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A coupled discontinuous Galerkin-Finite Volume framework for solving
gas dynamics over embedded geometries

Vincenzo Gulizzi', Ann S. Almgren!, and John B. Bell!

!Center for Computational Sciences and Engineering (CCSE), Lawrence Berkeley National
Laboratory MS 50A-3111, Berkeley, CA 94720, USA

Abstract

We present a computational framework for solving the equations of inviscid gas dynamics using structured
grids with embedded geometries. The novelty of the proposed approach is the use of high-order discontinuous
Galerkin (dG) schemes and a shock-capturing Finite Volume (FV) scheme coupled via an hp adaptive mesh
refinement (hp-AMR) strategy that offers high-order accurate resolution of the embedded geometries. The hp-
AMR strategy is based on a multi-level block-structured domain partition in which each level is represented by
block-structured Cartesian grids and the embedded geometry is represented implicitly by a level set function.
The intersection of the embedded geometry with the grids produces the implicitly-defined mesh that consists of
a collection of regular rectangular cells plus a relatively small number of irregular curved elements in the vicin-
ity of the embedded boundaries. High-order quadrature rules for implicitly-defined domains enable high-order
accuracy resolution of the curved elements with a cell-merging strategy to address the small-cell problem. The
hp-AMR algorithm treats the system with a second-order finite volume scheme at the finest level to dynamically
track the evolution of solution discontinuities while using dG schemes at coarser levels to provide high-order
accuracy in smooth regions of the flow. On the dG levels, the methodology supports different orders of basis
functions on different levels. The space-discretized governing equations are then advanced explicitly in time using
high-order Runge-Kutta algorithms. Numerical tests are presented for two-dimensional and three-dimensional
problems involving an ideal gas. The results are compared with both analytical solutions and experimental
observations and demonstrate that the framework provides high-order accuracy for smooth flows and accurately
captures solution discontinuities.

Keywords:  Embedded boundaries, Discontinuous Galerkin methods, Finite Volume methods, Shock-
capturing schemes, hp-AMR

1 Introduction

In spite of the enormous amount of work on solving the equations of gas dynamics, there is still considerable
interest in developing higher-order methods in complex domains. In general, computational methods for problems
in irregular domains can be classified into those employing body-fitted meshes (either unstructured or structured
with curvilinear coordinates) and those employing structured meshes with embedded boundaries (EB). Body-fitted
mesh approaches use irregular cells where the boundaries of the mesh elements coincide with the boundaries of the
domain; although very flexible for modeling complex geometrical features, these methods often require significant
effort to generate high-quality elements. On the other hand, EB methods represent the domain as a distinguished
interface in a uniform background grid. The EB approach offers a number of benefits, such as automatic grid
generation, data storage and adaptive mesh refinement [I], while the regularity of the mesh elements allows one
to use methods designed for uniform grids in most of the domain. However, additional considerations need to be
addressed in the presence of an embedded geometry.

The are two main approaches to designing EB methods, diffuse-interface methods [2, B8] 4], where the embedded
boundaries or interfaces are smeared over a finite-thickness region that is captured with a sufficiently fine mesh,
and sharp-interface methods [B] [6] [7, [§, [@, [10], where the embedded boundaries or interfaces are represented as a
lower dimensional surface. The latter is often the recommended approach if the flow details in proximity of the
geometries are of interest. However, the sharp-interface methods suffer from the so-called small-cell problem, i.e. the
presence of cells cut by the embedded geometry that have unacceptably small volume fractions, which induces overly
restrictive time steps and ill-conditioned discrete operators if not properly treated [L1].



Most EB discretizations are based on Finite Volume (FV) schemes [12, [I3] that are relatively easy to implement
and offer robust shock-tracking capabilities. In embedded-boundary FV approaches, several strategies have been
explored to ameliorate the small-cell problem. Notable examples include cell-merging [14 [15] 16, 17, I8, 19] 20],
flux-redistribution [211, 22] 23] 24], the h-box method [25] 26], the dimensionally-split Cartesian cut cell method
[27] and state redistribution [28]. However, embedded-boundary FV methods are typically limited to second-order
accuracy in space and, if high-order accuracy is desired, see e.g. [20], they require large stencil to perform the
solution reconstruction.

Recently, the discontinuous Galerkin (dG) methods [29, 80, B} 32] have gained popularity thanks to the flexible
variational framework on which they are based. The dG methods represent the unknown fields in a suitably chosen
space of basis functions, whose coefficients become the unknowns of the discrete problem. This approach has several
highly desirable features for parallel computing such as high-order accuracy via compact stencils, a natural way to
handle hp refinement, more general (e.g. polytopic) element shapes [33] [34] and, unlike high-order schemes based on
continuous approximations, block-structured mass matrices. As a result, the dG method, typically in combination
with a cell-merging technique, has been successfully employed in embedded-boundary numerical schemes for the
solution of several scientific and engineering problems including elliptic partial differential equations [35] 36} 37, [38],
reaction-diffusion equations [39], two-phase flow [40, 4], two-phase flow with moving boundaries [42], surface
tension dynamics, free-surface flow and rigid body-fluid interaction in the incompressible regime [8] [9} [43], and solid
mechanics of thin structures with cutouts [44], 45].

In the context of compressible flow, embedded-boundary dG methods are less thoroughly investigated. For two-
dimensional (2D) problems, Qin and Krivodonova [6] presented a dG methods for inviscid gas dynamics, Miiller
et al.[46] developed a dG method that includes viscous terms and, recently, Geisenhofer et al.[47] presented a dG
method for inviscid compressible flow where the formation of solution discontinuities was captured by adding a
suitably-chosen artificial viscosity to the governing equations. The EB approaches mentioned above use Cartesian
background grids. Fidkowski and Darmofal [48] presented a 2D dG method using triangular cut cells for compressible
flow, whereas, to the best of our knowledge, the only EB method involving both two- and three-dimensional
computations of compressible fluids was recently proposed by Xiao et al.[49], who used triangular and tetrahedral
meshes as their background grid.

As seen in the brief literature review provided above, most embedded-boundary dG schemes are for elliptic and
incompressible fluid flow equations, which do not generally involve the formation and evolution of solution discon-
tinuities, unless sharp corners or cracks are present in the geometry. Conversely, the development of shock waves
and contact discontinuities are key features of inviscid compressible flow. When discontinuities are present, higher-
order methods, including dG methods, produce nonphysical oscillations, referred to as the Gibbs phenomenon.
Controlling oscillations in higher-order methods requires the introduction of a limiting strategy. Although various
shock-capturing approaches for dG methods exist in the literature, such as artificial-viscosity methods [50, 1],
moment limiters [52] or shock-fitting deforming-mesh approaches [53], among others, shock-capturing methods for
embedded-boundary dG schemes is still not a mature area.

The aim of this work is to present a computational framework for embedded-boundary approaches that provides
high-accuracy resolution of the geometry, high-order accuracy in regions of smooth flows and shock-capturing
capabilities in the presence of solution discontinuities for two- and three-dimensional problems. This is achieved
by coupling high-order dG schemes with a shock-capturing FV scheme through an hp adaptive mesh refinement
(hp-AMR) strategy featuring high-accuracy resolution of embedded geometries.

The paper is organized as follows: Sec. introduces the considered initial-boundary value problem for inviscid
gas dynamics; Sec. describes the proposed framework that includes the construction of the implicitly-defined
mesh, the formulation of the corresponding high-order dG schemes and the shock-capturing FV scheme, and the
hp-AMR strategy; Sec. presents a set of two- and three-dimensional numerical tests. Finally, Sec.(5)) concludes
the work and discusses potential further developments.

2 Governing equations
Inviscid gas dynamics is described by a system of first-order hyperbolic conservation laws given by
o U + O F, =0, (1)

where 0; denotes the partial derivative with respect to the time ¢ and J; denotes the partial derivative with respect
to the k-th coordinate zy of the vector @ = {z;} in d-dimensional space. In Eq.(T)), U is the (d + 2)-dimensional
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Figure 1: (a) Domain 2 and its boundary 02 = £ U .Z implicitly defined in a 4 x 4 background grid. (b)
Classification of the background cells of figure (a) on the basis of their volume fraction. (c) Classification of the
background cells of figure (a) after cell-merging.

vector of conserved variables and F'y, is the (d + 2)-dimensional vector of the flux in the k direction defined as

P PUk
U= pv and Fp =< popv+pd (2)
pE (PE + p)u

where 8y is a d-dimensional vector containing 1 in its k-th component and 0 in all the others, p is the density,
v = {v;} is the velocity vector, F is the total energy and p is the pressure. The governing equations are closed by
an equation of state. Here, we assume an ideal gas with ratio of specific heats 7, such that

p=(—-1p <E - ;vkvk) : (3)

The governing equations given in Eq. are assumed to be valid for {¢t,x} € S x &, where S = [0,T] is the
time interval, T is the final time, and 2 C R? is the spatial domain. The governing equations are supplemented by
initial conditions and boundary conditions, which must be enforced on the boundary 02 of the domain 2.

