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MM versus ML estimates of structural equation models with

interaction terms: robustness to non-normality of the consistency

property

Abstract

A standard assumption in structural equation models with interaction

terms is the normality of all the random constituents of the model. In appli-

cations, however, there may be predictors, disturbance terms of equations,

or measurement errors, deviating from normality. The present paper inves-

tigates how deviation from normality affects the consistency of two alter-

native estimators; namely, the maximum likelihood (ML) and the method

of moments (MM) estimators. The ML approach requires full specification

of the distribution of observable variables while this is not required in the

MM approach. It will be seen that while the MM estimator is insensitive to

departures from normality of all the random constituents of the model not

involved in the interaction terms, such deviation from normality distorts con-

siderably the consistency property of the ML estimator. The paper provides

analytical results showing the consistency of MM when using a proper selec-

tion of moments up to order three, and presents a Monte Carlo illustration

showing how the consistency of the ML estimator breaks down when there is

deviation from normality. It is concluded that for a variety of distributions

of the data, the MM method gives consistent estimates while ML does not.

Keywords: maximum-likelihood, method of moments, third-order mo-
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ment, asymptotic bias, latent-variable, structural relation
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1 INTRODUCTION

Structural equation models are widely used in many disciplines for ana-

lyzing observational multivariate data (see, for example, the review paper

of Sánchez, Budtz-Jorgenson, Ryan and Hu (2005), and Yuan and Bentler

(2007)). The typical form of these models are linear relations among latent

variables. In recent years, however, models with interaction effects among

latent variables have become of increasing importance in research in psycho-

metrics, education, marketing, and related disciplines, since they can account

for more interesting features of the relations among variables under study.

Even though a common assumption for analyzing these non-linear models

is that all latent variables are normally distributed, the manifest variables

are non-normally distributed due to the presence of the underlying interac-

tion (non-linear) terms. So standard methods for linear structural equation

models can not be used. There are several ways for analyzing these kinds of

models, however here we refer to just a few key papers. For a more detailed

overview see Mooijaart and Bentler (2010). Relevant literature in the area

of interaction models are the edited book of Schumacker and Marcoulides

(1998), and the seminal papers of Kenny and Judd (1984) and Jöreskog and

Yang (1996). In assessing models with interaction terms, the necessity of

using more information than first- and second-order moments (for instance,

higher-order moments) is shown in Mooijaart and Satorra (2009).

Presently, a dominant approach to analyze these kind of models is maxi-
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mum likelihood (ML) under the assumption of normality of all the stochastic

components of the model; see Klein and Moosbrugger (2000), Lee and Zhu

(2002), and the computer package Mplus (Muthén and Muthén, 2007). Re-

lated to this ML approach is the Bayesian approach in which the likelihood

function is augmented with a prior density function in order to deal with

small samples; see Arminger and Muthén (1998), Lee (2007), Lee, Song and

Tang (2007). Recently, however, Mooijaart and Bentler (2010) advocate the

alternative of using the method of moments (MM) to analyze structural equa-

tion models with interaction terms. In their paper they give examples where

the MM is a practical alternative to the classical ML method. In the present

paper we compare the virtue of the two methods in the often encountered

set-up where the assumption of normality for stochastic components of the

model is violated. In specifically, we investigate whether the basic – and

essential – property of consistency of estimates do still hold when specific

stochastic components of the model deviate from normality. Since the ML

approach requires full specification of the distribution of the observable vari-

ables, while the MM method does not involve distributional specification, one

may wonder whether the two types of estimators may differ with respect to

the properties of robustness to a distributional specification such as normal-

ity. It will be seen that while the MM approach is insensitive to deviations

form the normality assumption, the ML method fails dramatically to comply

with the consistency property of the estimator when non-normality arise.

The paper is structured as follows. We next present a simulation ex-
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ample that gives Monte Carlo evidence of the lack of robustness of ML to

violation of normality assumption of stochastic components of the model.

A subsequent section gives a theorem that provides theoretical foundation

for the consistency of the MM estimator under deviation from normality.

A discussion of the implications of the findings concludes this paper. An

appendix provides analytical details of the first- second- and higher-order

moment structure involved in the theoretical part of the paper.

