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ABSTRACT OF THE DISSERTATION

Inference for the Bivariate and Multivariate Hidden Truncated
Pareto(type II) and Pareto(type IV) Distribution and Some Measures
of Divergence Related to Incompatibility of Probability Distribution

by

Indranil Ghosh

Doctor of Philosophy, Graduate Program in Applied Statistics
University of California, Riverside, August 2011

Prof. Barry C. Arnold, Chairperson

Consider a discrete bivariate random variable (X, Y ) with possible val-

ues x1, x2, ..., xI for X and y1, y2, ..., yJ for Y . Further suppose that

the corresponding families of conditional distributions, for X given val-

ues of Y and of Y for given values of X are available. We specifically

consider those situations where the above mentioned conditional dis-

tributions are not compatible. In such a case we seek a joint proba-

bility matrix (P ), say, that is minimally incompatible with the given

conditional distributions. The Kullback-Leibler Information function

provides a convenient measure of (pseudo) distance between two distri-

butions. However we will use a more general measure which is called
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the “power divergence criterion” which includes the Kullback-Leibler

Function as a special case. We will, along with this measure, also con-

sider some other measures of diversity which are widely used in the field

of Information Theory. Using all these measures we have developed al-

gorithms for finding the joint probability matrix which is minimally in-

compatible with the given conditionals. We will also propose here some

alternative measures of compatibility related to discrepancy. Our main

objective here is to find among the various measures of discrepancy (for

example the power divergence test statistic, modified Renyi’s measure

etc.), along with the proposed measures, which one give us the min-

imally incompatible distribution with a faster convergence rate. This

topic will be discussed in detail in chapter 1.

Next we consider an alternative approach to determine whether or

not any two given matrices (say, A and B) with non negative elements

(where for the matrix A, the column sums add up to one and for the

matrix B, the row sums add up to one) are compatible in the sense

that there exists a joint probability matrix for which has the columns

and rows, respectively, of A and B as its conditional distributions. We

formulate the above problem as a homogeneous and consistent set of

equations and consider the LPP (Linear Programming Problem) ap-

proach to solve for the unknown quantities. Furthermore we will also
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discuss briefly, under the condition of compatibility, how can we find

some of the elements of the two given conditional matrices A and B,

in case they are unknown. This is the subject matter for chapter 2.

Next we consider the hidden truncation paradigm for the bivariate

Pareto (type II) distribution when one variable is subject to hidden

truncation from above. We consider the classical method of estimation

and a reasonable testing procedure for the truncation parameter and

also the other parameters involved in the model along with an appli-

cation of the above mentioned model to a real life data. We will also

focus on the estimation procedure under the Bayesian paradigm. This

will be the subject matter in chapter 3.

In chapter 4 we will consider the hidden truncation paradigm for

a bivariate Pareto (type IV) distribution where both the marginals as

well as the conditionals are again members of the Pareto (type IV)

family. Here also we will consider inference for such a distribution

under the classical approach as well as the Bayesian approach along

with an application to a real life data.

Next we will consider a possible extension of hidden truncation con-

cept to the multivariate case for the Pareto (type II) family. In particu-

lar we will focus on single variable truncation as well as more than one

variable truncation. We will discuss about the tractability of such type

viii



of models in the context of estimation and testing for the parameters

involved in the model. In particular we focus on a trivariate Pareto

(type II) set-up and we will consider estimation procedures under both

the classical and Bayesian paradigm. Two specific situations are dealt

with: (1) when one of the concomitant variables is truncated from above

and (2) when more than one variable is truncated from above. This

material is discussed in detail in chapter 5. In chapter 6 we provide a

general discussion of the topics which are covered in chapter 1 through

5, together with a brief discussion of potential future work.
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Chapter 1

Study of incompatibility of

bivariate discrete conditional

probability distributions

1.1 Introduction

In an effort to specify bivariate probability models, one is frequently

obstructed by an inability to visualize the implications of assuming that

a given bivariate family of densities will contain a member which will

adequately describe the given phenomenon. One of the main difficulties

encountered while using probabilistic models to solve real-life problems

is the selection of an appropriate model to reflect the reality being

observed. One possibility consists of selecting one of the well-known

parametric families of distributions to approximately fit the observed

data. However, those so called “well known” families are too simple in
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the sense that they depend only on a limited number of parameters,

and may not be adequate to model the observed phenomena. In such

a situation one might consider the idea of conditional specification.

Specification of joint distributions by means of conditional densities

has received considerable attention over the years by authors such as

Dawid (1979, 1980), and Gelman and Speed (1993, 1999). Arnold et

al. (1999) have discussed this problem for a wide range of families of

distributions including exponential families. Such models can be useful

in situations such as model building in classical statistical settings and

in the elicitation and consideration and construction of multiparameter

prior distributions in a Bayesian framework. One of the problems of

defining joint densities by specifying their conditionals is the compati-

bility problem. For example, one possible approach to the specification

of the distribution of a two-dimensional random variable (X, Y ) in-

volves presenting both families of conditionals (X given Y and of Y

given X). However the consistency of both the conditional distribu-

tions must be checked (see Arnold and Press, 1989), to determine if

any joint distribution exists with them as its conditional distributions.

Several alternative approaches exist in the literature with regard to the

problem of determining the possible compatibility of two families of

conditional distributions (Arnold and Press, 1989; Arnold and Gokhale
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1994). Also in addition to it, the problem of determination of most

nearly compatible (ε-compatible, as introduced by authors Arnold and

Gokhale (1994, 1998)) has been addressed. Moreover, the compatibility

problem also arises when there exists more than one expert participat-

ing in the model selection process, or when we have partial information

about conditional probabilities.

We consider the question of compatibility and near compatibility of

given families of conditional distributions in the finite discrete case. In

the finite discrete case, there exists a variety of compatibility conditions

(Arnold, Castillo and Sarabia 1999). Based on those conditions the

above mentioned authors have provided a broad spectrum of alterna-

tive ways of measuring discrepancy between incompatible conditionals.

In addition, they have made suggestions of alternative ways in which

most nearly compatible distributions can be defined in incompatible

cases. In this chapter we focus on the measurement of incompatibility

in situations when we are given two families of conditional distributions

under the discrete set up which are not compatible. How can we find a

distribution P that is, in some sense, minimally incompatible with the

given conditional specifications? Such questions are of interest from a

Bayesian viewpoint in the context of elicitation of joint prior distribu-

tions. For example in the case of a two-dimensional parameter δ, our
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well informed expert might give conditional probabilities for δ1 given

particular choices of values for δ2 and conditional probabilities for δ2

for given particular choices of values for δ1. If our expert is human,

it is quite possible that the collection of conditional probabilities thus

elicited might be incompatible. A suitable choice of prior to use in

subsequent analysis might then be that joint distribution f(δ1, δ2) that

is the least at variance with the given elicited conditional probabili-

ties. More generally, we might think of obtaining partial or complete

conditional specification from more than one expert. Such information

would most likely lack consistency and, again a minimally discrepant

distribution might be sought. The Kullback-Leibler information func-

tion provides a convenient discrepancy measure in such settings. As we

shall see, not only does it provide a discrepancy measure but, using it,

a straightforward algorithm can be described which will result in the

most nearly compatible distribution. We will mention some alterna-

tives to Kullback-Leibler measure and we will also consider the relative

performance of all those measures.

The remainder of this chapter is organized in the following way. In

Section 2, we will consider the concept of compatible distributions. In

Section 3, we consider the conditions for compatibility with some ex-

amples. In Section 4, a detailed discussion on the existing methods

4



for finding minimally compatible distribution has been provided. In

Section 5, we focus on considering some measures of divergence which

are already in the literature (Kullback 1959; Renyi 1961). In Section

6, we will propose some new measures of divergence for checking com-

patibility under the condition that the given two families of conditional

probability distributions are incompatible along with an iterative study

for all the measures of divergence. In Section 7, some comments have

been made about all those divergence measures mentioned earlier.

1.2 Compatible distributions

Let us consider a two dimensional random vector (X, Y ) with possi-

ble values x1, x2, . . . , xI and y1, y2, . . . , yJ , for X and Y respectively.

Further let A and B denote two (I × J) matrices with non-negative

elements and with at least one positive entry in each row and each col-

umn. We make the assumption that A has columns which sum to 1

while B has rows which add up to 1. Note that throughout this chapter

we will always assume that A has columns summing to 1 and B has

rows summing to 1, whenever they will appear. Then A and B are said

to form a compatible conditional specification for the distribution of

(X, Y ) if there exists some (I × J) matrix P with non-negative entries

5



pij and with
I∑
i=1

J∑
j=1

pij = 1, such that

aij =
pij
p.j
,∀(i, j) and bij =

pij
pi.
,∀(i, j), where pi. =

J∑
j=1

pij and p.j =

I∑
i=1

pij. If such a matrix P exists then, if we assume that

pij = P (X = xi, Y = yj),∀(i, j),

we will have aij = P (X = xi|Y = yj),∀(i, j),

and

bij = P (Y = yj|X = xi),∀(i, j).

Thus A and B are compatible if there exists a joint distribution

(P ) which has the columns and rows respectively of A and B as its

conditional distributions.

One obvious requirement for compatibility is that A and B should

have identical incidence sets. The incidence set of a matrix A is

{(i, j) : aij > 0} ,

the set of locations of non-zero entries in the matrix. We shall denote

the common incidence set by N = NA = NB and will usually assume

that A and B have this common incidence property. Otherwise they

are incompatible.

6



1.3 Compatibility conditions

Conditions for compatibility are listed in the following theorems:

Theorem 1 (Arnold and Press 1989). Supposing that A and B have

identical incidence sets then they are compatible if and only if either of

the following two conditions hold:

• There exist non negative vectors

τ = (τ1, τ2, . . . , τI) and η = (η1, η2, . . . , ηJ)

such that ηjaij = τibij,∀(i, j).

In the case of compatibility, the vectors τ and η can readily be

interpreted as being proportional to the marginal distributions of

X and Y respectively.

• There exist vectors u and v of appropriate dimension for which

dij =
aij
bij

= uivj, ∀(i, j) ∈ N .

If N = (1, 2, . . . , I)× (1, 2, . . . , J), i.e., if all the entries in A and B

are positive, then we have the following theorem given by (Arnold and

Gokhale (1994)).

Theorem 2 (Arnold,Gokhale 1994). • A and B are compatible iff

they have identical uniform marginal representations (UMRs) (Mosteller

1968).
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• A and B are compatible iff all cross product ratios of A are identical

to those of B.

Note: Some restrictions on the common incidence set of A and B is

necessary for the above theorem. For example if we consider

A =


1/2 1/2 0

0 1/2 1/2

1/2 0 1/2

 , and B =


1/3 2/3 0

0 1/3 2/3

2/3 0 1/3

 ,

then it may be verified here that A and B have equal cross product

ratios(there are no positive 2×2 submatrices)and have identical uniform

marginal representations but A and B are not compatible.

Compatibility of A and B of course does not confirm existence of

a unique compatible matrix P . The simplest sufficient condition is

positivity (i.e., aij > 0 and bij > 0, ∀(i, j).) For example we can

illustrate by examples how things can change when A and B contain

zero elements.

Example[1]:No cross-product ratios and incompatible

Let us consider,
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A =


1/2 1/2 0

0 1/4 3/4

1/2 0 1/2

 , and B =


1/3 3/4 0

0 1/4 3/5

2/3 0 2/5

 .

No compatible P exists in this case.

Example[2]: (UMRs do not exist but compatible)

A =


0 1/3 0

1 0 1

0 2/3 0

 , and B =


0 1 0

1/5 0 4/5

0 1 0

 .

So the joint probability distribution in this case is given by

P =


0 1/8 0

1/8 0 4/8

0 2/8 0

 .

Example[3]:(UMRs exist and are equal, but incompatible).

A =


0 1/3 0

1 1/3 1/2

0 1/3 1/2

 , and B =


0 1 0

1/4 1/2 1/4

0 1/5 4/5

 .

Here we have
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UMR(A) = UMR(B) =


0 1/3 0

1/3 0 0

0 0 1/3

 .

1.4 Existing methods for finding minimally Incompatible dis-

tributions

1.4.1 Idea of minimal incompatibility

The idea behind the concept of minimal incompatibility of two condi-

tional distributions can be described by the following two concepts.

1.4.2 ε-compatibility

Suppose that we do not insist on precise compatibility. Instead, sup-

pose that we wish to have pij approximately consistent with two given

conditional probability matrices A and B. Let us introduce a weight

matrix W which will represent the relative importance of accuracy in

determining pij for each (i, j). For a given weight matrix W which

might be uniform, i.e., we might choose wij = 1,∀(i, j) if all pairs (i, j)

were equally important to us, we then consider the following strategies,

written as non-linear and linear programming problems:

• First Method:
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Find a matrix P , with pij ≥ 0,∀(i, j) such that

|pij − aij
I∑
i=1

pij| ≤ εwij,∀(i, j) ∈ N

|pij − bij
J∑
j=1

pij| ≤ εwij,∀(i, j) ∈ N,
(1.1)

with the linear constraint
∑I

i=1

∑J
j=1 pij = 1.

• Second Method:

Seek two probability vectors η and τ such that

|aijηj − bijτi| ≤ εwij;∀(i, j),
∑
j

ηj = 1,
∑
i

τi = 1, (1.2)

and τi ≥ 0, ηj ≥ 0, ∀(i, j) ∈ N.

• Third Method:

Find one (marginal) probability vector τ ≥ 0 such that

|aij
I∑

k=1

bkjτk − bijτi| ≤ εwij;∀(i, j) ∈ N,
∑
i

ηi = 1, (1.3)

and τi ≥ 0,∀i.

• The above methods motivate three different concepts of ε -compatibility.

• If we use method 1, and if A and B are ε -compatible, then the

matrix P ∗ which satisfies (1.1), will be most nearly compatible.
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If we use method 2, and if A and B are ε -compatible, then a

reasonable choice for a most nearly compatible matrix P ∗ will be

P ∗ =
aijη

∗
j + bijτ

∗
i

2
,

where η∗, τ ∗ satisfy (1.2). Finally if we use method 3 and if A

and B are ε -compatible, then a plausible choice for a most nearly

compatible P ∗ will be P ∗ = (bijτ
∗
i ), where τ ∗i satisfies (1.3).

1.4.3 Kullback-Leibler Measure of Incompatibility

As mentioned earlier our main focus is concentrated on situations in

which the conditional specifications are incompatible. The very first

choice of a measure of discrepancy which was suggested by Arnold and

Gokhale (1994) is the Kullback-Leibler Information function which pro-

vides a convenient measure of pseudo distance between distributions.

In the case of an incompatible set-up we are actually looking for a

matrix P with non-negative elements that add up to 1 and which has

conditionals as close as possible to those given by A and B. So we are

seeking PI×J = (pij) with
I∑
i=1

J∑
j=1

pij = 1 and with
pij
I∑
i=1

pij

≈ aij,∀(i, j),

and
pij
J∑
j=1

pij

≈ bij,∀(i, j).
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Using the above mentioned measure, a reasonable strategy for selec-

tion of a minimally incompatible P is to minimize the following objec-

tive function

I∑
i=1

J∑
j=1

bij log(
bijpi.
pij

) +
I∑
i=1

J∑
j=1

aij log(
aijp.j
pij

). (1.4)

It is convenient here to introduce a new matrix

C = A+B,

with elements cij = aij + bij. In order to ensure that a unique

minimizing choice of P exists for the objective function in equation

(1.1), it is necessary to have some assumptions about the incidence set

of the matrix C. For example C must not be block diagonal. Also it

is assumed that some powers of C, perhaps C itself have all elements

strictly positive. Next we have the following theorem due to Arnold

and Gokhale (1998).

Theorem 3 (Arnold and Gokhale (1998)). Denote by P ∗ the choice of

P which minimizes equation(1.1). Then P ∗ must satisfy the following

system of equations:

p∗ij
p∗i.

+
p∗ij
p∗.j

= aij + bij, i = 1, 2, . . . , I, andj = 1, 2, . . . , J.

13



The above expression is obtained by differentiating equation(1.1) with

respect to pij using a Lagrangian multiplier for the linear constraint
I∑
i=1

J∑
j=1

pij = 1.

An iterative algorithm to solve the above equation is proposed as

follows

pn+1
ij =

aij+bij
1
pn
i.

+ 1
pn
.j

I∑
i=1

J∑
j=1

[
aij + bij

1
pni.

+ 1
pn.j

]

. (1.5)

For an initial guess p
(0)
ij = 1

IJ , i = 1, 2, . . . , I and j = 1, 2, . . . , J. The

process is convergent.

1.4.4 Power Divergence Statistic as a measure of divergence

Here we consider under the discrete set up the power divergence statis-

tic to select a minimally incompatible P , from two given conditional

probability matrices.

1.4.5 Why should we consider this?

A divergence measure between two probability distributions is such

that given any two probability distributions p and q (which are of the

same dimension), it will return a measure of the similarity or distance

between them and it is non negative. Again we know that a diversity
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index can be considered to measure the divergence between the pop-

ulation distribution π = (π1, π2, . . . , πk) and the uniform distribution

(1
k , . . . ,

1
k), where an index closer to zero represents a wider divergence

from the uniform distribution. A natural generalization, when con-

sidered in this way, is to define a measure of the divergence between

two general distributions. However this concept was first considered

by Kullback in his directed divergence measure (1959). This form was

actually considered by (Arnold and Gokhale (1994, 1998)) while con-

sidering minimum incompatibility via the Kullback -Leibler criterion.

It is of the form

K(p : q) =
k∑
i=1

pi log2(
pi
qi

),

where p and q are two discrete probability distributions defined on the

(k−1) dimensional simplex ∆k = π : πi ≥ 0; i = 1, .., k;
k∑
i=1

πi = 1. Here

we adopt the convention that pi log2(
pi
qi

) = 0, when pi = 0 and for any

0 ≤ qi ≤ 1. However a family of power Divergence measures indexed

by λ ∈ R for p = (p1, p2, . . . , pk), q = (q1, q2, . . . , qk) is defined as

Iλ(p : q) =
1

λ(λ+ 1)

k∑
i=1

pi[(
pi
qi

)λ − 1],

and we adopt the convention that whenever qi = 0, then pi = 0. Next
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considering the fact that a matrix can be written as an array of column

vectors, we define the power divergence statistic for the matrices A and

B in the following way:

D1

= Iλ(pij : aijp.j) + Iλ(pij : bijpi.)

=
1

λ(λ+ 1)
[
I∑
i=1

J∑
j=1

pij((
pij
aijp.j

)λ − 1) +
I∑
i=1

J∑
j=1

pij((
pij
bijpi.

)λ − 1)],

(1.6)

where the matrices A and B have been defined earlier and λ ∈ R is a

parameter.

Note: The power-divergence family is undefined for λ = −1 or λ = 0.

However if we define these two cases by the continuous limits of D1 as

λ→ −1 and λ→ 0, then D1 is continuous in λ.

The name power divergence derives from the fact that the statistic

D1 measures the divergence of pij from (aijp.j) and (bijpi.) through a

weighted sum of powers of the term (
pij
aijp.j

) and (
pij
bijpi.

) ,∀(i, j) ∈ N . We

want to minimize D1 with respect to
∑ ∑

(i,j)∈N

pij = 1.

Using the Lagrangian multiplier for the constraint
∑ ∑

(i,j)∈N

pij = 1,
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the optimal value of pij will be a solution to the following equation:

pij =
1

(
∑ ∑

(i,j)∈N

([(
1

aijp.j
)λ + (

1

bijpi.
)λ]

1
λ )−1)−1((

1

aijp.j
)λ + (

1

bijpi.
)λ)

1
λ

.

Since the function D1 is strictly convex, the value of pij as obtained

really corresponds to a minimum.

1.4.6 Iterative Algorithm

In this case we consider the following iterative algorithm

p
(n+1)
ij =

1

(
∑ ∑

(i,j)∈N

([(
1

aijp
(n)
.j

)λ + (
1

bijp
(n)
i.

)λ]
1
λ )−1)−1((

1

aijp
(n)
.j

)λ + (
1

bijp
(n)
i.

)λ)
1
λ

, (1.7)

n = 0, 1, 2, . . .

For an initial guess we consider p
(0)
ij = 1

IJ ,∀(i, j) ∈ N . We con-

sider the following stopping rule for the convergence of our iterative

algorithm:|D(n)
1 −D

(n+1)
1 | ≤ 10−5. Furthermore the iterative procedure

in all the examples investigated has been found to be convergent.

1.4.7 What about the choice of λ

In the power divergence statistic, λ is a parameter that can take on

any real value. A natural question that arises here is: what should be

the optimum choice of λ? There are some conflicting recommendations

regarding which value of λ results in the optimal test statistic. In all our
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examples of iterative study wherever we used this, it has been found

that whenever we consider the value of λ other than 2
3 our iterative

procedure although it converges has a rate of convergence that is very

slow. For example when we consider λ=0.2,0.3, and 0.5 for our iterative

study, for the divergence measure D1 our iterative procedure converges

at n=20, 27 and 34 respectively. For negative choices of λ the value of

D1 is quite big and moreover the resulting matrix is not a probability

matrix. However when we consider λ = 2
3 , for the measure D1 our

iterative procedure converges quite rapidly as has been demonstrated

in all the examples later on.

1.4.8 Properties of the Power Divergence Statistic:

• Nonnegativity:

A natural requirement for a measure of divergence is that it take

only positive values and that it increases as p and q “diverge”. In

particular, for the power divergence we have Iλ(p
i

: q
i
) ≥ 0, with

equality iff pi = qi, ∀i. This result follows from the strict convexity

of the function θ(x) = xλ+1−1
λ(λ+1) and by Jensen’s inequality.

• Permutation invariance:

The value of the power divergence is not affected by a simultaneous

and equivalent reordering of the discrete probability masses in both
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of the distributions; i.e.,

Iλ(p : q) = Iλ(p′ : q′), where p′ = (pa1
, pa2

, . . . , pak), q
′ = (qa1

, . . . , qak),

and (a1, . . . , ak) is an arbitrary permutation of the natural order

(1, 2, . . . , k).

• Continuity:

Iλ(p : q) is a continuous function in each of its arguments, in other

words small changes in the probability distributions under com-

parison will result in only small changes in the power divergence.

• This function reduces to usual Kullback-Leibler measure of diver-

gence in the limit as λ→ 0.

Next we consider certain other measures of divergence which are as

follows

1.4.9 Modified Renyi’s measure of divergence

Renyi (1961) proposed the following measure of divergence (of order α)

which is defined as

Rα(p : q) = (α− 1)−1 log2[
k∑
i=1

pαi q
1−α
i ], α 6= 1.

Using additive property of Renyi’s measure we propose the following

measure with a slight modification (we consider the natural log) as
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follows

D2 = Rα = (α−1)−1[
∑ ∑

(i,j)∈N

(aijp.j)
−1 log(

pij
aijp.j

)α+(bijpi.)
−1 log(

pij
bijpi.

)α].

(1.8)

Note: Nadarajah and Zografos (2003, 2005) provide review of Renyi’s

entropy for different univariate and k-variate random variables.

Minimizing this function using Lagrangian multiplier for the con-

straint
∑ ∑

(i,j)∈N

pij = 1, the optimal value of pij, will be a solution to

the following equation:

pij =

1
aijp.j

+ 1
bijpi.∑∑

(i,j)∈N( 1
aijp.j

+ 1
bijpi.

)
.

Also note that

∂2Rα

∂(pij)2

∣∣∣∣
pij

> 0,

which implies that the estimate of pij as obtained really gives a mini-

mum.

1.4.10 Renyi’s measure of divergence is a limiting case of Kullback-Leibler

information criterion

Here we will show that Renyi’s measure is in fact a special case of

Kullback-Leibler measure of discrepancy. We will show the result for

the continuous case. The proof for the discrete case will follow the same
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logic with only the integration being replaced by summation. First of

all recall that Renyi’s measure of divergence is given by

Rα(f1 : f2) =
1

α− 1
log

∫
S

[fα1 (x)f 1−α
2 (x)]dx

=
1

α− 1
log

∫
S

[f1(x)(
f1(x)

f2(x)
)α−1]dx. (1.9)

However next we consider

lim
α→1

Rα(f1 : f2) = lim
α→1

1

α− 1
log

∫
S

[f1(x)(
f1(x)

f2(x)
)α−1]dx

= lim
α→1

∫
S f1(x)(f1(x)

f2(x))
α−1 log(f1(x)

f2(x))dx∫
S f1(x)(f1(x)

f2(x))
α−1dx

=

∫
S f1(x) log(f1(x)

f2(x)) lim
α→1

(
f1(x)

f2(x)
)α−1dx∫

S f1(x) lim
α→1

(
f1(x)

f2(x)
)α−1dx

=

∫
S

f1(x) log(
f1(x)

f2(x)
)dx

= K(f1 : f2), (1.10)

assuming the limit under the integral sign is valid and applying La

Hospital’s rule. Hence the proof where K(:) is the Kullback-Leibler

measure of divergence.
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1.4.11 Iterative algorithm:

Here we consider the following scheme: p
(n+1)
ij =

1

aijp
(n)
.j

+ 1

bijp
(n)
i.∑ ∑

(i,j)∈N

(
1

aijp
(n)
.j

+
1

bijp
(n)
i.

)
,

with the initial guess as p0
ij = 1

IJ ,∀(i, j) ∈ N. We consider the fol-

lowing stopping rule for the convergence of our iterative algorithm:

|D(n)
2 − D

(n+1)
2 | ≤ 10−5. In this case also our process is convergent.

Simulation with an incompatible set-up is shown in later sections.

1.5 χ2 Divergence criterion:

In this case the statistic (D3, say) is given by

D3 =
∑ ∑

(i,j)∈N

((
pij
aijp.j

−1)2)aijp.j+
∑ ∑

(i,j)∈N

((
pij
bijpi.

−1)2)bijpi.. (1.11)

Using the same technique as before i.e., minimizingD3 using Lagrangian

multiplier for the constraint
∑ ∑

(i,j)∈N

pij = 1, the optimal value of pij

will be a solution to the following equation

pij =
1

[ 1
aijp.j

+ 1
bijpi.

][
∑ ∑

(i,j)∈N

[
1

aijp.j
+

1

bijpi.
]−1]

,∀(i, j) ∈ N. (1.12)
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Furthermore

∂2D3

∂(pij)2

∣∣∣∣
pij

> 0,

which again implies that the optimal value of pij as obtained in (1.12)

provides the minimum for the function as earlier.

1.5.1 Iterative Algorithm:

In this case for the iterative algorithm we consider

p
(n+1)
ij =

1

[ 1

aijp
(n)
.j

+ 1

bijp
(n)
i.

][
∑ ∑

(i,j)∈N

[
1

aijp
(n)
.j

+
1

bijp
(n)
i.

]−1]
, n = 0, 1, 2, . . . ,

with the same initial guess as before i.e., p0
ij = 1

IJ∀(i, j) ∈ N . We con-

sider the following stopping rule for the convergence of our iterative

algorithm: |D(n)
3 −D

(n+1)
3 | ≤ 10−5. In this case also our iterative proce-

dure is convergent.

1.6 Proposed new measures of divergence:

1. First of all we consider a (pseudo)distance measure of the form:

D4 =
∑ ∑

(i,j)∈N

[(
2pij

aijp.j + bijpi.
− 1)2]λ, (1.13)

where λ > 0, is a constant.

Note that if in this case A and B are compatible, then D4 = 0 and
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vice versa and also this measure is non-negative. Next minimizing

D4 with the linear constraint that
∑∑

(i,j)∈N pij = 1, the optimal

value of pij will be a solution to the following equation

pij =
(aijp.j + bijpi.)

1− 1
λ∑∑

(i,j)∈N [(aijp.j + bijpi.)1− 1
λ ]
.

Based on the above optimal value an iterative algorithm could be

p
(n+1)
ij =

(aijp
(n)
.j + bijp

(n)
i. )1− 1

λ∑∑
(i,j)∈N [(aijp

(n)
.j + bijp

(n)
i. )1− 1

λ ]
, n = 0, 1, . . . .

With the initial choice p
(0)
ij = 1

IJ ,∀(i, j) ∈ N. It can be shown

that ∂2

∂p2
ij
D4

∣∣∣
pij

> 0, which means that the optimal value of pij

really gives a minimum. For our iterative study we have considered

λ = 2
3 . The reason behind considering this particular choice is

that with this choice of λ, our iterative procedure converges to

the minimally incompatible P faster than for any other assumed

values. We have considered the values of λ = 0.1, 0.3, 0.5, and0.9.

For each of these choices we have performed our iterative study,

and the resultant most nearly compatible P although not much

different in comparison to those which we have obtained in all of

our examples tried, but the rate at which it converges to that P

is really slow. Also our iterative procedure is convergent. We

consider the following as our convergence criteria for the above
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iterative algorithm |D(n)
4 −D

(n+1)
4 | ≤ 10−5.

2. Next we consider a divergence measure of the following form:

D5 =
∑ ∑

(i,j)∈N

[(pij − aijp.j)2aijp.j] +
∑ ∑

(i,j)∈N

[(pij − bijpi.)2bijpi.]

(1.14)

Again note that if A and B are compatible then D5 = 0 and

vice versa. In addition this measure is non-negative. Minimizing

D5 under the linear constraint the optimal value of pij will be a

solution to the following equation:

pij =
(aijp.j)

2 + (bijpi.)
2∑∑

(i,j)∈N [(aijp.j)2 + (bijpi.)2]
,

and also it is easy to verify that ∂2

∂p2
ij
D5

∣∣∣
pij
> 0.

So that an iterative scheme would be

p
(n+1)
ij =

(aijp
(n)
.j )2 + (bijp

(n)
i. )2∑∑

(i,j)∈N [(aijp
(n)
.j )2 + (bijp

(n)
i. )2]

,

for n = 0, 1, 2, . . . With the same initial choice p
(0)
ij = 1

IJ ,∀(i, j) ∈

N. We consider the following as our convergence criteria for the

above iterative algorithm |D(n)
5 −D

(n+1)
5 | ≤ 10−5.

In this case our procedure is also convergent.

3. Now we consider the divergence measure of the following form:
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D6 =
∑ ∑

(i,j)∈N

[
√
pij −

√
aijp.j]

2 +
∑ ∑

(i,j)∈N

[
√
pij −

√
bijpi.]

2,

(1.15)

Note that if the two matrices A and B are compatible then D6 = 0

and vice versa. Also D6 is nonnegative. Minimizing D5 under the

linear constraint the optimal value of pij will be a solution to the

following equation:

pij =
( 1
√
aijp.j+

√
bijpi.

)2∑∑
(i,j)∈N [( 1

√
aijp.j+

√
bijpi.

)2]
,

So that an iterative scheme would be

p
(n+1)
ij =

( 1√
aijp

(n)
.j +
√
bijp

(n)
i.

)2∑∑
(i,j)∈N [( 1√

aijp
(n)
.j +
√
bijp

(n)
i.

)2]
,

for n = 0, 1, 2, . . . With the same initial choice p
(0)
ij = 1

IJ ,∀(i, j) ∈

N. We consider the following as our convergence criteria for the

above iterative algorithm |D(n)
6 −D

(n+1)
6 | ≤ 10−5.

In this case our procedure is also convergent.

1.6.1 Iterative study

• Let us first consider some examples with I = 3 and J = 3 and with

the following choices of A and B:
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1. Incompatible of type 1 (a case in which all the elements are

strictly positive)

Let

A =


1/5 2/7 3/8

3/5 2/7 1/8

1/5 3/7 1/2

 ,

and

B =


1/6 1/3 1/2

1/2 1/3 1/6

1/8 3/8 1/2

 .

In this case the two matrices A and B are not compatible since

if we consider the lower right cross product ratios of the two

matrices A and B, we have for the matrix B, the lower right

cross product =
1
3

1
2

1
6

3
8

= 2, while for the matrix A, the lower right

cross product =
2
7

1
2

3
7

1
8

= 8
3 . Thus A and B are not compatible.

