UC Berkeley
SEMM Reports Series

Title
Dynamic response analysis of inelastic building structures: the DRAIN series of computer
programs

Permalink
https://escholarship.org/uc/item/9k43995w]

Author
Prakash, Vipul

Publication Date
1992-12-01

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/9k43995w
https://escholarship.org
http://www.cdlib.org/

REPORT NO.
UCB/SEMM-92/28

STRUCTURAL ENGINEERING
MECHANICS AND MATERIALS

DYNAMIC RESPONSE ANALYSIS OF
INELASTIC BUILDING STRUCTURES:
The DRAIN Series of Computer Programs

BY

VIPUL PRAKASH

Dissertation Committee Chair: G. H. Powell

DECEMBER 1992

DEPARTMENT OF CIVIL ENGINEERING
UNIVERSITY OF CALIFORNIA
BERKELEY, CALIFORNIA

Dynamic Response Analysis of Inelastic Building Structures:
The DRAIN Series of Computer Programs

by

Vipul Prakash

B.E. Honours (University of Roorkee, Roorkee) 1984
M.S. (University of California at Berkeley) 1985

A dissertation submitted in partial satisfaction of the
requirements for the degree of
Doctor of Philosophy
in

Engineering-Civil Engineering

in the
GRADUATE DIVISION
of the
UNIVERSITY of CALIFORNIA at BERKELEY

Committee in charge:
Pfofessor Graham H. Powell
Professor Filippos C. Filippou

Professor James W. Demmel

1992

The Dissertation of Vipul Prakash is Approved:

(ol
vk = AN LOA G

v \2/ 1/ 2
Chair Date
%pm 12/14/92
vl Date
| | y ,.~7 |
O J y 12/is /a2
/ . f Date

University of California at Berkeley

1992

Dynamic Response Analysis of Inelastic Building Structures:
The DRAIN Series of Computer Programs

Copyright © 1992
by

Vipul Prakash

Abstract
Dynamic Response Analysis of Inelastic Building Structures:

The DRAIN Series of Computer Programs

by
Vipul Prakash
Doctor of Philosophy in Civil Engineering
University of California at Berkeley

Professor Graham H. Powell, Chair

A family of three computer programs has been developed for the analysis of nonlinear
building structures. These programs are DRAIN-2DX, DRAIN-3DX and DRAIN-
BUILDING.

DRAIN-2DX is for two-dimensional structures, and is an extension of the well-established
DRAIN-2D program. DRAIN-3DX is essentially a three-dimensional version of DRAIN-
2DX. DRAIN-BUILDING is specifically for tall buildings. In this program a structure is
modeled as an assemblage of floors connected by “interfloors" consisting of columns,
walls and braces. The structure stiffness matrix is partitioned into floor and interfloor

blocks, and a hypermatrix storage scheme and solver are used.

Each program consists of a base program plus a set of subroutines for each element type.
Only a few simple elements are currently available, and additional elements are needed.
The procedures for adding new eclements are well defined. It is hoped that other
msearéhcrs will find that the DRAIN programs are suitable platforms for developing new

elements.

Static and dynamic analyses are based on an event-to-event strategy, with modification of
the structure stiffness matrix at each event. For dynamic analysis a variable time step
scheme can be used; and in-phase ground accelerations, out-of-phase ground
displacements, or imposed dynamic loads can be considered. Energy bala;xce computations
are performed, identifying the static work, the damping work, the kinetic energy, and the
input energy. Static and dynamic loads can be applied in any sequence. The structure state

can be saved at the end of any analysis, and the analysis can be restarted from any. saved

state.

The programs are written in FORTRAN-77, and have been compiled and executed on PCs
under DOS (using overlays), on PCs under WINDOWS, and on UNIX workstations.

This thesis documents the program design. It describes the data structures and data
management schemes, and gives flow charts and lists of tasks done for each phase of the
program. It also describes the special modeling, data management and equation solving
procedure for DRAIN-BUILDING.

B @S
Graham H. Powell

ACKNOWLEDGMENTS
The research reported herein has been supported by the Kajima Corporation of Japan
under éUREE-KAJIMA Grant No. 442408-57210. I wish to thank Kajima Corporation
for providing the funds that made this research possible, and in particular Dr. Takashi
Miyashita who supervised the project.
I am grateful to Professor Graham H. Powell for the guidance, insights and
encouragement throughout the course of this research. I thank Professor Filippos Filippou
for guiding me in the use of PC programs for word processing and graphics applications. I
thank Professors James W. Demmel and Beresford N. Parlett for advice during the
planning of the hypermatrix equation solver for the program DRAIN-BUILDING.
I thank the University of Roorkee, and in particular Dr. Bhagwat V. K. Lavania, for
allowing me to take study leave to pursue the Ph.D. degree at the University of California
at Berkeley. '
Many friends have been generous in giving me encouragement. I particularly wish to thank
Swami Aparanand, Dr. Anjur R. Chandrasekaran, Dr. Hari Kishan, Mr. Ashok D. Pandey,
Dr. Alok Goyal, Dr. Rakesh Goel, Mr. Sajid Abbas, Mr. Allahnawaz Quaisrani, Mr.
Graham Archer, Mr. Scott Campbell and Mr. Satinder Singh.
I am grateful to my father Dr. Anand Prakash for the love, inspiration, and prayers on my
behalf for my Ph.D. from UC Berkeley. I am grateful to my mother, Mrs. Sushma Prakash
for the love and strength she has provided me during my successes and failures alike. I am
grateful to Dr. Vipin Garg, Mrs. Nandita Garg, Dr. Atul Prakash, and Mrs. Anvita
Prakash for providing the love and support to me and family during our stay in the US. I
thank my wife, Sandhya, for bearing my absence during the first year of my stay in

Berkeley while she gave birth to our son, Divyam, in India.

Vipul Prakash

Dedicated to my parents
Mrs. Sushma Prakash
and
Dr. Anand Prakash

TABLE OF CONTENTS

ABSTRACT
ACKNbWLEDGEMENTS
DEDICATIONS v
TABLE OF CONTENTS v
1. INTRODUCTION 1
1.1 THE DRAIN PROGRAMS 1
1.2. GENERAL FEATURES OF THE DRAIN PROGRAMS 2
1.3. SPECIAL FEATURES FOR DRAIN-BUILDING 6
1.4. NONLINEAR ELEMENTS 6
1.5. OBJECTIVES AND SCOPE 7
1.6. REPORT LAYOUT 8
2. DATA MANAGEMENT -- DRAIN-2DX AND -3DX 10
2.1. INTRODUCTION 10
2.2. LABELED COMMONS 10
2.2.1. Introduction 10
2.2.2. ASDFRC Common 10
2.2.3. ADFREC Common 13
2.2.4. AUTO Common 14
2.2.5. CLINE Common 15
2.2.6. COLPSE Common 16
2.2.7. CONTR Common 17
2.2.8. CURRNT Common .18
2.2.9. DAMPG Common 18
2.2.10. DIMENS Common 19

2.2.11. DISVEL Common

20

2.2.12. ELMPAR Common

2.2.13. ENRGY Common

2.2.14. EQNS Common

oooooooo

2.2.15. EVENT Common

2.2.16. GENINF Common

2.2.17. INDIC Common

2.2.18. INFEL Common

2.2.19. INFGR Common

2.2.20. INTCOF Common

2.2.21. LOADP Common

2.2.22. NUMS Common

2.2.23. OUTD Common

2.2.24. OUTS Common
2.2.25. OUTP Common

2.2.26. PREC Common

2.2.27. PTOP Common

2.2.28. RHIST Common

2.2.29. SECTON Common

ooooo

2.2.30. SETREL Common

2.2.31. STAT Common

2.2.32. STOR Common

2.2.33. TAPES Common

2.2.34. THELM Common

2.2.35. TIME Common
2.2.36. TITADF Common

2.2.37. TITLE Common

20
21
22
23

26
28
28
28
29
30
30
32
33
34
34
35
35
36
36
37

& &

47

2.2.38. WORK COMMOD «.rrrrreerrrreee eteseneeesesssseseeeeesseesseneeeseees .
2.3. BLANK COMMON........ e esee
2.4. PERMANENT FILES.......oooorreee.

2.5. TEMPORARY FILES

2.5.1. Introduction
2.5.2. Input Processing

2.5.3. Output Processing

2.5.4. Storage of Element Data Blocks
2.5.5. Storage of Backup Element Data, Tangent Stiffness and Unbalanced Load .

3. BASE PROGRAM ORGANIZATION -- DRAIN-2DX AND 3DX
3.1. INTRODUCTION
3.2. BEGIN SESSION
3.3. DEFINE MODEL
3.3.1. Main Tasks
3.3.2. Some Details

a) Element Location Matrix (LM array)

b) Setting up LSTIF eSS meeneeeeeese e

¢) Element Processing

3.4. PROCESS OUTPUT SPECIFICATION
3.5. PROCESS LOAD PATTERNS AND LOAD RECORDS
3.5.1. Main Tasks
3.5.2. Some Details

a) Processing Element Loads) Subroutine INGPAT

) kb) Processing Load Records - Subroutine INAXL
3.6. ALLOCATE MEMORY FOR ANALYSIS PHASE
3.7. FORM INITIAL TANGENT STIFFNESS AND BETA-K DAMPING..............

vii

50
51
51

.52

52
52
54
55
55
57
57
57
62
62
62
63
63

65
65

67

3.8. PROCESS ANALYSIS PARAMETERS | 70

3.9. IDENTIFY ANALYSIS TYPE....... —) |
3.10. SET UP LOADS FOR ANALYSIS SEGMENTS............ ceerereneaesenes 71
3.10.1. Main Taskscccoeeuercruenrucences - .71
3.10.2. Loads for *GRAYV Analysis - Subroutine INGRAV. 72
3.10.3. Loads for *STAT Analysis - Subroutine INSTAT.. 73
3.10.4. Loads for *VELN or *VELR Analysis - Subroutine INVELN. 74
3.10.5. Loads for *ACCN or *ACCR Analysis - Subroutine INACCN 74
3.10.6. Loads for *DISN or *DISR Analysis - Subroutine INDISN...................... 75
3.10.7. Loads for *FORN or *FORR Analysis - Subroutine INFORN................... 76
3.11. PERFORM ANALYSIS...... . 77
3.11.1. Main Tasks 77
3.11.2. *GRAV Analysis - Subroutine GRSOL 80
3.11.3. *STAT Analysis - Subroutine STATIC ceruenns 84
3.11.4. *REST Analysis - Subroutine REST 87
3.11.5. Dynamic Analysis - Subroutine DYNMIC . 90
3.11.6. *MODE Analysis - Subroutine MODCON vernenenss 98

a) Theory 98

b) Implementation ‘ 100
3.11.7. *SPEC Analysis - Subroutine SPECON. 101
3.12. END SESSION e 102
4. STRUCTURE OF PERMANENT FILES -- DRAIN-2DX AND 3DXcccecuce.e. 104
4.1. INTRODUCI‘IOﬁ 104
4.2. FILES FOR LOAD PATTERNS AND LOAD RECORDS.........cccecevememereuann. 104
4.2.1. .ELD File - Element Load Patterns . 104

4.2.2. .STA File - Static Load Patterns 105

viii

4.2.4. . ACC, .DIS and .FRC Files - Dynamic Load Records..

4.2.5. .SPC File - Response Spectra.
4.2.6. .VEL File - Initial Velocity Patterns ...

4.3. FILES FOR POST-PROCESSING

4.3.1. .GEO File - Structure Geometry

4.3.2. EXX File - Result Envelopes

4.3.2. RXX File - Result Histories

4.4. MODAL ANALYSIS FILES

4.4.1. MXX File - Mode Shapes.

ooooo

4.4.2. UXX File - Modal Responses
5. DRAIN-BUILDING -- SPECIAL FEATURES

5.1. DRAIN-BUILDING MODEL —~ FLOORS AND INTERFLOORS
5.2. FLOOR AND INTERFLOOR TYPES AND INSTANCES
' 5.3. ADVANTAGES OF USING FLOORS AND INTERFLOORS:
5.4. HYPERMATRIX STRUCTURE OF THE STIFFNESS MATRIX

5.5. ORDERING OF BLOCKS IN THE HYPERMATRIX

oooooooooooooooooo

oooooooooooooooooo

... 124

5.6. HYPERMATRIX STORAGE SCHEME

5.6.1. Storage of Stiffness Blocks

5.6.2. Storage of a Diagonal Block
5.6.3. Storage of an Off-diagonal Block........

5.6.4. Hypermatrices in DRAIN-BUILDING

5.7. ASSEMBLY OF ELEMENT STIFFNESSES

5.8. HYPERMATRIX EQUATION SOLVER -- HYPSOL

5.8.1. Introduction

5.8.2. Factorization.

ooooo

5.8.3. Forward and Backward Substitution of Load Vector

ix

... 105
..106
.. 107

108
108
110
112

.. 115

115
116
119
119
120
122
123

128
128
130
132
134
135
140
140
141
144

5.9. HYPERMATRIX-VECTOR PRODUCT -- HYPMUL..........ccceeveverreeeenene 146

5.10. TIMES WHEN HYPERMATRICES ARE NOT USED. 148
6. DATA MANAGEMENT -- DRAIN-BUILDING 150
6.1. INTRODUCTION . .150
6.2. LABELED COMMONS 150
6.2.1. File PARA.Hceemmrrrnreresrassrrnssansssnsssesssssssssesssssessnssssasessnsssnsssnsssnsssans 150
6.2.2. CNTFIF Common ' 152
6.2.3. CONTR COMMON. ..c...vn.ronvreennssnssemmcnsssnsssasssssssssssssasssssesssessssssssssesmsenens 155
6.2.4. CURRNT Common . e 157
6.2.5. DIMENS Common 158
6.2.6. DISVEL Common 159
6.2.7. ENRGY Common 160
6.2.8. EQNS Common .. 162
6.2.9. EVENT COMMON.....ccocreenaeeraernereeraessesuesecsssessossassssssenssnsensensesesssesssssensnose 162
6.2.10. FLRIFR Common . 164
6.2.11. GENINF Common 4 165
6.2.12. RHIST Common : 167
6.2.13. SECTON Common 168
6.2.14. SETREL Common 168
6.2.15. STFBLK Common . 169
6.2.16. STOR Common 170
6.2.17. STOR1 Common 170
6.2.18 STOR2 Common 173
6.2.19. STOR3 Common 174
6.2.20. STOR4 Common - 178
6.2.21. STORS Common 179

