (vr) 1.50± 0.25 ±0.031
Ensemble horizontal velocity (vr) 0.0± 0.5 ±0.032
Initial horizontal position (mm) 0± 1 ±0.034

Intensity(Iπ/2) 1.02± 0.02 ±0.028
Last pulse intensity ratio 1.00± 0.02 ±0.034

In total ±0.08

Table 5.2: Systematic shift due to thermal motion of atoms. Certain estimated experimental
parameters are listed in the second column with the systematic effect it produces in the third
column.
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Figure 5.7: Real optimized pulse shape compared with an ideal Gaussian

statistical uncertainty would below the level of the systematic uncertainty it produces. The
simulated result is shown in Table 5.2. In total it produces an overall systematic shift of
0.08 ppb in α.

Non-Gaussian waveform

The T-dependent diffraction phase ∂Φ0

∂T
T could potentially be amplified by Bragg beam

temporal pulse shape [108]. In reality, the Bragg pulse temporal waveform is slightly lag
behind a real Gaussian due to limited feedback speed as shown in Figure 5.7. We optimized
the pulse shape through the servo lock box and put the measured pulse shape into the same
Monte Carlo simulation described above, we were able to get a systematic bound below 0.03
ppb.
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Figure 5.8: Residual phase from both a Monte Carlo simulation and the experiment. These
two figures are directly taken from reference [108].

Parasitic interferometers

The multi-port nature of Brag diffraction allows atoms to be transferred to unwanted
momentum states and some of these may even close at the last pulse and form unwanted
parasitic interferometers. We first noticed it in experimental residual phase after diffraction
phase extracted, that there was a small modulation as we vary the pulse separation time T
as shown in Figure 5.8 (b) in black. And then we performed a Monte Carlo simulation and
confirmed that the period is in good agreement with what a parasitic interferometer from
np = 1 and np = n− 1 would produce, which shows in Figure 5.8 (a) in black.

For this type of parasitic interferometer, some residual atoms are driven to |np〉 and
|n− np〉 as shown in Figure 5.9. Then they could close at the last pulse and form parasitic
interferometers shown in black dash lines. At the detection region, since these parasitic
interfering atoms are very close to some of the main interferometer output ports, parasitic
interference would be mixed into the main signals as such modulation in residual phase.
Though it doesn’t affect interferometer performance, any such residual phase would cause
significant systematic effect on our measurement. So we used the same Monte Carlo simu-
lation to find a region where this type of parasitic interferometer would be suppressed. We
found that there is a ”magic” Bragg pulse duration at 109 µs where this kind of parasitic
interferometer would be suppressed as shown in Figure 5.10.

We further confirmed it with simulation and experiment at this pulse duration as shown
in Figure 5.8 (a) (b) in red. We can see from experiment data that there is no statistically
resolved modulation at this pulse duration. And the residual phase is fitted to be less than
2.6 mrad based on a model including such parasitic modulation. Therefore we can set this
systematic uncertainty to be below 0.03 ppb in α.
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Figure 5.9: Atom interferometer configuration with parasitic interferometer plotted in dash
lines. This figure is directly taken from reference [108].

5.6 Miscellaneous

Additional phase shift due to modulation frequency

As we calculated in the previous section, since we added a modulation frequency fm in
the third and the fourth pulse, the effective photon momentum transferred to atoms would
differ by ±~ωm/c. This would result in an additional phase term called splitting/ Doppler
phase term mentioned in Section 2.6. Its mathematical form is given as

∆Φsplitting/Doppler =− 2nTωm
v0

c
+
gnT (3T + 2T ′1 + 2T ′2)ωm

c
− 4n2ωrT

ωm
ωL

(5.69)

=− 2nTωm
v2

c
+
gnT (T + 2T ′1 + 2T ′2)ωm

c
− 4n2ωrT

ωm
ωL

(5.70)

where v2 is the atom velocity of the non-deflected atom cloud at the time we drive the
second Bragg pulse. Since we fixed the timing of the second and third Bragg pulses as we
vary T, v2 would be a constant within a dataset. The term with g contributes 0.98 ppb in
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Figure 5.10: Fraction of atoms in the parasitic interferometer |np = 1〉 as a function of Bragg
pulse duration. Here the pulse duration is defined as 6σ of Bragg Gaussian pulse. This figure
is directly taken from reference [108].