(a) Under the Power divergence criterionD1, We obtainedD
(10)
1 =

0.0002416142 and for this particular value of D1, the cor-

responding minimally incompatible P is given by is given
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by

P =


0.05086816 0.1699624 0.05264803

0.09217352 0.1019318 0.14278151

0.14184063 0.0523794 0.19541450

 ,

and we stopped since in this case |D(10)
1 − D

(11)
1 | ≤ 10−5,

and also |P (10) − P (11)| ≤ 10−5.

(b) Under the Modified Renyi’s divergence criterion D2, we ob-

tained D
(11)
2 = 0.0002447811, and for this particular value

of D2, the corresponding minimally incompatible P is given

by

P =


0.05123717 0.1603623 0.05054213

0.09211853 0.1102115 0.1405672

0.14099155 0.0523794 0.2015902

 ,

and we stopped since in this case |D(11)
2 − D

(12)
2 | ≤ 10−5,

and also |P (11) − P (12)| ≤ 10−5.

(c) Under the χ2 divergence criterion, i.e., under D3, we ob-

tained D
(12)
3 = 0.00013453267, and for this particular value

of D3, the corresponding minimally incompatible P is given
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by

P =


0.05156237 0.17013456 0.053196463

0.09260173 0.10306895 0.14113752

0.14198767 0.05230725 0.19137217

 ,

and we stopped since in this case |D(12)
3 − D

(13)
3 | ≤ 10−5,

and also |P (12) − P (13)| ≤ 10−5.

(d) Now under D4, we obtained D
(15)
4 = 0.00007405324, and

for this particular value of D4, the corresponding minimally

incompatible P is given by

P =


0.05424209 0.17194484 0.05481822

0.09251337 0.09775432 0.14024400

0.14389799 0.05068330 0.19390186

 ,

and we stopped since in this case |D(15)
4 − D

(16)
4 | ≤ 10−5,

and also |P (15) − P (16)| ≤ 10−5.

(e) For D5, we obtained D
(15)
5 = 0.000115798, and for this par-

ticular value of D5, the corresponding minimally incompat-
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ible P is given by

P =


0.0515650 0.1721786 0.0527697

0.0926017 0.1030674 0.1421476

0.1409875 0.0523072 0.1923749

 ,

and we stopped since in this case |D(15)
5 − D

(16)
5 | ≤ 10−5,

and also |P (15) − P (16)| ≤ 10−5.

(f) Furthermore under D6, we obtained D
(16)
6 = 0.0000032561,

and for this particular value of D6, the corresponding min-

imally incompatible P is given by

P =


0.05177626 0.17205234 0.0528665

0.09258417 0.10333889 0.1420280

0.14089836 0.05236851 0.1920870

 ,

and we stopped since in this case |D(16)
6 − D

(17)
6 | ≤ 10−5,

and also |P (16) − P (17)| ≤ 10−5.

2. Incompatible of type 2 (a case in which there are some zeros

in the same position(s) for both the matrices)

Let us consider two matrices A and B of the following forms:
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A =


0 1/3 0

1 1/3 1/2

0 1/3 1/2

 ,

and

B =


0 1 0

1/4 1/2 1/4

0 1/5 4/5

 .

Again by the same argument as before the two matrices A and

B are incompatible.

(a) Then under D1, we obtained D
(9)
1 = 0.000176543, and for

this particular value of D1, the corresponding minimally

incompatible P is given by

P =


0.0000000 0.1466426 0.0000000

0.1590778 0.2054299 0.1104262

0.0000000 0.1482233 0.2302003

 ,

and we stopped since in this case |D(9)
1 −D

(10)
1 | ≤ 10−5, and

also |P (9) − P (10)| ≤ 10−5.

(b) However under the modified Renyi’s measure of divergence,

i.e., under D2, we obtained D
(12)
2 = 0.000453816, and for

this particular value of D2, the corresponding minimally
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incompatible P is given by

P =


0.0000000 0.1529851 0.0000000

0.1648741 0.1934395 0.1317364

0.0000000 0.1530584 0.2039064

 ,

and we stopped since in this case |D(12)
2 − D

(13)
2 | ≤ 10−5,

and also |P (12) − P (13)| ≤ 10−5.

(c) Then under D3, the ε = 0.007263714 compatible distribu-

tion is given by

P =


0.0000000 0.17712336 0.0000000

0.1349069 0.19947534 0.1547621

0.0000000 0.09877285 0.2349595

 ,

and it is achieved at n = 3 stage of iteration.

(d) Then under D4, we obtained D
(14)
4 = 0.000189767, and for

this particular value of D4, the corresponding minimally

incompatible P is given by

P =


0.0000000 0.1515781 0.0000000

0.1683712 0.1946174 0.1295497

0.0000000 0.1526528 0.2132307

 ,

and we stopped since in this case |D(14)
4 − D

(15)
4 | ≤ 10−5,
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and also |P (14) − P (15)| ≤ 10−5.

(e) While under the divergence measureD5, we obtainedD
(15)
5 =

0.000523176, and for this particular value of D5, the corre-

sponding minimally incompatible P is given by

P =


0.0000000 0.1496455 0.0000000

0.1643222 0.1927815 0.1305459

0.0000000 0.1673558 0.1953493

 ,

and we stopped since in this case |D(15)
5 − D

(16)
5 | ≤ 10−5,

and also |P (15) − P (16)| ≤ 10−5.

(f) Under D6, we obtained D
(13)
6 = 0.00006321, and for this

particular value of D6, the corresponding minimally incom-

patible P is given by

P =


0.0000000 0.1377437 0.0000000

0.1539082 0.2015677 0.1184920

0.0000000 0.1480436 0.2402449

 ,

and we stopped since in this case |D(13)
6 − D

(14)
6 | ≤ 10−5,

and also |P (13) − P (14)| ≤ 10−5.

• Again let us consider some examples with I = 4 and J = 4 and

with the following choices of A and B:
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1. Incompatible of type 1 ( a case in which all the elements are

strictly positive)

Let

A =



3/10 3/10 2/10 2/10

1/5 1/10 1/5 3/10

2/5 1/5 3/10 2/5

1/10 2/5 3/10 1/10


,

and

B =



1/5 3/10 2/5 1/10

3/10 1/5 1/5 3/10

3/5 1/10 1/5 1/10

1/5 2/5 1/5 1/5


.

Here also as before the two matrices A and B are not compat-

ible since if we consider the upper right cross product ratios

of the two matrices A and B, we have for the matrix A, the

upper right cross product =
( 2

10 )( 3
10 )

( 2
10 )( 1

5 )
= 3

2 , while for the matrix

B, the upper right cross product =
( 2

5 )( 3
10 )

( 1
5 )( 1

10 )
= 6. Thus A and B

are not compatible.

(a) Under the Power divergence criterionD1, we obtainedD
(10)
1 =

0.0002143704 and for this particular value of D1, the corre-
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sponding minimally incompatible P is given by

P =



0.07704966 0.06688648 0.14051643 0.03330258

0.08339375 0.03279953 0.03554727 0.08354802

0.08655587 0.05554226 0.07060513 0.05502597

0.03774765 0.06954348 0.04433518 0.02760073


,

and we stopped since in this case |D(10)
1 − D

(11)
1 | ≤ 10−5,

and also |P (10) − P (11)| ≤ 10−5.

(b) Under the Modified Renyi’s divergence criterion D2, we ob-

tained D
(8)
2 = 0.0001410993 and for this particular value of

D2, the corresponding minimally incompatible P is given

by

P =



0.07604231 0.06688648 0.14051643 0.03330258

0.08339375 0.03279953 0.03554727 0.08354802

0.08655423 0.05554021 0.07060513 0.05502349

0.03774684 0.06954323 0.04433488 0.02861562


,

and we stopped since in this case |D(8)
2 −D

(9)
2 | ≤ 10−5, and

also |P (8) − P (9)| ≤ 10−5.

(c) However under the χ2 divergence criterion, i.e., under D3,

we obtained D
(9)
3 = 0.00001768364 and for this particular
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value of D3, the corresponding minimally incompatible P

is given by

P =



0.07023404 0.07858238 0.06903101 0.02853365

0.06796916 0.03265322 0.04667173 0.05455597

0.17033167 0.04156970 0.07271910 0.04446242

0.04098023 0.09951178 0.05845184 0.02374210


,

and we stopped since in this case |D(9)
3 −D

(10)
3 | ≤ 10−5, and

also |P (9) − P (10)| ≤ 10−5.

(d) Under D4, we obtained D
(12)
4 = 0.002070486 and for this

particular value of D4, the corresponding minimally incom-

patible P is given by

P =



0.07353635 0.05889123 0.12842186 0.03112296

0.07324347 0.02819919 0.03873810 0.08597404

0.07811256 0.05683596 0.08120368 0.07152065

0.03870103 0.06705061 0.06140633 0.02704200


,

and we stopped since in this case |D(12)
4 − D

(13)
4 | ≤ 10−5,

and also |P (12) − P (13)| ≤ 10−5.

(e) For D5, we obtained D
(10)
5 = 0.00001845390 and for this

particular value of D5, the corresponding minimally incom-
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patible P is given by

P =



0.07496105 0.06485755 0.13969506 0.03282546

0.08113641 0.03309287 0.03563895 0.08205221

0.08914853 0.05454113 0.07193831 0.05855724

0.03696451 0.06784473 0.04870969 0.02803630


,

and we stopped since in this case |D(10)
5 − D

(11)
5 | ≤ 10−5,

and also |P (10) − P (11)| ≤ 10−5.

(f) Furthermore under D6, we obtained D
(8)
6 = 0.00001609678

and for this particular value of D6, the corresponding min-

imally incompatible P is given by

P =



0.07292820 0.06273524 0.13917061 0.03242250

0.07897186 0.03333501 0.03546013 0.08041667

0.09114661 0.05365939 0.07318725 0.06237551

0.03630846 0.06608111 0.05323884 0.02856262


,

and we stopped since in this case |D(8)
6 −D

(9)
6 | ≤ 10−5, and

also |P (8) − P (9)| ≤ 10−5.

2. Incompatible of type 2 (a case in which there are some zeros

in the same position (s) for both the matrices) Let us consider
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two matrices A and B of the following form:

A =



0 2/10 1/10 1/5

1/5 2/5 0 3/10

1/2 0 3/5 1/2

3/10 2/5 3/10 0


,

and

B =



0 1/10 2/5 1/2

3/10 3/10 0 2/5

2/5 0 3/10 3/10

3/5 3/10 1/10 0


.

It can be easily checked that here also the matrices A and B

are incompatible as not all the cross product ratios are equal

for both the matrices.

(a) Under the Power divergence criterionD1, we obtainedD
(10)
1 =

0.0002363084 and for this particular value of D1, the corre-

sponding minimally incompatible P is given by

P =



0 0.05515792 0.1042738 0.09847155

0.03798426 0.09140565 0 0.10173017

0.05837866 0 0.1207913 0.05239492

0.08346835 0.09363649 0.1023069 0


,
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and we stopped since in this case |D(10)
1 − D

(11)
1 | ≤ 10−5,

and also |P (10) − P (11)| ≤ 10−5.

(b) Under the Modified Renyi’s divergence criterion D2, we ob-

tained D
(14)
2 = 0.0002363084 and for this particular value

of D2, the corresponding minimally incompatible P is given

by

P =



0 0.05515792 0.1042738 0.09847155

0.03798426 0.09140565 0 0.10173017

0.05837866 0 0.1207913 0.05239492

0.08346835 0.09363649 0.1023069 0


,

and we stopped since in this case |D(14)
2 − D

(15)
2 | ≤ 10−5,

and also |P (14) − P (15)| ≤ 10−5.

(c) Under the χ2 divergence criterion, i.e., under D3, we ob-

tained D
(11)
3 = 0.00001768364 and for this particular value

of D3, the corresponding minimally incompatible P is given

by

P =



0 0.04514829 0.10173578 0.08144188

0.03252637 0.06651628 0 0.09081290

0.06417685 0.00000000 0.14749101 0.04978037

0.07848409 0.08351710 0.1042117 0


,
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and we stopped since in this case |D(11)
3 − D

(12)
3 | ≤ 10−5,

and also |P (11) − P (12)| ≤ 10−5.

(d) Now under D4, we obtained D
(10)
4 = 0.00002014352 and for

this particular value of D4, the corresponding minimally

incompatible P is given by

P =



0 0.04103676 0.09801774 0.07469942

0.03471148 0.07678929 0 0.08466566

0.05602149 0 0.19132350 0.07820885

0.06706973 0.07883477 0.11862132 0


,

and we stopped since in this case |D(10)
4 − D

(11)
4 | ≤ 10−5,

and also |P (10) − P (11)| ≤ 10−5.

(e) For D5 we obtained D
(15)
5 = 0.00006752265 and for this

particular value of D5, the corresponding minimally incom-

patible P is given by

P =



0 0.05416158 0.1089195 0.10710785

0.03450341 0.07926110 0 0.09049601

0.06069293 0 0.1329969 0.05628083

0.08369955 0.08598767 0.1058927 0


,
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and we stopped since in this case |D(15)
5 − D

(16)
5 | ≤ 10−5,

and also |P (15) − P (16)| ≤ 10−5.

(f) Furthermore under D6 we obtained D
(14)
6 = 0.01305660 and

for this particular value of D6, the corresponding minimally

incompatible P is given by

P =



0 0.05005653 0.1097232 0.11128045

0.03227245 0.06889548 0 0.08181862

0.06548797 0 0.1440695 0.06263719

0.08703722 0.07864499 0.1080764 0


,

and we stopped since in this case |D(14)
6 − D

(15)
6 | ≤ 10−5,

and also |P (14) − P (15)| ≤ 10−5.

• Let us consider an example with I = 3 and J = 4 and with the

following choices of A and B:

1. Incompatible of type 1

Let

A =


1/7 2/7 4/7 1/4

1/2 1/4 3/7 1/7

3/7 1/7 2/7 4/7

 ,
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and

B =


1/6 2/7 1/3 1/6

2/7 1/12 1/2 1/7

1/4 1/6 2/7 1/3

 .

It can be easily checked that here also the matrices A and B

are incompatible as not all the cross product ratios are equal

for both the matrices.

(a) Under the Power divergence criterionD1, we obtainedD
(9)
1 =

0.0001934688 and for this particular value of D1, the corre-

sponding minimally incompatible P is given by

P =


0.04013147 0.04133851 0.1217852 0.04013147

0.08021275 0.08262430 0.0405695 0.08021275

0.15683188 0.04036863 0.1189616 0.15683188

 ,

and we stopped since in this case |D(9)
1 −D

(10)
1 | ≤ 10−5, and

also |P (9) − P (10)| ≤ 10−5.

(b) Under the Modified Renyi’s divergence criterion D2, we ob-

tained D
(12)
2 = 0.00001463646 and for this particular value

of D2, the corresponding minimally incompatible P is given
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by

P =


0.12321281 0.08303605 0.04108691 0.12321281

0.06905963 0.04897125 0.13816718 0.06905963

0.04695743 0.14765297 0.06262588 0.04695743

 ,

and we stopped since in this case |D(12)
2 − D

(13)
2 | ≤ 10−5,

and also |P (12) − P (13)| ≤ 10−5.

(c) Under the χ2 divergence criterion, i.e., under D3, we ob-

tained D
(14)
3 = 0.0001843705 and for this particular value

of D3, the corresponding minimally incompatible P is given

by

P =


0.04010651 0.04128553 0.12156161 0.04010651

0.08025643 0.08261707 0.04054269 0.08025643

0.15698329 0.04037408 0.11892656 0.15698329

 ,

and we stopped since in this case |D(14)
3 − D

(15)
3 | ≤ 10−5,

and also |P (14) − P (15)| ≤ 10−5.

(d) Now under D4, we obtained D
(17)
4 = 0.00002486131 and for

this particular value of D4, the corresponding minimally

43



incompatible P is given by

P =


0.03950049 0.04258211 0.11978602 0.03950049

0.07938223 0.08557522 0.04012137 0.07938223

0.15661401 0.04220805 0.11873378 0.15661401

 ,

and we stopped since in this case |D(17)
4 − D

(18)
4 | ≤ 10−5,

and also |P (17) − P (18)| ≤ 10−5.

(e) For D5, we obtained D
(11)
5 = 0.0001901572 and for this par-

ticular value of D5, the corresponding minimally incompat-

ible P is given by

P =


0.04011167 0.04133195 0.12161477 0.04011167

0.08024703 0.08268831 0.04055023 0.08024703

0.15688426 0.04041425 0.11891455 0.15688426

 ,

and we stopped since in this case |D(11)
5 − D

(12)
5 | ≤ 10−5,

and also |P (11) − P (12)| ≤ 10−5.

(f) Furthermore under D6, we obtained D
(13)
6 = 0.0001305660

and for this particular value of D6, the corresponding min-
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imally incompatible P is given by

P =


0.04006222 0.04131085 0.12121682 0.04006222

0.08034045 0.08283992 0.04051391 0.08034045

0.15701657 0.04049440 0.11878562 0.15701657

 ,

and we stopped since in this case |D(13)
6 − D

(14)
6 | ≤ 10−5,

and also |P (13) − P (14)| ≤ 10−5.

2. Incompatible of type 2 Let us consider two matrices A and

B of the following forms: A =


0 2/7 7/12 1/4

1/2 0 5/12 2/4

1/2 5/7 0 1/4

 and

B =


0 1/6 3/6 2/6

1/5 0 2/5 2/5

4/17 9/17 0 4/17


It can be easily checked that here also matrices A and B are

incompatible as not all the cross product ratios are equal for

both the matrices.

(a) However under the Power divergence criterion D1, we ob-

tained D
(10)
1 = 0.00002722612 and for this particular value

of D1, the corresponding minimally incompatible P is given
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by

P =


0 0.05852942 0.1625191 0.08997387

0.07462162 0 0.1314126 0.15039219

0.07903001 0.17384650 0 0.07967465

 ,

and we stopped since in this case |D(10)
1 − D

(11)
1 | ≤ 10−5,

and also |P (10) − P (11)| ≤ 10−5.

(b) Under the Modified Renyi’s divergence criterion D2, we ob-

tained D
(8)
2 = 0.00001765243 and for this particular value

of D2, the corresponding minimally incompatible P is given

by

P =


0 0.05852942 0.1625191 0.08997387

0.07462162 0 0.1314126 0.15039219

0.07903001 0.17384650 0 0.07967465

 ,

and we stopped since in this case |D(8)
2 −D

(9)
2 | ≤ 10−5, and

also |P (8) − P (9)| ≤ 10−5.

(c) However under the χ2 divergence criterion, i.e., under D3,

we obtained D
(12)
3 = 0.0002579339 and for this particular

value of D3, the corresponding minimally incompatible P

is given by
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P =


0 0.0589141 0.1625083 0.09074997

0.07465284 0 0.1315608 0.15056431

0.07874187 0.1729022 0 0.07940566

 ,

and we stopped since in this case |D(12)
3 − D

(13)
4 | ≤ 10−5,

and also |P (12) − P (13)| ≤ 10−5.

(d) Now under D4, we obtained D
(10)
4 = 0.0002014352 and for

this particular value of D4, the corresponding minimally

incompatible P is given by

P =


0 0.0617139 0.1633906 0.08587921

0.07817756 0 0.1272337 0.15207774

0.08089520 0.1719500 0 0.07868216

 ,

and we stopped since in this case |D(10)
4 − D

(11)
5 | ≤ 10−5,

and also |P (10) − P (11)| ≤ 10−5.

(e) For D5 the D
(13)
5 = 0.00002579339 and for this particular

value of D5, the corresponding minimally incompatible P
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is given by

P =


0.00000000 0.0589141 0.1625083 0.09074997

0.07465284 0.0000000 0.1315608 0.15056431

0.07874187 0.1729022 0.0000000 0.07940566

 ,

and we stopped since in this case |D(13)
5 − D

(14)
6 | ≤ 10−5,

and also |P (13) − P (14)| ≤ 10−5.

(f) Furthermore under D6 we obtained D
(15)
6 = 0.0002668771

and for this particular value of D6, the corresponding min-

imally incompatible P is given by

P =


0 0.05906419 0.1611827 0.09070318

0.07520482 0 0.1312231 0.15042760

0.07940207 0.17338110 0 0.07941121

 ,

and we stopped since in this case |D(15)
6 − D

(16)
6 | ≤ 10−5,

and also |P (15) − P (16)| ≤ 10−5.

1.7 Comments on the behavior of the divergence measures

Since Mahalanobis (1936) introduced the concept of distance between

two probability distributions, several coefficients have been suggested

in statistical literature to reflect the fact that some probability dis-
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tributions are “closer together” than others and consequently that it

may be “easier to distinguish” between a pair of distributions which

are “far from each other” than between those which are closer. Such

coefficients have been variously called measures of distance between

two distributions (Adhikari and Joshi, 1956), measures of separation

(Rao, 1949, 1954), measures of discriminatory information (Chernoff,

1952, Kullback, 1959) and measures of variation-distance (Kolmogorov,

1963). Many of the currently used tests, such as likelihood ratio, the

Chi-square, the score and Wald tests, can in fact be shown to be defined

in terms of appropriate distance measures.

While the cited coefficients have not all been introduced for exactly

the same purpose, they all possess the common property of increasing

as the two distributions under study are “far from each other”. In this

chapter, a coefficient with this property has been called a divergence

measure between two probability distributions.

In this chapter we focussed our attention in finding the optimum

value of pij based on various measures of divergence when the given

two conditional probability matrices A and B are incompatible. Fur-

thermore we have done a comparative study based on an iterative algo-

rithm provided for each of the divergence measures mentioned in this

chapter.
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Based on our iterative study it has been found that the performance

of all the measures of divergence is similar. We have obtained almost

the same minimally incompatible P, under the same convergence cri-

terion set for all of them. This has been found to be true in both

the situations where the two conditional probability matrices A and B

have all the elements strictly positive and also when they have zeros

appearing in the same position. To this end we can say that in a search

for a most nearly compatible P in an incompatible set-up, one can

use any of those measures. However among them the performance of

the Kullback-Leibler measure of divergence may be preferred over the

remaining divergence measures since it achieves the same minimally

incompatible P but at a faster rate of convergence as can be easily

verified with all the examples tried in this chapter.

A careful and detailed study on the use of several measures of di-

vergence, distinct from those treated in this chapter, in the problem

of finding a minimally compatible P, under an incompatible set-up has

been made by authors such as Arnold et.al (1998, 2001), Arnold and

Gokhale (1998). A rigorous proof of the convergence of the iterative

algorithms introduced in those papers, as well those discussed in the

present chapter, is not yet available.
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Chapter 2

An alternative approach to

compatibility for the two

conditional probability matrices

under the discrete set-up

2.1 Introduction

Specification of joint distributions by means of conditional densities

has received considerable attention in the last decade or so. Possible

applications may be found in the area of model building in classical

statistical settings and in the elicitation and construction of multipa-

rameter prior distributions in Bayesian scenarios. For example suppose

that X = (X1, X2, · · · , Xk) is a k-dimensional random vector taking on

values in the finite range set X 1 ×X 2 × · · · × X k where X i denote the
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possible values of Xi, i = 1, 2, · · · , k. Efforts to ascertain an appropriate

distribution for X frequently involve acceptance or rejection of a series

of bets about the stochastic behavior of X. Let us consider that in this

situation we are facing a question of whether or not to accept with odds

4 to 1 a bet that X1 is equal to 1. Then if we accept the bet then it

puts a bound on the probability that X=1.

The basic problem is most easily visualized in the finite discrete

case. Several alternative approaches exist in the literature with regard

to the problem of determination of the possible compatibility of two

families of conditional distributions (Arnold and Press, 1989; Arnold

and Gokhale, 1994; Cacoullos and Papageorgiou, 1995; Wesolowski,

1995). In addition, the problem of determining most nearly compatible

distributions, in the absence of compatibility, has been addressed (

Arnold and Gokhale 1998; Arnold, Castillo and Sarabia (1999, 2001)).

In this chapter, focussed on the finite discrete case, we take a closer look

at the compatibility problem, viewing it as a problem involving linear

equations in restricted domains. The issue of near compatibility is also

discussed using the concept of ε-compatibility which is mentioned in

chapter 1. Furthermore we also focus our attention on situations where

we have incomplete ( or partial) information on (either or both) of the

two conditional probability matrices A and B, under the compatible
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set-up.

In particular we transform the problem of compatibility to a linear

programming problem and we derive conditions for compatibility based

on the rank of a matrix D, whose elements are functions of the two con-

ditional probability matrices A and B. It will be found that the problem

of compatibility, with our approach, is reduced to a large extent in the

sense that we are left with only finding a solution to a set of IJ equa-

tions in (I−1) unknowns with non negativity constraints, where I and

J are the dimensions of the matrices A and B. However in this chapter

we will mainly focus on cases in which I = 2, 3, 4 and J = 2, 3. Detailed

discussion will be provided for these cases and compatibility in higher

dimensions will be discussed later on. The remainder of this chapter is

organized in the following way. In Section 2, we will discuss the concept

of compatibility for any two conditional probability matrices A and B.

In Section 3, we will discuss in detail how the problem of compatibility

can be looked upon as a linear programming problem. In Section 4, we

will discuss the alternative approach to compatibility for the (2×2) and

(3×3) cases. In Section 5, we will discuss the problem of compatibility

when we have incomplete specification of matrices A or B or both.

53



2.2 Compatibility

Let A and B be two (I × J) matrices with non-negative elements such

that
∑I

i=1 aij = 1, ∀j = 1, . . . , J and
∑J

j=1 bij = 1, ∀i = 1, 2, . . . , I.

Without loss of generality it can be assumed that I ≤ J. Matrices A

and B are said to form a compatible conditional specification for the

distribution of (X, Y ) if there exists some (I × J) matrix P with non-

negative entries pij and with
∑I

i=1

∑J
j=1 pij = 1, such that for every

(i, j)

aij =
pij
p.j
,

and

bij =
pij
pi.
,

where p.j =
∑J

j=1 pij and pi. =
∑I

i=1 pij. If such a matrix P exists then,

if we assume that

pij = P (X = xi, Y = yj),

i = 1, 2, · · · , I, j = 1, 2, · · · , J, we will have

aij = P (X = xi|Y = yj),

i = 1, 2, · · · , I, j = 1, 2, · · · , J, and

bij = P (Y = yj|X = xi),
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i = 1, 2, · · · , I, j = 1, 2, · · · , J.

Equivalently A and B are compatible if there exist stochastic vectors

τ = (τ1, τ2, · · · , τJ), and η = (η1, η2, · · · , ηI) such that

aijτj = bijηi,

for every(i, j). In the case of compatibility, η and τ can be readily

interpreted as the resulting marginal distributions of X and Y, respec-

tively. For any probability vector η = (η1, η2, . . . , ηI), pij = bijηi is a

probability distribution on the IJ cells. So the conditional probability

matrix denoted by A, and it’s elements (aij) will be given by

aij =
pij
I∑
s=1

psj

=
bijηi
I∑
s=1

bsjηs

, (2.1)

for every(i, j).

If A and B are compatible then

aij

I∑
s=1

bsjηs = bijηi.

Then we have

τj =
I∑
s=1

bijηs,
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∀j = 1, . . . , J. In that case expressions given in (2.1) can be written as

aij

I∑
s=1

bsjηs − bijηi = 0.

In matrix notation the above can be written as

Dη = 0, (2.2)

where D is a matrix of dimension IJ × I and the above equation is a

homogeneous system of IJ equations in I unknowns ηi . Through well

known matrix operations (such as left-multiplication by non-singular

matrices) it’s rows can be reduced to at most I rows with non-zero

elements (the so called “Row Echelon form”). Now let this reduced

system be denoted by Dry = 0 where y = (y1, y2, . . . , yI)
′. Matrices

A and B are compatible if the system Dry = 0 has a solution y∗ of

non-negative elements with at least one positive element. If such a y∗

exists it can be scaled to arrive at a probability vector. However A and

B are not compatible if the only solution with non-negative elements

of Dry = 0 is the null vector. In order to examine whether or not

such a solution y∗ of Dry = 0 exists (especially when I is large), the

methodology of linear programming may be used. Specifically, consider

the problem of maximizing the objective function
∑

i yi, subject to (a)

the non-negativity constraints
∑I

i=1 yi ≥ 0, (b) the equality constraints
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Dry = 0, and (c) the constraint
∑

i y
I
i=1 ≤ 1. If the maximum of

the objective function is positive, then the corresponding optimizing

vector is y∗, which can be scaled into the probability vector η∗. If the

maximum is 0, then A and B are not compatible. First of all we will

consider some results related to compatibility of two matrices A and B

and later on we will discuss an alternative approach to compatibility.

2.3 Compatibility of two matrices A and B

We know that if the matrices A and B are compatible then aijp.j =

bijpi., for every i = 1, 2 · · · , I; j = 1, 2, · · · J. Equivalently we can write

aij

I∑
s=1

psj − bij
J∑
k=1

pik = 0,

for every i = 1, 2 · · · , I; j = 1, 2, · · · J, which is again can be written as

aij[p1j +p2j + · · ·+pij + · · ·+pIj]− bij[pi1 +pi2 + · · ·+pij + · · ·+piJ ] = 0

for every i = 1, 2 · · · , I; j = 1, 2, · · · J.

In matrix notation the above system of linear equations can be writ-

ten as

Cp = 0,

where C contains elements calculated from those of A and B and is a
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matrix of dimension IJ×IJ and p(IJ×1) = (p11, p12, · · · , pIJ)T . We need

to show that the solution space Ω, (say) of these equations is given by

(I−M)z, where M is an idempotent matrix and z(IJ×1) is any arbitrary

vector of dimension IJ × 1.

Proof: We may consider M = C−C, where C− is the g-inverse of the

matrix C and we have considered the g-inverse of C since rank(CIJ×IJ) <

IJ. Next observe that

M = C−C

M 2 = C−CC−C

= C−C

= M,

which follows from the definition of g-inverse since CM = CC−C = C.

Hence each of the IJ columns h1, h2, . . . , hIJ of (I −M) are orthog-

onal to the rows of C. But

(I −M)2 = I −M −M +M 2 = I −M,

since M 2 = M. And

rank(I −M) = tr(I −M) = tr(I)− tr(M) = IJ − r,

where r = rank(C) = rank(M) and tr ≡ trace. So only (IJ − r) of
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the column vectors h1, h2, . . . , hIJ are linearly independent and without

loss of generality we may consider them to be

h1, h2, . . . , hIJ−r.

Again since C is an (IJ × IJ) matrix of rank r, it’s rows are IJ-

vectors and therefore we can find at most (IJ−r) linearly independent

vectors orthogonal to them and h1, h2, . . . , hIJ−r is one such set. If there

is any other vector orthogonal to the rows of C, it must be a linear

combination of h1, h2, . . . , hIJ−r. Now since Cp = 0, p is orthogonal to

the rows of C and so any vector p satisfying Cp = 0 must be a linear

combination of h1, h2, . . . , hIJ−r.

But equivalently we can say that p will be a combination of h1, h2, · · · , hIJ ,

because hIJ−r+1, hIJ−r+2, . . . , hIJ are combinations of h1, h2, · · · , hIJ−r.

Hence p must be of the form

p = z1h1 + z2h2 + z3h3 + . . .+ zIJhIJ

= (h1, . . . , hIJ)z

= (I −M)z,

for some choices of z = (z1, · · · , zIJ)′.
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Conversely if the above holds then

CM = C(I −M)z

= (C − CM)z

= 0,

because of the fact that CM = C. Hence the proof.

Next we have the following two propositions:

1. If there exists one vector in Ω such that all its elements are non-

negative and at least one element is strictly positive then A and B

are compatible.

Proof: We have from our earlier result the solution space as

Ω = (I −M)z,whereM = C−C.

Now suppose z = (z1, z2, . . . , zJ)′, where zu = (z1u, . . . , zIu).
′ Let

us consider zi ≥ 0 and (say) zj > 0, where j ∈ i, meaning at least

one of the z′is is strictly zero. Then we can write W =
∑J

u=1 zIu.