2 EXAMPLE

In this section we compare the results of the ML and the MM method for a

non-linear factor model where some factors are normally distributed and one

factor is non-normally distributed. Interaction of normally distributed factors

are included in the model. Furthermore, it is assumed that the measurement

errors and disturbance deviate highly from normality. In EQS formulation

the model can be written as:

V1 = F1 + E1 (1)

V2 = .6 ∗ F1 + E2 (2)

V3 = F2 + E3 (3)

V4 = .7 ∗ F2 + E4 (4)

V5 = F3 + E5 (5)
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V6 = .8 ∗ F3 + E6 (6)

V7 = .1 ∗ V999 + .2 ∗ F1 + .4 ∗ F2 + .6 ∗ F3 + .4 ∗ F4 + E7 (7)

In these regression equations a “∗” means that the corresponding param-

eter is a free parameter which has to be estimated and V999 is a vector with

unit elements only. Factor F1 and F2 are normally distributed and factor

F4 is an interaction factor defined as F4 = F1F2. Factor F3 is standardized

chi-square distributed with one degree of freedom, i.e. highly deviant from

the normality assumption. The errors terms, Ej, j = 1, . . . , 7, are scaled

chi-square distributions with one degree of freedom. The specification of the

variances/covariances of the factors and the errors is given in Table 1. It is

obvious from the specification of the model above that, except for the factors

F1 and F2, all factors and error variables are highly skewed variables, with

the consequence that all observed variables are also highly skewed.

In this example a small Monte Carlo study is carried out in which the

sample size is n = 500 and the number of replications is 200. The main ob-

jective is to compare the performance of ML versus MM method with respect

to parameter estimates. In the MM method all means, variances and covari-

ances are fitted and in addition just one third-order moment; specifically,

the third-order moment V1, V3, V7. The MM estimation have been carried

out for the interaction model using EQS (Bentler and Wu, 2010) with the

specification of LS method.
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Figure 1: qq-plot for the AGLS corrected chi-square test statistic
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2.1 Results

As an indication of the non-normality of the six observed variables, for an

arbitrary sample of n = 500, the univariate skewness of the seven observable

variables were found to be 0.97, 1.59, 0.65, 1.08, 2.67, 2.62, 1.99; i.e., the

variables are highly skewed. For both ML and MM methods, MPlus con-

verges 197 out of the 200 replications; for the MM method, EQS converges

in all 200 replications.

Table 1 gives the true values of the population parameters and for the

ML and MM method: the bias of the parameter estimates, the standard

deviations of the estimates, and the means of the estimated standard errors.

Lines in bold in this table are related to the structural part of the model.

Comparing ML with MM we see that there is a substantial difference between

the bias of the two methods. For the MM method, estimates of the bias

seem to be reasonable, whereas the bias of ML is unacceptable high for

some parameters. In particular, for the structural part of the model (see

bold lines in the table), the regression equation, the estimates are far off

from the true values. For instance, the mean (across replicates) of the most

critical parameter, the interaction effect, is .83 (a bias of .43, i.e., a 107.5%

deviation from the true value), whereas for the MM method the mean across

replications is .41 (a bias of .01, i.e. a deviation of 2.5% from the true

value). From Table 1 we also see that the standard deviation of estimates

across replications and the means (across replications) of the standard errors

of estimates (computed in each replication run) are close to each other for
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the MM method, which indicates that the standard errors of estimates are

estimated in the MM method. For the ML method we see larger differences

between the empirical (Monte Carlo) standard errors and the means (across

replications) of the standard errors computed for each sample run.

Table 2 shows information on the distribution of goodness-of-fit test

statistics in the case of the MM method (unfortunately, such a goodness-

of-fit test statistics do not exist for ML). From this table, it is seen that

the goodness-of-fit test statistics delivered by the MM method are approx-

imately chi-square distributed as predicted by the asymptotic theory. The

same conclusion can be drawn from Figure 1 that shows a qq-plot of the fit of

the AGLS corrected chi-square to a chi-square distribution with 17 degrees

of freedom (the value of the Kolmogorov-Smirnov test for the fit to a chi

-square distribution is D = .12, p-value=.33).