α with our general configuration and T taken to be 80 ms. The uncertainty comes from
the deviation between the real g and the value we use. The real g is the projection of
gravitational acceleration onto Bragg beam wave vector k,

g =
g · k
|k| (5.71)

The g value we use is from our onsite measurement given with parts-per-million (ppm)
level accuracy [35]. The average velocity of the entire atom interferometer is about 2 m/s.
During 180 ms period of atom interferometer, atom misalignment relative to Bragg beam
is estimated less than beam waist 3 mm otherwise it would produce significant effect. So
it gives an upper bound of misalignment of 10 mrad. Put it into the formula, it gives an
uncertainty below 0.001 ppb.

Atom velocity v2 can be accurately estimated with Bragg diffraction resonance condition.
For historical reason, the gravity ramp double pass frequency for Bragg diffraction we sent
to AOM17 (see Table 3.6) is given as

fAOM17 = fg ramp/2 = 59.47689 MHz + 2fBragg − 11.49783 MHz/s× (t− t0) (5.72)

where fBragg is the parameter we type in the program and t0 = 1.033 s the launch time when
we start gravity ramp. Resonance condition at t = t2 requires

2π(2fAOM17 − fAOM18) = 2k(v2 + n
~k
M

) (5.73)
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Plugging fAOM18 = 180 MHz into this equation, we have

v2 =
−206.99634 MHz + 4πfBragg − 72.243 MHz/s× T2

k
(5.74)

where T2 is the time delay from the Bragg system trigger at t = 1.24 s to the time we
actually trigger the second Bragg pulse, which is typically taken to be 80 ms. Given a
typical fBragg = 18.111 MHz used for data taking, it gives v2 = 2.009 m/s.

For Bloch order N = 125 and pulse separation time T = 80 ms, the term with v2

contributes about -3.35 ppb in α. Since Bragg frequency uncertainty is less than 1 kHz, we
can bound the uncertainty of this term to 0.0002 ppb, which is negligible. Corrections due
to these terms has been applied directly into our data analysis programs. So here we only
assign a systematic uncertainty of 0.001 ppb for this item in the error budget.

Light Shift

Typically light shift comes from AC Stark shift of atomic energy level by light. AC Stark
shift is a general property of atoms in the presence of oscillating electric fields. Based on the
perturbation theory, second-order virtual processes would cause energy level to shift. AC
Stark shift is exactly this case and the energy shift in general is given as [109]

δEAC Stark =
∑

i

| 〈ei|E · d|g〉 |2
4~∆i

(5.75)

where ∆i is the single photon detuning relative to the state |ei〉. In our experiment, we
only need to consider it for Bloch oscillations as its duration×intensity is about an order of
magnitude larger than that of Bragg diffraction. Applying it to dual-Bloch oscillations, we
have

ΦAC Stark =

∫
dt
| 〈e|∑iEi(t) · d|g〉 |2

4~2∆
(5.76)

The electric field here consists of three fields from the input upgoing beam E1, E2+, E2−,
and another three fields from the retro-reflected downgoing beam E ′1, E ′2+, E ′2−, where the
naming convention follows Figure 3.19 (d). After we transform to the laser rotating frame
through which we define the detuning ∆ = ωlaser − ωatom, there would be a small oscillating
phase factor remained in some of the electric fields due to relative frequency difference as
well as Doppler shifts. So the square of dipole interaction matrix elements would produce
six direct square terms with no interference factor and 15 cross terms with various inter-
ference factors depending on time and the spatial location. Only one out of 15 terms is
resonant, i.e. the term is more or less constant throughout the whole pulse. For all other
terms, they are oscillating way faster than the duration of the pulse, so if we integrate over
the entire pulse duration, their net contribution is negligible compared with other terms.
Here we can just drop them for simplicity. The resonant term for the lower interferome-
ter would be 〈e|E1 · d|g〉 〈e|E′2+ · d|g〉 and that for the upper interferometer would be the
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〈e|E1 · d|g〉 〈e|E′2− · d|g〉. For a blue detuned Bloch lattice where atom would be trapped at
the intensity minimal, this cross term makes destructive interference between the two fields
so that in total their contribution to the AC Stark shift will only be | 〈e|(E1 −E′2+) · d|g〉 |2
for the lower interferometer and | 〈e|(E1 −E′2−) · d|g〉 |2 for the upper interferometer. We
design the experiment such that E1 ≈ E2± so these terms would be negligible compared with
other remaining terms.