6.2.22. STOR6 Common.......... eeevereeereneasaneanas eeevrereranennn

6.2.23. STOR7 Common.....ccccceeeeeveennnn.

LS

6.2.24. STORS COMMOT orreveoeeeeeeeoeoeoeoeoeeooons

6.2.25. TAPES Common......

6.3. BLANK COMMON

6.4. PERMANENT FILES..

6.5. TEMPORARY FILES

7. BASE PROGRAM ORGANIZATION -- DRAIN-BUILDING

7.1. INTRODUCTION

7.2. BEGIN SESSION
7.3. DEFINE COMPOUND NODE TYPES

7.4. DEFINE FLOOR TYPES

7.5. DEFINE INTERFLOOR TYPES

7.6. DEFINE FLOOR AND INTERFLOOR INSTANCES..

7.7. PROCESS OUTPUT SPECIFICATION

7.8. PROCESS LOAD PATTERNS AND LOAD RECORDS

7.9. ALLOCATE MEMORY FOR ANALYSIS PHASE

7.10. FORM INITIAL TANGENT STIFFNESS AND BETA-K DAMPING
7.11. PROCESS ANALYSIS PARAMETERS

oooooooooo

7.12. IDENTIFY ANALYSIS TYPE

7.13. SET UP LOADS FOR ANALYSIS SEGMENTS

7.14. PERFORM ANALYSIS
7.14.1. Main Tasks

7.14.2. *GRAV Analysis - Subroutine GRSOL

7.14.3. *STAT Analysis - Subroutine STATIC

7.14.4. *REST Analysis - Subroutine REST ...

xi

.. 182

184

.184

186

.... 187
.. 188

189
189
191
192
193
197
202
204
205

211
213
214
215
217
217
221
222
223

7.14.5. Dynamic Analysis - Subroutine DYNMIC..... vrereereraesssssesanas 224

7.14.6. *MODE Analysis - Subroutine MODCON .227
7.14.7. *SPEC Analysis - Subroutine SPECONc.ccceveeueeeverererereesessossssosesnnas 228
7.15. END ANALYSIS SESSION. reteesersnenanes 228
8. STRUCTURE OF PERMANENT FILES -- DRAIN-BUILDING vesssssscsaesessesess 229
8.1. INTRODUCTION . " 0229
8.2. FILES FOR LOAD PATTERNS AND LOAD RECORDS..........couuumeunn...... 229
8.2.1. .ELD File - Element Load Patterns ' 229
8.2.2. .STA File - Static Load Patternse.eevererersemcusencncaesensssnsnsesssssesensnne 230
8.2.4. .ACC, .DIS and .FRC Files - Dynamic Load Records....... R) |
8.2.5. .SPC File - Response Spectra vrveesenessseesantosarannn 231
8.2.6. .VEL File - Initial Velocity Patterns 231
8.3. FILES FOR POST-PROCESSING........ccoecererrereneurerrerenesenssnsssssosnsessessenssssesnes 232
*8.3.1. .GEO File - Structure Geometry e 232
8.3.2. EXX File - Result Envelopes : 238
8.3.2. .RXX File - Result Histories 242
8.4. MODAL ANALYSIS FILES : 247
8.4.1. .MXX File - Mode Shapes 247
8.4.2. .UXX File - Modal Responses 248

9. ELEMENT INTERFACE AND SUBROUTINES 250
9.1. ELEMENT SUBROUTINES. 250
9.2. KEY VARIABLES ' 251
9.2.1. General seessstesassassanssuessansasssessnsinsesisssssessananeressassasssannns 251
9.2.2. Overall Structure Variables. 252
9.2.3. Element Group Variables i 253
9.2.4. Individual Element Variables . 254

xii

9.3. LABELED COMMON BLOCKSccoeeurinersnneercesennerensenens rereeresaesteessasnssanens
9.3.1. General........cuuuiiienennnensenneninreninecsssessisnes
9.3.2. Group Information Block, /INFGR/............
9.3.3. Element Information Block, /INFEL/...
9.3.4. Element Results Block, /THELM/........ccccovvurrreeeeeececrennen.
9.3.5. Work BlocKk........ccceeuernvennnene
9.3.6. Tapes Block
9.3.7. Element Parameters Block, /ELMPAR/
9.4. RESULTS ENVELOPES
9.5. ARGUMENT TYPES IN ARGUMENT LISTS.
9.6. SUBROUTINE INEL##
9.7. SUBROUTINE ELOD##....
9.8. SUBROUTINE STIF##
9.9. SUBROUTINE GLOD## ...
9.10. SUBROUTINE FACT##
9.11. SUBROUTINE RESP##
9.12. SUBROUTINE ENPR##
9.13. SUBROUTINE THPR##
9.14. SUBROUTINE FLIN##
9.15. SUBROUTINE PLIN##
10. CONCLUSIONS AND RECOMMENDATIONS
10.1 CONCLUSIONS
10.2. POST-PROCESSING
i6.2.1. General Purpose Post-Processors
10.2.2. User-Defined Output

10.2.3. Addition to .EXX files.

256

.256

256
257
258
258
258
259
259
259
263
265
267
269
271
274
275
276
278
280

281
281
281
282

10.2.4. Frame Definition in DRAIN-BUILDINGcccceccevrervurirecrcrsecranreervenanns 282

10.3. NEW ELEMENTScceotemuirinurrunrnsnnsnsessssessessssssessessessons 283
10.4. ELEMENT INTERFACE 283
10.4.1. WeaKnessescceevereressenseernersessasvenne 283
10.4.2. Storage of Element Location Matrix (LM array)..... ceveesenrecssnnanas 284
10.4.3. Storage of Element ENvelOpesc.coivuievuisvinrersininsninsecsessesssssascensaeanns 284
10.4.4. Element End Displacements and Forces ... 285
10.5. EFFICIENCY AND PORTABILITYccccoeeueeeuercrcnanne ceeresenensresasninssnens 285
- 10.5.1. Windows Version cernesssesnrensnsasssaensnssases 285
10.5.2. Large Capacity Equation Solver for DRAIN-3DX . 285
10.5.3. Large Capacity Eigensolver . . 285
10.5.4. Display of Progress During Analysisc.cecceeruivunrrerensecsunsesesessuesansesanens 286
10.5.5. Detection of Data Errors.. OO 286
10.5.6. Execution Speed ceeessssatsestenesssesatessisestesstesstesstssssesassasssatesansrasanan 286
10.6. NEW FEATURES............... -1
10.6.1. Coupled Mass............. 286
10.6.2. Free-Form and/or Spreadsheet Input.. . 287
10.6.3. Iteration on Unbalance . 287
10.6.4 Improved Response Spectrum Analysis 288
10.6.5 Improved Options for Damping Losses 288
10.6.6. Integration of Analyses . . 288
10.6.7. Simpler Structure Section Definition 288
10.6.8. Extension to Bridge Analysis : 288
10.7. DOCUMENTATION.......ccccourrururirriresueriscssssnsscsussessessessasens 289
REFERENCES - 290

xiv

1. INTRODUCTION
1.1 THE DRAIN PROGRAMS

The ésmputer program DRAIN-2D (Dynamic Response Analysis of INelastic 2-
Dimensional Structures) was first released in 1973 [10], and has been a useful analysis
tool for many years. The main advantage of the program is that it is both simple and
effective. Its capabilities, however, are very limited. Two extended versions of the
program have been developed over the years, namely DRAIN-2D2 by Golafshani in 1983
[7] and DRAIN-2DX by Allahabadi in 1987 [1, 2]. These versions added more powerful
capabilities to the program, while retaining its essential simplicity. They were not released
because time and resources were not available to debug them and make them robust

enough for general use.

Using DRAIN-2DX as a starting point, a family of three new computer programs has been
developed in the present phase of the work. These programs are identified as DRAIN-
2DX [11], DRAIN-3DX [12] and DRAIN-BUILDING [13].v DRAIN-2DX and DRAIN:
3DX are for general two dimehsional (2D) and three dimensional (3D) structures;
respectively. DRAIN-BUILDING is specifically for 3D building structures. The program§
are based on the same techriology and have similar features, so that they are clearly
members of a family. Although they are more complex than DRAIN-2D, they are simpler
than other general purpose nonlinear analysis programs. They also provide a number of
features that are important for nonlinear seismic analysis, yet are not provided by other

programs.

As in DRAIN-2D, each of the programs consists of a "base” program which manages the
data and controls the analysis, plus a set of subroutines for each element type which
control the element details. Information is transferred between the base program and the

elements through an interface that is the same for all element types. The base program

1

2

knows nothing about the elements except what is transferred through the interface. This is
an essential design requirement for a general purpose structural analysis program. Among
other things, it allows new elements to be added to the element library without changing
the base program. Because the new programs have more capabilities than DRAIN-2D, it is
more difficult to develop new elements. However, the process is well defined, and is still

relatively simple.

The programs are written in FORTRAN-77. They have been compiled and executed on
PCs by using the Lahey compiler and PLINK overlay linker under DOS, the Lahey
extended memory compiler under DOS, the Microsoft compiler under WINDOWS, and
the Microsoft compiler under OS2. They have been compiled on UNIX workstations
using the 77 compiler. There have been reliability problems with the Microsoft
WINDOWS and OS2 versions. It is not known whether this is due to coding errors or to

problems in the operating systems.

With DRAIN-2DX and DRAIN-BUILDING, structures of moderate size can be analyzed
under DOS with a 640k limit, but for large structures it is necessary to use a workstation.
Only small structures can currently be analyzed with DRAIN-3DX under DOS, mainly

because the program uses an in-core equation solver.
1.2. GENERAL FEATURES OF THE DRAIN PROGRAMS

DRAIN-2D permitted only linear static analysis followed by nonlinear dynamic analysis,
and considered only dynamic loads due to in-phase ground accelerations. The new
programs perform nonlinear static and dynamic analyses, and for dynamic analysis
consider ground accelerations (all supports moving in phase), ground displacements
(supports may move out of phase), imposed dynamic loads (e.g., wind), and specified
initial velocities (e.g., impulse loading). Static and dynamic loads can be-applied in any

sequence. For example, a dynamic analysis can be performed to damage the structure, and

3

static loads can then be applied to investigate its behavior in the damaged state. If a static
load follows a dynamic load, a special "restore to static state” (REST) analysis is

performed to bring the structure to rest before the static load is applied.

The structure state can be saved at the end of any analysis, and the analysis can be
restarted from any saved state. For example, the state at the end of a static analysis can be
saved. Analyses for several different ground motions can then be restarted from this state,
to study the effects of different earthquakes. The unstressed state is automatically saved.:
Hence, the input data defining the structure can be processed in one computer run, and the

input data files for subsequent runs need only define the loading details.

The step-by-step integration scheme for dynamic analysis varies the time step during the
analysis, on the basis of input error tolerances. This option is particularly useful if
pounding or gap closing occurs, since a small time step is needed to obtain accurate
results for a short period of time after a gap closes, but a longer step can usually be used

for most of the analysis. ’ =

Energy balance computations are performed, identifying the static work (mainly hysteretic
losses), the energy absorbed by viscous damping, the kinetic energy, and the input energy.
The energy breakdown can be valuable for siudying structural response. Also a substantial

energy unbalance indicates that the analysis has not been performed correctly.

Mode shapes and periods can be calculated for any state. Linear response spectrum

analyses can be performed for the unstressed state.

Statié nonlinear analysis is performed by an event-to-event scheme, where each event
corresponds to a significant change in stiffness. There is currently no provision for
iteratic;n (although this could be added), mainly because iteration schemes tend to be
unreliable and difficult to specify. The event-to-event scheme is simpler and more reliable,

and also permits a detailed energy balance to be calculated. However, it can require more

N

4

computer time, and it may be difficult to define events for elements which have curvilinear
action-deformation relationships. To reduce execution time, provision is made for event
overshoot tolerances to be specified, so that the structure stiffness is not modified at each
exéct event but at a somewhat larger load. This.allows more than one element to change
its stiffness at each event, and reduces the number of times the stiffness matrix must be
modified. However, overshoot also causes equilibrium unbalances, and the larger the
overshoot tolerance the larger the unbalance. Provision is made for the overshoot
tolerances to be changed without reprocessing the input data. Hence, rough static analyses
can be performed by specifying large tolerances in the early stages of an investigation,

followed by more accurate analyses later with small tolerances.