Based on this small Monte Carlo study, in particular based on the es-

timates of the bias, we conclude that when basic stochastic components of

the model deviate from normality, the ML method breaks down severely

whereas the MM approach behaves with the bounds that are expected were

the variables normally distributed. Robustness of the MM method against

non-normality refers to consistency of estimates (i.e. lack of asymptotic bias),

estimates of standard errors and chi-squareness of the goodness-of-fit test.
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3 THEORETICAL FOUNDATIONS

This section describes a general structural equation model (SEM) with in-

teraction terms for which the robustness of MM and ML estimators against

non-normality of the factors not involved in the interaction terms is investi-

gated. The model distinguishes two types of stochastic constituents of the

model: an independent (possible latent) vector variable ξ that is assumed

to be normally distributed; vector variables ε, δ and ζ that are assumed to

be uncorrelated among them, independent of ξ, and free from the normality

assumption (except for finiteness of second-order moments). The model con-

sidered is an extension of the LISREL model to include interaction terms;

that is (this extends the model considered in Klein and Moosbrugger, 2000)

η = α +B0η + Γ1ξ + Γ2 (ξ ⊗ ξ) + ζ (8)

y = νy + Λyη + ε

x = νx + Λxξ + δ

where y (p× 1), x (q× 1), η (m× 1) and ξ (n× 1), with the other vector and

matrices of conformably dimensions. The matrix Γ2 contains the regression

coefficients for the interactions or quadratic factors on ξ. Some or all of the

elements of Γ2 can of course be set to zero. In practice just a few of the

elements of Γ2 will be free parameters. Model (8) can be written as
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y = νy + ΛyB
−1α + ΛyB

−1Γ1ξ + ΛyB
−1Γ2(ξ ⊗ ξ) + ΛyB

−1ζ + ε (9)

x = νx + Λxξ + δ

where the matrix B = I − B0 is assumed to be nonsingular. By defining

ỹ = y − E[y] and x̃ = x − E[x] and φ = E[ξ ⊗ ξ], where E[] denotes

expectation operator, the model with variables in deviation from the means

is

ỹ = ΛyB
−1Γ1ξ + ΛyB

−1Γ2(ξ ⊗ ξ − φ) + ΛyB
−1ζ + ε (10)

x̃ = Λxξ + δ

Using the linear equations (9) and (10), the population first- second- and

third-order moments of the observable variables can be expressed (using al-

gebra of moments of linear equations) in terms of model parameters. The

first- second- and third-order moments as a function of the model parameters

of equations (9) and (10) are listed in Lemma 1 of the Appendix.

From the moment structures expressed in Lemma 1, the following theorem

applies.
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Theorem 1

Assume model (8) holds, and ξ is normally distributed and independent

of δ, ε and ζ. Then

1. The first- and second-order moments of observable variables x and y

(see (11) to (15) of Lemma 1 in the Appendix) are free of the distribu-

tion of δ, ε and ζ.

2. The third-order moments of x (the components of σxxx, see (16) of

Lemma 1 in the Appendix) are NOT free of the distribution of δ.

3. The third-order moments of the vector z = (x′, y′)′ involving at least on

component of x (the components of σxxy and σxyy, see (17) and (18) of

Lemma 1 in the Appendix) are free of the distribution of δ, ε and ζ.

4. The third-order moments of y (the components of σyyy, see (19) of

Lemma 1 in the Appendix) are NOT free of the distribution of ε and ζ.

We now consider the MM estimation of the model. Assume the model

(8) holds with the loadings, regression coefficients and variance matrices of

independent variables being a function of a parameter vector θ that varies in

Θ, a compact subset of Rq. Let z1, . . . , zn be iid observations (a sample of

size n) from the vector of observable variables z = (x′, y′)′, and let sn be the

sample vector of first- second- and (a selection of) third-order moments of z.

Condition 1 The selected third-order moments included in sn do involve

at least one x and at least one y (for example, sxyy and sxxy)
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Clearly, since the sample is iid, it holds that sn
P→ σ0, when sample size

n→∞. Assume z has finite sixth-order moment; then, from the iid assump-

tion, we have the asymptotic distribution result
√
n(sn − σ0)

L→ N (0,Γ)

where the matrix Γ is a function of moments of z up to sixth-order. Since sn

can be expressed (asymptotically) as iid sum of product variables vector ti

of order up to three, a consistent estimator Γ̂ of Γ is obtained simply as the

sampling variance of the tis.

Given the results of the Lemma 1, that express the moments up to order

three as a function of parameters, when the model holds we have σ0 = σ(θ0)

where θ0 ∈ Θ. We assume that σ(θ) is a continuously differentiable vector-

valued function of θ with full column-rank Jacobian ∂σ(θ)/∂θ′ |θ=θ0 . The

WLS-MM estimator θ̂ is defined as the minimizer of the function f(θ) defined

by the quadratic form

f = (sn − σ(θ))′Wn(sn − σ(θ))

associated to the model σ(θ). Here Wn is a weight matrix that may be sample

dependent and which converges in distribution to W > 0. Often Wn is simply

an identity matrix, leading to a LS- MM estimator. Under this set-up, the

following corollary applies.