After applying the definition of the Rabi frequency, we have

Φupper
AC Stark =

∫
dt

Ω2
2+ + Ω2

2− + Ω
′2
1 + Ω

′2
2+

4∆
(5.77)

Φlower
AC Stark =

∫
dt

Ω2
2+ + Ω2

2− + Ω
′2
1 + Ω

′2
2−

4∆
(5.78)

Our choice of Bloch oscillations as the common mode accelerator make our system im-
mune to differential AC Stark shift at the leading order since atoms remain in the same
electronic state (|F = 3〉) all the time. But as the beam we use is more like a Gaussian
beam instead of an infinitely large plane wave, intensity gradient along the vertical direction
would cause differential phase. If we use the a simple Gaussian beam model obtained by the
original razor blade measurement, we can define the intensity profile for the upgoing beam
as

I↑(x, y, z) = I↑0F
↑(x, y, z) (5.79)

and for retro-reflected downgoing beam as

I↓(x, y, z) = I↓0F
↓(x, y, z) (5.80)

where the profile factor functions are defined as

F ↑↓(x, y, z) =
( w0

w↑↓(z)

)2

exp
(
− 2(x2 + y2)

w↑↓(z)2

)
(5.81)

w↑(z) =w0

√
z − z0

zR
(5.82)

w↓(z) =w0

√
z + z0

zR
(5.83)

Note that z coordinate here is defined in the way that z is equal to 0 at the retro mirror to
satisfy the boundary condition. So we can get the differential AC Stark phase shift for an
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atom interferometer at locations (x, y, z) and (x, y, z + δz) during Bloch oscillations as

∆Φupper
AC Stark =

∫
dt
(Ω2

2+ + Ω2
2−

4∆

∣∣∣∣
peak

(
F ↑(x, y, z)− F ↑(x, y, z + δz)

)

+
Ω
′2
1 + Ω

′2
2+

4∆

∣∣∣∣
peak

(
F ↓(x, y, z)− F ↓(x, y, z + δz)

))
(5.84)

=−
(

Ω2
2+ + Ω2

2−

4∆

∣∣∣∣
peak

∂F ↑

∂z
+

Ω
′2
1 + Ω

′2
2+

4∆

∣∣∣∣
peak

∂F ↓

∂z

)
τδz (5.85)

where δz is vertical location difference between two arms of an interferometer, and τ is
the pulse duration of Bloch oscillations. Similarly we can get the formula for the lower
interferometer.

∆Φlower
AC Stark = −

(
Ω2

2+ + Ω2
2−

4∆

∣∣∣∣
peak

∂F ↑

∂z
+

Ω
′2
1 + Ω

′2
2−

4∆

∣∣∣∣
peak

∂F ↓

∂z

)
τδz (5.86)

In order to estimate the effect for all atoms participating in the atom interferometer, we
need to integrate it over an effective atom distribution including only atoms that would be
detected. But we found that such integral would make the differential effect smaller. So here
for simplicity we just use the peak value (assuming x = 0, y = 0) to assign a conservative
bound. The retro-mirror is at about 110 inches away from the fiber port. Using that as
the z = 0 reference, here we list important parameters for the beam and Bloch oscillation
locations: 




z0 = 0.10 m

zR = 35.0 m

zBloch = −1.40 m

δz = 2n~kT
M

∆z = 1
TB

∫ TB
0

dtaBt
2 = 1

3
aBT

2
B

(5.87)

where zBloch is the location where Bloch oscillations happen; ∆z is the vertical location differ-
ence between the upper interferometer and the lower interferometer. Putting the parameters
we normally use in the experiment: n = 5, N = 125, T = 80 ms, Ω′1 = Ω2± = Ω′2±, we get
AC Stark shift for each individual interferometer about 8 mrad.

Thanks to the simultaneously-conjugated-interferometer configuration we used, when we
take the difference ∆Φupper

AC Stark − ∆Φupper
AC Stark, it gives a much smaller phase difference that

enter into our error budget. Such phase difference can be calculated as follows,

∆Φupper
AC Stark −∆Φupper

AC Stark =
Ω
′2
2− − Ω

′2
2+

4∆

∂F ↓

∂z

∣∣∣∣
peak

τδz +

(
Ω̄2

2∆

∂2F ↑

∂z2
+

Ω̄2

2∆

∂2F ↓

∂z2

)∣∣∣∣
peak

τδz∆z

(5.88)
where Ω̄2/2∆ is the average “Rabi frequency” of Bloch oscillations, given to be 0.2ΩBraggπ/2 ≈
6ωr (see Section 2.5). Suppose the difference between Ω2

2+ and Ω2
2− is only 2%, then the first
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term would contribute about 43 µrad, and the second term wound contribute 13 µrad. If we
add them in quadrature, we can get a bound of 0.002 ppb in α.

