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ABSTRACT OF THE DISSERTATION

Edge-averaged virtual element methods for convection-diffusion problems

By

Seulip Lee

Doctor of Philosophy in Mathematics

University of California, Irvine, 2021

Professor Long Chen, Chair

We present stabilized virtual element methods for convection-diffusion problems in the

convection-dominated regime. In the context of finite element methods, the edge-averaged

finite element schemes were successfully applied to convection-dominated problems. We

aim to generalize the edge-averaged stabilization to the virtual element framework. Hence,

we develop the edge-averaged virtual element methods that produce numerical solutions on

polygonal meshes without spurious oscillations caused by small diffusion coefficients. Well-

posedness of the discrete problem and convergence analysis are provided. We also show

numerical experiments which support theoretical results, and display numerical solutions

with sharp boundary layers in the convection-dominated regime.
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Chapter 1

Introduction

1.1 Convection-Diffusion Problems

We consider the convection-diffusion equation,

−∇ · (α(x)∇u+ β(x)u) = f in Ω

where Ω ⊂ R2, α ∈ C0(Ω̄) with 0 < αmin ≤ α(x) ≤ αmax for every x ∈ Ω, and β ∈ (C0(Ω̄))2.

The convection-diffusion problems have been considered in numerous mathematical models

of flows and other physical phenomena. The problems express the convective and molecular

transport along a stream moving at given velocity β and with diffusive effects from α.

Generally, convection-dominated regime means the situation that

αmax � |β(x)| , ∀x ∈ Ω.

The convection-dominated regime plays an important role for solving Navier-Stokes equa-

tions with high Raynolds number. It has been shown in [36, 47] that the standard finite
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element method (FEM) cannot provide a good approximation for the convection-dominated

problems. This phenomenon was verified by mathematical analysis: The upper bound of

the error may blow up when α is small (Céa’s lemma). The numerical simulation showed

that the finite element solutions contain spurious oscillations around sharp boundary layers.

Such a numerical solution containing the oscillations is called a non-stable solution, and some

advanced schemes to get a solution without the oscillations or with smaller oscillations are

considered as stabilized methods.

Many stabilized methods have been developed in the context of FEMs, and they can be

classified several categories. The first direction is the development of stabilized methods

with a provable order of convergence in appropriate norms by adding more terms to their

bilinear forms.

• The streamline-upwind Petrov-Galerkin (SUPG) method [27] provides the reasonable

coercivity result with a mesh dependent norm.

• The continuous interior penalty (CIP) method [28] applies penalty to local outflow

boundary of each element.

• The local projection stabilization (LPS) method [41] is to add a stabilization term

simpler than SUPG method.

Our research focus is on linear stabilized methods that compute numerical solutions without

spurious oscillations and still with sharp layers. It is well-known that the numerical solutions

uh without spurious oscillations are guaranteed by the discrete maximum principle (DMP):

f ≥ 0 in Ω ⇒ min
Ω̄
uh ≥ min

∂Ω
u−h ,
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where u−h = min{0, uh}. The monotone property,

f ≥ 0 in Ω ⇒ min
Ω̄
uh ≥ 0,

is a sufficient condition of DMP. The monotonicity can be obtained from the M-matrix

condition: Let A = (aij) be the stiffness matrix of a linear discretization. Then, A is called

a nonsingular M-matrix if aii > 0 for all i,

aij ≤ 0 ∀i 6= j,
∑
i

aij ≥ 0 ∀j,
∑
i

aij > 0 for some j.

In this respect, the edge-averaged finite element (EAFE) scheme [42, 49] is monotone if the

stiffness matrix of the FEMs for the Poisson equation is an M-matrix. One of important

advantages of this scheme is to obtain a stable numerical solution to a convection-dominated

problem even though the mesh size is not small. The other one is that the scheme needs

relatively simple computation. In this research, we apply the EAFE stabilization technique

to the virtual element framework.

1.2 Virtual Element Methods

The virtual element methods (VEMs) were first introduced in [12]. In this work, the authors

showed a generalization of the finite element method (FEM) for the Poisson equation to

general polygonal and polyhedral meshes. Study of finite elements on general polygons has

been conducted [5, 8, 46]. A flexibility between finite elements in discontinuous Galerkin

(DG) methods has made it possible to use polygonal meshes [29]. These approaches need

the explicit equations of local approximating functions. However, the VEMs basically use

non-polynomial approximation in a polygon, and any exact form of local basis functions is

not needed inside of the polygon. More exactly, virtual element functions are locally defined

3



by a finite number of desired properties, and their existence and uniqueness are guaranteed

by the solvability of certain partial differential equations. Then, even though the local virtual

element functions are not polynomials, they belong to a finite-dimensional space (called a

virtual element space) determined by the properties. Proper linear functionals of the local

functions are chosen, and they are called degrees of freedom. The degrees of freedom play

an important role in the VEMs because all the quantities in the VEMs should be computed

by the degrees of freedom. The degrees of freedom need to satisfy the unisolvence in the

virtual element space: If all the degrees of freedom are given as zero, the corresponding local

function is identically zero. Thus, the degrees of freedom eventually include all the essential

information of the local function. Using the degrees of freedom, it is also necessary to define

projection operators from the virtual element space to simple spaces such as a polynomial

space. With the projection operators, the local bilinear form can be approximated by an

equivalent bilinear form obtainable from the degrees of freedom. More fundamental details

can be found in [13].

The VEMs have been widely applied to solve various problems in recent years; convection-

diffusion problems [2, 16], nonconforming approaches [4, 7], H(div) and H(curl)-conforming

virtual elements [17, 19], mixed methods [14], and biharmonic equation [4, 22]. We especially

focus on developing stabilized virtual element methods for convection-dominated problems.

In the journal articles [21, 23, 24], the SUPG stabilization was successfully applied to the

VEMs. They presented the improved coercivity results with mesh-dependent norms. How-

ever, it is not possible to verify the discrete maximum principle, and it is known that some

solutions from the SUPG approach still contain spurious oscillations. Moreover, the SUPG-

VEM contains too many terms that we need to compute, which cause higher computational

complexity.

In this research, we generalize the EAFE scheme to the VEMs, and call it edge-averaged vir-

tual element (EAVE) method. With the EAVE method, we expect the following advantages

4



and results:

• We obtain a stable numerical solution to a convection-dominated problem in a polyg-

onal mesh even though the mesh size is not small.

• The computational complexity is relatively low.

• We show an equivalence the monotonicity of this method to the M-matrix condition

of the stiffness matrix of the VEMs for the Poisson equation.

• We prove error analysis of this method and obtain reasonable convergence rates from

numerical experiments.

The remaining chapters are structured as follows:

• In Chapter 2, we carefully observe the main idea of the EAFE scheme [42, 49]. We see

what choices of flux approximations are possible and how the EAFE scheme is derived.

• In Chapter 3, the lowest order nodal and edge virtual element spaces [3, 12, 15, 16, 19]

are introduced. More importantly, we show the relation between their canonical basis

functions, and will apply it to the derivation of the EAVE method in Chapter 4. The

virtual bilinear form for the Poisson equation [12, 13] is an essential factor when the

EAVE method is computed. Furthermore, the approximation of the right hand side

[12, 13] is introduced.

• In Chapter 4, we present a flux approximation in virtual element framework. Based on

the flux approximation, we derive the EAVE method and explain why this method is

simple to implement. The monotone condition of the EAVE method is verified when

the stiffness matrix of the VEMs for the Poisson equation is an M-matrix.

• In Chapter 5, we start from proving some estimates of the virtual bilinear forms men-

tioned in Chapter 4. The main estimate is to find an upper bound of the difference

5



between the variational bilinear form and the EAVE bilinear form. Then, we show the

inf-sup condition implying the well-posedness of the EAVE discrete problem. Various

analysis techniques in VEMs are applied in this case. The convergence analysis is

verified at the end of this chapter.

• In Chapter 6, numerical experiments are provided. We test convection-dominated

problems as well as diffusion-dominated problems. We check that numerical conver-

gence rates from our experiments are indeed consistent with the theoretical error esti-

mate. In the convection-dominated regime, both smooth solutions and solutions with

sharp boundary layers are considered. Through this chapter, we see the effect of edge-

averaged stabilization on different mesh types.

6



Chapter 2

Edge-Averaged Finite Element

Scheme

2.1 Main Problem

We consider the convection-diffusion problem

−∇ · (α(x)∇u+ β(x)u) = f in Ω, (2.1)

u = 0 on ∂Ω,

where Ω ⊂ R2 is a polygonal domain and f ∈ L2(Ω). We denote the flux as

J(u) := α(x)∇u+ β(x)u.

Then, the weak formulation of the problem is to find u ∈ H1
0 (Ω) such that

B(u, v) = F (v), ∀v ∈ H1
0 (Ω), (2.2)
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where the bilinear form and the functional on the right-hand side are defined as

B(w, v) =

∫
Ω

J(w) · ∇v dx and F (v) =

∫
Ω

fv dx.

The inf-sup condition [37],

sup
v∈H1

0 (Ω)

B(w, v)

‖v‖H1(Ω)

≥ C̄B ‖w‖H1(Ω) , ∀w ∈ H1
0 (Ω) (2.3)

implies the well-posedness of the weak formulation.

We introduce the function ψ in [42, 49] satisfying

∇ψ = α−1β,

which allows us to have

J(u) = αe−ψ∇(eψu).

If the function ψ(x) is well-defined, J(u) is viewed as the diffusion flux with a non-constant

coefficient κ(x) := α(x)e−ψ(x).

Remark 2.1. If α and β are constant in K, the function ψ is defined as ψ(x) = α−1β · x

and it is unique up to a constant. However, such a function ψ(x) may not exist in K for

general α(x) and β(x) if curl (α−1β) 6= 0. Hence, as introduced in [49], the function ψ

is locally defined on each edge E of an element (usually a triangle) by the one-dimensional

relation

∂ψE
∂τE

=
1

|τE|
α−1(β · τE),

where τE is a tangential vector for E. In practice, we use constant approximations αE and

8



βE for general α(x) and β(x) on each edge E, so the local function is simply obtained as

ψE(x) = α−1
E βE · x (up to a constant).

Therefore, we approximate the flux J(u) in an element using the locally defined function

ψE(x). In [42, 49], such a flux approximation in the lowest order Nédélec space is presented

on triangular meshes and it is successfully applied to develop a monotone finite element

scheme. In what follows, we explain its main idea on a triangulation for Ω.

2.2 Gradient and Flux Approximations

Let Th be a triangulation for Ω and Vh = P1(Th) be the piecewise linear standard finite

element space. We assume that λi(x) are its canonical basis functions or barycentric coordi-

nates in T ∈ Th. We consider the Poisson equation in terms of ρ := eψuh for uh ∈ Vh while

introducing a new notation H(ρ) := H(ρ(uh)) = J(uh),

−∇ · (κ∇ρ) = −∇ · (H(ρ)) = f, in Ω

with the boundary condition ρ = 0 on ∂Ω. Then, the variational problem is to find ρ ∈ H1
0 (Ω)

such that

B(ρ, v) :=

∫
Ω

κ∇ρ · ∇v dx = F (v), (2.4)

for all v ∈ H1
0 (Ω). The standard finite element method for the problem (2.4) is to find

ρh ∈ Vh such that for all vh ∈ Vh,

B(ρh, vh) = F (vh).

9



However, since the function ψ may not be well-defined on T ∈ Th for general α and β, the

direct use of the formulation (2.4) for ρ would not give a desirable result for uh = e−ψρh.

