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Abstract
Objective To assess and improve the reliability of the ultrashort echo time quantitative magnetization transfer (UTE-qMT) 
modeling of the cortical bone.
Materials and Methods Simulation-based digital phantoms were created that mimic the UTE-qMT properties of cortical 
bones. A wide range of SNR from 25 to 200 was simulated by adding different levels of noise to the synthesized MT-weighted 
images to assess the effect of SNR on UTE-qMT fitting results. Tensor-based denoising algorithm was applied to improve 
the fitting results. These results from digital phantom studies were validated via ex vivo rat leg bone scans.
Results The selection of initial points for nonlinear fitting and the number of data points tested for qMT analysis have mini-
mal effect on the fitting result. Magnetization exchange rate measurements are highly dependent on the SNR of raw images, 
which can be substantially improved with an appropriate denoising algorithm that gives similar fitting results from the raw 
images with an 8-fold higher SNR.
Discussion The digital phantom approach enables the assessment of the reliability of bone UTE-qMT fitting by providing 
the known ground truth. These findings can be utilized for optimizing the data acquisition and analysis pipeline for UTE-
qMT imaging of cortical bones.

Keywords Ultrashort echo time (UTE) · Quantitative magnetization transfer (qMT) · MRI · Cortical bone · Digital 
phantom

Introduction

Bone fractures are a growing public health issue posing a 
serious worldwide healthcare and economic burden [1]. The 
risk of bone fractures is significantly increased in people 
with osteoporosis and diabetes, with the global prevalence 
of each disease estimated to be 19.7% [2] and 10.5% [3], 

respectively. The most widely used fracture risk assess-
ment is dual-energy X-ray absorptiometry (DXA)-based 
bone mineral density (BMD) measurement. However, clini-
cal studies have reported that the BMD measurement only 
explains 30–50% of fractures [4–6]. This limited sensitivity 
of BMD has motivated the need for more reliable fracture 
risk assessment tools that focus on not only the BMD but 
also other features and constituents of the bone, such as bone 
microstructure [7] and organic matrix [8, 9].

Magnetic resonance imaging (MRI) can not only pro-
vide anatomical images but also quantitative information 
on molecular components of tissues, leveraging its numerous 
contrast mechanisms. Quantitative magnetization transfer 
(qMT) imaging is one of the widely studied MRI methods 
for probing the macromolecular content and their proper-
ties in tissues [10–12]. While the usage of qMT imaging 
has been limited to soft tissues [13–17] (e.g., brain, muscle, 
spinal cord and kidney) due to the very short  T2* relaxation 
of hard tissues, combining qMT with an ultrashort echo time 
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(UTE-qMT) readout sequence has enabled the application 
of qMT analysis to measure the macromolecular fraction 
(MMF) of cortical bones [18–20]. Other qMT parameters 
such as magnetization exchange rates between the free water 
and macromolecular pools may also provide insights into the 
quality of the bone that accounts for fracture risk [21, 22].

Yet, even with the use of UTE readouts, it is unclear 
whether the signal-to-noise ratios (SNR) of bone 
MT-weighted images is sufficient for qMT modeling. From 
previous MT studies on other tissues, it is known that the 
measurements of exchange rates are highly affected by 
the SNR of the images, and to a much greater degree than 
the MMF measurements are [23, 24]. Such SNR-based 
reliability of qMT modeling has not been studied for UTE-
qMT imaging of bones. Towards the goal of developing 
qMT parameters as robust imaging markers that are 
correlated to bone fracture risk, a systematic assessment of 
the robustness and reliability of bone UTE-qMT must be 
performed (including the minimum SNR requirements) and 
strategies must be established for improving qMT parameter 
measurements.

In this study, we built a digital phantom through UTE-
qMT simulation that mimics the MR properties of cortical 
bones. Unlike in vivo or ex vivo qMT studies, the simulation-
based approach allows one to examine whether the qMT 
fitting is robust and reliable as the ground truths are known. 

Multiple series of MT-weighted images were synthesized to 
generate a wide range of SNR levels to examine the effect 
of SNR on qMT fitting results. The number of data points 
and the initial points for the qMT fitting were controlled to 
simulate how acquisition and analysis pipelines can affect 
the qMT fitting result. An ex vivo rat leg bone was scanned 
to validate the digital phantom results. For both digital 
phantom and ex vivo data, a tensor-based multidimensional 
denoising algorithm [25] was tested as a potential solution 
for the inherently low SNR of bone MRI and compared its 
performance with conventional Gaussian filtering.