Obviously W > 0. So we can rewrite z as

znew = (
z1

W
,
z2

W
, . . . ,

zJ
W

)

= (p1, p2, . . . , pJ)′,
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which is a valid probability distribution since
∑I

i=1

∑J
j=1

zij
W = 1.

Hence the proof.

2. If every vector in Ω has non-positive elements then A and B are

not compatible.

Proof: In this situation suppose that we have as before z(IJ×1) =

(z1, z2, . . . , zJ)′, with zi ≥ 0, ∀i = 1(1)J. But if we consider the

trivial situation or the possibility of every zi = 0 then all the

elements of z(IJ×1) are zero which implies that it can not be a valid

probability distribution.

Next observe that since
∑∑

pij, is a linear function in pij, the prob-

lem is equivalent to the following linear programming (LP) problem:

Maximize f(p) =
∑∑

pij, subject to Cp = 0 and 1 ≥ pij ≥ 0 ∀(i, j).

Theorem 4. In the above LP problem max f(p) > 0 if and only if A

and B are compatible.

Proof: Note that if max f(p) > 0 then at least one of the element

in p = (p11, . . . , pIJ)′ is strictly positive so we may consider puv > 0,

where u ∈ i, v ∈ j and pij ≥ 0,∀u 6= i, v 6= j. Then obviously we have

maxf(p) =
∑
i

∑
j

pij =
∑
i6=u

∑
j 6=v

pij + puv > 0.
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Next note that we can write

p

= (p11, p12, · · · , p1J︸ ︷︷ ︸, p21, p22, · · · , p2J︸ ︷︷ ︸, · · · , pI1, pI2, · · · , pIJ︸ ︷︷ ︸).
Then we can rewrite p as

p = (p
1
, p

2
, . . . , p

I
)′

= (
p

1

maxf(p)
,

p
2

maxf(p)
, . . . ,

p
I

maxf(p)
).

Then it becomes a valid probability distribution and then it follows

from our previous result that A and B are compatible.

2.4 An alternative approach to compatibility

First we will consider the following theorem:

Theorem 5. For any two given conditional probability matrices A and

B of dimension (I × J), they are compatible if rank(D(IJ×I)) ≤ I − 1,

with equality when there exists a unique solution for the unknown ηi,∀i.

Proof: Note that rank(D(IJ×I)) ≤ min(IJ, I) = I. Now when D has

full rank, i.e., rank(D) = I, then the only solution to the equation

Dη = 0 is the null vector(trivial solution). So matrices A and B are

incompatible.
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Next if we have rank(D(IJ×I)) ≤ I − 1, the number of equations

(IJ) > number of unknowns (I − 1), so we must have a non-trivial so-

lution. If the non-trivial solution is positive then it can be appropriately

scaled to arrive at a probability vector η∗. Hence the two matrices A

and B will be compatible. However in this case the system of equations

is not homogeneous and at most we will have (I − 1) solutions.

Again when rank(D) = I − 1, then we have (I − 1) unknowns,

(subject to the linear constraint
∑I

i=1 ηi = 1) and (I − 1) equations

(excluding the redundant equations from the total set of IJ equations)

and the system of linear equations is homogeneous so that there exists

a unique solution. This completes the proof.

Note: This theorem will be in particular useful in situations when

the two conditional matrices A and B have zeroes as elements appearing

in the same position in them and we can not guarantee the existence

of a compatible matrix P by the cross product ratio criterion.

Next we will discuss this in the context of compatibility for (2× 2),

(3× 3), and (4× 3) cases with examples.

2.4.1 Compatibility in (2× 2) case

We will provide the outline of the proof for I = 2, J = 2 and similar

argument will follow in higher dimensions.
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Proof: In a (2× 2) case the D-matrix is given by

D =



b11(a11 − 1) a11b21

b12(a12 − 1) a12b22

a21b11 b21(a21 − 1)

a22b12 b22(a22 − 1)


.

Equivalently we can write D as (because a11+a21 = 1 and a12+a22 =

1)

D =



−b11(a21) a11b21

−b12(a22) a12b22

a21b11 −b21(a11)

a22b12 −b22(a12)


.

Next we consider the elementary row-transformations

• (new(row 3)=row 1+row 3

• new(row 4)=row4+row2

So that our D matrix reduces to

D =



−b11(a21) a11b21

−b12(a22) a12b22

0 0

0 0


.

64



However in a (2×2) case ifA andB are compatible then cprs(A)=cprs(B),

so that we can write

a12a21b22b11 = a11a22b21b12. (2.3)

Again we apply the elementary row transformations

• new(row1)=row 1×(a12b22)

• new(row2)=row 2×(a11b21).

So that our D-matrix reduces to

D =



−b11(a21)a12b22 a11b21a12b22

−b12(a22)a11b21 a12b22a11b21

0 0

0 0


.

Now because of equation (2.3) and by applying the elementary row

transformation new(row 2)=row 2-row 1 our D-matrix reduces to

D =



−b11(a21)a12b22 a11b21a12b22

0 0

0 0

0 0


.

Hence rank(D)=1.
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Next we have to show that rank(D) is bigger than 1 if A and B are

not compatible and we will show here that in a (2×2) case rank(D)=2.

Proof: It actually follows from our previous result where after some

elementary row-transformation our D-matrix reduces to

D =



−b11(a21)a12b22 a11b21a12b22

−b12(a22)a11b21 a12b22a11b21

0 0

0 0


.

When A and B are incompatible (2.3) does not hold so the rows of

D are not proportional. Therefore rank(D) = 2. This completes our

proof.

2.4.2 Examples of (2× 2) case

First of all we will consider a situation where the two matrices A and

B are compatible with all the elements strictly positive.

• Suppose we have

A =

 1/4 2/3

3/4 1/3

 ,

and

B =

 1/3 2/3

3/4 1/4

 .

66



In this case the resulting D-matrix is given by

D =



−0.2500000 0.1875000

−0.2222222 0.1666667

0.2500000 −0.1875000

0.2222222 −0.1666667


.

In this case rank(D)=1. So A and B are compatible as can be

verified by checking the cross product ratios of A and B. The

solution for the joint probability distribution in this case is given

by

P =

 1/7 2/7

3/7 1/7

 .

• Next we consider two matrices A and B of the following forms:

A =

 1/7 3/4

6/7 1/4

 ,

and

B =

 2/5 3/5

3/8 5/8

 .
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The resulting D-matrix in this case is given by

D =



−0.3428571 0.05357143

−0.1500000 0.46875000

0.3428571 −0.05357143

0.1500000 −0.46875000


.

In this case rank(D)=2, so A and B are incompatible.

2.4.3 Compatibility in (3× 3) case

1. First of all let us consider a compatible case of type 1, where by

type 1, we mean a case in which all the elements of the matrices

A and B are strictly positive.

Let

A =


1/5 2/7 3/8

3/5 2/7 1/8

1/5 3/7 1/2

 ,

while B has the following form:

B =


1/6 1/3 1/2

1/2 1/3 1/6

1/8 3/8 1/2

 .
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In this case the corresponding D-matrix is given by

D(9×3) =



−0.13333333 0.10000000 0.0250000

−0.23809524 0.09523810 0.1071429

−0.31250000 0.06250000 0.1875000

0.10000000 −0.20000000 0.0750000

0.09523810 −0.23809524 0.1071429

0.06250000 −0.14583333 0.0625000

0.03333333 0.10000000 −0.1000000

0.14285714 0.14285714 −0.2142857

0.25000000 0.08333333 −0.2500000



.

Note that in this case rank(D)=2 and hence A and B are compat-

ible. Now solving the equation as mentioned earlier the solution

for the marginal of X is given by η = (0.3, 0.3, 0.4).

2. Next consider a compatible case of type 2, where by type 2, we

mean a case in which some of the elements of the two matrices A

and B are zeros which appear in the same positions in both A and

B. Suppose that we have A and B of the following forms:

A =


1/3 0 2/3

0 1/2 1/3

2/3 1/2 0

 ,
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and

B =


1/3 0 2/3

0 1/2 1/2

2/3 1/3 0

 .

In this case the corresponding D-matrix is given by

D(9×3) =



−0.2222222 0.0000000 0.2222222

0.0000000 0.0000000 0.0000000

−0.2222222 0.3333333 0.0000000

0.0000000 0.0000000 0.0000000

0.0000000 −0.2500000 0.1666667

0.2222222 −0.3333333 0.0000000

0.2222222 0.0000000 −0.2222222

0.0000000 0.2500000 −0.1666667

0.0000000 0.0000000 0.0000000



.

In this case rank(D)=2 and indeed A and B are compatible. Solv-

ing the equation we get the solution for the marginal of X given

by η = (0.375, 0.250, 0.375). The joint probability distribution in
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this case is given by

P =


0.125 0.000 0.250

0.000 0.125 0.125

0.250 0.125 0.000

 .

3. Next we consider an incompatible case of type 1 in which A and

B have the following forms:

A =


0.2 0.3 0.1

0.1 0.4 0.4

0.7 0.3 0.5

 ,

and

B =


0.2 0.1 0.7

0.3 0.4 0.3

0.1 0.4 0.5

 .

In this case the resulting D-matrix is given by
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D(9×3) =



−0.16 0.06 0.02

−0.07 0.12 0.12

−0.63 0.03 0.05

0.02 −0.27 0.01

0.04 −0.24 0.16

0.28 −0.18 0.20

0.14 0.21 −0.03

0.03 0.12 −0.28

0.35 0.15 −0.25



.

In this case rank(D) = 3 and hence A and B are not compatible.

4. Next we consider an incompatible case of type 2 in which A and

B have the following forms

A =


0 1/3 0

1 1/3 1/2

0 1/3 1/2

 ,

and
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B =


0 1 0

1/4 1/2 1/4

0 1/5 4/5

 .

In this case the resulting D-matrix is given by

D(9×3) =



0.0000000 0.0000000 0.00000000

−0.6666667 0.1666667 0.06666667

0.0000000 0.0000000 0.00000000

0.0000000 0.0000000 0.00000000

0.3333333 −0.3333333 0.06666667

0.0000000 −0.1250000 0.40000000

0.0000000 0.0000000 0.00000000

0.3333333 0.1666667 −0.13333333

0.0000000 0.1250000 −0.40000000



.

In this case rank(D) = 3 and hence A and B are not compatible.

5. Again let us consider a compatible case of type 1 where I = 4 and

J = 3 in which A and B have the following forms
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A =



1/9 2/8 1/7

5/9 1/8 3/7

1/9 4/8 2/7

2/9 1/8 1/7


,

and

B =



1/4 2/4 1/4

5/9 1/9 3/9

1/7 4/7 2/7

2/4 1/4 1/4


.

In this case the resulting D-matrix is given by
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D(9×3) =



−0.22222222 0.06172840 0.01587302 0.05555556

−0.37500000 0.02777778 0.14285714 0.06250000

−0.21428571 0.04761905 0.04081633 0.03571429

0.13888889 −0.24691358 0.07936508 0.27777778

0.06250000 −0.09722222 0.07142857 0.03125000

0.10714286 −0.19047619 0.12244898 0.10714286

0.02777778 0.06172840 −0.12698413 0.05555556

0.25000000 0.05555556 −0.28571429 0.12500000

0.07142857 0.09523810 −0.20408163 0.07142857

0.05555556 0.12345679 0.03174603 −0.38888889

0.06250000 0.01388889 0.07142857 −0.21875000

0.03571429 0.04761905 0.04081633 −0.21428571



.

In this case rank(D) = 3 and hence A and B are not compatible.

2.4.4 Proof that rank(D)=2 when A and B are compatible in a (3 × 3)

case

The form of the D-matrix in a (3× 3) case is given by
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D(9×3) =



b11(a11 − 1) a11b21 a11b31

b12(a12 − 1) a12b22 a12b32

b13(a13 − 1) a13b23 a13b33

a21b11 b21(a21 − 1) a21b31

a22b12 b22(a22 − 1) a22b32

a23b13 b23(a23 − 1) a23b33

a31b11 a31b21 b31(a31 − 1)

a32b12 a32b22 b32(a32 − 1)

a33b13 a33b23 b33(a33 − 1)



.

However if matrices A and B are compatible then all possible cross

product ratio of A are equal to the corresponding cross product ratios

of B. First of all we apply the following elementary row operations

• new(row1)=row 1+row 4+row 7

• new(row2)=row 2+row 5+row 8

• new(row3)=row 3+row 6+row 9.

So that matrix D reduces to
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D =



0 0 0

0 0 0

0 0 0

a21b11 b21(a21 − 1) a21b31

a22b12 b22(a22 − 1) a22b32

a23b13 b23(a23 − 1) a23b33

a31b11 a31b21 b31(a31 − 1)

a32b12 a32b22 b32(a32 − 1)

a33b13 a33b23 b33(a33 − 1)



.

Next consider the following elementary row and column operations:

• new(row4)= row4
a21

• new(row5)= row5
a22

• new(row6)= row4
a23

• new(row7)= row7
a31

• new(row8)= row8
a32

• new(row9)= row4
a33

• new(col4)=col 4+col 5+col 6

• new(col7)=col 7+col 8+col 9.
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So that the D matrix has the form:

D(9×3) =



0 0 0

0 0 0

0 0 0

1 1− ( b21

a21
+ b22

a22
+ b23

a23
) 1

b12 b22(1− 1
a22

) b32

b13 b23(1− 1
a23

) b33

1 1 1− ( b31

a31
+ b32

a32
+ b33

a33
)

b12 b22 b32(1− 1
a32

)

b13 b23 b33(1− 1
a33

)



.

Then we consider the following

• new(row 5)=row 5+row 6,

• new(row 8)=row 8+row 9

• new(row 5)=row 5-row 8

• new(row 4)=row 4-row 7

• new(row 6)=row 6-row 8.

Then our D matrix reduces to
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D(9×3) =



0 0 0

0 0 0

0 0 0

0 −( b21

a21
+ b22

a22
+ b23

a23
) ( b31

a31
+ b32

a32
+ b33

a33
)

0 −( b22

a22
+ b23

a23
) ( b32

a32
+ b33

a33
)

0 − b23

a23

b33

a33

1 1 1− ( b31

a31
+ b32

a32
+ b33

a33
)

−b11 −b21 −b31 − ( b32

a32
+ b33

a33
)

b13 b23 b33(1− 1
a33

)



.

Again we consider new (row 4)=row 4-row 5, new(row5)=row 5-row

6, so that our D matrix reduces to
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D(9×3) =



0 0 0

0 0 0

0 0 0

0 − b21

a21

b31

a31

0 − b22

a22

b32

a32

0 − b23

a23

b33

a33

1 1 1− ( b31

a31
+ b32

a32
+ b33

a33
)

−b11 −b21 −b31 − ( b32

a32
+ b33

a33
)

b13 b23 b33(1− 1
a33

)



.

Note that in this case we have rank(D(9×3))≤ min(9, 3) = 3. However

for our matrix D, the determinants of all possible submatrices of order

(3 × 3) are zero and hence rank(D(9×3))<3. Now we know that the

rank of a matrix is the highest order non-vanishing determinant. Let

us consider the determinant of any submatrix of order (2× 2),

B =

 −b11 −b21

b13 b23

 .
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The determinant for the matrix B is given by

det(B) = −b11b23 + b13b21

6= 0. (2.4)

So we have rank(D) = I−1 = 2, which follows from the definition of

the rank of a matrix. Hence A and B are compatible iff rank(D)=I−1.

However if A and B are not compatible then the rows of A are not

proportional to the rows of B which implies that rank(D) > 2. Hence

the proof.

2.5 Study of compatibility under incomplete specification of

A or B or both

In this section we will consider the problem of compatibility of two

conditional probability matrix A and B under the discrete set-up when

one or more than one element either in A or in B is unknown. In

particular we will discuss in detail for the (2 × 3) cases and we will

consider two different situations which are listed as follows:

• More than one element is unknown only in A.

• More than one element is unknown in both A and B.
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Our objective here is to investigate what happens to the compatibil-

ity condition when we have situations as listed above.

2.5.1 Compatibility when only elements of A are unknown

1. Let us consider I = 2 and J = 3 and assume that only two elements

of A are unknown while all the elements of B are known. We denote

the (i, j)−th unknown element of A by αij. Suppose that we have

A =

 a11 α12 a13

a21 α22 a23

 ,

and

B =

 b11 b12 b13

b21 b22 b23

 .

Note: Here we assume that all the elements corresponding to ma-

trices A and B are strictly positive. Also A has elements such that

column sums are equal to one and B has elements such that the

row sums are equal to one. So that we have

α11 + α22 = 1.

We know that the problem of compatibility can be reduced to (in

matrix notation as): Dη = 0, where D-has elements computed
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from the matrices A and B. In this case we have two constraints

α12 + α22 = 1 and η1 + η2 = 1. So the set of equations involving

α12 and α22 which are sufficient to find the unknown values (the

remaining equations will be redundant), from equation (2.2), will

be

b12(α12 − 1)η1 + α12b22η2 = 0 (2.5)

b22(α22 − 1)η2 + α22b12η1 = 0 (2.6)

b13(a13 − 1)η1 + a13b23η2 = 0. (2.7)

Now because of the constraint η1 + η2 = 1, we get from equation

(2.7),

η1 =
a13b23

a13b23 + b13(1− a13)
.

Again substituting the value of η1 in equation (2.7) and using the

constraint α12 + α22 = 1, we get the value of α22, as

α22 =
b22(1− η1)

b22(1− η1) + b12η1
=

b22b13(1− a13)

b22b13(1− a13) + b22b13a13
.

Also the unknown value of α12 will be α12 = 1− α22.

Let us consider an example. Suppose we have two matrices A and
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B which are given as follows:

A =

 1/5 α12 3/4

4/5 α22 1/4

 ,

and

B =

 1/6 2/6 3/6

4/6 1/6 1/6

 .

Now if we are given the information that A and B are compatible

then the values of α12 and α12 will be given by

α22 =
b22b13(1− a13)

b22b13(1− a13) + b22b13a13
=

1
6

3
6(1− 3

4)
1
6

3
6(1− 3

4) + 2
6

1
6

3
4

=
1

3
.

So α12 = 1− 1
3 = 2

3 .

Note that these are the unique choices for the unknown elements

in the matrix A for which the above matrices are compatible.

2. Next we consider the situation where I = 3 and J = 3 and as

before denoting the unknown values of the matrix A by αij, in the

(i, j)−th position we have (with all elements of B known). Suppose
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that we have

A =


a11 α12 a13

a21 α22 a23

a31 α32 a33

 ,

and

B =


b11 b12 b13

b21 b22 b23

b31 b32 b33

 .

So that the linear constraints in this case are as follows (consider-

ing the fact that the column sums of the matrix A are each equal

to one and ηi, i = 1, 2, 3 are the marginal probability vectors cor-

responding to X)

α12 + α22 + α32 = 1 (2.8)

η1 + η2 + η3 = 1. (2.9)

Then according to the compatibility condition we will have Dη = 0

if matrices A and B are compatible. However the D- matrix in this

case will be
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

b11(a11 − 1) a11b21 a11b31

b12(α12 − 1) α12b22 α12b32

b13(a13 − 1) a13b23 a13b33

a21b11 b21(a21 − 1) a21b31

α22b12 b22(α22 − 1) α22b32

a23b13 b23(a23 − 1) a23b33

a31b11 a31b21 b31(a31 − 1)

α32b12 α32b22 b32(α32 − 1)

a33b13 a33b23 b33(a33 − 1)



.

So the set of linear equations to which must be solved find the

unknown η′is as well as the unknown α′ijs will be (from the above

D-matrix)

b11(a11 − 1)η1 + a11b21η2 + a11b31η3 = 0 (2.10)

b13(a13 − 1)η1 + a13b23η2 + a13b33η3 = 0 (2.11)

b11a21η1 + (a21 − 1)b21η2 + a21b31η3 = 0 (2.12)

b12(α12 − 1)η1 + α12b22η2 + α12b32η3 = 0 (2.13)

b12α22η1 + (α22 − 1)b22η2 + α22b32η3 = 0 (2.14)

b12α32η1 + α32b22η2 + (α32 − 1)b32η3 = 0. (2.15)
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Solving the above set of equations with those constraints in (2.8-

2.9), we get the following expressions for the unknowns:

η1 = d22 (2.16)

η2 =
d11

d12
= d13 (2.17)

η3 = 1− d22 − d13 (2.18)

α12 =
b12d22

b12d22 + b22d13 + b32d23
(2.19)

α22 =
b12d13

b12d22 + b12d13 + b32d23
(2.20)

α32 =
b32d23

b12d22 + b22d13 + b32d23
, (2.21)

where

d11 = a11b31[a13b33−b13(a13−1)]+a13b33[b11(a11−1)−a11b31], (2.22)

and

d12 = [(a11b21 − a11b31)(b13(a13 − 1)− a13b33)]

−[(a13b23 − a13b33)(b11(a11 − 1)− a11b31)] (2.23)

Finally

d22 =
d13(a11b31 − a11b21)− a11b31

b11(a11 − 1)− a11b31
. (2.24)

In particular let us consider a situation where we have the following
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choices for the two matrices A and B given by

A =


1/6 α12 1/4

1/3 α22 7/16

3/6 α32 5/16

 ,

and

B =


1/7 2/7 4/7

2/5 2/5 1/5

1/4 1/4 2/4

 .

Using the set of equations in (2.22-2.24), we get the following:

d11 = −0.002976190, d12 = −0.0142857, d13 = d11

d12
= 0.208334,

d22 = 0.2916667. So the unknown elements for the matrix A will

be (from (2.19-2.21))

α12 = 0.2857165, α22 = 0.222248, α32 = 0.4920587.

Here also note that these are the unique choices for which the two

given matrices A and B are compatible.

2.5.2 Compatibility when some elements both in A and B are unknown

Suppose that we have a situation here where both in A and in B some

of the elements are unknown and we denote the unknown elements of
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the matrix A by αij and unknown elements of the matrix B by βij.

First we consider the situation when I = 2 and J = 3 witha11 α12 a11

a21 α22 a23

 ,
and

B =

 b11 β12 β13

b21 b22 b23

 .

So that in this case we have same constraint on the unknown ele-

ments αij and for the βij we have the following restriction:

b11 + β12 + β13 = 1 (2.25)

α12 + α22 = 1 (2.26)

η1 + η2 = 1. (2.27)

However in this case we will have the following set of equations (
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those involving the unknowns and excluding the redundant equations)

b11(a11 − 1)η1 + a11b21η2 = 0 (2.28)

β12(α12 − 1)η1 + α12b22η2 = 0 (2.29)

b22(α22 − 1)η2 + α22β12η1 = 0 (2.30)

β13(a13 − 1)η1 + a13b23η2 = 0. (2.31)

Using the constraint in equation (2.25), we get from equation (2.31),

β13 =
(1− η1)a13b23

(1− a13)η1
, (2.32)

and from equation (2.28), using the constraint in (2.27), we get

η1 =
a11b21

a11b21 + b11(1− a11)
.

Substituting the above expression of η1 in equation (2.31), we get

(after little algebra),

β13 =
b11b23a21a13

a11a23b21
. (2.33)

Hence the value of β12 will be

β12 = 1− b11 −
b11b23a21a13

a11a23b21
. (2.34)

Substituting this in equation (2.29), we get
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α12 =
b21a11β12

b21a11b22 + b21a11β12

=
(a11a23b21 − b11b23a21a13)a11b21

(a11a23b21 − b11b23a21a13)a11b21 + b11b22a21a11a23b21
.(2.35)

Because of the constraint we can find the unknown value of α22,

which will be

α22 = 1− α12.

Let us consider a specific example. Consider matrices A and B which

are of the form:

A =

 1/5 α12 1/2

4/5 α22 1/2

 ,

and

B =

 1/6 β12 β13

2/5 2/5 1/5

 .

Here if we are given the information that A and B are compatible,

then the choices of the unknown values of α′ijs and β′ijs will be given

by

β13 =
b11b23a21a13

a11a23b21
=

1

3
.
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So that

β12 = 1− 1

6
− 1

3
=

1

2
.

Again

η1 =
1
5

2
5

1
5

2
5 + 1

6
4
5

=
3

8
.

So that

α12 =
β12η1

β12η1 + b22(1− η1)

=
3

7
.

Hence

α22 = 1− α12 =
4

7
.

Furthermore note that in this case also these are the unique choices for

the unknown values for which matrices A and B are compatible.

2.6 Compatibility in the general Case

Here we will discuss the problem of compatibility when the dimension

of the two matrices A and B is of the order (I × J). However we

will consider here the situation where there are two elements unknown

only in A. While for the matrix B all the elements are known. Let

us consider that in matrix A in the l−th1 column (1 ≤ l1 ≤ J), any

two elements are unknown and that they appear in i−th1 and i−th2 rows
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(without loss of generality the unknown elements can be assumed to be

in positions (1,1) and (2,1) by relabelling), where (1 ≤ (i1, i2) ≤ I). So

that (since column sums of A add up to 1), we can write, considering

the unknown elements to be denoted by α′ijs

αi1l1 + αi2l1 +
∑
k 6=i1,i2

akj = 1,∀(j, l1) = 1(1)J. (2.36)

while for B all the row sums add up to 1, and all the elements are

known
J∑
j=1

bij = 1,∀i = 1, 2, · · · , I.

Now if we have the information that the matrices A and B are com-

patible, then from the equation (for any i−th1 row and l−th1 column ), we

can write

αi1l1[
I∑
s=1

bsl1ηs]− bi1l1ηi1 = 0 (2.37)

⇒ αi1l1[bi1l1ηi1 +
∑
s=1
s6=i1

bsl1ηs]− bi1l1ηi1 = 0. (2.38)

Hence the unknown value of αi1l1 will be given by

αi1l1 =
bi1l1ηi1

bi1l1ηi1 +
∑

s=1
s6=i1

bsl1ηs
.
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Again because of (2.43), we can write

αi2l1 = 1−
∑
k 6=i1,i2

akj − αi1l1 = 1−
∑
k 6=i1,i2

akj −
bi1l1ηi1

bi1l1ηi1 +
∑

s=1
s6=i1

bsl1ηs
.

However the solution for the η′i s can be obtained by using any set of

(I − 1) equations since
∑I

i=1 ηi = 1.

2.7 Concluding remarks

Our search for a compatible P in terms of equations subject to in-

equality constraints is based on the fact that we really need to find one

compatible marginal, say that corresponding to the random variable X,

and we consider the fact that when this is combined with B it will give

us P. Compatible conditional and marginal specifications of distribu-

tions are of fundamental importance in modeling scenarios. Moreover

in Bayesian prior elicitation contexts, inconsistent conditional specifi-

cations are to be expected. In such situations interest will center on

most nearly compatible distributions which we have discussed in the

previous chapter. In the finite discrete case a variety of compatibility

conditions can be derived. In this chapter we have discussed in detail

the problem of compatibility in context as mentioned earlier by iden-

tifying it as a programming problem and have developed a rank based

criterion. We have shown that the rank of the matrix (whose elements
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are constructed from the two given matrices A and B) under compati-

bility will be I − 1, for a (2× 2) and (3× 3) case, along with the proof

for any dimension (I × J) . A significant amount of the material of

this chapter draws heavily on Arnold, Castillo and Sarabia (1999) and

Arnold and Gokhale (1998). Also we have provided a small amount of

discussion on the topic of compatibility when we have missing elements

in either A or in B or in both. It has been observed that for a given

A and B, under compatibility, the choices for the missing elements are

unique. However for a general case where the dimension of the matrix

D is (IJ × I), the strategy that we have mentioned in this chapter

will be quite challenging in identifying the solution for the unknown

elements either in any of the conditional probability matrices A and B

or in both of them. Also when we have elements missing in A and B

in different positions then also our procedure will result in solving a set

of IJ number of equations which is cumbersome and quite difficult to

handle. In such a situation one is suggested to consider the concept of

compatibility under rank one criterion as proposed by Arnold, Castillo

and Sarabia (2001). One interesting question that may arise here is how

can we extend the above technique under compatibility when there ex-

ists more than two conditional matrices in the discrete case i.e; if we

are given three arrays A and B and C where
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• A is the conditional probability matrix of (say) X given Y and Z.

• B is the conditional probability matrix of (say) Y given X and Z.

• C is the conditional probability matrix of (say) X given X and Y.

Furthermore what would happen in this situation (under compatibility)

when some of the elements are unknown in either any of A or B or C

or in all of them.
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Chapter 3

Classical and Bayesian inference

for a hidden truncated bivariate

P (II) distribution

3.1 Introduction

The use of the Pareto distribution as a model for various socio-economic

phenomena dates back to the late nineteenth century. Pareto’s distribu-

tions and their close relatives and generalizations provide a very flexible

family of fat-tailed distributions which may be used to model income

distributions as well as a wide variety of other social and economic dis-

tributions. An extensive historical survey of the use of these models

in the context of income distributions may be found in, for example,

Arnold (1983). Authors such as Pareto (1897) and Zipf (1949) have

asserted law-like adherence to a Pareto model. In addition, a variety
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of data sets, support the assertion that, certainly in the upper tail, a

Pareto distribution provides a satisfactory model. A specific example

is the distribution of annual per capita income of adult males in the

USA.

It is quite remarkable that the development of inference procedures

under the classical approach for Pareto distributions and their close

relatives has been quite limited. A lot of emphasis has been given to

the classical Pareto distribution because of its simplicity and analyt-

ical tractability. However as one progresses to study more complex

Pareto distributions all those available nice distributional properties

disappear. Some authors have assumed one or more than one parame-

ter to be known in order to make some progress. If all the parameters

are assumed unknown,then such well known techniques as maximum-

likelihood and the method of moments will involve iterative solution

of systems of distinctly non-linear equations. At this point it is quite

important for us to introduce families of distribution which qualify as

univariate and bivariate Pareto (II) distribution and which from now

onwards will be denoted by P (II)(µ, σ, α) and P 2(II)(µ, σ, α) respec-

tively whenever they appear in our discussion in this chapter. Following

Arnold (1983), we write X ∼ P (II)(µ, σ, α), if it has the following sur-
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vival function:

P (X > x) = [1 + (
x− µ
σ

)]−α, x ≥ µ,

where µ, the location parameter, is real, and σ, the scale parameter is

positive. Next we write (X, Y ) ∼ P 2(II)(µ, σ, α), if it has the following

joint survival function:

P (X > x, Y > y) = [1 + (
x− µ1

σ2
) + (

y − µ2

σ2
)]−α,

where µ1, µ2 and σ1, σ2 are the location and scale parameters for X and

Y respectively and α, is the index of inequality.

Since X1:n is a consistent estimate of µ in the P (II) family, one may

consider setting µ = X1:n and solving the resulting simplified likelihood

equation to get approximate likelihood estimates. For the method of

moment estimation we will consider the approach of Arnold and La-

guna (1977) of using sample fractional moments for our proposed model

described later on. In the quartile estimation procedure we will follow

the approach suggested by Quandt (1966).

Inference procedures for Pareto populations under the Bayesian paradigm

are not well developed either. In this context one may consider earlier

works by authors such as Arnold and Press (1982, 1989) where they

discussed selection of proper prior distributions which do not lead to
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an anomalous posterior distribution for classical Pareto data. However

not many results are available for Pareto distributions other than the

classical one in the Bayesian framework.

3.2 Why the hidden truncation P (II) model?

Among the family of Pareto distributions, the P (II) model needs fur-

ther investigation simply because of the fact that within our hierarchy

of generalized Pareto distributions, it is the P (II) family which can be

viewed as the log-logistic family of distributions and thus is a viable

competitor of log-normal distribution, which is a popular model for the

distribution of income, wealth etc. Now we envisage a situation where

we assume that an individual’s actual income is divided into two parts,

one is the observable reported income and the other one is the unre-

ported income. We consider the case in which both the reported and

unreported income have a Paretian distribution and in particular they

can well be explained by a P (II) model. Then one might be interested

to know what is the structure of average reported income for those in-

dividuals who have an unreported income not exceeding a certain level.