The flux approximation H̄T (L2-projection)

Thus, with ψE on each edge E ⊂ ∂T , we focus on the nodal interpolant of ρ(uh) onto Vh,

ρI := ρ(uh)I = (eψEuh)I =
3∑
i=1

eψE(xi)uiλi,

where λi(x) are the canonical basis functions in Vh. The corresponding problem is to seek

uh ∈ Vh such that

B(ρI , vh) = B(ρ(uh)I , vh) = F (vh)

for all vh ∈ Vh. We note that the bilinear form B(ρI , vh) contains H(ρI) = κ∇ρI , and

κ = αe−ψ can be considered as a Hodge star map from the 1-form ∇ρI to the 2-form H(ρI).

It follows from computing the bilinear form on a triangle T ∈ Th that

BT (ρI , vh) =

∫
T

κ∇ρI · ∇vh dx =

(
1

|T |

∫
T

κ dx

)∫
T

∇ρI · ∇vh dx (2.5)

because both ∇ρI and ∇vh are constant vectors on T . In other words, we consider to directly

approximate H(ρ) as a constant vector denoted by H̄T . Indeed, the constant approximation

H̄T can be obtained by the L2-projection of H(ρI),

∫
T

H̄T · ei dx =

∫
T

H(ρI) · ei dx =

∫
T

κ∇ρI · ei dx,

where ei for i = 1, 2, are the standard vectors for R2. From this definition, we have

H(ρ) ≈ H̄T = κ̄T∇ρI , (2.6)
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where κ̄T is the average of κ on T , which implies the same bilinear form in (2.5).

The flux approximation H̃T (L2-projection, modified)

In this respect, we look at a different constant approximation H̃T for H(ρ) obtained from

∫
T

κ−1H̃T · ei dx =

∫
T

κ−1H(ρI) · ei dx =

∫
T

∇ρI · ei dx.

Therefore, the approximation H̃T is written as

H(ρ) ≈ H̃T = κ̃T∇ρI , (2.7)

where κ̃T is the harmonic average of κ on T , and the corresponding bilinear form is denoted

as

B̃T (ρI , vh) =

∫
T

κ̃T∇ρI · ∇vh dx.

The approaches described in (2.6) and (2.7) may not be efficient for the problem (2.4) with

the non-constant coefficient κ because it would be necessary to have the function ψ defined

over T .

The flux approximation ĤT (Nédélec projection)

Therefore, we approximate H(ρ) in the lowest order Nédélec space whose degrees of freedom

are computed on each edge E ⊂ ∂T . The local Nédélec space of the lowest order is defined

as

N0(T ) := (P0(T ))2 + x⊥P0(T ),

11



where x⊥ is a vector satisfying x · x⊥ = 0. That is, a local polynomial pN0 in N0(T ) is

represented as

pN0 (x) = 〈a1 + a2y, a3 − a2x〉,

and N0(T ) has 3 dimensions in R2. The Nédélec degrees of freedom are defined as

dofNE (v) =
1

|E|

∫
E

v · τE ds

for each E ⊂ ∂T , and the canonical basis functions {ϕEj}3
j=1 are obtained from dofNEi(ϕEj) =

δij for 1 ≤ i ≤ 3. Each canonical basis function can be expressed in terms of barycentric

coordinates, that is,

ϕE = λi∇λi+1 − λi+1∇λi,

where τE = xi+1−xi with x4 = x1. Then, it is straightforward to see that pN0 ·τE is constant

on E so that

dofNE (pN0 ) = pN0 · τE.

Moreover, the Nédélec projection is defined as

ΠNv :=
∑
E⊂∂T

dofNE (v)ϕE.

A natural approach is to use the Nédélec projection ĤT = ΠN (H(ρ)), that is,

H(ρ) ≈ ĤT =
∑
E⊂∂T

d̂EϕE,

12



where the coefficients d̂E are obtained by the following equalities,

d̂E = dofNE (ĤT ) = dofNE (H(ρ)) = dofNE (κ∇ρ).

The coefficients d̂E are determined by one-dimensional integrals,

d̂E =
1

|E|

∫
E

κ∇ρ · τE ds,

but it is not easy to compute them because both κ and ∇ρ contain the function ψE.

The flux approximation ĤT (Nédélec projection, modified)

We focus on another approximation for H(ρ) in the Nédélec space,

H(ρ) ≈ HT =
∑
E⊂∂T

dEϕE.

In order to find the coefficients dE, we use the following relation,

dofNE (κ−1HT ) = dofNE (κ−1H(ρ)) = dofNE (∇ρ).

It may not look appropriate that H(ρ) is approximated by a 1-form formula while it is a

2-form. Interestingly, the quantity dofNE (∇ρ) is represented by δE(ρ) = δE(eψEuh), where δE

means the difference between the nodal function values at the two end points of E. Hence,

the continuity of eψ and uh inside of T is not needed to be considered, and moreover we only

need the function values at the vertices of T . This fact will provide an advantage in defining

and evaluating a bilinear form related to the approximation HT . As a consequence, since

13



HT · τE is constant on E, we obtain the explicit form of the coefficients dE,

dE = dofNE (HT ) = HT · τE =

(
1

|E|

∫
E

κ−1 ds

)−1

δE(ρ) = κ̃EδE(ρ),

where κ̃E is the harmonic average of κ on E. Note that the coefficients dE satisfy

∑
E⊂∂T

(κ̃E)−1 dE = 0,

which implies that HT belongs to a subspace of the Nédélec space of dimension 2, but HT

may not be a constant vector. If κ is constant, we get
∑

E⊂∂T dE = 0 so that HT becomes a

constant vector.

In conclusion, the bilinear form is defined with the approximation HT ,

BT
N (ρ, vh) =

∫
T

HT · ∇vh dx =
3∑

E⊂∂T

(HT · τE)

∫
T

ϕE · ∇vh dx (2.8)

=
∑
E⊂∂T

κ̃EδE(ρ)

∫
T

ϕE · ∇vh dx.

We will see that the harmonic average κ̃E is evaluated exactly under certain conditions of

the diffusion and convection coefficients α and β.

2.3 A Monotone Finite Element Scheme

Since H(ρ) = H(ρ(uh)) = J(uh), we use JT = HT as the flux approximation for J(uh). More

exactly, we define JT as an element of the Nédélec space,

JT :=
∑
E⊂∂T

κ̃EδE(eψEuh)ϕE,

14



with

dofNE (JT ) = JT · τE = κ̃EδE(eψEuh). (2.9)

Then, the corresponding local bilinear form is defined as

BT
N (uh, vh) =

∑
E⊂∂T

κ̃EδE(eψEuh)

∫
T

ϕE · ∇vh dx.

However, with this bilinear form, it is not easy to decide conditions or assumptions for

the monotone condition because BT
N (λi, λj) consists of several positive and negative terms

depending on the shape of T .

The following lemma [42, 49] shows an important identity under the condition that JT is a

constant vector on T . The identity introduces a new bilinear form that implies a monotone

finite element scheme.

Lemma 2.1. If JT is a constant vector on T , then for any vh ∈ Vh,

∑
E⊂∂T

(JT · τE)

∫
T

ϕE · ∇vh dx =
∑
E⊂∂T

ωTE (JT · τE) δE(vh),

where

ωTE = −
∫
T

∇λi · ∇λi+1 dx, when τE = xi+1 − xi.

Proof. If JT is a constant vector on T , JT · x is a linear function for x ∈ T , which implies

that

JT · x =
3∑
i=1

(JT · xi)λi(x), and JT =
3∑
i=1

(JT · xi)∇λi.
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Moreover, it follows from the definition of the Nédélec projection that

∑
E⊂∂T

(JT · τE)ϕE = ΠNJT = JT .

Hence, we conclude that

∑
E⊂∂T

(JT · τE)

∫
T

ϕE · ∇vh dx

=

∫
T

JT · ∇vh dx

=

∫
T

(
3∑
i=1

(JT · xi)∇λi

)
·

(
3∑
i=1

vi∇λi

)
dx

=
3∑
i=1

(∫
T

∇λi · ∇λi+1 dx

)
(JT · (xi+1 − xi)) (vi − vi+1)

The last equality holds because
∑3

i=1 λi = 1 so that
∑3

i=1∇λi = 0. In this case, the

difference xi+1 − xi determines τE on each edge E ⊂ ∂T .

Remark 2.2. In other words, JT is obtained from the degrees of freedom JT · τE on three

edges, and the identity (2.9) gives

∑
E⊂∂T

κ̃−1
E (JT · τE) = 0, (2.10)

which reduces one degree of freedom in the Nédélec space on T . If we assume that JT is

constant on T , we have a simpler condition,

∑
E⊂∂T

(JT · τE) = 0, (2.11)

which yields the results in Lemma 2.1. This argument will be applied to the virtual element

framework.

16



The bilinear form of the lowest order EAFE scheme is defined as

BT
h (uh, vh) =

∑
E⊂∂T

ωTEκ̃EδE(eψEuh)δE(vh) (2.12)

based on Lemma 2.1. Therefore, the discrete problem is to find uh ∈ Vh such that

∑
T∈Th

BT
h (uh, vh) = F (vh), ∀vh ∈ Vh.

Its solvability and error estimates are verified by the fact that

BT (uh, vh) = BT
N (uh, vh) = BT

h (uh, vh)

when J(uh) is constant.

The harmonic average κ̃E is originally expressed as

κ̃E =

(
1

|E|

∫
E

α−1eψE ds

)−1

.

In practice, the coefficients α and β are approximated as a constant αE and a constant vector

βE on each edge E ⊂ ∂T , respectively, and the local function is given as ψE(x) = αE
−1βE ·x.

Thus, the degrees of freedom in (2.9) are explicitly expressed as

κ̃EδE(eψEuh) = αEB(αE
−1βE · (xi − xi+1))ui+1 − αEB(αE

−1βE · (xi+1 − xi))ui,

where B(z) is the Bernoulli function defined as

B(z) =


z

ez − 1
z 6= 0,

1 z = 0.
(2.13)
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2.4 Monotonicity

We check that the EAFE discretization (2.12) is monotone [49]: The stiffness matrix corre-

sponding to the bilinear form, Aij = BT
h (λj, λi), is an M-matrix for any continuous functions

α > 0 and β if and only if the stiffness matrix for the Poisson equation is an M-matrix. In

the 2-dimensional case, the stiffness matrix for the Poisson equation is an M-matrix if and

only if the sum of the angles opposite to any edge is less than or equal to π in a triangulation

Th. The triangulation with this condition is a Delaunay triangulation. A sufficient condition

for the triangulation is that all the interior angles in each triangle of the triangulation are

less than or equal to π/2. A triangulation with no obtuse triangle is a very special Delaunay

triangulation, but this triangulation is easily applied to an arbitrary number of dimensions.

Let Nh be the number of all the nodes in Th. Then, for given j ∈ {1, . . . , Nh}, we have the

followings:

• If the corresponding node xi is a neighbor of xj, then

Aij =
∑
E3xj

ωEκ̃EδE(eψEλj)δE(λi) = −ωEκ̃EeψE(xj) ≤ 0,

where E 3 xj means all the edges having xj as an endpoint.

