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Extreme Expertise: Exploring Expert Behavior in Tetris

John K. Lindstedt (lindsj3@rpi.edu) & Wayne D. Gray (grayw @rpi.edu)
Cognitive Science Department
Rensselaer Polytechnic Institute

Abstract

Expertise is easy to identify in retrospect. It is the most ex-
pert player who wins the meet and the most proficient team
that wins the playoffs. However, sometimes during play we
see a masterful move that clearly separates one player from
the competition. Our goal, in this work, is to identify the
masterful moves or elements of expertise that predict the con-
tinuum of performance in the game of Tetris. As a first step
we have collected data from a wide variety of Tetris Tourna-
ment players and used it to derive metrics of global, local, and
immediate interactions. Here we present statistical models of
these data and report the initial success of these models at
predicting level of expertise.

Keywords: expertise, skill acquisition, exploratory analysis,
videogames, regression modeling, thin-slicing

Introduction

It seems easy to identify which baseball players are ex-
perts. We can look at their outputs: batting average, fouls,
or total runs scored. The trouble is, we can only really make
assessments on these outputs after the fact, once all the num-
bers are in, and the point is somewhat moot. But there must be
something different about these experts at a more fundamen-
tal level, something identifiable in the way they are playing
the game that forms the basis for their continued excellent
performance.

What are the hallmarks of the exceptional player’s exper-
tise? Is it something about the way they grip the bat, or their
stance? Is it in their ability to hit a certain kind of pitch over
others? Are they slightly faster to respond, or more deliberate
with their actions? Is it because they know when to bunt?
Moreover, how much of the player’s performance do we need
to see in order to make an informed assessment of his or her
expertise?

These questions lay the groundwork for asking the ques-
tion: can we identify elements of expertise, behaviors made
from instant to instant during performance which will allow
us to rank a person on a scale ranging from novice to expert
by observing just a thin slice of their behavior? We investigate
this question using the video game Tetris.

Background

The history of the scientific study of human expertise is
nearly as long as the history of scientific psychology, with
publications dating back to the discovery of the plateau in
skill gain in telegraph operators in 1897 (Bryan and Har-
ter), to an overthrowing of that notion in favor of continuous,
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if subtle, skill gains throughout the acquisition of expertise
(Keller, 1958), and ultimately to a reconciliation of the two
findings as valid depending on the measurement device (e.g.,
Robertson & Glines, 1985).

Our reading of the historical literature is that the discrep-
ancy of major claims about the nature of expertise highlights
the importance of metrics and of the available theoretical con-
structs. Although Bryan and Harter collected some data with
millisecond accuracy, their general methodology lacked a few
important controls and their main theoretical construct was
stated in intuitive terms. Fifty years later, Keller (one of the
foremost behaviorists of his day) had much higher standards
for experimental design as well as a theoretical framework,
behaviorism, that had no room for unobservable hierarchical
structures. Just 30 years after Keller, Robertson and Glines
had available to them the hierarchical theories of the infor-
mation processing theorists as well as an understanding of
the ways in which adopting different strategies could lead to
differences in performance. As a consequence, unlike Keller
when they looked, they found abundant evidence for individ-
ual differences in plateaus that seemed to reflect differences
in strategies available or discoverable by students with differ-
ent intellectual backgrounds (i.e., primarily engineers versus
humanities students).

Our longterm goal is to provide a theoretical account of ex-
treme expertise in dynamic tasks; that is, those which require
an integration of real-time decision-making with a (figurative)
tight loop among cognition, perception, and action. Exam-
ples of such skills include laproscopic surgery (Keehner et al.,
2004), piloting jet aircraft and helicopters (Proctor, Bauer, &
Lucario, 2007; Hays, Jacobs, Prince, & Salas, 1992), and de-
tection of enemy submarines hiding in deep waters (Ehret,
Gray, & Kirschenbaum, 2000). Of course, we lack access
to surgeons, helicopter pilots, and submarine commanders.
However, we do have people who have spent thousands of
hours acquiring extreme expertise in videogames. These peo-
ple are the subject of our study and our first attempt at thin-
slicing the expertise in Tetris is the subject of this paper.

Why Tetris?