Models of such types can be explained by a hidden truncation paradigm

where we observe one variable only when it is subject to hidden trun-

cation from above with respect to one or more covariables.
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In this chapter we focus our attention on estimation of the parame-

ters of a bivariate P (II) distribution when hidden truncation is applied

to one of the variables with the only restriction that the truncation

point will be greater than the location parameter of the truncated vari-

able. We do not consider hidden truncation from below because in

that situation our resulting density will be again a member in the same

family of distribution with only reparametrization of the parent model.

Specifically here we consider the hidden truncation paradigm when one

variable is subject to hidden truncation from above for a bivariate P (II)

distribution and inference procedures for such models.

In this chapter we consider both classical and Bayesian methods of

estimation.

The remainder of this chapter is organized in the following way. In

Section 2, we will discuss the usefulness of the Hidden Truncated P (II)

model. In Section 3, we will consider the concept of hidden truncation.

In Section 4, we will consider the hidden truncated (from above) den-

sity for the bivariate P (II) model. In Section 5, we will consider the

method of moment estimation using fractional moments. In Section

6, we will consider the maximum likelihood estimation of the param-

eters. In Section 7, we will consider the estimation of the parameters

using sample quartiles. In Section 8, we will consider an application
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of our model to a real life data set. In Section 9, we will consider the

estimation of all the parameters by all the above mentioned estimation

procedures using a simulation study. In Section 10, we will consider

the estimation of all the parameters under the Bayesian paradigm both

with the choice of independent and dependent priors (except for the

truncation parameter) for all the parameters. In Section 11, we will

consider the likelihood ratio test for the truncation parameter and will

also report the large sample distribution of the likelihood ratio test

statistic. In Section 12, we will consider the asymptotic distribution

of the smallest order statistic when the samples are drawn from a hid-

den truncated bivariate P (II) model. The properties of the maximum

likelihood estimators are discussed in detail in the appendix.

3.3 Hidden truncation

We consider a two dimensional absolutely continuous random vector

(X, Y ). We might focus on the conditional distribution of X given

Y ∈M where M is a Borel set in R. Indeed we could write

fX|Y ∈M(x) = fX(x)
P (Y ∈M |X = x)

P (Y ∈M)
. (3.1)

However, we will concentrate on hidden truncation of one of the

following three forms only
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(i) Lower truncation,where M = (c,∞).

(ii) Upper truncation,where M = (−∞, c).

(iii) Two sided truncation,where M = (a, b].

For upper truncation (equivalently, truncation from above) at c, in

which observations are only available for X’s whose concomitant vari-

able Y is less than c, equation (3.1) reduces to

fc−(x) = fX(x)
P (Y ≤ c|X = x)

P (Y ≤ c)
. (3.2)

Models of this type are thus characterized by

(i) fX(x), the density assumed for X.

(ii) The conditional density of Y given X, fY |X(y|x).

(iii) The specified value c.

However models of this type also may depend on other parameters

in addition to c. First of all we consider the P (II) case in which

both the location parameters of X and Y are zero while both the scale

parameters are equal to one. In that case the joint survival function of

X and Y is given by

P (X > x, Y > y) = (1 + x+ y)−α, x ≥ 0, y ≥ 0. (3.3)

The corresponding distribution function is given by F (x, y) = 1−(1+

x)−α−(1+y)−α+(1+x+y)−α, x ≥ 0, y ≥ 0. Therefore the corresponding
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joint density is given by f(x, y) = α(α+1)(1+x+y)−(α+2)I(x ≥ 0, y ≥

0).

The conditional density of Y for each fixed X = x will be

fY |X(y|x) =
fX,Y (x, y)

fX(x)

=
(α + 1)

(1 + x)
(1 +

y

(1 + x)
)−(α+2)I(y ≥ 0). (3.4)

Hence in this case we can write

Y |X = x ∼ P (II)(0, (1 + x), (α + 1)).

Next we define a set function defined for each δ ∈ R+ which is as

follows

γδ(B) =
α

δ

∫
B

(1 +
y

δ
)−(α+1)dy, (3.5)

where B is any Borel set. Since x ∈ R+, so also 1 + x ∈ R+, so that

we may define

γ1+x(B) =
α

δ

∫
B

(1 +
y

1 + x
)−(α+1)dy. (3.6)

So that the hidden truncation model that we have earlier can be

written as
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fY |X∈B(x) = fX(x)
γ1+x(B)

γ1(B)
. (3.7)

3.4 Hidden truncated density for the bivariate Pareto model

We first consider a bivariate P (II) distribution where both the marginals

and also both the conditionals are members of a P (II) family. The joint

survival function of such a bivariate density is given by

P (X > x, Y > y) = [1 + (
x− µ1

σ1
) + (

y − µ2

σ2
)]−α, x ≥ µ1, y ≥ µ2, (3.8)

where µ1, σ1, µ2, σ2 are the location and scale parameters for X and

Y respectively and α is the index of inequality. In this case we write

(X, Y ) ∼ P 2(II)(µ, σ, α).

Note that the correlation between X and Y is positive provided α > 2,

specifically

corr(X, Y ) =
1

(α− 1)(α− 2)
.

The joint density of (X, Y ) is given by
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fX,Y (x, y)

=
∂

∂x

∂

∂y
[P (X > x, Y > y)]

=
α(α + 1)

σ1σ2
[1 + (

x− µ1

σ1
) + (

y − µ2

σ2
)]−(α+2)I(x ≥ µ1, y ≥ µ2). (3.9)

So the conditional density of Y for each fixed X = x will be given

by

fY |X(y|x)

=
fX,Y (x, y)

fX(x)

=
(α + 1)

σ2(1 + (x−µ1

σ1
))

[1 +
(y−µ2

σ2
)

1 + (x−µ1

σ1
)
]−(α+2)I(y ≥ µ2). (3.10)

Let us first consider the situation in which X is observed only if Y is

greater than some positive value b. In that case the hidden truncated

density of X given that Y ≥ b with the condition that b > µ2 is given

by

fHTX|Y≥b(x) = fX(x)
P (Y ≥ b|X = x)

P (Y ≥ b)
I(x ≥ b). (3.11)
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Now in our case

P (Y ≥ b|X = x) =

∫ ∞
b

fY |X(y|x)dy =
1

(1 +
(
b−µ2
σ2

)

1+(
x−µ1
σ1

)
)α+1

,

while

P (Y ≥ b) = (1 +
b− µ2

σ2
)−α.

Hence on substitution in equation (3.11) we get the following

fHTX|Y≥b(x) =
α

σ1(1 + (b−µ2

σ2
))

(1 +

x−µ1

σ1

1 + (b−µ2

σ2
)
)−(α+1)I(x ≥ µ1). (3.12)

From above it is quite clear that the conditional distribution of X

given Y ≥ b is again a member of a P (II) family i.e., X|Y ≥ b ∼

P (II)(µ1 + 2
σ1(1+

b−µ2
σ2

)

α−1 , σ∗1 = σ1(1 + (b−µ2

σ2
)), α).

So it is obvious that with lower truncation there is no augmentation

in the model.

In contrast let us consider the situation in which X is observed only

if Y is less than some positive value c. Motivation for considering such

a model may arise from any one of the following situations:

(1) Suppose that we have a bivariate population (X, Y ) where X

and Y represents the income of an individual derived from

salary and other sources respectively. In such a situation if we

have reasons to believe that the two components X and Y are
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positively correlated and represent the income components of

the individual then we may consider a bivariate Pareto distri-

bution in such a situation. Then one might be interested to

know what is the average salary structure for those individuals

who have income from other sources (for example agriculture,

housing income etc.) not exceeding a certain amount to be

specified by the investigator and the salary data is available to

us if and only if it is truncated from above by one (or more

than one) of the covariables.

(2) In a departmental store, the store manager would like to know

what is the average sales of a newly launched beauty product

for those customers whose expenditure on food products does

not exceed a certain amount to be specified by him and our

data is available in that format as mentioned in earlier example.

In that case the truncated density of X given that Y ≤ c with the

condition that c > µ2 is given by:

fHTX|Y≤c(x)

= α
σ1(1−(1+(

c−µ2
σ2

))−α)
[(1 + (x−µ1

σ1
))−(α+1)

− (1 + (
(x− µ1)

σ1
) + (

c− µ2

σ2
))−(α+1)]I(x ≥ µ1). (3.13)
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We usually estimate µ1 by X1:n, where X1:n = min1≤i≤nXi, and so we

can subtract and assume that µ1 = 0. From here after whenever it ap-

pears we will follow the above convention about µ1. Also for notational

simplicity let us consider

ψ(α, θ) = 1− (1 + (
c− µ2

σ2
))−α = 1− (1 + θ)−α,

where θ = c−µ2

σ2
, and θ > 0, then our density reduces to

fHTX|Y≤θ(x) =
α

σ1ψ(α, θ)
[(1 +

x

σ1
)−(α+1) − (1 +

x

σ1
+ θ)−(α+1)]I(x ≥ 0).

(3.14)

Let us consider the hazard rate function for our density. The hazard

rate function is given by

hT |Y≤θ(t) =
fHTT |Y≤θ(t)

ST |Y≤θ(t)
,

where

ST |Y≤θ(t) = PT |Y≤θ(T > t)

=

∫ ∞
t

α

σ1ψ(α, θ)
[(1 +

u

σ1
)−(α+1) − (1 +

u

σ1
+ θ)−(α+1)]du

=
1

ψ(α, θ)
[(1 +

t

σ1
)−α − (1 +

t

σ1
+ θ)−α]. (3.15)
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So the hazard rate function in our cases given by

hT |Y≤θ(t) =

α
σ1ψ(α,θ) [(1 + t

σ1
)−(α+1) − (1 + t

σ1
+ θ)−(α+1)]

1
ψ(α,θ) [(1 + t

σ1
)−α − (1 + t

σ1
+ θ)−α]

=
α[(1 + t

σ1
)−(α+1) − (1 + t

σ1
+ θ)−(α+1)]

σ1[(1 + t
σ1

)−α − (1 + t
σ1

+ θ)−α]
. (3.16)

Next we consider for graphical reference for different choices of the

truncation parameter (θ) but with the same choices for the other param-

eters (i.e., with shape=4, scale=1) the plot of the hazard rate function

of a hidden truncated P (II) density.
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Figure 3.1: Hazard Rate Function Plot for different choices of the truncation parameter (θ).
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3.5 Estimation of the Parameters using Fractional Moments

First of all we will consider for any real r(≥ 1),

E[(
X

σ1
)r] =

α

ψ(α, θ)

∫ ∞
0

(
x

σ1
)rfHT (x)dx

=
α

ψ(α, θ)σ1

∫ ∞
0

(
x

σ1
)r[(1 + (

x

σ1
))−(α+1) − (1 + θ + (

x

σ1
))−(α+1)]dx

= I1 − I2, (3.17)

where

I1 =
α

ψ(α, θ)σ1

∫ ∞
0

(
x

σ1
)r[(1 + (

x

σ1
))−(α+1)]dx

=
α

ψ(α, θ)

∫ ∞
0

(u)r(1 + u)−(α+1)du

=
α

ψ(α, θ)
B(r + 1, α− r),

valid for α > r where u = 1 + x
σ1
.
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Similarly

I2 =
α

ψ(α, θ)σ1

∫ ∞
0

(
x

σ1
)r[(1 + θ +

x

σ1
)−(α+1)]dx

=
α

ψ(α, θ)

∫ ∞
0

[ur(1 + u+ θ)−(α+1)]du

=
α

ψ(α, θ)
(1 + θ)r−α

∫ ∞
0

[wr(1 + w)−(α+1)]dw

=
α

ψ(α, θ)
(1 + θ)r−αB(r + 1, α− r),

valid forα > r, where u = 1 + x
σ1
, and w = u

1+θ .

So that we have for any (r ≥ 1),

E[(
X

σ1
)r] =

α

ψ(α, θ)
B(r + 1, α− r)[1− (1 + θ)r−α]. (3.18)

Now substituting r = 1
2 ,

1
3 , 1 we get the following

E[(
X

σ1
)

1
2 ] =

α

ψ(α, θ)
B(

1

2
+ 1, α− 1

2
)[1− (1 + θ)

1
2−α]. (3.19)

However

B(
1

2
+ 1, α− 1

2
) =

Γ
(

3
2

)
Γ
(
α− 1

2

)
Γ (α + 1)

=
1
2

√
πΓ
(
α− 1

2

)
Γ (α + 1)

.
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Hence

E[X
1
2 ] =

α
√
πσ1

2ψ(α, θ)

Γ
(
α− 1

2

)
Γ (α + 1)

[1− (1 + θ)
1
2−α]. (3.20)

In the same way we also have

E[X
1
3 ] =

α(σ1)
1
3 Γ
(
α− 1

3

)
Γ
(

4
3

)
ψ(α, θ)Γ (α + 1)

[1− (1 + θ)
1
3−α]. (3.21)

and

E(X) =
σ1

(α− 1)ψ(α, θ)
[1− (1 + θ)1−α]. (3.22)

Next for the method of moment estimation we first define the fol-

lowing quantities:

• M1 = 1
n−1

n∑
i=1

(Xi −X1:n).

• M 1
2

= 1
n−1

n∑
i=1

(Xi −X1:n)
1
2 .

• M 1
3

= 1
n−1

n∑
i=1

(Xi −X1:n)
1
3 .

Next we consider the following (after equating the sample moments

with the corresponding population moments)
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(say),Ma1
=
M 1

3

M 1
2

=
2Γ
(

4
3

)
Γ
(
α− 1

3

)
√
π(σ1)

1
6 Γ
(
α− 1

2

) [
(1 + θ)α − (1 + θ)

1
3

(1 + θ)α − (1 + θ)
1
2

]. (3.23)

Also

(say),Ma2
=
M 1

3

M1
=

Γ
(

4
3

)
Γ
(
α− 1

3

)
(σ1)

2
3 Γ (α)

(α− 1)[
(1 + θ)α − (1 + θ)

1
3

(1 + θ)α − (1 + θ)
1
2

].

(3.24)

and

(say),Ma3
=
M 1

2

M1
=

√
πΓ
(
α− 1

2

)
(α− 1)

2Γ (α)
√
σ1

[
(1 + θ)α − (1 + θ)

1
2

(1 + θ)α − (1 + θ)
]. (3.25)

So in this case we have three equations which are as follows

2Ma3
Γ (α)

√
σ1((1 + θ)α − (1 + θ))

−
√
πΓ

(
α− 1

2

)
(α− 1)((1 + θ)α − (1 + θ)

1
2 ) = 0. (3.26)

Also

Ma1
[
√
π(σ1)

1
6 Γ

(
α− 1

2

)
((1 + θ)α −(1 + θ)

1
2 )

− 2(Γ

(
4

3

)
Γ

(
α− 1

3

)
)((1 + θ)α − (1 + θ)

1
3 ) = 0, (3.27)
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and

Ma2
(σ1)

2
3 Γ (α) ((1 + θ)α − (1 + θ))

− (Γ

(
4

3

)
Γ

(
α− 1

3

)
)(α− 1)((1 + θ)α − (1 + θ)

1
3 ) = 0. (3.28)

Note that in this case the only assumption that we need is α > 1.

3.6 Estimation of the parameters using maximum likelihood

In this case the likelihood function is given by

L(α, σ1, θ) =
n∏
i=1

[
α

σ1ψ(α, θ)
((1 +

Xi

σ1
)−(α+1) − (1 +

Xi

σ1
+ θ)−(α+1))]

=
αn

(σ1ψ(α, θ))n

n∏
i=1

[(1 +
Xi

σ1
)−(α+1)(1− (1 +

θ

(1 + Xi

σ1
)
)−(α+1))].(3.29)

Equivalently the log-likelihood function is given by

logL(α, σ1, θ) = n logα− n log σ1 − n logψ(α, θ)

− (α + 1)
n∑
i=1

log(1 +
Xi

σ1
) +

n∑
i=1

log(1− (1 +
θ

(1 + Xi

σ1
)
)−(α+1)). (3.30)

The likelihood equation for all the parameters are obtained by differ-

entiating the likelihood function. For α we have
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∂

∂α
[logL(α, σ1, θ)] = 0,

i.e.,
n

α
− nψ

′(α, θ)

ψ(α, θ)
−

n∑
i=1

[log(1 +
Xi

σ1
)

−
(1 + θ

(1+
Xi
σ1

)
)−(α+1)

(1− (1 + θ

(1+
Xi
σ1

)
)−(α+1))

log(1 +
θ

(1 + Xi

σ1
)
)] = 0. (3.31)

Here ψ(α, θ) = 1−(1+θ)−α. So that ∂
∂α [ψ(α, θ)] = (1+θ)−α log(1+θ).

Also we have

∂

∂σ1
[logL(α, σ1, θ)] = 0.

Equivalently we can write

i.e.,− n

σ1
+ (α + 1)

n∑
i=1

[
Xi

(1 + Xi

σ1
)(σ1)2

]

+ (α + 1)
n∑
i=1

[

(1 + θ

(1+
Xi
σ1

)
)−(α+2)

(1− (1 + θ

(1+
Xi
σ1

)
)−(α+1))

(
θ(Xi

σ1
)

(σ1 +Xi)2
)] = 0. (3.32)

Furthermore we have

∂

∂θ
[logL(α, σ1, θ)] = 0,
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which is equivalent to

− nψ
′(α, θ)

ψ(α, θ)
+ (α + 1)

n∑
i=1

[
1

(1− (1 + θ

(1+
Xi
σ1

)
)−(α+1))

(1 +
θ

(1 + Xi

σ1
)
)−(α+2)(1 +

Xi

σ1
)−1] = 0. (3.33)

Note that here ψ(α, θ) = 1− (1 + θ)−α, so that ∂
∂θ [ψ(α, θ)] = α(1 +

θ)−(α+1).

3.7 Estimation based on the Sample Quartiles

Here first of all we will consider the three quartiles (namely first, second

and third) calculated from the truncated density. Let ξp be any p-th

order quantile (p ∈ (0, 1)), then

P [X ≤ ξp] = p. (3.34)

So in our case we have
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P [X ≤ ξp] =
α

ψ(α, θ)σ1

∫ ξp

0

fHT (x)dx

=
α

ψ(α, θ)σ1

∫ ξp

0

[(1 + (
x

σ1
))−(α+1) − (1 + θ + (

x

σ1
))−(α+1)]dx

= I3 − I4,

where

I3 =
α

ψ(α, θ)σ1

∫ ξp

0

[(1 + (
x

σ1
))−(α+1)]dx

=
1

ψ(α, θ)
[1− (1 +

ξp
σ1

)−α],

and

I4 =
α

ψ(α, θ)σ1

∫ ξp

0

(1 + θ + (
x

σ1
))−(α+1)dx

=
1

ψ(α, θ)
[(1 + θ)−α − (1 + θ +

ξp
σ1

)−α].

So that we have

1

ψ(α, θ)
[1− (1 +

ξp
σ1

)−α − ((1 + θ)−α − (1 + θ +
ξp
σ1

)−α)] = p. (3.35)

Equivalently we can write
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1− (1 +
ξp
σ1

)−α − (1 + θ)−α + (1 + θ +
ξp
σ1

)−α = pψ(α, θ). (3.36)

Our estimates are then obtained by equating 3 sample quantiles ,

denoted by ξ̂p to the corresponding population quantiles. In particu-

lar by considering successively p = 1
4 ,

1
2 ,

3
4 we have the following three

equations:

1− (1 +
ξ̂ 1

4

σ1
)−α − (1 + θ)−α + (1 + θ +

ξ̂ 1
4

σ1
)−α =

ψ(α, θ)

4
. (3.37)

1− (1 +
ξ̂ 1

2

σ1
)−α − (1 + θ)−α + (1 + θ +

ξ̂ 1
2

σ1
)−α =

ψ(α, θ)

2
, (3.38)

and

1− (1 +
ξ̂ 3

4

σ1
)−α − (1 + θ)−α + (1 + θ +

ξ̂ 3
4

σ1
)−α =

3ψ(α, θ)

4
. (3.39)

So from equation (3.38) and equation (3.40) we get

(1+θ+
ξ̂ 3

4

σ1
)−α+(1+

ξ̂ 1
4

σ1
)−α−(1+θ+

ξ̂ 1
4

σ1
)−α−(1+

ξ̂ 3
4

σ1
)−α =

ψ(α, θ)

2
. (3.40)
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Again from equation (3.38) and equation (3.49) we get

(1+θ+
ξ̂ 1

2

σ1
)−α+(1+

ξ̂ 1
4

σ1
)−α−(1+θ+

ξ̂ 1
4

σ1
)−α−(1+

ξ̂ 1
2

σ1
)−α =

ψ(α, θ)

4
. (3.41)

Also from equation (3.39) and equation (3.40) we get

(1+θ+
ξ̂ 3

4

σ1
)−α+(1+

ξ̂ 1
2

σ1
)−α−(1+

ξ̂ 3
4

σ1
)−α−(1+θ+

ξ̂ 1
2

σ1
)−α =

ψ(α, θ)

4
. (3.42)

The above three non-linear equations needs to be solved for α, σ,

and θ.

3.8 Application of a hidden truncated P (II) model to a real

life data set

Typically, in income modeling, the available data are grouped. We

consider the US data on personal income (data source: US Census Bu-

reau, 2008) from which we select the number of individuals (considered

as percentages to the total population) corresponding to different lev-

els of income. So this data set is also grouped. We argue at this point

that the data is subject to hidden truncation because an individual’s

income is not always correctly specified or it may be unreported. For

example the number of people in the income category (say, from 27,500
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Figure 3.2: Histogram and Density plot for the US personal income data (in percentage)
2008.

to 29,999 (in USD)) as percentages is 2.71 which is not the exact per-

centage figure as some people in this income group may have earnings

more than that from some outside sources which may not be reported.

Before that let us consider the histogram and density plot of the

data (given below). In this case the density plot has been drawn by

smoothing the histogram. So based on our data we get the following

estimates of the parameters for a hidden truncated bivariate P (II)

model:

• Estimation based on fractional method of moments:

σ = 1.007523, θ = 1.521450, α = 4.050130.
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• Estimation based on Quartile method:

σ = 1.011014, θ = 1.506410, α = 3.999089.

• Estimation based on Maximum Likelihood method:

σ = 0.992756, θ = 1.5163710, α = 3.9879389.

Moreover in this case the standard Kolmogorv-Smirnov goodness of

fit test statistic tells us that indeed the fit is good.

So the nature of our data can well be explained by a hidden truncated

bivariate P (II) distribution with the following choice of the parameters

(approximately):

α = 4, θ = 1.5, σ = 1.

3.9 Estimation of the parameters using a simulation study

We at first consider a simple situation where we specify all the parame-

ter values and then generate samples (of various sizes) from our hidden

truncated density.

3.9.1 Sample generation from the truncated density

For our simulation study we consider the following choices of the pa-

rameters , α = 4, µ1 = 0, µ2 = 0, σ1 = 1, σ2 = 2, c = 3. So that
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θ = c−µ2

σ2
= 1.5, and ψ(α, θ) = 1 − (1 + (c−µ2

σ2
))−α = 0.9774, and our

density reduces to

fX|Y≤θ=1.5(x) =
4

0.9774
[(1+x)−5−(1+x+1.5)−5]I(0 ≤ x ≤ ∞). (3.43)

In the following tables we illustrate for different sample sizes the es-

timated values of the parameters using the three methods of estimation

n σ̂1 θ̂ α̂

50 0.9978038 1.5162621 3.9754118

100 1.021526 1.507272 4.009601

200 1.011014 1.506410 3.999089

Table 3.1: Estimates of the parameters using the sample quartile method.

n σ̂1 θ̂ α̂

50 0.9540499 1.2938447 3.9383091

100 0.9718807 1.5124330 3.8979598

200 0.9378616 1.4897723 3.9351534

Table 3.2: Estimates of the parameters using the maximum likelihood method.

n σ̂1 θ̂ α̂

50 0.9943157 1.5172427 3.9654113

100 1.132798 1.508072 4.199970

200 0.9243199 1.4979715 3.9981881

Table 3.3: Estimates of the parameters using the fractional method of moments

3.9.2 Comments on the output of the simulation study

In this small simulation study we observe that for all the estimation

procedures the estimate of σ1 is not so good when the sample size

n = 200, for all the estimation procedures (except the Sample Quartile
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method). Also in the case of estimating θ with a sample size of 50 there

is appreciable error in the estimates. This scenario, however is not true

for the estimates of other parameters. From the output one can eas-

ily observe that our estimation is exceptionally good when we consider

the quartile method in which with increase in the sample size our es-

timates are more close to the true value of the parameter, a desirable

property of any estimation procedure. However the performance of the

maximum likelihood estimation is not that good. One of the several

possible reason might be that in situations where we do not have much

knowledge about the nature of our likelihood function (specifically the

dependence structure among the parameters), the true values for the

parameters that we started for our simulation study, those values might

not be the optimum values of the parameters for which our likelihood

function attains it’s maximum. So we can say from above simulation

study that in estimating parameters for such models, precise estimation

is not possible for estimating the scale parameter using the maximum

likelihood method. However a more extensive simulation study is re-

quired to determine whether the anomaly of the results in the second

table is artifactual.
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3.10 Bayesian inference for the hidden truncated bivariate

P (II) model

3.10.1 Bayesian analysis with independent priors

As before we have our density of the form

fHTX|Y≤c(x) =
α

σ1ψ(α, θ)
[(1 +

x

σ1
)−(α+1) − (1 +

x

σ1
+ θ)−(α+1)]I(x > 0).

(3.44)

3.10.2 Sample and Prior information

We consider a random sample of size n from above density. Next we

propose the following choice of independent priors for the three param-

eters which are as follows:

(a)Prior for α

f(α) =
1

(1 + α)2
I(α > 0). (3.45)

(b)Prior for θ

f(θ) =
1

(1 + θ)2
I(θ > 0). (3.46)

(c)Prior for σ1
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f(σ1) =
1

(1 + σ1)2
I(σ1 > 0). (3.47)

Note that we consider in this case independent (only mildly informa-

tive) priors as compared to locally uniform priors for all the parameters.

3.10.3 Posterior distribution of the parameters

In this case our likelihood function is given by

L(α, σ1, θ|X = x)

=
n∏
i=1

[
α

σ1ψ(α, θ)
((1 +

xi
σ1

)−(α+1) − (1 +
xi
σ1

+ θ)−(α+1))]

=
αn

(σ1ψ(α, θ))n

n∏
i=1

[(1 +
xi
σ1

)−(α+1)(1− (1 +
θ

(1 + xi
σ1

)
)−(α+1))].

So the joint posterior of the three parameters is given by

f(α, σ1, θ|X = x) =
L(α, σ1, θ|X = x)f(α)f(θ)f(σ1)

A
. (3.48)

Where A is the normalizing constant which is given by
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A =

∫∫∫
(R+)3

Π(α, σ1, θ|X = x)f(α)f(θ)f(σ1)f(α, σ1, θ|X = x)dσ1dθdα

=

∫∫∫
(R+)3

αn

(σ1ψ(α, θ))n

n∏
i=1

[(1 +
xi
σ1

)−(α+1)·

(1− (1 +
θ

(1 + xi
σ1

)
)−(α+1))]((1 + θ)(1 + α)(1 + σ1))

−2dσ1dθdα

=

∫∫∫
(R+)3

ζ(α, σ1, θ)dσ1dθdα,

(3.49)

where ζ(α, σ1, θ) is given by

ζ(α, σ1, θ) =
αn

(σ1ψ(α, θ))n

n∏
i=1

[(1 +
xi
σ1

)−(α+1)(1− (1 +
θ

(1 + xi
σ1

)
)−(α+1))]

((1 + θ)(1 + α)(1 + σ1))
−2. (3.50)

So the posterior density of α is given by

f(α|X = x) =

∫∞
0

∫∞
0 ζ(α, σ1, θ)dθdσ1

A
. (3.51)

Also the posterior density of σ1 is given by

f(σ1|X = x) =

∫∞
0

∫∞
0 ζ(α, σ1, θ)dθdα

A
. (3.52)

Finally the posterior distribution of θ is given by
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f(θ|X = x) =

∫∞
0

∫∞
0 ζ(α, σ1, θ)dθdσ1

A
. (3.53)

3.10.4 Comment on the choice of Priors and also on the Posterior distri-

bution

Suppose that we have some specific information(in the form of prior

belief) about any one of the parameters(say α) that it can take any

values between (say) 1 and 2. Then a reasonable choice of prior distri-

bution for α would be any kind of flat prior, (say) a uniform distribution

with the support (1,2). This will reduce the complexity in the posterior

analysis. Although the use of informative and /or dependent priors will

increase the complexity in our analysis, but still one may want to con-

sider them simply because of the fact that for analytically intractable

models like ours, the corresponding posterior analysis can be efficiently

performed by Markov Chain Monte Carlo (MCMC) algorithm which is

specifically designed for complicated models. In our case we consider

Metropolis-Hastings algorithm which is a general term for a family of

Markov chain simulation methods that are useful for drawing samples

from Bayesian posterior distributions.
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3.10.5 Posterior simulation study

First of all we draw random samples of size 500 and 1000 from our

density for a particular choice (α = 4, σ1 = 1, θ = 1.5) of the parame-

ters. For the jumping distribution we consider the gamma distribution

but with different shape and scale parameters. Here we consider inde-

pendent priors for each of the parameters as mentioned in (10.2). The

posterior analysis is based on the posterior modes and also the posterior

means for each of those three parameters. Below we provide for our

MCMC simulation study, various choices for the initial values of the

parameters, and the starting distribution for all the parameters under

study: Initial choices of the parameters: α = 2, σ1 = 1.1, θ = 1.4.

Jumping distribution of the parameters :

• α ∼ Γ(18.9/5, 7/5).

• σ1 ∼ Γ(5.3/2, 1.8/2).

• θ1 ∼ Γ(8/3, 1.8/3).

In the following tables the posterior modes and the posterior means

of all the parameters are displayed.

The posterior density plots for the three parameter based on sample

of sizes 500 and 1000 are displayed in Figure 3.3(a) and Figure 3.3(b)

respectively.
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(a) Posterior Density of the parameters for n = 500

(b) Posterior Density of the parameters for n = 1000

Figure 3.3: Posterior density for all the parameters for different choices of the sample size
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n Mode(α) Mode(σ1) Mode(θ)

100 3.9521 0.9417 1.4383

500 4.0443 0.9372 1.4607

1000 4.0123 0.9673 1.4874

Table 3.4: Bayesian estimates of the parameters using the posterior mode

n Mean(α) Mean(σ1) Mean(θ)

100 3.9782 0.9537 1.4427

500 4.0391 0.9493 1.4576

1000 3.9857 0.9623 1.4636

Table 3.5: Bayesian estimates of the parameters using the posterior mean

3.10.6 Comment on the posterior simulation study

In our case instead of running the MCMC (Markov Chain Monte Carlo)

for one time we consider running a multiple sequence of chains starting

from 10,000 simulations up to 15,000 simulations with a increase of 100

in each chain length. The reason for that is that the key to Markov

Chain simulation is to create a Markov process whose stationary dis-

tribution is a specified p(β|data), (which in our case is the posterior

distribution) and run the simulation long enough so that the distribu-

tion of the current draws is close enough to the stationary distribution.

From our simulation study, we can not differentiate which one among

the posterior means or the posterior modes are uniformly better than

the other. From the output in Table(3.4) and in Table(3.5), it may be

said that one can use either of them.
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3.10.7 Bayesian inference with dependent priors for shape and scale pa-

rameter

We have the density which is of the form

fHTX|Y≤θ(x) =
α

σ1ψ(α, θ)
[(1 +

x

σ1
)−(α+1) − (1 +

x

σ1
+ θ)−(α+1)]I(x ≥ 0),

(3.54)

where ψ(α, θ) = 1− (1 + θ)−α.

However if we consider τ = 1
σ1
, where τ is the precision parameter

then our density reduces to

fHTX|Y≤θ(x) =
ατ

ψ(α, θ)
[(1+xτ)−(α+1)−(1+xτ+θ)−(α+1)]I(x ≥ 0). (3.55)

We will first consider the situation where the prior information for

the truncation parameter θ will be independent of the prior information

for α and τ . However for the prior information of α and τ, we consider

the following:

• The conditional density of α given τ is a Gamma distribution with

shape parameter = ξ1(τ) and intensity parameter = λ1(τ). So that

the conditional density of α given τ will be

f(α|τ) ∝ αξ1(τ)−1 exp(−αλ1(τ)I(α > 0).