• If xj has no neighboring node on the boundary, then the j-th column sum of A is zero:

∑
i

Aij =
∑
E3xj

ωEκ̃EδE(eψEλj)δE(
∑
i

λi) =
∑
E3xj

ωEκ̃EδE(eψEλj)δE(1) = 0,

which implies that Ajj =
∑

i 6=j |Aij|.
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• If xj has a neighboring node on the boundary, then

∑
i

Aij > 0 or Ajj >
∑
i 6=j

|Aij|.
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Chapter 3

Virtual Element Methods

3.1 Virtual Element Spaces

Let us define Kh as a decomposition of the polygonal domain Ω into convex polygonal

elements K for a given mesh size h. We assume that each element K satisfies the shape

regularity presented in [26, 33]. On an element K, we denote xi as a vertex for 1 ≤ i ≤ NV

and Ej as an edge for 1 ≤ j ≤ NE, where NV is the number of vertices and NE is that

of edges. We also define a tangential vector or a vector between consecutive vertices as

τj = xj+1− xj for 1 ≤ j ≤ NE with j + 1 modulo NV . For a simple polygon, NV = NE. We

label the indices of the vertices or edges counterclockwise.

x1

x2x3

x6

τ1

τ2

τ6

Figure 3.1: A numbering of vertices and edges in a polygon.
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3.1.1 The lowest order nodal virtual element spaces

We first introduce the basic lowest order local nodal space presented in [12, 13]. A function

space is defined to have some conditions on the boundary edges of K,

B1(∂K) :=
{
vh ∈ C0(∂K) : vh|E ∈ P1(E), ∀E ⊂ ∂K

}
.

The standard nodal virtual element space V1(K)

Then, the local nodal space [12, 13] is defined as

V1(K) =
{
vh ∈ H1(K) : vh|∂K ∈ B1(∂K), ∆vh|K = 0

}
,

and the degrees of freedom are given as the values of vh at the vertices of K, i.e.,

dofi(vh) = vh(xi), (3.1)

for 1 ≤ i ≤ NV .

It is immediate to see that the dimension of V1(K) is NV , and it is the same as the number of

the degrees of freedom. Also, the canonical basis in K, {φj}NVj=1, is chosen by dofi(φj) = δij.

The important proposition that the degrees of freedom are unisolvent for V1(K) is easily

proved [12]. Indeed, if we assume that all the degrees of freedom (3.1) are zero, then vh ≡ 0

on ∂K so that by the integration by parts,

∫
K

|∇vh|2 dx =

∫
∂K

(∇vh · n) vh ds−
∫
K

(∆vh) vh dx = 0,

where n is the outward normal vector on ∂K. Thus, we conclude that vh is constant in K

so that the zero boundary condition on ∂K implies vh ≡ 0 in K.
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Since we do not know the explicit equation of vh in K, it would not be possible to exactly

compute a bilinear form including any functions in V1(K). However, we will define an

equivalent bilinear form that can be exactly evaluated by the given degrees of freedom. We

now introduce a proper projection operator evaluated by the degrees of freedom and use it

to define the equivalent bilinear form. The basic choice presented in [12, 13] is the local

H1-projection operator, that is, Π∇1 : V1(K)→ P1(K) with

∫
K

(
∇Π∇1 vh −∇vh

)
· ∇p1 dx = 0, ∀p1 ∈ P1(K), (3.2)

1

NV

NV∑
i=1

(
Π∇1 vh(xi)− vh(xi)

)
= 0. (3.3)

In the condition (3.2), the following quantity can be exactly computed by the degrees of

freedom,

∫
K

∇vh · ∇p1 dx =

∫
∂K

(∇p1 · n) vh ds =
∑
E⊂∂K

(∇p1 · nE)

∫
E

vh ds

because ∇p1 is a constant vector and ∆p1 ≡ 0 in K. The second condition (3.3) determines

the constant term of the linear polynomial Π∇1 vh. Furthermore, if we denote Π0
0 as the local

L2-projection onto the constant vector field (P0(K))2, we have Π0
0∇vh = ∇Π∇1 vh. More

exactly, it follows from their definitions that

∫
K

∇Π∇1 vh · ∇p1 dx =

∫
K

∇vh · ∇p1 dx =

∫
K

Π0
0∇vh · ∇p1 dx.

Now, we focus on finding an explicit formula for the projections. For any vh ∈ V1(K), the

linearity of the operator ∇ implies that Π0
0∇vh is determined by Π0

0∇φi for 1 ≤ i ≤ NV .

22



Let Π0
0∇φi = 〈q1

i , q
2
i 〉 = q1

i e1 + q2
i e2. Then, by the integration by parts, we have

q1
i |K| =

∫
K

∇φi · e1 dx =

NE∑
j=1

∫
Ej

φi (e1 · nj) ds

= n1
i−1

∫
Ei−1

φi ds+ n1
i

∫
Ei

φi ds

=
1

2
|Ei−1|n1

i−1 +
1

2
|Ei|n1

i

=
1

2
(yi+1 − yi−1),

where nj = 〈n1
j , n

2
j〉 = 〈yj+1 − yj,−(xj+1 − xj)〉 /|Ej| is the outward unit normal vector on

the edge Ej for 1 ≤ j ≤ NE. Similarly, we obtain

q2
i |K| =

1

2
|Ei−1|n2

i−1 +
1

2
|Ei|n2

i = −1

2
(xi+1 − xi−1).

Hence, Π0
0∇φi can be geometrically viewed as the average of the two outward normal vectors

xi−1

xixi+1 ni−1

ni

Π0
0∇φi

on the two adjacent edges to xi, or the outward vector perpendicular to the line segment

between xi+1 and xi−1 with different scales. From this result and the condition (3.3), we

finally have

Π∇1 φi = (Π0
0∇φi) · (x− xK) +

1

NV

,
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and the linear combination of vh gives

Π∇1 vh = (Π0
0∇vh) · (x− xK) +

1

NV

NV∑
i=1

vh(xi),

where

xK =
1

NV

NV∑
i=1

xi

is the barycenter of K.

In summary, the local nodal space V1(K) satisfies the following conditions:

• the dimension of V1(K) is NV .

• the degrees of freedom (3.1) are unisolvent for V1(K).

• P1(K) ⊂ V1(K).

• the H1-projection Π∇1 is computable by the degrees of freedom of V1(K).

A modified nodal virtual element space V̄1(K) dealing with L2-projection

We are interested in the L2-projection operator Π0
1 onto P1(K) defined by

∫
K

(
Π0

1vh − vh
)
p1 dx, ∀p1 ∈ P1(K).

Then, we encounter a problem about how we compute

∫
K

vhp1 dx
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using the degrees of freedom (3.1). Unfortunately, there is no way to compute it with (3.1)

in V1(K). A possible solution for this problem is presented by [3, 15]. According to the

ideas in [3, 15], we enlarge the local space V1(K) by changing the condition ∆vh|K = 0. For

example, if ∆vh|K is considered as a constant, the dimension of such a local space is NV + 1

and one more degree of freedom needed to fill out the dimension is

∫
K

vh dx. (3.4)

Thus, it is possible to obtain Π0
0vh from the degrees of freedom (3.1) and (3.4). In general,

if ∆vh|K ∈ P1(K), the natural degrees of freedom are

∫
K

vhp1 dx, ∀p1 ∈ P1(K), (3.5)

so we can get the L2-projection of vh of order up to k.

However, the additional degrees of freedom (3.5) would cause higher computational costs.

Hence, by adding proper conditions to the space V1(K), the degrees of freedom (3.5) are can

be eliminated. We introduce the modified local nodal virtual space of the lowest order k = 1

[3],

V̄1(K) =
{
vh ∈ H1(K) : vh|∂K ∈ B1(∂K), ∆vh ∈ P1(K),

(vh − Π∇1 vh, p1)L2(K) = 0, ∀p1 ∈ P1(K)
}
.

The definition of the modified space with a general number k is presented in [3]. In this

case, we already computed the polynomial Π∇1 vh using the degrees of freedom (3.1), and the

additional degrees of freedom (3.5) are given by Π∇1 vh. Therefore, the space V̄1(K) satisfies

the followings:

• the dimension of V̄1(K) is NV .
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• the degrees of freedom (3.1) are unisolvent for V̄1(K).

• P1(K) ⊂ V̄1(K).

• the H1-projection Π∇1 and the L2-projection Π0
1 are computable by the degrees of

freedom of V̄1(K), and moreover Π∇1 = Π0
1 in V̄1(K).

Indeed, the second condition is satisfied because if the degrees of freedom (3.1) are zero, we

see Π∇1 vh ≡ 0 in K so that

∫
K

(∆vh) vh dx =

∫
K

(∆vh) Π0
1vh dx = 0.

In this case, the first equality holds because ∆vh ∈ P1(K), and the second comes from the

identity Π∇1 vh = Π0
1vh in V̄1(K). We note that Π∇k vh 6= Π0

kvh if k > 1 (See details in [3]).

A reduced nodal virtual element space V̂1(K)

We will look at a different idea to get a reduced local nodal space. If we assume that any

given polynomial pk ∈ Pk(K) is written as pk(x) = div((x − xK)qk) for some qk ∈ Pk(K),

then we have

∫
K

vhpk dx =

∫
∂K

((x− xK) · n) vhqk ds−
∫
K

(∇vh · (x− xK)) qk dx.

On the right hand side, the first term can be obtained by the degrees of freedom at the

vertices (3.1), and the second term can be considered as additional degrees of freedom that

correspond to (3.5). Thus, as a simple case, we define a local nodal virtual element space

enlarged from V1(K)

Ṽ1(K) =
{
vh ∈ H1(K) : vh|∂K ∈ B1(∂K), ∆vh ∈ P0(K)

}
.
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Including the degrees of freedom (3.1), an equivalent degree of freedom to (3.4),

∫
K

∇vh · (x− xK) dx, (3.6)

fills out the dimension of Ṽ1(K). It is clear to check that all the degrees of freedom (3.1)

and (3.6) are unisolvent for Ṽ1(K). If the degrees of freedom are zero, then vh = 0 on ∂K

and
∫
K
vh dx = 0, which implies that vh ≡ 0 in K.

The next step is to reduce the dimension of the space Ṽ1(K) by adding a proper restriction.

Thus, we define a reduced local nodal virtual space and only consider the degrees of freedom

(3.1) in the reduced space. Most importantly, when the dimension of Ṽ1(K) is reduced, the

reduced space must contain P1(K). It is easy to see that

∫
K

∇p1 · (x− xK) dx = 0, ∀p1 ∈ P1(K).

Therefore, the reduced local nodal space in [20] is defined as

V̂1(K) =
{
vh ∈ H1(K) : vh|∂K ∈ B1(∂K), ∆vh ∈ P0(K), (∇vh,x− xK)L2(K) = 0

}
.

Then, the space V̂1(K) satisfies the following conditions:

• the dimension of V̂1(K) is NV .

• the degrees of freedom (3.1) are unisolvent for V̂1(K).

• P1(K) ⊂ V̂1(K).

• the H1-projection Π∇1 and the L2-projection Π0
0 are computable by the degrees of

freedom of V̂1(K).
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The global nodal virtual element spaces

For the local virtual element spaces V1(K), V̄1(K), and V̂1(K), the global spaces are defined

in the same way [12, 13] because they include the same degrees of freedom. For example, we

define the global space for V1(K),

V1(Kh) :=
{
vh ∈ H1

0 (Ω) : vh|K ∈ V1(K), ∀K ∈ Kh
}
.

The global degrees of freedom are all the values of vh at the internal vertices of the decom-

position Kh.