Materials and methods

Digital phantom preparation

Digital phantom preparation was performed using custom-
written MATLAB code (MathWorks, Natick, MA). The 
overall flow of phantom preparation and analysis is sum-
marized in Fig. 1.

The binary spin bath (BSB) model was assumed for the 
digital phantom generation, modeling the cortical bone as 
a combination of two compartments, the free water pool 
(pool a) and the macromolecular pool (pool b) [26]. The 
BSB model with a pulsed saturation scheme can be well 

Fig. 1  Schematic flow of digital phantom preparation and qMT fit-
ting. Twenty digital cortical bone chip images acquired at two or 
three saturation powers and five offset frequencies are simulated 
based on the UTE-qMT parameters measured from previous cor-
tical bone studies. The Rician noise is added to the simulated bone 
chip images to generate the range of SNR levels from 25 to 200. The 

simulated bone chip images with added noise are fitted back to the 
UTE-qMT model to measure the macromolecular fraction (MMF) 
and exchange rates (kab and kba) by testing a different number of data 
points, selection of initial points of nonlinear fitting and applying a 
denoising algorithm
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described by the rectangular pulse (RP) model by Sled 
and Pike [27], which was further modified for multiple 
acquisitions after a single MT preparation pulse [21]. This 
modified RP model was used for both generating digital 
phantoms and subsequent fitting for testing different SNR 
levels, the number of data points, and the effect of initial 
points for nonlinear fitting.

The modified RP model is described by a total of 
seven parameters: The size of the free water pool  (M0a), 
longitudinal relaxation rates of the free water and 
macromolecular pool  (R1a and  R1b), exchange rate from 
free water to macromolecular pool  (kab), MMF (defined 
as  M0b/(M0a +  M0b)),  T2 of free water and macromolecular 
pools  (T2a and  T2b). As shown in previous studies,  R1b can 
be fixed to 1  s−1 [26, 28–30].  R1a can be determined by other 
parameters and observed  T1 (e.g.,  T1obs = 1/R1obs):

Thus, with the R1obs measured, a total of five parameters 
can be determined through fitting. The exchange rate from 
the macromolecular pool to the free water pool  (kba) can be 
determined as k

ab

1−MMF

MMF

The input qMT parameters for generating digital 
phantoms were chosen from previous studies on UTE-
qMT imaging of cortical bones [21, 31] (MMF = 30–60%, 
kab = 10–60   s−1, T1obs = 220–280  ms, T2a = 0.7–1.0  ms, 
T2b = fixed to 15 µs [32]). Twenty combinations of these 
parameters were used for simulating different conditions 
of cortical bones. For each condition, 324 qMT spectra 
were simulated to create a digital bone chip with the size 
of 18 × 18 voxels. Three MT saturation powers (3SP, flip 
angle = 400˚, 800˚, 1200˚) and five offset frequencies (2, 
5, 10, 20, 50 kHz) were used to generate qMT spectra. To 
simulate different levels of SNR, Rician noise with zero 
mean and different levels of standard deviation were added 
to the images so that the SNR of the image at the lowest 
saturation power (400˚) and the largest offset frequency 
(50 kHz) ranges from 25 to 200. SNR was calculated as 
the mean signal intensity of digital phantoms divided by 
the standard deviation of the Rician noise used for noise 
generation. All the SNRs reported in this study are based 
on the image simulated or acquired at the lowest saturation 
power and the largest offset frequency unless indicated 
otherwise.

Digital phantom analysis

The prepared digital phantom images were fitted back 
into the UTE-qMT model to quantify the MMF and 
exchange rates (kab and kba) and observe whether the 
results matched the input parameters used for generating 
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the phantoms. The non-linear fitting was performed using 
the ‘lsqcurvefit’ function in MATLAB with the default 
Trust-region fitting algorithm.

To assess the effect of the number of saturation powers 
and offset frequencies, we tested the full set of MT 
spectra (3 saturation powers and 5 offset frequencies, 15 
data points) and the MT spectra with only 2 saturation 
powers (2SP, 800˚ dataset excluded, 10 data points). For 
this assessment, the initial point of non-linear fitting was 
fixed to the ground truth of each phantom so that only 
the effect of the number of data points can be assessed. 
The effect of the initial point of the nonlinear fitting 
process was also tested by using the initial point of 
either the ground truth of each phantom or the fixed one 
(MMF = 50%, kab = 25  s−1, T1obs = 240 ms, T2a = 0.8 ms), 
near the midpoint of the range of parameters tested. All 
these assessments were done at different SNR levels.