Note that we have AC Stark shift compensation as another safeguard, to further sup-
press this systematic uncertainty, which could potentially suppress this systematic effect by
another order of magnitude.

Density Shift

There is another systematic phase shift caused by the density of atom cloud. As atom
density is getting higher, atom-atom interaction due to s-channel scattering would cause a
phase shift. This is well described by Gross-Pitaevskii equation as follows [110, 111, 112]

i~
∂

∂t
Ψ(r, t) =

[
− ~2

2M
∇2 + V (r) +

4π~2as
M

|Ψ(r, t)|2
]
Ψ(r, t) (5.89)

where as is the scattering length of Cesium atom given as as = 280(10)a0 [113] for F = 3
state and a0 is the Bohr radius. For non-degenerate Bose gas like what we are using, mean-
field approximation is sufficient enough. |Ψ(r, t)|2 can be replaced by atom number density
ρ. Effectively it becomes a Schrödinger equation with effective energy shift

Edensity = ρ
4π~2as
M

(5.90)

For an exaggerated case where the density ratio between the upper interferometer and the
lower interferometer is 3:1, and assume cold atom number density ρ = 106 atoms/cm3. An
upper bound of phase shift can be estimated as

∆Φ =
∆Edensity

~
(2T + T ′) = (

3ρ

4
− ρ

4
)
4π~as
M

(2T + T ′) (5.91)

For typical parameters of T = 80 ms and T ′ = 20 ms, it gives a phase shift of 8 µrad, which
corresponds to a negligible uncertainty of 0.003 ppb in α.

Sagnac Effect

The lab reference frame where we perform atom interferometer experiment and where we
calculate interferometer phase is actually a rotating frame due to the Earth’s spin. When
we switch back to the non-rotating frame, there is an additional phase term called Sagnac
phase we need to take into account [114].

Suppose the Lagrangian of the lab frame (the rotating frame) is L′(r′, t) while the La-
grangian of the non-rotating inertial frame is L(r, t). The transformation between these two
frames are given as {

r = r′

v = v′ + Ω× r′ (5.92)
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Figure 5.11: Effect of the Earth’s rotation on Ramsey Bordé interferometer. The subplot on
the left show atom movement in 2D as Bragg beam is rotation along with the earth. The
direction of each beam splitter’s wave vector is shown by arrows. The subplot on the right is
the typical spatial-temporal diagram as a reference to understand the plot on the left. The
same color corresponds to the same stage of the inteferometer.

So the Lagrangian in the non-rotating frame can be evaluated as [41]

L(r, t) =
1

2
mv2 − V (5.93)

=
1

2
m(v′ + Ω× r′)2 − V (5.94)

=L′(r′, t) +mΩ · (r′ × v′) (5.95)

where the higher order term O(Ω2) has been neglected. And this additional term, when it
is integrated over the entire path loop of an interferometer, gives rise to the Sagnac phase,

ΦSagnac =
1

~

∫
dtmΩ · (r′ × v′) (5.96)

=
1

~

∮
mΩ · (r′ × dr′) (5.97)

=
2m

~
Ω ·A (5.98)

where A is the area vector enclosed by the interferometer path. In theory, our interferometer
is along vertical direction so the enclosed area should be zero. But due to the Earth’s rotation,
though atom still try to move straight under gravity, the direction of Bragg and Bloch wave
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vector keeps changing following the Earth’s rotation. So in the end, atom interferometer
would move transversely and open a small area as shown in Figure 5.11 Z-X plot. It is a
schematic of Ramsey Bordé interferometer with each beam splitter’s wave vector following
the Earth’s rotation labelled by arrows. Each colored section corresponds to the same section
in the normal Z-T diagram shown in the right. At the same time, we also noticed that due
to the Earth’s rotation, the atom interferometer doesn’t close at the last pulse. As long as
the separation is larger than the coherence length of the matter wave, interference would
disappear. That’s the whole reason why we apply Coriolis compensation at the first place.
If the compensation is working perfectly well, there will no Sagnac effect left.

