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Huntington’s Disease (HD) is an autosomal dominant disorder caused by excessive CAG 

repeats in the gene encoding the huntingtin protein which leads to progressive 

neurodegeneration that inflicts cognitive, psychiatric, cardiovascular and motor dysfunction. 

There is currently no treatment to prevent or delay the course of the disease. Neuronal loss in 

the striatum is thought to be responsible for the abnormal motor control present in HD patients, 

though the pathophysiology behind the non-motor symptoms is still unclear. Disturbances in 

sleep-wake cycles are common among HD patients with reports of delayed sleep onset, 

frequent bedtime awakenings, and excessive fatigue, and these disruptions are recapitulated in 

mouse models. Because circadian dysfunction manifests early in the disease in both patients 

and mouse models, we sought to determine if early interventions that improve circadian 

rhythmicity could benefit HD symptoms and delay disease progression.  
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Evidence of altered histaminergic signaling in HD patients suggests that this pathway 

may contribute to disrupted rhythms in arousal. Utilizing the Q175 mouse model of HD, we 

demonstrated that nightly treatment with a histamine-3 receptor antagonist/inverse agonist 

improved several behavioral measures of HD including strengthening activity rhythms, cognitive 

performance, and mood, as well as reducing inappropriate activity during the normal sleep 

time. Our findings suggest that drugs targeting the histamine-3 receptor system may be 

beneficial as cognitive enhancers in the management of HD. 

One of the most powerful regulators of the circadian system is the daily feed/fast cycle, 

and in two separate studies we found that three months of time-restricted feeding (6-hours of 

feeding in the middle of the active phase followed by 18-hours fasting) improved the 

sleep/wake cycle, motor symptoms, and autonomic function in both the Q175 and BACHD 

mouse models. 

Finally, we sought to determine whether a ketogenic diet was sufficient to impart motor 

performance and sleep/wake rhythm benefits in BACHD mice similar to those observed under 

TRF. We found that the ketogenic diet improves circadian dysfunction as well as motor 

symptoms in the BACHD mouse model. 

Altogether, these studies support the hypothesis that early interventions that improve 

sleep/wake timing and circadian rhythmicity can ameliorate a range of symptoms of HD and 

related neurodegenerative disorders. 
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Chapter 1: Introduction 

Huntington’s disease (HD) is characterized by cognitive, psychiatric, cardiovascular, and 

motor dysfunction resulting from advancing neurodegeneration (Kuljis et al., 2012; Margolis and 

Ross, 2003). Mortality occurs on average 10 to 20 years after the onset of initial motor 

symptoms. The underlying pathology in HD is caused by a CAG repeat expansion within the first 

exon of the Huntingtin (HTT) gene. When translated, this produces a polyglutamine repeat and 

leads to protein misfolding, soluble aggregates, and inclusion bodies detected throughout the 

body (Ciammola et al., 2006; Saft et al., 2005). Huntingtin (HTT) is expressed throughout the 

body, with higher levels found in the brain than the peripheral tissues. In particular, HTT 

expression is found to be higher in brain regions with increased neuronal density, as well as 

being elevated in neurons versus glial cells (Li et al., 1993; Strong et al., 1993). Similarly, the 

mutant HTT protein (mHTT) is more abundant in neurons than in glial cells with aggregates 

demonstrating a comparable distribution (Bradford et al., 2010). In muscle, aggregates are 

found only in the nucleus of myocytes (Gutekunst et al., 1999). The accretion of mHTT leads to 

the dysfunction of a wide range of cellular processes as well as loss of many normal functions 

(Wright et al., 2017). Loss of neurons in the striatum has been well characterized and is 

considered the hallmark of HD pathology. However, both gray and white matter loss have been 

well described at different stages of HD progression: pre-symptomatic, early in disease, 

postmortem (Bartzokis et al., 2007; Bourbon-Teles et al., 2019; Di Paola et al., 2012; Phillips et 

al., 2016), suggesting that the effects of myelin loss might also be a significant factor in the 

course of the disease. 

HD symptoms manifest at different ages, with an average onset of motor symptoms and 

diagnosis at 40 years of age. Generally, the longer the CAG repeat, the earlier the age of onset 

and the greater the severity of the symptoms (Langbehn et al., 2010). Yet, even among 
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patients with the same CAG repeat length, there is a considerable range in the age of onset and 

severity of symptoms (Gusella et al., 2014; Wexler et al., 2004). Further, cognitive, affective, 

and other symptoms may arise up to two decades before the onset of motor symptoms 

(Paulsen, 2011; Paulsen et al., 2008). Such variability raises the possibility of environmental 

modifiers influencing the disease and suggests that appropriate and early disease management 

strategies can increase the health span of these patients. This possibility is important to pursue 

as there are currently no treatments to prevent or delay the disease course. 

Sleep disorders are extremely common in HD patients and have detrimental effects on 

the daily functioning and quality of life of patients and their caregivers (Aziz et al., 2010a; 

Cuturic et al., 2009; Goodman et al., 2011; Morton et al., 2005). These disruptions in the timing 

of sleep often become apparent years before the onset of the motor symptoms. One of the first 

signs of the disease in HD patients is a phase delay in the nightly rise in melatonin (Kalliolia et 

al., 2014) and, by the end of life, the central circadian clock (suprachiasmatic nucleus, SCN) 

shows evidence of degeneration (van Wamelen et al., 2014). In humans, it is extremely difficult 

to determine if the circadian system is dysfunctional and to explore the underlying mechanisms. 

In the field of HD research, a number of animal models of HD have been developed, each with 

strengths and weaknesses (Pouladi et al., 2013). Broadly speaking, mouse models of HD also 

exhibit a progressive and rapid breakdown of the circadian rest/activity cycle that closely mimics 

the condition observed in human patients, typified by loss of consolidated sleep, increased 

wakeful activity during the sleep phase, and more sleep during the active/awake phase (Table 

1).  

The research work in my dissertation uses two mouse models of HD. The first model, 

the Q175 mouse, is a knock-in model in which the human exon 1 sequence of the huntingtin 

gene is inserted into the mouse DNA with approximately 190 CAG repeats. Among the 
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numerous models available, the heterozygous (Het) Q175 offers the advantage of strong 

construct validity with a single copy of the mutation, genetic precision of the insertion, and 

control of mutation copy number. The Q175 Het become notably symptomatic around 6 months 

of age and reach end-stage disease at around 22 months (Menalled et al., 2012). 

The second model, the Bacterial artificial chromosome (BAC)-mediated transgenic 

mouse model (BACHD), is a transgenic mouse expressing the entire human HTT gene with 97 

mixed CAA–CAG repeats. The BACHD mouse offers the advantage of containing the human 

gene including all the regulatory elements. BACHD mice have a strong progressive phenotype 

starting at 2- to 3-months of age (Menalled et al., 2009). Prior studies have demonstrated that 

these are both strong preclinical models to examine the impact of circadian interventions on the 

disease trajectory (Kudo et al., 2011a; Loh et al., 2013; Menalled et al., 2009; Pouladi et al., 

2013). It is worth noting another well studied model, the R6/2 mouse, which contains N-

terminally truncated mutant Htt with a CAG repeat expansion (~125 repeats) within exon 1 of 

the huntingtin gene. The R6/2 model develops HD-like symptoms as early as 6 to 8 weeks of 

age and suffers rapid decline (Mangiarini et al., 1996). Because circadian dysfunction manifests 

early in the disease in both patients and mouse models, and based upon the hypothesis that 

circadian dysfunction interacts with HD pathophysiology and exacerbates HD-related symptoms, 

we sought to determine if early interventions that improve sleep/wake timing and circadian 

rhythmicity could benefit HD symptoms and modify the course of the disease. Before describing 

the interventions, I will provide some brief background on circadian rhythms that is relevant to 

the dissertation research. 

Robust circadian rhythms are important to our health and wellness, with many studies 

demonstrating that the disturbance of these cycles have broad negative impacts on the body. 

In mammals, the SCN in the hypothalamus contains the “master” oscillatory network necessary 
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for coordinating circadian rhythms throughout the body (Astiz et al., 2019; Challet, 2015; 

Colwell, 2011). The SCN is a bilaterally paired nucleus made up of tightly compacted, small-

diameter neurons just lateral to the third ventricle atop the optic chiasm. Anatomical studies 

generally support the division of the SCN into at least two subdivisions, including a ventral 

”core” and a dorsal ”shell” region. The core neurons are thought to act as an integrator of 

external input, receiving information from three major pathways: the retinohypothalamic tract, 

the geniculohypothalamic tract, and projections from the raphe nuclei. Core neurons 

communicate this environmental information to the rest of the SCN. These sensory processing 

ventral cells exhibit relatively low amplitude rhythms in clock gene expression. Many of the 

neurons that receive retinal input within the core SCN express the neuropeptides vasoactive 

intestinal protein (VIP) or gastrin-releasing peptide (GRP), as well as the neurotransmitter 

gamma-aminobutyric acid (GABA). In contrast, neurons of the dorsal shell appear to generate 

the most robust circadian oscillations, at least at the level of gene expression. The neurons in 

the shell express arginine vasopressin (AVP) or prokineticin 2 (PK2), as well as GABA. The fact 

that many core projections terminate on shell neurons supports the idea that interplay between 

these two centers is responsible for the output of circadian information from the SCN. The 

outputs of the SCN from both core and shell subpopulations largely travel to other hypothalamic 

regions, including the subparaventricular region and the paraventricular nuclei of the 

hypothalamus. These hypothalamic relay nuclei send projections throughout the nervous and 

endocrine systems, providing multiple pathways by which the SCN can convey temporal 

information to the brain and body (Astiz et al., 2019; Welsh et al., 2010).  

Circadian rhythms are driven by cell autonomous molecular feedback loops (Rosbash et 

al., 2007; Takahashi, 2017). At a molecular level, circadian rhythms are generated by an 

intracellular transcriptional/translational feedback loop, driving daily oscillations with a period of 
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approximately 24-hours (hr) in the expression of core clock proteins. Circadian locomotor 

output cycles kaput (CLOCK) and brain and muscle aryl-hydrocarbon receptor nuclear 

translocator-like 1 (BMAL1), the positive components of the clock, bind to E-box sequences and 

drive the expression of the negative elements, period (PER) and cryptochrome (CRY), which can 

inhibit their own transcription by repressing the CLOCK/BMAL1 heterodimer. Once the levels of 

PER and CRY are decreased, the new cycle of transcription/translation is started by 

CLOCK/BMAL1. BMAL1 expression is further regulated through repressed by the circadian 

nuclear receptor REV-ERBα, and activated by the retinoic acid-related orphan receptor (ROR). 

Further, post-translational modifications are crucial for regulating the clock. For instance, the 

serine-threonine kinase casein kinase 1 (CK1) phosphorylates PER and CRY which is vital for 

modulating circadian cycle length. The expression of other clock-controlled genes and output 

genes are modulated by the CLOCK/BMAL1 heterodimer, and a substantial fraction of genes in 

any particular cell or tissue have been found to undergo circadian oscillations (Takahashi, 2017; 

Zhang et al., 2014). Thus, disruption of circadian timing has profound implications. 