A denoising algorithm was tested on the digital 
phantoms to examine whether qMT parameter fitting 
results improved. Among numerous potential algorithms, 
we tested a recently developed tensor Marchenko-Pastur 
distribution Principal Component Analysis (tMPPCA) 
method [25]. The digital phantom image with the 
SNR of 50 was denoised by tMPPCA with a window 
size of 3 × 3 × 3 [33]. The Gaussian filtering with the 
kernel standard deviation fixed to 1 was also tested for 
comparison.

Ex vivo rat bone MR image acquisition and analysis

An ex vivo rat leg bone was scanned on a 3 T scanner 
(Bruker, Billerica, MA) with a 1 cm loop coil to confirm 
the digital phantom results. The bone marrow of the bone 
was removed and placed in Fomblin (Ausimont, Thorofare, 
NJ) for susceptibility-matching purposes. MT-weighted 
UTE images were acquired at three saturation powers 
(500˚, 1000˚, 1500˚) and five offset frequencies (2, 5, 
10, 20, 50, kHz). Readout parameters are as follows: 
TR/TE = 86/0.026  ms, number of spokes per MT 
saturation = 13, inter-spoke TR = 5 ms, flip angle = 10˚, 
f ield-of-view (FOV) = 10  mm × 10  mm × 80  mm, 
matrix = 84 × 84 × 84, receiver bandwidth = 100 kHz. The 
MT-weighted image acquisition was repeated 64 times to 
manually control the number of averages (NA). NA of 1, 
4, 8, 16, 32, and 64 were tested to match with the SNR 
of 25–200 used for digital phantom simulation. For the 
qMT fitting process, the T1obs was assumed to be 250 ms 
[31, 34–38]. The effect of denoising on MT parameter 
fitting was also tested using the same tMPPCA denoising 
algorithm. All the analysis was performed twice, once with 
the full dataset (3SP) and once with 2 saturation powers 
(2SP, 1000˚ dataset excluded).
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Results

Digital phantom simulation shows similar MMF fit-
ting results from MT spectra with 2SP and 3SP datasets 
(Fig. 2A), whereas the exchange rate measurements are 
slightly improved on the 3SP dataset. The MMF measure-
ment is relatively robust throughout the SNR levels tested 
ranging from 58.8 ± 27.4% (2SP) and 57.0 ± 25.7% (3SP) 
at SNR of 25 to 51.8 ± 6.3% (2SP) and 51.0 ± 5.1% (3SP) 
at SNR of 200 (Fig. 2B). The exchange rate measurements 
are unstable in the lower SNR levels and become compara-
ble to the ground truth at the SNR of 150 or above. These 
trends are also shown in the parameter maps at different 
SNR levels shown in Fig. 2C.

Similar trends are seen from the assessment of the 
initial point effect (Fig. 3). Overall, the choice of initial 
points did not significantly affect the fitting results, while 
the MMF measurement is more stable than the exchange 
rate measurements (Fig. 3A). Exchange rate measurements 
are reliable at the SNR of 150 or above, regardless of the 
choice of the initial point for nonlinear fitting (Fig. 3B). 
Still, the MMF measurement shows that the initial point 
set to the ground truth gives a more accurate result than 
the fixed initial point for certain phantoms at high SNR 

levels. This better measurement of MMF is also translated 
to a marginally improved measurement of  kba in certain 
phantoms (Fig. 3).

The improvement of qMT fitting via denoising was also 
observed (Fig. 4). Although following the patterns in the 
ground truth, the exchange rate maps are highly noisy due 
to the unstable fitting without denoising. Both tMPPCA and 
Gaussian denoising of the raw digital phantom images gen-
erate the parameter maps that are closer to the ground truths, 
albeit with some residual regional variations in the param-
eter maps. Interestingly, the tMPPCA algorithm showed a 
more accurate measurement of high MMF values than the 
Gaussian filtering.