Static element loads, as well as nodal loads, can be specified, but the present versions of
the programs have serious limitations. In particular, nonlinear behavior is not permitted if
there are element loads. The reason for this is that element loads can, in principle, take any
form. Element loads, unlike nodal loads, can not be generalized, and hence can not be
processed at the base program level. Instead, they must be processed at the element level,
with a generalized interface between the base program and the element. If an element load
causes nonlinear behavior, this behavior must be recognized and accounted for at the
element level, and information must be sent to the base program so that it can control the
nonlinear solution strategy. In the present versions of the programs, the interface between
the base program and the elements is not flexible enough to allow for nonlinear behavior

under element loads.

Rigid link slaving can be specified. In DRAIN-3DX and DRAIN-BUILDING this allows
rigid floor diaphragms to be defined.

Envelope results (maximum effects) and/or time history results can be output to a print
file. Time history results are ordered node-by-node and element-by-element (i.e., a time

history for one node followed by the history for the next node, etc.). Time histories can be

5

bulky, however, and can lead to very large output files. Results can also be written to a
(binary) post-processing file. A preliminary version of a post-processor, with a windows-

type graphic interface, is being developed.

A structure geometry file is written, from which plots of structure geometry can be made.
A preliminary geometry plotting program is also being developed. The lack of geometry
plotting is a particular weakness, making it difficult to check the input data. It should be
noted that geometry plotting is not a simple task, because of the many different element
types that are possible. If an analysis model consists only of line and/or solid elements, as
is the case in most programs, geoﬁetw plotting is relatively easy. A DRAIN model can
consist of a wider variety of element types, particularly point (zero length) elements for
modeling connections. Also, to model complex nonlinear behavior it may be necessary fo
place elements in parallel, so that there may be several elements connecting any given pair
of nodes. It is necessary, therefore, to plot péint elements as well as line and solid
elements, and to indicate ‘when elements are placed in parallel. Proéedures for
programmers to follow when adding new element types must also be devised and

documented.

Cross sections can be specified through the structure, and the resultant normal, shear and
overturning effects on these sections can be output. Relative displacements (e.g., story-to-

story drifts) can also be output.

The programs all requii'e formatted input, which is read from an input file. This is
admittedly antiquated. The input format is, however, much more flexible than the DRAIN-
2D format. Different sections of the data are now separated by key words; it is no longer
necessary to specify the numbers of nodes, elements, etc.; comments can be added to the
data; and the nodes need not be numbered sequentially. This last feature simplifies data
preparation by allowing nodes to be laid out on a grid, and numbered according to the grid

intersections.

1.3. SPECIAL FEATURES FOR DRAIN-BUILDING

In DRAIN-BUILDING the structure is modeled as a series of floors separated by
"interfloors" consisting of columns, walls and braces. To define a structure, floor and
interfloor types are first defined. Actual floors (floor instances) are then lc;cated in space,
by specifying the floor type and location for each instance. Finally, interfloor instances are
specified between the floors. The building geometry is not limited to simple towers.
Mezzanines and atriums can be specified if desired, and -multiple towers can be connected

by floors which bridge between them.

This procedure simplifies the task of defining a building. In addition, the floor-interfloor
description is reflected in the way the analysis data is organized within the program. For
each floor and each interfloor a separate data structure is set up, preserving them as
distinct entities. Also, the structure stiffness matrix is partitioned into floor and interfloor
stiffnesses, in "hypermatrix" form, and a hypermatrix equation solver is used [5]. This
provides an efficient blocking scheme for the structure stiffness matrix, and allows large

structures to be analyzed with modest storage requirements.
1.4. NONLINEAR ELEMENTS

DRAIN-2D had a variety of elements for modeling beams, columns, panels and
connections. All of these were based on very simple models. Some of these elements have
been modified, and in some cases extended, for DRAIN-2DX. The present library of
elements for this program includes (1) a truss bar, (2) a plastic hinge beam-column, (3) a

zero-length connection with options for translational or rotational connection and a choice

~ of three different hysteresis loops, (4) a bar which can act as an inelastic gap element or an

inelastic cable which goes slack, and (5) an elastic rectangular panel. The beam-column
element has a particular weakness, since it does not account correctly for P-M interaction.

An improved beam-column element based on fiber concepts is being developed.

DRAIN-3DX and DRAIN-BUILDING share the same elements. However, 3D elements
are inherently much more complex than 2D elements, and this complicates the task of
provid;g a useful library of 3D elements. However, the procedures for adding new
elements to the programs are logical and well defined. It is expected that as time
progresses other researchers will also add new elements to the programs. It must be

recognized, however, that programming an error-free element is vastly more complex for

a nonlinear element than for a linear one.
1.5. OBJECTIVES AND SCOPE

The primary objective of the work described herein has been to develop reliable and robust

versions of all three DRAIN programs.

The objective of the first phase of the work was to improve DRAIN-2DX, by allowing the
input data to be separated by key words; providing extensive data checking and
diagnostics; improving memory management; and implementing ground displacement;
dynamic force, and initial velocity analyses. Although Allahabadi's 1987 version was the

starting point, the program was almost completely rewritten.

The objective of the second phase was to develop DRAIN-3DX, based on the improved
DRAIN-2DX. This objective was achieved, although the program is currently limited to

small structures.

The objective of the final phase was to develop DRAIN-BUILDING, based on DRAIN-
3DX, for practical analysis of 3D building structures. DRAIN-BUILDING uses data
structures based on floors and interﬁoors, and an out-of-core hypermatrix equation solver.
This objective was achieved, although several needed improvements in the program have

been identified.

The author has had primary responsibility for developing the base programs for DRAIN-
2DX, DRAIN-3DX and DRAIN-BUILDING. Full details of the programs are contained

8

in several reports. The scope of the present report is limited to documenting the program
design. Other reports include (a) user guides for the three programs, (b) examples to guide
users in developing nonlinear models and performing analyses, (c) programming
instructions for developers of new elements, (d) static and dynamic analysis theory, and (e)

modeling guidelines for developers of new elements.
1.6. REPORT LAYOUT

Chapter 2 describes in detail the data structures and data management schemes used in
DRAIN-2DX and 3DX. It also gives an overview of the disk files created by these

programs.

Chapter 3 describes the base program phases, gives flow charts and lists the tasks done in

each phase for DRAIN-2DX and 3DX.

Chapter 4 describes in detail the structures of the permanent disk files that are created by
DRAIN-2DX and 3DX. Some of these files may be used by other programs, particularly

for post-processing.

Chapter 5 describes how a DRAIN-BUILDING model is constructed by using floors and
interfloors, the resulting hypermatrix structure of the stiffness matrix, the hypermatrix

storage scheme used, and the hypermatrix algorithms that have been developed.

The data structures and data management schemes for DRAIN-BUILDING are similar to
those for DRAIN-2DX and 3DX. Chapter 6 describes the changes for DRAIN-
BUILDING.

The base program phases, flow charts and lists of tasks done for DRAIN-BUILDING are
also similar to those for DRAIN-2DX and 3DX. Chapter 7 describes the base program
phases and flow charts for each phase, with emphasis on the phases that are different for

DRAIN-BUILDING.

9

Chapter 8 describes in detail the structures of the permanent disk files that are created by

DRAIN-BUILDING.

Chapter 9 describes the interface between the base programs and the element subroutines.
This chapter also lists the tasks performed in each element subroutine and describes the

procedures to be followed for adding new elements.

Chapter 10 identifies several improvements and extensions that are possible in future

versions of the programs, and concludes this report.

2. DATA MANAGEMENT -- DRAIN-2DX AND -3DX
2.1. INTRODUCTION

The DRAIN programs store data in memory and on a number of permanent and
temporary (scratch) files. In memory, data that can be assigned fixed dimensions is stored
in labeled common blocks, and data with dimensions which must be assigned based on the
problem size is stored in blank common. This chapter describes the memory management
in detail, and gives an overview of the disk files. Details of the disk files are presented in

Chapter 4.
2.2. LABELED COMMONS
2.2.1. Introduction

The labeled common blocks are organized so that each block contains related information.
In this section the contents and use of each labeled common block are described in

alphabetical order.

Some labeled common blocks are used to transfer information between the base program
and element subroutines. These blocks are part of the element interface, and are used by
both the base program and the element subroutines. Other blocks are used by the base

program only, and are not available in the element subroutines.
2.2.2. ASDFRC Common

For dynamic analysis, ground acceleration records, ground displacement records and
dynamic force records must be set up in memory. These will be termed dynamic load
records. These records can be very long, and it may be necessary to consider several
records in a single analysis. In DRAIN, provision is made for specification of up to 36
records for ground displacement or dynamic force analysis. Thus, it is impractical to store

the complete records in memory. The /ASDFRC/ block provides a fixed length buffer,

10

L e,

11

TASDF, which is used to store those parts of each record which are currently being
applied to the structure. This buffer is also used to store response spectra for response

spectrum analysis.

In the input phase, the dynamic load records are read from the input file, divided into fixed
length blocks, and written to permanent files with extensions .ACC, .DIS and .FRC. On
these files, each block contains MPAIRS time-value pairs, where MPAIRS is in /LOADP_/__Y
and is currently set to 121. The last pair in any block is the same as the first pair in the,
next block, so that each block contains 120 new pairs. 'f'here is no limit on the number of

blocks for any dynamic load record.

At the beginning of a dynamic analysis, blocks of those dynamic load records that are to
be used in the analysis are read from the permanent file (using unit NFLOAD in /TAPES/)
and re-blocked to a scratch file (using unit NFASDF in /TAPES/). A block from
NFLOAD (with 121 time-value pairs) may be re-blocked into smaller size blocks before
being written to NFASDF, as explained below. The number of NFASDF blocks can be
different for each applied dynamic load, and the length of time covered by a block can vary:

from load to load and from block to b‘lock.‘ :

The number of time-value pairs in each NFASDF block is chosen so that one block for
each applied dynamic load can be held in the buffer TASDF in /ASDFRC/. The length
currently assigned to TASDF is 1512 words. The block size depends on the number of

applied dynamic loads, as shown in following table.

No. of Dynamic Loads No. of Data-Pairs per Block
(NDFREC in /ADFREC)) (NPAIRS in /ADFREC)

1-6 121
7-12 61
13-18 41
19-24 ' 31
25-30 25
31-36 21

12

At any time, only one block for each dynamic load is held in TASDF. Each dynamic load

record is monitored as the analysis proceeds, and when the current time exceeds the

maximum time for any block, the next block for that load is read from NFASDF, replacing

the existing block.

JASDFRC/ is declared as follows.

COMMON /ASDFRC/ tasdf(1512), inbl(36), Inbl(36), nbl(36), nt(36), icnbl

The variables are as follows.

Variable | Description

TASDF | Buffer for time-value pairs.

INBL Block number on NFASDF of the first block for each dynamic load.

LNBL Block number on NFASDF of the last block for each dynamic load.

NBL | Block number on NFASDF of the block currently in TASDF for each
dynamic load. :

NT Interval containing current time for each block in TASDF. The
current time lies between the times for pairs NT and NT+1.

ICNBL | Last block number read from NFASDF.

When the current time exceeds the maximum time for any block in TASDF;the next block

(block NBL(i)+1 for dynamic load i) is read from NFASDF to replace the existing block.

13

ICNBL is use to determine whether NFASDF(a sequential file) must be rewound before

skipping to the required block.
2.2.3. ADFREC Common

/ADFREC/ stores information on how each dynaimc load record is applied to the
structure. For ground acceleration loading, accelerations are applied at all restrained and
spring-supported DOFs. For a ground displacement analysis, displacements are applied at
all spring-supported DOFs. For a dynamic force analysis, forces can be applied at any
-unrestrained DOF. The maximum number of DQFs at which any dynamic load record can

be applied is the parameter NDSFRP, which can be changed if desired.

/ADFREC/ is declared as follows.

PARAMETER (NDSFRP=100)
COMMON /ADFREC/ tfac(36), recfac(36), dtime(36), axi(36), axe(36),
1 corot(2), dffac(NDSFRP), jdfrec(2,NDSFRP),

2 npadf(36), ndsfr, ndfrec, npairs

The variables are as follows.

Variable | Description

NDSFRP | Maximum number of DOFs at which a ground displacement or
dynamic force record can be applied.

TFAC Time scale factor for each dynamic load record.

RECFAC | Acceleration, displacement or force scale factor for each record.

DTIME | Time delay for each record (for ground displacement or dynamic

force analysis only).

AXI Acceleration, displacement or force for each record at beginning of
current time step.

AXE Acceleration, displacement or force for each record at end of current
time step.

COROT | Coordinates for center of rotation for rotational ground acceleration.
This array is COROT(3) in DRAIN-3DX.

14

DFFAC | Scale factor for displacement or force for each loaded DOF. This

factor is applied after the displacement or force value has been scaled
by RECFAC. _

JDFREC | DOFs at which ground displacement or dynamic force records are
applied.

1: Equation number for the DOF. .
2: Dynamic load record number or direction (see note).

Note : For ground displacement or dynamic force analysis, this is the
order in which the load record was input. For ground acceleration
analysis, 1 = global X direction, 2 = Y direction, etc.

NPADF | First-word-address in TASDF buffer for each load record block (see
/ASDFRC)/).

NDSFR | Number of DOFs subjected to ground displacement or dynamic force
records. Must be less than NDSFRP.

NDFREC | Number of displacement or force records. Must be less than 36.
NPAIRS | Number of time-value pairs per NFASDF block (see /ASDFRC)).

2.2.4. AUTO Common
JAUTO/ stores time step data for dynamic analysis.

J/AUTO/ is declared as follows.

COMMON /AUTOY/ dtauto, dtcons, dtmax, dtmin, dtnew, dtold, dtred, dtinc,

1 erri, errs, tolhii, tolhis, tolloi, tollos, tolmx,

2 nsinc, insinc, modify, issav

The variables are as follows.