We can calculate the enclosed area as follows [62]

Ai =

∫
xiu(t)

d

dt
ziu(t)dt−

∫
xil(t)

d

dt
zil(t)dt (5.99)

where i indicate whether it’s upper or lower interferometer and the second index in the sub-
script indicates whether it’s the upper or lower path. Based on an approximated calculation
given in [62] and the general experimental parameters we are using: n = 5, N = 125, T = 80
ms, T ′1 = 5 ms, T ′2 = 15 ms, we can set a conservative bound of 0.001 ppb assuming the
rotation angular velocity is compensated below 10% of the Earth spin angular momentum
by Coriolis compensation [8].

A more careful study is performed using a 2+1D configuration as shown in Figure 5.11
to theoretically calculate the differential phase of simultaneously conjugated Ramsey Bordé
interferometers with rotating wave vector. Assuming the wave vector is rotating with angular
velocity Ω, it follows

k = k(− sin(Ωt)x̂+ cos(Ωt)ŷ) (5.100)

Here we only consider the correction made to the free evolution phase due to rotating wave
vectors. It has negligible effect on the laser phase itself. Since the interferometer won’t
close at the last pulse due to Sagnac effect, we also add an additional splitting phase as we
discussed earlier. Keeping only the leading order term, we have a formula for Sagnac effect
on the differential phase between two interferometers,

Φd, Sagnac = 4nωrT

(
N
(

2TT ′1+4T
′2
1 −γT 4

)
+n
(

2T (T ′1+T ′2)+2(T ′1+T ′2)2−γT 4
))

Ω2 (5.101)

Using the same parameters we use for data taking: n = 5, N = 125, T = 80 ms, T ′1 = 5 ms,
T ′2 = 15 ms, setting Ω to be the Earth spin angular momentum 2π/1 day or 7.27×10−5 rad/s,
this phase difference is estimated to be only 14.5 µrad, bounding this systematic uncertainty
below 0.001 ppb even without applying Coriolis compensation.

Finite Pulse Length

By far when we calculated the phase of atom interferometers, we assume that atom beam
splitters and mirrors cost no extra time so we let atom accumulate the free evolution phase
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for the entire pulse separation time T. But in reality, any pulse takes a finite time τ . The
actual time of free evolution is only T − τ . Does it add extra phase shift into our system.

Suppose initially an atom is at state |ψS(t = t0)〉, where the state is labelled ”S” to make
it clear that it is in Schrödinger picture. Our question is what the state would be like after
a beam splitter pulse for τ and free evolution for T − τ . It can be simply written as

|ψS(t = t0 + T )〉 =US
f (t0 + T ; t0 + τ)US

BS(t0 + τ ; t0) |ψS(t = t0)〉

=e−i
Hf (T−τ)

~ ei
Hf (τ+t0)

~ U I
BS(t0 + τ ; t0)e−i

Hf t0
~ |ψS(t = t0)〉

=e−i
HfT

~ ei
Hf t0

~ U I
BS(t0 + τ ; t0)e−i

Hf t0
~ |ψS(t = t0)〉 (5.102)

where Hf is the Hamiltonian under free evolution. Note that we are using Hamiltonian to
calculate free evolution phase here, which is equivalent to the Lagrangian picture for a closed
interferometer, i.e.

∮
dtL(q, q̇, t) =

∮
dt
(
pq̇ −H(p, q, t)dt

)
= p

∮
dq −

∮
dtH = −

∮
dtH (5.103)

where we have also used conservation of momentum for the entire system.
Therefore, it’s fine to calculate the free evolution phase under the assumption of instant

beam splitting as long as we treat the beam splitter phase in the interaction picture as shown
in eq. Or in other words, any finite pulse effect could be treated as part of the beam splitter
phase.

For our specific case Ramsey Bordé atom interferometer with Bragg diffraction beam
splitters, it would be part of the diffraction phase that we have experimentally measured as
well as extensively studied, so there is no need to add an additional systematic uncertainty
into our system.
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Chapter 6

Conclusion and Future Prospects

6.1 Conclusions

Up to this chapter, we have reported and discussed our recent measurement of the fine-
structure constant at 0.20 ppb overall uncertainty, as shown with some other recent mea-
surements in Figure 6.1. It’s slightly better than previous indirect determination through
electron anomalous magnetic moment ge− 2 measurement at 0.24 ppb uncertainty, enabling
us to test Quantum ElectroDynamics (QED) and some other branches of the Standard Model
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Figure 6.1: Some recents precision determination of the fine-structure constant. This figure
is directly taken from reference [8]
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Figure 6.2: Normalized magnitude of contribution of some theoretical terms to electron
magnetic-moment anomaly. α4, α5 represent 4th and 5th order QED loop correction terms.
µ, τ represent QED terms related to masses of µ and τ . Weak represents correction from
weak interaction. Hadron represents correction from hadronic physics.