In Eqs. and in the remainder of the paper, the indices k and [ are used as subscripts to denote the component
of a vector or an array; they take values in {1,...,d} and imply summation when repeated unless it is explicitly
stated otherwise. Finally, we note that the symbol p will also be used to denote the order of the basis functions of
dG schemes but its meaning will be clear from the context.

3 Coupled discontinuous Galerkin-Finite Volume framework

3.1 Implicitly-defined mesh

Let 2 be the domain, which we assume to be enclosed in a background rectangle Z 2 2. We then let ® : Z — R be
a level set function such that 2 is implicitly defined as the region where ® is negative, i.e. Z = {x € Z : ®(x) < 0},
and its boundary 02 is defined as 02 = B U L, where Z = {x € 0% : ®(x) < 0} is the portion of the
rectangle’s outer boundary 0% where ® is negative, and .£ = {x € #Z : ®(x) = 0} is the zero level of . We
then introduce a structured grid 4, = U;6* C %, where h denotes a characteristic mesh size, €* is a generic
rectangular cell and 4 = {i;} is the d-tuple identifying the location of the cell within the grid. The cell € is defined
as 2%, 2% + hy] x -+ x [2%, 28 + hqg], where 2% is the cell’s lower corner in the k-th direction and hy, is the grid’s
mesh size in that direction.

When intersected with the domain 2, cells are characterized by their volume fraction v: entire cells fall entirely
inside Z and have volume fraction v = 1; empty cells fall entirely outside & and have volume fraction v = 0; partial
cells are cut by . and have volume fraction 0 < v < 1. We then introduce a volume fraction threshold 7 to label
each partial cell as either large if 7 < v < 1 or small if 0 < v < T. As an example, Fig.) shows a two-dimensional
domain embedded in a 4 x 4 grid and Fig.) shows the corresponding cell classification.



Figure 2: Implicitly-defined mesh of the domain shown in Fig.; the figure also highlights a mesh element 2¢ (in
darker color) obtained from the merging between a small cell and an entire cell. See Figs.) and )
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Figure 3: Examples of (a) two-dimensional and (b) three-dimensional implicitly-defined meshes where multiple
small cells are merged with the same valid cell.



The volume fraction threshold triggers the cell-merging strategy, whereby all cells labelled as small are merged
with nearby cells. Several possibilities exist for implementing the cell-merging strategy. Here, a small cell is merged
with one of its entire or large neighboring cells, henceforth collectively referred to as walid cells. The neighbor
targeted for merging is selected according to its location with respect to the small cell and its volume fraction.
Specifically, neighboring cells are queried in the following order: in 3D, we first consider the set of valid cells sharing
a face with the small cell, second we consider the set of valid cells sharing an edge with the small cell and finally
we consider the set of valid cells sharing a corner with the small cell. Within each set, the neighbors are ordered
according to their volume fraction. Then, the target neighbor is the first cell in the first non-empty set. It follows
that, in the choice of the target neighbor, a large cell sharing a face with the small cell has higher priority than an
entire cell sharing an edge with the small cell. In 2D, the search starts from the cells that share an edge with a
small cell.

Once the cell-merging procedure is applied, the cells of the grid ¥, consist of valid non-merged cells, i.e. the
entire and large cells that have not been targeted during the merging process, valid merged cells, i.e. the union of
small cells and their merging large or entire neighbors, and empty cells. Such a classification for the background
cells of Fig.(Ib) is shown in Fig.(lf). Then, the implicitly-defined mesh M, associated with ¢, is defined by the
intersection of the valid merged and non-merged cells of ¢, and the domain 2, such that M, = {2°} and 2° is
the e-th implicitly-defined mesh element. Figure shows the implicitly-defined mesh associated with the grid of
Fig.) and highlights (in darker color) an implicitly-defined element 2¢ resulting from the merging of a small cell
and an entire cell. The figure also shows the outer boundaries Z¢ and Z¢ of the e-th element, which stem from
the intersection of the grid with & and £, respectively, and the internal boundaries .# e’ that the e-th element
shares with its generic neighboring element ¢’. A few comments are worth pointing out:

e In the implementation of the implicit mesh, we do not explicitly merge cells. When a small cell and a valid
cell have been merged, both the dG and the reconstructed FV representations of the solution on that merged
cell are specified in terms of coefficients associated with the valid cell. Moreover, the geometry of the curved
elements is never explicitly constructed or parameterized and is only inferred by the quadrature rules for
domains and boundaries implicitly defined by the level set function.

e The cell-merging procedure needs to traverses the cells only once and is fully parallelizable. In fact, the volume
fraction of the cells is computed prior to and does not change during the merging process; for example, after
being merged, a small cell does not become a large cell eligible for merging with another small cell. Each
small cell queries its neighboring cells and selects the most appropriate neighbor according to the procedure
described above. Note that multiple small cells can target the same cell for merging; as a 2D example,
Fig.) shows a 4x4 grid where the small cells €43, 3% and €** all merge with the cell >3 to define the
implicitly-defined mesh element 2¢. A similar example in 3D is shown in Fig.).

e In general, and especially for high volume fraction thresholds, it is possible that the merging algorithm does
not find a suitable neighbor, i.e., given a small cell, all the cells in its 3x3 (in 2D) or its 3x3x3 (in 3D)
neighborhood are small or empty; if this occurs, the simulation will terminate and require a smaller volume
fraction threshold. However, in all the numerical tests considered here, a volume fraction threshold of 0.3
in 2D and a volume fraction threshold of 0.15 in 3D was found to be satisfactory. Other approaches could
be implemented to deal with small cells that do not find suitable neighbors for merging. For example, one
could consider merging multiple small cells together, thus increasing the effective mesh size of the elements,
or one could lower the volume fraction threshold that triggers the merging and introduce an additional higher
volume fraction thresholds that instead triggers a reduced polynomial order representation, thus improving
the stability of the scheme. These approaches are, however, not considered here.

3.2 Discontinuous Galerkin schemes

Discontinuous Galerkin schemes are based on a weak form of the governing equations. For each element in the
mesh we define a local polynomial basis on that element and extend it to vanish on all of the other elements. The
collection of these functions for each element then forms a discontinuous basis. Here, it is natural to define the local
basis functions as tensor-product polynomials since the discretization is constructed using Cartesian grids and the
majority of the mesh elements are rectangular cells.

Let 2¢ be the implicitly-defined element associated with the grid cell ¢ (and all the small cells that are merged
with €*) and let Pp,, be the space of tensor-product polynomials of degree p in the rectangular domain occupied
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Figure 4: Examples of the location of the quadrature points obtained using the algorithm of Ref.[54]; in the images,
the quadrature points are coloured according to their weight: light grays denote small weights while dark grays
denotes large weights. Note that the quadrature weights are always strictly positive.

by €*. Then, the space Vhp of discontinuous basis functions for the mesh M, based on the grid 9, is
Vhpz{v:%h—)R|v|@e € Phps V@eth}, (4)

while the related space V}]L\I’) of discontinuous polynomials vector fields is V,i\; = (Vhp)N .
Following Cockburn et al.[29] [30], we integrate by parts in space to obtain the weak form of Eq. as

U vT ~ ~
vilav = [ WV pav - / VTF,dS - Y VTF,dS Y2° € My and V € Vi (5)
Pe ot e al‘k BeU.Le o eNe gee!

In Eq.7 N¢ denotes the set of mesh elements that are neighbors of 2¢, and F n denotes the so-called numerical
fluz, whose expression for hyperbolic equations is typically computed using an exact or an approximate Riemann
solver [55] [50].