Tetris is a videogame that is both easy to comprehend and
difficult to achieve mastery over. The game is simple in that
it has relatively simple rules (introduced in the next section)
and players make decisions based on a limited set of potential
actions (arranging and placing game pieces). However, there
is much for a novice player to learn. The game space changes
as a result of decisions made by the player. Errors accumulate



and one error tends to lead to another error until catastrophic
failure (i.e. the end of the game) occurs. As the player suc-
ceeds, time pressure increases so that decisions have to be
made within decreasing time windows. Furthermore, achiev-
ing the highest rewards requires performing maneuvers that
risk error and reaching levels of the game where time pressure
is highest.

To become highly proficient in the task, players must learn
to effectively negotiate the error cost and the increasing time
pressure by employing cognitive abilities such as: use of
working memory, mental rotations, perceptual comparisons,
strategic planning, and prediction, as well as the dexterous
and rapid execution of chains of motor commands. Master-
ing Tetris requires the novice to coordinate the effective and
efficient use all of these cognitive resources, abilities, and
strategies. For these reasons, we see Tetris as an excellent
platform for investigating the acquisition of expertise in a dy-
namic, real-time task.

In addition, Tetris has been used to document a variety of
cognitive phenomena. A short list includes: epistemic versus
pragmatic action (Destefano, Lindstedt, & Gray, 2011; Kirsh
& Maglio, 1994), gains in cortical mass and BOLD response
(Haier, Karama, Leyba, & Jung, 2009), and near and far trans-
fer (Sims & Mayer, 2002).

The Game of Tetris

(For readers already familiar with the game of Tetris, this
section is optional review.)

Tetris is a game of increasingly fast-paced, generative
puzzle-solving. When playing Tetris, a player manipulates
a series of falling shapes, zoids, into an arrangement called
the accumulation at the bottom of the game space. To score
points, the player must clear rows. This is accomplished by
filling at least one row in the accumulation. The immediate
result is that points are scored and the row vanishes from the
screen (thereby lowing the height of the accumulation). Since
not all zoids fit perfectly together, the accumulation gradually
rises as rows begin to go unfilled. When the accumulation
reaches the top of the game space, the game ends. As the
player clears lines, the game-level increases, speeding up the
drop-rate of the zoid, and thus the difficulty, but also offering
increased score payoffs for successfully cleared lines. Figure
1 illustrates the game screen as a player would see it.

Each zoid is one of seven unique shapes, all consisting of
four contiguous block segments. Once a zoid is released into
the game board, it begins automatically dropping, traversing
the game space top to bottom in 12 seconds initially, down to
2 seconds at the highest difficulty level.

Scoring is nonlinear with respect to the number of lines
cleared simultaneously. Initially, clearing 1 line awards 40
points, 2 lines awards 100 points, 3 lines awards 400 points,
and clearing 4 lines simultaneously awards an extreme 1200
points. Clearing four lines simultaneously scores a Tetris, and
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is notable because of both its high payoft and difficulty. Points
awarded for a Tetris are also modified multiplicatively by the
current difficulty level.

Our version of Tetris, written in Flash, incorporates a ro-
bust logging system which captures all game events and states
as they occur in real time. These events are detailed in the
next section.

next zoid

Figure 1. Example of the game environment.

Events and Metrics
Events in Tetris

Our basic unit of measurement is the episode, the time
from when a zoid is released until it collides with and locks
into the accumulation. It is in this time frame that all mea-
surements of behavior and game state occur.

The player has available three kinds of actions: rotating
clockwise and counterclockwise, moving a zoid to the left or
right (i.e., translating between columns), and dropping the
zoid (increasing the gravity intentionally). System events are
any actions performed by the game environment, these in-
clude: automatically dropping the zoid due to gravity, clear-
ing filled rows and awarding points, and releasing new zoids.
Many of these actions occur within milliseconds of one an-
other, a fact which is captured by time stamping in our con-
tinuous logging system.

Though the accumulation changes over time as zoids are
placed and lines are cleared, during an episode the player
interacts with one unique accumulation. Features of the ac-
cumulation are critical for understanding the player’s current
task status: its height determines how close the player is to
failure, it may contain unreachable holes or pits which, for
the game’s continued success, must be uncovered (by clear-
ing the rows which cover the pits) and filled, or overhangs
(which can be thought of as a little cave that must somehow
be filled by moving a zoid into it from its left or right side a
very difficult maneuver, especially for novices).