as shown in Figure 6.2. It is a zoomed-in histogram with terms contributing less than 10−7

of the electron magnetic moment anomaly. We see that it is the first time that such a test is
able to reach accuracy below the fifth order QED loop correction contribution. Putting our
measured α value to the theory as defined in Chapter 1, we got electron anomalous magnetic
moment

a(α) =
ge − 2

2
= 0.00115965218161(23) (6.1)

Comparing with previous measurement of ge − 2 we discovered a 2.5σ tension between
the theoretic electron magnetic anomaly from our measured α and the experiment electron
magnetic anomaly [2]

δa = ameas − a(α) = −0.88(0.36)× 10−12 (6.2)

where a combined uncertainty σ is given by
√
σ2

g-2 + σ2
α. Based on frequentist statistics,

the conclusion we can draw here is that the Standard Model by itself is incompatible with
our determination of the fine-structure constant as well as the electron ge − 2 measurement
at 99.27% confidence level. It’s not large enough to claim we have discovered new physics
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beyond the Standard Model. But it suggests that something interesting is going on that
warrants further investigation.

6.2 Implications on Testing New Physics

Dark Sector

Any new physics that may cause a shift in electron magnetic-moment anomaly could be
tested based on our results. One such physics is testing hypothetical particles in dark sectors.
We know that dark matter constitutes about 22% of all energy-matter budget [115]. Dark
matter does not interact with normal matter in the Standard Model via electromagnetic
interaction but via gravitational interaction. One type of particle called dark photon is
proposed to explain some observation like muon gµ − 2 discrepancy and so on [116]. It is
a hypothetical gauge boson from a broken dark U(1) symmetry. It could interact with the
Standard Model (SM) through kinetic mixing in the Lagrangian,

Lgauge = −1

4
BµνB

µν +
1

2

ε

cos θW
BµνD

µν − 1

4
DµνD

µν (6.3)

where Bµν = ∂µBν−∂νBµ is the field of the Standard Model gauge boson, Dµν = ∂µA
′
ν−∂νA′µ

the field of the dark photon, θW the weak mixing angle, and ε the mixing parameter. After
some redefinition and dropping the boundary terms for the case of electromagnetic fields,
the Lagrangian could be reduced to

Lgauge = −1

4
FµνF

µν − m2
A′

2
A′µA

′µ − εeJµemA′µ (6.4)

where Fµν is electromagnetic field, mA′ the mass of dark photon, Jem electromagnetic current,
which is given as

Jµem = Qf f̄γ
µf + ... (6.5)

Here f could be any four-component SM fermions, Qf the corresponding fermionic charge.
This theory could be extended to include axial coupling as well, in which the full Lagrangian
is written as [117]

Lgauge = −1

4
FµνF

µν − m2
A′

2
A′µA

′µ + A′µ
∑

f

f̄(cfV γ
µ + cfAγ

µγ5)f (6.6)

where cfV = −eε is the vector coupling constant, cfA the axial coupling constant. Based on
QED theory, this hypothetical dark photon will shift lepton l magnetic-moment anomaly al
by

δal =
(clV )2

4π2

∫ 1

0

x2(1− x)

x2 +
m2
A′
m2
l

(1− x)
dx− (clA)2

4π2

m2
l

m2
A′

∫ 1

0

2x3 + (x− x2)(4− x)
m2
A′
m2
l

x2 +
m2
A′
m2
l

(1− x)
dx (6.7)
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Based on the theory, we can interpret our measurement in the following ways. From a
frequentists’ interpretation, since vector coupling dark photon shifts the magnetic moment
anomaly positively, we can claim that our result is not consistent with the Standard Model
plus only dark photon theory with vector coupling to 99.27% confidence level. However,
it does not explicitly claim whether we can exclude dark photon theory or not. In high
energy physics, an interpretation of exclusion is in practice based on Baysian-like statistics.
The basic question raised in the high energy community is how we can make sure a new
discovery is not simply from background fluctuation. In high energy physics, statistics like
CLs or Power Constraint Limit (PCL) were developed to deal with such situations [118, 119].