Variable | Description

DTAUTO | Default initial time step for variable time step scheme.

DTCONS | Default time step for constant time step scheme.

DTMAX | Maximum allowable time step size.

DTMIN Minimum allowable time step size.
DTNEW | New time step size.
DTOLD | Old time step size.

15

DTRED Time step reduction factor.

DTINC Time step increase factor.

ERRI Inertia force (equivalent impulse) error for current time-step.

ERRS Static force (midstep equilibrium) error for current time-step.

TOLHII Upper inertia force (equivalent impulse) error tolerance.

TOLHIS | Upper static force (midstep equilibrium) error tolerance.

TOLLOI | Lower inertia force (equivalent impulse) error tolerance.

TOLLOS | Lower static force (midstep equilibrium) error tolerance.

TOLMX | Maximum static/inertia force error tolerance. Analysis quits if
exceeded.

NSINC Number of consecutive steps below TOLLOS and TOLLOI, after
which time step size is increased.

INSINC- | Counter for the number of consecutive steps below TOLLOS and
TOLLOL

MODIFY | Code for change in time-step size in the current analysis step (set
during the dynamic analysis), as follows.

-1 : The step must be repeated with a reduced time step size.
0 : No change in time step size.

1 : Time step size to be increased in next step

2 : Use initial value for time step size.

If MODIFY = 0, the effective stiffness is reformed before the next
step.

ISSAV Code for backing up structure state, in case time step must be
repeated. The element /INFGR/ and /INFEL/ blocks, the static
tangent stiffness and the unbalanced load at the beginning of the
current step are saved. To avoid unnecessary saving if there are no
events, the state is saved at the end of the first substep, just before
the state is updated.

0 : State not yet backed up.
1: State has been backed up.

2.2.5. CLINE Common

/CLINE/ is used to hold the current line from the input data file. Each input line is read
into the character variable XXLINE, using one of the utility subroutines GETLIN, GTLIN
or GTLINE. XXLINE is then used as a FORTRAN internal file.

WY .

16

JCLINE/ is declared as follows.

COMMON /CLINE/ lecho, linpx, xxline
CHARACTER lecho*1, linpx*1, xxline*161

The variables are as follows.

Variable

Description

LECHO

Code for echoing input line on the monitor, as follows.
"n" : No.
"y": Yes.

LINPX

Code for reading input line, as follows. .
"i" : Read input line from input data file, DRAIN.INP.

"x" : Read input line from scratch file INPX. INPX is used when it is
necessary to count the number of input items before allocating
memory. The input is read from DRAIN.INP, written to INPX,
then re-read from INPX after memory has been allocated.

XXLINE

For reading from DRAIN.INP:

columns 1-80 : Input buffer.
column 81 : Set to "/" to terminate record.

For reading from a data file containing ground acceleration, ground
displacement or dynamic force records:

columns 1-160 : Input buffer.
column 161 : Set to "/" to terminate record.

2.2.6. COLPSE Common

/COLPSE/ stores the nodal displacements for which collapse of the structure is assumed.

JCOLPSE/ is declared as follows.

COMMON /COLPSE/ dismax(2), rtnmax(2)

17

The variables are as follows.

_Variable

Description

DISMAX

Nodal displacement at which collapse is indicated (analysis quits if ,
exceeded).

1 : use for static analysis.
2 : use for dynamic analysis.

RTNMAX

Nodal rotation at which collapse is indicated (analysis quits if
exceeded). :

1: use for static analysis.
2 : use for dynamic analysis.

2.2.7. CONTR Common

/CONTR!/ stores overall control information.

/CONTRY/ is declared as follows.

1

COMMON /CONTRY incor, nchar, ndsp, ndtp, nelg, nelgr, neltot, nnods,

nseg, nsnds, ntnds

The variables are as follows.

Variable

Description

INCOR

Code for storage of backup copies of /INFEL/ and /INFGR/ blocks,
tangent stiffness and unbalanced load. When the variable time step
scheme is used, a backup copy of the structure state is stored in case
the current time step must be repeated.

0 : NBLOK > 1 (see /STOR/ block). State is always backed up on a
scratch file in this case.

1 : Back up on file.

2 : Back up /INFEL/ and /INFGR/ blocks on file. Back up tangent
stiffness and unbalanced load in memory.

3 : Back up entirely in memory.

NCHAR

Number of characters in FNAME (see /TITLE/). Used for opening
permanent files.

NDSP

Number of support springs.

18

NDTP Number of compound node types + 1.
NELG Number of element groups with nonzero /INFGR/ blocks.

NELGR | Number of element groups.
NELTOT | Total number of elements.
NNODS Total number of nodes.

NSEG Current analysis segment number.

NSNDS | Total number of subnodes in all compound node types.
NTNDS | Total number of nodes and subnodes.

2.2.8. CURRNT Common

For any element task (e.g., during model definition, event factor calculation, stiffness
formation, state determination, etc.), an element subroutine is called for each element.

JCURRNTY/ stores information on the current element.

JCURRNT/ is declared as follows.

COMMON /CURRNTY/ igre, ielc, idfc, inode

The variables are as follows.

Variable | Description

IGRC Current element group number.
IELC Current element number in current group.

IDFC Current element DOF number in current element. Used only in the
: model definition phase (see Section 3.3c).

INODC Current element node number in current element. Used only in the
model definition phase (see Section 3.3¢).

2.2.9. DAMPG Common
/DAMPG/ stores factors for alpha-M and beta-K damping.

/DAMPG]/ is declared as follows.

COMMON /DAMPG/ alpha, beta, kalpm, kbeta

19

The variables are as follows.

Variable | Description

ALPHA Scale factor for alpha-M damping.

BETA Scale factor for beta-K damping.

KALPM | Code for existence of alpha-M damping (0:No ; 1:Yes).
KBETA Code for existence of beta-K damping (0:No ; 1:Yes).

2.2.10. DIMENS Common ‘

Array dimensions may be passed through argument lists or common blocks. If a dimension
is 0, the FORTRAN compiler may treat it as a fatal error even though the array is never
used (e.g., the Lahey F77L compiler). /DIMENS/ stores dummy values for dimensions

that may be zero.

/DIMENS/ is declared as follows.

COMMON /DIMENS/ mxcutd, mxtdfd, ndspd, nrdsd, nssecd, ntrnsd

The variables are as follows.

Variable Description .
MXCUTD | MAX(1,MAXCUT), where MAXCUT is maximum number of
elements cut by any section (see /SECTON/).

MXTDFD | MAX(1,MAXTDF), where MAXTDF is maximum number of
| DOFs for any cut element (see /SSECTONY/).

NDSPD MAX(1,NDSP), where NDSP is the number of support springs
(see /CONTRY/).

NRDSD MAX(1,NRDS), where NRDS is the number of generalized
displacements (see /SETREL)).

-NSSECD MAX(1,NSSEC), where NSSEC is the number of structure
sections (see /SSECTONY/).

NTRNSD | MAX(1,NTRNS), where NTRNS is the number of force
transformations for structure sections (see /SSECTON/).

20

2.2.11. DISVEL Common

Element end displacements and velocities are sent to the element subroutines for certain
element tasks (e.g., event factor calculation, state determination), and element end forces
are returned. /DISVEL/ provides memory for these values. Currently these values are
transferred through argument lists. In future programs, /DISVEL/ may be used to transfer
these values, in which case /DISVEL/ will become a part of the interface between the base

program and the element subroutines.
The maximum number of DOFs for a::y element is currently 30.

/DISVEL/ is declared as follows.

COMMON /DISVEL/ ddise(30), vele(30), dise(30),
1 relas(30), rdamp(30), rinit(30)

The variables are as follows.

Variable | Description

DDISE Increment in element end displacements.
VELE Element end velocities.
DISE | Element end displacements.

RELAS Element end static forces.

RDAMP | Element end damping forces.

RINIT Element end initial forces, due to element loads applied in static
gravity analysis.
2.2.12. ELMPAR Common

Up to 2 integer and 2 real analysis control parameters can be input for each element
group, and can be changed before any analysis segment. These parameters might be used,

for example, to set flags for printing debugging information. The use of these parameters

21

depends on the element type. /ELMPAR/ stores the parameters for the element group that

is currently being processed.

/ELMPAR!/ is declared as follows.

COMMON /ELMPAR/ relpar(2), ielpar(2)

The variables are as follows.

Variable | Description

RELPAR | Integer element parameters for current element group.

IELPAR | Real element parameters for current element group.

2.2.13. ENRGY Common

/[ENRGY/ stores the work quantities for checking energy balance. In addition to the
current values, the values at the beginning of the current time step are also stored. These

are backup values in case the time step must be repeated.
The maximum number of element groups is currently 20. This limit also affects /GENINF/.

/ENRGY/ is declared as follows.

COMMON /ENRGY/ tek, tei, ted, tes, tew, tep, teso, ten, tee, tead,

1 teki, teii, tedi, tesi, tewi, tepi, tesoi, teni, teei, teadi,
2 eneg(20), enrd(20), eext(20),

3 enegi(20), enrdi(20), eexti(20)

The variables are as follows.

Variable | Description

TEK Total kinetic energy (from nodal masses and velocities).
TEI - | Total inertia work (work done by inertia forces).
TED Total damping work (TEAD+TEBD).

TES Total element static work.

22

TEW Total work done by dynamic nodal loads (consists of work done by
effective loads in ground acceleration analysis and by support
reactions in ground displacement analysis).

TEP Total work done by static nodal loads.

TESO Total second order work (i.e., work done by P-A shears).

TEN Energy error (= TES+TEI+TED-TEE).

TEE Total external work (=TEP+TEW+TESO).

TEAD Total alpha-M damping work.

TEKI TEK at start of time step.

TEII TEI at start of time step.

TEDI TED at start of time step.

TESI TES at start of time step.

TEWI TEW at start of time step.

TEPI TEP at start of time s'tep.

TESOI TESO at start of time step.

TENI TEN at start of time step.

TEEI TEEI at start of time step.

TEADI TEAD at start of time step.

ENEG Static work done in each element group.

ENRD Beta-K damping work done in each element group.

EEXT Second-order work done in each element group.

ENEGI ENEG at start of time step.

ENRDI ENRD at start of time step.

EEXTI EEXT at start of time step.

2.2.14. EQNS Common

/EQNS/ stores variables used in the solution of equations. The stiffness matrix is stored in

compacted column form [9].

/EQNS/ is declared as follows. -

COMMON /EQNS/ neq, neqgq, lenk, jcol, maxdof

The variables are as follows.

23

Variable | Description

NEQ Total number of equations.

NEQQ NEQ+1. All vectors are of length NEQQ (see /STOR/). DOF

' number NEQQ is assigned to all restrained displacements (see KID

in /STORY/).

LENK Length of compacted stiffness matrix.

JCOL First column in stiffness matrix that has changed due to element

‘ events in the most recent state determination. All columns from this

point must be refactorized, but columns up to this point do not
change.

MAXDOF | Maximum number of DOFs for any element in the current structure.
Must be less than 30 (see /DISVEL/).

2.2.15. EVENT Common

/EVENT/ stores variables used in the event-to-event solution scheme.

/EVENTY/ is declared as follows.

1
2

COMMON /EVENTY/ afac, facc, unbl(3), unbf, unbm,

irdof, irelm, irend, irevnt, irgrp, irnod,

iquit, maxev, neven

The variables are as follows.

Variable | Description

AFAC Accumulated event factor for current load or time step (proportion
of step "used up").

FACC Event factor for current substep.

. UNBL Maximum equilibrium unbalance in each displacement direction. This

array is UNBL(6) in DRAIN-3DX.

UNBF Maximum force unbalance.

UNBM Maximum moment unbalance.

24

IRDOF

Governing displacement direction if collapse displacement is
exceeded.

IRELM

Element number with the smallest event factor.

IREND

Event type code for element with the smallest event factor. The

meaning of this code depends on the element type. See element User

Guides. .

IREVNT

O 00 N O

Code for event type.

wnm H WD -=O

: No event.

: Element event.

: Load factor increment reached for load or time step.

: Controlled displacement increment reached for load step.
: Load removed to satisfy displacement control.

: Load factor increment or time increment reached for analysis

segment.

: Controlled displacement increment reached for segment.
: Maximum number of steps reached for segment.
: Maximum number of events reached for load or time step.

: Maximum number of successive direction changes (flip-flops)

exceeded for the step.

10 : Collapse translation exceeded.
11 : Collapse rotation exceeded.

12 : Structure unstable (detected by negative or zero term on the

diagonal during factorization of the stiffness matrix).

13 : Displacement control failed to prevent flip-flop.

IRGRP

Group number of element with smallest event factor.

IRNOD

Node number at which collapse displacement exceeded.

IQUIT

Termination code at end of current load or time step.

0:

-1:

Proceed to the next step as current analysis segment has not
been completed (0 s IREVNT =< 4).

: Proceed to next segment as current segment has been

successfully completed (5 s IREVNT = 6).

Quit analysis without completing current segment as analysis
cannot proceed further (7 s IREVNT < 13).

MAXEV

Maximum number of events allowed in a load or time step.

NEVEN

Number of events in current step.

2.2.16. GENINF Common

/GENINF/ stores data for each element group.

The maximum number of element groups is currently 20.

/GENINF/ is declared as follows.

25

1

2
3
4

COMMON /GENINF/ betao(20), ovfac(20,2), relpr(2,20),

ielpr(2,20), kelem(20), kevnt(20),
kgeom(20), nedof(20), nelem(20), nenod(20),
ninfe(20), ninfel(20), ninfg(20), ninfl(20),

ninft(20), nlinf(20), maxgr

The variables are as follows.