Corollary 1 Under the assumptions of Theorem 1 and Condition 1, the

MM estimator θ̂ is a consistent estimator of θ0, i.e. θ̂
P→ θ0 when n→∞.

Corollary 2 Under the assumptions of Theorem 1 and Condition 1, the
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quadratic form statistic

T = n(s− σ̂)
(
Γ̂−1 − Γ̂−1∆̂(∆̂′Γ̂−1∆̂)−1∆̂′Γ̂−1

)
(s− σ̂),

where σ̂ = σ(θ̂), ∆̂ = ∂σ(θ)/∂θ′ |θ=θ̂ and Γ̂ is a consistent estimator of Γ, has

an asymptotic chi-square distribution with degrees of freedom equal to p∗− q,

p∗ being the number of moments involved in s and q the length of θ.

Both corollaries are direct application of result related to WLS of moment

structures (see e.g., Satorra, 1989).

4 CONCLUSIONS

Corollaries 1 and 2 guaranty the validity of the regular MM estimators for

the general class of models (8). The results of the Monte Carlo study in

section above, corroborates the results put forward by Corollaries 1 and 2

regarding the robustness of the MM method to non-normality. The non-

robustness of the ML method shown by the Monte Carlo study supports the

conjecture that the ML approach is sensitive to non-normality. That is, the

ML method, which assumes normality for all stochastic components of the

model, does not ensure consistency of estimates of interaction effects and

other parameters when exogenous variables, disturbance terms of equations,

and measurement errors deviate from normality.

15



REFERENCES

Arminger, G. & Muthén, B. (1998). A Bayesian approach to nonlinear latent

variable models using the Gibbs sampler and the Metropolis-Hastings

algorithm. Psychometrika, 63, 271-300.

Bentler, P. M. (2000-08). EQS 6 structural equations program manual. En-

cino, CA: Multivariate Software, Inc. (www.mvsoft.com).

Klein, A. G., & Moosbrugger, H. (2000). Maximum likelihood estimation

of latent interaction effects with the LMS method. Psychometrika, 65,

457-474.
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5 APPENDIX: PROOF OF LEMMA 1

This appendix proves Lemma 1 which is prior to derive the main theorem of

the manuscript. The following notation will be used for second-, fourth- and

sixth-order moments respectively of the observable variables and the vector

variable ξ.

σxxx = E[x⊗ x⊗ x]

σxxy = E[x⊗ x⊗ y]; σxyx = E[x⊗ y ⊗ x]; σyxx = E[y ⊗ x⊗ x]

σxyy = E[x⊗ y ⊗ y]; σyxy = E[y ⊗ x⊗ y]; σyyx = E[y ⊗ y ⊗ x]

σyyy = E[y ⊗ y ⊗ y]

φ2 = E[ξ ⊗ ξ]

φ
(1)
4 = E[(ξ ⊗ ξ − φ2)⊗ ξ ⊗ ξ]

φ
(2)
4 = E[ξ ⊗ (ξ ⊗ ξ − φ2)⊗ ξ]

φ
(3)
4 = E[ξ ⊗ ξ ⊗ (ξ ⊗ ξ − φ2)]

φ4 = E[(ξ ⊗ ξ − φ2)⊗ (ξ ⊗ ξ − φ2)]

φ6 = E[(ξ ⊗ ξ − φ2)⊗ (ξ ⊗ ξ − φ2)⊗ (ξ ⊗ ξ − φ2)]

Clearly, the moments σxxy, σxyx and σyxx can be related linearly among them

using a permutation matrix, and the same for σyxy, σxyy and σyyx, so all the
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properties that apply to one form of the third-order moments do apply to

the other equivalent forms.

Lemma 1 Assume model (8) holds, and ξ is normally distributed and

independent of δ, ε and ζ. Then the following expression for the first- second-

and third-order moments apply:

µx = νx (11)

µy = σ + A2φ2 (12)

σxx = (Λx ⊗ Λx)φ2 + E[δ ⊗ δ] (13)

σxy = (Λx ⊗ A1)φ2 (14)

σyy = (A1 ⊗ A1)φ2 + (A2 ⊗ A2)φ4 + E[w ⊗ w] (15)

σxxx = E(δ ⊗ δ ⊗ δ) (16)

σxxy = (Λx ⊗ Λx ⊗ A2)φ
(3)
4 (17)

σxyy = (Λx ⊗ A1 ⊗ A2)φ
(3)
4 + (Λx ⊗ A2 ⊗ A1)φ

(2)
4 (18)