Suppose there is a dark photon theory predicts electron magnetic-moment anomaly µ =
δa0 and we observe another value µ̂ = δaobs in the experiment (here suppose δaobs < δa0).
Then based on the experiment observation we can set a p-value pµ to evaluate how likely
the theory would produce such an experiment result.

pµ = P (µ̂ < δaobs|µ = δa0) =
1√

2πσ2

∫ δaobs

−∞
dµ̂ e−

(µ̂−µ)2

2σ2 (6.8)

where we assume measurement error follows normal distribution. If pµ is less than a given
number α then we can claim the theory µ = δa0 is not consistent with the observation
µ̂ = δaobs at a confidence level CL = 1− α in a frequentist’s view.

But in high energy, people want to answer the question whether the observed signal is due
to background fluctuation or not. They hope in some way we can ”subtract” the background
from signal+background. CLs was adopted based on this measure. A probability ratio called
CLs is defined as

CLs =
CLs+b
CLb

=
P (µ̂ < δaobs|µ = δa0)

P (µ̂ < δaobs|µ = 0)
=

Φ( δaobs−δa0

σ
)

Φ( δaobs

σ
)

(6.9)

where µ = 0 is what the Standard Model predicts (background). Φ(x) here is the cumulative
distribution function of standard normal distribution, i.e.

Φ(x) =
1√
2π

∫ x

−∞
dx′ e−x

′2/2 (6.10)

If this ratio CLs < α, we claim to rule out theory µ = δa0 at this confidence level 1 − α.
This statistics in the specific case of dark photon is equivalent to Bayesian’s statistics. Using
Bayesian’s language, given the information we have from data, we want to ask what’s the
probability that a theory with µ > δamin is possible so as to determine if we can rule out the
theory. This can be solved based on Bayes’ theorem

P (µ > δamin|µ̂ = δaobs) =
P (µ̂ = δaobs|µ > δamin)P (µ > δamin)∑
any δa≥0 P (µ̂ = δaobs|µ = δa)P (µ = δa)

(6.11)
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Figure 6.3: Exclusion limits under various statistical methods

If the prior distribution for dark photon δa is uniform for all δa > 0, then this can be
simplified to

P (µ > δamin|µ̂ = δaobs) =
Φ( δaobs−δamin

σ
)

Φ( δaobs

σ
)

(6.12)

which is equivalent to CLs mathematically. In the same way we can define the confidence
level of Bayesian’s statistics.

PCL (Power-Constrained Limits) is another way to set conservative limit to avoid back-
ground fluctuation. In PCL, there is a function to quantify the power of the test with respect
to an alternative hypothesis µ′ defined as

Mµ′(µ) = P (pµ < α|µ′) (6.13)

Normally the alternative hypothesis is the background (or here the Standard Model) where
µ′ = δa = 0. The test power function calculates the probability of observing a signal in the
null hypothesis µ critical region under the alternative theory µ′ = 0. If such a signal is also
very unlikely in the alternative hypothesis, then we cannot quite tell the difference between
the null hypothesis and the alternative hypothesis. We specifically set a threshold Mminby
convention such that if the testing power is less than Mmin, we cannot claim the theory is
excluded according to frequentists’ statistics. In this case we can only use the minimum
value of δaobs that satisfies M0(µ) = P (µ̂ < δaobs|µ = 0) > Mmin to set exclusion limit for
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Figure 6.4: Dark photon with vector coupling exclusion plot. Constraints from BaBar were
based on Bayesian limit/ frequentist profile likelihood statistics at 90% C.L. [120]. Con-
straints from kaon decay were obtained from BNL E787+E949 experiments at 95% C.L.
[121, 122]. Constraints from NA64 2017 were based on CLs statistics at 90% C.L. [123].
Muon gµ − 2 data was from CODATA2014 [1]. Its favored region was obtained from its
±2σ area based on frequentist’s statistics. Both electron ge− 2 for LKB and this work were
analyzed under frequentists’ statistics with 99.5% confidence level [1, 2, 11, 8]. We have
also analyzed this work under PCL(Mmin = 16%) with 90% C.L. Note that NA64 2018 [124]
came out after our result was accepted for publication. But for references, here we have also
included excluded region from NA64 2018 as shown in dash line.

the theory. But if the testing power is larger than the threshold, we can draw conclusions
from the frequentist’ statistics. In this way the exclusion limit µlimit could be obtained as

µlimit =

{
σ(Φ−1(Mmin) + Φ−1(1− α)), if µ̂ < σΦ−1(Mmin)

µ̂+ σΦ−1(1− α), otherwise.
(6.14)

where the null hypothesis with µ > µlimit would be excluded at a confidence level of 1 − α.
Figure 6.3 is plotted showing similarities and differences among various statistical methods.