Variable De#cﬁption
BETAO | Stiffness prdportibﬁal damping factor for each group.
OVFAC Event ovérshbot scale factor for each group.
1 : for static analyses.
2 : for dynamic analyses.
RELPR Real element parameters for each group.
IELPR Integer element parameters for each group.
KELEM | Element type number for each group.
KEVNT | Event calculation code for each group.
0 : Suppress element event factor calculation.
1: Calculate element event factors.
KGEOM | P - A analysis code for each group.
0 : Ignore P - Aeffects.
1: Consider P~ A effects and allow geometric stiffness to change
for static analyses only.
2 : Consider P - A effects and allow geometric stiffness to change
for both static and dynamic analyses.
NEDOF | Number of element DOFs for each group.

26

NELEM Number of elements in each group.

NENOD | Number of nodes per element for each group.

NINFE Length (in 4-byte units) of /INFEL/ block for each group.

NINFEL | Location of integrity violation variable in /INFEL/ for each group.
Certain element data is stored at the end of /INFEL/ by the base
program. If-an element subroutine writes more than the specified
/INFEL/ length, this data is destroyed. To warn against this during
element development, this variable is checked after each call to an
element subroutine. If the variable has been over-written, the
program writes an error message.

NINFG Length (in 4-byte units) of /INFGR/ block for each group.

NINFL Length (in 4-byte units) of one element load set for each group.

NINFT Number of output items per element for static or dynamic analyses
for each group (length of /THELMY/).

NLINF Number of output items per element for response spectrum analysis
for each group.

MAXGR | Maximum number of element groups allowed. Set in MAIN. Equal to
20 in current version.

2.2.17. INDIC Common

JINDIC/ stores a number of indicators that are used to control the overall solution

process.

/INDIC/ is declared as follows.

1

COMMON /INDIC/ kdata, kexe, kresis, kenr, kpdel, kauto, keven,

kenrc, keqbc, maxevd, ktit, kstat

The variables are as follows.

Variable

Description

KDATA

Data error counter.

27

Execution code.

0 : Execute.
1: Data checking only.

2 : Execute if all element /INFEL/ and /INFGR/ blocks can be held
in memory, otherwise data checking only.

KRESIS

Code for calculating resisting forces.

1: Static only.
2 : Static and dynamic.

KENR

Energy calculation code.

0 : Omit calculations.
1 : Static only.
2 : Static and dynamic.

KPDEL

P - A analysis code.

0:Ignore P~ A effects.
1: Consider P- A effects.

KAUTO

Code for dynamic analysis scheme.

1: Constant time step.

- 2 : Variable time step.

KEVEN

Code for event calculation.

0 : Ignore events.
1 : Consider events.

KENRC

Code for velocity correction to satisfy energy balance.

0 : Omit correction.
1 : Perform correction.

KEQBC

Code for acceleration modification to improve equilibrium

0 : Omit modification.
1 : Perform modification.

MAXEVD

Maximum number of events allowed in a time step.

KTIT

Code for printing title in results printout (0:No ; 1:Yes). KTIT is set
to 1 at start of first load or time step, and reset to 0 after title has
been printed.

KSTAT

Code for type of analysis.

1 : Static.
2 : Dynamic.

28

2.2.18. INFEL Common

Data is stored for each element to monitor its nonlinear behavior. Data unique to each
element is transferred to and from the element subroutines by means of this block. The

length of the block and the data it contains depend on the element type.

/INFEL/ is declared in base program subroutines as follows.

COMMON /INFEL/ ielm(*)

/INFEL/ is declared fully in the element subroutines.
2.2.19. INFGR Common

/INFGR/ stores data common to all elements of an element group (as distinct from
/INFEL/, which stores data specific to each element). Element group data is transferred to
and from the element subroutines by means of this block. The length of the block and the

data it contains depend on the element type.

/INFGRY/ is declared in base program subroutines as follows.

COMMON /INFGR/ igrin(*)

/INFGR/ is declared fully in the element subroutines.
2.2.20. INTCOF Common

/INTCOF/ stores coefficients for the constant average acceleration integration scheme.
The integration scheme could be changed by changing these variables, but this is not

recommended.

/INTCOF/ is declared as follows.

COMMON /INTCOF/ cofl, cof2, cof3, cof4, cof3, cof6,
1 cof2a, cof2b, cof3a, cof5b

29

The variables are as follows.

Variable | Description

COF1 4/ Ar
COF2 2/At
COF3 4/ At
COF4 12
COF5 2

COF6 | prt/12

COF2A COF2 x ALPHA (see /DAMPG/ for ALPHA).
COF2B COF2 x BETA (see /DAMPG/ for BETA).
COF5A COFS x ALPHA (see /DAMPG/ for ALPHA).
COFSB COF5 x BETA (see /DAMPG/ for BETA).

2.2.21. LOADP Common

/LOADP/ defines the storage block size for ground acceleration, ground displacement and
dynamic force records on permanent files with extensions .ACC, .DIS and .FRC,

respectively (see /ASDFRC/ and /ADFREC)).

/LOADP/ also stores maximum length information for response spectra. The maximum
allowed size of a response spectrum block is MPSPEC (=141) time-value pairs, and each

spectrum must fit in one block.

/LOADP/ is declared as follows.

COMMON /LOADP/ mpairs, mpspec

30

The variables are as follows.

Variable | Description

MPAIRS | Number of time-value pairs per block in .ACC, .DIS and .FRC files.

MPSPEC | Number of time-value pairs per response spectrum in .SPC file.

2.2.22. NUMS Common

/NUMS/ stores commonly used constants. The values of these constants are set in

BLOCK DATA (file BLOCK.FOR).

/NUMS/ is declared as follows.

COMMON /NUMS/ vlarg, vsmal, spstif(2)

The variables are as follows.

Variable | Description
VLARG | Large number (1.0e+6).
VSMAL | Small number (1.0e-6).

SPSTIF Support-spring stiffnesses for translational and rotational DOFs,
respectively.

2.2.23. OUTD Common
/OUTDY/ stores the result output intervals for dynamic analysis.

J/OUTDY/ is declared as follows.

COMMON /OUTD/ tsaved, tppsvd, tpoutd, tenvsd, tenvpd,

1 isaved, ippsvd, ipoutd, ienvsd, ienvpd

The variables are as follows.

31

Variable

Description

TSAVED

Time interval for saving structure state.
0.0 : Ignored. Do not save if ISAVED also = 0.

>0.0 : Save at this interval, unless ISAVED governs, and at end of
analysis segment

TPPSVD

Time interval for saving results for post-processing.
0.0 : Ignored. Do not save if IPPSVD also = 0.

>0.0 : Save at this interval, unless IPPSVD governs, and at end of
analysis segment.

TPOUTD

Time interval for results printout.
0.0 : Ignored. Do not print if [POUTD also = 0.

>0.0 : Print at this interval, unless IPOUTD governs, and at end of
analysis segment.

TENVSD

Time interval for saving envelopes for post-processing.

0.0 : Ignored. Do not save if IENVSD also = 0.

>0.0 : Save at this interval, unless IENVSD govems, and at end of
analysis segment.

TENVPD

Time interval for envelope printout.
0.0 : Ignored. Do not print if IENVPD also = 0.

>0.0 : Print at this interval, unless IENVPD govemns, and at end of
analysis segment.

ISAVED

Step interval for saving structure state.
0 : Ignored. Do not save if TSAVED also = 0.0.

n : Save state every 'n' steps, unless TSAVED governs, and at end of

analysis segment

IPPSVD

Step interval for saving results for post-processing.
0 : Ignored. Do not save if TPPSVD also = 0.0.

n : Save every 'n' steps, unless TPPSVD governs, and at end of
analysis segment.

32

IPOUTD | Step interval for results printout.
0 : Ignored. Do not print if TPOUTD also = 0.0.

n : Print every 'n' steps, unless TPOUTD governs, and at end of
analysis segment.

IENVSD | Step interval for saving envelopes for post-processing.
0 : Ignored. Do not save if TENVSD also = 0.0.

n : Save every 'n' steps, unless TENVSD governs, and at end of
analysis segment.

IENVPD | Step interval for envelope printout.
0 : Ignored. Do not print if TENVPD also = 0.0.

n : Print every 'n’ steps, unless TENVPD governs, and at end of
analysis segment.

2.2.24. OUTS Common
JOUTS/ stores the result output intervals for static analysis.

JOUTS/ is declared as follows.

COMMON /OUTY/ isaves, ippsvs, ipouts, ienvss, ienvps

The variables are as follows.

Variable | Description

ISAVES | Step interval for saving structure state.

0: Do not save.
n : Save every 'n' steps and at end of analysis segment

IPPSVS | Step interval for saving results for post-processing.

-1 : Save every event.
0 : Do not save.
n: Save every 'n' steps and at end of analysis segment.

IPOUTS | Step interval for results printout.

-1 : Print every event.
0 : Do not print. -
n : Print every 'n’ steps and at end of analysis segment.

33

IENVSS

Step interval for saving envelopes for post-processing.

0 : Do not save.
n: Save every 'n' steps and at end of analysis segment.

TENVPS

Step interval for envelope printout.

0 : Do not print.
n : Print every 'n’ steps and at end of analysis segment.

2.2.25. OUTP Common

/OUTP/ stores the step and time intervals since the last results and/or envelope output.

/OUTP/ is declared as follows.

1
2

COMMON /OUTP/ ttsave, ttppsv, ttpout, ttenvs, ttenvp,

iisave, iippsv, iipout, iienvs, iienvp,

ksave, kppsv, kpout, kenvs, kenvp

The variables are as follows.

Variable | Description
[TTSAVE | Time interval since last structure state save.
TTPPSV | Time interval since last results post-processing save.
TTPOUT | Time interval since last results printout.
TTENVS | Time interval since last envelope post-processing save.
TTENVP | Time interval since last envelope printout.
IISAVE | Step interval since last structure state save.
IIPPSV Step interval since last results post-processing save.
ITIPOUT | Step interval since last results printout.
IIENVS | Step interval since last envelope post-processing save.
IIENVP | Step interval since last envelope printout.
'KSAVE | Code for saving structure state in the current step (0:No ; 1:Yes).
KPPSV Code for saving results for post-processing in the current step (0:No
; 1:Yes).
KPOUT | Code for results printout in the current step (0:No ; 1:Yes).

34

KENVS Code for saving envelopes for post-processing in the current step
(0:No ; 1:Yes).
KENVP Code for envelope printout in the current step (0:No ; 1:Yes).
2.2.26. PREC Common

/PREC]/ stores a precision code for real variables. The default for real variables is double

precision. If single precision is desired, change IPREC to 1 in BLOCK DATA, and change

DOUBLE.H to set the default precision to single.

/PREC/ is declared as follows.

COMMON /PREC/ iprec

The variable is as follows.

Variable | Description
IPREC 1: Single precision; 2 : Double precision.
2.2.27. PTOP Common

/PTOP/ is for page layout during printing.This feature has not yet been implemented.

/PTOP/ is declared as follows.

COMMON /PTOP/ npage, nlin, maxlin, madum

The variables are as follows.

Variable | Description

NPAGE | Current page number.

NLIN Current line number.

MAXLIN | Number of writable lines per page.

MADUM | Number of skip lines per page. Used to skip the perforations for
continuous paper. -

2.2.28. RHIST Common

/RHIST/ stores counts of numbers of items for results printout and post-processing.

/RHIST/ is declared as follows.

COMMON /RHIST/ Irec, ntime, ndpout, nelth, npsec, nnrds,
1 nptime, ndpost, nelthp, npsecp, nnrdsp

The variables are as follows.

Variable | Description

LREC Length of buffer REC (fwa = KREC in /STOR/) for output of time-
history and/or envelope results.

NTIME Number of printout sets in current analysis segment.

NDPOUT | Number of nodes and subnodes in a printout set.

NELTH Number of elements in a printout set.

NPSEC Number of structure sections in a printout set.

NNRDS | Number of generalized displacements in a printout set.

NPTIME | Number of post-processing sets in current analysis segment.

NDPOST | Number of nodes and subnodes in a post-processing set.

NELTHP | Number of elements in a post-processing set.

NPSECP | Number of structure sections in a post-processing set.

NNRDSP | Number of generalized displacements in a post-processing set.

2.2.29. SECTON Common
/SECTONY/ stores structure section information.

/SECTONY/ is declared as follows.

- COMMON /SECTON/ nssec, maxcut, ntrns, maxtdf

The variables are as follows.

36

Variable Description

NSSEC Number of structure sections.

MAXCUT | Largest number of elements cut by any section.

NTRNS Number of force transformations.

MAXTDF | Largest number of DOFs for any transformation.
2.2.30. SETREL Common

/SETREL/ stores generalized displacement information.

/SETREL/ is declared as follows.

COMMON /SETREL/ nrds

The variable is as follows.

Variable | Description
NRDS Number of generalized displacements.
2.2.31. STAT Common

/STAT/ stores control information for static analysis.

/STATY/ is declared as follows.

1

COMMON /STAT/ disa, disma, fdis, flod, slfac, tload,

iflip, ipsign, isign, jdof, ldof, kdc, klc, maxfp

The variables are as follows.

Variable | Description
DISA Controlled displacement increment per step. _
DISMA Controlled displacement increment for analysis segment.

37

FDIS Current value of controlled displacement increment for analysis
segment.

FLOD Current value of load factor for analysis segment.

SLFAC Load factor increment per load step.

TLOAD | Load factor increment for analysis segment.

IFLIP Current number of successive load direction changes (i.e., flip-flops).