We now approximate U on each element as a linear combination of basis functions with time dependent coeffi-
cients. This can be written compactly as

Ulg:(x) = B*(z) X“(t) (6)

where B is an N,, x N,, N, matrix where each column corresponds to a basis function in V;, and X°(t) is a vector
of coefficients of length N, N,,. Here N, = d + 2 is the number of unknowns in the system and N, = (1 +p)? is the
number of polynomials in Php- Substituting Eq. @ into Eq. and letting V' range over the basis functions, we
obtain the final semidiscrete evolution equation

MeXe —

0BT - N
FpdV — BTF,dS - / B°TF,dS, (7)
Qe 8l’k BeU.Le o eNe ge.e!

where the superimposed dot denotes the derivative with respect to time, and M€ is the mass matrix of e-th element

given by
M° = B¢TB° dV. (8)

@e

The domain and boundary integrals appearing in Eqs. and are evaluated using high-order quadrature
rules for implicitly-defined domains and boundaries. These quadrature rules are generated using the algorithm
developed by Saye [64] and provide high-order accuracy in the presence of smooth embedded geometries. This is a
key ingredient for the accuracy of the overall scheme. For example, Qin and Krivodonova [6] discuss the importance
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Figure 5: Reconstruction and limiting for an element belonging to an implicitly-defined mesh in a 3x3 grid: (a)
Location of the centroid ¢ of the element where the reconstruction is to be performed; (b) Cloud of query points
used in the least-square problem; (c) Auxiliary recentered location @ of the centroid 2% such that Z is aligned
with the centroid of the element e(i + d2).
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of an accurate representation of embedded geometries and use curvature-aware boundary conditions to avoid the
loss of accuracy due to the piecewise representation of the embedded boundaries. An example of the quadrature
rules used here is provided in Fig., which shows the distribution of the quadrature points for the domain and
boundary integrals of 2D and 3D implicitly-defined elements.

3.3 Finite volume schemes

In a FV setting, the weak form of the governing equations can be derived by integrating Eq. over a generic
implicitly-defined element 2¢ € M, and applying the divergence theorem with respect to the space variables to

obtain
mU® = - / F,ds— > / F,ds, 9)
BeULe e ENE e,e’

where the superimposed dot again denotes the derivative with respect to time, m¢ = |, e 1 AV is the volume of ¢,
U*® represents the average of the conserved variables over 2¢, i.e. U® = ni /. 2. UdV, and the remaining symbols
have the same meaning as those appearing in Eq..

Similar to Eq., high-order quadrature rules are employed to evaluate the right-hand side of Eq.@ and
maintain the high-order accuracy representation of the geometry for the FV scheme. However, unlike dG schemes,
where the solution at any space location within the element is computed via its polynomial representation, Eq.@
requires a suitable reconstruction and limiting strategy, which allows one to evaluate the solution, and thus the
numerical flux F',,, at the element’s boundaries.

Although high-order reconstruction methods are available in the literature, the present approach is based on a
linear representation of the solution, which leads to a scheme that is at most second-order accurate in space. This
choice is mainly motivated by the fact that, within the adaptive mesh refinement algorithm, the FV grids will be
fine-tuned to track and resolve the regions containing solution discontinuities, where high-order schemes would be
reduced to first-order schemes by the limiter. The details of the limiter employed here are given in Sec..

3.3.1 Reconstruction and limiting

In FV schemes, the typical reconstruction and limiting strategy is to compute the slopes of the primitive variables,
perform the limiting of the slopes using characteristic variables and then compute the flux F, appearing in Eq.@
using the reconstructed primitive variables. Here, we follow a slightly different approach, whereby the limiting is
still performed using characteristics variables but the final reconstruction is performed on the conserved variables.
This preserves the robustness of characteristics-based limiters but enables a more natural coupling with the dG
schemes, where conserved variables are readily available at the elements’ boundaries.

The vector U¢ of the reconstructed conserved variables at any point € 2°¢ is assumed to be given by

U°=U°+0,U°- (x — x}), (10)



where ¢ = {f,} is the centroid of ¢, U® is the vector of the conserved variable averages and 9,U* are the slopes to
be determined. It is easy to see that the expression given in Eq. preserves conservation, since |, e Uedv = meU®,
and that the conserved variable averages U® coincide with the values of the conserved variables evaluated at the
centroid of the element. As discussed next, 9,U¢ are determined by reconstructing and limiting the slopes of the
primitive variables.

Let Q¢ = {p,v,p} be the (d + 2)-dimensional vector of the primitive variables corresponding to U® and Q° be
a generic component of Q°. The initial slopes of Q¢ are obtained by the solution of the normal equations arising
from the least-square interpolation problem given by

SA =b, (11)

where

Si = Z(xz —ap) (] —x7), Ar=0,Q° and b= Z(xz —z)(QT—Q°). (12)

qeQ qeQ

In , Q denotes the set of neighboring query elements, whose centroid 7 and primitive variables Q¢ are selected
to perform the least-square interpolation. Here, for an implicitly-defined element associated with the cell €%, the set
Q consists of the elements associated with the valid cells in the standard 4-cell, in 2D, or 6-cell, in 3D, neighborhood
of €* plus the elements associated with the valid cells that extend into the small cells of the same neighborhood of
¢*. Figure (5h) shows the case of a mesh implicitly defined on a 3 x 3 grid and Fig.(5b) shows the corresponding
cloud of query points (denoted by the open circles) that are selected to perform the least-square reconstruction over
the element associated to the central cell. It is worth noting that it is possible that the number of query points is
not sufficient for the definition of the least-square problem given in Eq.; in these cases, the slopes are set to
zero.

Once the reconstruction is obtained a slope limiter is required to avoid non-physical oscillations and ensure
monotonicity in the presence of solution discontinuities. The limiter employed in this work consists of a two-step
process. The first step is based on a suitably modified version of the dimensionally-split characteristics-based Van
Leer limiter [57] combined with the recentering strategy suggested by Berger et al.[58] to handle nonaligned centroids
of adjacent elements. More specifically, let e(z) be the superscript denoting a quantity defined on the element 2¢
associated with the cell €%, and let 8er(i) be the unlimited slopes in k-th direction obtained via Eq.. In the
k-th direction, let e(¢ + d%) be the index of the right neighbor of the element e(z), and e(¢ — d%) be the index of
the left neighbor of element e(z). The values of the primitive variables in the right and left neighbors are then used
to compute the corresponding right slopes 8k+Qe(i) and the left slopes 9, Qe(i). Consider for example 8,C+Qe(i) and
an auxiliary recentered location Z of the centroid x¢(®) obtained by translating £ in the plane perpendicular to
the k-th direction and aligning it with the centroid of the right neighbor e(i + 85). To illustrate, Fig.(5k) sketches
the location of  when the right slopes are to be computed along the xo direction for the element associated to the
central cell. Using the unlimited slopes, the primitive variables @ evaluated at @ are given by

Q — QD 4 5. 7 — xle(i)) — Q) 4 ZalQe(i) . (xle(i'f‘ék) _ xle(i)) (13)
1#£k

where the second equality follows by noting that T, = mz(i) and z; = xf(Ha’“), for [ # k. Then, the right slopes
8k+Qe(i) are defined as

. e(i+d,) @
orQe = Q— (14)
k xz(1+5k) _ xz(l)
Substituting Eq. into Eq., and following the same derivation for the left slopes, one obtains
) e(i£8)) _ ye(d) 5,0°0) . (pCEEK) _ el
Q) = @ QY L0 L) (15)

xz(iiék) . xz(i) xZ(iiék) _ mi(i)

In Eqs. and , no summation is implied over repeated subscripts. Moreover, it is worth noting that, far
from the embedded boundaries, where the elements and their neighbors are regular entire cells, the slopes given
in Eq. coincide with the slopes of standard structured grid methods since, along the k-th direction, one has
xf“iék = mle(l), for | # k. This is not the case near the embedded boundary where the term x?ui&k) — xle(l)
accounts for the difference in location of the elements’ centroids. However, as suggested by Fig.), it is possible

that some of the neighboring elements might not be available because the neighboring cells are small or empty
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Figure 6: Example of a three-level implicitly-defined mesh in which the levels 0 and 1 use discontinuous Galerkin
schemes and the level 2 uses a finite-volume scheme. At all levels, the geometry is resolved with high-order accuracy.

according to the classification introduced in Sec.(3.1). In these cases, the left or the right derivative cannot be
computed and will not be considered in the evaluation of the limited slopes.