Our measurement gives a −2.44σ result, which constrains the dark photon δa < 0.287σ
under PCL (Mmin = 16%) with 90% confidence level. It can be plotted together with other
accelerator limits as shown in Figure 6.4. Both ge − 2 and gµ − 2 are plotted based on the
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Figure 6.5: Dark photon with axial vector coupling exclusion plot. The plot is given with
assumptions cuA = 10−3, cdA = 10−4, and cµA = clV = 0. This work is analyzed under
frequentist’s statistics at 90% C.L. [117].

most recent CODATA updates, so they are a bit different from plots in the most of other
literatures [120, 123]. Though our result is not as impressive in dark photon search using
statistics like PCL or CLs, it does not undermine the importance of the 2.5σ tension with
the Standard Model we observed.

Our result could also be used to put constraints on axial coupling of dark photons.
Assuming the coupling constants for the first-generation quarks as well as leptons satisfy
cuA = 10−3, cdA = 10−4, and cµA = clV = 0, we can plot the exclusion plot as shown in Figure
6.5. We extended the exclusion region to the lower part of the parameter space where the
old electron ge − 2 cannot put constraints.

More types of particles that would produce a shift in δa would be sensitive by our measure-
ment, such as B-L vector bosons, axial vector coupled bosons, and scalar and pseudoscalar
bosons and so on. It is an ongoing promising test of new physics beyond the Standard Model
in which a bit more progress in precision and accuracy would result in rich understanding of
fundamental physics.
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Electron Substructure

Electron substructure is another theory that can be tested by our measurement [2, 125].
An electron whose constituents have mass m∗ � me would shift δa by ∆(δa) ∼ (me/m

∗).
In a chirally invariant model, the shift would scale quadratically, i.e. ∆(δa) ∼ (me/m

∗)2. If
we assume for a simple theory,

δa =
me

m∗
= (0.88± 0.36)× 10−12 (our measurement) (6.15)

Based on our result, we can set |δa| < 1.242×10−12, which places a limit to the substructure
at a scale of m∗ > 411, 000 TeV/c2. In the same way, we can set the limit to the substructure
in the chirally invariant model at a scale of m∗ > 460 GeV/c2. These limits improve over
the previous limits of m∗ > 240, 000 TeV/c2 for the simple model and m∗ > 350 GeV/c2 for
the chirally invariant model by an O(1) factor respectively.

6.3 Future Prospects

As we observe a growing tension between what the Standard Model predicts and the
experiment ge− 2 results, there is no doubt that something interesting and important about
the Standard Model and even new physics may come out as we further improve our precision
and accuracy. At this point, the testing of the Standard Model is not limited by the fine-
structure-constant measurement. But a new measurement of ge − 2 with potentially an
order of magnitude accuracy and precision improvement is on the way. So there is still much
more reasons to improve our measurement for the next generation fine-structure-constant
measurement.

The question is whether our apparatus is able to reach higher precision and accuracy.
Currently we are limited by sensitivity and a few systematics as shown in the error budget
in Chapter 5.

In order to improve sensitivity, we are looking forward to even larger order Bloch oscil-
lations inserted in the interferometer. Current we are still limited by decoherence due to
beam quality. Better beam cleaning techniques will have great potential to help us improve
our sensitivity.

At the same time we are also limited by systematics like gravity gradient, Gouy phase,
and diffraction phase. We are going to test a new scheme where gravity gradient would be
exactly cancelled. For Gouy phase as we improve the mode of the beam and develop better
beam characterization techniques, it will be improved as well. For diffraction phase, the
leading order is eliminated. But the higher order due to thermal expansion is still a limiting
factor for us. Better transverse cooling, smaller atomic cloud size and larger beam cross
section will for sure help to constrain this systematic effect.

The most significant technical chanllenge here is laser power, which can be addressed
by a powerful 532 nm pulse laser scheme developed by D. DeMille. And this we can help
us deliver strong 852 nm pulse by certain amplification techniques. We are expected to get
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a few hundreds of mJs of power for each pulse, which is more than 3 orders of magnitude
improvement in laser intensity. Definitely there would be more challenges as no one has ever
done so. But all technologies required seem to be available so it’s very promising to improve
the fine-structure-constant measurement by an order of magnitude or even better.
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