IPSIGN ISIGN in preceding substep. Used to detect flip-flops. |

ISIGN Sign of load factor increment for satisfying controlled displacement
condition.

JDOF Equation number for the 1st node displacement defining the
controlled displacement.

LDOF Equation number for the 2nd node displacement defining the
controlled displacement.

KDC Displacement control code (0:No ; 1:Yes).

KLC Load control code (0:No ; 1:Yes).

MAXFP | Maximum number of successive flip-flops allowed.

2.2.32. STOR Common

/STOR/ stores the first word addresses of the arrays in blank common, plus some variables

used frequently with the storage scheme (see Section 2.3. for details). The variables

defining the array dimensions are in /CONTR/, /EQNS/, /RHIST/, /SECTON/, /SETREL/

and /STOR!/.

38

/STOR/ is declared as follows.

COMMON /STOR/ ntst, knsb, kndfsb, kcosb, kndid, kcoord, kid,
kidsp, kspdsp, klstif, kfmnod, kfmdof, kalpha,
knecut, ksang, kdist, kidcut, kstrns, knodir,
krdfac, kjnod, kjelm, kjsec, kjrds, kwkspc, krds,
ksefor, krec, kenp, kenn, kistp, kistn, ksecen,
kisece, krdsen, kirdse, kxlod, kexts, kext,
kdext, krints, krint, kru, kdisi, kveli, kacci,
kdds, kcvel, kcacc, kdis, kvel, kace, kenri,
kdru, kdtan, kbetak, kdinfb, kiad, kinfb, keffk,
ktank, nblok, niad, ninfb, ksofar

O 00 9 O v & VW D =

The variables are as follows.

Variable | Description

NTST Length of blank common in 4-byte units.

NBLOK Number of disk blocks used to store /INFGR/ and /INFEL/ for all
elements.

NIAD Length of IAD array, = NELTOT + NELG (see /CONTR/).

NINFB Length of INFB array = size of each disk block used to store
/INFGR/ and /INFEL/.

KSOFAR | Next unallocated address in blank common.

The arrays stored in blank common are as follows.

FWA Array Description

| KNSB NSB(ndtp) Location of first subnode for each
compound node type in arrays NDFSB
and COSB. The number of subnodes
in compound node type, NT, is equal
to NSB(nt+1) - NSB(nt).

39

KNDFSB

NDFSB(3,nsnds) in 2DX
NDFSB(6,nsnds) in 3DX

DOF codes for all subnodes of each
compound node type, as follows.

0 : Absolute displacement.
1: Restrained (not a DOF).

2 : Relative displacement w.r.t. main
node.

3 : Special degree of freedom (i.e., not
a conventional translation or
rotation).

KCOSB

COSB(2,nsnds) in 2DX
COSB(3,nsnds) in 3DX

Coordinate offsets from main node for
subnodes of each compound node

type.

KNDID

NDID(3,nnods)

Node identification array.
1: Node number.

2 : Compound node type number (0 =
not a compound node). The
compound node types are
numbered in the order of input.

3 : Location of nodal DOFs in ID
array. For compound nodes, the
subnode DOFs immediately follow
the main node DOFs in the ID
array.

KCOORD

COORD(2,nnods) in 2DX
COORD(3,nnods) in 3DX

Nodal coordinates, in ascending node
number order.

KID

ID(3,ntnds) in 2DX
ID(6,ntnds) in 3DX

Equation numbers for displacements at
each node and subnode, coded as
follows.

NEQQ : Restrained displacement.
(See /EQNS/ for NEQQ).

+n: Displacement is unrestrained and -
unslaved. 'n' = equation number.

-n : Displacement is slaved. 'n' =
sequence number of master node.

KIDSP

IDSP(ndsp)

Equation number for each spring
supported displacement.

40

KSPDSP | SPDSP(ndsp,2) Imposed displacements at spring
supports (1: total ; 2: increment for
current step).

KLSTIF | LSTIF(neqq) Location of diagonal elements in
compacted stiffness matrix.

KFMNOD | FMNOD(3,nnods) in 2DX | Nodal masses.

FMNOD(6,nnods) in 3DX

KFMDOF | FMDOF(neqq) Mass matrix (diagonal).

KALPHA | ALPHAM(neqq) Alpha-M damping matrix (diagonal).

KNECUT | NECUT(nssec) Number of elements cut by each
structure section.

KSANG SANG(2,nssec)in 2DX Cosine and sine of section inclination

SANG(3,3,nssec) in 3DX | angles in 2DX. Direction cosines of
section axes in 3DX.

KDIST DIST(2,maxcut,nssec) in Coordinate offsets from structure
2DX section centers to element cuts (X and
DIST(3,maxcut,nssec) in Y offsets in 2DX; X, Y and Z offsets
3DX .in 3DX).

KIDCUT | IDCUT(3,maxcut,nssec) Identification array for cut elements in

structure sections, as follows.

1 : Group number.

2 : Element number.

3 : Force transformation number.

KSTRNS | STRNS(3,maxtdf,ntrns) in | Force transformation matrices for

2DX

STRNS(6,maxtdf,ntrns) in
3DX

structure sections.

41

KNODIR

NODIR(8,nrds)

Displacements forming each
generalized displacement, coded as
follows.

+n : Equation number.

-n : Slaved displacement.
'n' = NDISP + NLOCx 4 for 2DX.
'n' = NDISP + NLOCx 7 for 3DX.

Where,

NLOC = sequence number of the
slaved node = n/4 for 2DX and n/7
for 3DX.

NDISP = direction of DOF =
MOD(n,4) for 2DX and MOD(n,7)
for 3DX.

KRDFAC

RDFAC(8,nrds)"

Participation factors for displacements
forming each generalized
displacement.

KINOD

JNOD(nnods)

Output codes for nodal displacements,
as follows.

0 : Neither post-processing nor
printout.

1: Post-processing only, no printout.
2 : Both post-processing and printout.

KIJELM -

JELM(neltot)

Output codes for element results, as
follows.

0 : Neither post-processing nor
printout.

1 : Post-processing only, no printout.
2 : Both post-processing and printout.

KIJSEC

JSEC(nssec)

Output codes for structure section
forces, as follows.

0 : Neither post-processing nor
printout.

1 : Post-processing only, no printout.
2 : Both post-processing and printout.

42

KIJRDS JRDS(nrds) Output codes for generalized
displacements, as follows.
0 : Neither post-processing nor
_printout.
1 : Post-processing only, no printout.
2 : Both post-processing and printout.
KWKSPC | WKSPC(nwksp) Work space for use by base program
subroutines.
KRDS RDS(nrds) Current generalized displacement
magnitudes.
KSEFOR | SEFOR(6,nssec) in 2DX Current structure section forces (3 or
SEFOR(12,nssec) in 3DX 6 static values followed by 3 or 6
damping values for each section).
KREC REC(lrec) Buffer for output of time-history
and/or envelope results for post-
processing and/or printout.
KENP DENP(3,ntnds) in 2DX Positive nodal displacement envelopes.
DENP(6,ntnds) in 3DX
KENN DENN(3,ntnds) in 2DX Negative nodal displacement
‘ DENN(6,ntnds) in 3DX envelopes.
KISTP ISTP(3,ntnds) in 2DX Step numbers for DENP.
ISTP(6,ntnds) in 3DX
KISTN ISTN(3,ntnds) in 2DX Step numbers for DENN.
ISTN(6,ntnds) in 3DX
KSECEN | SECENV(3,6,nssec) in Section force envelopes. 2nd index
2DX indicates:
ggg:{ENV(é,&nssec) n 1: Total positive.
2 : Total negative.
3 : Static positive.
4 : Static negative.
5 : Damping positive.
6 : Damping negative.
KISECE ISECEN(3,6,nssec) in Step numbers for SECENV.
2DX
ISECEN(6,6,nssec) in
3DX -
KRDSEN Positive and negative generalized

RDSENV(2,nrds)

displacement envelopes.

43

KIRDSE IRDSEN(2,nrds) Step numbers for RDSENV.

KXLOD XLOD(neqq) Effective nodal load increment for the
current load or time step.

KEXTS EXTS(neqq) Total static load.

KEXT EXT(neqq) Total static + dynamic load.

KDEXT DEXT(neqq) Dynamic load increment for the
current time step.
For *ACCN or *ACCR analysis
DEXT is the load increment due to
ground acceleration increments.
For *DISN or *DISR analysis DEXT
is the load increment required to
impose the specified ground
displacement increments.

KRINTS RINTS(neqq) Static resisting force.

KRINT RINT(neqq) Total (static + damping + inertia)
resisting force.

KRU . RU(neqq) Unbalanced load (EXT - RINT).

KDISI DISI(neqq) Displacements at start of current time
step.

KVELI VELI(neqq) Velocities at start of current time step.

KACCI ACCl(neqq) Accelerations at start of time step.

KDDS DDIS(neqq) Displacement increment in current
substep.

KCVEL | CVEL(neqq) Velocity increment in current substep.

KCACC CACC(neqq) Acceleration increment in current
substep.

KDIS DIS(neqq) Total displacements.

KVEL VEL(neqq) Total velocities.

KACC ACC(neqq) Total accelerations.

‘KENRI ENRI(neqq) Work done by inertia forces in current
time step.

KDRU DRU(neqq) Backed up RU (if KDRU = 1). Used

if time step is repeated. See INCOR in
/CONTR/.

44

KDTAN DTAN(lenk) Backed up TANK (if KDTAN = 1).
Used if time step is repeated. See
INCOR in /CONTRY/.

KBETAK | BETAK(lenk) Beta-K damping matrix, compacted

column (if KBETAK = 1).

If KBETA in /DAMPG/ = 0, then this
matrix is not required and

KBETAK=1.

KDINFB | IINFB(ninfb) Backed up INFB (if KDINFB = 1).
Used if time step is repeated. See
INCOR in /CONTR/.

KIAD IAD(niad) First word addresses in INFB of

/INFGR/ and /INFEL/ blocks.

If IAD=1 for any /INFGR/ or /INFEL/
block, that block does not lie in
current INFB, and a new INFB block
must be read from the file storing the
element data blocks.

KINFB INFB(ninfb) Buffer for /INFGR/ and /INFEL/
blocks.

KEFFK EFFK(lenk) Current effective tangent stiffness
matrix (compacted column,
factorized).

KTANK TANK(lenk) Current static tangent stiffness matrix

(compacted column, unfactorized).

2.2.33. TAPES Common

/TAPES/ stores the unit numbers for disk files. The unit numbers are assigned in BLOCK
DATA (file BLOCK.FOR).

/TAPES/ is declared as follows.

COMMON /TAPES/ inp, iou, inpx, nfbeg, nfcur, nfupd, nfscrt, nfres,
1 nfperm, nfload, nflis, nfoutp, nflog, nfgeo, nfpmt,

2 nfmode, nfmrsl, nfasdf, nfenvp -

45

The variables are as follows.

Unit No. | Associated File(s)
INP Input file, DRAIN.INP.
IOU Echo file, .ECH.
INPX Input scratch file. Used for counting input items before data is
actually read.
NFBEG Scratch file storing /INFGR/ and /INFEL/ blocks at start of current
step. Each disk block may contain one or more /INFGR/ and
/INFEL/ blocks. The size of each disk block is NINFB (in /STORY/).
NFCUR Scratch file storing /INFGR/ and /INFEL/ blocks at start of current
substep.
NFUPD Scratch file storing updated /INFGR/ and /INFEL/ blocks at end of
current substep.
NFSCRT | Scratch file storing individual /INFGR/ and /INFEL/ blocks during
data input.
NFRES Results post-processing file, .RXX, where XX is analysis segment
’ number. ' .
NFPERM | Structure state file, .SXX, where XX is analysis segment number.
NFLOAD | Files containeng load patterns and dynamic load records (i.e., .ELD,
STA, .SPC, .ACC, .VEL, .DIS, .FRC).
NFLIS Analysis list file, .LST.
NFOUTP | Printout file, .OUT.
NFLOG Solution log file, .SLO.
NFGEO Geometry file, .GEO.
NFPRNT | Scratch file for saving results for printout. Results are saved step-by-
step, then reorganized and written to .OUT file item-by-item.
NFMODE | Mode shape file, MXX, where XX is analysis segment number.
NFMRSL | Modal response file, .UXX, where XX is analysis segment number.
‘NFASDF | Scratch file for dynamic load records. Used during dynamic analysis.
NFENVP | Envelope file, .EXX, where XX is analysis segment number, for

envelope post-processing.

46

2.2.34. THELM Common

Element results are transferred to results files ((RXX) by means of /THELM/. The results
are stored in single precision. The data and length of /THELM/ depends on the element
type.

/THELM/ is declared in base program subroutines as follows.

COMMON /THELM/ thout(*)
REAL thout

/THELM/ is declared fully in the element subroutines.
2.2.35. TIME Common
/TIME/ stores time daia for dynamic analysis.

/TIME/ is declared as follows.

COMMON /TIME/ dt, timax, tim, kstep, nsteps

The variables are as follows.

Variable | Description

DT Current time step, At.

TIMAX Time increment for current analysis segment.

TIM Total time in the current dynamic load record.

KSTEP Step number for the current analysis segment.

NSTEPS | Maximum number of steps for current segment (analysis quits if
exceeded).

2.2.36. TITADF Common

[TITADF/ stores the record names for the dynamic load records that are applied in the

current analysis.

47

/TITADF/ is declared as follows.

"COMMON /TITADF/ tadf(36)
CHARACTER tadf*4

The variable is as follows.