σyyy = (A1 ⊗ A1 ⊗ A2)φ
(3)
4 + (A2 ⊗ A1 ⊗ A1)φ

(1)
4 (19)

+(A1 ⊗ A2 ⊗ A1)φ
(2)
4 + (A2 ⊗ A2 ⊗ A2)φ6 + E[w ⊗ w ⊗ w]

Proof: Since ξ is assumed to be stochastically independent of all the

other random components of the model, it follows that ξ is stochastically

independent of w = ΛyB
−1ζ + ε. We remain also of the notation a = νy +

ΛyB
−1α; A1 = ΛyB

−1Γ1, A2 = ΛyB
−1Γ2, so the general model can be written

19



as (see (9))

x = νx + Λxξ + δ

y = a+ A1ξ + A2(ξ ⊗ ξ) + w

which, in deviation of the variable means, implies

x̃ = Λxξ + δ

ỹ = A1ξ + A2(ξ ⊗ ξ − φ2) + w

Clearly, the first-order moments are

σx = E[x] = νx

σy = E[y] = a+ A2φ2

where φ2 = E[ξ ⊗ ξ].

To derive the second-order moments we make use of the following prop-

erty of Kronecker product: (A⊗B)(C ⊗D) = (AC ⊗BD). Clearly

σxx = E[x̃⊗ x̃] = E[(Λxξ + δ)⊗ (Λxξ + δ)] = (Λx ⊗ Λx)φ2 + σδδ

where we used E[δ] = 0, the un-correlation of ξ and δ (due to the inde-

pendence of the two random variables), in conjunction with the notation
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σδδ = E[δ ⊗ δ].

Further

σxy = E[x̃⊗ ỹ] = E[(Λxξ + δ)⊗ (A1ξ + A2(ξ ⊗ ξ − φ2) + w)] = (Λx ⊗ A1)φ2

where we used the normality assumption of ξ to infer E[(ξ ⊗ ξ − φ2)] = 0,

the independence of ξ of δ and w to infer that E[(δ ⊗ (ξ ⊗ ξ − φ2)] = 0 and

E[(ξ ⊗ w)] = 0 and the uncorrelation among δ and w to infer E[δ ⊗ w] = 0.

Finally

σyy = E[ỹ⊗ ỹ] = E[(A1ξ+A2(ξ⊗ ξ−φ2) +w)⊗ (A1ξ+A2(ξ⊗ ξ−φ2) +w)]

= (A1 ⊗ A1)φ2 + (A2 ⊗ A2)φ4 + ψ

where we again used the normality assumption of ξ, the independence be-

tween ξ and w, and the notation ψ = E[w ⊗ w].

Now we derived the third-order moments.

σxxx = E[x̃⊗ x̃⊗ x̃] = E[(Λxξ + δ)⊗ (Λxξ + δ)⊗ (Λxξ + δ)] = E[δ ⊗ δ ⊗ δ]

where we used the normality assumption of ξ (to infer the zero third-order

moments) and the uncorrelated with the centered vector variable δ.
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Using again the normality assumption of ξ and its independence of δ and

w, we easily obtain

σxxy = E[x̃⊗ x̃⊗ ỹ] = E[(Λxξ + δ)⊗ (Λxξ + δ)⊗ (A1ξ + A2(ξ ⊗ ξ − φ2)]

= (Λx ⊗ Λx ⊗ A2)E[ξ ⊗ ξ ⊗ (ξ ⊗ ξ − φ2)] = (Λx ⊗ Λx ⊗ A2)φ
(3)
4

σxyy = E[x̃⊗ỹ⊗ỹ] = E[(Λxξ+δ)⊗(A1ξ+A2(ξ⊗ξ−φ2)+w)⊗(A1ξ+A2(ξ⊗ξ−φ2)+w

= (Λx⊗A1⊗A2)E[ξ⊗ξ⊗ (ξ⊗ξ−φ2)]+(Λx⊗A2⊗A1)E[ξ⊗ (ξ⊗ξ−φ2)⊗ξ]

= (Λx ⊗ A1 ⊗ A2)φ
(3)
4 + (Λx ⊗ A2 ⊗ A1)φ

(2)
4

and

σyyy = E[ỹ ⊗ ỹ ⊗ ỹ]

= E[(A1ξ+A2(ξ⊗ξ−φ2)+w)⊗(A1ξ+A2(ξ⊗ξ−φ2)+w)⊗(A1ξ+A2(ξ⊗ξ−φ2)+w]