3.1.2 The lowest order local edge virtual element spaces

The general definition of local edge virtual element spaces are presented in [17, 19]. Here,

we introduce some lowest order edge spaces and explain important conditions. We consider

two different local edge spaces,

V0(K) =
{
vh ∈ (L2(K))2 : div vh = 0, rot vh ∈ P0(K),

vh · τE ∈ P0(E), ∀E ⊂ ∂K} ,

and

V̄0(K) =
{
vh ∈ (L2(K))2 : div vh ∈ P0(K), rot vh ∈ P0(K),

vh · τE ∈ P0(E), ∀E ⊂ ∂K} .
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Existence of local edge virtual element functions

We check the existence of such functions vh ∈ V̄0(K), that is, we find vh ∈ (L2(K))2

satisfying all the conditions in V̄0(K). The existence of such vh ∈ V0(K) is also proved in

the same way. For more details, one can see [6]. Let us define the following spaces

G(K) :=
{
∇ϕ | ϕ ∈ H1(K)

}
, G0(K) :=

{
∇ϕ | ϕ ∈ H1

0 (K)
}
,

and

R(K) :=
{
rot ξ | ξ ∈ H1(K)

}
, R0(K) :=

{
rot ξ | ξ ∈ H1

0 (K)
}
.

Then, it follows from Theorem 3 of [6] that

(L2(K))2 = G(K)⊕R0(K) = G0(K)⊕R(K).

For any vh ∈ (L2(K))2, vh can be written as a Helmholtz decomposition, that is, vh =

∇ϕ+ rot ξ for some ϕ ∈ H1
0 (K) and ξ ∈ H1(K) (or for some ϕ ∈ H1(K) and ξ ∈ H1

0 (K)).

We consider the following problem related to the conditions in V̄0(K),


div vh = ρd, in K,

rot vh = ρr, in K,

vh · τE = ρE, on E ⊂ ∂K,

where ρd, ρr, and ρE are given constants in V̄0(K). Hence, the first equation implies the

Poisson problem,

∆ϕ = ρd in K,
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with the boundary condition ϕ = 0 on K, and the second equation gives

rot vh = rot (rot ξ) = −∆ξ = ρr.

It follows from ∇ϕ · τE = 0 on E ⊂ ∂K that

vh ·
(
τE
|τE|

)
= rot ξ ·

(
τE
|τE|

)
= ∇ξ · nE = ρE/|E|,

which is the Neumann boundary condition for the Poisson problem with respect to ξ. In

this case, the comparability condition,

∫
K

ρr dx =
∑
E⊂∂K

1

|E|

∫
E

ρE ds,

must be satisfied for the existence of such a function ξ, and it will be easily verified by the

integration by parts.

Degrees of freedom

We take a look at degrees of freedom for V0(K) and V̄0(K). The natural degrees of freedom

in [17, 18, 19, 20] are

dofE(vh) =
1

|E|

∫
E

vh · τE ds, (3.7)
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for each E ⊂ ∂K. In addition, since the quantity rot vh is assumed as a constant on each

element K in the spaces V0(K) and V̄0(K), we obtain from the integration by parts,

|K| (rot vh) =

∫
K

rot vh dx (3.8)

=
∑
E⊂∂K

∫
E

vh ·
(
τE
|τE|

)
ds

=
∑
E⊂∂K

1

|E|

∫
E

vh · τE ds.

We note that the second equality guarantees the comparability condition, and we also see

that rot vh is exactly computed by the degrees of freedom (3.7).

While the dimension of V0(K) is NE, the dimension of V̄0(K) is NE + 1. This is because

the value ρd can be arbitrarily chosen as a constant in V̄0(K) while ρd is fixed as zero in

V0(K). Thus, we need one more degree of freedom to fill out the dimension of V̄0(K). The

additional degree of freedom is used to show that all given degrees of freedom are unisolvent

for V̄0(K). Indeed, for any vh ∈ V̄0(K), we write div vh = div((x − xK)p0) for some

p0 ∈ P0(K) because div vh is a constant. Then, it follows from div(vh − (x − xK)p0) = 0

that

vh = rot ζ + (x− xK)p0,

for some differentiable function ζ. This identity and the integration by parts imply that

∫
K

|vh|2 dx =

∫
K

vh · (rot ζ + (x− xK) p0)

=

∫
K

(rot vh) ζ dx−
∑
E⊂∂K

1

|E|

∫
E

(vh · τE) ζ ds+

∫
K

vh · (x− xK) p0 dx.

As you see here, the first two terms are vanished when the degrees of freedom at (3.7) are
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zero, so the additional degree of freedom is determined as

∫
K

vh · (x− xK) dx. (3.9)

Thus, if this degree of freedom is also zero, we finally get vh ≡ 0 in K. From the above

arguments, it is easy to prove that the degrees of freedom (3.7) are unisolvent for V0(K).

Indeed, since div vh = 0, vh = rot ζ for some function ζ, so
∫
K
|vh|2 dx = 0 when the

degrees of freedom (3.7) are zero.

L2-projection Π0
1

The polynomial space (P1(K))2 is decomposed into

(P1(K))2 = rot P2(K) + xP0(K).

The L2-projection Π0
1 : V̄0(K)→ (P1(K))2 is computed as

∫
K

Π0
1vh · p1 dx =

∫
K

vh · p1 dx

=

∫
K

vh · (rot p2 + (x− xK) p0) dx

=

∫
K

(rot vh) p2 dx−
∑
E⊂∂K

1

|E|

∫
E

(vh · τE) p2 ds

+ p0

∫
K

vh · (x− xK) dx.

The right hand side can be evaluated by the degrees of freedom (3.7) and (3.9). We note that

it is possible to compute only the L2-projection Π0
0 : V0(K) → (P0(K))2 with the degrees

of freedom (3.7).
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Summary of properties of V0(K) and V̄0(K)

The space V0(K) satisfies the following conditions:

• the dimension of V0(K) is NE.

• the degrees of freedom (3.7) are unisolvent for V0(K).

• (P0(K))2 ⊂ V0(K).

• the L2-projection Π0
0 are computable by the degrees of freedom of V0(K).

We also summarize the important properties of V̄0(K):

• the dimension of V̄0(K) is NE + 1.

• the degrees of freedom (3.7) and (3.9) are unisolvent for V̄0(K).

• (P0(K))2 ⊂ V̄0(K).

• the L2-projection Π0
1 are computable by the degrees of freedom of V̄0(K).

A reduced edge virtual element space V̂0(K)

We introduce an idea to reduce the dimension of V̄0(K). It comes from the required condition

that (P0(K))2 ⊂ V̄0(K). To be specific, we look at

∫
K

p0 · (x− xK) dx = 0, ∀p0 ∈ (P0(K))2,
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so the reduced local virtual edge space in [20] is

V̂0(K) =
{
vh ∈ (L2(K))2 | div vh ∈ P0(K), rot vh ∈ P0(K),

vh · τE ∈ P0(E), ∀E ⊂ ∂K, (vh,x− xK)L2(K) = 0
}
.

In conclusion, it is easy to check the properties of the space V̂0(K):

• the dimension of V̂0(K) is NE.

• the degrees of freedom (3.7) are unisolvent for V̂0(K).

• (P0(K))2 ⊂ V̂0(K).

• the L2-projection Π0
1 are computable by the degrees of freedom of V̂0(K).

Canonical basis with respect to the degrees of freedom

Let {χj}NEj=1 be the canonical basis of V0(K) (or V̂0(K)), that is, with the degrees of freedom

(3.7)

dofEi(χj) =
1

|Ei|

∫
Ei

χj · τi ds = χj · τi = δij,

where τi = xi+1 − xi for 1 ≤ i ≤ NE. Then, any vector function vh ∈ V0(K) is written as

vh =
∑
E⊂∂K

(vh · τE)χE or

NE∑
i=1

(vh · τi)χi.

The global edge virtual element spaces

The global edge virtual element spaces are required to preserve the H(curl)-conformity

[18, 19, 20]. For the local virtual element space V0(K), the global space in 2 dimensions is
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defined as

V0(Kh) := {vh ∈ H0(rot; Ω) : vh|K ∈ V0(K), ∀K ∈ Kh} .

The global space corresponding to V̂0(K) is defined in the same way. Their global degrees of

freedom are vh ·τE for all interior edges of the decomposition Kh. Moreover, the global space

for V̄0(K) needs additional global degrees of freedom
∫
K

vh · (x− xK) dx for all K ∈ Kh.

3.1.3 Relations between V1(K) and V0(K)

We present important relations between the local nodal space V1(K) and the local edge space

V0(K). These relations allow us to derive an efficient flux approximation in virtual element

framework.

Proposition 3.1. ∇V1(K) is a subset of V0(K), and moreover

∇V1(K) = {vh ∈ V0(K) | rot vh = 0} .

Proof. For any local function vh ∈ V1(K), it is easy to check that div (∇vh) = 0, rot (∇vh) =

0, and ∇vh · τE ∈ P0(E) for every E ⊂ ∂K. Thus, we have ∇vh ∈ V0(K), so

∇V1(K) ⊂ {vh ∈ V0(K) | rot vh = 0} .

Now, both are finite dimensional spaces, and

dim (∇V1(K)) = dim (V1(K))− 1 = dim (V0(K))− 1

= dim ({vh ∈ V0(K) | rot vh = 0}) .
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This proof is similar to the arguments in [20] showing the same relation between V̂1(K) and

V̂0(K), i.e.,

∇V̂1(K) =
{

vh ∈ V̂0(K) | rot vh = 0
}
.

Then, we verify the relation between the canonical basis functions, {φi}NVi=1 and {χj}NEj=1.

Lemma 3.1. In the space V0(K) (or V̂0(K)), we have

χn − χm = −
n∑

l=m+1

∇φl.

for 1 ≤ m < n ≤ NE.

Proof. Let wh = −
∑n

l=m+1∇φl. Then, wh ∈ ∇V1(K) ⊂ V0(K) by Proposition 3.1. It is

clear to see that

dofE(wh) = dofE(χn − χm),

for all E ⊂ ∂K. Therefore, wh = χn − χm in V0(K) by the unisolvent condition.

3.2 Virtual Bilinear Forms for the Poisson Equation

We introduce bilinear forms appearing in virtual element methods for the Poisson equation.

These bilinear forms will be applied to construct the edge-averaged virtual element scheme.

The classic local bilinear form for the Poisson equation is denoted as

aK(u, v) =

∫
K

∇u · ∇v dx.
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Since we do not know the explicit forms of uh, vh ∈ V1(K) inside K, it would not be possible

to exactly compute aK(uh, vh). Therefore, we use the equivalent bilinear form in [12, 13]

aKh (uh, vh) =

∫
K

∇Π∇1 uh · ∇Π∇1 vh dx + SK(uh − Π∇1 uh, vh − Π∇1 vh). (3.10)

for all uh, vh ∈ V1(K). In this case, the stabilization term SK will be chosen to verify that

there are positive constants c0 and c1 independent of hK such that

c0a
K(vh, vh) ≤ SK(vh, vh) ≤ c1a

K(vh, vh),

for every vh ∈ V1(K) with Π∇1 vh = 0. These inequalities directly imply the norm equivalence,

γ∗a
K(vh, vh) ≤ aKh (vh, vh) ≤ γ∗aK(vh, vh), ∀vh ∈ V1(K), (3.11)

for some positive constants γ∗ and γ∗ independent of hK . (See [12, 13] for details.) Here, we

introduce the most popular choice for SK ,

SKV (uh, vh) :=

NV∑
i=1

dofi(uh)dofi(vh). (3.12)

Let Π∇ = (Π∇)ri be the matrix corresponding to the H1-projection, that is, (Π∇)ri =

dofr(Π
∇φi). Then, the matrix corresponding to the stabilization term

SKV (φj − Π∇1 φj, φi − Π∇1 φi)

is computed by

(I−Π∇)T (I−Π∇).
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Another choice of the stabilization term is the H
1
2 -inner product [31],

SKE (uh, vh) : =
∑
E⊂∂K

(uh, vh)H1/2(E) (3.13)

=
∑
E⊂∂K

∫
E

∫
E

(uh(x)− uh(y)) (vh(x)− vh(y))

‖x− y‖2
dxdy

=
∑
E⊂∂K

δE(uh)δE(vh),

where δE is the difference between the nodal function values at the two end points of E. The

matrix corresponding to this stabilization term can be simply computed as

(I−Π∇)TW(I−Π∇),

where W looks like a NV × NV tridiagonal matrix with the sequence of entries (−1, 2,−1)

and moreover (W)1,NV = (W)NV ,1 = −1. Hence, we note that the bilinear form aKh (·, ·) is

computed by the degrees of freedom V1(K) for both cases.