To validate the digital phantom results, ex vivo rat bones 
were scanned, and the improvement of qMT fitting was 
observed along with increasing the number of averages 
(Fig. 5). The SNR of raw images (saturation power = 500˚, 
offset frequency = 50 kHz) increased from 37.4 (NA = 1) to 
306.4 (NA = 64), matching with the SNR levels tested in 
the digital phantom simulations. Denoising via the tMPPCA 
method was tested on the NA = 1 dataset, which showed sub-
stantial improvement of SNR (131.6) and the subsequent 
qMT fitting that generated a result comparable to the one 
from the NA = 64 dataset with preserved spatial resolution 
(Fig. 5). The Gaussian filtering also showed improvement 

Fig. 2  The effect of the number of data points and signal-to-noise 
ratio (SNR) on cortical bone UTE-qMT fitting. The UTE-qMT 
parameters acquired via fitting 2 saturation powers (400˚ and 1200˚, 
2SP) and 3 saturation powers (400˚, 800˚ and 1200˚, 3SP) are com-
pared. A UTE-qMT parameter maps generated from the dataset with 
SNR of 100 with the initial point chosen as the ground truth of each 
phantom. B The exchange rates (kab and kab) show the fitting results 
are more stable and closer to the ground truth upon using the 3SP 
dataset. Macromolecular fraction (MMF) measurements are stable for 

both 2SP and 3SP datasets. The 2SP dataset shows higher spatial var-
iation of parameter fitting represented as larger standard deviations of 
the measurements. The measurements are from the phantom with the 
white box shown in A. kab and kba measurements are only shown at 
SNR of 75 or above due to abnormally large values from unstable fit-
ting. C UTE-qMT parameters maps of the phantom analyzed (white 
box in A) at different SNR levels (25–200) and the maps of ground 
truth parameters
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in parameter fitting, but substantial spatial blurring is also 
observed as expected.

The quantitative measurements of qMT parameters from 
ex vivo scans also show the robust measurement MMF 
across all NAs tested, whereas the exchange rate measure-
ments are not reliable at NA of 1 (Fig. 6). Compared to 
digital phantoms, however, low SNR ex vivo scans (NA = 1, 
4, 8) show much more comparable results to those from high 
SNR scans (NA = 32 and 64). The tMPPCA denoising of 
the dataset with NA of 1 substantially improved the qual-
ity of fitting compared to the original image. Despite the 
overestimated MMF (43.4 ± 7.2 vs. 40.4 ± 5.2%; Fig. 6A) 
and underestimated exchange rates (kab: 20.7 ± 12.8  s−1 vs. 
22.6 ± 9.1; kba: 28.2 ± 21.2  s−1 vs 34.2 ± 18.6  s−1; Fig. 6B, 
C), the results from the denoised NA = 1 dataset are compa-
rable to those from the NA = 64 dataset. The use of the 3SP 
dataset significantly reduced the variation of all the UTE-
qMT parameter measurements in the given ROI compared 
to the results from the 2SP dataset.

Discussion

Here, we systematically assessed the SNR requirements 
and how the fitting process affects the UTE-qMT imaging 
of bone. Similar to qMT imaging of other tissues, the MMF 

measurement was robust across a range of SNR levels, 
whereas exchange rate measurements became accurate 
when the SNR reached around 150 or above. The UTE-
qMT fitting process also turned out to be robust against 
the selection of the initial point of the nonlinear fitting 
process, and the 2SP dataset generated comparable results 
as those from 3SP datasets. The denoising algorithm tested 
in this study substantially improved the fitting accuracy. 
These results were also reproduced in ex vivo rat leg bone 
scans, with relatively more robust MMF measurements 
and substantial improvement of qMT measurements after 
denoising.

The advantage of the digital phantom approach 
demonstrated in this study is the known ground truth. 
Although the quality of qMT fitting is usually measured 
by the goodness-of-fit, whether the ground truth value is 
obtained through the fitting cannot be known by actual scans, 
unless followed by validation studies such as histology or 
biochemical assays from tissue samples. By knowing the 
ground truth values, the digital phantom simulation approach 
allows examining whether the qMT fitting provides correct 
results and permits subsequent optimization of the data 
acquisition and analysis pipeline. Optimizing the qMT fitting 
pipeline using the known ground truth is also expected to 
facilitate the development of more advanced techniques for 
qMT fitting such as neural network-based approaches by 

Fig. 3  The effect of the choice of initial point of nonlinear fitting 
of the UTE-qMT model. A UTE-qMT parameter maps from digital 
phantoms with three saturation powers and an SNR of 100. Param-
eter maps in the first two columns (Fitting) are the fitting results from 
using the initial point of either the ground truth of each phantom 
(Ground Truth) or the fixed values (parameters used for the phantom 

with the red box; Fixed). Ground truth maps are also included in the 
right-most column for comparison. B The macromolecular fraction 
(MMF) and exchange rate (kab and kba) measurements from 4 phan-
toms indicated in the white boxes shown in A. kab and kba measure-
ments are only shown at SNR of 75 or above due to abnormally large 
values from unstable fitting
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providing more accurate and refined training datasets [39, 
40].