These molecular rhythms are not just expressed in the SCN, and work done in the R6/2 

mouse model shows that critical circadian rhythms of both core clock and clock-driven genes 

are abolished in vivo in peripheral organs such as the liver (Maywood et al., 2010). This 

deficiency is accompanied by the arrhythmic expression of the clock genes CRY1 and D site of 

albumin promoter (Albumin D-Box) binding protein (DBP), and a phase-advance in the PER2 

cycle. Functionally, this molecular timing system has a major impact on the expression of genes 

involved in metabolism throughout the body. For example, in peripheral tissues, including 

muscle, the metabolic genes pyruvate dehydrogenase kinase 4 (PDK4) and uncoupling protein 3 

(UCP3), are known to be positively regulated by the peroxisome proliferator activated receptor 

alpha (PPARα) (Dyar et al., 2018), which in turn displays a robust rhythmic expression in many 
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peripheral tissues and modulates BMAL1 expression by directly binding to the BMAL1 promoter 

(Canaple et al., 2006). Daily oscillations in the expression of the network of genes involved in 

mitochondrial lipid metabolism, including PDK4 and UCP3, are associated with oscillations in 

clock gene expression, with the peak during the rest or fasted phase, and REV-ERB-mediated 

repression of lipid mobilization and oxidation in anticipation of the active or feeding phase (de 

Goede et al., 2018a). Glucose levels are also known to exhibit diurnal rhythms. Glucose 

transporters 1 and 4 (GLUT1,4), responsible for basal blood to cytoplasm transport throughout 

the body and brain, and insulin-dependent transport primarily into adipose tissue and muscle, 

respectively, have a peak in expression level at the same time, suggesting increased systemic 

glucose transport and utilization with same-time diurnal variation (La Fleur et al., 1999). There 

is still much work to do to understand how transcriptional regulation by the molecular clock 

interacts with physiological mechanisms. The general assumption is that the temporal pattern of 

transcription favors adenosine triphosphate (ATP) production and energy utilization during the 

active phase while allowing remodeling and repair to dominate during rest (de Goede et al., 

2018b).  

The evidence that the molecular circadian clockwork is disturbed in HD is so far mixed, 

and more work is required to identify at what stage in disease progression these disruptions 

occur. For instance, we have previously reported that the circadian rhythms in PER2-driven 

bioluminescence were altered in the heart but not in the SCN in the BACHD (Whittaker et al., 

2018), while deficits in gene expression rhythms have been found in the SCN of the more 

severely impacted R6/2 model (Morton et al., 2005). There are still large gaps in our 

understanding of the critical rhythmic outputs impacted by the HD mutation, and thus, we 

consider this lack of knowledge a major deficiency in the literature as HD-driven alterations in 

circadian output could be an important clinical symptom of the disease.  
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HD is a neurodegenerative disease, and the most obvious cause of circadian disruption 

could be the loss of one or more cell populations in the SCN. HD patients exhibit a loss of SCN 

neurons by the end of life, with VIP-expressing cells being particularly vulnerable (van Wamelen 

et al., 2013). In prior work, we examined possible anatomical changes within the SCN of the 

BACHD mouse at 3-months of age, coinciding with the point when motor symptoms can first be 

measured. We found that in the BACHD male, but not the female, the SCN was smaller than in 

wild type (WT) mice. There were no differences in AVP or VIP expression within the SCN with 

genotype or sex (Kuljis et al., 2016). In the more severely impacted R6/2 mice, the SCN shows 

decreased expression of VIP and vasoactive intestinal peptide receptor 2 (VPAC2), its receptor 

(Fahrenkrug et al., 2007). Reductions in VIP would be expected to disrupt the population 

rhythms in neural activity within and from the SCN as this neuropeptide plays a key role not 

only in synchronizing SCN cell populations but also its outputs. For instance, VIP projections 

from the SCN are known to regulate the temporal patterns of activity in several major arousal 

centers including the orexin expressing cell population in the lateral hypothalamus. Notably, the 

expression levels of orexin are reduced in HD models (Kotliarova et al., 2005; Petersén et al., 

2005; Williams et al., 2011). Thus, in HD mouse models the expression of peptides and 

neuromodulators is altered in brain regions involved in the neural control of circadian rhythms 

without a significant loss of hypothalamic neurons. 

The circadian system is composed of cell-autonomous clock gene expression rhythms 

that are synchronized and adaptively phase aligned in tissues throughout the body by both a 

rhythmic output from the SCN and local or environmental signals (Mohawk et al., 2012). 

Individual SCN neurons express rhythms in spontaneous firing rate, with higher firing rates 

observed during the day and lower rates at night (Colwell, 2011; Webb et al., 2009). The 

BACHD and Q175 mouse models of HD exhibit decreased electrical activity in the SCN during 
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the day (Kudo et al., 2011a; Kuljis et al., 2018). This decrease in daytime firing in the SCN was 

not seen in the R6/2 model (Pallier et al., 2007) although firing rate deficits were seen in the 

orexin neurons, an SCN-driven output (Williams et al., 2011). Using electrophysiological 

techniques, our laboratory found that SCN neural activity rhythms were lost early in disease 

progression and were accompanied by loss of the normal daily variation in resting membrane 

potential in the mutant SCN neurons (Kuljis et al., 2018). The low neural activity could be 

transiently reversed by direct current injection, thus demonstrating that the neurons have the 

capacity to discharge at WT levels. Exploring the potassium currents known to regulate the 

electrical activity of SCN neurons, our most striking finding was that these cells in the mutants 

exhibited an enhancement in the large-conductance calcium- and voltage-activated potassium 

(BK) currents. The expression of the pore-forming subunit, potassium calcium-activated channel 

subfamily M alpha 1 (KCNMA1), of the BK channel was higher in the mutant SCN. These 

findings show that SCN neurons in the BACHD and Q175 models exhibit early pathophysiology 

and that dysregulation of BK current may be responsible. In humans, there is evidence that 

mHTT interacts with and impairs the function of a number of transcription factors, in particular 

the cyclic adenosine monophosphate (cAMP) response element-binding protein (CREB) (Steffan 

et al., 2000; Sugars and Rubinsztein, 2003; Sugars et al., 2004), a known positive regulator of 

BK expression (Wang et al., 2009). 

Disorganized circadian timing leads to undesirable effects throughout the body (Colwell, 

2015), altering the function of key organ systems including the heart, pancreas, liver, lungs, as 

well as the brain. There is evidence that improving the sleep/wake cycle with sleep-inducing 

drugs (Kantor et al., 2016; Pallier et al., 2007), stimulants (Cuesta et al., 2012), bright light, 

and restricted wheel access (Cuesta et al., 2014) can ameliorate HD symptoms. Collectively, 

this prior research supports the hypotheses that circadian dysfunction interacts with HD 
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pathology leading to the exacerbation of HD-related symptoms and that circadian-based 

therapies can alter the trajectory of a genetically determined disease. The focus of my 

dissertation was to determine if circadian based treatments can be usefully applied to treat 

dysfunction in mouse models of HD. 

One of the most significant regulators of the circadian system is the daily feed/fast cycle 

(Bass and Takahashi, 2010; Tahara and Shibata, 2013). For example, SCN-lesioned animals can 

still be synchronized to a feeding schedule (Acosta-Galvan et al., 2011; Stephan, 2002; Tahara 

et al., 2012). Most of the published work has examined the consequences of placing the feeding 

in the daytime when it is misaligned with normal consumption patterns. However, there have 

been a few studies that found benefits in scheduling the feeding so that it was aligned with the 

normal activity cycle. Notably, the Panda lab has shown that healthy mice under time-restricted 

feeding (TRF) consume equivalent calories from a high fat diet as those with ad libitum (ad lib) 

access, display improved motor coordination, and are protected against obesity, 

hyperinsulinemia, and inflammation (Hatori et al., 2012). The TRF protocol was also beneficial 

in preventing age-induced cardiovascular dysfunction in Drosophila (Gill et al., 2015; Melkani 

and Panda, 2017). In the HD-N171-82Q mouse model, caloric restriction improved motor 

performance and survival while reducing cell death (Duan et al., 2003). Prior work in the R6/2 

mouse model showed that daytime scheduled feeding can restore HD-driven circadian gene 

expression in the liver (Maywood et al., 2010). Thus, TRF may represent a circadian-based 

therapy with the potential to alter the course of a genetic, neurodegenerative disease. 

The mechanisms through which TRF conveys benefits may result from a switch in 

bioenergetic pathways, specific responses to the timing and duration of feeding and fasting, 

and modulation of circadian rhythm timing and strength. Further, through food-anticipatory 

activity and reward behavior, TRF may strengthen and synchronize aspects of the circadian 
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system (Angeles-Castellanos et al., 2010; Astiz et al., 2019; Carneiro and Araujo, 2009; Colwell, 

2015), resulting in improved circadian alignment and enhanced signaling. These effects have 

relevance for HD pathology and symptoms, since normal HTT is found throughout the body and 

possesses many functional roles. These include trafficking of mitochondria (Reddy and 

Shirendeb, 2012), autophagosomes (Martin et al., 2015; Ochaba et al., 2014), and brain-

derived neurotrophic factor (BDNF) as well as its receptors (Gauthier et al., 2004; Liot et al., 

2013). Furthermore, HTT has anti-apoptotic properties (Rigamonti et al., 2000), and interacts 

with a number of transcriptional repressors and activators (Cattaneo et al., 2005). Importantly, 

HTT also promotes the production of BDNF (Zuccato et al., 2010). 

One mechanism through which TRF may convey benefits is by shifting the body into a 

state of elevated ketone body production and increasing serum ketone bodies, termed 

ketogenesis or ketosis. Manipulating the diet to achieve a state of heightened ketone body 

production has been used to treat epilepsy for nearly a century (Bailey et al., 2005). However, 

inducing ketosis as a therapy may come under criticism due to the association of ketone bodies 

with the pathologic state of ketoacidosis associated with Type-I diabetes. However, TRF, as well 

as ketogenic diets and application of exogenous ketone bodies, produces mild states of ketosis, 

with blood ketone levels rarely as high as 5 mM, whereas ketoacidosis occurs when blood 

ketones enter a range of 10 to over 25 mM. Further, central nervous system ketoacidosis has 

not been found to occur with diet (Al-Mudallal et al., 1996). 

Increasing the production of ketone bodies by the liver is dependent upon achieving a 

period during which glycogen stores are being depleted and fatty acids are being mobilized. 

Biochemically, carnitine-palmitoyl transferase 1a (CPT1A), a rate-limiting enzyme of fatty acid β-

oxidation, catalyzes the transfer of long-chain fatty acids from the outer to the inner 

mitochondrial membrane where they are liberated as acyl-CoA. This β-oxidation results in 
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acetyl-CoA that can either enter the Krebs or citric acid cycle, or be used by hydroxymethyl-

glutaryl CoA synthase 2 (HMGCS2) for the production of ketone bodies such as D-β-

hydroxybutyrate (βOHB). HMGCS2 is the fate committing enzyme in ketone body production. 

Importantly, CPT1A and HMGCS2, are expressed in a circadian regulated manner (Chavan et 

al., 2016). Once generated, ketone bodies have multiple fates. One fate of ketone bodies is 

transport to extrahepatic tissues where they are metabolized to generate ATP, with higher 

efficiency and lower production of reactive oxygen species (ROS) compared to glucose (Anton 

et al., 2018; Cahill, 2006; Veech et al., 2001). In addition to their role in bioenergetics, ketone 

bodies have other important roles and signaling functions which include enhancing 

mitochondrial respiration and attenuating oxidative stress (Milder et al., 2010; Tieu et al., 

2003), increasing BDNF expression (Duan et al., 2003), reducing inflammation (Guo et al., 

2018; Youm et al., 2015), functioning in epigenetic modification (Ruan and Crawford, 2018; 

Tognini et al., 2017), and signaling through G protein-coupled receptors (Offermanns and 

Schwaninger, 2015). 

Pathological changes in mitochondrial energy metabolism and ROS production occur in 

HD (Guedes-Dias et al., 2016; Siddiqui et al., 2012), and inducing ketosis may influence 

mitochondrial efficiency and decrease oxidative stress (Milder et al., 2010). Not surprisingly, 

BDNF levels are reduced in human HD patients and in mouse models of HD by as much as 80% 

compared to healthy controls, while BDNF levels are increased 3- to 4-fold in HD mice under 

feeding restriction (Duan et al., 2003; Ferrer et al., 2000).  