• The conditional density of τ given α is a P (II) distribution with
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inequality parameter = λ2(α) and precision parameter = 1. So

that the conditional density of τ given α will be

f(τ |α) ∝ λ2(α)(1 + τ)−(λ2(α)+1)I(τ > 0).

• While for θ we consider a diffuse prior of the form f(θ) ∝ 1
θI(θ > 0).

Note that both the conditional densities of α given τ and also τ given

α are members of exponential families. So the joint density (alterna-

tively the joint prior) will be of the form ( Arnold Castillo and Sarabia,

1999)

f(α, τ) ∝ exp[−α(c11 + c12 − c13 log(1 + τ)

+ (c21 + c22 − c23 log(1 + τ)) logα

+ c31 + c32 − c33 log(1 + τ))]I(α > 0)I(τ > 0), (3.56)

where cij,∀(i, j = 1, 2, 3) are the hyperparameters of the joint distribu-

tion.
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So the marginal density of α will be given by

f(α) ∝
∫ ∞

0

f(α, τ)dτ

= exp[c31 + c32 − α(c11 + c12) + (c21 + c22) logα]·∫ ∞
0

exp[(αc13 − c23 logα− c33) log(1 + τ)]dτ

= exp[c31 + c32 − α(c11 + c12) + (c21 + c22) logα]×∫ ∞
0

(1 + τ)−(−αc13+c23 logα+c33)dτ

=
exp[c31 + c32 − (c11 + c12)α]αc21+c22

(1 + αc13 − c23 logα− c33))
I(α > 0). (3.57)

Similarly the marginal density of τ given α will be of the form

f(τ) ∝
∫ ∞

0

f(α, τ)dα

= exp[c31 + c32 − c33 log(1 + τ)]A11I(τ > 0), (3.58)

where

A11 =

∫ ∞
0

αc21+c22−c23 log(1+τ) exp[−α(c11 + c12 − c13 log(1 + τ))]dα

=
(c11 + c12 − c13 log(1 + τ))−(c21+c22−c23 log(1+τ)+1)

Γ(c21 + c22 − c23 log(1 + τ) + 1)
.

Again the conditional density of τ given α will be (for each fixed
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α ∈ R+),

f(τ |α) ∝ α−c23 log(1+τ)(1 + c23 logα− c33 − αc13)

× exp[−α(c13 − c33) log(1 + τ)]I(τ > 0). (3.59)

While the conditional density of α given τ will be( for each fixed τ ∈

R+),

f(α|τ)

∝ Γ(c21 + c22 − c23) log(1 + τ) + 1) exp[−α(c11 + c12)

+ c33(α + 1) log(1 + τ)]

× ((c11 + c12 + c13) log(1 + τ))c21+c22−c23) log(1+τ)+1αc21+c22−c23 log(1+τ)I(α > 0).

(3.60)

3.10.8 Assessment of proper choices for the hyperparameters

The assessment of hyperparameters for the hidden truncated Pareto

model will be achieved in a manner similar to that described in Arnold

and Press (1983). We will consider

• Matching conditional moments and percentiles. However condi-

tional moments corresponding to the density useful for this assess-

ment are listed below:
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– From the conditional density of α given τ we can derive

E(α|τi)

=
1

∆i

∫ ∞
0

αc21+c22−c23 log(1+τ)+1 exp[−α(c11 + c12)

+ c33(α + 1) log(1 + τ)]

=
Γ(c21 + c22 − c23) log(1 + τ) + 2)

∆i((c11 + c12 + c13) log(1 + τ))−(c21+c22−c23 log(1+τ)+2)
,

where ∆i = Γ(c21+c22−c23 log(1+τi+1))((c11+c12+c13) log(1+

τ))c21+c22−c23 log(1+τ)+1.

So that after some algebraic simplification

E(α|τi) =
(c21 + c22 − c23 log(1 + τi) + 1)

(c11 + c12 + c13 log(1 + τi))
, i = 1, 2, . . . .

– In general we will have (for any r ≥ 1)

E(αr|τi) =
Γ(c21 + c22 − c23 log(1 + τ) + r)

∆i(c11 + c12 + c13 log(1 + τi))−(c21+c22−c23 log(1+τi)+r)
.

(3.61)

In particular the conditional variance will be given by

σ2(α|τi)

=
(c21 + c22 − c23 log(1 + τi) + 2)(c21 + c22 − c23 log(1 + τi + 1))

(c11 + c12 + c13 log(1 + τi))2

− (
c21 + c22 − c23 log(1 + τi + 1)

c11 + c12 + c13 log(1 + τi)
)2. (3.62)
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• The conditional percentile function for τ given α = αj, j = 1, 2, . . .

If ςp(τ |αj) be the conditional percentile function then we can write

P (τ ≤ ςp(τ |αj)|αj) = p

(c23 logα− c33 − c13α)

∫ ςp(τ |αj)

0

α
−c23 log(1+τ)
j dτ = p.

However the integral∫ ςp(τ |αj)

0

α
−c23 log(1+τ)
j dτ = (

1

c23 logαj
)

∫ ςp(τ |αj)

α
−c23 log(1+ςp(τ |αj))

j

u
1−(c13−c33)α

δ(α) du

=
(1− α−c23 log(1+ςp(τ |αj)))1+

1−(c13−c33)α
δ(α)

(c23 logαj)1 + 1−(c13−c33)α
δ(α)

.

So that we have after some algebraic simplification

ςp(τ |αj) = [1− (
p

ς1(αj)
)

1
ς2(αj) ]

1
δ(αj)−1

, (3.63)

for each j = 1, 2, . . . and where ς1(αj) =
(c23 logαj−c33−c13αj)

(1+
1−(c13−c33)αj

δ(α) )c23 logαj
and

ς2(αj) = 1 +
1−(c13−c33)αj

δ(αj)
.

3.11 Likelihood ratio test of the truncation parameter

In our case we want to test whether there has been a truncation or not.

In other words we wish to test whether the parameter θ is finite. Before

we proceed further, we reparameterize our density by considering β = 1
θ ,
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in which case our density reduces to

fHTX|Y≤c(x) =
α

σ1ψ(β)
[(1+

x

σ1
)−(α+1)−(1+

x

σ1
+

1

β
)−(α+1)]I(x > 0), (3.64)

where

ψ(β) = 1− (1 +
1

β
)−α.

Now we can rewrite our problem as follows: We want to test

H0 : β = 0

against

Ha : β > 0

where H0 and Ha denote the null hypothesis and the alternative

hypothesis respectively. Note that under the null i.e., β = 0, our density

reduces to a simple P (II) model which is given by:

f(x) = (
α

σ1
)[(1 +

x

σ1
)−(α+1)]I(x ≥ 0).

So under the null hypothesis our likelihood function (for a random

sample of size n drawn from above density) is given by

L(α, σ1, θ) =
n∏
i=1

[(
α

σ1
)(1 +

xi
σ1

)−(α+1)]. (3.65)
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Equivalently the log-likelihood function is given by:

logL(α, σ1) = n logα− n log σ1 − (α + 1)
n∑
i=1

log(1 +
xi
σ1

). (3.66)

The corresponding likelihood equation for α is:

∂

∂α
[logL(α, σ1)] = 0,

⇒ n

α
−

n∑
i=1

[log(1 +
xi
σ1

)] = 0. (3.67)

The second likelihood equation is:

∂

∂σ1
[logL(α, σ1, θ)] = 0. (3.68)

Equivalently we can write

− n
σ1

+ (α + 1)
n∑
i=1

[
1

(1 + xi
σ1

)

xi
(σ1)2

] = 0.

So under the null the supremum of the likelihood is given by

SupH0
L(α, σ1) =

n∏
i=1

[
(α̂)

σ̂1
(1 +

xi
σ̂1

)−(α̂+1)],

where α̂ and σ̂1 denotes the estimates of the parameters under the null

hypothesis. Again under the alternative our likelihood equation is given

by
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L(α, σ1, β) =
n∏
i=1

[
α

σ1ψ(β)
((1 +

xi
σ1

)−(α+1) − (1 +
xi
σ1

+
1

β
)−(α+1))]

=
αn

(σ1ψ(β))n

n∏
i=1

[(1 +
xi
σ1

)−(α+1)(1− (1 +
1

β(1 + xi
σ1

)−(α+1)
))].

Equivalently the log-likelihood function is given by:

logL(α, σ1, β)

= n logα− n log σ1 − n logψ(β)− (α + 1)
n∑
i=1

[log(1 +
xi
σ1

)

+ log(1− (1 +
1

β(1 + xi
σ1

)
)−(α+1))].

So the first of the three likelihood equations is:

∂

∂α
[logL(α, σ1, β)] = 0,

⇒ n

α
−

n∑
i=1

[log(1 +
xi
σ1

) +
(1 + 1

β(1+
xi
σ1

)
)−(α+1)

(1− (1 + 1
β(1+

xi
σ1

)
)−(α+1))

logα] = 0.

Also we have

∂

∂σ1
[logL(α, σ1, β)] = 0.

Equivalently we can write
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− n

σ1
+ (α + 1)

n∑
i=1

[
xi

(1 + xi
σ1

)σ2
1

]

+ (α + 1)
n∑
i=1

[(

xi(1+ 1
β )

(σ1+xi)2

(1− (1 + 1
β(1+

xi
σ1

)
)−(α+1))

)(
xi + σ1(1 + 1

β )

σ1 + xi
)−(α+2)] = 0.

Furthermore we have

∂

∂β
[logL(α, σ1, β)] = 0,

⇒ −nψ
′(β)

ψ(β)
− β−2(α + 1)

n∑
i=1

[
(1 + 1

β(1+
xi
σ1

)−(α+2) )

(1− (1 + 1
β(1+

xi
σ1

)
)−(α+1))

(1 +
xi
σ1

)−1] = 0.

Note that here ψ(β) = 1 − (1 + 1
β )−α, so that ∂

∂β [ψ(β)] = −α(1 +

1
β )−(α+1)β−2.

So the supremum of the likelihood under the alternative is given by

SupH0UHa
L((α, σ1, β)) =

n∏
i=1

[
α̂

σ̂1ψ̂(β)
((1+

xi
σ̂1

)−(α̂+1)−(1+
xi
σ̂1

+
1

β̂
)−(α̂+1))].

Hence the likelihood ratio for the above test is given by

λ =
SupH0

L(α, σ1)

SupH0UHa
L((α, σ1, β))

.
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Equivalently the log of the likelihood ratio is given by

log λ = log(SupH0
L(α, σ1))− log(SupH0UHa

L((α, σ1, β))).

3.11.1 Asymptotic property of the ML estimate of θ and the large sample

distribution of the likelihood ratio statistic

First of all we consider the following:

• we will use for notational simplicity ξ = (α, σ1, β) and our param-

eter space Ω = R+3 ⊂ R3, and from here onwards we will consider

the following l(ξ|x) =
∑n

i=1 log(L(ξ)) =
∑n

i=1 log(f(xi;α, σ1, β)).

• We note that the true value of the parameter β, (i.e., H0 : β = 0 =

β0, say) is on the boundary of Ω.

Next we also consider the following regularity conditions which are

listed below:

• The parameter space Ω has finite dimension 3 and we consider one

of the parameters β to be on the boundary.

• f ∗(xi;α′, σ1
′, β′) = f ∗(xi;α, σ1, β) if and only if α′ = α, σ1

′ =

σ1, β
′ = β ∀(α′, σ1

′, β′, α, σ1, β) ∈ Ω.

• We consider the almost sure existence of the first three derivatives

on the intersection of neighborhoods of the true parameter value

and Ω. In our case since the true value which is β0, is on the bound-
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ary so the derivatives of l(ξ|x) has to be taken from appropriate

side

• There exists an open subset of ω of R3 containing β0 such that for

all x for which f ∗(xi;α, σ1, β) > 0, has all three derivatives w.r.t

all ξ ∈ ω, and

| ∂3

∂α∂σ1∂β
log[f ∗(x;α, σ1, β)]| ≤M(x),

∀((α, σ1, β))andf ∗(x;α, σ1, β) > 0 and m = Eβ0
[M(x)] <∞.

• The expectation of n−1I(ξ) is assumed to be positive definite on

the neighborhood of β0 and at β0 is equal to the variance covariance

matrix of n−
1
2U(β0), where U(.) is the first derivative of the log-

likelihood function.

Then according to Self and Liang (1987), pp. 607 (Theorem 3), we

may consider the following asymptotic representation of the likelihood

which is as follows:

Supξ∈CΩ−β0
[−(Z−ξ)′I(β0)(Z−ξ)]−Supξ∈CΩ0

−β0
[−(Z−ξ)′I(β0)(Z−ξ)].

(3.69)

where Z has a multivariate Gaussian distribution with mean 0 and

variance covariance matrix I−1(β0) and CΩ and CΩ0
are non-empty

cones approximating Ω0, a subset of Ω where β0 lies and Ω1, which
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the complement of Ω0. Mimicking Self and Liang (1987) we may write

alternatively equation(3.69) as

infξ∈C̃0
‖ Z̃ − ξ ‖2 −infξ∈C̃ ‖ Z̃ − ξ ‖

2, (3.70)

with

• C̃ = (ξ̃ : ξ̃ = Λ
1
2P T ξ ∀ξ ∈ CΩ − β0),

• C̃0 = (ξ̃ : ξ̃ = Λ
1
2P T ξ ∀ξ ∈ CΩ0

− β0).

and where Z̃ has a multivariate Gaussian distribution with mean

0 and identity covariance matrix and PΛP T represents the spectral

decomposition of I(β0).

However in our case we have

Ω = Ω1 × Ω2 × Ω3

where Ω′i s are open intervals in R+ and we have a situation here for

which C̃ = [0,∞) × R+2

and C̃0 = 0 × R+2

, and because of that our

equation (3.71) reduces to

Z̃1
2
I(Z̃1 > 0). (3.71)

So the asymptotic distribution of −2 log λ is 50 : 50 mixture of a χ0
2

and χ1
2 distribution.
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3.12 Asymptotic distribution of the smallest order statistic

We have as before our density which is of the form

fHTX|Y≤θ(x) =
α

σ1ψ(α, θ)
[(1 +

x

σ1
)−(α+1) − (1 +

x

σ1
+ θ)−(α+1)]I(x ≥ 0).

So the corresponding distribution function is given by

F (x) = 1−
(1 + x

σ1
)−α − (1 + x

σ1
+ θ)−α

ψ(α, θ)
, x ≥ 0.

So for a random sample of size n from above density the distribution

of the smallest order statistic (X1:n = minni=1Xi) will be

f(x1:n) =
nα

(ψ(α, θ))n
[(1+

x1:n

σ1
)−α−(1+

x1:n

σ1
+θ)−α]n−1[(1+

x1:n

σ1
)−(α+1)

− (1 +
x1:n

σ1
+ θ)−(α+1)]I(x1:n ≥ 0). (3.72)

Let us consider the following

P (X1:n >
x1:n

n
) = [

(1 + x1:n

nσ1
)−α − (1 + x1:n

nσ1
+ θ)−α

ψ(α, θ)
]n, (3.73)

using the expression for the distribution function as given earlier. Next
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consider the quantity

(1 +
x1:n

nσ1
)−α − (1 +

x1:n

nσ1
+ θ)−α

= [1− α(
x1:n

nσ1
) +

α(α + 1)

2
(
x1:n

nσ1
)2 − · · · ]

−[(1 + θ)−α − α(1 + θ)−α+1(
x1:n

nσ1
) +

α(α + 1)

2
(1 + θ)−α+2(

x1:n

nσ1
)2 − · · · ]

= 1− (1 + θ)−α − α(1− (1 + θ)−α+1)(
x1:n

nσ1
) + o(n−2)

= ψ(α, θ)− α(1− (1 + θ)−α+1)(
x1:n

nσ1
) + o(n−2).

So on substitution in equation (3.73), we get

P (X1:n >
x1:n

n
) = [1− α(1− (1 + θ)−α+1)

σ1ψ(α, θ)

x1:n

n
+ o(n−2)]n.

Hence we may consider

lim
n→∞

P (X1:n >
x1:n

n
) = lim

n→∞
[1− α(1− (1 + θ)−α+1)

σ1ψ(α, θ)

x1:n

n
+ o(n−2)]n

= exp[−Ax1:n], x1:n ≥ 0,

where A = α(1−(1+θ)−α+1)
σ1ψ(α,θ) . So the asymptotic distribution of X1:n is expo-

nential with the intensity parameter=α(1−(1+θ)−α+1)
σ1ψ(α,θ) , when the samples

are drawn from a density of the form in (3.15).
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3.13 Concluding remarks

Precise inference for the parameters of hidden truncation models is still

an area where much work has to be done so that it becomes a pow-

erful tool for the statisticians to analyze data which has been subject

to hidden truncation with respect to one or more covariable(s). The

hidden truncated P (II) model does not belong to the exponential fam-

ilies of densities. As a result, essentially no reduction in complexity

of the data can be obtained by invoking sufficiency arguments. Max-

imum likelihood estimation will necessarily be performed numerically

as we have done, but unfortunately, the likelihood functions associated

with these types of models often do not have easily identified modes

because of the unavailability of analytical expressions for the maximum

likelihood estimates. Arnold and Beaver (2002) provided a careful dis-

cussion for such models and associated inference procedures. Data sets

involving hidden truncation are quite common nowadays and to deal

with such types of data efficiently we do need a strong theory. The

associated Bayesian analysis that is reported gives us a hint of how to

deal with such types of models under the Bayesian framework. However

the possibility of “multiple” hidden truncations cannot be ignored. One

can easily imagine situations in which observations are made only if all

of several other covariables attain certain critical levels which we have
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considered under the multivariate setting. To this end the tractability

and also the applicability of such models are the two main concerns be-

fore we engage ourself in developing all the necessary theoretical work.

Appendix

Large sample property of the likelihood estimates

Before we discuss the large sample behavior of the likelihood estimates

it is necessary for us to consider the information matrix which is by

definition the expected value of the Hessian matrix (i.e., minus the

second derivative of the log likelihood function at η̂ given the data x,

where the Hessian matrix is given by

H(η) = − ∂

∂η(∂η)T
[logL(η|X = x)], (3.74)

where “T” stands for transpose and η = (α, σ1, θ).

So in our case the observed information matrix is given by

H(η) =


A11 A12 A13

A21 A22 A23

A31 A32 A33

 .

(say), where the elements of the Hessian matrix are given later.
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Comment on the asymptotic efficiency of the ML estimates

Here we observe that in our case X|Y ≤ θ is independently and identi-

cally distributed with a density which satisfies the following:

• The parameter space Ω = η ∈ R+3, where R+ denotes the positive

part of the real line, contains an open set ω, say, of which the true

parameter η
0

is an interior point.

• For all realizations from our density and for η
0

| ∂3

∂α∂σ1∂θ
[log fX|Y≤θ(x|η)]| ≤M(x)∀η ∈ ω, (3.75)

and m = Eη0[M(x)] <∞.

Then with probability →1 as n→∞, there exists η̂ = η̂(x) a solution

of the likelihood equations such that

• η̂
j

is consistent,

•
√
n(η̂

j
− η) is asymptotically normal with mean vector zero and

covariance matrix [H(η)]−1,

√
n(η̂

j
− η)

L−→ N(0, [H(η
j
)]−1
jj ), (3.76)

where for j = 1, 2, 3, η
j

would mean α, σ1, θ respectively. In this

chapter FIM will always mean Fisher Information Matrix whenever

it appears. We have in our case a complicated situation similar to
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that described in Cox (1958), for which it is much easier to compute

the observed FIM than expected FIM and also it tends to agree more

closely with Bayesian and fiducial analysis. Next the elements of the

Hessian matrix are

A11 =
∂2

∂α2
[logL(η|X = x)]

=
n

α2
−n[
−(1− (1 + θ)−α)(1 + θ)−α(log(1 + θ))2 − ((1 + θ)−α log(1 + θ))2

(1− (1 + θ)−α)2
]

+
n∑
i=1

[(log(1 +
θ

(1 + Xi

σ1
)
))×

(1− (1 +
θ

(1 + Xi

σ1
)
)−(α+1))−2(−(1 +

θ

(1 + Xi

σ1
)
)−2(α+1) log(1 +

θ

(1 + Xi

σ1
)
))

+ log(1 +
θ

(1 + Xi

σ1
)
)(1 +

θ

(1 + Xi

σ1
)
)−2(α+1))].
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Again

A12 =
∂2

∂α∂σ1
[logL(η|X = x)]

=
n∑
i=1

[
Xi

(σ1)2(1 + Xi

σ1
)
] +

n∑
i=1

[θ(
Xi

σ1
)(σ1 +Xi)

−2

(1 + θ

(1+
Xi
σ1

)
)−(α+2)

(1− (1 + θ

(1+
Xi
σ1

)
)−(α+1)

)]

+ (α + 1)
n∑
i=1

[θ(
Xi

σ1
)(σ1 +Xi)

−2

− (1− (1 +
θ

(1 + Xi

σ1
)
)−(α+1))−1 log(1 +

θ

(1 + Xi

σ1
)
)(1 +

θ

(1 + Xi

σ1
)
)−(α+1)

+ (1 +
θ

(1 + Xi

σ1
)
)−(2α+3))].

Also

A13 =
∂2

∂α∂θ
[logL(η|X = x)]

= −n[
−(1− (1 + θ)−α)(α(α + 1))((1 + θ)−α+2)− (α(1 + θ)−α+1)2

(1− (1 + θ)−α)2
]

+
n∑
i=1

[(1 +
Xi

σ1
)−1(1 +

θ

(1 + Xi

σ1
)
)−(α+2)(1− (1 +

θ

(1 + Xi

σ1
)
)−(α+1))−1]

+ (α+ 1)
n∑
i=1

[(1 +
Xi

σ1
)−1 log(1 +

θ

(1 + Xi

σ1
)
)(1− (1 +

θ

(1 + Xi

σ1
)
)−(α+1))−2×

(1 +
θ

(1 + Xi

σ1
)
)−(α+2)(2(1 +

θ

(1 + Xi

σ1
)
)−(α+1) − 1)].

Similarly
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A21 =
∂2

∂σ1∂α
[logL(η|X = x)]

=
n∑
i=1

[
Xi

(σ1)2(1 + Xi

σ1
)2

] +
n∑
i=1

[

(1 + θ

(1+
Xi
σ1

)
)−(α+2)

1− (1 + θ

(1+
Xi
σ1

)
)−(α+1)

θXi(σ1 +Xi)
−2]

+
n∑
i=1

[log(1 +
θ

(1 + Xi

σ1
)
)(α + 1)(1− (1 +

θ

(1 + Xi

σ1
)
)−(α+1))−2

(θXi(σ1 +Xi)
−2)(1 +

θ

(1 + Xi

σ1
)
)−(α+2)(1− 2(1 +

θ

(1 + Xi

σ1
)
)−(α+1))].

Again

A22 =
∂2

∂(σ1)2
[logL(η|X = x)]

= − 2n

(σ1)3
+ (α + 1)

n∑
i=1

[
(−3Xi − 2σ1)Xi

(σ1)2(1 + Xi

σ1
)2

]

+θ(α+1)
n∑
i=1

[

(1 + θ

(1+
Xi
σ1

)
)−(α+2)

(1− (1 + θ

(1+
Xi
σ1

)
)−(α+1))

(
(−X2

i

σ3
1
)(σ1 +Xi)

2 − 2(σ1 +Xi)
Xi

σ1

((σ1 +Xi)2)2
)].
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A23 =
∂2

∂σ1∂θ
[logL(η|X = x)]

= (α + 1)
n∑
i=1

[

(1 + θ

(1+
Xi
σ1

)
)−(α+2)

1− (1 + θ

(1+
Xi
σ1

)
)−(α+1)

(1 +
Xi

σ1
)−2 Xi

(σ1)2

+(1+
Xi

σ1
)−1(1−(1+

θ

(1 + Xi

σ1
)
)−(α+1))−2((

θXi

(σ1)2
)(−((α+1)(1+

θ

(1 + Xi

σ1
)
)−(2α+3))

− (α + 2)(1− (1 +
θ

(1 + Xi

σ1
)
)−(α+1))(1 +

θ

(1 + Xi

σ1
)
)−(α+3)))].

Furthermore

A31 =
∂2

∂θ∂α
[logL(η|X = x)]

= −n[
−(1− (1 + θ)−α)((1 + θ)−2(α+1) log(1 + θ)α)− (α(1 + θ)−α)2

(1− (1 + θ)−α)2
]

+
n∑
i=1

[

(1 + θ

(1+
Xi
σ1

)
)−(α+1)

1− (1 + θ

(1+
Xi
σ1

)
)−(α+1)

(1 +
Xi

σ1
)−1(1 +

θ

(1 + Xi

σ1
)
)−1]

+
n∑
i=1

[log(1 +
θ

(1 + Xi

σ1
)
)((1 +

θ

(1 + Xi

σ1
)
)α)(1 +

Xi

σ1
)−1(α + 1)

((−(1− (1 +
θ

(1 + Xi

σ1
)
)−(α+1)))

− ((1 +
θ

(1 + Xi

σ1
)
)−(2α+4)(α + 1)(1 +

Xi

σ1
)−1))].

Again
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A32 =
∂2

∂θ∂σ1
[logL(η|X = x)]

= (α + 1)[
n∑
i=1

[(

Xi

σ1

(σ1 +Xi)2
)(

(1 + θ

(1+
Xi
σ1

)
)−(α+1)

1− (1 + θ

(1+
Xi
σ1

)
)−(α+1)

)]

+θ[(1−(1+
θ

(1 + Xi

σ1
)
)−(α+1))−2(1+

Xi

σ1
)−1(1+

θ

(1 + Xi

σ1
)
)−(α+3)((−(α+2)×

(1− (1 +
θ

(1 + Xi

σ1
)
)−(α+1)))− ((α + 1))(1 +

θ

(1 + Xi

σ1
)
)−(α+1))]].

A33 =
∂2

∂θ2
[logL(η|X = x)]

= −n[
−(1− (1 + θ)−α)(α(α + 1))((1 + θ)−(α+2))− (α(1 + θ)−(α+1))2

(1− (1 + θ)−α)2
]

−(α+1)
n∑
i=1

[(1+
Xi

σ1
)−2(1−(1+

θ

(1 + Xi

σ1
)
)−(α+1))−2(1+

θ

(1 + Xi

σ1
)
)−(α+3)×

(((α+ 2)(1− (1 +
θ

(1 + Xi

σ1
)
)−(α+1))) + ((α+ 1)(1 +

θ

(1 + Xi

σ1
)
)−(α+1)))].
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Chapter 4

Classical and Bayesian inference

for a hidden truncated bivariate

P (IV ) distribution

4.1 Introduction

The P (IV ) family was suggested by Arnold and Laguna (1976), as well

as by Ord (1975) and Cronin (1977, 1979). It is to be noted that most

of the distribution theory regarding the P (IV ) distribution can be ob-

tained by using available results for the Burr distributions as mentioned

in Johnson and Kotz (1970). In particular, the Burr (XII) family can

readily be recognized as a P (IV ) family with a suitable identification of

the parameters. However there are also various other types of charac-

terization of the P (IV ) distribution in the literature. Among them one

could consider earlier works by Dubey (1968) and Harris and Singpur-
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walla (1969), who arrived at the P (IV ) distribution via a mixture of

Weibull random variables. Later Singh and Maddala(1976) were led to

the P (IV ) model using an argument involving decreasing failure rates.

However we will follow the nomenclature used by Arnold (1983) and

use the name Pareto (IV) for this family of distributions, abbreviated

as P (IV ). The P (IV ) model is one of the most general families of

Pareto distributions endowed with two shape parameters together with

location and scale parameters. However as mentioned in a previous

chapter, as we proceed to more and more complex models for Pareto

distributions all the available “nice” results for the classical Pareto

model disappear. So a valid question is whether or not it is possible

to provide some efficient estimation strategies in situations in which,

under a bivariate P (IV ) model, the variable of interest (say, X) is only

observable if and only if the unobserved co-variable (say, Y ) is truncated

from above. As in the previous chapter (chapter 3) we are considering

estimation procedures under the hidden truncation paradigm, but this

time for a bivariate P (IV ) model. In addition, Bayesian estimation of

the parameters of such models will be considered. This is the subject

matter of this chapter. Again, as was mentioned in chapter 3, inference

procedures for the P (IV ) model, both from the classical and Bayesian

viewpoints have been severely restricted due to a lack of simplicity and
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analytical tractability of the model. Inference techniques for P (IV )

populations have typically assumed several of the parameters to be

known. An exception is encountered in Harris and Singpurwalla (1969)

where the likelihood equations for the full model were derived.

If all the parameters are assumed unknown, then such well known

techniques such as the method of moments and the maximum likelihood

method will involve iterative solution of systems of distinctly non-linear

equations which for the P (IV ) model are more complicated than for

the P (II) model. Since X1:n is a consistent estimate of µ in the P (IV )

family, one may consider setting µ = X1:n and solving the resulting

simplified equations for the method of moments and quartile estimation.

For the method of moments estimation we will consider the approach

of Arnold and Laguna (1977) who used sample fractional moments. In

the quartile estimation procedure we will follow the approach suggested

by Quandt (1966).

4.2 Why the hidden truncation P (IV ) model

First of all note that the P (IV ) family provides a convenient vehicle for

computing distributional results for the three more specialized Pareto

families. Each of them may be identified as special cases of the Pareto

(IV ) family as follows: P (I)(σ, α) = P (IV )(σ, σ, 1, α), P (II)(µ, σ, α) =
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P (IV )(µ, σ, 1, α) and P (III)(µ, σ, γ) = P (IV )(µ, σ, γ, 1). So among

the family of Pareto distributions, the P (IV ) model deserves further

attention simply because of the fact that within our hierarchy of gen-

eralized Pareto distributions, it is the P (IV ) family which might be

well adapted to modeling reliability problems and in addition it is a

viable competitor for other popular models for income distributions,

for example the log-logistic and log-normal models. Next we envisage a

situation where we have data on an individual’s income corresponding

to different segments of time, and we assume that they can be well

described by a P (IV ) model. One might be interested in the distribu-

tion of the most recent income values corresponding to income values

recorded in earlier time period not exceeding a certain level. Models

of such types can be explained by a hidden truncation paradigm where

we observe one variable only when it is subject to hidden truncation

from above with respect to one or more covariables.

In this chapter we focus our attention on estimation of all the pa-

rameters of a bivariate P (IV ) distribution when hidden truncation is

applied to one of the variables with the only restriction that the trunca-

tion point will be greater than the location parameter of the truncated

variable. As was observed in chapter 3, hidden truncation from below

did not augment the P (II) model. The same phenomenon occurs with
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the P (IV ) model also, since the resulting density will be again a mem-

ber in the same family of distributions with only reparametrization of

the parent model. In contrast, when we consider the hidden truncation

paradigm when one variable is subject to hidden truncation from above

for a bivariate P (IV ) distribution, model augmentation is observed. In-

ference procedures for such hidden truncation models are considered in

this chapter both from the classical and the Bayesian perspectives.

The remainder of the chapter is organized in the following way. In

section 3, we will develop the hidden truncation density of a bivariate

P (IV ) model when one of the variable is subject to hidden truncation

from above with the only restriction that the truncation point is at

least greater than the location parameter of the truncated variable.

In section 4, we will consider the method of fractional moments for

estimating all the parameters involved in the model. In section 5, we

will consider the quartile method of estimation. In section 6, we will

consider a simulation study and will report the estimated values of all

the parameters using both of the estimation strategies. In section 7, we

will consider a real life situation where a small data set is analyzed by

invoking the hidden truncated bivariate P (IV ) model as an application

of our model. In section 8, we derive the asymptotic distribution of the

smallest order statistic when the samples are drawn from a hidden
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truncated bivariate P (IV ) distribution. In section 9, we will consider

the estimation of all the parameters under the Bayesian paradigm where

we will consider posterior simulation results based on a simulation study

together with comments related to posterior distribution convergence

along with the choice of the parameters of the jumping distribution.