Comparing the fitting results with the ground truth 
showed that the exchange rate measurements are highly 
SNR dependent whereas MMF measurements are more 
robust even in the low SNR regime, regardless of the 
number of data points and initial points tested. The unstable 
fitting of exchange rates at low SNR has been previously 
shown from qMT studies on other soft tissues [23, 41]. 
The qMT study on human patellar cartilage reported that 
the percentage change of the exchange rate becomes lower 
than 1% only after the SNR of an image becomes 75 or 
higher [23]. Our digital phantom-based analysis shows 
that at least an SNR of 100–150 is needed for reasonable 
voxel-based measurements of exchange rates, whereas MMF 
measurements are acceptable even with an SNR of around 
50. The unstable fitting of exchange rates at SNR of 50 or 
lower generated unrealistically large values  (kab >  103 and 
 kba > 5 ×  103   s−1) and variations that had to be excluded 

from the measurements (Figs. 2B and 3B). The instability 
of exchange rate measurements may be alleviated by setting 
up narrower but still realistic boundary conditions during the 
fitting process. Still, considering the inherently low SNR of 
actual bone MR images acquired in a clinically feasible scan 
time, only a region-of-interest (ROI)-based analysis seems 
applicable for the exchange rate measurements unless certain 
strategies to improve the SNR are employed, such as low-
pass filtering and other denoising algorithms.

As a potential method of improving the SNR and 
corresponding qMT fitting results, we tested the tMPPCA 
algorithm on both digital phantoms and rat bone data and 
compared it with conventional Gaussian filtering. The 
tMPPCA is designed for denoising multidimensional 
MRI data by leveraging the redundancy in the extra 
dimensions [25]. This algorithm has demonstrated 
substantial improvement of SNR of multi-echo images, 
diffusion-weighted images, and  T1-weighted images, as 
well as subsequent parameter fitting results [25, 33]. We 

Fig. 4  tMPPCA denoising improves the UTE-qMT fitting of simu-
lated digital phantoms. The simulated digital phantom with three 
saturation powers and an SNR of 50 was tested. The initial point of 
fitting was selected as the ground truth of each phantom. Both tMP-
PCA and Gaussian denoising have significantly improved the UTE-

qMT parameter fitting with less noise in the parameter map, and the 
results are more comparable to the ground truth. The white arrows 
indicate the difference in MMF measurement between tMPPCA and 
Gaussian denoising
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hypothesized that this algorithm would also bring high 
SNR gain to qMT datasets as qMT data are inherently 
multidimensional due to repeated acquisitions at different 
saturation powers and offset frequencies. The digital 
phantom simulation showed that tMPPCA denoising enables 
accurate voxel-wise measurement of exchange rates even 
with an SNR of 50, similar to the results from Gaussian 
filtering. This result was validated by applying the same 
algorithm to the rat bone dataset, shown by the similar fitting 
results between the raw high SNR dataset (NA = 64) and the 

denoised low SNR dataset (NA = 1). Compared to Gaussian 
filtering, the tMPPCA denoising did not show any spatial 
blurring. These results indicate that even with the low SNR 
raw data, the exchange rates can also be reliably measured 
with a proper denoising strategy.

While MMF alone can be a great imaging marker of the 
content of organic matrix in the bone, exchange rates can 
also be valuable markers of macromolecule conditions in the 
bone. With the growing evidence that BMD is not sufficient 
to examine the bone fracture risk, bone quality is drawing 

Fig. 5  Ex vivo rat leg bone scans with different degrees of averag-
ing. The number of averages (NA) was controlled from 1 to 64 to 
cover the SNR range of 25–200 simulated for digital phantoms. The 
SNR levels are indicated in parentheses. Denoising via the tMPPCA 
algorithm and Gaussian filter were also tested on the NA1 dataset 
(NA1 + dn). The macromolecular fraction (MMF) fitting is stable 
except for the one from the NA1 dataset, whereas the exchange rate 

maps (kab and kba) are steadily improving with the increasing NA. 
The tMPPCA-denoised NA1 dataset shows comparable results with 
the NA32 and NA64 datasets. The denoising with the Gaussian filter 
also shows improved exchange rate measurement along with a sig-
nificant blurring in both raw image and parametric maps. The UTE-
qMT parameter maps shown here are generated using the full dataset 
acquired (three saturation powers)