3.3 Construction of the Right Hand Side

We use an approximation technique for the right hand side presented in [12]. Let fK0 be a

piecewise constant approximation of f . Then, we define

Fh(vh) :=
∑
K∈Kh

∫
K

fK0 v̄h dx =
∑
K∈Kh

|K|fK0 v̄h,

where

v̄h :=
1

NV

NV∑
i=1

vh(xi).
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Therefore, we obtain an approximation estimate (see [12] for details),

Fh(vh)− F (vh) ≤ Ch

(∑
K∈Th

|f |2H1(K)

)1/2

|vh|H1(Ω) . (3.14)
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Chapter 4

Edge-Averaged Virtual Element

Scheme

The weak formulation (2.2) for the convection-diffusion problem (2.1) is to seek u ∈ H1
0 (Ω)

such that

B(u, v) =
∑
K∈Kh

BK(u, v) = F (v), ∀v ∈ H1
0 (Ω).

Then, since V1(Kh) ⊂ H1
0 (Ω), the bilinear form

BK(uh, vh) =

∫
K

J(uh) · ∇vh dx (4.1)

is well-defined for uh, vh ∈ V1(Kh). The main idea is to approximate the local flux J(uh)|K in

the local edge virtual element space V0(K), and the approximation will be simply computed

by some function values on edges or vertices.
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4.1 A Flux Approximation in Virtual Element Spaces

We present a flux approximation for J(uh) in K using the degrees of freedom in V0(K).

From the lemma 3.1 in [49], we have for any E ⊂ ∂K,

δE(eψEu) =
1

|E|

∫
E

κ−1
E (J(u) · τE) ds, (4.2)

for a given u ∈ H1
0 (Ω) ∩ C0(Ω̄). This identity can easily be extended to any line segment

linking two vertices of K. Then, the flux approximation JK ∈ V0(K) is obtained by the

relation

dofE(κ−1
E JK) = dofE(κ−1

E J(uh)) = δE(eψEuh),

for all E ⊂ ∂K. Hence, the approximation JK ∈ V0(K) is written as

J(uh)|K ≈ JK =
∑
E⊂∂K

(JK · τE)χE,

where χE is the canonical basis of V0(K) on each edge E. For any E ⊂ ∂K, we have

JK · τE ∈ P0(E), which means that

JK · τE = κ̃EδE(eψEuh), (4.3)

where

κ̃E =

(
1

|E|

∫
E

κ−1
E ds

)−1

.

From the identity (4.3), we conclude that each degree of freedom of JK ∈ V0(K) can be

expressed by nodal values of eψEuh at the vertices of K. Thus, not only are the continuity

or exact form of some functions inside K not imposed, but also the locally defined function
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ψE in Remark 2.1 can be simply used. Moreover, it is clear to see that J(uh) = JK if

J(uh) ∈ V0(K).

An approximating bilinear form B̄K
h (·, ·)

We present an approximating bilinear form with the flux approximation JK . By substituting

JK for J(uh) in (4.1), we define a bilinear form

B̄K
h (uh, vh) =

∑
E⊂∂K

κ̃EδE(eψEuh)

∫
K

χE · ∇vh dx. (4.4)

Then, it follows from (4.2) and (4.3) that

B̄K
h (uI , vh) =

∑
E⊂∂K

κ̃EδE(eψEu)

∫
K

χE · ∇vh dx

=
∑
E⊂∂K

(
κ̃E
|E|

∫
E

κ−1
E (J(u) · τE) ds

)∫
K

χE · ∇vh dx, (4.5)

where uI is the nodal interpolant in V1(Kh) of any continuous function u over Ω̄ in H1
0 (Ω).

We note that it is still difficult to handle the bilinear form (4.4) because the exact forms of χE

and vh are needed for the integration over K. We could approximate the integration using

the L2-projection Π0
0 over V0(K), but this approach does not explicitly show the relation

between the bilinear form and the corresponding stiffness matrix. More importantly, a simple

modification with the assumption that JK is constant implies another approximating bilinear

form. This bilinear form leads us to a stabilized virtual element scheme.
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4.2 Derivation of the EAVE Bilinear Form

The key idea is to simplify the bilinear form B̄K
h (uh, vh) under the assumption that JK is a

constant vector on K. Based on the simplified formula, a new approximating bilinear form

BK
h (uh, vh) will be defined. The following lemma provides the details for the simplification.

x1

x2x3

x6

E13

E36

E16

Figure 4.1: Examples of line segments linking two vertices in a polygon.

Lemma 4.1. Let Eij be a line segment linking two vertices xi and xj for i < j (e.g. Figure

4.1). If JK is a constant vector on K, then for any vh ∈ V1(K),

∑
E⊂∂K

(JK · τE)

∫
K

χE · ∇vh dx =
∑

1≤i<j≤NV

ωKij κ̃Eijδ
K
ij (eψEijuh)δ

K
ij (vh), (4.6)

where ωKij = −aKh (φi, φj), δKij (vh) = vh(xj)− vh(xi), and κ̃Eij is the harmonic average on Eij

for 1 ≤ i < j ≤ NV .

Proof. We assume that JK is a constant vector on K. Then,

ΦK(x) := JK · x

is a linear polynomial for x ∈ K. Let us simply write σi = JK · xi for 1 ≤ i ≤ NV . Since

JK ∈ V0(K) and ΦK ∈ V1(K), it follows from the unisolvent conditions of V0(K) and V1(K)
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that

JK =
∑
E⊂∂K

(JK · τE)χE and ΦK(x) =

NV∑
i=1

σiφi(x)

in V0(K) and V1(K), respectively. We also obtain

∫
K

JK · ∇vh dx =

∫
K

∇ΦK · ∇vh dx

=

∫
K

∇Π∇1 ΦK · ∇Π∇1 vh dx + SK(ΦK − Π∇1 ΦK , vh − Π∇1 vh)

because ΦK = Π∇1 ΦK . We now focus on the first term

∫
K

∇Π∇1 ΦK · ∇Π∇1 vh dx =

∫
K

(
NV∑
i=1

σi∇Π∇1 φi

)
·

(
NV∑
i=1

vh(xi)∇Π∇1 φi

)
dx. (4.7)

We have seen that
∑NV

i=1∇φi ∈ V0(K), and all its degrees of freedom in V0(K) are zero.

Hence,
∑NV

i=1∇φi ≡ 0 in V0(K), and equivalently

∫
K

∇Π∇1 φj · ∇Π∇1 φj dx = −
∑

i=1,i 6=j

∫
K

∇Π∇1 φj · ∇Π∇1 φi dx.

Using this fact, we distribute the integrant of the right hand side in (4.7) and factor out with

respect to

∫
K

∇Π∇1 φi · ∇Π∇1 φj dx

for i < j. Then, each term becomes

(σivh(xj) + σjvh(xi)− σivh(xi)− σjvh(xj))
∫
K

∇Π∇1 φi · ∇Π∇1 φj dx

= (vh(xj)− vh(xi))(σj − σi)
(
−
∫
K

∇Π∇1 φi · ∇Π∇1 φj dx

)
.
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In this case, the factor σj − σi is written as

σj − σi = JK · τij = κ̃Eijδ
K
ij (eψEijuh),

where τij = xj − xi.

We treat the second term in a similar way. We already know that
∑NV

i=1 φi ≡ 1 in V1(K)

from the unisolvent condition, which implies that

SK(φj − Π∇1 φj, φj − Π∇1 φj) = −
NV∑

i=1,i 6=j

SK(φj − Π∇1 φj, φi − Π∇1 φi).

Likewise, if we distribute the second term and factor it out with respect to

SK(φj − Π∇1 φi, φj − Π∇1 φj)

for i < j, then we complete to prove it.

Consequently, we define the EAVE bilinear form on an element K as

BK
h (uh, vh) =

∑
1≤i<j≤NV

ωKij κ̃Eijδ
K
ij (eψEijuh)δ

K
ij (vh). (4.8)

The discrete problem for the EAVE scheme is defined to find uh ∈ V1(Kh) such that

∑
K∈Kh

BK
h (uh, vh) = Fh(vh), ∀vh ∈ V1(Kh). (4.9)

Moreover, it follows from (4.2) that

BK
h (uI , vh) =

∑
1≤i<j≤NV

ωKij

(
κ̃Eij
|τij|

∫
Eij

κ−1
Eij

(J(u) · τij) ds

)
δKij (vh). (4.10)
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Remark 4.1. We emphasize that ωKij are computable and already given in the virtual element

methods for Poisson problems. In order to compute the bilinear form (4.8), we need the nodal

degrees of freedom (3.1) of uh, vh ∈ V1(K) and the locally defined function ψEij on the line

segment Eij. More exactly, the local function can be given as ψEij(x) = αEij
−1βEij · x with

constant approximations αEij and βEij on Eij. Therefore, the bilinear form is computed by

κ̃Eijδ
K
Eij

(eψEijuh) = αEijB(αEij
−1βEij · (xi − xj))uj − αEijB(αEij

−1βEij · (xj − xi))ui,

where B(z) is the Bernoulli function defined in (2.13).

In summary, we approximate the local bilinear form (4.1) using the flux approximation in

the local edge virtual element space V0(K), and then approximate the form (4.4) under the

assumption that JK is a constant vector in K,

BK(uh, vh) ≈ B̄K
h (uh, vh) ≈ BK

h (uh, vh).

We note that these approximate relations become equalities if J(uh) is a constant vector on

K. The assumption that J(uh) is constant will be a key condition in error analysis.

4.3 Monotonicity

The following lemma shows that the EAVE method is monotone if the stiffness matrix from

aKh (φi, φj) is an M-matrix.

Lemma 4.2. If the stiffness matrix for the Poisson equation with the virtual bilinear form

(3.10) is an M-matrix, then the stiffness matrix from the EAVE method (4.9) is an M-matrix

for α ∈ C0(Ω̄) and β ∈
(
C0(Ω̄)

)2
.
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Proof. We consider the stiffness matrix whose components are

Bmn =
∑
K∈Kh

BK
h (φn, φm).

If m 6= n, it is clear to see that Bmn = 0 if the two corresponding vertices to φm and φn do

not share a polygon in Kh. Otherwise, we let Kmn be the set of polygons shared by the two

vertices xm and xn. Then, each component becomes

Bmn =
∑

K∈Kmn

BK
h (φn, φm).

For any polygon K ∈ Kmn, we have

BK
h (φn, φm) = −ωKmnκ̃EmneψEmn (xn) or − ωKnmκ̃EnmeψEnm (xn).