4.3 Hidden truncated bivariate P (IV ) model

The survival function corresponding to a bivariate P (IV ) distribution

is given by

P (X > x, Y > y) = [1 + (
(x− µ1)

σ1
)

1
δ1 + (

(y − µ2)

σ2
)

1
δ2 ]−α, x ≥ µ1, y ≥ µ2,

(4.1)

where µ1, µ2, σ1, σ2, δ1, δ2 are the location, scale and inequality

parameter for X and Y respectively and α is the shape parameter. If

(X, Y ) has a survival function of the form in (4.1), then we will write

(X, Y ) ∼ bivariate Pareto(IV )(µ1, µ2, σ1, σ2, δ1, δ2, α).
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So the corresponding joint density of (X, Y ) will be given by

f(x, y) =
∂

∂x

∂

∂y
[P (X > x, Y > y)]

=
α(α + 1)

σ1σ2δ1δ2
(
x− µ1

σ1
)

1
δ1
−1(

y − µ2

σ2
)

1
δ1
−1

× [1 + (
x− µ1

σ1
)

1
δ1 + (

y − µ2

σ2
)

1
δ1 ]−(α+2)I(x ≥ µ1, y ≥ µ2).

(4.2)

Note that for the above mentioned density both the marginal densities

as well as the conditional densities are again members of the P (IV )

family with suitable choice of the parameters. In particular we may list

them as follows:

• X ∼ P (IV )(µ1, σ1, δ1, α)

• Y ∼ P (IV )(µ2, σ2, δ2, α)

• For each possible values of x ∈ (µ1,∞), the conditional density of

Y given X = x will be

Y |X = x ∼ P (IV )(µ2, σ
∗
2, δ2, α),

where σ∗2 = σ2(1 + x−µ1

σ1
)

1
δ1 .

• For each possible values of y ∈ (µ2,∞), the conditional density of
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X given Y = y will be

X|Y = y ∼ P (IV )(µ1, σ
∗
1, δ1, α),

where σ∗1 = σ1(1 + y−µ2

σ2
)

1
δ2 .

Also note that the correlation between X and Y is positive provided

δ2 − δ1 − α > 2, specifically

Corr(X, Y ) = α(α + 1)B(δ2 + 2, α− δ2)B(δ1 + 2, δ2 − α− δ1 − 2).

At first we consider the situation where both µ1 = µ2 = 0, after replac-

ing them by their consistent sample estimates X1:n, Y1:n respectively

where X1:n = min1≤i≤nXi and Y1:n = min1≤i≤nYi. The hidden trun-

cated density of X given Y ≤ c, for any positive value of c will be given

by

fX|Y≤c(x) =
fX(x)P (Y < c|X = x)

P (Y ≤ c)
I(x ≥ 0). (4.3)

In our case for each fixed X = x,

P (Y ≤ c|X = x) = 1− [1 +
c
σ2

1 + ( xσ1
)

1
δ1

]−(α+1),

while

P (Y ≤ c) = 1− (1 + (
c

σ2
)

1
δ2 )−α.
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So the hidden truncated density of X given Y ≤ c is given by

fHTX|Y≤c(x) =
αx

1
δ1
−1

σδ11 δ1

[

(1 + ( xσ1
)

1
δ1 )−(α+1)(1− [1 +

( c
σ2

)
1
δ2

1+( x
σ1

)
1
δ1

]−(α+1))

1− (1 + ( c
σ2

)
1
δ2 )−α

]I(x ≥ 0).

(4.4)

For notational simplicity we write c
σ2

= θ and Ψ(α, θ, δ2) = 1− (1 +

θ
1
δ2 )−α.

So our resulting density in this case is given by

fHTX|Y≤θ(x)

=
α

σ1δ1Ψ(α, θ, δ2)
(
x

σ1
)

1
δ1
−1[((1 +

x

σ1
)

1
δ1 )−(α+1)

− (1 + θ
1
δ2 + (

x

σ1
)

1
δ1 )−(α+1)]I(x ≥ 0). (4.5)

For graphical reference we will consider the plot of the hazard rate

function which is given by

hT |Y≤θ(t) =
fHTT |Y≤θ(t)

ST |Y≤θ(t)
,
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where

ST |Y≤θ(t)

= PT |Y≤θ(T > t)

=

∫ ∞
t

α

σ1δ1Ψ(α, θ, δ2)
(
x

σ1
)

1
δ1
−1[((1 +

u

σ1
)

1
δ1 )−(α+1)

− (1 + θ
1
δ2 + (

u

σ1
)

1
δ1 )−(α+1)]du

=
1

Ψ(α, θ, δ2)
[((1 +

t

σ1
)

1
δ1 )−α − (1 + θ

1
δ2 + (

t

σ1
)

1
δ1 )−α]. (4.6)

In Figure (4.1) we consider for fixed choices of the parameters α =

4, σ1 = 1, δ1 = 2, δ2 = 3, the plot of the hazard rate function for different

choices of the truncation parameter θ.
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Figure 4.1: Hazard rate function for a Hidden truncated Pareto(type IV)density with α = 4,
σ = 1, δ1 = 2, δ2 = 3.
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4.4 Fractional method of moments estimation

We will consider use of the fractional method of moments for estimating

all the parameters of the hidden truncated bivariate P (IV ) model. We

first consider for any r ≥ 1,

E[Xr]

=

∫ ∞
0

xrfX|Y≤θ(x)dx

=

∫ ∞
0

xr(
x

σ1
)

1
δ1
−1 α

σ1δ1Ψ(α, θ, δ2)
[((1 +

x

σ1
)

1
δ1 )−(α+1)

− (1 + θ
1
δ2 + (

x

σ1
)

1
δ1 )−(α+1)]dx

=
ασr1

Ψ(α, θ, δ2)
[(u− 1)rδ1(u−(α+1) − (u+ θ

1
δ2 )−(α+1))]

=
ασr1

Ψ(α, θ, δ2)
[

∫ ∞
1

u−(α+1)(u− 1)rδ1du

−
∫ ∞

1

(u− 1)rδ1(u+ θ
1
δ2 )−(α+1)du]

=
ασr1

Ψ(α, θ, δ2)
[I1 − I2], (4.7)

by considering

1 + (
x

σ1
)

1
δ1 = u,

say, where
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I1 =

∫ ∞
1

u−(α+1)(u− 1)rδ1

=

∫ ∞
0

trδ1(1 + t)−(α+1)dt

= B(rδ1 + 1, α− rδ1), (4.8)

by setting u− 1 = t in which B(m,n) is the Beta function with param-

eters m and n. Similarly,

I2 =

∫ ∞
1

(u− 1)rδ1(u+ θ
1
δ2 )−(α+1)du

= (1 + θ
1
δ2 )rδ1−αB(rδ1 + 1, α− rδ1). (4.9)

Hence on substitution in (4.7) we get,

E[Xr] =
ασr1

Ψ(α, θ, δ2)
[B(rδ1 + 1, α− rδ1)(1− (1 + θ

1
δ2 )rδ1−α)]

Next for the method of moment estimation we first define the fol-

lowing quantities based on sample observations for a random sample of

size n :

• M1 = 1
n−1

∑n
i=1(Xi −X1:n).

• M 1
2

= 1
n−1

∑n
i=1(Xi −X1:n)

1
2 .
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• M 1
3

= 1
n−1

∑n
i=1(Xi −X1:n)

1
3 .

• M 1
4

= 1
n−1

∑n
i=1(Xi −X1:n)

1
4 .

• M 1
5

= 1
n−1

∑n
i=1(Xi −X1:n)

1
5 .

Next we consider the following (after equating the sample moments

with the corresponding population moments)

M1

M 1
2

=
σ1[B(δ1 + 1, α− δ1)(1− (1 + θ

1
δ2 )δ1−α)]

σ
1
2
1 [B(δ12 + 1, α− δ1

2 )(1− (1 + θ
1
δ2 )

δ1
2 −α)]

, (4.10)

and
M 1

2

M 1
3

=
σ

1
2
1 [B(δ12 + 1, α− δ1

2 )(1− (1 + θ
1
δ2 )

δ1
2 −α)]

σ
1
3
1 [B(δ13 + 1, α− δ1

3 )(1− (1 + θ
1
δ2 )

δ1
3 −α)]

. (4.11)

Again

M 1
3

M 1
4

=
σ

1
3
1 [B(δ13 + 1, α− δ1

3 )(1− (1 + θ
1
δ2 )

δ1
3 −α)]

σ
1
4
1 [B(δ14 , α−

δ1
4 )(1− (1 + θ

1
δ2 )

δ1
4 −α)]

. (4.12)

Also

M1

M 1
4

=
σ1[B(δ1 + 1, α− δ1)(1− (1 + θ

1
δ2 )δ1−α)]

σ
1
4
1 [B(δ14 , α−

δ1
4 )(1− (1 + θ

1
δ2 )

δ1
4 −α)]

, (4.13)

and
M 1

2

M 1
5

=
σ

1
2
1 [B(δ12 + 1, α− δ1

2 )(1− (1 + θ
1
δ2 )

δ1
2 −α)]

σ
1
5
1 [B(δ15 , α−

δ1
5 )(1− (1 + θ

1
δ2 )

δ1
5 −α)]

. (4.14)

So in this situation we have five equations which we can write equiv-

alently as:
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• M1[B(δ12 +1, α− δ1
2 )(1−(1+θ

1
δ2 )

δ1
2 −α)] = σ

1
2
1M 1

2
[B(δ1+1, α−δ1)(1−

(1 + θ
1
δ2 )δ1−α)].

• M 1
2
[B(δ13 +1, α− δ1

3 )(1−(1+θ
1
δ2 )

δ1
3 −α)] = σ

1
6
1M 1

3
[B(δ12 +1, α− δ1

2 )(1−

(1 + θ
1
δ2 )

δ1
2 −α)].

• M 1
3
[B(δ14 , α−

δ1
4 )(1− (1 + θ

1
δ2 )

δ1
4 −α)] = σ

1
12
1 M 1

4
[B(δ13 + 1, α− δ1

3 )(1−

(1 + θ
1
δ2 )

δ1
3 −α)].

• M1[B(δ14 , α−
δ1
4 )(1− (1 + θ

1
δ2 )

δ1
4 −α)] = σ

3
4
1M 1

4
[B(δ1 + 1, α− δ1)(1−

(1 + θ
1
δ2 )δ1−α)].

• M 1
2
[B(δ15 , α−

δ1
5 )(1− (1 + θ

1
δ2 )

δ1
5 −α)] = σ

3
10
1 M 1

5
[B(δ12 + 1, α− δ1

2 )(1−

(1 + θ
1
δ2 )

δ1
2 −α)].

4.5 Quartile method of estimation

Here we consider the quartile method of estimation. If ξp is the p-th

order quantile (p ∈ (0, 1)), then

P (X ≤ ξp) = p.
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So for our density we have

P [X ≤ ξp] =
α

Ψ(α, θ, δ2)σ1

∫ ξp

0

fHT (x)dx

=
α

Ψ(α, θ)σ1

∫ ξp

0

(
x

σ1
)

1
δ1
−1[((1 +

x

σ1
)

1
δ1 )−(α+1)

− (1 + θ
1
δ2 + (

x

σ1
)

1
δ1 )−(α+1)]dx

=
1

Ψ(α, θ, δ2)[1− (1 +
ξp
σ1

)−α]− [(1 + θ)−α − (1 + θ +
ξp
σ1

)−α]
,

So that we have

1

Ψ(α, θ, δ2)[1− (1 +
ξp
σ1

)−α]− [(1 + θ)−α − (1 + θ +
ξp
σ1

)−α]
= p. (4.15)

Equivalently we can write

[1− (1 +
ξp
σ1

)−α]− [(1 + θ)−α − (1 + θ +
ξp
σ1

)−α] = pΨ(α, θ, δ2). (4.16)

Our estimates are then obtained by equating 5 sample quantiles, de-

noted by ξ̂p to the corresponding population quantiles. In particular

by considering successively p = 1
2 ,

3
4 ,

1
2 ,

1
5 ,

1
6 , we have the following five

equations:

[1− (1 +
ξ̂ 1

2

σ1
)−α]− [(1 + θ)−α − (1 + θ +

ξ̂ 1
2

σ1
)−α] =

Ψ(α, θ, δ2)

2
. (4.17)
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[1− (1 +
ξ̂ 3

4

σ1
)−α]− [(1 + θ)−α − (1 + θ +

ξ̂ 3
4

σ1
)−α] =

3Ψ(α, θ, δ2)

4
. (4.18)

[1− (1 +
ξ̂ 1

4

σ1
)−α]− [(1 + θ)−α − (1 + θ +

ξ̂ 1
4

σ1
)−α] =

Ψ(α, θ, δ2)

4
. (4.19)

[1− (1 +
ξ̂ 1

5

σ1
)−α]− [(1 + θ)−α − (1 + θ +

ξ̂ 1
5

σ1
)−α] =

Ψ(α, θ, δ2)

5
. (4.20)

[1− (1 +
ξ̂ 1

6

σ1
)−α]− [(1 + θ)−α − (1 + θ +

ξ̂ 1
6

σ1
)−α] =

Ψ(α, θ, δ2)

6
. (4.21)

So from equation (4.19) and equation (4.17) we get,

1− 2(1 + (
ξ̂ 1

4

σ1
)

1
δ1 )−α − (1 + θ)−α + (1 + (

ξ̂ 1
2

σ1
)

1
δ1 )−α

+ 2(1 + (
ξ̂ 1

4

σ1
)

1
δ1 + θ)−α + 2(1 + (

ξ 1
2

σ1
)

1
δ1 + θ)−α = 0

Also from equation (4.18) and equation (4.17) we get,

1− 3(1 + (
ξ̂ 3

4

σ1
)

1
δ1 )−α − (1 + θ)−α − 2(1 + (

ξ̂ 1
2

σ1
)

1
δ1 )−α

+ 3(1 + (
ξ̂ 3

4

σ1
)

1
δ1 + θ)−α − 2(1 + (

ξ̂ 1
2

σ1
)

1
δ1 + θ)−α = 0.
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Also we have from equation (4.20) and equation (4.18),

11− 15(1 + (
ξ̂ 1

5

σ1
)

1
δ1 )−α − 11(1 + θ)−α + 4(1 + (

ξ̂ 3
4

σ1
)

1
δ1 )−α

− 4(1 + (
ξ̂ 3

4

σ1
)

1
δ1 + θ)−α + 15(1 + (

ξ̂ 1
5

σ1
)

1
δ1 + θ)−α = 0.

Similarly from equation (4.21) and equation (4.20) we get,

1− 6(1 + (
ξ̂ 1

6

σ1
)

1
δ1 )−α − (1 + θ)−α + 5(1 + (

ξ̂ 1
5

σ1
)

1
δ1 )−α

+ 6(1 +
ξ̂ 1

6

σ1
+ θ)−α − 5(1 +

ξ̂ 1
5

σ1
+ θ)−α = 0.

Finally we have from equation (4.21) and equation (4.19),

1− 3(1 + (
ξ̂ 1

6

σ1
)

1
δ1 )−α − (1 + θ)−α + 2(1 + (

ξ̂ 1
4

σ1
)

1
δ1 )−α

+ 3(1 + (
ξ̂ 1

6

σ1
)

1
δ1 + θ)−α − 2(1 + (

ξ̂ 1
4

σ1
)

1
δ1 + θ)−α = 0.

4.6 Application of the hidden truncated P (IV ) model to a

real life data set

We consider the US income data available in the form of 2 year median

income (data source: US Census Bureau, 2006-2009) and in particular

median income for 2006-2007 and 2008-2009 across all the 50 states

in US and want to study whether the change (in percentage) in the

median income can be explained by a hidden truncated P (IV ) model.
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We argue at this point that the data is subject to hidden truncation

because in those median income figures there might be instances of

unreported income and sometimes an individual’s income from other

sources is not properly reported.

Hitogram Of the Median Income data
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Figure 4.2: Histogram and Density plot for the US Median Income.

First, let us consider the histogram and density plot of the data

(displayed in Figure (4.2)). In this case the density plot has been drawn

by smoothing the histogram. Based on the available data, we get the

following estimates of the parameters for a hidden truncated bivariate

P (IV ) model:

• Estimation based on fractional method of moments:

σ̂1 = 1.942376, θ̂ = 2.518713, α̂ = 3.384127, δ̂1 = 2.545628, δ̂2 = 3.14.
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• Estimation based on quartile method:

σ̂1 = 1.915384, θ̂ = 2.529446, α̂ = 3.416816, δ̂1 = 2.591568, δ̂2 = 3.16.

Moreover, in this case the standard Kolmogorv-Smirnov goodness of

fit test statistic tells us that indeed the fit is good.

So the nature of our data can well be explained by a hidden truncated

bivariate P (IV ) distribution with the following choice of the parameters

(approximately):

σ1 = 1.9, θ = 2.5, α = 3.4, δ1 = 2.5, δ2 = 3.1.

Note that the estimated value of θ, which is far from zero, does indicates

that the data has been subjected to hidden truncation.

4.7 Estimation of the parameters using a simulation study

4.7.1 Sample generation from the truncated density

First we draw a random sample of size n (we consider n = 50, 100, 200)

from the hidden truncated bivariate P (IV ) distribution for the follow-

ing particular choices of the parameters:

α = 3, σ1 = 2, σ2 = 2, δ1 = 2, δ2 = 3, µ1 = 0, µ2 = 0, c = 2.
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So that θ = c−µ2

σ2
= 1.5 and Ψ(α, θ, δ2) = 1− (1 + θ

1
δ2 )−α = 0.8605353.

So that our density reduces to

fHTX|Y≤1.5(x) =
3

4
(
x

2
)

1
2−1[

(1 + (x2)
1
2 )−4(1− [1 + 1.5

1
3

1+(x2 )
1
2
]−4)

0.8605353
]I(x ≥ 0).

(4.22)

The estimates of all the parameters using both the quartile and frac-

tional moment estimation methods are displayed in Table (4.1).

Estimates of the p arameters

n σ̂1 θ̂ α̂ δ̂1 δ̂2

Quartile method
50 2.914573 1.767512 2.191324 1.889380 3.096597
100 1.879070 1.461497 2.899593 1.908241 3.026104
200 1.915689 1.467915 2.871755 1.970107 3.028901

Fractional Method Of Moments
50 1.655359 1.654185 2.368763 1.904561 3.143666
100 1.997621 1.757678 2.859842 1.968523 2.976938
200 1.979760 1.649014 2.705301 2.040245 3.127698

Table 4.1: Estimates of the parameters using the quartile and the fractional method of
moments.

4.7.2 Comment on the simulation study

From the simulation study for various choices of sample sizes (n=50,

100, 200), we observe is that for sample size n=50, the estimates of

the parameters using the quartile method are not good when compared

with those obtained using the fractional method of moments (except

for the estimated value of δ2. One can also observe that with the in-

crease in the sample size precise estimation of all the parameters under
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both estimation procedures has not been achieved simultaneously. For

instance when the sample size is either 100 or 200, the estimated value

of σ1 under the fractional method of moments is reasonably good as

compared to quartile method, while for the parameter θ, the scenario

is just the opposite. Moreover the estimated values of σ1 are far away

from the true value under the quartile method. Also the estimated

values of θ for different sample sizes are very close to the true value.

So overall we can not make a general recommendation. In terms of the

relative performance of the two estimation strategies, one is not always

better than the other. Furthermore a valid question that is worth men-

tioning, is why the popular maximum likelihood estimation procedure

has not been used here. The answer to this question is that the results

using maximum likelihood were not that promising. One reasonable

explanation could be that for the complicated model that we have, it is

really difficult to get some idea about the dependence structure among

the parameters involved in our model thereby implying that we do not

have much information about the likelihood surface. So we do not know

exactly what are the optimum choices of the parameters for which the

likelihood function will attain it’s maximum. A more extensive study

is required in this direction to find the real cause.
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4.8 Asymptotic distribution of the smallest order statistic

We have as before our density which is of the form

fHTX|Y≤θ(x)

=
α

σ1δ1Ψ(α, θ, δ2)
(
x

σ1
)

1
δ1
−1[((1 +

x

σ1
)

1
δ1 )−(α+1)

− (1 + θ
1
δ2 + (

x

σ1
)

1
δ1 )−(α+1)]I(x ≥ 0).

So the corresponding distribution function is given by

F (x) = 1−
((1 + x

σ1
)

1
δ1 )−α − (1 + θ

1
δ2 + ( xσ1

)
1
δ1 )−α

Ψ(α, θ, δ2)
, x ≥ 0.

So for a random sample of size n from the above density the distribution

function of the smallest order statistic (X1:n = min1≤i≤nXi) will be

F (x1:n) = 1− [
((1 + x1:n

σ1
)

1
δ1 )−α − (1 + θ

1
δ2 + (x1:n

σ1
)

1
δ1 )−α

Ψ(α, θ, δ2)
]n, x ≥ 0.

Let us consider the following

P (X1:n >
x1:n

n
) = [

((1 + x1:n

nσ1
)

1
δ1 )−α − (1 + θ

1
δ2 − (x1:n

nσ1
)

1
δ1 )−α

Ψ(α, θ, δ2)
]n, (4.23)

using the expression for the distribution function as given earlier. Next
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consider the quantity

((1 +
x1:n

nσ1
)

1
δ1 )−α − (1 + θ

1
δ2 − (

x1:n

nσ1
)

1
δ1 )−α (4.24)

= [1− α(
x1:n

nσ1
)

1
δ1 +

α(α + 1)

2
(
x1:n

nσ1
)

2
δ1 − · · · ]

−[(1 + θ
1
δ2 )−α − α(1 + θ

1
δ2 )−α+1(

x1:n

nσ1
)

1
δ1

+
α(α + 1)

2
(1 + θ

1
δ2 )−α+2(

x1:n

nσ1
)

2
δ1 − · · · ]

= 1− (1 + θ
1
δ2 )−α − α(1− (1 + θ

1
δ2 )−α+1)(

x1:n

nσ1
)

1
δ1 + o(n−2)

= Ψ(α, θ, δ2)− α(1− (1 + θ
1
δ2 )−α+1)(

x1:n

nσ1
)

1
δ1 + o(n−2). (4.25)

So on substitution in equation (4.24), we get

P (X1:n >
x1:n

n
) = [1− α(1− (1 + θ

1
δ2 )−α+1)

σ
1
δ1
1 Ψ(α, θ, δ2)

(
x1:n

n
)

1
δ1 + o(n−2)]n,

provided

0 < δ1 < 2.

Hence we can write

lim
n→∞

P (X1:n >
x1:n

n
) = lim

n→∞
[1− α(1− (1 + θ

1
δ2 )−α+1)

σ
1
δ1 1Ψ(α, θ, δ2)

(
x1:n

n
)

1
δ1 + o(n−2)]n

= exp[−Bx1:n], x1:n ≥ 0,

where B = α(1−(1+θ
1
δ2 )−α+1)

σ
δ1
1 Ψ(α,θ,δ2)

. So the asymptotic distribution of X1:n is ex-

ponential with the intensity parameter=α(1−(1+θ
1
δ2 )−α+1)

σ
δ1
1 Ψ(α,θ,δ2)

, when the sam-
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ples are drawn from a density of the form in (4.5).

4.9 Bayesian inference for the hidden truncated P (IV ) model

For a random sample of size n from the hidden truncated bivariate

P (IV ) distribution our likelihood function takes the following form:

L(α, σ1, θ, δ1, δ2)

=
n∏
i=1

α

σ1δ1Ψ(α, θ, δ2)
(
xi
σ1

)
1
δ1
−1[((1 +

xi
σ1

)
1
δ1 )−(α+1)

− (1 + θ
1
δ2 + (

xi
σ1

)
1
δ1 )−(α+1)]

= (
α

σ1δ1Ψ(α, θ, δ2)
)n

n∏
i=1

(
xi
σ1

)
1
δ1
−1[((1 +

xi
σ1

)
1
δ1 )−(α+1)

− (1 + θ
1
δ2 + (

xi
σ1

)
1
δ1 )−(α+1)].

4.9.1 Sample and prior information

In the beginning we consider the following choice of independent priors

for the parameters in the model:

• Prior for α

f(α) = 1
(1+α)2I(α > 0).

• Prior for σ1

f(σ1) = 1
(1+σ1)2I(σ1 > 0).
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• Prior for θ

f(θ) = 1
(1+θ)2I(θ > 0).

• Prior for δ1

f(δ1) = 1
(1+δ1)2I(δ1 > 0).

• Prior for δ2

f(δ2) = 1
(1+δ2)2I(δ2 > 0).

So the joint posterior density will be given by

f(α, σ1, δ1, δ2, θ|X = x)

= A−1
n∏
i=1

(
1

(1 + α)(1 + σ1)(1 + θ)(1 + δ1)(1 + δ2)
)2 α

σ1δ1Ψ(α, θ, δ2)
(
xi
σ1

)
1
δ1
−1

× [((1 +
xi
σ1

)
1
δ1 )−(α+1) − (1 + θ

1
δ2 + (

xi
σ1

)
1
δ1 )−(α+1)]

× I(α > 0, σ1 > 0, θ > 0, δ1 > 0, δ2 > 0), (4.26)

where A is the normalizing constant which is given by

A =

∫
· · ·
∫

R1

n∏
i=1

(
1

(1 + α)(1 + σ1)(1 + θ)(1 + δ1)(1 + δ2)
)2

α

σ1δ1Ψ(α, θ, δ2)
(
xi
σ1

)
1
δ1
−1

× [((1 +
xi
σ1

)
1
δ1 )−(α+1) − (1 + θ

1
δ2 + (

xi
σ1

)
1
δ1 )−(α+1)] dα dσ1 dθ dδ1 dδ2,
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where

R1 = (α > 0, σ1 > 0, θ > 0, δ1 > 0, δ2 > 0).

So that the marginal posterior density of α is given by

f(α|X = x) = A−1

∫
· · ·
∫

R11

f(α, σ1, δ1, δ2, θ|X = x)dσ1 dθ dδ1 dδ2,

(4.27)

where

R11 = (σ1 > 0, θ > 0, δ1 > 0, δ2 > 0).

Again the marginal posterior density of σ1 is given by

f(σ1|X = x) = A−1

∫
· · ·
∫

R12

f(α, σ1, δ1, δ2, θ|X = x)dα dθ dδ1 dδ2,

(4.28)

where

R12 = (α > 0, θ > 0, δ1 > 0, δ2 > 0).

Also the marginal posterior density of δ1 is given by

f(δ1|X = x) = A−1

∫
· · ·
∫

R13

f(α, σ1, δ1, δ2, θ|X = x)dα dθ dσ1 dδ2,

(4.29)
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where

R13 = (α > 0, θ > 0, σ1 > 0, δ2 > 0).

The marginal posterior density of δ2 is given by

f(δ2|X = x) = A−1

∫
· · ·
∫

R14

f(α, σ1, δ1, δ2, θ|X = x)dα dθdδ1 dσ1,

(4.30)

where

R14 = (α > 0, θ > 0, δ1 > 0, σ1 > 0).

Finally the marginal posterior density of δ1 is given by

f(θ|X = x) = A−1

∫
· · ·
∫

R15

f(α, σ1, δ1, δ2, θ|X = x)dα dδ1dσ1 dδ2,

(4.31)

where

R15 = (α > 0, δ1 > 0, σ1 > 0, δ2 > 0).

4.9.2 Posterior simulation study

With the following choice of priors we first draw samples of size n =

100, 200 from a hidden truncated density for a particular choice (α =

2, σ1 = 6, θ = 1, δ1 = 1, δ2 = 2) of the parameters. However in our
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case we utilize a Metropolis-Hastings algorithm which is a general term

for a family of Markov chain simulation methods that are useful for

drawing samples from Bayesian posterior distributions. For the jump-

ing distributions we consider gamma distributions but with different

shape and scale parameters. The posterior analysis is based on the

posterior modes and also the posterior means for each of the five pa-

rameters. Below we provide various choices for the starting distribution,

the choices of the parameters of the jumping distribution along with

posterior modes:

Initial choices of the parameters: α = 1.2, σ1 = 0.65, θ = 0.81, δ1 =

0.82, δ2 = 3.29.

Jumping distribution for the parameters:

• α ∼ Γ(5.5, 0.67).

• σ1 ∼ Γ(2.6, 1.59).

• θ ∼ Γ(1.9, 0.52).

• δ1 ∼ Γ(2.05, 0.72).

• δ2 ∼ Γ(1.91, 3.72).

For the graphical reference we consider
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n Mode(α) Mode(σ1) Mode(θ) Mode(δ1) Mode(δ2)

100 2.0868 5.9482 1.0049 1.1673 1.8941

200 2.0127 6.0709 1.1118 1.0231 1.9536

Table 4.2: Bayesian estimates of the parameters using the posterior mode.

n Mean(α) Mean(σ1) Mean(θ) Mean(δ1) Mean(δ2)

100 2.0723 5.9317 1.0049 1.0974 1.8829

200 2.0472 6.0245 1.1118 1.0187 1.9734

Table 4.3: Bayesian estimates of the parameters using the posterior mean.
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(a) Posterior Density of the parameters for n = 100.
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(b) Posterior Density of the parameters for n = 200.

Figure 4.3: Posterior density for all the parameters for different choices of the sample size.

4.10 Bayesian analysis using dependent priors for the shape

and scale parameter with an independent prior for the

truncation parameter

In this case we at first consider τ = 1
σ1
, where τ is the precision param-

eter then our density is given by

fHTX|Y≤θ(x)

=
ατ

δ1Ψ(α, θ, δ2)
(xτ)

1
δ1
−1[((1 + xτ)

1
δ1 )−(α+1)

− (1 + θ
1
δ2 + (xτ)

1
δ1 )−(α+1)]I(x ≥ 0). (4.32)
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Next we set θ
1
δ2 = θ1, so that our density reduces to

fHTX|Y≤θ1
(x)

=
ατ

δ1Ψ(α, θ1)
(xτ)

1
δ1
−1[((1 + xτ)

1
δ1 )−(α+1)

− (1 + θ1 + (xτ)
1
δ1 )−(α+1)]I(x ≥ 0), (4.33)

where Ψ(α, θ1) = 1− (1 + θ1)
−α. So the likelihood function is given by

L(α, τ, δ1, θ1) = [
ατ

δ1Ψ(α, θ1)
]n

n∏
i=1

[((1 + xiτ)
1
δ1 )−(α+1)

− (1 + θ1 + (xiτ)
1
δ1 )−(α+1)] (4.34)

Note that in this case our parameter space

Ω = (α > 0, τ > 0, δ1 > 0, θ1 > 0).

Next we consider the following choice of priors:

• For each (τ, δ1) ∈ R+, the conditional density of α given τ, δ1 is

exponential with shape paramter=ξ1(τ, δ1),

and intensity parameter=λ1(τ, δ1), i.e.,

f(α|τ, δ1) ∝ αξ1(τ,δ1)−1 exp(−αλ1(τ, δ1))I(α > 0).

• For each (α, δ1) ∈ R+, the conditional density of τ given α, δ1 is
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exponential with shape paramter=ξ2(α, δ1),

and intensity parameter=λ2(α, δ1), i.e.,

f(τ |α, δ1) ∝ τ ξ2(α,δ1)−1 exp(−τλ2(α, δ1))I(α > 0).

• For each (α, τ) ∈ R+, the conditional density of δ1 given α, τ is

exponential with shape paramter=ξ3(α, τ),

and intensity parameter=λ3(α, τ), i.e.,

f(δ1|α, τ) ∝ δ
ξ3(α,τ)−1
1 exp(−δ1λ3(α, τ))I(α > 0).

• While for θ1 we consider an non-informative prior (mildly informa-

tive) which is independent of (α, τ, δ1) and it is of the form

f(θ1) =
1

(1 + θ1)2
I(θ1 ≥ 0).