There is strong evidence for impairment in the clearance of mHTT in HD (Krainc, 2010), 

and reduction in mHTT levels through degradation has been shown to improve HD symptoms 

(Lee et al., 2015; Walter et al., 2016). Notably, signaling in the mammalian Target of 

Rapamycin (mTOR) molecule has been found to be altered in human TRF trials with 6-hr feed, 
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18-hr fast cycles (Jamshed et al., 2019), and this has important implications for cycles of repair 

and autophagy as well as mHTT proteolysis and clearance (Camberos-Luna et al., 2016). This is 

further highlighted by observations of alterations in cycling levels of markers of autophagy in 

mice, with an accompanying 20% reduction in mHTT, as well as an increase in mesenchymal 

stem and progenitor cells in mice and humans (Brandhorst et al., 2015; Ehrnhoefer et al., 

2018). These effects may be mediated by the switch to ketosis or the timing and duration of 

feeding and fasting, which can impact mTOR, proteolysis, and glymphatic clearance. 

Abnormal activation of microglia, the resident immune cells in the brain, occurs in HD 

patients (Sapp et al., 2001) and both macrophages and microglia express mHTT, which affects 

their function (Crotti et al., 2014). Once activated, microglia release inflammatory factors that 

are toxic to neurons and oligodendrocytes. Activated microglia have been found in the striatum, 

cerebral cortex, globus pallidus, and white matter of the brain from very early stages of the 

disease. Additionally, elevation of the pro-inflammatory cytokines TNF-α, IL-6 and IL-1β have 

been reported in both HD patients and mouse models (Björkqvist et al., 2008; Träger et al., 

2015). Through induction of ketosis and significant elevation of the ketone body βOHB, TRF 

may result in neuroprotection and reduction in inflammation (Guo et al., 2018; Offermanns and 

Schwaninger, 2015; Youm et al., 2015). 

As describe above, disturbances in the timing of the sleep/wake cycle are a well-

established symptom of HD that is also commonly present in other neurodegenerative diseases. 

These behavioral symptoms raise questions about the possible involvement of the circadian 

system. Using mouse models (Table 1), we have demonstrated behavioral and physiological 

circadian disruptions early in disease progression. Notably, these findings do not preclude the 

involvement of other structures involved in HD, such as the basal ganglia, in eliciting a 

disrupted circadian output. The dysfunction found in the circadian system of multiple HD 
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models does, however, raise the question of whether it is possible to ameliorate such symptoms 

and, in the end, to “treat” HD and other neurodegenerative diseases using environmental 

manipulations designed to improve circadian rhythms and enhance the sleep/wake cycle 

(Morton, 2013; Schroeder and Colwell, 2013). My dissertation work consisted of four studies all 

designed to determine whether core principles of circadian medicine could be used to reduce 

the symptoms in mouse models of HD. 

In HD patients, there is evidence that histaminergic signaling is disrupted and could 

contribute to abnormal rhythms in arousal (Shan et al., 2012; van Wamelen et al., 2011). 

Histamine (HA) is a neuromodulator whose levels vary with a daily rhythm, with peak release 

during the active cycle and lower levels during sleep. Histamine-3 receptors (H3R) are widely 

expressed in brain regions involved in cognitive processes and their activation promotes 

wakefulness (Lin et al., 2011; Parks et al., 2014). Thus, in my first study (Whittaker et al., 

2017), we sought to test the hypothesis that daily chronic treatment with a H3R antagonist 

would improve the non-motor symptoms early in the disease progression in the Q175 model. 

Homozygous (Hom) and Het Q175 mice received daily treatment in the early night (Zeitgeber 

Time (ZT) 13) with a H3R antagonist/inverse agonist (GSK189254) for one month. We 

evaluated the effect of the drug compared to vehicle controls on acute locomotor activity as 

well as on daily rhythms in activity and sleep behavior. In addition, we examined the impact of 

the treatment regime on the HD model’s performance in open field, T-maze, and tail suspension 

tests. Finally, as controls, we examined the impact of this treatment on motor performance and 

resident-intruder aggression. 

Because the daily feed/fast cycle is such a powerful regulator of the circadian system, in 

my second study (Wang et al., 2018), we sought to test the hypothesis that TRF (6-hr of 

feeding in the middle of the active phase followed by 18-hr fast) could improve the sleep/wake 
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cycle in the Q175 line. We examined the impact of imposing a regimen composed of 6-hr 

feeding aligned to the middle (ZT 15-21) of the period when mice are normally active (ZT 12-

24) followed by 18-hr of fasting. The treatment was applied to Q175 Hets starting when the 

mutants were 6 months of age and ending when they were 9 months of age. We selected this 

age range because this is when the Het Q175 start to show disrupted sleep/wake cycles and 

when motor symptoms are just beginning. Besides looking at the impact of TRF on rhythms in 

sleep and activity, we also measured the impact on motor symptoms, which are hallmark 

features of HD. Since HD patients experience an array of cardiovascular phenotypes, we used a 

telemetry system to test the hypothesis that TRF improves rhythms in core body temperature, 

heart rate, and heart rate variability driven by the autonomic nervous system. Finally, we 

determined whether TRF would alter the HD-driven transcriptional changes measured in the 

striatum and cortex of the Q175 line.  

In my third study (Whittaker et al., 2018), we sought to test the hypothesis that TRF (6-

hr feeding aligned to the middle of the active phase and 18-hr fasting) could improve the 

sleep/wake cycle in the BACHD line. We also evaluated the impact of the treatment on motor 

performance and autonomic function, and used a BACHD line expressing a PER2::LUCIFERASE 

(LUC) fusion protein as a bioluminescent circadian reporter to look at the impact of TRF on the 

amplitude and phase of clock gene expression. 

In my final study (Whittaker et al., in preparation), using the BACHD line, we sought to 

determine whether ketosis without TRF was sufficient to impart similar benefits to TRF in the 

treatment of HD. First, to test that TRF evokes a rhythm in ketone bodies and that the rhythmic 

increase in ketones persists for the full 3-months of treatment, the serum levels of ketones 

were measured across the 24-hr cycle in WT and mutant mice. Finally, we tested the hypothesis 

that a ketogenic diet could mimic the ketone rhythm observed under TRF and that the induction 
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of ketosis without TRF was sufficient to impart motor performance and sleep/wake rhythm 

benefits similar to those observed under TRF.  

Recent studies have raised the possibility that neuronal loss is accompanied by myelin 

breakdown in the striatum (both caudate and putamen) and in the corpus callosum early in the 

HD process (Bartzokis et al., 2007; Bourbon-Teles et al., 2019; Colwell and Ghiani, 2019). Using 

the BACHD mouse model, we have found evidence of axonal and myelin loss early in disease 

progression (3-months of age). In ongoing experiments, we are evaluating the impact of 3-

months of TRF on axonal and myelin loss, as well as on other markers of central pathology in 

HD. 
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Table 1-1: Summary of circadian phenotypes from mouse models of Huntington’s disease. 

Phenotype Models Citations 

Low amplitude 
activity rhythms 

R6/2, BACHD, 
Q175, HD 
rats, HD 
sheep 

(Balci et al., 2013; Bode et al., 2009; Kudo et al., 
2011a; Kuljis et al., 2016; Loh et al., 2013; Morton et 
al., 2005, 2014; Oakeshott et al., 2011)  

Hypoactivity during 
active phase 

BACHD, 
Q175, 

(Kudo et al., 2011a; Kuljis et al., 2016; Loh et al., 
2013; Morton et al., 2005) 

Hyperactivity 
during rest phase 

BACHD, Q175 (Kudo et al., 2011a; Kuljis et al., 2016; Loh et al., 
2013) 

Increase in cycle to 
cycle variation 

BACHD, Q175 (Kudo et al., 2011a; Kuljis et al., 2016; Loh et al., 
2013)  

Disrupted rhythms 
in sleep, sleep 
fragmentation 

R6/2, R6/1, 
Q175 

(Fisher et al., 2013, 2016; Kantor et al., 2013; 
Lebreton et al., 2015; Loh et al., 2013) 

Low amplitude 
rhythms in 
autonomic driven 
rhythms in heart 
rate, core body 
temperature. 

R6/1, R6/2, 
BACHD, Q175 

(Cutler et al., 2017; Kiriazis et al., 2012; Kudo et al., 
2011b; Mielcarek, 2015; Schroeder et al., 2016) 

Disrupted rhythms 
in hormones 

R6/2 (Dufour and McBride, 2016; Rudenko et al., 2019) 

Loss of melanopsin 
expressing retinal 
ganglia cells that 
carry light 
information to the 
central circadian 
clock (SCN) 

R6/2, N171-
82Q 

(Lin et al., 2019; Ouk et al., 2016) 

Disrupted rhythms 
in electrical activity 
in the SCN 

BACHD, Q175 (Kuljis et al., 2018, 2016) 

Disrupted gene 
expression rhythms 
in central clock 

R6/2 (Morton et al., 2005) 

Disrupted gene 
expression rhythms 
outside SCN 

R6/2 (Maywood et al., 2010; Morton et al., 2005) 

Pathology in central 
clock 

R6/2, BACHD (Fahrenkrug et al., 2007; Kuljis et al., 2016)  
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Chapter 2: Possible use of a histamine-3 receptor antagonist for the management of nonmotor 

symptoms in the Q175 mouse model of Huntington’s disease 
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Figure 1: Figure 2-1: Serum concentrations of GSK189254 in Hom and Het Q175 mice.  
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Figure 2: Figure 2-2: Chronic administration of GSK189254 strengthened daily activity rhythms in 
Hom and Het Q175 mice.  
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Table 2: Table 2-1: Selected behavioral values for WT control mice.  
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Figure 3: Figure 2-3: Chronic administration of GSK189254 improved some aspects of the daily rhythm in 
cage locomotor activity in Hom and Het Q175 mice.  
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Figure 4: Figure 2-4: Chronic administration of GSK189254 alters the temporal pattern of sleep 
behavior in Q175 mice.  
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Figure 5: Figure 2-5: Chronic administration of GSK189254 improved exploratory behavior as 
measured by the open field test in Hom and Het Q175 mice.  
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Figure 6: Figure 2-6: Chronic administration of GSK189254 improved cognitive performance as 
measured by the T-maze in the Het Q175 mice.  
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Figure 7: Figure 2-7: Chronic administration of GSK189254 improved affect as measured by 
the tail suspension test in Hom Q175 mice.  
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Chapter 3: Time-restricted feeding improves circadian dysfunction as well as motor symptoms 

in the Q175 mouse model of Huntington’s disease 
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Figure 8: Chapter 3: Visual Abstract  
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Table 3: Table 3-1: List of distribution, statistical test, and power for each dataset analyzed in 
this study.  
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Figure 9: Figure 3-1: Locomotor activity rhythms were improved by the TRF regimen. 
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Table 4: Table 3-2: Comparisons of age-matched WT under ad lib conditions to Q175 mice under 
ad lib or TRF regimen.  
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Figure 10: Figure 3-2: TRF prevented disease-caused awakening time without altering the amount 
of sleep behavior.  
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Table 5: Table 3-3: Comparisons of age-matched WT under ad lib to regimen.  
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Figure 11: Figure 3-3: Autonomic output rhythms were improved by the TRF regimen.  
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Figure 12: Figure 3-4: TRF improved motor performance in the Q175 HD model. 

Table 6: Table 3-4: TRF improved motor performance in the Q175 HD model.  
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Figure 13: Figure 3-5: Altered expression level of multiple HD markers in the striatum of the Q175 
HD model. 

Table 7: Table 3-5: Top 10 canonical pathways and upregulators identified using IPA analysis in 
striatum of Q175 under TRF regimen.  
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Table 8: Table 3-6: Full dataset of expression of HD markers in the striatum of Q175 that are 
tested by using NanoString technology.  
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Chapter 4: Circadian-based treatment strategy effective in the BACHD mouse model of 

Huntington’s disease 
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Figure 14: Figure 4-1: Locomotor activity rhythms were improved by the TRF regimen.  
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Table 9: Table 4-1: Rhythms in locomotor activity and sleep behavior in BACHD mice were 
improved by TRF.  
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Figure 15: Figure 4-2: Sleep behavior was altered by the TRF protocol.  