= (A1 ⊗ A1 ⊗ A2)E[ξ ⊗ ξ ⊗ (ξ ⊗ ξ − φ2)]

+(A2 ⊗ A1 ⊗ A1)E[(ξ ⊗ ξ − φ2)⊗ ξ ⊗ ξ]

+(A1 ⊗ A2 ⊗ A1)E[ξ ⊗ (ξ ⊗ ξ − φ2)⊗ ξ]

+(A2 ⊗ A2 ⊗ A2)E[(ξ ⊗ ξ − φ2)⊗ (ξ ⊗ ξ − φ2)⊗ (ξ ⊗ ξ − φ2)]

+E[w ⊗ w ⊗ w]

= (A1 ⊗ A1 ⊗ A2)φ
(3)
4 + (A2 ⊗ A1 ⊗ A1)φ

(1)
4 + (A1 ⊗ A2 ⊗ A1)φ

(2)
4
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+(A2 ⊗ A2 ⊗ A2)φ6 + E[w ⊗ w ⊗ w]

Note that it was used that E[ξ ⊗ ξ ⊗ ξ] , E[ξ ⊗ (ξ ⊗ ξ − φ2)⊗ (ξ ⊗ ξ − φ2)],

E[(ξ ⊗ ξ − φ2)⊗ ξ ⊗ (ξ ⊗ ξ − φ2)] and E[(ξ ⊗ ξ − φ2)⊗ (ξ ⊗ ξ − φ2)⊗ ξ] are

zero, since the normality assumption for ξ.

A more compact expression for σxyy and σyyy can be given using commu-

tations matrices as follows (derivations of those expressions can be obtained

by the first author):

σxyy = E[x̃⊗ ỹ ⊗ ỹ] = Txyy(Λx ⊗ A1 ⊗ A2)φ
(3)
4

where Txyy = Ip2q + Iq ⊗Kp,p and Kp,p is the commutation matrix of order p

(see Magnus and Neudecker, 1999).

σyyy = E[ỹ ⊗ ỹ ⊗ ỹ] = Tyyy(A1 ⊗A1 ⊗A2)(A2 ⊗A2 ⊗A2)φ6 +E[w ⊗w ⊗w]

where Tyyy = Ip3 +Ip⊗Kp,p+Kp,p2 is a triplication matrix (see Meijer, 2005).

23



Table 1: Results of Simulation for ML and MM method: bias, standard
deviations and standard errors

ML MM

Intercepts
pars true bias sd se bias sd se
V7 1.00 -.04 .04 .04 .00 .05 .04

Factor variances
pars true bias sd se bias sd se
F1 .49 -.11 .09 .09 .02 .13 .12
F2 .64 -.08 .08 .09 -.01 .08 .08
F3 1.0 -.01 .19 .17 -.03 .16 .13

Factor covariances
pars true bias sd se bias sd se
F1,F2 .2352 -.07 .05 .06 -.01 .04 .04

Error variances
pars true bias sd se bias sd se
E1 .51 .11 .11 .11 -.05 .14 .13
E2 .64 .01 .12 .11 -.03 .10 .07
E3 .36 .08 .09 .08 -.02 .08 .08
E4 .51 .01 .08 .08 -.03 .07 .06
E5 .60 .00 .12 .10 -.03 .09 .08
E6 .36 .01 .07 .07 -.01 .06 .05
E7 .20 -.14 .05 .11 -.02 .06 .05

Factor Loadings, main
pars true bias sd se bias sd se
V2,F1 .60 .06 .10 .11 -.01 .14 .13
V4,F2 .70 .04 .07 .07 .01 .08 .08
V6,F3 .80 .00 .06 .05 .00 .06 .05

Regression equation
pars true bias sd se bias sd se
V7,F1 .20 .15 .12 .11 .01 .09 .08
V7,F2 .40 .10 .08 .08 .01 .07 .06
V7,F3 .60 -.01 .04 .04 .01 .05 .04
V7,F4 .40 .43 .28 .24 .01 .18 .15
The elapsed time for 200 replications is
EQS: 00:00:58
Mplus: 00:45:30
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Table 2: Goodness-of-fit summaries for the MM method

degrees of freedom 17
chi-square statistic 18.85
% of rejections, α = 5% 10.5

AGLS corrected chi-square statistic 18.15
% of rejections, α = 5% 5.6

AGLS F-statistic 1.08
% of rejections, α = 5% 6.1
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