Variable | Description
TADF Record names for dynamic load records. See /ASDFRC/.
2.2.37. TITLE Common

[TITLE/ stores the problem titles.

/TITLE/ is declared as follows.

COMMON /TITLE/ fname, ihed, anal, iheda
CHARACTER fname*8, ihed*40, anal*4, iheda*40

The variables are as follows.

Variable | Description
FNAME | Problem name. The number of characters in FNAME is NCHAR (in
‘ /CONTRY/). All permanent files opened for the problem have names
of the form PROBNAME.EXT, where PROBNAME is FNAME and
EXT is a three character extension indicating the contents of the file.
IHED Problem title.
ANAL Analysis type (GRAV', 'STAT', 'REST', 'MODE!, 'SPEC', 'ACCN",
'ACCR', 'VELN, 'VELR', 'DISN', 'DISR', 'FORN' or 'FORR").
IHEDA Analysis title.

2.2.38. WORK Common

/WORK/ provides a temporary work area for exclusive use by element subroutines.

48

/WORKY/ is declared in main program (file MAIN.FOR) as follows.

COMMON /WORK/ w(*)

/WORK/ is declared fully in any element subroutines where it is used.
2.3. BLANK COMMON

Blank common is declared as follows in all except 1. main program.

COMMON L(*)

The length is defined by the parameter NTSTP in the main program (file MAIN.FOR) as

follows.

PARAMETER (NTSTP=65000)
COMMON L(NTSTP)

ntst = NTSTP

The 65000 value is about the maximum for PCs under DOS with a 640K memory limit.
For workstations and PCs with larger memory limits or virtual memory systems it is

probably most efficient to specify sufficient length to store all data in memory.

Arrays in L are located by their first-word-addresses (FWA). The arrays and their
addresses have been listed in /STOR/. If an array is not allocated space, because it is not
required for the current problem or because it is not kept in memory, its FWA is set to 1.

Therefore L(1) is not used and first allocated address is L(2).

Most real variables are currently in double precision (REAL*8). It is possible that some of

these variables will be made single precision in future versions.

49

The variable KSOFAR stores the first unallocated address in L at aﬁy stage of execution
of the program. To allocate, say, an integer array NDID of dimensions (3, NTNDS), the

code is as follows.

kndid = ksofar

ksofar = kndid + 3 x ntnds

Each real array is made to start on a 8-byte boundary by assigning an odd FWA. Fof-
example, to allocate real array COORD of dimensions (2, NNODS), the code is as

follows.

kcoord = NXTODD (ksofar)

ksofar = kcoord + 2 x nnods x iprec

In the above, NXTODD is the simple statement function:

NXTODD(k) = k + MOD(k+1,2)

After each allocation in L, KSOFAR is checked to ensure that it is less than NTST. If
KSOFAR > NTST, the blank common length is insufficient to run the problem, and the
program writes an error message in the .ECH file. The parameter NTSTP in the main

program (file MAIN.FOR) must be increased to run the problem.

The utility subroutines, IZERO, RZERO and DZERO are used to zero integer, real and
double precision array, respectively. The utility subroutines ISHIFT and DSHIFT are used
to copy integer and real arrays, respectively. The utility subroutine RDSHFT is used to
copy a double precision array to a single precision array. The utility subroutines IREAD,
RREAD and DREAD are used to read integer, single and double precision arrays,
respectively, from an unformatted sequential file. The utility subroutines IWRITE,
RWRITE and DWRITE are used to write integer, single and double precision arrays,

respectively, to an unformatted sequential file.

50

2.4. PERMANENT FILES

The base program creates several permanent files. All permanent files have names of the
form PROBNAME.EXT, where PROBNAME is the problem name (up to 8 characters),
FNAME in /TITLE/, and EXT is a three character extension indicating the contents of the
file.

Static load patterns and dynamic load records are stored on binary files as follows. Unit

NFLOAD is used for all these files, as only one of them needs to be open at any time.

BINARY FILES FOR LOAD PATTERNS AND RECORDS
Extension | Unit No. Contents
.ELD NFLOAD | Static element load patterns.
STA NFLOAD | Static nodal load patterns.
.VEL NFLOAD | Initial velocity pattems.
ACC NFLOAD | Ground acceleration records.
.DIS NFLOAD | Ground displacement records.
FRC NFLOAD | Dynamic force records.
SPC NFLOAD | Earthquake response spectra.

The following output files are all text files.

OUTPUT TEXT FILES

Extension | Unit No. | Contents

.ECH IOU Echo of input data and analysis log consisting of event
log and unbalanced load information..

.LST NFLIS List of analysis segments, indicating which time-
history post-processing, envelope post-processing,
and structure state files have been saved.

OUuT NFOUTP | Time history and envelope results.

SLO NFLOG Solution log consisting of energy balance_and
unbalanced load information.

51

The output files for post-processing are all binary files, as follows.

BINARY OUTPUT FILES FOR POST-PROCESSING
iﬁxtension Unit No. Contents
.GEO NFGEO Geometry data for the structure for plotting,
EXX NFENVP | Envelope results for analysis segment XX.
RXX NFRES Time-history results for analysis segment XX.

The following files are all binary.

OTHER PERMANENT FILES

Extension

Unit No.

Contents

MXX -

NFMODE

Mode shapes and periods for analysis segment XX.

JUXX

NFMRSL

Individual modal results for unit spectral amplitude for
modes in the MXX file. This file is created the first
time a response spectrum analysis is performed using |
these modes. The unit modal results are not '

-recalculated if later analyses are performed with
different response spectra. |

SXX NFPERM | Structure state at end of analysis segment XX, for

restart in subsequent analysis sessions.

Detailed descriptions of the structures of all binary files, except .SXX, are given in

Chapter 4. See subroutines SSTATE and RSTATE for the structure of the .SXX file.
2.5. TEMPORARY FILES
2.5.1. Introduction

Temporary files (i.e., FORTAN scratch or internal files) are used for the following.
(a) Inpu.t processing.

() Ou’tput processing.

(c) Storage of element /INFGR/ and /INFEL/ blocks.

52

(d) Storage of backup /INFGR/ and /INFEL/ blocks; tangent stiffness, DTAN; and
unbalanced load vector, DRU. These are used to restore the state if the time step must
be repeated in the variable time-step scheme.

These files are described in the following sections.
2.5.2. Input Processing

In the DRAIN.INP file, separator lines signal the start of each new task. If item counts are
needed before memory can be assigned for any input task, the input data is read twice. In
the first reading, the items are counted and the input lines are written to the scratch file

INPX. The program then allocates memory and re-reads the input lines from INPX.

Each input line is read into the character variable XXLINE (see /CLINE/). XXLINE is
then used as a FORTRAN internal file. The data in XXLINE can be read several times if

desired.
2.5.3. Outpﬁt Processing

The results for all items (see /RHIST/) are obtained step-by-step during the analysis and
are written to the scratch file, NFPRNT. At end of analysis segment, results for all steps
are read from NFPRNT, reorganized item-by-item instead of step-by-step, and written to

the .OUT file.
2.5.4. Storage of Element Data Blocks

Data is stored for each element in /INFGR/ and /INFEL/ blocks. There is one /INFGR/
block for each element group (containing data common to all elements in the group) plus

one /INFEL/ block for each element (containing data unique to each element).

The base program stores these blocks in array INFB (see KINFB in /STOR/). For any
element task (e.g., event factor calculation, state determination, etc.), before an element

subroutine is called, the /INFGR/ and /INFEL/ data for the current element is copied from

53

INFB to the /INFGR/ and /INFEL/ blocks. If the updates made by the element subroutine
to its /INFEL/ block are to be accepted (e.g., following state determination), then the
/INFEL/ data is copied back to INFB. If the updates made by the element subroutine to its
/INFEL/ block are to be ignored (e.g., following event factor calculation), then the

/INFEL/ data is not copied back.

For a small problem, or if the blank common is large, INFB can accomodate all /INFGR/
and /INFEL/ blocks. For a large problem, however, INFB may accomodate only a few
/INFGR/ and /INFEL/ blocks. For such problems, the element data is blocked. Each block
has length NINFB (in 4-byte units), and the number of blocks is NBLOK (see /STOR/).
The value of NINFB depends on the remaining blank common after all arrays except

DTAN, DRU and DINFB have been allocated.

If the element data can not be held in memory, the base program uses three temporary
files, with unit numbers NFBEG, NFCUR, and NFUPD (see /TAPES/). NFBEG holds the
element data at the beginning of the current load or time step, NFCUR holds the data at
the start of the current analysis substep, and NFUPD holds the updated data at the end of
the current subétep. The unit numbers are cycled as follows.

(a) Before the first substep, NFBEG and NFCUR are switched (i.e., the unit numbers are
interchanged) so that NFCUR holds the current data.

(b) At the start of any substep, NFCUR holds the current data. As the elements are
processed the base program fills INFB by reading the next block from NFCUR
whenever it is required to process the current element. If the data is to be updated
(e.g., following state determination), then INFB is written to NFUPD before it is.
refilled from NFCUR. After such an element task, NFCUR and NFUPD are switched
so that NFCUR holds the current data for the next element task or substep.

(c) In the first substep after the end of the first data update, NFBEG and NFUPD are

switched so that NFBEG again holds the data corresponding to the start of the step.

54

(d) After the end of the last substep, NFBEG and NFCUR are switched so that NFBEG

holds the current data at the start of the next step.
2.5.5. Storage of Backup Element Data, Timgent Stiffness and Unbalanced Load

A duplicate set of element data, DINFB; a duplicate tangent stiffness, 'f)TAN; and, a
duplicate unbalanced load vector, DRU, are required to provide a back-up in case a time-
step must be repeated in the variable time-step scheme. DINFB, DTAN and DRU are

stored in blank common if possible. If not, they are stored on unit NFBEG.

If all /INFGR/ and /INFEL/ blocks can be accomodated in INFB in a single block

(NBLOK-=1), the available blank common is checked to see whether it can accomodate

DTAN, DRU, and DINFB. The variable INCOR (in /CONTRb is set to mean the

following. '

(a) INCOR=0 : NBLOK > 1; so that DINFB is already on NFBEG (see S&ction 2.5.4).
DTAN and DRU are stored following DINFB.

(b) INCOR=1: DINFB, DTAN and DRU are stored on NFBEG.

(c) INCOR=2 : DTAN and DRU are stored in blank common, and DINFB is stored on
NFBEG.

(d) INCOR=3 : DINFB, DTAN and DRU are stored in blank common.

Because repetition of a time step is likely to occur relatively rarely, in most time steps the
time required to write the backup copy to file is wasted. To save some of this time, the
backup is made not at the beginning of the step but at the end of the first substep, just
before the state is updated. Hence, if there are no events (and hence no substeps), a

backup copy is not made.

3. BASE PROGRAM ORGANIZATION -- DRAIN-2DX AND 3DX

3.1. INTRODUCTION

The base program phases and the corresponding separator lines in the DRAIN.INP file are

as follows.
No. | Base Program Phase Separator Lines Comment
1. Begin Session *START/ *RESTART For *RESTART,
phases (2), (5), and
(6) are skipped
2. Define Model *COMPOUND,
*NODECOORDS,
*NODETYPES,
*RESTRAINTS,
*SLAVING, *MASSES,
*ELEMENTGROUP,
*SECTION and
« *GENDISP
3. Process Output *RESULTS
Specification
4, Process Load Patterns and
Load Records
(a) Static Element Load *ELEMLOAD
Patterns
(b) Static Nodal Load *NODALOAD
Patterns
(c) Initial Velocity Paterns | *NODALVEL
(d) Ground Acceleration *ACCNREC
Records
(e) Ground Displacement *DISPREC
Records
(f) Dynamic Force Records | *FORCREC
) '(g) Response Spectrum *SPECTRUM
5. Allocate Memory for Preparation for
Analysis Phase analysis phase.

S5

56

6. Form Initial Tangent Preparation for
Stiffness and Beta-K analysis phase.
Damping

7. Process Analysis *PARAMETERS
Parameters

8. Identify Analysis Type *GRAYV, *STAT, *REST,

' *MODE, *SPEC, *ACCN,
*ACCR, *VELN, *VELR,
*DISN, *DISR, *FORN,
or *FORR

9. Set up Loads for Next
Analysis Segment:

(a) Static Gravity *GRAV -

(b) Static *STAT

(c) Restore to Static State | *REST

(d) Ground Acceleration *ACCN or *ACCR

(e) Initial Velocity *VELN or *VELR

(f) Dynamic Ground *DISN or *DISR
Displacement

(g) Dynamic Force *FORN or *FORR

10. | Perform Analysis
(a) Static Gravity *GRAV
(b) Static *STAT
(c) Restore to Static State | *REST
(d) Ground Acceleration *ACCN or *ACCR
(e) Initial Velocity *VELN or *VELR
(f) Dynamic Ground *DISN or *DISR

Displacement
(g) Dynamic Force *FORN or *FORR
(h) Mode Shapes and *MODE
Periods
(i) Response Spectrum *SPEC
11. | End Session *STOP -

57

The phases are described briefly in the following sections. Details can be obtained from the

actual code, which is well commented.

3.2. BEGIN SESSION

The flow chart for this phase is as follows.

MAIN =1 coNTRL

RSTATE

The following main tasks are performed.

1. In MAIN, open the input data file, DRAIN.INP (unit INP in /TAPES)).

2. In INITL, read the *START/*RESTART data. Set the variables LECHO in /CLINE/;
NCHAR in /CONTR/; KDATA, KEXE, KENR and KPDEL in /INDIC/; and FNAME
in /TITLE/.