63 

 

Figure 16: Figure 4-3 Autonomic output rhythms from BACHD mice were improved by the TRF 
regimen.  
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Figure 17: Figure 4-4: TRF alters the peak phase, but not the amplitude, of the Per2::luC rhythms 
measured in peripheral organs in vivo.  
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Table 10: Table 4-2: TRF alters the peak phase but not the amplitude of the PER2::LUC rhythms 
measured in peripheral organs in the intact animal. 

Table 11: Table 4-3: TRF alters some aspects of the PER2::LUC rhythms measured in culture in a 
tissue-specific manner. 
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Figure 18: Figure 4-5: TRF improved motor performance in the BACHD model.  
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Table 12: Table 4-4: TRF improved motor performance in the BACHD model.  
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Figure 19. Figure 4-Supplemental figure 1: The temporal pattern of eating is altered in BACHD 
compared to WT controls.  
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Chapter 5: A ketogenic diet improves circadian dysfunction as well as motor symptoms in the 

BACHD mouse model of Huntington’s disease 
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Chapter 5: A ketogenic diet improves circadian dysfunction as well as motor 

symptoms in the BACHD mouse model of Huntington’s disease 

Introduction 

Huntington’s disease is a progressive neurodegenerative disease that imposes motor 

dysfunction accompanied by cognitive, psychiatric, and cardiovascular disturbance (Kuljis et al., 

2012; Margolis and Ross, 2003). HD is caused by a CAG trinucleotide repeat expansion within 

exon 1 of the Huntingtin (HTT) gene in excess of 35 CAG repeats. The CAG repeats are 

translated into abnormally long glutamine segments in the mutant Huntingtin protein (mHTT), 

leading to protein misfolding, soluble aggregates, and inclusion bodies detected throughout the 

body (Ciammola et al., 2006; Saft et al., 2005). The Huntingtin (HTT) protein is expressed 

throughout the body, with higher levels found in the brain than in the periphery. Further, brain 

regions with increased neuronal density are found to have higher HTT, with HTT expression 

being elevated in neurons versus glial cells (Li et al., 1993; Strong et al., 1993). 

Correspondingly, the mHTT protein is also more abundant in neurons than in glial cells with a 

similar distribution of aggregates (Bradford et al., 2010). While the loss of neurons in the 

striatum has been well characterized and is considered the hallmark of HD pathology, both gray 

and white matter loss have been well reported at different stages of HD progression (Bartzokis 

et al., 2007; Bourbon-Teles et al., 2019; Di Paola et al., 2012; Phillips et al., 2016), suggesting 

that the effects of myelin loss might be a significant factor in the disease course. 

The mHTT protein triggers dysfunction or loss in a wide range of cellular processes 

(Wright et al., 2017). Generally, the longer the CAG repeat, the greater the severity of the 

symptoms and the earlier the age of onset (Langbehn et al., 2010), with an average age of 

onset of motor symptoms and subsequent diagnosis around 40. Typically, mortality occurs 10 to 

20 years after the onset of initial motor symptoms, however, even among patients with the 
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same CAG repeat length, there is a significant range in the age of onset and severity of 

symptoms (Gusella et al., 2014; Wexler et al., 2004). Further, cognitive, affective, and other 

symptoms may arise up to two decades before the onset of motor symptoms (Paulsen, 2011; 

Paulsen et al., 2008). This variability supports the possibility that environmental modifiers can 

influence the disease, which suggests that appropriate and early disease management 

strategies can increase the health span and improve the quality of life of these patients. 

Therefore, it is vital to pursue this possibility as there are currently no treatments to prevent or 

delay the course of the disease. 

Sleep disorders are prevalent among HD patients and disruptions in sleep have 

detrimental effects on activities of daily living and the quality of life of patients and their 

caregivers (Morton et al., 2005; Cuturic et al., 2009; Aziz et al., 2010; Goodman et al., 2011). 

Mouse models of HD recapitulate the progressive and rapid breakdown of the circadian 

rest/activity cycle observed in human patients, which is typified by loss of consolidated sleep, 

increased wakeful activity during the rest (light) phase, and more sleep during the active (dark) 

phase (Morton et al., 2005; Kudo et al., 2011; Loh et al., 2013; Kuljis et al., 2016).  

Vigorous circadian rhythms are important to health and wellbeing, and disrupted 

circadian timing can lead to undesirable consequences throughout the body (Colwell, 2015), 

altering the function of key organ systems including the heart, pancreas, liver, lungs, as well as 

the brain. There is evidence that improving the sleep/wake cycle with sleep-inducing drugs 

(Kantor et al., 2016; Pallier et al., 2007), stimulants (Cuesta et al., 2012; Whittaker et al., 

2017), blue light therapy (Wang et al., 2017), bright light, and restricted wheel access (Cuesta 

et al., 2014) can ameliorate HD symptoms. Collectively, this body of research supports the 

hypotheses that circadian dysfunction interacts with HD pathology leading to the exacerbation 
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of HD-related symptoms and that circadian-based therapies can alter the trajectory of a 

genetically determined disease. 

One of the most significant regulators of the circadian system is the daily feed/fast cycle 

(Bass and Takahashi, 2010; Tahara and Shibata, 2013). Notably, SCN-lesioned animals can still 

be synchronized to a feeding schedule (Acosta-Galvan et al., 2011; Stephan, 2002; Tahara et 

al., 2012). Much of the published work investigating the consequences of TRF have done so by 

placing feeding during the rest phase when it is misaligned with normal feeding behaviors. 

However, a number of studies have investigated the effects of scheduling feeding aligned with 

normal activity and feeding behaviors. Notably, the Panda lab reported that healthy mice under 

a high-fat-diet TRF regimen consume equivalent calories as those with unrestricted or ad lib 

access, and that they display improved motor coordination and are protected against obesity, 

hyperinsulinemia, and inflammation (Hatori et al., 2012). In Drosophila, a TRF protocol was also 

beneficial in preventing age-induced cardiovascular dysfunction (Gill et al., 2015; Melkani and 

Panda, 2017). In HD-N171-82Q mice, feeding restriction increased BDNF levels 3- to 4-fold, 

improved motor performance and survival, and reduced cell death (Duan et al., 2003). Prior 

work in the R6/2 mouse model showed that daytime scheduled feeding can restore circadian 

rhythmicity, and reverse HD-driven impairment in the expression of circadian output genes in 

the liver (Maywood et al., 2010). We recently published results demonstrating that TRF (6-hr 

feeding aligned to the middle of the active phase and 18-hr fasting) could improve the 

sleep/wake cycle, motor performance, and autonomic function in the BACHD and Q175 lines 

(Wang et al., 2018; Whittaker et al., 2018). 

In recent human TRF trials utilizing 6-hr feed, 18-hr fast cycles, the diurnal pattern in 

cortisol and the expression of several circadian clock genes were altered, as were markers of 

autophagy, including pre-feeding increases in ketone bodies, the stress response and aging 
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gene sirtuin 1 (SIRT1), and the autophagy gene microtubule-associated protein 1 light chain 3 

(LC3A), and post feeding increases in mTOR and BDNF (Jamshed et al., 2019). This has 

important implications for improving circadian rhythms, cycles of repair and autophagy, as well 

as mHTT proteolysis and clearance (Camberos-Luna et al., 2016). This is further highlighted by 

studies with treatments that promoted alterations in cycling levels of markers of autophagy, 

with an accompanying 20% reduction in mHTT, as well as increases in mesenchymal stem and 

progenitor cells in mice and humans (Brandhorst et al., 2015; Ehrnhoefer et al., 2018). 

Reductions in the levels of mHTT by improved/stimulated autophagy/degradation have been 

shown to ameliorate HD symptoms (Lee et al., 2015; Walter et al., 2016). 

The mechanisms through which TRF conveys benefits have not been fully elucidated and 

may result from a switch in bioenergetic pathways, specific responses to the timing and 

duration of feeding and fasting, modulation of circadian rhythm timing and strength, and 

through food-anticipatory activity and reward behavior (Angeles-Castellanos et al., 2010; Astiz 

et al., 2019; Carneiro and Araujo, 2009; Colwell, 2015).  

One mechanism through which TRF may convey benefits is by shifting the body into a 

state of elevated ketone body production and increasing serum ketone bodies, called 

ketogenesis or ketosis. Increasing the production of ketone bodies by the liver is dependent 

upon achieving a period during which glycogen stores are being depleted, such as during 

starvation, fasting, and very low-carb, high-fat feeding. During these states, ketone bodies are 

generated at higher levels, regulated by the rate limiting enzymes CPT1A and HMGCS2, gating 

beta-oxidation and ketone body production respectively, which are both regulated in a circadian 

manner (Chavan et al., 2016).  

During ketogenesis, fat metabolism in the liver generates the ketone bodies βOHB, 

AcAc, and acetone which accumulate in the blood stream and result in ketosis. Acetone is 
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volatile and readily excreted in the breath. Ketone bodies are transported in the bloodstream to 

extrahepatic tissues where they have multiple fates (Achanta and Rae, 2017; Branco et al., 

2016; Newman and Verdin, 2014). βOHB and AcAc readily enter tissues and cross the blood–

brain barrier (BBB) through monocarboxylic transporters, which have also been identified in 

neurons and glia (Halestrap and Wilson, 2012; Pierre et al., 2000). One fate of ketone bodies is 

to be converted to acetyl CoA in mitochondria and enter the Krebs cycle at the level of citrate, 

bypassing glycolysis to generate ATP. Notably, this happens with higher efficiency and lower 

production of ROS compared to glucose (Anton et al., 2018; Cahill, 2006; Veech et al., 2001). 

While most of the βOHB that is used as an energy source in the brain is synthesized by the 

liver, ketone bodies also undergo synthesis and release by astrocytes (Guzmán and Blázquez, 

2004; Le Foll and Levin, 2016).  

In addition to their role in bioenergetics, ketone bodies have other important roles and 

signaling functions which include enhancing mitochondrial respiration and attenuating oxidative 

stress (Milder et al., 2010; Tieu et al., 2003), increasing BDNF expression (Duan et al., 2003; 

Ferrer et al., 2000), reducing inflammation (Guo et al., 2018; Youm et al., 2015), functioning in 

epigenetic modification (Ruan and Crawford, 2018), and signaling through G protein-coupled 

receptors (Offermanns and Schwaninger, 2015).  

All the above potential benefits have relevance for HD pathology and symptoms. For 

instance, due to the loss of functional HTT, BDNF levels are reduced in human HD patients and 

in mouse models of HD by as much as 80% compared to healthy controls (Ferrer et al., 2000; 

Gauthier et al., 2004) which is likely to have implications for neuronal survival. Additionally, 

pathological changes in mitochondrial energy metabolism and ROS production occur in HD 

(Guedes-Dias et al., 2016; Siddiqui et al., 2012). Further, there is strong evidence for 

impairment in the clearance of mHTT in HD (Krainc, 2010). Finally, abnormally activated 
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microglia, the resident immune cells in the brain, along with peripheral/invading macrophages 

are present in HD patients (Sapp et al., 2001). Both immune cell types express mHTT, affecting 

their function (Crotti et al., 2014). Together, these represent significant therapeutic targets in 

HD. 

Ketogenic approaches have been investigated in the treatment of other 

neurodegenerative diseases, including Alzheimer’s disease (Broom et al., 2019; Newman et al., 

2017; Ota et al., 2019; Roberts et al., 2017) and Parkinson’s disease (Jabre and Bejjani, 2006; 

Kashiwaya et al., 2000; Phillips et al., 2018). 