Fig. 6  Ex vivo rat bone scan measurements. The UTE-qMT fitting 
results shown in Fig. 5 were measured with a region of interest cov-
ering the entire rat bone. Macromolecular fraction (MMF) measure-
ments show stable measurements across the range of number of aver-
ages (NA) used, regardless of using 2 saturation powers (2SP) and 3 
saturation powers (3SP). The measurement of exchange rates (kab and 

kba) is more NA-dependent than MMF measurements. The variation 
of exchange rate measurements is also significantly reduced when 
using the 3SP dataset. Due to significant spatial blurring upon Gauss-
ian denoising, only the results from tMPPCA denoising (NA1 + dn) 
are shown
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more attention as another determinant of bone fracture 
risk [42–44]. For instance, non-enzymatic crosslinking of 
collagen fibrils via advanced glycation end products in the 
cortical bone is considered to be a key contributor to the 
increased fracture risk in type 2 diabetes patients despite 
the preserved or even elevated BMD measurements [45–47]. 
Since the exchange rate measurements were demonstrated 
to be altered upon crosslinking collagens in cornea and 
cartilage, as well as other polymers [48–50], robust 
measurements of exchange rates via UTE-qMT modeling 
can potentially be a valuable marker of assessing the bone 
quality and fracture risk.

A typical limitation of qMT parameter measurements via 
the BSB model is parameter correlation. Previous studies 
have shown that MMF and  kab measurements can be coupled, 
rather than independent [24, 51]. This parameter coupling 
was also observed in this study, as shown in the scatter plot 
of voxel-wise measurement of MMF and  kab (Figure S1). 
An anisotropic distribution of MMF and  kab measurements 
was observed throughout the SNR levels tested, indicating 
that these parameter measurements are not independent. 
The overall trend of MMF and kab measurement shows the 
tendency to compensate for the underestimation of MMF 
with the overestimation of kab and vice versa, which is a 
previously reported phenomenon [27]. Other qMT parameter 
estimation approaches that do not depend on nonlinear 
fitting, such as the dictionary-matching method [52], may 
alleviate the issue.

In this study, we only tested the effect of SNR, the 
number of data points, and the selection of initial points 
for the fitting, but other parameters involved in the image 
acquisition and analysis procedure can also be tested using 
the digital phantom approach in the future. The number 
and selection of offset frequencies and saturation powers 
can be further tested to identify the combination of these 
parameters that gives the best fitting accuracy with the 
minimum data acquisition to reduce the scan time. Testing 
for the effect of  B1 inhomogeneity and  T1 relaxation time 
is another validation test that may be performed through 
digital phantoms. In this study, we assumed a perfect 
 B1 homogeneity and  T1 relaxation time measurement. 
For in vivo UTE-qMT scans of cortical bone, however, 
the accurate measurements of  B1 inhomogeneity and 
 T1 relaxation are challenging due to the short  T2* of the 
cortical bone [34]. Examining the tolerance of  B1 and  T1 
errors during the qMT fitting will give a better assessment 
of the reliability of the UTE-qMT imaging. In that regard, 
the ex vivo rat bone scan results can be improved with the 
actual measurement of  B1 inhomogeneity and  T1. These 
studies should also be validated through in vivo scans in 
the future. Due to the higher body temperature and other 
tissues surrounding the cortical bone (e.g., bone marrow 
and muscle), the SNR of in vivo bone scan is expected to 

be lower than the ex vivo scans [53]. The digital phantom 
approach taken in this study may also be biased due to the 
discrepancy between the in vivo conditions and the model 
chosen for generating digital phantoms and subsequent 
fitting. Whether the findings through the digital phantom 
demonstrated in this study can be applied to in vivo scans 
should be further examined. Finally, we chose the tMPPCA 
algorithm with a fixed window size for denoising. Other 
denoising algorithms, as well as image filtering and ROI-
averaging with different numbers of voxels within an ROI, 
can also be tested for establishing a robust UTE-qMT 
analysis pipeline.

Conclusion

Here, we demonstrated the usage of digital phantom 
simulation to assess the reliability of qMT measurements. 
Similar to qMT imaging of other tissues, cortical bone 
digital phantoms showed robust MMF measurements 
whereas exchange rate measurements were unstable in low 
SNR levels. The number of data points and the selection of 
initial points tested in this study yielded negligible effects 
on the UTE-qMT fitting results. Denoising via the tMPPCA 
method showed substantial improvement in qMT fitting in 
both simulation and ex vivo scans, supporting the feasibility 
of reliable voxel-wise measurements of bone UTE-qMT 
parameters.
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