Since all the conditional distributions are members of the exponential
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family, so we can write their joint density as

f(α, τ, δ1) ∝ exp[1− a11α + a12 log(α)− τ(a13 + (a14 − a15)α)

+ log τ(a16 + (a17 − a18) logα)− δ1(a19 − a11 + (a20 − a21)α + a22 logα

+ (a23 − a24α + a25 logα) log τ) + ((a26 − a27α + a28 logα)

− τ(a29 + a30 logα− a31α)

+ (a32 + a33 logα− a34α) log τ) log δ1]I(α ≥ 0, τ ≥ 0, δ1 ≥ 0).

So our joint posterior distribution will be given by

posterior ∝ L(α, τ, δ1, θ1)f(α, τ, δ1)f(θ1)

∝ [
ατ

δ1Ψ(α, θ1)
]n

n∏
i=1

[((1 + xiτ)
1
δ1 )−(α+1) − (1 + θ1 + (xiτ)

1
δ1 )−(α+1)]

× exp[1− a11α + a12 log(α)α)

− τ(a13 + (a14 − a15) + log τ(a16 + (a17 − a18) logα)

− δ1(a19 − a11 + (a20 − a21)α + a22 logα

+ (a23 − a24α + a25 logα) log τ) + ((a26 − a27α + a28 logα)

− τ(a29 + a30 logα− a31α) + (a32 + a33 logα− a34α) log τ) log δ1]

× 1

(1 + θ1)2
I(α ≥ 0, τ ≥ 0, δ1 ≥ 0, θ1 ≥ 0).
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4.10.1 Posterior simulation study

We consider a random sample of size (n = 100, 200) from our density

and we run a multiple sequence of chains for the MCMC algorithm.

However for the proposal densities for the parameters we consider the

following:

True value of the parameters: α = 2, τ = 2, θ = 0.50, δ1 = 0.50.

Initial choices of the parameters: α = 1.27, τ = 0.65, θ = 0.81, δ1 =

0.62.

Jumping distribution for the parameters:

• α ∼ Γ(5.5, 0.67).

• τ ∼ Γ(2.6, 1.59).

• θ ∼ Γ(2.1, 0.55).

• δ1 ∼ Γ(2.01, 0.72).

n Mean (α) Mean (τ) Mean (θ) Mean (δ1)

100 2.0681 1.8809 0.4699 0.5405

200 2.0258 1.9461 0.4817 0.5145

Table 4.4: Bayesian estimates of the parameters using the posterior mean.

n Mode(α) Mode (τ) Mode (θ) Mode (δ1)

100 2.1029 1.9214 0.4567 0.5218

200 2.0456 1.9348 0.4785 0.5089

Table 4.5: Bayesian estimates of the parameters using the posterior mode.
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4.11 Comment on the posterior simulation study

For the bivariate hidden truncation P (IV ) model, we observe that

with a sample size of 200, the estimates of the parameters based on

the Bayesian posterior modes and the posterior means are quite good.

However when the sample size is 100, both the posterior modes and the

posterior means for all the parameters are quite far away from the true

value of the parameter. More informative priors (for example a proper

prior, or a at prior for the index parameter α only ) might result in

a substantial amount of improvement in our posterior mean as well as

posterior modal values. From our simulation study, we can not differ-

entiate which one among the posterior means or the posterior modes

are uniformly better than the other. From the output in Table(4.4) and

in Table(4.5), it may be said that one can use either of them.

4.12 Concluding remarks

Precise inference under both the classical and Bayesian paradigm for

the parameters of hidden truncation models is an area which still is in

it’s infancy stage. One obvious factor which played a significant role

in developing the subject matter of this chapter is that since P (II)

model is nested in P (IV ) model, the majority of the results which we

have obtained in chapter 3 could well be found using the more general
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setting by using the available results for the hidden truncated P (IV )

model and also P (IV ) results can be used to predict the behavior of

other Pareto-like distributions under the hidden truncated paradigm

since the P (IV ) model is the most general model. Since the hidden

truncated P (IV ) model does not belong to the exponential families of

densities, essentially no reduction in complexity of the data can be ob-

tained by invoking sufficiency arguments. Moreover under the classical

approach it has been observed that the performance of the maximum

likelihood estimation procedure for the P (IV ) model is really poor to

the extent that we do not report the output. The other two estimation

procedures have been found to be effective in this case and at least to

the best of author’s knowledge, these are the only two procedures that

can be recommended under the classical approach. The development

of inference procedures for Pareto distributions and their close relatives

has been predictably uneven. Also interval estimation for Pareto pop-

ulations has not been extensively investigated. A lack of convenient

pivotal quantities hampers efforts in the case of more general Pareto

distributions. Moreover the same situation occurs in the setting of test-

ing parametric hypotheses. However in this context, it is to be noted

that testing for the truncation parameter under the hidden truncated

bivariate P (II) model has been addressed in the previous chapter. In-
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ference under the Bayesian framework as mentioned earlier is severely

restricted in such settings. A study under the Bayesian set up has been

carried out and is reported here by both considering the independence

assumption on the choice of prior distributions of the parameters and

also by invoking a dependent prior set-up. The results based on a small

simulation study are quite encouraging in the sense that the Bayesian

estimates of the parameters are quite good under both the set-ups.
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Chapter 5

Hidden truncation for multivariate

Pareto data

5.1 Introduction

As in the case of univariate Pareto distributions, mathematical sim-

plicity and tractability have generated a lot of interest in the theory

and applications of multivariate Pareto distributions especially with

the advent of super efficient algorithms for generating samples from

multivariate populations. We will discuss k-dimensional distributions

which qualify as being multivariate P (II) and P (IV ) distributions by

virtue of having P (II) and P (IV ) marginals respectively. Sometimes

conditional and other related distributions are Paretian, but this phe-

nomenon is not very frequent. The first author to study systematically

k-dimensional Pareto distribution was Mardia (1962). A detailed dis-
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cussion of multivariate Pareto distributions can be found in the mono-

graph by Arnold (1983). Numerous papers dealing with bivariate and

multivariate Pareto distributions have subsequently appeared in the lit-

erature. In addition, a good reference in this context is the book on

multivariate continuous distributions by Kotz, Balakrishnan and John-

son (2006).

However discussions on inferential aspects of various forms of multi-

variate Pareto distributions have been somewhat restricted. A scarcity

of multivariate data, a lack of appropriate models which predict multi-

variate Paretian behavior, and the relative newness of the introduction

of the majority of multivariate Pareto distributions, have all combined

together to restrain the development of inferential techniques. Infer-

ential techniques which capitalize on the multivariate structure of the

data are not well developed.

The pioneering work of Mardia (1962) on multivariate Pareto dis-

tribution of the first kind was followed by Arnold’s (1983) discussion

on estimation procedures for multivariate Pareto distributions of the

second, third and fourth kinds and also on the Bayesian estimation

for multivariate Pareto distribution of the second kind. The contri-

butions of Targhetta (1979), Tajvedi (1996) and Hanagal (1996) are

also noteworthy to mention. In this chapter we will focus on the con-
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struction of a multivariate hidden truncated model for k-variate P (II)

and P (IV ) distributions. Specifically we will address the following two

types of hidden truncation :(1) Single variable truncation from above

and (2) k1-variable (where k1 ≤ k, k1 ≥ 2) truncation from above. In

particular, in the present chapter, we will focus on inferential aspects

for a hidden truncated trivariate P (II) distribution when one of the

co-variables is truncated from above. However we will in the first few

sections of this chapter consider the hidden truncation paradigm for a

multivariate P (II) distribution with attention directed towards single

variable truncation from above. In other words we will be looking at

the distribution of X1, X2, · · · , Xk−1 given that Xk is less than some ar-

bitrary positive quantity c, with the only assumption being that c will

be bigger than the location parameter of the unobserved covariable Xk.

Later on in subsequent sections we will implement the above set-up for

a trivariate P (II) model. This chapter is organized in the following

way. In section 1, we will consider the hidden truncation paradigm

(single variable truncation) for a k-variate P (II) distribution and will

derive the density function for such a model. In section 2, we will con-

sider the hidden truncated density for a trivariate P (II) density when

one of the co-variables is truncated from above. In section 3, we will

consider maximum likelihood estimation for the above model. In sec-
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tion 4, we will consider the method of moments estimation strategy. In

section 5, we will consider estimation of all the parameters for a hidden

truncated trivariate P (II) model using a simulation study. In section

6, we will consider estimation of all the parameters under the Bayesian

paradigm.

5.2 Single variable hidden truncation from above

Following Arnold (1983), we write X ∼MP (k)(II)(µ, σ, α) if it has the

following joint survival function:

F̄X(x) = [1 +
k∑
i=1

(
xi − µi
σi

)−α], xi > µi, i = 1, 2, . . . , k. (5.1)

Note that in this case the corresponding marginals are, again multivari-

ate P (II); the univariate marginals being P (II) with suitable param-

eters. Conditional distributions are, again, multivariate P (II); in fact

introducing the dot-double dot notation if we defineX = (Ẋ
(k1)
, Ẍ

(k−k1)
),

then

Ẋ
(k1) ∼MP (k1)(II)(µ̇, σ̇, α),

and

Ẋ|Ẍ = ẍ ∼MP (k1)(II)(µ̇, c̈(x)σ̇, α + k − k1), (5.2)
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where

c̈(x) = [1 +
k∑

j=k1+1

(
xj − µj
σj

)−α].

In (5.1), the σi ’s are non-negative marginal scale parameters, and the

µi´s are marginal location parameters. The non-negative parameter α

is an inequality parameter (common to all marginals).

Let us consider the following (for c > µ
2
, where the elements of c

are any set of (k − k1) real numbers)

P (X1 > x1|X2 > c) =
P (X1 > x1, X2 > c)

P (X2 > c)

=
[1 +

∑k1

i=1(
x1i−µ1i

σ1i
) +

∑k
i=k1+1(

ci−µ2i

σ2i
)]−α

[1 +
∑k

i=k1+1(
ci−µ2i

σ2i
)]−α

.(5.3)

Let us write for notational simplicity

[1 +
k∑

i=k1+1

(
ci − µ2i

σ2i
)]−α = A11(c, µ2, σ2).

Then equation (5.3) reduces to

P (X1 > x1|X2 > c) = F̄ (x1|X2 > c)

= [1 + (A11(c, µ2
, σ2))

−1
k1∑
i=1

(
x1i − µ1i

σ1i
)]−α.(5.4)

So it is evident that the above multivariate hidden truncation den-

sity, involving lower truncation (equivalently truncation from below), is

again an MP (k)(II) density with a new scale parameter. So this form
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of hidden truncation does not result in any augmentation our origi-

nal model for X, and as a consequence, there is no way to determine

whether or not such hidden truncation has occurred. However in con-

trast, we consider two cases for upper truncation separately which are

listed as follows:

• Single variable truncation from above. In this case we consider the

conditional distribution of (say) Ẋ given that Xk ≤ c where Ẋ is

a (k − 1× 1) vector and the constant c > µk.

• More than one variable truncation in which we will consider the

conditional distribution of Ẋ given that Ẍ ≤ c̈ where

X = (Ẋ
(k1×1)

, Ẍ
(k−k1×1)

).

We discuss the above two types of upper truncation separately in

detail as follows:

(a) First we focus on single variable hidden truncation from above for

our model. In this case we consider

F̄ (ẋ|Xk ≤ c) =
P (Ẋ > ẋ,Xk ≤ c)

P (Xk ≤ c)
. (5.5)

Next since the marginals are also P (II) with suitable parameters
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so we can write

P (Xk ≤ c) = 1− [1 + (
c− µk
σk

)]−α,

assuming that c > µk. However for the numerator we can write

P (Ẋ > ẋ,Xk ≤ c)

= P (Ẋ > ẋ)− P (Ẋ > ẋ,Xk > c)

= [1 +
k−1∑
i=1

(
xi − µi
σi

)]−α − [1 +
k−1∑
i=1

(
xi − µi
σi

) + (
c− µk
σk

)]−α.

For the sake of notational simplicity let us write

ψ(α, c) = 1− [1 + (
c− µk
σk

)]−α.

So that the conditional survival function is of the form:

F̄ (ẋ|Xk ≤ c)

=
1

ψ(α, c)
[[1 +

k−1∑
i=1

(
xi − µi
σi

)]−α − [1 +
k−1∑
i=1

(
xi − µi
σi

) + (
c− µk
σk

)]−α].

(5.6)
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If we define θ = c−µk
σk
, then our survival function reduces to

F̄ (ẋ|Xk ≤ θ)

=
1

ψ(α, θ)
[1 +

k−1∑
i=1

(
xi − µi
σi

)]−α − [1 +
k−1∑
i=1

(
xi − µi
σi

) + θ]−α, xi ≥ µi,

(5.7)

where

ψ(α, θ) = 1− [1 + θ]−α.

So the corresponding density will be

fẊ|Xk≤θ(ẋ)

=
∂k−1

∂x1∂x2 · · · ∂xk−1
F̄ (ẋ|Xk ≤ θ)

=
1

ψ(α, θ)

k−1∏
i=1

(
α− i+ 1

σi
)[1 +

k−1∑
i=1

(
xi − µi
σi

)]−(α+k)

− [1 +
k−1∑
i=1

(
xi − µi
σi

) + θ]−(α+k)I(xi ≥ µi). (5.8)

(b) Next we consider k1 variable (where k1 ≤ k, k1 ≥ 2) truncation

from above. First of all we consider the following:

F̄ (ẋ|Ẍ ≤ c̈) =
P (Ẋ > ẋ, Ẍ ≤ c̈)

P (Ẍ ≤ c̈)
, (5.9)

where we assume that c̈ > µ̈. Next for our model (5.11), the de-
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nominator is given by

P (Ẍ ≤ c̈)

= 1− P (
k⋃

j1=k1+1

(Xj1 > cj1))

= 1− [
k∑

j1=k1+1

P (Xj1 > cj1)−
∑∑

j1<j2

P (Xj1 > cj1, Xj2 > cj2) + · · ·

+ (−1)k−k1P (
k⋂

j1=k1+1

[Xj1 > cj1])] (5.10)

Now since in our case we have

• Ẋ(k1) ∼MP (k1)(II)(µ̇, σ̇, α)

• Ẍ(k−k1) ∼MP (k−k1)(II)(µ̈, σ̈, α).

So that we can rewrite (5.12), as follows:

P (Ẍ ≤ c̈)

= 1− [
k∑

j1=k1+1

(1 +
cj1 − µj1
σj1

)−α −
∑∑

j1<j2

(1 +
cj1 − µj1
σj1

+
cj2 − µj2
σj2

)−α

+ · · ·+ (−1)k−k1(1 +
k∑

j1=k1+1

cj1 − µj1
σj1

)−α]

= B(c̈, µ̈, σ̈, α), (5.11)
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say, while the numerator will be

P (Ẋ > ẋ, Ẍ ≤ c̈)

= P (Ẋ > ẋ, [
k⋃

j1=k1+1

(Xj1 > cj1)]
c)

= P (Ẋ > ẋ)−
k∑

j1=k1+1

P (Ẋ > Ẋ,Xj1 > cj1)

+
∑∑

j1<j2

P (Ẋ > ẋ,Xj1 > cj1, Xj2 > cj2)

+ · · ·+ (−1)k−k1P (Ẋ > ẋ,
k⋂

j1=k1+1

[Xj1 > cj1])

= (1 +

k1∑
i=1

xi − µi
σi

)−α −
k∑

j1=k1+1

(1 +

k1∑
i=1

xi − µi
σi

+
ci − µi
σi

)−α

−
∑∑

j1<j2

(1 +

k1∑
i=1

xi − µi
σi

+
cj1 − µj1
σj1

+
cj2 − µj2
σj2

)−α

+ · · ·+ (−1)k−k1(1 +

k1∑
i=1

xi − µi
σi

+
k∑

j1=k1+1

1 +
cj1 − µj1
σj1

)−α.

(5.12)
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So the conditional survival function is given by

F̄ (ẋ|Ẍ ≤ c̈)

=
1

B(c̈, µ̈, σ̈, α)
[(1 +

k1∑
i=1

xi − µi
σi

)−α

−
k∑

j1=k1+1

(1 +

k1∑
i=1

xi − µi
σi

+
cj1 − µj1
σj1

)−α

−
∑∑

j1<j2

(1 +

k1∑
i=1

xi − µi
σi

+
cj1 − µj1
σj1

+
cj2 − µj2
σj2

)−α

+ · · ·+ (−1)k−k1(1 +

k1∑
i=1

xi − µi
σi

+
k∑

j1=k1+1

1 +
cj1 − µj1
σj1

)−α],

xi ≥ µi, i = 1, 2, · · · , k1. (5.13)

Consequently the corresponding hidden truncated density will be
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given by

fẊ|Ẍ≤c̈(ẋ)

=
∂k−1

∂x1∂x2 · · · ∂xk1

[F̄ (ẋ|Ẍ ≤ c̈)]

=
1

B(c̈, µ̈, σ̈, α)

k1−1∏
i=1

(
α− i+ 1

σi
)[(1 +

k1∑
i=1

xi − µi
σi

)−(α+k1)

−
k∑

j1=k1+1

(1 +

k1∑
i=1

xi − µi
σi

+
cj1 − µj1
σj1

)−(α+k1)

−
∑∑

j1<j2

(1 +

k1∑
i=1

xi − µi
σi

+
cj1 − µj1
σj1

+
cj2 − µj2
σj2

)−(α+k1)

+ · · ·+ (−1)k−k1(1 +

k1∑
i=1

xi − µi
σi

+
k∑

j1=k1+1

1 +
cj1 − µj1
σj1

)−(α+k1)]

× I(ẋ ≥ µ̇). (5.14)

For notational simplicity let us consider cl−µl
σl

= θl. Then our hidden
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truncated density reduces to

fẊ|Ẍ≤c̈(ẋ)

=
∂k−1

∂x1∂x2 · · · ∂xk1

[F̄ (ẋ|Ẍ ≤ c̈)]

=
1

B(c̈, µ̈, σ̈, α)

k1−1∏
i=1

(
α− i+ 1

σi
)[(1 +

k1∑
i=1

xi − µi
σi

)−(α+k1)

−
k∑

j1=k1+1

(1 +

k1∑
i=1

xi − µi
σi

+ θj1)
−(α+k1)

−
∑∑

j1<j2

(1 +

k1∑
i=1

xi − µi
σi

+ θj1 + θj2)
−(α+k1)

+ · · ·+ (−1)k−k1(1 +

k1∑
i=1

xi − µi
σi

+
k∑

j1=k1+1

1 + θj1)
−(α+k1)]I(ẋ ≥ µ̇).

(5.15)

However we focus on in this chapter a simpler case where we con-

sider

X(3×1) ∼MP (3)(II)(µ, σ, α),

where X(3×1) = (X1, X2, X3)
T . where all the marginals as well as all

the conditionals are again members of P (II) family with suitable

choice of the parameters. We are interested in the distribution of

X1 when both X2 and X3 are truncated from above. Let us consider

a situation that we will observe X1 and X2 if and only if X3 ≤ c. So

we want to find the joint density of X1 and X2 given X3 ≤ c. Then
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from (5.10), our density will be (by substituting k = 3 , k1 = 2)

fX1,X2|X3≤θ(x1, x2) =
α(α + 1)

σ1σ2ψ(α, θ)
[(1 +

(x1 − µ1)

σ1
+

(x2 − µ2)

σ2
)−(α+2)

− (1 +
x1

σ1
+
x2

σ2
+ θ)−(α+2)]I(x1 ≥ µ1, x2 ≥ µ1), (5.16)

where

ψ(α, θ) = 1− (1 + θ)−α.

and θ = c−µ3

σ3
. Note that the parameters are constrained to be such

that: µ1 ∈ (−∞,∞), µ2 ∈ (−∞,∞), σ1 ∈ (0,∞), σ2 ∈ (0,∞),

θ ≥ 0, α > 0. In subsequent sections we will focus on the problem

of estimating and making inferences about these parameters based

on a random sample of size n drawn from the density in (5.18).

Note that the situation where θ = 0 reduces to the non-truncated

case.

5.3 Parameter estimation for the trivariate hidden truncated

P (II) model

We will consider two types of estimation using a simulation study. In

each case the available data will consist of n i.i.d observations with

common hidden truncation P (II) density (5.16).
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5.4 Maximum likelihood estimation

We draw a random sample of size n from the density in (5.16). Denote

the observations by (X1j, X2j, j = 1(1)n).

So the likelihood function is given by

L =
n∏
j=1

α(α + 1)

σ1σlψ(α, θ)
[(1 +

X1j − µ1

σ1
+
X2j − µ2

σ2
)−(α+2)

− (1 +
X1j − µ1

σ1
+
X2j − µ2

σ2
+ θ)−(α+2)]. (5.17)

Equivalently the log-likelihood function is given by

logL

= n[log(α(α + 1))− logψ(α, θ)− log(σ1σ2)]

+
n∑
j=1

log[(1 +
X1j − µ1

σ1
+
X2j − µ2

σ2
)−(α+2)

− (1 +
X1j − µ1

σ1
+
X2j − µ2

σ2
+ θ)−(α+2)]

= n[log(α(α + 1))− logψ(α, θ)− log(σ1σ2)]

− (α + 2)
n∑
j=1

[log(1 +
X1j − µ1

σ1
+
X2j − µ2

σ2
)]

+
n∑
j=1

[log(1− (1 +
θ

1 +
X1j−µ1

σ1
+

X2j−µ2

σ2

)−(α+2))].

First of all observe that keeping all other parameters fixed if we
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replace (µ1, µ2) by the minimum of the sample observations i.e.,

X1(1:n) = min
1≤j≤n

X1j,

X2(1:n) = min
1≤j≤n

X2j

then the likelihood function (or equivalently the log-likelihood function)

becomes a monotonically increasing function in (X1(1:n), X2(1:n)).

So the ML estimates for (µ1, µ2) will be given by

X1(1:n) = min
1≤j≤n

X1j

and

X2(1:n) = min
1≤j≤n

X2j

respectively. For notational simplicity let us denote X1(1:n) = q1 and

X2(1:n) = q2.

So the log-likelihood function now becomes

logL = n[log(α(α + 1))− logψ(α, θ)− log(σ1σ2)]

− (α + 2)
n∑
j=1

[log(1 +
X1j − q1

σ1
+
X2j − q2

σ2
)]

+
n∑
j=1

[log(1− (1 +
θ

1 +
X1j−q1
σ1

+
X2j−q2
σ2

)−(α+2))]. (5.18)
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The likelihood equation for the remaining parameters are obtained

by differentiating the likelihood function. For α we have

∂

∂α
[logL] = 0. (5.19)

Equivalently we can write

n(
1

α
+

1

α + 1
)− n(1 + θ)−α log(1 + θ)

ψ(α, θ)

+
n∑
j=1

(1 + θ

1+
X1j−q1
σ1

+
X2j−µl
σ2

)−(α+2)

(1− (1 + θ

1+
X1j−q1
σ1

+
X2j−q2
σ2

)−(α+2))

× log((1 +
θ

1 +
X1j−q1
σ1

+
X2j−q2
σ2

)) = 0.

Here ψ(α, θ) = 1−(1+θ)−α. So that ∂
∂αψ(α, θ) = (1+θ)−α log(1+θ).

Again we have

∂

∂σ1
[logL] = 0. (5.20)

Equivalently we can write

− n
σ1

+ (α + 2)
n∑
j=1

[
1

1 +
X1j−q1
σ1

+
X2j−q2
σ2

(
X1j − q1

(σ1)2
)]

+(α + 2)
n∑
j=1

[

(1 + θ

1+
X1j−q1
σ1

+
X2j−q2
σ2

)−(α+3)

(1− (1 + θ

1+
X1j−q1
σ1

+
X2j−q2
σ2

)−(α+2))

×
θ(

X1j−q1
σ1

)

(σ1(1 +
X2j−q2
σ2

) + (X1j − q1))2
] = 0.
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Similarly

∂

∂σ2
[logL] = 0.

Equivalently we can write

− n

σ2
+ (α + 2)

n∑
j=1

[
1

1 +
X1j−q1
σ1

+
X2j−q2
σ2

(
X1j − q1

σ2
1

)]

+ (α + 2)
n∑
j=1

[

(1 + θ

1+
X1j−q1
σ1

+
X2j−q2
σ2

)−(α+3)

(1− (1 + θ

1+
X1j−q1
σ1

+
X2j−q2
σ2

)−(α+2))

×
θ(

X2j−q1
σ2

)

(σ2(1 +
X1j−q1
σ1

) + (X2j − q2))2
] = 0.

Finally we have

∂

∂θ
[logL] = 0. (5.21)

Equivalently we can write

− nψ
′(α, θ)

ψ(α, θ)
+ (α + 2)

n∑
j=1

1

(1− (1 + θ

1+
X1j−q1
σ1

+
X2j−q2
σ2

)−(α+2))

× ((1 +
θ

1 +
X1j−q1
σ1

+
X2j−q2
σ2

)−(α+3))(1 +
θ

1 +
X1j−q1
σ1

+
X2j−q2
σ2

)−1 = 0.

Note that here

∂

∂θ
ψ(α, θ) = α(1 + θ)−(α+1).
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5.5 Method of moments estimation

We have our density (from earlier)

fX1,X2|X3≤θ(x1, x2)

=
α(α + 1)

σ1σ2ψ(α, θ)
[(1 +

x1

σ1
+
x2

σ2
)−(α+2)

− (1 +
x1

σ1
+
x2

σ2
+ θ)−(α+2)]I(x1 ≥ 0, x2 ≥ 0).

Let us consider for any δ1 ≥ 1,δ2 ≥ 1,

E(Xδ1
1 X

δ2
2 |X3 ≤ θ) =

∫ ∞
0

∫ ∞
0

xδ11 x
δ2
2

α(α + 1)

σ1σ2ψ(α, θ)
[(1 +

x1

σ1
+
x2

σ2
)−(α+2)

−(1 +
x1

σ1
+
x2

σ2
+ θ)−(α+2)]dx1dx2

= I,

say, where

I =

∫ ∞
0

α(α + 1)

ψ(α, θ)σ1
(I1 − I2)dx1

in which

I1 =

∫ ∞
0

xδ2l
σ2

[(1 +
x1

σ1
+
x2

σ2
)−(α+2)]dx2

=
(σ2)

δ2

(α + 1)
(1 +

x1

σ1
)δ2+1−(α+2)B(δ2 + 1, α + 2− δ2),

and
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I2 =

∫ ∞
0

xδ2l
σ2

[(1 +
x1

σ1
+
x2

σ2
+ θ)−(α+2)]dx2

=
(σ2)

δ2

(α + 1)
(1 +

x1

σ1
+ θ)δ2+1−(α+2)B(δ2 + 1, α + 2− δ2).

So that

I = αB(δ2 + 1, α + 2− δ2)

∫ ∞
0

xδ11

σ1
[(1 +

x1

σ1
)−(α+2)

− (1 +
x1

σ1
+ θ)−(α+2)]dx1

= (σ1)
δ1(σ2)

δ2B(δ1 + 1, α + 2− δ1 − δ2 − 1)

×B(δ2 + 1, α + 2− δ2)(1 + θ)δ1+1−(α+2−δ2−1).

Therefore

E(Xδ1
1 X

δ2
2 |X3 ≤ θ)

=
α(α + 1)

ψ(α, θ)
σδ11 σ

δ2
2 B(δ1 + 1, α + 2− δ1 − δ2 − 1)B(δ2 + 1, α + 2− δ2)

× (1− (1 + θ)δ1+1−(α+2−δ2−1)). (5.22)

Note:

• If δ1 = δ2 = δ, then we have E(Xδ
1X

δ
2 |X3 ≤ θ) = α(α+1)

ψ(α,θ) B(δ+1, α+

1− 2δ)B(δ + 1, α + 2− δ)[1− (1 + θ)2δ−α].
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• If δ1 = δ2 = 1, then from equation (5.22) we have

E(X1X2|X3 ≤ θ)

=
α(α + 1)

ψ(α, θ)
σ1σ2B(2, α− 1)B(2, α + 1)(1− (1 + θ)2−α).

• If δ1 = δ2 = 1
2 , then from equation (5.22) we have

E(X
1
2
1 X

1
2
2 |X3 ≤ θ)

=
α(α + 1)

ψ(α, θ)
B(2, α)B(

3

2
, α + 1)(σ1σ2)

1
2 (1− (1 + θ)1−α).

Again

• If δ1 = δ2 = 1
3 , then from equation (5.22), we have

E(X
1
3
1 X

1
3
2 |X3 ≤ θ) =

α(α + 1)

ψ(α, θ)
B(

4

3
, α +

1

3
)B(

4

3
, α +

4

3
)(σ1σ2)

2
3 .

Equivalently

E(X
1
3
1 X

1
3
2 |X3 ≤ θ)

=
α(α + 1)

ψ(α, θ)
B(

4

3
, α +

1

3
)B(

4

3
, α +

4

3
)

× (σ1σ2)
1
3 (1− (1 + θ)

2
3−α).
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Again

E(X
1
4
2 X

1
4
2 |X3 ≤ θ)

=
α(α + 1)

ψ(α, θ)
B(

1

4
+ 1, α +

1

2
)B(

1

4
+ 1, α +

3

2
)

× (σ1σ2)
1
4 (1− (1 + θ)

3
2−α).

Next we define the following quantity

Ma1,a2 =

n∑
i=1

(X1i − q1)a1(X2i − q2)a2

n−2 , which is the sample bivariate

moment of order (a1, a2), where both (a1, a2) are positive numbers

(where both q1 and q2 have been defined earlier).

Next equating the sample moments with the population moments

we get the following:

M1,1

M 1
2 ,

1
2

=
σ1σ2B(2, α− 1)B(2, α + 1)(1− (1 + θ)2−α)

B(2, α)B(3
2 , α + 1)(σ1σ2)

1
2 (1− (1 + θ)1−α)

=
2(α + 1)Γ(α + 5

2)(σ1σ2)
1
2 (1− (1 + θ)2−α)

√
π(α− 1)Γ(α + 3)(1− (1 + θ)1−α)

.

Equivalently we can write

M1,1[
√
π(α− 1)Γ(α + 3)(1− (1 + θ)1−α)]−M 1

2 ,
1
2

[2(α + 1)Γ(α +
5

2
)(σ1σ2)

1
2 (1− (1 + θ)2−α)] = 0. (5.23)
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Again

M 1
2 ,

1
2

M 1
3 ,

1
3

=
B(2, α)B(3

2 , α + 1)(σ1σ2)
1
2 (1− (1 + θ)1−α)

B(4
3 , α + 1

3)B(4
3 , α + 4

3)(σ1σ2)
1
3 (1− (1 + θ)

2
3−α)

=
Γ(α)

√
πΓ(α + 5

3)Γ(α + 8
3)(σ1σ2)

1
6 (1− (1 + θ)1−α)

2(α + 1)Γ(α + 5
2)(Γ(4

3))2Γ(α + 1
3)Γ(α + 4

3)(1− (1 + θ)
2
3−α)

.

Equivalently we can write

M 1
2 ,

1
2
[2(α + 1)Γ(α +

5

2
)(Γ(

4

3
))2Γ(α +

1

3
)Γ(α +

4

3
)(1− (1 + θ)

2
3−α)]

−M 1
3 ,

1
3
[Γ(α)

√
πΓ(α +

5

3
)Γ(α +

8

3
)(σ1σ2)

1
6 (1− (1 + θ)1−α)] = 0.

(5.24)

Similarly we can have

M1,1

M 1
3 ,

1
3

=
σ1σ2B(2, α− 1)B(2, α + 1)(1− (1 + θ)2−α)

B(4
3 , α + 1

3)B(4
3 , α + 4

3)(σ1σ2)
1
3 (1− (1 + θ)

2
3−α)

=
Γ(α + 5

3)Γ(α + 8
3)(σ1σ2)

2
3

(α + 2)(α + 1)(α− 1)α(Γ(4
3))2Γ(α + 1

3)Γ(α + 4
3)
.