The slopes of the primitive variables are used to compute the corresponding slopes of the characteristics variables
as

0C°® = LF9,Q°®  and 9FC) = LFoFQ Y, (16)

where L* is the matrix of left eigenvectors of (9Q/0U)(dF},/0U)(dU /0Q) evaluated at U®. Then, the vector
9,C°Y of limited slopes of the characteristic variables is obtained by applying the Var Leer limiter

smin{f~[67|,|8],0 6T}, if €% are valid and 6, 6,61 have the same sign;

3, 0l — smin{f0~ 07|, |3}, if €*% is valid, €*t% is not valid and 6, ¢ have the same sign; a7
g ~ | smin{|s],0F|6T|}, if €419 is valid, €*~%* is not valid and 4,0 have the same sign;
0, otherwise

component-wise. In Eq., 0,C¢® denotes a generic component of gkCe(i), § = 9,CcW, 5+ = 8?06("), s =
sign(d), 6~ = (xz(z) - xz(ké’“))/(xz(l) —at), 0t = (xz(wr&’“) - ch(z))/(ac}'C + hy — xz(z)), with no summation implied
over the repeated index k. Finally, the limited slopes of the primitive variables and the corresponding slopes of the
conserved variables are obtained as

9,Q° = (L*)719,C° and akUE(aU) 9,Q° (18)
8Q Ue

respectively.

The slopes computed using Eq. do not ensure that over- or under-shoots of the solution are avoided at the
boundaries of the mesh elements, especially in the case of extended elements where left or right derivatives are not
available. For this reason, the second step of the limiter applies the Barth-Jespersen limiter [59], which is a scalar
limiter that reduces the slopes along all directions by the same multiplicative factor ae. Thus, the slopes entering
Eq. are defined as O,U® = a®0,U°, where o is computed via a Barth-Jespersen limiter procedure that uses
the reconstructed solution at quadrature point on the boundaries % e’ e e Ne.

3.4 Block-structured adaptive mesh refinement

The dG schemes and FV schemes are integrated into a block-structured adaptive mesh refinement algorithm (AMR)
[60, 6T, [62] that represents the solution as a hierarchy of levels of refinement ranging from coarsest (£ = 0) to finest
(¢ = flanest)- Each level is represented by the union of non-overlapping logically-rectangular grids of a given
resolution.

Here, the grids at level £ = 0 are generated at the beginning of the simulation and cover the entire domain;
the corresponding implicitly-defined mesh is also generated at startup and does not change during the simulation.
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Figure 7: (a) Ilustration of the operations performed by the interpolation operator Ipi+1, and the restriction
operator Ryi1,. (b) Example of an AMR configuration where the fine element Q?H covers portions of the two
distinct coarse elements 2} and Z2.
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Grids at levels ¢ > 0 are created and destroyed dynamically during the simulation, and the corresponding implicitly-
defined meshes follow the same dynamic evolution. We consider AMR configurations where dG schemes are used
at the levels 0 < £ < lgpest while the FV scheme is always used at the finest level £ = fg,055. This includes the case
where AMR uses dG schemes only or the case where AMR consists of a single-level FV scheme. The present AMR
strategy also supports the use of different order basis functions at different dG levels and, as such, is referred to
as hp-AMR. Figure @ shows an example of a 3-level hp-AMR configuration with a refinement ratio of 4 between
level 0 and level 1 and a refinement ratio of 2 between level 1 and level 2. The figure also shows that dG schemes
are used at levels 0 and 1 and a F'V scheme is used at the level 2. This configuration is typical of what one would
expect for a discontinuity attached to a curved boundary.

The dynamic update of the AMR levels is governed by tagging and un-tagging operations, whereby a cell at
a given level is assigned a two-value variable, or tag, that determines whether a finer resolution is required at its
location or whether the existing set of finer grid cells can be replaced by a coarse cell. These operations require
coarsening and refinement operations that transfer the solution between levels. For instance, when a coarse cell is
tagged for refinement and a finer grid is overlaid on it, the solution from the coarse level needs to be interpolated to
the newly created fine grid. Conversely, the solution at a fine level must be restricted to the corresponding coarser
level to determine whether or not the fine grid is still required at that location. These operations must preserve
the high-order accuracy of the method and must be available for all the possible combinations of the numerical
schemes used between consecutive levels. Nevertheless, these are linear operations local to elements and therefore
can be efficiently implemented using matrix-vector products taking advantage of parallelization offered by dG and
FV schemes.

To illustrate how interpolation and restriction are performed here, we introduce the vector X, of the solution
at the level ¢. For a level that uses a dG scheme, X, contains the coefficients of the basis functions representing
the conserved variables, whereas, for a level that uses the FV scheme, X, collects the element averages of the
conserved variables. For the interpolation and restriction operations, we consider the FV scheme as a dG scheme
of discontinuous constant basis functions. This means that interpolation to the finest level returns the element
averages, which are subsequently used to perform the reconstruction and limiting process presented in Sec.(3.3.1)).
Note that interpolation is never performed from the finest level and therefore the reconstructed slopes are not used
during the interpolation and restriction operations.

As sketched in Fig.), the interpolation operator I,y;, computes the solution Xy at the fine level ¢ + 1
from the solution X, at the coarse level ¢, and is formally written as

X1 =T 60X, (19)

In Eq.7 Iyy1 4 is a block-structured matrix computed using a Galerkin projection, so that, given an element 9;_1_1
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of the fine level £ 4+ 1 and an element &; of the coarse level ¢ for which the interpolation operation is meaningful,

the block Ij«iﬁ,é is given by

5=l [ BB, (20
D NPy

It is worth giving a practical example of how the interpolation operator I, ¢ acts on X,. Consider Fig.(
which shows a two-element coarse mesh M, = {2}, 2?7} associated with a 1 x 2 coarse grid, and a five-element
fine mesh My, , = {2}, 1, D71, -+ D}y, } associated with a 2 x 4 grid that is obtained by refining the coarse
grid with a refinement ratio of 2. Then, X, consists of the basis functions coefficients of the elements %} and 27,
X 41 consists of the basis functions coefficients of the elements 2}, to 27 ;. The interpolation operation given
in Eq. becomes

b

where, for an element e on level ¢, B} contains the basis functions and M7 is the mass matrix as defined in Eq.
b

1,1
X%H I/, 0
2 I271 0
X Lt x!
3 _ ; ¢
xiot=| e o | {3 (21)
X I 742 ¢
Xngl 0410 g+21,1f
1 0 Iy,

where each block IZf; ,» with e =1,...,5 and ¢ = 1,2, is computed via Eq. QD While the first, second, third
and fifth rows of Eq. are the result of a trivial application of the Galerkin projection, it is interesting to derive
the interpolation operation given in the fourth row of Eq.. First, with reference to Fig.)7 note that the fine
element 2! .1 is the result of a merging operation and covers portions of the two distinct coarse elements 2} and
2?. Then, assuming for simplicity that X, contains the basis functions coefficients of a discontinuous scalar field
u: Mp, = R at the coarse level ¢, the Galerkin projection of u onto the fine element Q?H is given by

£4+1
=(Mjq)7! (/@ B;%LB,}dV> X+ (Mg )™t ( B;}IrlB?dV> X;=1Ip X, +1;% ,X] (22)

a7’
241 241

where the last equality is obtained by noting that @gﬂlrl = .@?ﬂ N2} and @gﬂlr/l = .@élﬂ N 22, and by using Eq..

The structure of I,y given in Eq. reflects the configurations of the coarse and the fine meshes displayed in
Fig.), including the merging between cells; moreover, if @f_/H N 2§ = 0, then the corresponding block wa isa
zero matrix.