In this last study, using the BACHD line we sought to test the hypothesis that ketosis 

without TRF was sufficient to impart motor performance and sleep/wake rhythm benefits similar 

to those observed under TRF. To accomplish this, mice were placed on a custom low-

carbohydrate, high-fat diet rich in medium chain triglyceride (MCT) oils that are known to be 

rapidly metabolized in the liver (Brownlow et al., 2013).  

Materials and Methods 

The work presented in this study followed all guidelines and regulations of the UCLA 

Division of Animal Medicine that are consistent with the Animal Welfare Policy Statements and 

the recommendations of the Panel on Euthanasia of the American Veterinary Medical 

Association.  

Animals 

The BACHD mouse model that we used in this study expresses the full-length human 

mutant HTT gene encoding 97 glutamine repeats under the control of endogenous regulatory 

machinery (Gray et al., 2008). Female BACHD dams backcrossed on a C57BL/6J background 

(minimum 12 generations) were bred with C57BL/6J (WT) males from The Jackson Laboratory 

(Bar Harbor, Maine) in our own breeding facility to obtain male and female offspring, either WT 
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or heterozygous for the BACHD transgene. Data were also collected from WT mice from this 

colony. Only male mice were used in this study as there is a sex difference in the circadian and 

motor phenotypes (Kuljis et al., 2016). Genotyping was performed at 15 days of age by tail 

snips, and after weaning, littermates were group housed, until otherwise noted. All animals 

were housed in soundproof chambers with controlled lighting conditions, using a 12-hr light, 12-

hr dark cycle (12:12 LD, intensity 350 lux) for at least two-weeks prior to experimentation. For 

all experiments, a light meter (BK precision, Yorba Linda, CA) was used to measure light-

intensity (lux). The chambers were in the same animal housing facility with controlled 

temperature and humidity, and each chamber held 8 cages of mice, grouped together by 

feeding treatment. All animals received cotton nestlets, and water was made available at all 

times. Except where noted, mice were fed Teklad normal chow diet 7013 (NIH-31 Modified 

Open Formula Mouse/Rat sterilizable diet; Envigo, Madison, WI). 

This study used a total of 60 mice divided into 4 cohorts. The first group of BACHD (20) 

and WT (20) mice were placed on TRF or ad lib feeding and underwent around-the-clock 

ketone and glucose measurements. The second cohort of BACHD (10) and WT (10) mice were 

fed a ketogenic diet (KD) ad lib and measurements of ketones and behavior (sleep, activity, 

motor performance) were performed. Brain regions and peripheral tissues were collected from 

all cohorts for molecular and genetic experiments. 

Time-restricted feeding 

Mice were first entrained to a 12:12 LD cycle for a minimum of 2 weeks prior to any 

treatment. Experimental mice were housed in either normal cages or cages with a custom-made 

programmable food hopper that could temporally control access to food (NIH-31 diet; standard 

chow) and prevent food consumption during restricted times. Mice are coprophagic and were 

moved to new cages twice per week, as determined empirically to be the interval that 
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maintained very clean cages with low fecal count and visibly reduced coprophagic behavior 

during the fasting period. As mice were not moved to new cages between every daily feeding 

and fasting cycle, it is still possible that the mice consumed their own feces during the fast 

interval. The mice were held in these conditions from 3-months of age until collection.  

Ketogenic diet 

 KD treated mice had ad lib access to a custom ketogenic diet (see Supplemental figure 

1; Teklad custom diet TD.10911.PWD, Envigo, Madison, WI). Food consumption was measured, 

and food was renewed twice per week. Mice were fed the KD diet from 10 weeks of age. 

β-hydroxybutyrate and glucose measurements 

 Tail vein blood sampling was performed by making a small incision in the tail vein to 

permit repeat measures (under 3 µL per collection) with minimal pain and stress to the mice. 

Mice were retrieved from cages, placed on a stable surface and were minimally restrained by 

the tail at the time of collection. Blood sampling was performed under normal room lighting 

(350 lux) for testing ZT 0-12 and under dim-red-light conditions (3 lux) for testing ZT 12-24. 

Blood was tested for βOHB (1.5 µL sample). Glucose (0.6 µL sample) was measured at the 

same time as βOHB, when measured. Metabolite measurements were made using a 

commercially available glucose/ketone meter (Precision Xtra Blood Glucose and Ketone 

Monitoring System, Abbott Laboratories, Chicago, IL). Blood flow was stopped by applying 

pressure with sterile gauze to achieve hemostasis. 

Monitoring of cage locomotor activity  

Experimental mice were singly housed in cages with IR motion sensors and analyzed 

using the El Temps (A. Diez-Nogura, Barcelona, Spain; http://www.el-temps.com/principal.html) 

and ClockLab (Actimetrics, Wilmette, IL) programs. The locomotor activity was recorded as 

previously described (Wang et al., 2017). From before 3-months of age, mice were entrained to 
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a 12:12 LD cycle. Locomotor activity data were recorded using Mini Mitter (Bend, OR) data 

loggers in 3-min bins, and 7 to 10 days of data were averaged for analysis. We used the days of 

activity data collected just prior to the motor performance tests when the mice reached 6 

months of age. The data were analyzed to determine the period and rhythmic strength as 

previously described (Loh et al., 2013; Wang et al., 2017). The periodogram analysis uses a χ2 

test with a threshold of 0.001 significance, from which the amplitude of the periodicities is 

determined at the circadian harmonic to obtain the rhythm power. The amount of cage activity 

over a 24-hr period was averaged and reported here as the arbitrary units (a.u.)/hr. The 

number of activity bouts and the average length of bouts were determined using Clocklab, 

where each bout was counted when activity bouts were separated by a gap of 21 min 

(maximum gap: 21 min; threshold: 3 counts/min). The onset variability was determined using 

Clocklab by averaging the daily activity onset values. 

Monitoring of immobility-defined sleep behavior  

Immobility-defined sleep was determined as described previously (Loh et al., 2013; 

Wang et al., 2017). Mice were housed in see-through plastic cages containing bedding (without 

the addition of nesting material). A side-on view of each cage was obtained, with minimal 

occlusion by the food bin or water bottle, both of which were top-mounted. Cages were top lit 

using IR LED lights. Video capture was accomplished using surveillance cameras with visible 

light filters (Gadspot Inc., City of Industry, CA) connected to a video-capture card (Adlink 

Technology Inc., Irvine, CA) on a custom-built computer system. ANY-maze software (Stoelting 

Co., Wood Dale, IL) was used for automated tracking of mouse immobility.  

Immobility was registered when 95% of the area of the animal stayed immobile for 

more than 40 sec, as was previously determined to have 99% correlation with simultaneous 

EEG/EMG defined sleep (Fisher et al., 2012; Pack et al., 2007). Continuous tracking of the mice 



85 

 

was performed for a minimum of 5 sleep-wake cycles, with randomized visits (1-2 times/day) 

by the experimenter to confirm mouse health and video recording. The 3rd and 4th sleep-wake 

cycles were averaged for further analysis. Immobility-defined sleep data were exported in 1-min 

bins, and total sleep time was determined by summing the immobility durations in the rest 

phase (ZT 0-12) and active phase (ZT 12-24). An average waveform of hourly immobile-sleep 

over the two sleep-wake cycles was produced per genotype and treatment for graphical display. 

Variability of sleep onset, sleep offset, and sleep fragmentation was determined using Clocklab.  

Grip strength test 

 Grip strength testing was used to measure neuromuscular function as maximal muscle 

strength of forelimbs. The grip strength ergometer (Santa Cruz Biotechnology, Santa Cruz, CA) 

was set up on a flat surface with a mouse grid firmly secured in place. The grid was cleaned 

with 70% ethanol and allowed to dry before testing each cohort. Peak mode was selected to 

enable measurement of maximal strength exerted. The sensor is reset to zero before each trial. 

Well-handled mice were tested in their active phase under dim red light (3 Lux) and acclimated 

to the testing room for 10 minutes prior to testing. Mice underwent five trials with an inter-trial 

interval of at least two minutes. For each trial, each mouse was removed from its home cage by 

gripping the tail between the thumb and the forefinger. The mice are lowered slowly over the 

grid, and only their forepaws were allowed to grip the grid. Mice are pulled by the tail ensuring 

the torso remains horizontal until they are no longer able to grip the grid. Mice are then 

returned to their cages. The maximal grip strength value of each mouse is utilized. 

Rotarod test – accelerating version 

 The rotarod apparatus (Ugo Basile, Varese, Italy) is commonly used to measure motor 

coordination and balance. This apparatus consists of an axle or rod thick enough for a mouse to 

stand over the top of when it is not in motion and a flat platform a short distance below the 
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rod. The rod is covered with smooth rubber to provide traction while preventing the mice from 

clinging to the rod. In this study, mice were placed on top of the rubber-covered rod. When the 

mice moved at the pace set by the rotation rate of the rod, they would stay on top of it. When 

mice no longer moved at the selected pace, they dropped a short distance to the platform 

below. The time a mouse remains on the rod, before dropping to the platform is the latency to 

fall. Following a 15-min habituation to the testing room, mice were placed on the slowly 

rotating rod. The rod gradually accelerates from 5 rpm to 38 rpm over the course of the trial. 

The length of time the mouse stayed on the rod was recorded. A two-day protocol for the 

accelerating rotarod tests was used. On the first day, the mice were trained on the rotarod over 

5 trials. The maximum length of each trial was 600 sec, and mice were allowed to rest for a 

minimum of 60 sec between trials. On the second day, mice were tested on the rotarod and the 

latency to fall from the rotarod was recorded from 5 trials. Mice were again allowed to rest for a 

minimum of 60 sec between trials. Data from each mouse were analyzed after averaging the 

times from all 5 trials. The apparatus was cleaned with 70% alcohol and allowed to dry 

completely between cohorts. A dim-red-light (3 lux) was used for illumination during active 

(dark) phase testing.  

Statistical methods 

 We were interested in determining if ketones without TRF are sufficient to improve the 

symptoms in the BACHD mouse model, therefore, BACHD and WT ad lib KD-fed mice were 

compared to BACHD and WT ad lib normal chow-fed mice. The sample size per group was 

determined by both our empirical experience with the variability in the prior measures in the 

BACHD mice and a power analysis (SigmaPlot, SYSTAT Software, San Jose, CA) that assumed a 

power of 0.8 and an alpha of 0.05. To assess the impact of the treatments after 3-months, we 

applied a t-test and two-way analysis of variance for the analysis (2-way ANOVA) with genotype 
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and treatment as factors. To determine the impact of the treatment on temporal activity, sleep, 

and ketone waveforms, we used a two-way repeated measures analysis of variance (2-way RM 

ANOVA) with treatment and time as factors. Pairwise Multiple Comparison Procedures were 

made using the Holm-Sidak method. Correlations between circadian parameters and motor 

performance were examined by applying Pearson correlation analysis. Statistical analysis was 

performed using SigmaPlot. Data sets were examined for normality (Shapiro-Wilk test) and 

equal variance (Brown-Forsythe test). Between-group differences were determined significant if 

p < 0.05. All values are reported as group mean ± standard error of the mean (SEM). For each 

of the tests, we report the t- or F-values as well as the degrees of freedom. 

Results 

In these experiments, we examined the effect of KD on BACHD and WT mice. Treated 

mice were compared to normal chow diet controls. KD treated mice had ad lib access to a 

ketogenic diet from 3-months of age until collection. The body weights at the end of the study 

were different with the normal chow-fed mice being heavier than the KD-fed mice (not shown). 

The 2-way ANOVA found no effect of genotype (F(1,31) = 0.004, P = 0.949) but an effect of 

treatment (F(1,31) = 5.438, P = 0.027). Tail blood was sampled at 6 time-points throughout the 

24-hr cycle and ketones (βOHB) were measured. Both BACHD (n=8) and WT (n=8) exhibited 

clear rhythms in βOHB under KD-feeding but not under normal chow feeding conditions (Fig. 