Note that BK
h (φn, φm) depends on the local indices of m and n which are determined coun-

terclockwise in K. Hence, since ωKmn = −aKh (φm, φn) ≥ 0 and κ̃Emn > 0, it is easy to see that

Bmn ≤ 0.

Moreover, it follows from the unisolvent condition in V1(K) that

∑
m

Bmn =
∑
K∈Kh

BK
h (φn, 1) = 0.

if xn has no neighbor on the boundary. If xn has a neighbor on the boundary, then
∑

mBmn >

0.
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Chapter 5

Error Analysis

In this chapter, we will prove the discrete inf-sup condition to guarantee the solvability of

the discrete problem (4.9). This inf-sup condition will be also used to show the order of

convergence in terms of

h := max
K∈Kh

hK ,

where hK is the diameter of each element K ∈ Kh.

5.1 Some Estimates of the Bilinear Forms

In this section, we show upper bounds of the difference between the bilinear forms BK(·, ·)

and BK
h (·, ·). These bounds will be used to prove the discrete inf-sup condition. The key

condition is that

BK(w, vh) = B̄K
h (w, vh) = BK

h (w, vh), ∀vh ∈ V1(K)
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if J(w) is a constant vector.

The norm equivalence between Lp-norm and L2-norm in the finite dimensional space V1(K)

will be used. It is well known that all norms in finite dimensional vector spaces are equivalent.

However, since all types of shape-regular polygons are considered, it is not clear to show how

the constant involved in the norm equivalence depends on the properties of polygons. The

constant may not bounded in some cases. Hence, for a finite dimensional vector space Vh(K),

we define

C(K) := sup
µ∈Vh(K)

‖µ‖Lp(K)

‖µ‖L2(K)

with hK = 1, and we prove that C(K) is uniformly bounded for any shape-regular polygon

K.

Lemma 5.1. (Norm Equivalence) Let Vh(K) be a finite dimensional subspace of Lp(K) for

any p > 1. Then, every element µ ∈ Vh(K) satisfies

‖µ‖Lp(K) ≤ Ch
2/p−1
K ‖µ‖L2(K), (5.1)

where C is a generic constant independent of hK.

Proof. See Appendix A.

We present and prove the following result.

Lemma 5.2. Let p, q, r, and η have the relations,

1

p
+

1

q
= 1 and

1

q
=

1

r
− η

2

with 0 < η < 1 and 1 ≤ r < 2. For any K ∈ Kh, we assume that w ∈ C(Ω̄) and
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J(w) ∈ (W η,r(K))2. Then, for any vh ∈ V1(K), it holds that

∣∣BK(w, vh)−BK
h (wI , vh)

∣∣ ≤ Ch
1/p−1/q
K |J(w)|W η,r(K) |vh|H1(K) .

Proof. From (4.5) and (4.10), the difference is written as

BK(w, vh)−BK
h (wI , vh) = E1(J(w), vh) + E2(J(w), vh),

where E1(J(w), vh) = BK(w, vh)− B̄K
h (wI , vh) and E2(J(w), vh) = B̄K

h (wI , vh)−BK
h (wI , vh).

In this case, Ei(·, vh) for i = 1, 2 are considered as linear functionals, so we first show

that they are continuous (or bounded) linear functionals. With scaled elements K̂ :=

{x̂ | x̂ = x/hK ,x ∈ K} and scaled functions v̂h(x̂) := vh(hKx̂) = vh(x), it follows from

the change of variables that

BK(w, vh) =

∫
K

J(w) · ∇vh dx = hK

∫
K̂

Ĵ(w) · ∇̂v̂h dx̂.

Then, the scaled integration is bounded as

∣∣∣∣∫
K̂

Ĵ(w) · ∇̂v̂h dx̂
∣∣∣∣ ≤ ‖Ĵ(w)‖Lq(K̂) |v̂h|W 1,p(K̂) (5.2)

using Hölder’s inequality with 1/p+ 1/q = 1. It also follows from (4.5), (4.10), and the same

scaling that

∣∣h−1
K B̄K

h (wI , vh)
∣∣ ≤ C‖Ĵ(w)‖Lq(K̂) |v̂h|W 1,p(K̂) , (5.3)

and

∣∣h−1
K BK

h (wI , vh)
∣∣ ≤ C‖Ĵ(w)‖Lq(K̂) |v̂h|W 1,p(K̂) . (5.4)
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Let us denote the scaled functionals as

Êi(Ĵ(w), v̂h) :=
1

hK
Ei(J(w), vh), i = 1, 2.

From (5.2), (5.3), (5.4), and the Sobolev embedding theorem [1], we have

Êi(Ĵ(w), v̂h) ≤ Ci‖Ĵ(w)‖Lq(K̂) |v̂h|W 1,p(K̂)

≤ Ci‖Ĵ(w)‖W η,r(K̂) |v̂h|W 1,p(K̂) ,

for 0 < η < 1 and 1 ≤ r < 2. The constants Ci may vary at each line. Hence, the scaled

linear functionals Êi(·, v̂h) are bounded above. From (4.5), (4.10), and Lemma 4.1, we have

Êi(Ĵ(w), v̂h) = 0 if J(w) is a constant on K. Therefore, it follows from Theorem 6.1 in [35]

and the Blamble-Hilbert lemma that

h−1
K Ei(J(w), vh) = Êi(Ĵ(w), v̂h)

≤ Ci|Ĵ(w)|W η,r(K̂) |v̂h|W 1,p(K̂) .

By scaling back to K and using Lemma 5.1, we get

Ei(J(w), vh) ≤ Ch
1/p−1/q
K |J(w)|W η,r(K) |vh|H1(K) .

Similarly, another upper bound is given with different norms.

Lemma 5.3. If we assume that w ∈ C(Ω̄) and J(w) ∈ (W 1,s(K))2 with s > 2 for any

K ∈ Kh, then

∣∣BK(w, vh)−BK
h (wI , vh)

∣∣ ≤ Ch
2−2/s
K |J(w)|W 1,s(K) |vh|H1(K) ,
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for any vh ∈ V1(Kh).

Proof. The proof of this lemma is similar to that of the previous lemma. We look at the

same expression

BK(w, vh)−BK
h (wI , vh) = E1(J(w), vh) + E2(J(w), vh),

and we bound the scaled linear functionals Êi(·, v̂h) in different norms. Indeed, we obtain an

upper bound

∣∣∣∣∫
K̂

Ĵ(w) · ∇̂v̂h dx̂
∣∣∣∣ ≤ CK̂‖Ĵ(w)‖L∞(K̂) |v̂h|H1(K̂) .

By applying the same scaling to the intermediate term (4.5), we have

B̄K
h (wI , vh) = hK

∑
Ê⊂∂K̂

(
˜̂κÊ
|τÊ|

∫
Ê

κ̂−1

Ê
(Ĵ(w) · τÊ) dŝ

)∫
K̂

χÊ · ∇̂v̂h dx̂,

where

˜̂κÊ =

(
1

|τÊ|

∫
Ê

κ̂−1

Ê
dŝ

)−1

.

Thus, we have an upper bound for the scaled version of (4.5),

∣∣h−1
K B̄K

h (wI , vh)
∣∣ ≤ Cα,β‖Ĵ(w)‖L∞(K̂) |v̂h|H1(K̂) .

The constant Cα,β may depend on ‖χÊ‖L2(K̂), which is guaranteed to be properly bounded

because χÊ is a basis for a finite-dimensional space V0(K). For (4.10), it follows from the

same scaling that

BK
h (wI , vh) = hK

∑
1≤i<j≤NV

ωK̂ij

(
˜̂κÊij
|τij|

∫
Êij

κ̂−1

Êij
(Ĵ(w) · τij) dŝ

)
δK̂ij (v̂h),
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where i and j are the indices of the vertices of K̂ that coincide with those of K. Since we

have a bound of ωK̂ij from (3.11),

|ωK̂ij | ≤ γ∗|φi|H1(K̂)|φj|H1(K̂),

the scaled one for (4.10) is bounded as

∣∣h−1
K BK

h (wI , vh)
∣∣ ≤ Cα,β‖Ĵ(w)‖L∞(K̂) |v̂h|H1(K̂) .

The constant Cα,β in this case may contain |φi|H1(K̂), but it is bounded by a constant so that

it is omitted. Thus, the scaled linear functionals Êi(·, v̂h) are bounded with respect to L∞-

norm and H1-seminorm. By the Sobolev embedding theorem [1] and the Blamble-Hilbert

lemma, we get

Êi(Ĵ(w), v̂h) ≤ C‖Ĵ(w)‖L∞(K̂) |v̂h|H1(K̂)

≤ C‖Ĵ(w)‖W 1,s(K̂) |v̂h|H1(K̂)

≤ C|Ĵ(w)|W 1,s(K̂) |v̂h|H1(K̂)

= Ch
1−2/s
K |J(w)|W 1,s(K) |vh|H1(K) ,

for s > 2.

From the Lemma 5.2, we will derive another upper bound for the difference BK(wh, vh) −

BK
h (wh, vh) with respect to |wh|H1(K) and |vh|H1(K). In this case, it is important to know that

|wh|H2(K) 6= 0 for the virtual element function wh ∈ V1(K) while |p1|H2(T ) = 0 for p1 ∈ P1(Th)

in the standard linear finite element method. Instead, we use the regularity result presented

in [9, 34, 40] that there exists η ∈ (0, 1) such that |wh|H1+η(K) = 0.
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Lemma 5.4. For any K ∈ Kh, we assume that J(wh) ∈ (W η,r(K))2 for any wh ∈ V1(K).

Then, we have

∣∣BK(wh, vh)−BK
h (wh, vh)

∣∣ ≤ CβhK |wh|H1(K) |vh|H1(K) ,

where the constant Cβ is independent of hK.

Proof. From Lemma 5.2, we have

∣∣BK(wh, vh)−BK
h (wh, vh)

∣∣ ≤ Ch
1/p−1/q
K |J(wh)|W η,r(K) |vh|H1(K)

for all wh, vh ∈ V1(K). For any given polygon K, the constant η ∈ (0, 1) is chosen to satisfy

|wh|H1+η(K) ≤ C‖∆wh‖H−1+η(K) = 0

(see e.g., [9, 34, 40]). Hence, Lemma 5.1 provides the following estimate

|J(wh)|W η,r(K) ≤ Ch
2/r−1
K |J(wh)|Hη(K),

and Proposition 2.2 in [45] implies that

|J(wh)|Hη(K) ≤ |α∇wh + βwh|Hη(K)

≤ |α|Hη(K) |wh|H1+η(K) + |β|Hη(K) |wh|Hη(K)

≤ h1−η
K |β|Hη(K) |wh|H1(K) .

Therefore, it follows from the relations in Lemma 5.2 that

1

p
− 1

q
+

2

r
− 1 + 1− η = 1,
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and one can see that the constant Cβ contains |β|Hη(K).

5.2 Well-Posedness of the Discrete Problem

Basically, our strategy to prove the discrete inf-sup condition is to observe that for wh, vh ∈

V1(Kh),

Bh(wh, vh) ≥ B(wh, vh)− |Bh(wh, vh)−B(wh, vh)| .