Measure of Expertise

To assess the behavioral differences of expertise, we must
define it quantitatively. Due to the difficulty of achieving high
scores in Tetris, and the unlikelihood that a player will score
highly simply “by accident,” we consider a player’s long-term
ability to achieve high scores a basic measure of their exper-
tise; that is, a player’s expertise is equated to the maximum
score the player was able to achieve during any of their games
played during data collection. Because scores tend to in-
crease nonlinearly (later levels award disproportionately more
points) and seem to follow a somewhat exponential pattern,
our metric of a player’s expertise is the base-10 logarithm of
their maximum game score.

Predictive Measures

Because the task environment in Tetris is sufficiently sim-
ple, we are able to extract many details of task performance
which may reflect differences in novice and expert behavior.
It is important to point out that we are not searching only for
those metrics which are the root cause of more expert per-
formance, but also any metrics which reliably co-occur with
expert ability. This investigation remains agnostic to this dis-
tinction between components and markers of expertise.

Our various metrics can be categorized at three successive
time scales of human action (Newell, 1990, p. 122): global
(10%), local (10"), or immediate (10°).

Global metrics. These assess the player’s overall game sta-
tus as reflected in the built accumulation. These metrics are
associated most closely with survivability in the game, such
as the overall height of the accumulation, or the number of
unworkable holes, or pits, which the player has accrued dur-
ing play. These metrics, averaged across sections of game-
play, indicate broad patterns of performance which may dif-
ferentiate between novices and experts, particularly in terms
of long-term strategies.

Average height: The average of all column heights in the
accumulation.

Pits: The total number of unworkable pits (covered empty
spaces) present in the accumulation.

Overhangs: The number of covered spaces into which a
player may still dextrously maneuver a zoid.

Roughness: A measure of the “randomness” of the accumu-
lation.

Levelness: Measures the relative flatness of the top of the
board.

Spire: The difference between the highest point in the accu-
mulation and the average height.

Tetris progress: The number of nearly-filled rows presently
lined up in the accumulation, ready to produce high-
scoring line-clears.

Zoid-positions: The amount of "good" positions available
for any kind of zoid. This is a rough measure of the
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functional "goodness" of the accumulation the player
has built.

Local metrics. These assess the kinds of zoid-placements
the player selects in relation to possible positions on the ac-
cumulation. This includes features such as the number of
perimeter segments matched during a placement (i.e., does
that zoid fit flush with its surroundings, or does it stick out
precariously?), or whether the placement creates pits or over-
hanging segments in the accumulation which complicate later
gameplay decisions. Zoid placements are also compared
across all potential placement locations and orientations for
the current zoid, giving a ratio of assumed “goodness” for a
placement. These local metrics account for the kinds of deci-
sions made at each step of the game.

Matched edges: The number of segments of the placed zoid
which are touching the surrounding accumulation.
Match ratio: Ratio of the number of matched edges to the
maximum possible for all positions the zoid could have

been placed this episode.

New pits: The number of new pits created by this move.

Uncovered pits: The number of pits uncovered by this
move.

Filled overhangs: The number of overhang cavities filled
by the current move.

Current zoid-positions: The number of "good" positions
available for the current zoid, which may indicate a
player’s planning for the next zoid in the previous
episode.

Immediate interaction metrics. These account for how a
zoid placement is executed, what can be thought of as the
sensory-motor aspects of the gameplay. These include mea-
surements of reaction times for various actions, such as the
first keypress in an episode, and the first commission of a zoid
drop to indicate that a decision has been made. These mea-
sures account for the rapid interactive skills a player employs
to perform the basic decisions in the local metrics.

Total translations: The number of times a zoid was moved
left or right in the episode.

Total rotations: The number of rotation actions performed
on the zoid this episode.

Grouped actions: The number of clusters of similar actions
performed in sequence (i.e., 3-translations, 2-rotations,
16-drops). This measure reduces the sequences of ac-
tions to more conceptually coherent segments, with
lower numbers implying less scattered executions.

Drop ratio: The proportion of the zoid’s downward move-
ments (in this episode) that can be attributed to the
player’s intentional dropping versus the system’s auto-
matic dropping.

Initial latency: The time (in milliseconds) between the start
of the episode and the first action taken by the player.



Average latency: The average time between actions taken
by the player.

Drop latency: The time from the start of the episode until
the player decides to drop the zoid.

Each of these metrics is tallied and recorded once per
episode. By examining elements from these three categories
of performance, we hope to capture a broad, detailed picture
of each player’s gameplay as it occurs in real time.