Equivalently we can write

M1,1[(α + 2)(α + 1)(α− 1)α(Γ(
4

3
))2Γ(α +

1

3
)Γ(α +

4

3
)]

−M 1
3 ,

1
3
[Γ(α +

5

3
)Γ(α +

8

3
)(σ1σ2)

2
3 ] = 0. (5.25)
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Also we have

M1,1

M 1
4 ,

1
4

=
σ1σ2B(2, α− 1)B(2, α + 1)(1− (1 + θ)2−α)

B(1
4 + 1, α + 1

2)B(1
4 + 1, α + 3

2)(σ1σ2)
1
4 (1− (1 + θ)

3
2−α)

=
Γ(α + 7

4)Γ(α + 11
4 )(1− (1 + θ)2−α)(σ1σ2)

3
4

Γ(α + 1
2)Γ(α + 3

2)(Γ(5
4))2(α + 2)(α + 1)(α− 1)α(1− (1 + θ)

1
2−α)

.

Equivalently we can write

M1,1[Γ(α +
1

2
)Γ(α +

3

2
)(Γ(

5

4
))2(α + 2)(α + 1)(α− 1)α(1− (1 + θ)

1
2−α)]

−M 1
4 ,

1
4
[Γ(α +

7

4
)Γ(α +

11

4
)(1− (1 + θ)2−α)(σ1σ2)

3
4 ] = 0. (5.26)

5.6 Estimation of the parameters using a simulation study

By looking at the method of (fractional) moments equations and also

the likelihood equations one can easily understand that it is not possible

to find an analytic expression for the parameter estimates. So we at

first consider one simple situation where we specify all the parameter

values and then generate some data from our hidden truncated density.

We then consider the estimation for all the parameters by maximum

likelihood and also by the fractional moments method.

5.6.1 Sample generation from the truncated density

For our simulation study we consider (without loss of generality), α = 4,

µ1 = 1, µ2 = 1, σ1 = 1, σ2 = 1, c = 2, µ3 = 0, σ3 = 1, so that
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θ = c−µ3

σ3
= 2, and ψ(α, θ) = 1− (1 + (c−µ3

σ3
))−α = 80

81 .

But note that we usually estimate µ1 and µ2 by X1(1:n) and X2(1:n)

respectively and so we can subtract and assume that µ1 = 0 and µ2 = 0.

Our density reduces to

fX1,X2|X3≤2(x1, x2) =
81

4
[(1+x1+x2)

−6−(1+x1+x2+2)−6]I(x1 ≥ 0, x2 ≥ 0).

In Table 5.1, we illustrate for simulated samples of various sizes the

estimated values of the parameters (using the ML method):

Table 5.1: Estimates of the parameters using the method of maximum likelihood

n α̂ σ̂1 σ̂2 θ̂

50 3.8649117 0.9394654 0.9923756 1.9953699

100 3.8664039 0.9413608 0.9904680 1.9949965

200 3.8965841 0.9640310 0.9550397 1.9990409

In Table 5.2, parallel results obtained using the method of moments

are displayed.

Table 5.2: Estimates of the parameters using the method of moments

n α̂ σ̂1 σ̂2 θ̂

50 3.9816431 0.9625353 0.9573555 1.9745285

100 3.9931764 0.9867361 0.9527272 1.9945825

200 3.9954369 0.9895283 0.9812457 1.9939241
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5.7 Bayesian inference for the hidden truncated P (II) model

In this section we will consider Bayesian estimation of all the parameters

under study. As before we have our density as

fX1,X2|X3≤θ(x1, x2)

=
α(α + 1)

σ1σ2ψ(α, θ)
[(1 +

x1

σ1
+
x2

σ2
)−(α+2)

− (1 +
x1

σ1
+
x2

σ2
+ θ)−(α+2)]I(x1 ≥ 0, x2 ≥ 0).

5.7.1 Sample and prior information

We consider a random sample of size n from above density (based on

some particular choices of the parameter). Next we propose the fol-

lowing choice of independent priors (mildly informative) for the four

parameters:

• f(α) ∝ 1
αI(α > 0).

• f(θ) ∝ 1
θI(θ > 0).

• f(σ1) ∝ 1
σ1
I(σ1 > 0).

• f(σ2) ∝ 1
σ2
I(σ2 > 0).
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5.7.2 Posterior distribution of the parameters

In this case our likelihood function is given by

L(α, σ1, σ2θ|X1 = x1, X2 = x2, X3 ≤ θ)

=
n∏
i=1

[
α(α + 1)

σ1σ2ψ(α, θ)
((1 +

x1i

σ1
+
x2i

σ2
)−(α+2) − (1 +

x1i

σ1
+
x2i

σ2
+ θ)−(α+2))]

=
(α(α + 1))n

(σ1σ2ψ(α, θ))n

n∏
i=1

[((1 +
x1i

σ1
+
x2i

σ2
)−(α+2) − (1 +

x1i

σ1
+
x2i

σ2
+ θ)−(α+2))].

(5.27)

So the joint posterior of the four parameters is given by

f(α, σ1, σ2, θ|X1 = x1, X2 = x2, X3 ≤ θ)

=
L(α, σ1, σ2θ|X1 = x1, X2 = x2, X3 ≤ θ)f(α)f(θ)f(σ1)f(σ2)

B
,

where B is the normalizing constant which is given by

B

=

∫ ∞
0

∫ ∞
0

∫ ∞
0

∫ ∞
0

L(α, σ1, σ2, θ|X1 = x1, X2 = x2, X3 ≤ θ)

× f(α)f(θ)f(σ1)f(σ2)dσ1dσ2dθdα

=

∫ ∞
0

∫ ∞
0

∫ ∞
0

∫ ∞
0

ξ(α, σ1, σ2, θ)dσ2dθdα,

where ξ(α, σ1, σ2, θ) is given by
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ξ(α, σ1, σ2, θ)

=
(α(α + 1))n

(σ1σ2ψ(α, θ))n

n∏
i=1

[[((1 +
x1i

σ1
+
x2i

σ2
)−(α+2) − (1 +

x1i

σ1
+
x2i

σ2
+ θ)−(α+2))]

× (1 + θ)−2(1 + α)−2(1 + σ1)
−2(1 + σ2)

−2].

So the posterior density of α is given by

f(α|X1 = x1, X2 = x2, X3 ≤ θ) =

∫∞
0

∫∞
0

∫∞
0 ξ(α, σ1, σ2, θ)dθdσ1dσ2

B
.

Also the posterior density of θ is given by

f(θ|X1 = x1, X2 = x2, X3 ≤ θ) =

∫∞
0

∫∞
0

∫∞
0 ξ(α, σ1, σ2, θ)dθdσ1dσ2

B
.

Again the posterior density of σ1 is given by

f(σ1|X1 = x1, X2 = x2, X3 ≤ θ) =

∫∞
0

∫∞
0

∫∞
0 ξ(α, σ1, σ2, θ)dθdσ1dσ2

B
.

Finally the posterior density of σ2 is given by

f(σ2|X1 = x1, X2 = x2, X3 ≤ θ) =

∫∞
0

∫∞
0

∫∞
0 ξ(α, σ1, σ2, θ)dθdσ1dσ2

B
.

5.7.3 Posterior simulation study

In our case we consider Metropolis-Hastings algorithm which is a gen-

eral term for a family of Markov chain simulation methods that are
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useful for drawing samples from Bayesian posterior distributions. First

of all we draw random samples of size 100 and 200 from the hidden trun-

cated density as described earlier for a particular choice (α = 3, σ1 =

4, σ2 = 4, θ = 2) of the parameters. For the jumping distribution we

consider the same Gamma distribution but with different shape and

scale parameters for the four parameters under study. The posterior

analysis is based on the posterior modes for each of those four param-

eters. Below we provide various choices for the starting distribution,

the choices of the parameters of the jumping distribution along with

posterior modes:

Initial choices of the parameters : α = 2.8, σ1 = 0.89, σ2 = 0.98, θ =

1.4.

Jumping distribution for all the parameters:

• α ∼ Γ(25.2/5, 6.9/5).

• σ1 ∼ Γ(4.2/2, 1.8/2).

• σ2 ∼ Γ(4.3/2, 1.8/2).

• θ ∼ Γ(8/3, 1.9/3).

Note: The acceptance/rejection rule of the Metropolis-Hastings al-

gorithm requires the ability to calculate the importance ratio r, for

which we need to have jumping distribution for the parameters under

study. For a detailed discussion, see [18].
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The following table provides the posterior mode values for all the

parameters based on the Bayesian posterior simulation study.

Table 5.3: Posterior modes of the parameters

n Mode(α) Mode(σ1) Mode(σ2) Mode(θ)

100 2.76741 3.8507 3.8520 1.85432

200 2.91723 3.9727 3.9686 1.96717

5.8 Hidden truncation for the trivariate P (II) distribution

In this section we focus our attention to a situation where we consider

X(3×1) ∼MP (3)(II)((µ, σ, α),

where we consider

X(3×1) = (X,X2, X3)
T ,

and all the marginals as well as all the conditionals are again members

of P (II) family with suitable choice of the parameters. In particular

we consider a situation where all the location parameters are zero and

the scale parameters are one. So that in this case we have

X(3×1) ∼MP (3)(II)((0, 1, α).

We are interested in finding the distribution of X1 when both X2 and

X3 are truncated from above. Thus we consider a situation in which
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we will observe X if and only if X2 ≤ θ1 and X3 ≤ θ2. So we want to

find the density of X given X2 ≤ θ1 and X3 ≤ θ2. First let us consider

P (X > x|X2 ≤ θ1, X3 ≤ θ2) =
P (X > x,X2 ≤ θ1, X3 ≤ θ2)

P (X2 ≤ θ1, X3 ≤ θ2)
, x ≥ 0.

(5.28)

However the denominator

P (X2 ≤ θ1, X3 ≤ θ2)

= P (X2 ≤ θ1) + P (X3 ≤ θ2) + P (X2 > θ1, X3 > θ2)− 1

= 1− (1 + θ1)
−α + 1− (1 + θ2)

−α + (1 + θ1 + θ2)
−α − 1

= 1− (1 + θ1)
−α − (1 + θ2)

−α + (1 + θ1 + θ2)
−α

= Ψ(θ1, θ2, α).

While the numerator is given by

P (X > x,X2 ≤ θ1, X3 ≤ θ2)

= P (X1 > x1)− [P (X1 > x1, X2 > θ1) + P (X > x,X3 > θ2)

− P (X > x,X2 > θ1, X3 > θ2)]

= (1 + x)−(α+1) − [(1 + x+ θ1)
−(α+1) + (1 + x+ θ2)

−(α+1)

− (1 + x+ θ1 + θ2)
−(α+1)].
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Hence we have

P (X > x|X2 ≤ θ1, X3 ≤ θ2)

=
1

Ψ(θ1, θ2, α)
(1 + x)−(α+1) − [(1 + x+ θ1)

−(α+1) + (1 + x+ θ2)
−(α+1)

− (1 + x+ θ1 + θ2)
−(α+1)]. (5.29)

The conditional density of X given X2 ≤ θ1 and X3 ≤ θ2, (from

(5.29)) will be

fX|X2≤θ1,X3≤θ2
(x)

=
α

Ψ(θ1, θ2, α)
[(1 + x)−(α+1) − ((1 + x+ θ1)

−(α+1) + (1 + x+ θ2)
−(α+1)

− (1 + x+ θ1 + θ2)
−(α+1))]I(x ≥ 0). (5.30)

5.8.1 Maximum likelihood estimation

We draw a random sample of size n from the density in (5.30). Denote

the observations by X1, X2, · · · , Xn. In this case the likelihood function

is given by

L =
n∏
i=1

α

Ψ(θ1, θ2, α)
[(1 +Xi)

−(α+1) − ((1 +Xi + θ1)
−(α+1)

+ (1 +Xi + θ2)
−(α+1) − (1 +Xi + θ1 + θ2)

−(α+1))].
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Equivalently the log-likelihood function takes the form

logL = n logα− n log Ψ(θ1, θ2, α) +
n∑
i=1

log[(1 +Xi)
−(α+1)

− ((1 +Xi + θ1)
−(α+1) + (1 +Xi + θ2)

−(α+1) − (1 +Xi + θ1 + θ2)
−(α+1))].

So the likelihood equation for α is

∂

∂α
logL = 0.

Equivalently

n

α
−

∂
∂αΨ(θ1, θ2, α)

Ψ(θ1, θ2, α)
+

n∑
i=1

[((1 +Xi)
−(α+1) − ((1 +Xi + θ1)

−(α+1)

+ (1 +Xi + θ2)
−(α+1)

− (1 +Xi + θ1 + θ2)
−(α+1)))−1(−(1 +Xi)

−(α+1) log(1 +Xi)

+ (1 +Xi + θ1)
−(α+1) log(1 +Xi + θ1)

+ (1 +Xi + θ2)
−(α+1) log(1 +Xi + θ2)

− (1 +Xi + θ1 + θ2)
−(α+1) log(1 +Xi + θ1 + θ2))] = 0. (5.31)
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where

∂

∂α
Ψ(θ1, θ2, α)

= (1 + θ1)
−α log(1 + θ1) + (1 + θ2)

−α log(1 + θ2)

− (1 + θ1 + θ2)
−α log(1 + θ1 + θ2).

The second likelihood equation is

∂

∂θ1
logL = 0.

Equivalently

n
∂
∂θ1

Ψ(θ1, θ2, α)

Ψ(θ1, θ2, α)
+

n∑
i=1

[((1 +Xi)
−(α+1)

− ((1 +Xi + θ1)
−(α+1) + (1 +Xi + θ2)

−(α+1)

− (1 +Xi + θ1 + θ2)
−(α+1)))−1((1 +Xi + θ1)

−(α+1) log(1 +Xi + θ1))

− (1 +Xi + θ1 + θ2)
−(α+1) log(1 +Xi + θ1 + θ2)] = 0. (5.32)

where

∂

∂θ1
Ψ(θ1, θ2, α) = (1 + θ1)

−α log(1 + θ1)− (1 + θ1 + θ2)
−α log(1 + θ1 + θ2).

Finally, we have

∂

∂θ2
logL = 0.
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Equivalently

n
∂
∂θ2

Ψ(θ1, θ2, α)

Ψ(θ1, θ2, α)
+

n∑
i=1

[((1 +Xi)
−(α+1) − ((1 +Xi + θ1)

−(α+1)

+ (1 +Xi + θ2)
−(α+1)

− (1 +Xi + θ1 + θ2)
−(α+1)))−1((1 +Xi + θ2)

−(α+1) log(1 +Xi + θ2))

− (1 +Xi + θ1 + θ2)
−(α+1) log(1 +Xi + θ1 + θ2)] = 0. (5.33)

where

∂

∂θ2
Ψ(θ1, θ2, α) = (1+θ2)

−α log(1+θ2)− (1+θ1 +θ2)
−α log(1+σ1 +θ2).

5.8.2 Estimation by the method of moments

Let us consider for any (r ≥ 1)

E[Xr]

=

∫ ∞
0

xrfX|X2≤θ1,X3≤θ2
(x)dx

=
α

Ψ(θ1, θ2, α)

∫ ∞
0

[(1 + x)−(α+1) − ((1 + x+ θ1)
−(α+1)

+ (1 + x+ θ2)
−(α+1) − (1 + x+ θ1 + θ2)

−(α+1))]dx

=
α

Ψ(θ1, θ2, α)
[B(r + 1, α− r)(1− (1 + θ1)

r−α − (1 + θ2)
r−α

+ (1 + θ1 + θ2)
r−α)]. (5.34)

Next substituting r = 1, 1
2 ,

1
3 , we get
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• E[X] = α
Ψ(θ1,θ2,α) [B(2, α − 1)(1 − (1 + θ1)

1−α − (1 + θ2)
1−α + (1 +

σ1 + θ2)
1−α)].

• E[X
1
2 ] = α

Ψ(θ1,θ2,α) [B(3
2 , α−

1
2)(1− (1 + θ1)

1
2−α − (1 + θ2)

1
2−α + (1 +

θ1 + θ2)
1
2−α)].

• E[X
1
3 ] = α

Ψ(θ1,θ2,α) [B(4
3 , α−

1
3)(1− (1 + θ1)

1
3−α − (1 + θ2)

1
3−α + (1 +

θ1 + θ2)
1
3−α)].

Next we define the following quantity based on a random sample of

size n drawn from above density in (5.30),

Ma =
1

n

n∑
i=1

Xa
i ,

which can be viewed as the a-th order sample raw moment. Next

we equate the sample moments with the corresponding population mo-

ments to find the estimates of the parameters. In this case the resulting

equations are as follows:

M1

M 1
2

=
[B(2, α− 1)(1− (1 + θ1)

1−α − (1 + θ2)
1−α + (1 + θ1 + θ2)

1−α)]

[B(3
2 , α−

1
2)(1− (1 + θ1)

1
2−α − (1 + θ2)

1
2−α + (1 + θ1 + θ2)

1
2−α)]

,

(5.35)

M 1
2

M 1
3

=
[B(3

2 , α−
1
2)(1− (1 + θ1)

1
2−α − (1 + θ2)

1
2−α + (1 + θ1 + θ2)

1
2−α)]

[B(4
3 , α−

1
3)(1− (1 + θ1)

1
3−α − (1 + θ2)

1
3−α + (1 + θ1 + θ2)

1
3−α)]

,

(5.36)
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and

M1

M 1
3

=
[B(2, α− 1)(1− (1 + θ1)

1−α − (1 + θ2)
1−α + (1 + θ1 + θ2)

1−α)]

[B(4
3 , α−

1
3)(1− (1 + θ1)

1
3−α − (1 + θ2)

1
3−α + (1 + θ1 + θ2)

1
3−α)]

.

(5.37)

Solving the above sets of 3 non-linear equations we will find the

estimates of the parameters.

5.8.3 Estimation of the parameters using a simulation study

We draw random samples of sizes n=50, 100 and 200 from our density

in (5.30), for a particular choice of the parameters which are α = 2.5,

θ1 = 0.5, and θ2 = 0.5. So that in this case

Ψ(θ1, θ2, α) = 1− (1 + θ1)
−α − (1 + θ2)

−α + (1 + θ1 + θ2)
−α = 0.270877.

Hence our density reduces to

fX|X2≤θ1,X3≤θ2
(x)

=
2.5

0.270877
[(1 + x)−(α+1) − 2(1 + x+ 0.5)−3.5 + (2 + x)−3.5]I(x ≥ 0).

(5.38)

In the following tables we provide the estimates of the parameters

using the maximum likelihood method and using the method of mo-

ments.
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n θ̂1 θ̂2 α̂

50 0.4784212 0.4847938 2.431728

100 0.4831572 0.4857404 2.471352

200 0.4955152 0.4863323 2.489523

Table 5.4: Estimates of the parameters using the method of moments

n θ̂1 θ̂2 α̂

50 0.4923689 0.4733277 2.45321768

100 0.4926100 0.515632 2.48431713

200 0.4928690 0.5012083 2.5003729

Table 5.5: Estimates of the parameters using the method of maximum likelihood

5.8.4 Comment on the simulation study

For our simulation study, we observe that our estimates for all the

parameters are quite good under both of the estimation procedures and

they are consistent in the sense that as we increase the sample size, the

estimated values are closer to the true value of the parameters. The

result of this small simulation study is quite encouraging and one can

extend this idea to the more general trivariate P (IV ) model.

5.8.5 Bayesian estimation of the parameters under a non informative

prior

In this situation we will consider the following choice of independent

(vague) priors for each of our parameters and will perform a Bayesian

analysis based on that. Let us consider

• f(α) ∝ 1
αI(α > 0).

• f(θ1) ∝ 1
θ1
I(θ1 > 0).
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• f(θ2) ∝ 1
θ2
I(θ2 > 0).

So the joint posterior will be given by (for a random sample of size

n drawn from the density in (5.30))

f(α, θ1, θ2|X = x) = f(α)f(θ1)f(θ2)A
−1

n∏
i=1

α

Ψ(θ1, θ2, α)

[(1 +Xi)
−(α+1) − (1 +Xi + θ1)

−(α+1)

− (1 +Xi + θ2)
−(α+1) + (1 +Xi + θ1 + θ2)

−(α+1)]

(5.39)

where A is the normalizing constant given by

A =

∫∫∫
(R+)3

f(α, θ1, θ2|X = x)dθ1dθ2dα.

So the marginal posterior density of α is given by

f(α|X = x) =

∫∞
0

∫∞
0 f(α, θ1, θ2|X = x)dθ1dθ2

A
.

Similarly the marginal posterior density of θ1 is given by

f(θ1|X = x) =

∫∞
0

∫∞
0 f(α, θ1, θ2|X = x)dαdθ2

A
.

And the marginal posterior density of θ2 is given by

f(θ2|X = x) =

∫∞
0

∫∞
0 Π(α, θ1, θ2|X = x)dαdθ1

A
.
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5.8.6 Comment on the choice of Priors

Suppose that we have some specific information (in the form of prior

belief) about any one of the parameters(say α) such as that it can take

any values between (say) 0 and 2. Then a reasonable choice of prior

distribution for α would be any kind of flat prior, (say) a uniform dis-

tribution with support (0,2). This will reduce the complexity in the

posterior analysis. Although the use of non-informative and /or depen-

dent priors will increase the complexity of the analysis, one may still

want to consider use of such priors because of the fact that for analyti-

cally intractable models like ours, the corresponding posterior analysis

can be efficiently performed by a Markov Chain Monte Carlo (MCMC)

algorithm which is specifically designed for complicated models.

5.8.7 Posterior simulation study

First of all we draw random samples of size 50 and 100 from our density

for a particular choice (α = 1.5, σ1 = 0.3, θ2 = 0.3) of the parameters.

For the jumping distributions we consider gamma distributions but

with different shape and scale parameters. The posterior analysis is

based on the posterior modes for each of those three parameters. The

corresponding posterior density plots are included in this chapter also.

The following table shows various choices for the starting distribution,
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the choices of the parameters of the jumping distribution along with

posterior modes:

Initial choices of the parameters:α = 1.07, σ1 = 0.47, θ1 = 0.43, θ2 = 0.47.

Jumping distribution of the parameters:

• α ∼ Γ(8.1/5, 6.1/5)

• θ1 ∼ Γ(1.8/3, 7.2/3)

• θ2 ∼ Γ(3.2/3, 6.1/3)

In the following table for each gamma density the first value corresponds

to the shape parameter and the next value is the scale parameter. In the

following table the posterior modes of all the parameters are displayed.

n Mode(α) Mode(θ1) Mode(θ2)

50 1.4343 0.2813 0.3900

100 1.4744 0.2753 0.3063

Table 5.6: Bayesian estimates of the Parameters

The corresponding marginal posterior density plots for the three

parameters based on samples of sizes 50 and 100 are displayed in Figures

(5.1 a) and (5.1 b).
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(a) Posterior Density of the parameters for n = 50
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(b) Posterior Density of the parameters for n = 100

Figure 5.1: Posterior density for all the parameters for different choices of the sample size

5.8.8 Remarks on the posterior simulation study

For the trivariate hidden truncation model, we observe that with a sam-

ple size of 100, the estimates of the parameters based on the Bayesian

posterior modes are quite good. However when the sample size is 50,

the posterior mode for θ2 is quite far away from the true value of the

parameter. More informative priors (for example a proper prior, or a

flat prior for the index parameter α only ) might result in a substantial

amount of improvement in our posterior modal values.

Appendix

Asymptotic distribution of the smallest order statistic

Suppose we draw a random sample of size n from the density (5.11). De-

note the observations by X1, X2, . . . , Xn, where X i, for i = 1, 2, · · · , n,
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are (k − 1) dimensional. Then we define

Y = min1≤j≤nX
j.

Let us consider

P (Y > y) = P (X1 > y,X2 > y, . . . , Xn > y)

= [P (X1 > y)]n

= [
1

ψ(α, c)
[[1 +

k−1∑
i=1

(
yi − µi
σi

)]−α

− [1 +
k−1∑
i=1

(
yi − µi
σi

) + (
c− µk
σk

)]−α]]n.

However for the notational simplicity we consider (c−µkσk
) = θ. and also

we assume that µi = 0, ∀i = 1, 2, . . . , k so that ψ(α, c) = 1−(1+θ)−α =

ψ(α, θ).

Thus

P (Y >
1

n
y) = [

1

δ1(α, θ)
[[1+

k−1∑
i=1

(
yi
nσi

)]−α−[1+
k−1∑
i=1

(
yi
nσi

)+θ]−α]]n. (5.40)
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Next consider the following:

[1 +
k−1∑
i=1

(
yi
nσi

)]−α − [1 +
k−1∑
i=1

(
yi
nσi

) + θ]−α

= [1− α

n
(
k−1∑
i=1

(
yi
σi

)) +
α(α + 1)

2
(
k−1∑
i=1

(
yi
nσi

))2

− . . .]− [(1 + θ)−α − α(1 + θ)−α+1

n
(
k−1∑
i=1

(
yi
σi

))

+
α(α + 1)(1 + θ)−α+2

2
(
k−1∑
i=1

(
yi
nσi

))2 − . . .]

= δ1(α, θ)−
α

n
(1− (1 + θ)−α+1)(

k−1∑
i=1

(
yi
σi

)) + o(n−2). (5.41)

So that

P (Y >
1

n
y) = [1− α

n
(1− (1 + θ)−α+1)(

k−1∑
i=1

(
yi
σi

)) + o(n−2)]n.

Hence

lim
n→∞

P (Y >
1

n
y) = lim

n→∞
[1− α

n
(1− (1 + θ)−α+1)(

k−1∑
i=1

(
yi
σi

)) + o(n−2)]n

= exp[−B(
k−1∑
i=1

(
yi
σi

))], (5.42)

for y > 0 where B = α(1− (1+θ)−α+1). So the asymptotic distribution

of the vector of smallest order statistics when the samples are drawn

from a hidden truncated (from above) k-variate P (II) distribution has
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independent exponential marginals.
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Chapter 6

Conclusion

6.1 Introduction

In this chapter we will discuss in detail plausible reasons for consider-

ing hidden truncation paradigms for bivariate and multivariate Pareto

data. We will also describe the challenges that have been faced during

the course of study of such hidden truncation models, and what effective

steps have been taken into consideration regarding inference for such

models. A broad spectrum of flexible univariate and multivariate mod-

els can be constructed by a hidden truncation paradigm. Such models

can be viewed as being characterized by a basic marginal density, a

family of conditional densities and a specified hidden truncation point.

Skewed multivariate distributions can arise in situations in which the

observed variables represent a sample that has been truncated with

respect to one or more hidden covariable. In chapters 3 through 5, a
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survey of such models arising from a bivariate and multivariate Pareto

distributions has been provided with discussion on related inference

questions. In particular we consider the fact that, in income model-

ing, quite often there are instances of unreported income. In such a

situation it is reasonable to assume that the true income (say, X), the

observable income (Y , say) and the unreported income (U , say) are

related in the following way: X = Y + U.

Such a model was considered by Krishnaji (1970) and later on by

Hartley and Revankar(1974) and Hinkley and Revankar (1977). Now,

as mentioned earlier, we focus on in particular situations where the

income data for an individual is available if and only the unreported

income does not exceed a certain value which could be any value within

the support set of the conditioning variable. Next we focus on inference

for such models and in particular estimation of all the parameters of

the model. First of all for hidden truncation models, it is not possi-

ble to construct unbiased estimates nor to consider a routine classical

approach on inferential aspects because of the following:

• The models do not constitute one parameter exponential families

of distributions.

• The moment generating function does not exist in these cases.

Because of the form of the density, as in (3.14) or in (4.5), we have
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observed that for certain choices of the truncation parameter (in par-

ticular for the bivariate case θ ≥ 2, and for the trivariate hidden trun-

cation case (min(θ1, θ2) ≥ 0.7) and also for the index of inequality in

the range (α ≥ 5), our densities are indistinguishable. Furthermore

since such models are not members of one parameter exponential fam-

ily, no reduction in the complexity of the data is possible by invoking

sufficiency arguments. For the various estimation strategies that we

have discussed in earlier chapters for hidden truncation Pareto fam-

ilies, it would be really difficult to claim whether one is superior to

another although for both types of models (i.e; both bivariate and mul-

tivariate hidden truncation) for small samples the performance of the

maximum likelihood estimation procedure is not that good. A possi-

ble reason could be that the likelihood functions associated with these

type of models often do not have easily identified modes because of the

unavailability of analytical expressions for the maximum likelihood es-

timates. Furthermore in all other estimation procedures, the estimates

of the parameters have been obtained numerically. Also because of the

lack of analytical tractability of expected moments for the likelihood

estimates, only the observed Fisher Information Matrix is available. As

a consequence the asymptotic distribution of the maximum likelihood

estimates for hidden truncated Pareto models is known only approxi-
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mately. But we have observed chapters 3 through 5, that the asymp-

totic distribution of the smallest order statistic when the samples are

taken from those hidden truncated distributions, is exponential so in

large samples it belongs to a well known family of density for which

well known results are available in terms of estimation and testing for

the location parameter.

6.2 Discussion on the performance of Bayesian analysis for

hidden truncation Pareto models

We now focus on the performance of Bayesian Analysis for the hidden

truncated Pareto models. The complicated form of the likelihood as

in (3.29) and also in (5.19) is a warning that friendly conjugate priors

will not be encountered. As a consequence, little attention has been

devoted in this direction. In all our Bayesian analysis for such types of

hidden truncation models we have proposed non-informative priors for

all the parameters, which seems to be the only plausible choice in imple-

menting a Bayesian approach. Such a method predictably yields results

that are very similar to those obtained using the method of maximum

likelihood. However the only difference will be in their interpretation.

In our case it would be unrealistic to think of conditional priors for

all the parameters α, σ and θ. However one might consider a situation
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where some prior information on say, the index of inequality parameter

α is provided, perhaps that it can only take any value between 1 and

2. Then we might consider any kind of flat prior on α say for example

α ∈ U(1, 2) and subsequently we can use this information for our pos-

terior analysis for the remaining parameters. Although again this will

be a rare situation. The Bayesian estimates of the parameters based

on posterior modes are quite good for all the hidden truncated bivari-

ate and multivariate Pareto models except for small sample sizes where

the estimates for the truncation parameter is quite far away from the

true value of the parameter. A more extensive simulation study will be

required to check whether the behavior of this estimate is artifactual

when a small sample (for example a random sample of size 50) is drawn

from the density as in (3.14) or in (4.5).

6.3 Future work

As mentioned in chapter 3, the P (II) model is a viable competitor of

the log-normal distribution which is very useful for survival data anal-

ysis. Thus it would be natural to investigate the application of hidden

truncation P (II) or the more general P (IV ) model in survival models

in addition to income data modeling. The role of multivariate hidden

truncation models which we have discussed in chapter 5 can not be ig-
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nored either. Efforts will be given to derive hidden truncation models

for the multivariate P (II) and also for multivariate P (IV ) when all

parameters are unknown. Also we will consider separately the two sit-

uations : (1) Single variable truncation from above and (2) k1-variable

(where k1 ≤ k, k1 ≥ 2) truncation from above, for a k variate P (II)

and P (IV ) distribution. In chapter 5 we have discussed both types of

hidden truncation but we have considered a simple situation for the

types of hidden truncation where each of the scale parameters were

considered to be one while the location parameters were considered to

be zero. Undoubtedly one can imagine that for a more general fam-

ily of multivariate P (II) or P (IV ) distributions, the estimation of all

the parameters will have to be performed numerically as was done for

the hidden truncated bivariate P (II) and P (IV ) models earlier. Fur-

thermore, so far we have considered one sided hidden truncation (from

above). It would be natural to think of two sided hidden truncation and

to investigate first of all whether or not the resulting model augments

the original distribution. And if that happens then it would be interest-

ing to see whether we can find an application of such models in real life

situations. Also efforts will be made to find more applicability of such

models beyond the economic sphere and in particular in conditional

survival analysis and also in stress and strength analysis. Needless to
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say much work remains to be done before the more complicated hidden

truncation models can become useful tools for the applied statisticians

working in this area.
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