Figure ) also sketches the inverse of the interpolation operation, namely the restriction operation, where a
solution X, at a coarse level £ is computed from the solution X 41 at a fine level £+ 1 using the restriction operator
Ry,

Xo=Rpp+1X041. (23)

Following Fortunato et al.[63], the restriction operator can be defined as the adjoint of the interpolation operator
and can evaluated as follows
Ry = MfI}H,EMeH, (24)

where M, denotes the block-diagonal mass matrix associated to the entire level ¢, i.e. M, = diag({M73;}). Note
that Eq. can also be obtained by applying the Galerkin projection from the fine level £+ 1 onto the coarse level
{ and using Eq.. For the case shown in Fig.)7 Eq. becomes

1

Xgﬂ

x! AT it AT AT 0 X
l _ M—1 0+1,0 0+1,0 0+1,0 0+1,0 M X3 25
X% - V4 0 0 0 I4,2'|' I5,2'|' l+1 £+1 . ( )

0+1,0 041,40
+1, +1, X§+1
X€+1

A few comments are worth pointing out:

11



e The interpolation and restriction operators defined via Eqs. and , respectively, are valid regardless of
the choice of basis functions and can accommodate AMR levels using different mesh sizes, polynomial orders

or both. In particular, they are valid even if the same mesh uses the same space of basis functions with
different polynomial orders; this feature will be used to define the shock sensor discussed in Sec.(3.4.1)).

e From an implementation perspective, given an hp-AMR configuration, one only needs to evaluate the inter-
polation operators and the Cholesky decomposition of the mass matrices; then the restriction operator can
be applied on-the-fly using Eq.. Moreover, all the standard rectangular elements (which represent most
of the mesh elements) share the same mass matrix, which can precomputed and stored at the beginning of
the simulation; the same applies to the interpolation operator between two standard rectangular elements of
two different AMR, levels. For the remaining implicitly-defined mesh elements, the mass matrices and the
interpolation operators are in general unique and are computed using high-order quadrature rules [54].

e The mass matrix and interpolation operator are formally given by M, and I, , that dynamically change as
the hp-AMR levels evolve. However, these matrices are composed of localized blocks that can be computed
and stored after each regridding.

e The interpolation and restriction operations are well-defined in all configurations of the implicitly-defined
mesh obtained from the cell-merging algorithm as long as tagged cells are not merged with non-tagged cells.
This situation can always be avoided by making sure that if an extended cell is tagged for refinement, so are
all the small cells merged with it.

As the last comment on the present Ap-AMR strategy, recall that when the right-hand side of Eq.@ or @[) is
to be evaluated, the coupling between neighboring elements e and e’ occurs solely through the numerical flux ﬁ‘n
appearing in the boundary integrals over . e’ This applies equally to the cases when e and e’ belong to the same
hp-AMR level or when e and €’ belong to different hp-AMR levels, including the level using the FV scheme. In fact,
at a generic quadrature point x of . eve/, F,, is computed as F,, = F,(U®, Uel), where U*€ is the solution evaluated
at x using either its representation in terms of basis functions, if the element e belongs to a level using a dG scheme,
or the reconstruction provided by Eq., if the element e belongs to a level using the FV scheme. However, is
it pointed out that at the boundary between two levels using different schemes, the order of the quadrature rules
must be high enough to provide an accurate integration of the contributions from the higher-order scheme.

3.4.1 Cell tagging and shock sensor

Two main criteria are employed to tag the elements for refinement and update the AMR levels during the simulations.
The first one is a simple criterion that uses the magnitude of the density gradient. In particular, an element e of
the AMR level ¢ is tagged for refinement if the following condition is satisfied

1
o 2
= | 1wl av > x (26)

where m€ is the volume of 2°, ||Vp|| denotes the magnitude of the density gradient and «/ is a threshold parameter
that determines which elements of the /-th level are tagged for refinement. In general, a more advanced tagging
criterion, involving for example the entire set of conserved variables and/or higher order derivatives, is recommended
to capture a wider variety of flow configurations, such as discontinuous shear flows. However, for the simulations
considered here, the criterion given in Eq. was tuned to use a low-order dG scheme in regions of constant flow
and high-order dG schemes in regions of smooth flows. Then, cells at the dG level ¢ = lq,05¢ — 1 are tagged for
refinement and replaced by the cells at the FV level £ = fgp0s; using the second criterion discussed next.

The second criterion is the so-called shock-sensor, which is used to determine whether the solution inside an
element is behaving like a discontinuous field. Here, we employ the shock sensor introduced by Persson and Peraire
[50] suitably modified to account for the implicitly-defined mesh. In Ref.[50], the Authors defined the following
smoothness indicator s® for the e-th mesh element

[ (U—=T)? AV
[,. U2 av

86

(27)

where U is a field of the conserved variables, e.g. the density, and U is the same field expressed using a lower-order
set of basis functions. For standard rectangular elements, U can be computed by considering a truncated series
of the basis functions containing the terms up to order p — 1, where p is the order of the basis functions used to
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represent U. However, for implicitly-defined elements, the truncated series would not preserve the average of the
field U in U and would degrade the efficacy of Eq.(27)). Therefore, at the level ¢ using the space Vp,, U is evaluated
using the Galerkin projection of the field U onto the space Vj,(,—1). A discontinuity is then assumed to be present
if an element e if the following condition is satisfied

log;o(s“) > —4log;o(p) + K°, (28)

where p is the order of the polynomial basis functions employed at the level containing the element e, and x* is a
threshold parameter that determines which elements are tagged for refinement. The effect of the parameter x° on
the evolution of the hAp-AMR levels will be discussed in the numerical examples. It is worth noting that in Ref.[50]
the Authors employed the smoothness sensor given in Eq. to inject a suitably-chosen artificial viscosity to the
governing equations. Here, it is employed only to activate the AMR level that uses the FV scheme. We note that
the refinement conditions given in and are used not only to tag the elements for refinement but also to
remove the finer grids on regions where they are no longer needed.

4 Numerical tests

In this section, the capabilities of the proposed method are assessed for two- and three-dimensional test cases. In all
computations, an approximate two-shock Riemann solver [55] is used to compute the numerical flux F',, appearing
in Egs.(7) and (9). Tensor-product Legendre polynomials of degree p are used to define the spaces Pr,p and Vi, and
the corresponding dG scheme is labelled as dGy,.

Whether a single level or an hp-AMR is used, the time evolution of the solution unknowns associated to the
generic mesh element can be written as

M°X° = A°(t, X), (29)

where A°(t, X) is the result of the evaluation of the right-hand side of Eq.(7) (for dG schemes) or Eq.(9) (for
FV schemes), X contains the solution unknowns of the whole problem, and, if the element e belongs to a level
implementing the FV scheme, M° = diag(m®) and X¢ =U° X formally contains the solution unknowns of all
the mesh elements but only the neighbors of the e-th element are needed to compute A in Eq..

The integration of Eq. over all mesh elements of the hp-AMR hierarchy is performed explicitly in time using
a high-order TVD Runge-Kutta (RK) algorithms [30]. The order of the RK algorithm is chosen to match the
highest spatial discretization order among the levels; for example, if a two-level mesh uses a dG; scheme and a
dGs scheme, Eq. is integrated in time at both levels via a third-order RK algorithm. The time step of the RK
algorithm is chosen to be the smallest time step among the levels. Specifically, at level £ covering a subregion 2 of
the domain 2 with grids of characteristic mesh size hy, the time step 74 is subject to the CFL condition

T Cv
me G
e Ae

(30)

where \¢ = maxg, (\/m +a) is the maximum wave speed on %y given by the sum of the velocity magnitude VUV,
and the speed of sound a, 7y is the volume fraction threshold that triggers the merging process for the small cells,
and C; = 0.3 if the level £ uses a FV scheme or Cy = 1/(2p + 1) if the level £ uses a dG,, scheme. Then, the time
step of the Runge-Kutta algorithm is 7 = miny 7¢. All the computations use v = 1.4 and all reported quantities are
non-dimensional.

4.1 Supersonic vortex

In this test, we consider a two-dimensional supersonic vortex problem with an exact smooth solution that has
been employed in several studies to investigate the accuracy of numerical methods for inviscid gas dynamics, see
e.g. [64] 28]. The problem consists of isentropic flow in a circular annulus of inner radius r; = 1 and outer radius
ro, = 1.384. The exact solution for density pexact, Pressure Pexact, and velocity components viexact and vVoexact are
given by the following expressions

-1, AV Pxact :
Pexact = Pi |:1 + 7M2 < - 1>:| sy DPexact = %7 Vlexact = —Vo sinf and V2exact — Vg COS 0, (31)

where vy = a;M;"*, r is the distance between a point inside the annulus and the center of the annulus, and p; = 1,
a; =1 and M; = 2.25 are the density, sound speed and Mach number, respectively, at r = r;.
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Figure 8: (a) Geometry of supersonic vortex problem defined in the background square [0,1.43]%. (b) Density
distribution and (c) density error obtained using a 16 x 16 background mesh and a dGs scheme.