Then, the difference between the two bilinear forms can be controlled by Lemma 5.4, and

the first term is done by the following inf-sup condition: For a constant CB > 0, it holds

sup
vh∈V1(Kh)

B(wh, vh)

‖vh‖H1(Ω)

≥ CB‖wh‖H1(Ω), ∀wh ∈ V1(Kh). (5.5)

From (2.3), it is immediate to have the inf-sup condition in the space H1
0 (Ω), that is, there

exists v ∈ H1
0 (Ω) such that

B(w, v) ≥ C̄B‖w‖H1(Ω)‖v‖H1(Ω), ∀w ∈ H1
0 (Ω),

for some constant C̄B > 0. Likewise, since V1(Kh) ⊂ H1
0 (Ω), there exists v∗ ∈ H1

0 (Ω) such

that

B(wh, v
∗) ≥ C̄B‖wh‖H1(Ω)‖v∗‖H1(Ω), ∀wh ∈ V1(Kh).

However, this result is not enough to imply (5.5) because we cannot guarantee that v∗ ∈

V1(Kh). In this situation, we use the mathematical techniques in [16] to seek v∗h ∈ V1(Kh)
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satisfying the inequality for every wh ∈ V1(Kh). The proof is similar to that of [16], but we

want to present it here because we consider a slightly different bilinear form,

a(w, v) =

∫
Ω

α(x)∇w · ∇v dx,

for any w, v ∈ H1
0 (Ω).

Lemma 5.5. Assume that 0 < αmin ≤ α(x) ≤ αmax. For any given v∗ ∈ H1
0 (Ω), there exists

v∗h ∈ V1(Kh) such that

a(v∗h, vh) = a(v∗, vh), ∀vh ∈ V1(Kh). (5.6)

Moreover, the error bounds are given as

‖v∗ − v∗h‖L2(Ω) + h‖v∗ − v∗h‖H1(Ω) ≤ Cαh‖v∗‖H1(Ω), (5.7)

for some constant Cα > 0 depends on α but is independent of h. More precisely, the constant

is presented as

Cα = Cαmax

(
1 +

αmax

αmin

)
.

Proof. It is immediate to see that for any vh ∈ V1(Kh),

a(vh, vh) ≥ αmin|vh|2H1(Ω),

so the problem (5.6) has a unique solution. Moreover, we have

αmin‖v∗h‖2
H1(Ω) ≤ a(v∗h, v

∗
h) = a(v∗, v∗h) ≤ αmax‖v∗‖H1(Ω)‖v∗h‖H1(Ω),
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which means that

‖v∗h‖H1(Ω) ≤
αmax

αmin

‖v∗‖H1(Ω). (5.8)

In order to use the duality argument, we assume that ϕ ∈ H2(Ω) ∩H1
0 (Ω) is the solution of

the variational problem,

a(ϕ, v) = (v∗ − v∗h, v)L2(Ω) , ∀v ∈ H1
0 (Ω). (5.9)

Since ϕ is a continuous function, its interpolant on V1(Kh) is well-defined and denoted as

ϕI . Then, by Proposition 4.3 in [12] and the regularity theorem, the interpolation error is

bounded as

‖ϕ− ϕI‖H1(Ω) ≤ Ch‖ϕ‖H2(Ω) ≤ Ch‖v∗ − v∗h‖L2(Ω). (5.10)

By choosing v = v∗ − v∗h in (5.9) and applying (5.6), we have

‖v∗ − v∗h‖2
L2(Ω) = a(ϕ, v∗ − v∗h)

= a(ϕ− ϕI , v∗ − v∗h) + a(ϕI , v
∗ − v∗h)

= a(ϕ− ϕI , v∗ − v∗h).

The Cauchy-Schwarz inequality and (5.10) imply that

a(ϕ− ϕI , v∗ − v∗h) ≤ αmax‖ϕ− ϕI‖H1(Ω)‖v∗ − v∗h‖H1(Ω)

≤ Cαmaxh‖v∗ − v∗h‖L2(Ω)‖v∗ − v∗h‖H1(Ω).
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Therefore, it follows from the triangle inequality and (5.8) that

‖v∗ − v∗h‖H1(Ω) ≤
(

1 +
αmax

αmin

)
‖v∗‖H1(Ω),

which yields that

‖v∗ − v∗h‖L2(Ω) ≤ Cαh‖v∗‖H1(Ω).

With the results in the above lemma, we prove the inf-sup condition (5.5) in the discrete

space V1(Kh) with a sufficiently small h. Similar mathematical techniques are also presented

in [16].

Lemma 5.6. (Inf-sup condition for B(wh, vh)) Assume that 0 < αmin ≤ α(x) ≤ αmax, and

β ∈ (W 1,∞(K))2 for any K ∈ Kh. Then, for a sufficiently small h satisfying

h < h0 = C̄B
[
Cα‖β‖W 1,∞(Ω)

]−1
,

we have

sup
vh∈V1(Kh)

B(wh, vh)

‖vh‖H1(Ω)

≥ CB‖wh‖H1(Ω), ∀wh ∈ V1(Kh),

where

CB =
αmin

αmax

(
C̄B − Cα‖β‖W 1,∞(Ω)h

)
.

Proof. As we mentioned earlier, there exists v∗ ∈ H1
0 (Ω) such that

B(wh, v
∗) ≥ C̄B‖wh‖H1(Ω)‖v∗‖H1(Ω), ∀wh ∈ V1(Kh),
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for some constant C̄B > 0. Let us denote

b(w, v) =

∫
Ω

wβ · ∇v dx.

Thus, it follows from (5.6) that there exists v∗h ∈ V1(Kh) such that

B(wh, v
∗
h) = a(wh, v

∗
h) + b(wh, v

∗
h)

= a(wh, v
∗) + b(wh, v

∗
h − v∗) + b(wh, v

∗)

= B(w, v∗) + b(wh, v
∗
h − v∗).

By applying the integration by parts and using the estimates (5.7), we obtain

b(wh, v
∗
h − v∗) =

∫
Ω

whβ · ∇(v∗h − v∗) dx

=

∫
Ω

div(whβ)(v∗h − v∗) dx

≤ ‖div(whβ)‖L2(Ω)‖v∗h − v∗‖L2(Ω)

≤ Cα‖β‖W 1,∞(Ω)h‖wh‖H1(Ω)‖v∗‖H1(Ω).

Therefore, we have a lower bound

B(wh, v
∗
h) ≥ C̄B‖wh‖H1(Ω)‖v∗‖H1(Ω) − Cα‖β‖W 1,∞(Ω)h‖wh‖H1(Ω)‖v∗‖H1(Ω).

For any sufficiently small h satisfying

h < h0 = C̄B
[
Cα‖β‖W 1,∞(Ω)

]−1
,

we obtain from (5.8)

B(wh, v
∗
h) ≥ CB‖wh‖H1(Ω)‖v∗h‖H1(Ω),
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where the constant CB > 0 is expressed as

CB =
αmin

αmax

(
C̄B − Cα‖β‖W 1,∞(Ω)h

)
.

Therefore, our approximating bilinear form (4.8) satisfies the discrete inf-sup condition with

a sufficiently small h. See also [42, 49] to find similar arguments in the standard linear finite

element space.

Theorem 5.1. Assume that α ∈ W 1,∞(K), β ∈ (W 1,∞(K))2, and J(wh) ∈ (W η,r(K))2 for

any K ∈ Kh. Then, for a sufficiently small h satisfying

h < min{h0, h1} where h1 := CBC
−1
β ,

we have

sup
vh∈V1(Kh)

Bh(wh, vh)

‖vh‖H1(Ω)

≥ CBh‖wh‖H1(Ω), ∀wh ∈ V1(Kh), (5.11)

where CBh = CB − Cβh.

Proof. By Lemma 5.6, there exists vh ∈ V1(Kh) such that

B(wh, vh)

‖vh‖H1(Ω)

≥ CB‖wh‖H1(Ω), ∀wh ∈ V1(Kh).

With the given function vh, we observe the following identity

Bh(wh, vh)

‖vh‖H1(Ω)

=
B(wh, vh)

‖vh‖H1(Ω)

+
Bh(wh, vh)−B(wh, vh)

‖vh‖H1(Ω)

.

We can see that the first term is easily bounded below, so we focus on the second one. Then,

60



it follows from Lemma 5.4 that

|Bh(wh, vh)−B(wh, vh)| ≤ Cβh ‖wh‖H1(Ω) ‖vh‖H1(Ω) .

Therefore, for any sufficiently small h satisfying

h < h1 := CBC
−1
β ,

we have the following estimate

Bh(wh, vh)

‖vh‖H1(Ω)

≥ CBh‖wh‖H1(Ω),

where CBh = CB − Cβh.

5.3 Convergence Analysis

Finally, we obtain the convergence error estimate from Lemma 5.3.

Theorem 5.2. Assume that α ∈ W 1,∞(K), β ∈ (W 1,∞(K))2, and J(w) ∈ (W 1,s(K))2 for

any K ∈ Kh. Then, for h < min{h0, h1}, we have

‖uI − uh‖H1(Ω) ≤ Ch

(∑
K∈Kh

|J(u)|2W 1,s(K) +
∑
K∈Kh

|f |2H1(K)

)1/2

.
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Proof. By choosing wh = uI − uh, we have

CBh‖uI − uh‖H1(Ω)‖vh‖H1(Ω) ≤ Bh(uI − uh, vh)

≤ Bh(uI , vh)− Fh(vh)

≤ Bh(uI , vh)−B(u, vh) + F (vh)− Fh(vh)
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Chapter 6

Numerical Experiments

In this chapter, we conduct numerical experiments to check our theoretical results presented

in the previous chapters. Several diffusion-dominated problems will be tested to check the

convergence result. The stabilization effect of edge-averaged schemes will be shown by some

convection-dominated problems. Numerical experiments are implemented by authors’ codes

developed based on iFEM [32].

The following mesh types on the square domains are considered:

• para: a mesh composed by structured parallelograms and triangles;

• rand: a Voronoi tessellation;

• voro: a Voronoi tessellation where the cell shapes are optimized via a Lloyd algorithm

[48];

• ncvx: a mesh composed by structured non-convex polygons and triangles.
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para rand

voro ncvx

Figure 6.1: The mesh types on the square domain.

Since we do not have the exact form of vh, we use some computable mesh-dependent norms.

Using the bilinear form of the VEM for the Poisson equation, we define the A-norm as

‖vh‖A :=

(∑
K∈Kh

aKh (vh, vh)

)1/2

, ∀vh ∈ V1(Kh).

From the property of the bilinear form (3.11), the A-norm is equivalent to H1-seminorm

|vh|H1(Ω). Another mesh-dependent L∞-norm,

‖vh‖∞ := max
i

(dofi(|vh|)) , ∀vh ∈ V1(Kh),

is used to check existence of extreme spurious oscillations.
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6.1 Diffusion-Dominated Problems

We numerically solve convection-diffusion problems in the diffusion-dominated regime using

the EAVE method, and check the rate of convergence in the mesh-dependent norm errors.

Test problem 1: Diffusion-dominated

We consider the convection-diffusion problem [36] defined as

−∇ · (α∇u+ βu) = f in Ω = (−1, 1)× (−1, 1),

u = g on ∂Ω,

with α = 1, β = 〈0,−1〉, and f = 0. Its exact solution is

u(x, y) =
x(1− e(y−1)/α)

1− e−2/α
,

and the boundary condition g is given from the exact.