5-1). βOHB levels in the BACHD exhibited significant effects of time (F(5, 107) = 20.443, P < 

0.001) and treatment (F(1, 107) = 76.599, P < 0.001). Post-hoc analysis by Multiple Comparison 

Procedures (Holm-Sidak method) indicated significant changes in βOHB levels were observed in 

BACHD under the KD at most phases (ZT 2, 6, 14, 18, and 22) of the daily cycle. In WT mice, 

βOHB levels exhibited significant effects of time (F(5, 107) = 8.833, P < 0.001) and treatment (F(1, 

107) = 16.267, P < 0.001). Post-hoc analysis indicated significant changes in βOHB levels in WT 
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mice elicited by the KD during the night (ZT 14, 18, 22). Therefore, both genotypes responded 

to the ad lib KD with the BACHD showing elevated βOHB at most phases while the WT mice 

exhibited elevated βOHB during the night. 

KD improved activity rhythms in the BACHD line. 

KD noticeably improved the temporal pattern of cage activity (Fig. 5-2). Both BACHD 

and WT (n=8 per group) exhibited clear rhythms in behavior under both the KD and the normal 

chow diet. Quantitative analysis of the activity rhythms of all 4 groups (2-way ANOVA) found 

that the power of the rhythms (Fig. 5-2A) were significantly altered by both genotype (F(1, 

31)=5.387, P = 0.028) and treatment (F(1, 31)=23.503, P < 0.001). The average amount of 

activity (Fig. 5-2B) varied with the genotype (F(1,31)=6.048, P = 0.020) but was not rescued by 

treatment (F(1,31)=0.074, P = 0.788). The % of activity in the day (Fig. 5-2C) surprisingly did 

not vary with genotype (F(1,31)=2.880, P = 0.101) but was improved by treatment 

(F(1,31)=37.388, P < 0.001). The variation in onset (Fig. 5-2D) was impacted by both genotype 

(F(1,31)=17.962 P < 0.001) and treatment (F(1,31)=8.232, P = 0.008). Overall, the mutants 

exhibited weaker rhythms than WT, and the KD improved all of the parameters. 

KD improved the temporal pattern of sleep behavior in the BACHD line. 

The amount of sleep is controlled by homeostatic mechanisms and appears to be largely 

unaltered by the KD. The total amount of sleep in a 24-hr cycle (Fig. 5-3A) was not altered by 

genotype (F(1, 31)= 0.018, P = 0.895) or treatment (F(1, 31)= 1.276, P = 0.268). Similarly, during 

their active (night) phase (Fig. 5-3B), there were no effects of genotype (F(1, 31)= 0.218, P = 

0.644) or treatment (F(1, 31)= 0.277, P = 0.603). During their rest (day) phase (Fig. 5-3C), 

there were effects of genotype (F(1, 31)= 8.841, P = 0.006) but no effect of the KD (F(1, 31)= 

1.524, P = 0.227). The untreated mutant mice exhibited less daytime sleep under normal chow 

feeding and this difference was no longer seen under the KD. Another key measure of sleep 
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quality is fragmentation or the number of sleeping bouts. The total number of sleep bouts in a 

24-hr cycle (Fig. 5-3D) was not altered by genotype (F(1, 31)= 0.284, P = 0.598) or treatment 

(F(1, 31)= 3.574, P = 0.069). During the day (ZT0-12), the number of sleep bouts was not altered 

by genotype (F(1, 31)= 0.001, P = 1.000) but was reduced by treatment (F(1, 31)= 7.724, P = 

0.010). There were not any corresponding changes during the night. Finally, the BACHD mice 

exhibited a phase delayed sleep onset that was corrected by the KD. The phase of sleep onset 

(Fig. 5-3E) was altered by genotype (F(1, 31)= 8.516, P = 0.007) but not treatment (F(1, 31)= 

2.487, P = 0.126). On average, the mutant mice on the normal chow diet started sleep at ZT 

1.6 ± 0.4 while the KD started sleeping at 0.2 ± 0.2 or closely aligned with lights-off (t(14) = 

2.924. P = 0.011, t-test). In summary, the KD increased daytime sleep and corrected the phase 

delay in sleep onset seen in the BACHD mice.  

KD improved motor function in the BACHD mice.  

The defining symptoms of HD are centered on motor dysfunction, thus, we hypothesized 

that KD would improve motor performance in the BACHD model. Motor performance in the 

BACHD was assessed using two well-defined tests: the accelerating rotarod and the grip 

strength tests (Fig. 5-4A, B). BACHD mice on the KD exhibited a longer latency to fall (t(14) = 

2.924, P = 0.005, t-test) off the rotarod compared to those on the normal chow diet. The 

performance on the rotarod (Fig. 5-4A) was influenced by genotype (F(1, 31) = 63.330, P < 

0.001) and treatment (F(1, 31)= 8.337, P = 0.007). Conversely, the decrease in grip strength was 

not improved in the mutants. The grip strength (Fig. 5-4B) varied with genotype (F(1, 31) = 

6.330, P = 0.015) but there was no effect of treatment (F(1, 31) = 0.249, P = 0.622). Overall, a 

key finding of this study is that rotarod performance in the BACHD model was improved by KD. 
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Discussion  

The present study demonstrates that a KD can ameliorate a range of symptoms linked 

to HD and related neurodegenerative disorders. Using the BACHD mouse model of HD, we 

showed that the KD boosted the amplitude and reduced variability in activity rhythms. The KD 

also corrected the phase delay in sleep onset seen in the BACHD mice although most sleep 

parameters were not altered by the diet. Finally, a key finding of this study is that the rotarod 

performance was improved by the KD. Thus, the KD successfully improved several behavioral 

and physiological parameters that have been shown to be compromised in HD. 

In this study, mice received ad lib access to a custom low-carbohydrate, adequate 

protein, high-fat diet rich in MCT oils that are known to be rapidly metabolized in the liver 

(Augustin et al., 2018; Brownlow et al., 2013). Under these dietary conditions, mice experience 

elevated ketone body production and a resulting increase in serum ketone bodies, a state 

referred to as ketogenesis or ketosis (Liu, 2008; McPherson and McEneny, 2012; Yeh and Zee, 

1976). Lipids entering the liver to undergo beta-oxidation are regulated by the rate limiting 

enzyme CPT1A. Following beta-oxidation, the liver generates ketone bodies through a process 

regulated by the rate limiting enzyme HMGCS2. Importantly, both enzymes are regulated in a 

circadian manner (Chavan et al., 2016). 

During ketogenesis, the ketone bodies βOHB, AcAc, and acetone are synthesized by the 

liver from fatty acids. Acetone volatilizes easily and is excreted in the breath. Ketone bodies are 

transported in the bloodstream to extrahepatic tissues where they have multiple fates (Achanta 

and Rae, 2017; Branco et al., 2016; Newman and Verdin, 2014). βOHB and AcAc readily enter 

extrahepatic tissues, including the brain. One fate of the ketone bodies is to be converted to 

acetyl CoA in mitochondria, after which they enter the Krebs cycle to generate ATP with high 

efficiency and with low production of ROS (Anton et al., 2018; Cahill, 2006; Veech et al., 2001). 
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Other important non-bioenergetic roles of Ketone bodies consist of signaling functions which 

include enhancing mitochondrial respiration and attenuating oxidative stress (Milder et al., 

2010; Tieu et al., 2003), increasing BDNF expression (Duan et al., 2003), reducing the 

activation and release of inflammatory mediators (Guo et al., 2018; Youm et al., 2015), 

functioning in chromatin remodeling and epigenetic modification (Ruan and Crawford, 2018; 

Tognini et al., 2017), and signaling through G protein-coupled receptors to induce a 

neuroprotective phenotype in monocytes and/or macrophages (Offermanns and Schwaninger, 

2015). 

In this study, we showed that under ad lib KD conditions, the levels of βOHB are 

strongly rhythmic (Fig. 5-1). All of the KD treated mice (BACHD, WT) exhibited clear rhythms 

in ketones, while those under normal chow feeding conditions did not (Fig. 5-1). The KD-fed 

mutants, but not the KD-fed WT, showed higher levels of ketones during the early day, taking 

longer to resolve βOHB levels below 0.5 mM. Therefore, both genotypes responded to the KD 

with the BACHD showing elevated ketones at most phases while the WT exhibited elevated 

ketones during the night. One prior study has also shown that KD induces serum and intestinal 

βOHB levels to robustly oscillate in a circadian manner, an event coupled to tissue-specific cyclic 

histone deacetylase (HDAC) activity and histone acetylation (Tognini et al., 2017). This was 

complemented by another study where KD shifted the phase of Bdnf transcript expression in 

the liver and brain and increased protein levels in the brain (Genzer et al., 2016).  

The ad lib fed KD noticeably improved the temporal pattern of cage activity (Fig. 5-2). 

This regimen increased the power of the rhythms as well as reduced the inappropriate activity 

in the day and the variability in onset. Some the benefits were only observed in the mutant 

mice and not in the WT, including the improvement in power, increase in activity, and reduction 

in onset variability. Interestingly, the reduction of activity during the rest cycle was seen in both 
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genotypes. Prior work using scheduled feeding protocols also improved locomotor activity 

rhythms in several mouse models of HD, including the R6/2 (Skillings et al., 2014), Q175 (Wang 

et al., 2018) and BACHD (Whittaker et al., 2018) lines. These improvements in the locomotor 

activity rhythms under TRF could be driven by the nightly increase in ketones observed in the 

present study. We could only find one other study that examined the impact of ad lib KD-

feeding on locomotor rhythms (Genzer et al., 2015), which reported improvements in nocturnal 

activity levels in WT mice. 

The amount of sleep is controlled by homeostatic mechanisms and was largely unaltered 

by the KD (Fig. 5-3). We did see some evidence that the KD improved daytime sleep and 

reduced fragmentation during this phase. In addition, a striking improvement in the onset of 

sleeping was observed in the mutant mice, which likely has more to do with circadian regulation 

than sleep homeostatic mechanisms. Variability in sleep onset has been associated with 

decreased academic performance and reduced white matter in humans (Fuligni et al., 2018; 

Telzer et al., 2015), thus improvements in precision of sleep onset are an important target for 

therapeutic interventions. Prior work with the R6/2 (Fisher et al., 2013; Kantor et al., 2013) and 

Q175 (Fisher et al., 2016) mouse models has provided evidence of dysfunction in 

electroencephalogram (EEG) defined sleep including increases in sleep fragmentation as well as 

characteristic changes in the EEG spectral profiles. Total amount of non-rapid eye movement 

(NREM) and rapid eye movement (REM) sleep over 24-hrs as well as homeostatic responses to 

sleep loss were not impacted by the mutation (Fisher et al., 2016). 

There is a rich literature linking energy metabolism and sleep homeostasis. The ketone 

bodies AcAc and βOHB, generated from the breakdown of fatty acids, are major metabolic fuels 

for the brain, especially under conditions of low glucose availability. Ketogenesis is modulated 

by the activity of PPARα, and treatment with a PPAR activator has been shown to induce a 
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marked increase in plasma AcAc and βOHB in mice, accompanied by increased slow-wave 

activity during NREM sleep (Chikahisa et al., 2014). This study also reported that sleep 

deprivation increased mRNA expression of ketogenic genes such as PPARα and HMGCS2 in the 

brain and decreased ketolytic enzymes such as succinyl-CoA:3-oxoacid CoA transferase (SCOT).  

In humans, there has been a fair amount of work exploring the links between use of the 

KD and sleep in the context of epilepsy. Many patients exhibit epileptic discharges during sleep 

and the KD is one of the few non-pharmacological approaches that helps to reduce seizures. 

Reviews of this work consistently find support for the hypothesis that KD-feeding impacts sleep 

architecture [e.g. (Jain and Glauser, 2014)], with several reports of KD-feeding improving sleep 

in epileptic and type 2 diabetes patients (Siegmann et al., 2019). Therefore, there are good 

reasons to explore the impact of the KD on sleep architecture in the BACHD model. 