The problem is defined in the background square #Z = [0,1.43]?> where the domain 2 and its boundaries are
represented by the level set function

{ r2—12 if v < (r;+71,)/2

2 2

. ith 7% = : 2
e —rs otherwise ) With 7= 2T (32)

O(x) =
Figure ) shows the geometry of the problem and indicates the boundary conditions. The exact solution given in
Eq. is used to define the initial conditions for Eq.. The system is integrated in time until a steady state is
reached. We consider two error measures

e, (P, Pexact) = llp = pexact[l2 4 e (P, Pexact) = m’ (33)
||pexact|‘2 ||pexact||oo
where || - ||2 and || - ||oo are the standard Lo(2) norm and Lo (2) norm, respectively, defined on the domain 2,

p is the value computed using the present approach and pexact iS given by Eq.. The steady-state solution is
assumed to be reached when the relative error between the evaluation of the norms given in Eq. between two
consecutive time steps is less than 107°. For all considered simulations, this occurred at ¢ > 5.0.

The simulations are performed using a single-level mesh, with h = 1.43/n, where n is the number of elements
per side of the background square, and where the volume fraction threshold 7 = 0.3. Figure ) shows the
density distribution obtained using a 16 x 16 background mesh and a dGg scheme; the corresponding density error
distribution is reported in ﬁg.), which also shows that the maximum error is observed near the inner boundary
of the annulus. The error measures defined in Eq. are shown in Fig.@ as functions of the numerical scheme
and the mesh size h. As seen in the figures, the dG schemes show an O(hP*1) convergence rate in the Ly norm and
an O(hP*1/2) convergence rate in the L., norm, while the FV scheme using the reconstruction (without limiting)
presented in Sec. obtains the same convergence rate as the dG; scheme, albeit with a slightly larger error.

4.2 FEmbedded Sod’s shock tube

In the second test, we consider Sod’s shock tube problem in embedded geometries. These simulations assess the
ability of the implicitly-defined mesh and the reconstruction and limiting technique presented in Sec.(3.3.1)) to
reproduce a one-dimensional flow within a geometry that is not aligned with the background grid.

The problem is defined in the background unit cube % = [0,1]¢ as shown in Fig.(10). In 2D, the tube is a
strip of width 2r centered at ¢ = {0.5,0.5} whose orientation is defined by the parameter 6, which denotes the
inclination of the tube’s centerline. In 3D, the tube is a cylinder with a circular cross section of radius r centered
at ¢ = {0.5,0.5,0.5} whose orientation is defined by the two parameters 6 and ¢, which denote the azimuth and
the elevation, respectively, of the tube’s centerline. For convenience, we introduce a rotated coordinate system éf]
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Figure 9: Convergence in (a) the Ly norm and (b) the Lo, norm of the density error for the supersonic vortex

problem.
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Figure 10: (a) Two-dimensional and (b) three-dimensional geometry for the tilted Sod’s tube problem defined in
the background square [0, 1]2 and in the background cube [0, 1]3, respectively.
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Figure 11: Density distribution at times ¢t = 0, ¢ = 0.04 and ¢t = 0.20 for the 2D embedded Sod’s shock tube problem
(top row) and the 3D embedded shock tube problem (bottom row). The orientation angles § = 30°, in 2D, and
0 = 60° and ¢ = 30°, in 3D, are those defined in Fig.. For the 3D case, the density distribution is represented
by isosurfaces of p = {0.15,0.3,0.6,0.7,0.8,0.9}.

(in 2D) or £7¢ (in 3D) centered in e, where £ is aligned with the tube’s centerline and the unit vectors have the
following components

X 0 —sing o cosfcos¢p —sinf —cosfsing
{&,17} = { (;iorfﬂ , ccs)‘ﬁ } or {£,1n,(} = sinfcos¢g , cosf , —sinfsing (34)
> sin ¢ 0 cos @

in 2D or 3D, respectively. Then, a convenient way to represent the domain and its boundaries is through the level
set function ®(x) =72 —r? in 2D, or ®(x) = 7% + (? —r? in 3D, where £, 5 and ¢ are the components of z in the
rotated coordinate system.

The initial conditions are given by

- 1 0.125
Uy if (1, —¢)§ <0 L R
Ult=0,2) =14 -0 X . where UL={ 0 a ut={ o Y 35
( ®) { Uy if (1 —¢)§>0 where: o 1 an 0 0.1 (35)
~y—1 ~y—1

and the final time is 7' = 0.2. Wall boundary conditions are prescribed along the embedded boundaries. At the
intersection between the domain and the background cube’s boundary, ghost states with the initial conditions are
prescribed at the quadrature points.

The solution to Sod’s shock tube problem consists of three waves: a rarefaction wave, a contact discontinuity
and a shock wave. To account for the presence of the discontinuities, a two-level mesh is employed. Level £ = 0 is
obtained by subdividing the background domain into 64% cells and uses a dGsy scheme. Level ¢ = 1 is constructed
using a refinement ratio of 4 and is dynamically updated from level 0 using the shock sensor described in Sec.(3.4.1)).
Specifically, at time ¢, the smoothness indicator s® given in Eq. is computed for each element of the implicitly-
defined mesh at level 0; then, the elements satisfying the condition are tagged for refinement to level 1. In
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Eq., ks = —2.00 for the 2D problem and x; = —2.45 for the 3D problem. Finally, the implicitly-defined mesh is
generated using volume fraction thresholds 7y = 7; = 0.3 in 2D and 7y = 7; = 0.15 in 3D. It is worth pointing out
that the implicitly-defined elements are simple polygons in 2D, whereas they have curved surfaces in 3D. However,
as shown in the results, this will have very little effect on the computed numerical solutions.

The top row of images in Fig. shows the density distribution at times t = 0, t = 0.04 and ¢ = 0.20 for the 2D
tube corresponding to the orientation § = 30°. The bottom row of images in Fig. shows the density distribution
at the same times for the 3D tube corresponding to the orientation § = 60° and ¢ = 30°. In 3D, the density
distribution is represented by isosurfaces of p = {0.15,0.3,0.6,0.7,0.8,0.9}, which allow us to see the rarefaction
wave, the contact discontinuity and the shock along the tube. Figure also displays the evolution of the mesh
level using the FV scheme, whose location is identified by the stepped black lines. The figure shows that the FV
level tracks the shock discontinuity but not the contact discontinuity. Although it is possible to adjust the constant
Ks in in such a way as to make the FV level track the contact discontinuities, numerical experiments show
that these discontinuities are only temporarily tracked by the FV scheme and, once they are sufficiently smoothed,
they stop satisfying the condition and start being tracked by the unlimited dG scheme. This is an expected
behavior since shocks steepen while contact discontinuities do not.

The robustness of the proposed approach is tested by considering four orientations each in 2D and 3D while
keeping the same settings for the implicitly-defined mesh and the shock sensor. Figure shows the results
at the final time ¢ = 0.2 for orientation angles § = 0°, 30°, 45° and 60°, in 2D, and for orientation angles
{0,0} = {0°,0°}, {0°,30°}, {45°,60°} and {60°,30°}, in 3D. The first row shows the density distribution for the
four 2D configurations, the second row shows the corresponding pressure distribution, the third row shows the
density distribution for the four 3D configurations and the fourth row shows the corresponding pressure. For the
3D cases, the density distribution is represented by isosurfaces of p = {0.15,0.3,0.6,0.7,0.8,0.9} while the pressure
distribution is represented by isosurfaces of p = {0.15,0.6,0.7,0.8,0.9}. For all configurations, the coupled dG-FV
scheme is able to reproduce the one-dimensional flow in embedded curved geometries that are not aligned with the
background grid. This can be seen more clearly by looking at line plots of the density and pressure distribution
along the centerline and the wall for the embedded shock tubes at the final time ¢ = 0.2. Figures ), )7
) and ) show the density along the centerline, the pressure along the centerline, the density along the wall
and the pressure along the wall, respectively, as functions of the local reference system coordinate £ and the 2D
tube’s orientation. Similarly, Figs.(I4p), (I4p), (14k) and (14H) show the same quantities as functions of the local
reference system coordinate £ and the 3D tube’s orientation. As seen in the figures, the rarefaction wave, the contact
discontinuity and the shock wave are all well captured by the proposed approach and match the one-dimensional
solution well, regardless of the orientation of the embedded geometry. Moreover, the numerical results in the tilted
geometries are nearly indistinguishable from the numerical results in the aligned geometry, which can be viewed as
a reference solution where the implicitly-defined mesh has little effect.

Finally, we note in Fig.7 the wall values in 2D are those computed at n = r, i.e. at the upper embedded
boundary of the tube, whereas the wall values in 3D are those computed at = ( = 7 = r/1/2, i.e. at one line on
the embedded boundary of the tube. Similar results are observed if the wall values are evaluated at other boundary
locations.