Methods
Data collection

To acquire data from a cross section of players with dif-
ferent levels of expertise, we sponsored a Tetris tournament
at Rensselaer Polytechnic Institute’s Genericon — a conven-
tion for gaming, comics, Japanese anime, and all things “nerd
culture.” Participants in the tournament were volunteers from
the pool of all those attending the convention, comprised pri-
marily of RPI undergraduates.

Before the tournament, participants played two rounds of
Tetris to determine their eligibility for competing. Once en-
tered, participants competed in pairwise elimination matches
wherein the highest score wins. The top three players of each
tournament were offered a cash prize, provided they came to
the laboratory and played an additional hour of Tetris.

We collected data using this procedure at two successive
Genericons in 2006 and 2007. At the end of data collection,
we had data from 57 unique players, with game scores span-
ning six orders of magnitude (less than 100 points to over
1,000,000).

Data filtering

Games wherein a player did not clear any lines were omit-
ted from analysis, as these represent sessions which were ei-
ther aborted or wherein the player clearly did not understand
the game rules. Additionally, we sometimes observed players
self-aborting games by rapidly dropping zoids until a game-
over was achieved. These episodes were omitted from analy-
sis, as they reflected gameplay behavior with maligned goals.

Observation window

An important consideration for our data set is that it is nat-
uralistic: no experimental controls were put in place, and no
manipulations were made to the basic game. As such, there
is a great deal of unevenness in the data set. The task envi-
ronment is influenced greatly by the randomness of the zoid
selection and player strategy, as is the number of episodes it
takes a player to advance to the next difficulty level (where
game speed is increased), or even the number of episodes
played before the game ends. To control these elements
would be to interfere with the basic structure of the game and
deviate from the way players would naturally approach the
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game, hindering our ability to find natural expert players in
the wild as such. Thus, we leave these vital game elements
uncontrolled, and instead institute a moving window through
which to examine the gameplay data.

A key element of this exploration is whether we can thin-
slice by predicting expertise from a relatively small amount
of data. Across all subjects and games, the mean number of
episodes per game was 264.74 [Min. =41, Max. = 1388, S.D.
= 210.97]. For our thin-slicing, in all cases the observation
window begins with the 1% episode of each game, wherein all
players have a completely empty accumulation with which
to work. For each player, we then averaged the data for all
games for episodes 1-2 (an extremely thin slice of behavior),
1-10, 1-100, and all (using all available data for the analysis).
Averaging behavioral measures across this window results in
aggregate measures of performance which are representative
of a player’s behavior for the chosen observation window.
Our question is whether measures made on these different
slices of performance are predictive of overall performance.

Results
Multiple linear regression models

Prior to modeling, the dataset was sampled using a sim-
ple random assignment, using 80% of the data for training
and leaving 20% for testing model predictions. The samples
were verified as having similar distributions for the dependent
measure of expertise [Training set: Mean =4.43, S.D. =0.61;
Test set: Mean = 4.51, S.D. = 0.73].

For each of the four selected observation window sizes (2,
10, 100, and all episodes), we conducted a multiple regres-
sion on each training data set using all predictors detailed in
the Predictive Measures section. To account for any suppres-
sor effects, a backward step-wise selection process was used
in the regression. Table 1 shows the results of these models,
and Table 2 illuminates the significance of each model’s pre-
dictors. Note that the number of predictors ultimately used
in each model varies due to the stepwise selection process.
Figure 2 shows the fit of each model to the training data.

Prediction

To assess each model’s ability to predict unseen data, we
performed predictions on the test data set (20 percent of ob-
servations). The Predictions section of Table 1 shows the rel-
ative success of each model as determined by the fit of a Pear-
son’s product-moment correlation. Figure 3 shows the fit of
the test set data to the model predictions.

Discussion

From these results, we see significant fits for models cre-
ated using all sizes of observation windows, from data span-
ning just two episodes to the use of the entire data set. The
two models sampling from just 2 and 10 episodes each are



Table 1
Results of linear regression model for all window sizes.