The BACHD mouse model shows alterations in the temporal patterning of neural activity 

recorded in the SCN (Kudo et al., 2011a; Kuljis et al., 2016). The weakening of the electrical 

output of the SCN would be expected to impact the phase of peripheral molecular clocks that 

are driven by the SCN. In the R6/2 model of HD, circadian rhythms of PER2 bioluminescence 

were normal in the SCN but phase advanced in the liver (Maywood et al., 2010). One of the 

weaknesses of this study is that we have not evaluated the impact of the KD on the circadian 

system in the BACHD. Specifically, we need to determine if the ad lib KD improves circadian 

rhythms measured under constant darkness. In addition, using our BACHD PER2::LUC mice, the 

impact of KD should be evaluated on circadian rhythms in bioluminescence measured from the 

SCN and peripheral organs like the liver. In prior work (Whittaker et al., 2018), we did not see 

any evidence for genotypic differences between the clock gene expression in WT and BACHD 

mice. Still the TRF protocol shifted the phase of the rhythm in peripheral organs but not in the 

SCN. We expect similar results with the ad lib KD, i.e. the phase of peripheral rhythms but not 
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the SCN will be altered by the diet. Prior work shows that feeding schedules can shift the phase 

of the rhythms in clock gene expression throughout the body including in limbic structures 

involved in motivation and reward (Angeles-Castellanos et al., 2007; Waddington Lamont et al., 

2007) as well as in the hypothalamus (Akiyama et al., 2004). 

A prior study (Genzer et al., 2015) examined the effect of ad lib KD-feeding on 

locomotor activity, clock gene expression, and average daily levels of 5' adenosine 

monophosphate-activated protein kinase (AMPK), mTOR, and SIRT1 for two months, compared 

to a low-fat diet (LFD) in WT mice. The KD resulted in increased basal levels of locomotor 

activity during the dark and light periods. Additionally, the KD led to a 1.5-fold increase in the 

levels of blood glucose and insulin. In the brain, the phosphorylated-AMPK/AMPK ratio was 40% 

higher under KD, whereas in the liver it was not affected. Notably, Phosphorylated-AMPK 

induces the degradation of PER and CRY proteins, leading to phase advances in the clock. The 

KD led to 40% and 20% down-regulation of the ratio of phosphorylated-P70S6K/P70S6K, in the 

brain and liver, respectively. P70S6K is a downstream target of mTOR, which was also 

decreased. SIRT1 levels were 40% higher in the brain, but 40% lower in the liver of KD-fed 

mice. Clock genes showed delayed rhythms under the KD. Importantly, in the brain of KD-fed 

mice, amplitudes of clock genes were down-regulated, whereas a 6-fold up-regulation was 

found in the liver. It should be noted that mice were fasted 12 or more hours before collection, 

which was indicated by the elevated ketones in the non-ketogenic LFD fed mice at collection 

(Genzer et al., 2015) which complicates interpretation of this data. Another important study 

from the Sassone-Corsi laboratory (Tognini et al., 2017) found that a KD had profound and 

differential effects on liver and intestine clocks. Specifically, the amplitude of clock-controlled 

genes and BMAL1 chromatin recruitment were drastically altered by a KD in the liver, but not in 

the intestine. The KD induced nuclear accumulation of PPARα in both tissues but with a 
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different circadian phase. Also, gut and liver clocks responded differently to carbohydrate 

supplementation during KD-feeding. This data indicates that the metabolic state under a KD 

reduced satiety and, in the liver, reduced anabolism along with increased gluconeogenesis. 

These changes may well be beneficial to patients with HD as well as those with other 

neurodegenerative diseases. 

HD is defined as a movement disorder, as the most striking and debilitating symptoms 

include motor deficits. Critically, the KD improved performance of the HD mutant mice on at 

least one motor test (Fig. 5-4). In contrast, the grip strength was not improved by the 

treatment. In prior work, aged mice on a cyclic, ad lib fed KD did not show improvement in 

motor strength tests (Newman et al., 2017), while those on a defined daily caloric intake from a 

KD did improve in motor strength tests (Roberts et al., 2017). Further, scheduled feeding has 

been found to improve motor function in the Q175 (Wang et al., 2018) and BACHD models 

(Whittaker et al., 2018), as well as the exploratory behavior in the open field (Skillings et al., 

2014) in the R6/2 model. Notably, marginal improvement in motor performance has been 

reported in other mouse disease models treated with a KD (Ari et al., 2014; Brownlow et al., 

2013).  

Another key symptom of HD is the loss of neurons in the striatum. At the ages we have 

been working with the BACHD, there is no obvious neuronal loss, although we have evidence 

that these mutants begin to present signs of axonal degeneration, loss of myelin, and 

inflammation at early ages (See Chapter 6). We have collected the tissue from the mice used in 

this study and are determining whether the KD ameliorates some of these histopathological 

features. 

Approaches directed at boosting circadian output have shown efficacy for improving 

outcomes in different HD mouse models. There is evidence that improving the sleep/wake cycle 
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with sleep-inducing drugs (Kantor et al., 2016; Pallier et al., 2007), stimulants (Cuesta et al., 

2012; Whittaker et al., 2017), bright light & restricted wheel access (Cuesta et al., 2014), 

enhanced blue light (Wang et al., 2017), and scheduled feeding (Wang et al., 2018; Whittaker 

et al., 2018) can improve HD symptoms. This body of work supports the general hypothesis 

(Longo and Panda, 2016; Morton, 2013; Schroeder and Colwell, 2013; van Wamelen et al., 

2015) that circadian-based therapies can alter the trajectory of a genetically determined 

disease.  

 

  



97 

 

 

Figure 20: Figure 5-1: TRF and KD evoke daily rhythms in serum ketones (βOHB). 
(A) Schematic of experimental design. Mice were held in 12:12 LD cycle so the time of lights-on 
is ZT 0 and the time of lights-off is ZT 12. LD cycle is represented by light-dark bars. (B) Tail 
vein blood was collected at 6 time points for BACHD (diamonds) and WT (circles) mice under ad 
lib (grey) and TRF (green). Green shading represents the feeding period. (C) Tail vein blood 
was collected at 6 time points for BACHD (diamonds) and WT (circles) mice under ad lib (grey) 
and KD (blue). The symbols show group mean with SEM plotted. Comparisons between the 
mice of each genotype were made with two-way ANOVA for repeated measures with time and 
treatment as factors. Asterisks represent significant differences due to KD compared to the ad 
lib controls, number signs represent significant differences due to time (P < 0.05; n = 8 per 
group). 
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Figure 21: Figure 5-2: Locomotor activity rhythms were improved by the KD. 
(A) The strength of the activity rhythm is indicated by the power (% variance) of the χ2 
periodogram analysis. (B) Average hourly activity levels from 7-10 days of cage activity. (C) 
The % of total activity that occurred in the daytime (rest) phase. (D) The averaged onset 
variability was calculated from the best-fit regression line. For this and other figures, the vertical 
bar plots show group means and SEM while the symbols show the values from individual 
animals in each group (BACHD ad lib, grey diamonds; BACHD KD, blue diamonds, WT ad lib, 
grey circles; WT KD, blue circles). Comparisons between cohorts were made using a 2-way 
ANOVA with genotype and treatment as factors. Asterisks represent significant differences (P < 
0.05) by two-way ANOVA due to treatment while number sign represents significant differences 
due to genotype. 
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Figure 22: Figure 5-3: Sleep behavior was altered by the KD. 
Video recording in combination with automated mouse tracking analysis software was used to 
measure immobility-defined sleep (n = 8 per group). (A) Total sleep in the 24-hr cycle while 
amount of sleep in night (B) and day (C) are plotted. (D) Sleep fragmentation is defined as 
the number of sleep bouts in the 24-hr cycle. (E) the phase (ZT) of sleep onset is shown. 
Comparisons between cohorts were made using a 2-way ANOVA with genotype and treatment 
as factors. Asterisks represent significant differences (P < 0.05) by two-way ANOVA due to 
treatment while number sign represents significant differences due to genotype. The double 
dagger represents significant differences (P < 0.05) by t-test. 
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Figure 23: Figure 5-4: KD improved motor performance in the BACHD model. 
(A) The accelerating rotarod test measures time on the rod until the mice fall. Improvements in 
motor performance are shown by longer latency to fall. (B) Grip strength measurements. 
Comparisons between cohorts were made using a 2-way ANOVA with genotype and treatment 
as factors. Asterisks represent significant differences (P < 0.05) by two-way ANOVA due to 
treatment while number sign represents significant differences due to genotype. The double 
dagger represents significant differences (P < 0.05) by t-test. 
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Figure 24: Figure 5-Supplemental figure 1: Comparison of NIH-31 standard chow diet 
with KD. 
The KD is a custom very-low-carbohydrate, adequate protein, high-fat diet rich in MCT oils. The 
KD diet was modified from a stock Teklad KD diet from Envigo. The modified KD removed 
sources of carbohydrates and added MCT oil in order to better generate ketosis. The KD has 
~50% more calories per gram compared to NIH-31. 

  



102 

 

 

 

 

 

 

 

 

 

 

 

Chapter 6: Conclusions 

  



103 

 

Chapter 6: Conclusions 

In these studies, I sought to test the hypotheses that circadian dysfunction interacts 

with HD pathology leading to the exacerbation of HD-related symptoms and that circadian-

based therapies can alter the trajectory of a genetically determined disease.  

In the first study, we sought to determine if the daily administration of the H3R 

antagonist/inverse agonist GSK189254 would improve nonmotor symptoms in the Q175 mouse 

model of HD. Several previous studies support a role for H3R in promoting wakefulness and for 

HA as a potent regulator of the circadian system (Cote and Harrington, 1993; Eaton et al., 

1995; Haas and Panula, 2003; Jacobs et al., 2000; Kim et al., 2015; Lin et al., 2011; Parmentier 

et al., 2002; Watanabe et al., 1984). For three months, starting at ages before the onset of 

motor symptoms in Hom and Het Q175 mice, we administered GSK189254 nightly at a time 

when HA levels would normally be rising. We found that this treatment improved daily activity 

rhythms and produced short‐term changes in daily sleep behavior while not altering the overall 

amount of sleep in a 24‐hr cycle. Further, GSK189254 treatment improved exploratory behavior, 

cognitive performance, and mood without increasing anxiety‐like behavior. Our findings suggest 

that drugs targeting the H3R system may benefit somnolence and arousal in the management 

of HD.  

In the second study, we placed Het Q175 mice on TRF for three months starting at an 

age before the onset of motor symptoms. We found that the TRF regimen improved the daily 

activity rhythms and advanced the time that the mice ended their sleep phase without changes 

in total amount of sleep in each 24‐hr cycle. Additionally, the TRF regimen improved motor 

performance. Markedly, we found that the improved circadian behavior was correlated with 

improved motor function in the TRF group, suggesting that improved circadian timing underlies 

the improved motor function in the treated mice. Cardiovascular events are a major cause of 
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death in the HD population (Lanska et al., 1988; Sørensen and Fenger, 1992), and we found 

that TRF improved cardiovascular performance, including increased HRV. Notably, decreased 

HRV, generally considered an indication of poor cardiovascular health and a predictor for 

cardiovascular disease and mortality (Thayer et al., 2010), has been reported in HD patients 

beginning during the pre-symptomatic stage of disease progression (Andrich et al., 2002; Aziz 

et al., 2010b). To our knowledge, this is the first study showing that a TRF regimen can 

improve HRV in a disease model.  