4.3 Shock reflection

In the third test, we consider a shock reflection from a cylinder in 2D and a shock reflection from a sphere in
3D. These problems have been investigated experimentally [65] and allow us to assess the capabilities of numerical
methods to capture the shock structure as well as the details of the smooth flow patterns.

Shock reflection from a cylinder in 2D is defined in the background unit square Z = [0,1]?. The geometry is
represented by the level set function ®(x) = 72 — (x5, — ¢ )(zx — cx) where ¢ = {0.5,0.5} and r = 0.1 are the center
and the radius of the cylinder, respectively as shown in Fig.). The shock is initially located at x1 = ds = 0.2
and travels towards the cylinder at a mach number M = 2.81. The initial conditions are given by

1
Ug if 1 <ds R
= = wh = 0
Uit=0z) { U(If it >d, ere U 0 (36)

~y—1
where Ug is derived from the shock jump relations [56]. Wall boundary conditions are prescribed on the boundary
of the cylinder and at o = 0 and x5 = 1; inflow boundary conditions are prescribed at 1 = 0 and outflow boundary
conditions are prescribed at x5 = 1. The final time of the simulation is 7' = 0.2.
We use a four-level mesh with a refinement ratio of four at each level. Level £ = 0 uses a dG; scheme and a
mesh size hg = 1/64; level £ = 1 uses a dG3 scheme and is generated from level 0 using xf = 0.5 in (26)); level £ = 2
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Figure 12: Density and pressure distribution for the eight configurations of the embedded shock tube problem at
(first row) density distribution in 2D, (second row) pressure distribution
in 2D, (third row) density distribution in 3D and (fourth row) pressure distribution in 3D. For the 3D cases, the
density distribution is represented by isosurfaces of p = {0.15,0.3,0.6,0.7,0.8,0.9} and the pressure distribution is
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Figure 13: Distribution of density and pressure at the final time ¢ = 0.2 as functions of the orientation of the 2D

Sod’s shock tube; (a) density along the centerline, (b) pressure along the centerline, (c) density along the wall and
(d) pressure along the wall.
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Figure 14: Distribution of density and pressure at the final time ¢ = 0.2 as functions of the orientation of the 3D

Sod’s shock tube; (a) density along the centerline, (b) pressure along the centerline, (c¢) density along the wall and
(d) pressure along the wall.
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Figure 15: Illustration of (a) the problem of a shock reflecting from a cylinder and (b) the problem of a shock
reflecting from a sphere.
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Figure 16: Distribution of the density p and the density gradient magnitude ||Vpl|| at times (a) t =0, (b) t = 0.1
and (c) t = 0.2 for a shock reflecting from a cylinder. The inset in figure (b) shows a close-up of the contact
discontinuity and the Mach stem. In the images, the stepped black lines denote the outline of the AMR levels.

uses a dGs scheme and is generated from level 1 using x{ = 2.0 in ; level ¢/ = 3 uses the FV scheme and is
generated from level 2 using k* = —3.25 in . Finally, cell merging is triggered by the volume fraction thresholds
Ty =11 = Uy = 13 = 0.3.

Figure shows contour plots of the density p and the density gradient magnitude ||Vp|| at t = 0, t = 0.1
and t = 0.2. The figure also show the configurations of the AMR levels and how they adapt to the location of the
travelling discontinuities. By looking at Fig.)7 one can see how the FV level tracks the shock reflecting from
the cylinder as well as the shock attached to the surface. Similarly, once the incident shock has moved past the
cylinder (Fig.(16f)), the FV level remains attached to the cylinder’s surface to track the shock in the wake.

Figure so illustrates the difference in how shocks and contact discontinuities are resolved during the
simulation. In particular, by comparing Fig.) and Fig.)7 one can see that shocks are always resolved by
the FV scheme, whereas the contact discontinuity is initially tracked by the FV scheme but, once smoothed, it
starts being tracked by the dG schemes. This is consistent to the results of the embedded shock tube test presented
in Sec.(.2). To illustrate the benefits of using high-order schemes versus low-order schemes, Fig.(L7h) shows the
density and the density gradient magnitude at time ¢t = 0.16 for the simulation described above, whereas Fig.)
shows the density and the density gradient magnitude at time ¢ = 0.16 but with k* = —4.00. A lower value of k*®
increase the number elements where a discontinuity is sensed and, for this test case, causes the contact discontinuity
to be tracked by the FV scheme. By comparing the insets of Fig.) and Fig.), it is clear that the dGj3 scheme
provides better resolution of the rollup of the contact discontinuity than the solution obtained with the F'V scheme.

Finally, Fig. shows the comparison between the Schlieren photograph from Ref.[65] of a shock reflection
from a cylinder and the results computed at t = 0.14. As seen in the figure, the hp-AMR strategy allows us to
capture all the details of the flow structures observed in the experiments.

The case of a shock reflection from a sphere is modelled in 3D as shown in Fig.(T5p). The problem is defined in the
background unit cube Z = [0, 1]3. The geometry is represented by the level set function ®(x) = 72 —(x,—cy) (zx —ck)
where ¢ = {0.5,0.5,0.5} and r = 0.1 are the center and the radius of the sphere, respectively. The shock is initially
located at x1 = ds = 0.2 and travels towards the sphere at a mach number M = 2.89. The initial conditions are
given by Eq.. Wall boundary conditions are prescribed on the boundary of the sphere and at 9 = 0, x5 = 1,
z3 = 0 and x3 = 1; inflow boundary conditions are prescribed at 7 = 0 and outflow boundary conditions are
prescribed at x5 = 1. The final simulation time is T' = 0.2.

We use a four-level mesh with a refinement ratio of four between the levels. Level £ = 0 uses a dG; scheme
and and a mesh size ho = 1/8; level £ = 1 uses a dGgs scheme and is generated from level 0 using x{ = 0.5 in ;
level £ = 2 uses a dG3 scheme and is generated from level 1 using «; = 2.0 in ; level ¢ = 3 uses the FV scheme
and is generated from level 2 using k°* = —3.5 in . Cell merging is triggered by the volume fraction thresholds
Ty =Ty = Uy = U3 = 0.15.

20



8.00

4.00

dG1 dGl

500

250

[IVoll

Figure 17: Distribution of the density p and the density gradient magnitude ||Vp|| computed at time ¢ = 0.16 using
different values of the threshold parameter x° entering the shock-sensor condition ([28): (a) k* = —3.25 and (b)
k* = —4.00. The insets show a close-up on the vortex of the contact discontinuity.
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Figure 18: Comparison between the experimental Schlieren photograph of Ref.[65] and the numerical solution at
t = 0.14. All flow features observed experimentally, such as the reflected shock (R.S.), the primary Mach stem
(M.S.1), the primary contact discontinuity (C.D.1), the primary triple point (T.P.1) and the vortex (V.), are well
captured.

21



FVv

8.00

4.00

500
250

0
Vol

t=0 t=0.10 t=0.20

Figure 19: Distribution of the density p and the density gradient magnitude ||Vpl|| at the times ¢t =0, ¢t = 0.1 and
t = 0.2 for a shock reflecting from a sphere. The inset shows a closeup on the shock propagating on the sphere
surface at ¢t = 0.1.

Figure shows the density p and the density gradient magnitude ||Vp|| at t =0, ¢ = 0.1 and ¢t = 0.2. In the
figure, the density on the surface of the sphere is represented by a continuous contour plot and, within the fluid
domain, by isosurfaces evaluated at p = {1.5,2.0,...,7.5}. The figure also shows the trace of the FV level on the
planes o = 0.5 and z3 = 0.5; for the sake of visualization the AMR levels £ = 0, 1 and 2 are not displayed. Similar
to 2D, one can see how the FV level tracks the reflected shock.

The comparison between experimental observations and the numerical results is shown in Figs.) and )7
which show the Schlieren photograph fom Ref.[65] of shock reflection from a sphere and the results at ¢ = 0.16.
Although small differences likely due to viscous effects can be seen inside the wake behind the sphere, the hp-AMR
strategy captures all the details of the flow structures observed in the experiments.

4.4 Shock reflection from a convex-concave surface

The final example is another shock reflection problem consisting of a shock reflecting from a convex-concave wall as
illustrated in F ig.. Shocks reflecting from curved surfaces have been recently investigated experimentally and
numerically [66} (67 [68] because of their importance in shock-focusing applications. Here, we model the experimental
test of Ram et al.[66], who provided highly resolved measurements of the transition from regular to Mach reflection
for the problem depicted in Fig..