In Figure 6.2, the rates of convergence in the A-norm error and the discrete L∞-norm error

are shown. The convergence rates in the A-norm error for the mesh types are consistent

with the theoretical convergence error estimate in Theorem 5.2. Some superconvergence is

shown with the mesh types para and ncvx. This is because the mesh types basically consist

of structured polygons and the mesh-dependent norms are computed on them. It is easy

to see that the EAVE method provides good approximations at the internal vertices of the

mesh types by checking the discrete L∞-norm errors. We note that the bilinear form SKE (·, ·)

in (3.13) was applied to get the results in Figure 6.2, and the other one SKV (·, ·) in (3.12)

gave similar results.
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Figure 6.2: Convergence rate of the mesh-dependent norm errors (test problem 1 ).
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6.2 Convection-Dominated Problems

The main goal of using the EAVE method is to get stable discrete solutions to convection-

diffusion problems in the convection-dominated regime. The stable solution means a discrete

solution without spurious oscillations or with smaller oscillations as well as it captures sharp

boundary layers. Since the size of sharp layers usually depends on the diffusion coefficient, the

coefficient is chosen in the intermediate regime or little bit smaller (compared to the range of

the mesh size h that we use). Moreover, one can see that the seminorm |J(u)|W 1,s(K) belongs

to the error bound in Theorem 5.2. Hence, extremely sharp layers would deteriorate the rate

of convergence.

Test problem 2: Convection-dominated with a sharp layer

Figure 6.3: The interpolant of the exact solution, uI , on the mesh voro (test problem 2 ).

We consider the convection-dominated problem presented in [36],

 −∇ · (ε∇u+ βu) = f in Ω = (0, 1)× (0, 1),

u = g on ∂Ω,

with ε = 10−2, β = 〈0,−1〉, and f = 0. The exact solution is given as

u(x, y) = x

(
1− e(y−1)/ε

1− e−2/ε

)
,
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and the boundary condition comes from the exact solution (see Figure 6.3). We can see that

the exact solution has sharper boundary layer around y = 1 when ε becomes smaller.

Figure 6.4: The SUPG solution when ε = 1/64 and h = 1/8 (test problem 2 ).

In [36], the SUPG method [27] was applied to solve this problem. The numerical results

in [36] showed the H1-seminorm error of the SUPG solution is smaller than that of the

standard FEM solution. However, even though the local error except the boundary layer

was very small, the global error slowly decreased as the grid is successively refined. Figure

6.4 also shows that the SUPG solution is highly oscillatory around the boundary layer, and

the spurious oscillations seem to propagate into the domain.

Figure 6.5: The EAVE solution with the bilinear form SKV on voro (test problem 2 ).

On the other hand, we apply the EAVE method with the stiffness matrix for the Poisson

equation with the virtual bilinear form,

aKh (uh, vh) =

∫
K

∇Π∇1 uh · ∇Π∇1 vh dx + SKV (uh − Π∇1 uh, vh − Π∇1 vh).
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One can find the exact definition of SKV in (3.12). As we see in Figure 6.5, the EAVE solution

has no such oscillation, and seems to properly capture the boundary layer on the mesh voro.

Figure 6.6: The EAVE solution with the bilinear form SKE on voro (test problem 2 ).

We also tested the other bilinear form SKE presented in (3.13). The EAVE solution with

SKE is shown in Figure 6.6. Even though there is no severe oscillation around the boundary

layer, the solution contains minor oscillations around the yellow part. We expect that this
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Figure 6.7: The information of positive components in the stiffness matrices with SKV .

phenomenon is related to the M-matrix condition or monotonicity of the the stiffness matrix

of the EAVE method,

Bmn =
∑
K∈Kh

BK
h (φn, φm).
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Figure 6.7 shows the information of positive components in the stiffness matrix with SKV .

We find some positive off-diagonal entries, so the stiffness matrix on the mesh voro fails the

M-matrix condition. However, the maximum value among the positive off-diagonal entries

is 0.0074 (see the right plot in Figure 6.7) while the minimum of the diagonal entries is

0.0695. This implies that the stiffness matrix is diagonally dominant, and it contains only

small positive off-diagonal entries. These two conditions lead the stiffness matrix to partially

satisfy the Lorenz’s sufficient condition for monotonicity [44] (see also [43]). The Lorenz’s

condition is known as a sufficient condition for monotonicity when the stiffness matrix is

not an M-matrix, and this condition implies that the stiffness matrix is the product of two

nonsingular M-matrices. Therefore, even though the stiffness matrix is not an M-matrix, it

would be possible to see that the matrix implies monotonicity.
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Figure 6.8: The information of positive components in the stiffness matrices with SKE .

In Figure 6.8, we can see that the stiffness matrix with SKE has more positive off-diagonal

entries than SKV . The maximum of the positive off-diagonal entries is 0.0590, and the min-

imum of diagonal entires is 0.1195. Hence, compared to the stiffness matrix with SKV , it is

not likely that the stiffness matrix with SKE is monotone.

Furthermore, convergence rates of the mesh-dependent norm errors with SKV are presented

in Figure 6.9 and 6.10. The convergence rate (para) means that the EAVE solution on the
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parallelograms is the same as the interpolant uI of the exact solution at the structured grid

points. The mesh type ncvx has super-convergence because this mesh has structured grid
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Figure 6.9: Convergence rate of the mesh-dependent norm errors with SKV (test problem 2 ).

points. When the random polygonal mesh (rand) and optimized polygonal mesh (voro) are

given, the mesh dependent A-norm error has the first order convergence rate. The mesh

dependent L∞-norm error almost has the second order convergence rate, and it implies that

there is no severe oscillation observed in the SUPG solution.
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Figure 6.10: Convergence rate of the mesh-dependent norm errors with SKV (test problem 2 ).

With the bilinear form SKE , we check the convergence rates of the mesh-dependent norm

errors. Figure 6.11 and 6.12 show the convergence rates in the different mesh types. On the

structured meshes para and ncvx, it is shown that the A-norm errors have super-convergence.
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Figure 6.11: Convergence rate of the mesh-dependent norm errors with SKE (test problem 2 ).

Compared to the convergence rate with SKV , even though the numerical solution has small

oscillations, the convergence rates of the A-norm errors look faster in the mesh type rand

and voro. The L∞-norm errors also tend to decrease faster. This implies that the small
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Figure 6.12: Convergence rate of the mesh-dependent norm errors (test problem 2 ).

oscillations are suppressed as the meshes are refined, and the shape boundary layer is resolved

when small mesh size is applied.

For example, Figure 6.13 displays the EAVE solution with SKE and the mesh type voro when

ε = 10−2 and h = 1/32, and Figure 6.14 shows the EAVE solution with the mesh type

rand. We saw from Figure 6.6 that the EAVE solution with SKE had small oscillations when

h = 1/8, but we can see from Figure 6.13 that such oscillations disappear and the boundary
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layer is perfectly resolved when h = 1/32. Similarly, on the random polygonal mesh rand,

Figure 6.13: The EAVE solution with the bilinear form SKE on refined voro (test problem
2 ).

we obtain a quality discrete solution capturing the sharp boundary layer without spurious

oscillations when h = 1/32.

Figure 6.14: The EAVE solution with the bilinear form SKE on refined rand (test problem
2 ).

Through this test problem, we can see that the EAVE method provides discrete solutions

without spurious oscillations or with smaller oscillations while resolving the sharp boundary

layer. It is shown that random polygonal meshes can be applied as well as the EAVE solutions

are better than the SUPG solutions in this test problem. See also the following figures.
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Figure 6.15: The SUPG solution when ε = 10−2 and h = 1/16 (test problem 2 ).

Figure 6.16: The EAVE solution with the bilinear form SKV on refined rand (test problem
2 ).

Figure 6.17: The EAVE solution with the bilinear form SKV on refined voro (test problem
2 ).
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Test Problem 3: Extremely sharp boundary layers

We consider the same convection-diffusion equation −∇ · (ε∇u+ βu) = f with

ε = 10−9.

The other conditions are the same as the test problem 2. Since the seminorm |J(u)|W 1,s(K)
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Figure 6.18: Convergence rate of the mesh-dependent norm errors (test problem 3 ).

is contained in the H1-norm error bound in Theorem 5.2, it is not possible to obtain a

reasonable rate of convergence in the mesh-dependent A-norm. More exactly, ∇u around

the boundary layer depends on ε−1, so adaptive mesh refinement is needed to capture the

layer.

Figure 6.19: The EAVE solution with the bilinear form SKV on voro (test Problem 3 ).
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However, we can obtain stable solutions to the test problem by using the EAVE method,

and the convergence is verified by the mesh-dependent L∞-norm error (see Figure 6.18).

Figure 6.20: The EAVE solution with the bilinear form SKV on refined voro (test Problem
3 ).

In Figure 6.19, we are convinced that the EAVE solution on the voro mesh is stable while

the solution resolves the sharp boundary layer within the give mesh size. Figure 6.20 shows

that the EAVE solution on the refined mesh contains a shaper boundary layer.
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Appendix A

Proof of the Norm Equivalence

Main statement in of lemma 5.1

Let Vh(K) be a finite dimensional subspace of Lp(K) for any p > 1. Then, every element

µ ∈ Vh(K) satisfies

‖µ‖Lp(K) ≤ Ch
2/p−1
K ‖µ‖L2(K),

where C is a generic constant independent of hK .

Proof

If p < 2, it is straightforward to show the inequality (5.1) using Hölder’s inequality. For any

p > 2, we use the argument presented in [33] so that it suffices to prove the estimate (5.1) with

scaled elements K̂ := {x̂ | x̂ = x/hK ,x ∈ K} and scaled functions µ̂(x̂) := µ(hKx̂) = µ(x).

Let K̂ be the set of all scaled polygons satisfying the shape regularity assumptions [26, 33].

Since all norms on finite-dimensional vector spaces are equivalent (see details in [25]), we
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define

C(K̂) := sup
µ̂∈Vh(K̂)

‖µ̂‖Lp(K̂)

‖µ̂‖L2(K̂)

(A.1)

for any polygon K̂ ∈ K̂. We prove that C(K̂) is continuous with respect to K̂ in a compact

set K̂, which implies that C(K̂) is uniformly bounded for K̂ ∈ K̂.

Let K̂ε := τε(K̂) be a small perturbation of K̂ using a mapping τε. The mapping τε is

explicitly defined as follows: For a finite number of points on ∂K̂ including all the vertices,

a triangulation of K̂ is defined with a point inside K̂ because K̂ is a star-shaped polygon.

While the points on ∂K̂ slightly move a distance of ε, affine mappings from triangles in K̂

to those in K̂ε are defined (e.g. Figure 6.1), and each of the affine mappings converges to

the identity map as ε goes to 0.

zK

K̂

τε

τ−1
ε

zKε

K̂ε

Figure A.1: An example of the mapping τε from K̂ to K̂ε

Let µ∗ ∈ Vh(K̂) be the maximizer of (A.1), that is, C(K̂) = ‖µ∗‖Lp(K̂)/‖µ∗‖L2(K̂). For every

ε > 0, we define µε∗ := µ∗ ◦ τ−1
ε ∈ Vh(K̂

ε) which converges pointwise to µ∗ as ε approaches

to 0. Then, it is straightforward to verify that ‖µε∗‖Lp(K̂ε) and ‖µε∗‖L2(K̂ε) are converging to

‖µ∗‖Lp(K̂) and ‖µ∗‖L2(K̂), respectively. Hence, we have

C(K̂ε) ≥
‖µε∗‖Lp(K̂ε)

‖µε∗‖L2(K̂ε)

→
‖µ∗‖Lp(K̂)

‖µ∗‖L2(K̂)

= C(K̂) as ε→ 0.

On the other hand, let µε† ∈ Vh(K̂
ε) be the maximizer for C(K̂ε) for every ε > 0, and

µ† := µε† ◦ τε. Then, it follows that C(K̂ε) ≤ C(K̂) as ε goes to 0.
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