Furthermore, we reported an analysis of the Q175 striatum using NanoString technology 

in which over 50% of the genes shown to be downregulated in Q175 controls (Langfelder et al., 

2016) were upregulated by TRF. We then looked at the top upregulated factors of canonical 

pathways identified using IPA analysis. Three were neurotrophic factors, including BDNF, which 

is reduced in human HD patients and in mouse models of HD (Duan et al., 2003; Ferrer et al., 

2000). Additionally, we identified CREB1, also reduced in HD patients (Steffan et al., 2000; 

Sugars and Rubinsztein, 2003; Sugars et al., 2004), as well as a demthylase, tet methylcytosine 

dioxygenase 1 (TET1), which has been reported to upregulate several neuronal memory-

associated genes and impair contextual fear memory (Kaas et al., 2013). 

In the third study, we kept BACHD mice on a TRF regimen for three months starting at 

an age before the onset of motor symptoms. We found that TRF boosted the amplitude and 

reduced variability in activity rhythms, and that the temporal patterning of both sleep behavior 

and sleep fragmentation were improved. Physiologically, TRF increased HRV during sleep and 

increased the amplitude of the HR rhythm. We found that BACHD still exhibit robust peripheral 

PER2::LUC rhythms and that TRF was sufficient to modify the phase but not the amplitude of 

the rhythms. Further, motor performance in the BACHD was improved by TRF. As in the Q175, 

we observed a correlation between improved circadian behavior and improved motor function in 
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the TRF group, further supporting that improved circadian timing underlies the improvements 

observed in motor function.  

In the final study, we first determined that TRF induced robust rhythms in serum levels 

of βOHB in both BACHD and WT mice. While this work is still ongoing, the behavioral data has 

been collected and analyzed. We found that an ad lib fed KD evoked robust rhythms in serum 

levels of βOHB in both genotypes, although daytime levels of ketones were only elevated in the 

mutants. The KD did not alter total behavioral sleep, night-time sleep or total sleep 

fragmentation, however it did increase daytime sleep as well as improve the timing of sleep 

onset in the mutant mice. Additionally, improved activity rhythms, including rhythmic power, 

average activity levels, as well as reduced inappropriate daytime activity and onset variability 

were observed. Notably, the KD improved the performance of the mutants on the rotarod but 

not the grip strength. Finally, we have collected tissue to determine if the KD or TRF alter core 

pathology in the striatum of the BACHD mice. We have found evidence that the striatum of 3-

month-old male BACHD mice, under ad lib normal chow feeding conditions, begin to present 

signs of axonal degeneration and reduction in myelination, accompanied by inflammation and 

astrogliosis, as suggested by major histocompatibility complex class II (MHCII) and glial 

fibrillary acid protein (GFAP) expression (Fig. 6). Future work will determine if KD or TRF alter 

these pathological markers. 

Taken together, these studies support the use of circadian approaches in delaying 

progression and improving quality of life of HD patients as well as other neurodegenerative 

disorders with similar biology. It should be emphasized that these circadian treatments were 

applied at early symptomatic stages of the disease. In progressive degenerative diseases and 

especially in genetic diseases such as HD, our data is consistent with recommendations of early 

genetic testing and use of circadian based therapeutic approaches. 
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There may be some concerns about using a TRF protocol in HD populations because of 

the low body weights associated with the disease progression. It has been reported that HD 

patients with a higher body mass index (BMI) in early-stage HD have a slower progression of 

disease (Costa de Miranda et al., 2019; Myers et al., 1991). Additionally, increased leptin 

production has been reported in HD patients which could suppress hunger (Aziz et al., 2010c), 

and early-stage impairment in energy balance and higher sedentary energy expenditure are 

also seen in the patients (Gaba et al., 2005; Pratley et al., 2000). This all culminates in 

progressive weight loss, a well-documented component of pathology in HD patients (Djoussé et 

al., 2002; Hamilton et al., 2004; Sanberg et al., 1981). However, and most importantly, TRF did 

not result in weight loss in our studies. Mice under TRF consumed the same volume of food as 

the ad lib fed normal chow mice, and the body weights of TRF fed HD mice remained 

comparable to WT mice (Wang et al., 2018; Whittaker et al., 2018). Similarly, the KD diet 

resulted in a small increase in bodyweight in the WT and a small decrease in bodyweight in the 

BACHD over the three months of the trial (Chap. 5), and neither of these changes was 

significant. A reduction in food consumption or bodyweight would have introduced confounding 

variables. However, it has been previously reported in WT mice that TRF with normal chow can 

reduce fat mass and increase lean mass while not significantly impacting overall body mass 

when compared to ad lib feeding with normal chow (Chaix et al., 2014). 

 Altogether, these findings support the hypothesis that early interventions that improve 

sleep/wake timing and circadian rhythmicity will reduce HD symptoms; however, there remain 

important gaps in our knowledge. Although we have strong evidence of axonal and myelin loss 

early in the striatum, motor cortex, and corpus collosum in male BACHD mice (unpublished), we 

have not yet determined whether TRF or the KD alter central aspects of the pathology. Prior 

work in the R6/2 model found that rhythms in mPer2 gene expression were globally 
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downregulated throughout the brain and that peak/trough differences were lost. However, 

PER2::LUC bioluminescence expression in the R6/2 SCN revealed that intrinsic pace-making 

mechanisms remained intact (Maywood et al., 2010). On the other hand, these mutants were 

reported to have disrupted circadian function with phase advanced mPer2 and arrhythmic Dbp 

in the liver, which were restored by TRF. In the same mice, Pk2 mRNA in the SCN 

demonstrated progressive reduction in expression, while in WT mice, Pk2 is high during 

circadian daytime and low at night. The product of Pk2 is proposed to suppress daytime activity 

in nocturnal rodents (Cheng et al., 2002; Prosser et al., 2007). Notably, Pk2 is a transcriptional 

target of BMAL1, which was also found to be disrupted in R6/2 mice (Morton et al., 2005). The 

central impact of TRF or the KD on rhythmic outputs has not yet been examined and is an 

important gap in our knowledge. Furthermore, we do not know the impact of the BACHD 

mutation on rhythmic outputs in gene expression and would also like to address whether 

rhythms in corticosterone and cytokines are altered in serum, and if so, determine if TRF or the 

KD are able to repristinate them. 

The mechanisms through which TRF and the KD convey benefits are uncertain and may 

be mediated by multiple pathways. Both likely interact with various molecular clocks in the 

body, including the liver clock, and this may be an important aspect of the benefits. While we 

showed that TRF can alter the phase of some peripheral rhythms, it is also important to 

determine if KD can exert similar effects on peripheral rhythms, as well as ascertain whether 

TRF and KD can alter the phase and amplitude of molecular clock driven outputs. Finally, it 

must be established whether the KD can exert benefits similar to those elicited by TRF in the 

improvement of autonomic parameters. 

 Future directions of our work comprise determining if the BACHD mutation disrupts 

rhythms in gene expression and if these rhythms are altered by TRF and the KD, thus we 
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collected striatum, cortex, and hypothalamus, as well as peripheral organs and serum, from WT 

and BACHD mice under TRF and ad lib fed normal chow in a 4-hr interval time-course. Based 

upon TRF data shared with us from the laboratory of Satchin Panda (unpublished), some of the 

key genes to consider in this follow-up work include a) circadian clock genes Per2, Bmal1, 

Npas2, Nrld2; b) clock controlled genes Pk2, Avp, Ppara, Ppargcla; c) transcriptional related 

genes Creb1, Fos, Arc, Erg4; d) metabolism related genes Ppargc1A, Sirt1, Parp1, Prkaa1, Mtor; 

d) autophagy related genes Bnip3, Dram1; e) HD related genes Htt, Kcnab1, Homer1a, Bdnf. 

 Following on our findings of early signs of axonal and myelin loss in brain regions in 3-

month-old male BACHD mice, it is important to examine the impact of TRF or the KD on central 

aspects of pathology. Using Western blot and immunohistochemistry [as described in (Lee et 

al., 2018); Fig. 6; Table 6-1], we observed clear early signs of axonal and myelin loss in the 

striatum, as evidenced by increased expression of non-phosphorylated neurofilament (NF)-H 

(SMI-32), a marker suggestive of axonal degeneration, accompanied by decreased expression 

of axonal and myelin markers NF-160 and myelin basic protein (MBP), respectively (Fig. 6-1). 

These abnormalities were accompanied by elevated expression of GFAP, an astrocytic marker, 

and of MHCII, suggesting astroglial activation and a concurrent immune response in the brain 

parenchyma (Fig. 6-2). MHCII was expressed by the astrocytes and other cells in what appear 

to be blood vessels, possibly implicating immune cells recruited from the periphery. This 

observation is currently under further investigation to better define these cell types. Bizarrely, 

we did not observe altered expression of ionized calcium binding adaptor molecule 1 (Iba-1), a 

microglia marker, or evidence of co-expression of MCHII and Iba-1. These findings are 

supported by reports of astrocytic dysfunction (Hsiao et al., 2013; Khakh et al., 2017), as well 

as cerebral vasculature alterations and BBB leakage in HD patients and mouse models of HD (Di 

Pardo et al., 2017; Drouin-Ouellet et al., 2015; Lim et al., 2017). However, it will be important 
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to establish what cell types are expressing MHCII and if they are recruited from the periphery at 

this early stage of disease (Konishi et al., 2017). 

Abnormal and deficient neural cell development and adult neurogenesis have been 

reported in autopsied human HD brains and animal models of HD (HD iPSC Consortium, 2017). 

We have preliminary evidence of persisting oligodendrocyte progenitors in the male BACHD 

striatum as shown by nuclear expression of glutathione S-transferase pi (GSTπ; not shown). 

Although preliminary, this finding is encouraging as TRF may promote maturation of progenitor 

cells committed to the oligodendrocyte lineage to support early repair and restoration of myelin 

(Boulanger and Messier, 2014). 

In conclusion, we show that early-stage arousal promoting substances such as H3R 

antagonists, and dietary approaches such as TRF or a KD can ameliorate a range of symptoms 

of HD and related neurodegenerative disorders. These studies add to a growing body of 

evidence showing that enhancements in “circadian hygiene” lead to improvements in health 

outcomes for a wide range of human diseases including neurodegenerative disorders.  
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Figure 25: Figure 6-1: Western blot and 
immunohistochemistry in BACHD brains show axonal and 
myelin loss early in disease progression. 

Figure 26: Figure 6-2: Western blot and immunohistochemistry 
in BACHD brains suggests astroglial activation and a 
concurrent immune response in the brain.  

Figure 6-2: Western blot and immunohistochemistry in 
BACHD brain suggests astroglial activation and a 
concurrent immune response in the brain. 
Enhanced expression of the astrocytic marker GFAP in the 
striatum (upper panels) of 3-month BACHD shown by 
immunohistochemistry and western blot. In addition, an 
increase in the expression of the MHCII was observed in the 
BACHD mice, suggesting a concurrent immune response, due 
to activated microglia and possibly to immune cells from the 
periphery. 
 

 
 
 
 
 

Figure 6-1: Western blot and immunohistochemistry in 
BACHD striatum show axonal and myelin loss early in 
disease progression. 
Increased expression of SMI-32, a marker for axonal 
degeneration, and decreased levels of myelin marker MBP 
were observed in 3-month male BACHD brain (upper panels). 
Higher magnification insets show axonal bundles in the 
striatum. BACHD striatum also showed decreased axonal 
marker NF-160 immunoreactivity (lower panels). Western blot 
analyses showing lower levels of NF-160 (axon) and MBP 
(myelin) in the BACHD striatum. These results suggest that 
axonal and myelin loss begin early in disease progression. 
St=striatum, V=lateral ventricle, CC=corpus callosum 
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Table 13: Table 6-1: Primary antibodies were used at the following concentrations for 
immunohistochemistry (IHC) or western blot (WB): 

  

 

Markers Cell Type and Target IHC WB 

SMI32 Dephosphorylated Neurofilament (200kDa) 1:200  

NF160 Neurofilament (160kDa) 1:50 1:200 

MBP Myelin Basic Protein 1:1000 1:10000 

GFAP Astrocyte 1:500 1:5000 

MHCII Monocytes/macrophages 1:400  
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