The problem is defined on the background rectangle #Z = [—80,122.5] x [0,120]. The height of the numerical
domain is larger than the height of the observation region in the experiments to avoid any reflection from the
top boundary. The convex-concave wall consists of two surfaces generated by two circular arcs and a flat surface.
With reference to Fig., the radius of the cylinders is » = 60.6, while the location of their centers is given by
¢, = {rsind,—rcosf} and ¢, = {rsind,r(2 — cos#)} with 6 = 65°. Then, the geometry is defined by the level set
function da(x) "

o a(x L 1 > cp1 N o < Cp2
&(x) = { max{d;(x),ds(x)} otherwise ’ (37)

where dy () =r — \/(xk — cak) (T — Car), da(x) = \/(ﬂck —cpr)(xp — o) — r and dz(x) =21 —cpy — 7

The shock is initially located at 21 = 0. Following the experiments [66], we consider three shock Mach numbers,
M =119, M = 1.30 and M = 1.41. The initial conditions are given by Eq. where d; = 0. Wall boundary
conditions are prescribed on the convex-concave surface and at the top boundary of the background rectangle,
whereas inflow boundary conditions are prescribed at 1 = —80. The final time of the simulation is chosen to make
sure the shock does not reach the flat wall.

We use a four-level mesh with a refinement ratio of four between levels. Level £ = 0 uses a dG; scheme with
mesh size h = 3.75; level £ = 1 uses a dG3 scheme and is generated from level 0 using x{ = 0.005 in ; level
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Figure 20: Comparison between the experimental Schlieren photograph from Ref.[65] and the numerical solution
at t = 0.16. The flow features observed experimentally, such as the reflected shock (R.S.), the primary Mach stem
(M.S.1), the secondary Mach stem (M.S.2), the primary triple point (T.P.1) and the secondary triple point (T.P.2),
are well captured.
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Figure 21: Illustration of the problem of a shock reflecting from a convex-concave wall.
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¢ = 2 uses a dG3 scheme and is generated from level 1 using k7 = 0.02; level £ = 3 uses the FV scheme and is
generated from level 2 using k* = —4.00 in . Finally, cell merging is triggered by the volume fraction thresholds
Ty =71 =Ty =75 = 0.3.

Figure show the distribution of the density p at selected times for the different Mach numbers. In the figure,
the inset of each image shows a close-up of the region where the shock is attached to the curved surface and allows
us to distinguish the different shock structures. For instance, for the M = 1.19 case reported in the left column of
Fig., the reflection structure transitions from regular reflection at ¢ = 12 to Mach reflection at ¢ = 30. Similarly,
the last row of Fig. highlights the formation of the secondary triple point. The images also show the outline of
the FV level, which is able to track the shock in all its difference configurations.

The different shock structures can be seen more clearly in Fig., which shows the density gradient magnitude
|[Vpl| at the same times as shown in Fig.(22)), allowing us to see the effect of the Mach number on the flow patterns.
For instance, at t = 12, the flow with M = 1.19 is characterized by regular reflection, the flow with M = 1.41 is
characterized by Mach reflection and the flow with M = 1.30 is transitioning between the two configurations.

Finally, using a sequence of snapshots such as those presented in Fig., one can quantitatively compare the
numerical results with the experimental measurements. Specifically, in Ref.[66], the Authors measured the distance
dy, between from both the primary triple point and the secondary triple points to the reflecting surface and plotted
d,, versus the angle of the reflecting surface at the foot of the Mach stem, 6,. The comparison between the
experiments and the numerics is shown in F igs.)7 ) and )7 which corresponds to the cases M = 1.19,
M = 1.30, M = 1.41, respectively. As shown by the figures, the embedded-boundary hp-AMR framework is able
to reproduce the experimental measurements with remarkable accuracy.

5 Conclusions and future work

We have presented a methodology for solving the equations of inviscid gas dynamics on structured grids with an
embedded boundary representation of complex geometry. The novel features of the approach are the coupling of a
discontinuous Galerkin method that provides high-order accuracy in regions of smooth flow with a Finite Volume
method that provides robust shock-tracking capabilities of solution discontinuities through an hp adaptive mesh
refinement strategy and an implicit mesh approach that enables high-order accurate resolution of the geometry.
The methodology uses a compact-stencil AMR discretization strategy, is fully explicit and does not require the
introduction of additional variables (e.g. the auxiliary flux in artificial-viscosity methods).

The methodology has been tested on embedded-geometry problems with and without solution discontinuities.
The supersonic vortex problem of Sec. demonstrates the high-order accuracy of dG schemes for smooth flows,
while the remaining examples illustrate the performance of the method on problems with discontinuities in several
configurations.

The method offers several avenues of improvements and further research. First, the current AMR strategy relies
on the definition of two parameters, namely £} and k%, entering Eqs. and . Here, x/ is chosen to ensure that
regions of constant fields are resolved with low-order dG schemes while the remaining parts of the domain where the
flow is smooth are resolved with high-order dG schemes. In addition, x° is chosen so that contact discontinuities
transition as soon as possible from being in treated the FV scheme to being treated by dG, while making sure
shocks are always contained within the F'V level. In the simulations, this criterion allowed high-order accuracy in
the regions of smooth flow and robustly captured the travelling shocks but led to a problem-dependent choice of
the threshold parameters. Therefore, more advanced conditions for the dynamic evolution of the hp-AMR levels,
including more sophisticated shock sensors [69, [70, [71} [72], or a more robust treatment of the coupling between the
FV and the dG schemes, using e.g. a posteriori limiters [73] [74], [75], might be beneficial.

Second, Eq. is integrated in time using high-order TVD Runge-Kutta schemes, which are very efficient
for many practical applications but are limited to fourth order accuracy. Methods such as the spectral deferred
correction methods [76} [77,[78] or ADER schemes [79,[80, [74, [75] could be implemented within the present framework
to obtain space-time orders of accuracy that are higher than the ones considered here.

The numerical test cases considered in Sec. used geometries that could be described by relatively simple
level set functions. This does not represent a fundamental limitation of the proposed framework, which could be
employed to model more complex geometries, e.g. including sharp edges or corners, provided that the corresponding
high-order quadrature rules are available. In fact, it is worth pointing out that even the simple three-dimensional
embedded geometries considered in Sec. induce very complex configurations of cut and merged elements, which
are robustly handled by present approach in both static and dynamic AMR configurations. However, implicitly-
defined meshes where cells are split by embedded boundaries that are smaller than the cell size would required
doubly-value cells, which are currently not supported.
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Figure 22: Density distribution at selected times for shock reflection from a convex-concave wall at different Mach
numbers: (left column) M = 1.19, (center column) M = 1.30 and (right column) M = 1.41. In each image, the
inset shows a close-up of the region where the shock is attached to the curved surface. The time is reported in the
bottom right corner of each image.
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Figure 23: Density gradient distribution at selected times for shock reflection from a convex-concave wall at different
Mach numbers: (left column) M = 1.19, (center column) M = 1.30 and (right column) M = 1.41. In each image,
the inset shows a close-up of the region where the shock is attached to the curved surface. The time is reported in
the bottom right corner of each image.
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Figure 24: Plot of the distance d,, of the triple points from the wall versus the inclination 6,, of wall surface at the
foot of the Mach stem: (a) M = 1.19, (b) M = 1.30, and (c¢) M = 1.41. In the legend of the figures, exp. denotes
the experimental measurements and num. denotes the numerical results, while T.P.1 and T.P.2 refer to the results
of the primary and secondary triple points, respectively, as indicated in the last row of Fig.(23)). Experimental
results are taken from Ref.[GG].

The methodology was implemented using AMReX [62], an exascale-ready software framework for massively parallel,
block-structured adaptive mesh refinement applications. The computations were performed using classic MPI
parallelization and future research will provide a comprehensive scalability analysis involving also the use of modern
accelerators, such as general-purpose graphical processing units.

Future lines of research will also include the addition of viscous and reaction terms to the governing equations
and the implementation of the corresponding dG and/or FV schemes. This will provide high-order numerical
schemes for more complex phenomena, such as combustion, where high-order resolution of curved geometries would
be desirable. Finally, since the methodology already features dynamic adaptivity and dynamic generation of the
implicit mesh, the extension to moving geometry would be relatively straightforward. The moving geometry could
either be a prescribed motion or it could be computed as part of the evolution of the system by evolving different
dynamics on either side of the interface.
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