Observation window size
2 eps 10eps 100 eps all eps

Multiple RZ 4607 3913 5882 .8185
Adjusted R? 3686  .2509 5058 7767
DF (7,41) (9,39 (8,40) 9,39)
F-value 5.003 2.786 7.141 19.55
p-value <0.001 0.01 <0.0001 <0.0001
Prediction

Correlation 0.344 -0.235 0.697 0.757
p-value 0.27 0.46 <0.02 <0.01
Table 2

List of significant predictors across models of differing obser-
vation window sizes. Significance codes are: ** - p < 0.05;
TR D < 0.01; FFF p < 0.001; . = present but not significant.
Window Size (episodes)
2 10 | 100 All

kg

Intercept

Global metrics:

Average Height

Pits

Overhangs
Roughness
Levelness

Spire

Tetris progress
Zoid-positions
Local metrics:
Matched edges
Match ratio

New pits

Uncovered pits
Filled overhangs
Current zoid-positions
Immediate metrics:

kek

sk
sesksk

ek

sksk skkosk

Total translations
Total rotations
Grouped actions
Drop ratio

Initial latency
Average latency
Drop latency

sk

kg ekesk

notable for their good fits, but both ultimately fail to predict
unseen data. Nonetheless, their fits are encouraging in that
they achieve a measure of success even when based on such a
small proportion of the player’s observable performance data.
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Figure 2. Fit of multiple regression model to training data.
Different plots for models sampling from A) 2 episodes, B) 10
episodes, C) 100 episodes, and D) all observed episodes per
game.

Models sampling from more data are naturally able to ac-
count for more of the variance in the data, as seen by the in-
creasing adjusted R? values for those models with larger win-
dows, with the model sampling all data presumably demon-
strating a maximum of success. Interestingly, we see that the
model sampling only the first 100 episodes (less than a quar-
ter of all observed data), maintains a fit to the training data
and ability to predict the test data comparable to that of the
model sampling all data. This, too, is encouraging in our pur-
suit of using small proportions of data to predict long-term
performance.

It is tempting to draw conclusions from the lists of sig-
nificant predictors presented in Table 2, but there is, regret-
tably, a non-trivial sampling effect; depending on how the
data set is partitioned into training and test sets, these sig-
nificant variables tend to shift, vanish, and reappear on sub-
sequent samplings. This is likely due to two underlying ef-
fects: a strong effect of individual differences, as suggested
by Robertson and Glines (1985); and a high level of corre-
lation between these variables, because many of them neces-
sarily depend on one another (e.g., average height being nec-
essary for Tetris progress). We cannot yet account for these
covert effects and are not prepared to draw strong conclusions
about the individual predictors’ viability in predicting long-
term Tetris performance. We can, however, offer two points
of speculative commentary based on observation of these ef-
fects: first, some predictors seem to emerge as significant
more frequently than others, and second, predictors represent-
ing all three categories (global, local, and immediate) tend to
emerge as significant across samplings, indicating that there



Q o
w
A < |B
m © 2 o & o
. g _ ®
o | o ° _
@ v,) S © . CO
T o o |
g ® T T T T 111 ® T T T 1T
w
© 30 40 650 8.0 30 40 50 6.0
5 o o
g < |C ¢ D
o g o .
|.r>': - o o o 7 Cg o o
[~ ¥ (=] g
« < 7
< -
D e E e e B B E B
3.0 40 50 60 30 40 50 6.0

Observed Expertise

Figure 3. Fit of predictions from models to the test data set.
Different plots for models sampling from (A) 2 episodes, (B)
10 episodes, (C) 100 episodes, and (D) all observed episodes
per game.

may exist latent factors within each of these categories which
contribute independently to skilled performance.

Conclusions

Our goal is to identify the elements of expertise that predict
the continuum of performance in the game of Tetris. As a first
step, we collected data from a wide variety of Tetris Tourna-
ment players and used it to derive metrics of global, local, and
immediate interactions. Here we reported our first statistical
models of these data and our initial success at predicting level
of expertise from thin-slices of behavior.

Although our results are tentative, we are pleased with our
initial success in applying a general cognitive task approach
to extreme expertise. Our categories of global, local, and im-
mediate interaction are based on three successive levels of the
time scale of human action (Newell, 1990). At least some of
our initial items for each scale shows some success as a pre-
dictor of expertise. Thin-slicing seems to produce valid pre-
dictions as, to our surprise, even the regression model based
on the first two episodes of each game had some predictive
validity. We are embolden by these initial successes and have
made plans to collect an order of magnitude more data from
an order of magnitude more players at all levels of expertise.

Our predictive modeling has thus far been limited to the
statistical technique of multiple regression. Other techniques
have been suggested and we are openly soliciting suggestions
from the cognitive community. Further work will also seek to
address the individual differences across players at the same
skill level and will attempt to extract a more refined set of
metrics of behavior with fewer co-dependencies.
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