3. In INITL, open the files .ECH (unit IOU) and .OUT (unit NFOUTP).

4. For *RESTART
a) In CONTRL, open the .SXX file (unit NFPERM), where XX is the restart state

number.
b) In RSTATE, restore the state from the .SXX file (blank common, all labeled
common blocks and INFB blocks).

3.3. DEFINE MODEL
3.3.1. Main Tasks

The flow chart for this phase is as follows.

58

ICONTRL

— INGEOM—

— NDIDST

— COLCOM

The following main tasks are performed.
1. *COMPOUND data:
a) In INDTP1, read the *COMPOUND data; count NDTP and NSNDS (see
/CONTR/); and write input lines to INPX. |
b) In INCNDS, allocate arrays NSB, NDFSB and COSB (see KNSB, KNDFSB and
KCOSB in /STOR/) in blank common.

)

59

¢) InINDTP2, re-read the *COMPOUND data from INPX and set up NSB, NDFSB
and COSB.

*NODECOORDS data:

a) InINDCOI, read the *NODECOORDS data; count NNODS (see /CONTR/); and

write input lines to INPX.

b) In INGEOM, allocate arrays NDID and COORD (see KNDID and KCOORD in

/STOR/) in blank common.

c) In INDCO2, re-read the *NODECOORDS data from INPX and set up node'
numbers in first row of NDID and corresponding nodal coordinates in COORD.
INDCO?2 calls NDGENC for control nodes, NDGENL f{or straight line generation,
NDGENF for frontal extrapolation, and NDGENG for grid interpolation.

d) In INGEOM, sort COORD and first row of NDID in increasing order of node
numbers.

In INNDTP, read the *NODETYPES data and set up second row of NDID.

In NDIDST, set up third row of NDID and count NTNDS (see /CONTRY/).

In INGEOM, allocate arrays ID and IDSP (see KID and KIDSP in /STOR/) in blank

common. The actual length NDSP of IDSP is unknown at this stage, and is

provisionally set to 3x NNODS for 2DX and 6x NNODS for 3DX.

In INNDRT, read the *RESTRAINTS data, and code ID as follows.

a) 0: for a free (i.e., unrestrained) displacement,

b) 1: for afixed (i.e.. restrained) displacement, and

c) 2:for a spring supported displacement.

In INNDSL, read the *SLAVING data, and additionally code ID as follows.

d) iMNOD fora slaved nodal displacement, where MNOD is sequence number of the

master node in NDID.

8.

10.
11.

12.

13.

60

In EQNGEN, set up ID and IDSP; set the variables NDSP (in /CONTR/); and NEQ

and NEQQ (in /EQNS)/).

In INGEOM, reduce the allocated space for IDSP to NDSP, and allocate arrays

SPDSP, LSTIF, FMNOD, FMDOF and ALPHAM (see KSPDSP, KLSTIF,

KFMNOD, KFMDOF and KALPHA in /STOR/) in blank common.

In INMASS, read the *MASSES data and set up FMNOD, FMDOF and ALPHAM.

Temporarily allocate an array, IELNOD, in blank common. IELNOD stores the

element nodes for elements of an element group. This array is set up in ELNODE and

written to the .GEO file in INELEM.

In INELEM

a) Initialize LSTIF so that LSTIF(J) = J for each column J of the stiffness matrix (see
Section 3.3.2b).

b) Write geometry data to the .GEO file (See Chapter 4).

¢) Read the Group Information line of the *ELEMENTGROUP data; set the arrays
BETAO, OVFAC, KELEM, KEVNT, KGEOM and NELEM in /GENINF/; and
set the variables NELGR, NELG and NELTOT in /CONTR/.

d) Call the element subroutine INEL##, where ## is the element type number, to read
rest of the *ELEMENTGROUP data.

In INEL##

a) Call the base program subroutine ECONTR.

b) Read the Element Data lines of the *ELEMENTGROUP data.

¢) Call the base program subroutine COORDS to get the coordinates of any node.

d) Set up the /INFGR/ block for the group.

e) Foreach element in the group
i) Call the base program subroutine ELNODE for each element node.

ii) Call the base program subroutine LOCMAT for each element DOF.

14.

15.
16.

17.

18.

19

21.

61

iii) Set up the /INFEL/ block.

iv) Call the base program subroutine FINISH.
In éCONTR, set the variables NEDOF, NENOD, NINFE, NINFEL, NINFG, NINFL,
NINFT and NLINF in /GENINF/ for the element group. |
In ELNODE, set the element nodes in IELNOD.
In LOCMAT, set the equation numbers in the element location matrix for the element
DOFs (See Section 3.3.2a).
In FINISH:
a) For the first element store the /INFGR/ block on scratch file NFSCRT.
b) For each element store the /INFEL/ block on NFSCRT.
In BAND, update LSTIF (see Section 3.3.2b).

. In COLCOM, set up LSTIF (see Section 3.3.2b).
20.

For *SECTION data:

a) In INSECI, read the *SECTION data; count NSSEC ahd NTRNS; update
MAXCUT and MAXTDF (see /SECTONY/); and write the input lines to INPX.

b) In STRSEC, allocate arrays NECUT, SANG, DIST, IDCUT and STRNS (see
KNECUT, KSANG, KDIST, KIDCUT and KSTRNS in /STOR/) in blank
common.

¢) In INSEC2, re-read the *SECTION data from INPX and set up NECUT, SANG, -
DIST, IDCUT and STRNS.

For *GENDISP data:

a) In INRDSI, read the *GENDISP data; count NRDS (see /SETREL/); and write

_the input lines to INPX.

b) In GENDIS, allocat¢ arrays NODIR and RDFAC (see KNODIR and KRDFAC in

/STORY/) in blank common.

62

¢) In INRDS2, re-read the *GENDISP data from INPX and set up NODIR and
RDFAC.

3.3.2. Some Details
a) Element Location Matrix (LM array)

The LM array is used by the base program to assemble element stiffnesses, resisting
forces, etc. For any element DOF the corresponding term has the following meaning.
a) + n: Unrestrained DOF. 'n' = global equation number.
b) -n: Slaved DOF.
'n'=NDISP+NLOCx 4 for DRAIN-2DX
'n'=NDISP+NLOCx 7 for DRAIN-3DX
where,
NLOC=sequence number of the slaved node = n/4 for 2DX and n/7 for 3DX.
and NDISP=direction of DOF= MOD(n,4) for 2DX and MOD(n,7) for 3DX.

The LM array for each element is stored following the ;iNFEL/ data in the /INFEL/ block.
Between the /INFEL/ data and the LM array, a 4-byte integrity code is stored . After each
return from an element subroutine the base program checks the integrity code to ensure
that the integrity of the LM array has not been violated in the element subroutine (see

NINFEL in /GENINF/).
This feature of the program has caused problems and may be changed in future versions.
b) Setting up LSTIF

To set up LSTIF (see KLSTIF in /STOR/):
1. For each column, J, of the stiffness matrix, TANK (see KTANK in /STOR/), LSTIF(J)

is set equal to the row number of the first nonzero entry in that column. For this

purpose:

63

a) LSTIF(J) is initialized to J (i.e., the diagonal entry) in INELEM (main task 12a).
b) BAND updates LSTIF by using the element LM array, assuming that all element
" DOFs are coupled to each other (main task 18).
2. After the data for all elements has been input, COLCOM finally sets up LSTIF and

calculates the compacted column length, LENK, of the stiffness matrix (main task 19).
¢) Element Processing
The variables in /CURRNT/ keep track of the current stage of element processing.

INELEM initializes IGRC to O before reading the first *ELEMENTGROUP separator,
and increments IGRC for each *ELEMENTGROUP separator.

INELEM initializes IELC to 1 after each *ELEMENTGROUP separator. FINISH

increments IELC for each element.

INELEM initializes IDFC and INODC to 0 after each *ELEMENTGROUP separator.
LOCMAT increments IDFC for each element DOF. ELNODE increments INODC for

each element node. IDFC and INODC are reset to 0 in FINISH for the next element.
3.4. PROCESS QUTPUT SPECIFICATION

The flow chart for this phase is as follows.

[CONTRL

The foilowing main tasks are performed.
1. For *START, in OUPUT
a) Set the variable LREC in /RHIST/.

64

b) Allocate arrays JNOD, JELM, JSEC and JRDS (see KINOD, KJELM, KIJSEC and
KJRDS in /STOR/) in blank common.

¢) Initialize JNOD, JELM, JSEC and JRDS with the default output codes.

d) Initialize the variables NDPOUT, NELTH, NPSEC, NNRDS, NDPOST,
NELTHP, NPSECP and NNRDSP in /RHIST/ corresponding to the default output
codes.

2. In OUTPUT, read the *RESULTS data and call:

a) OUTNDS to update JNOD, NDPOUT and NDPOST for nodal displacements.

b) OUTELM to update JELM, NELTH and NELTHP for element results.

c) OUTSEC to update JSEC, NPSEC and NPSECP for structure sections.

d) OUTRDS to update JRDS, NNRDS and NNRDSP for generalized displacements.

3.5. PROCESS LOAD PATTERNS AND LOAD RECORDS
3.5.1. Main Tasks

The flow chart for this phase is as follows.

ICONTRL
— INLOAD —

The following main tasks are performed.

65

1. In INLOAD, allocate work space for reading load patterns and dynamic load records.
For *RESTART, use the array WKSPC in blank common (see KWKSPC in /STOR)).
For *START, use all remaining blank common.

2. In INLOAD, read the separator line and for:

a) *ELEMLOAD - call INGPAT to read the *ELEMLOAD data and write the
element load pattern to the .ELD file (see .ELD file in Chapter 4).

b) *NODALOAD - call INSPAT to read the *NODALOAD data and write the static
nodal load pattern to the .STA file (see .STA file in Chapter 4).

¢) *NODALVEL - call INVPAT to read the *NODALVEL data and write the initial
velocity pattern to the .VEL file (see .VEL file in Chapter 4).

d) *ACCNREC, *DISPREC or *FORCREC - call INAXL to read the *ACCNREC,
*DISPREC or *FORCREC data and write the dynamic load record to the .ACC,
.DIS or .FRC file (see these files in Chapter 4).

e) *SPECTRUM - call INSPEC to read the *SPECTRUM data and write the
response spectrum to the .SPC file (see .SPC file in Chapter 4).

3.5.2. Some Details
a) Processing Element Loads - Subroutine INGPAT

The flow chart for processing element loads is as follows.

INLOAD

The element loads for a loaded element group are stored in SETLOD and ELFACT

arrays, as follows.

66

Array

Description

SETLOD(ninl,nlod)

Element load sets. Each column of SETLOD contains
a load set. NINL is the length of a load set, from array
NINFL in /GENINF/. NLOD is the number of element
load sets.

ELFACT(nlod,nmem)

Load set scale factors for elements of the group. Each
column of ELFACT contains the load set scale factors
for one element. NMEM is the number of elements,
from arrray NELEM in /GENINF/.

The following main tasks are performed.

1. In INGPAT, read pattern name and loaded element groups.

2. In ELODXX, call element subroutine ELOD## where ## is the element type number.

3. In element subroutine ELOD##, read the element load data for the loaded element

group, and set up the SETLOD and ELFACT arrays.

4. In INGPAT, append the element load pattern at the end of the .ELD file.

b) Processing Load Records - Subroutine INAXL

The flow chart for processing dynamic load records is as follows.

INLOAD

The load records are stored in blocks (see /ASDFRC/, /ADFREC/ and /LOADPY/) each

containing MPAIRS (in /LOADP/) time-value pairs.

The following main tasks are performed.

1. In INAXL, read the pattern name and control information for the load record; and

calculate the number of blocks that are required.

67

2. In RDWTAF, read the load record; form the time-value blocks: and write the blocks

to the load record file (ACC, .DIS or .FRC).

3.6. AiLOCATE MEMORY FOR ANALYSIS PHASE

The flow-chart for this phase is as follows.

MAIN

CONTRL
[~ OOV wevea

The following main tasks are performed.

1. In CONTRL, allocate array WKSPC in blank common (see KWKSPC in /STOR)).

WKSPC is used for storing the following.

a)
b)
c)
d)

8)

Load pattern and dynamic load record input for *RESTART.

Applied load patterns when setting up loads for analysis.

Element stiffness matrix during tangent stiffness update.

Temporary vector of length NEQQ for calculation of midstep equilibrium errror
or equivalent impulse error.

Nodal displacements DISP(3,ntnds) in 2DX and DISP(6,ntnds) in 3DX for
output during analysis, and for updating nodal displacement envelopes (see
KENP, KENN in /STOR/).

Section forces SEFOR (see KSEFOR in /STOR/) for output dufing analysis and
for updating section envelopes (see KSECEN in /STORY/). ’
Generalized displacements RDS (see KRDS in /STOR/) for output during

analysis and for updating generalized displacement envelopes (see KRDSEN in

" /STOR/).

2. In CONTRL, set KSEFOR and KRDS (see /STOR/) so that SEFOR and RDS may

safely use parts of the WKSPC array.

68

. In CONTRL, allocate the following arrays in blank common (see KREC to KENRI in

/STORY/).

a) output buffer REC.

b) arrays DENP, DENN, ISTP and ISTN for nodal displacement envelopes.

c) arrays SECENV and ISECEN for structure section envelopes.

d) arrays RDSENV and IRDSEN for generalized displacement envelopes.

e) vectors XLOD, EXTS, EXT, DEXT, RINTS, RINT, RU, DISI, VELI, ACCI,
DDIS, CVEL, CACC, DIS, VEL, ACC and ENRL

. In CONTRL, calculate blank common available for storing /INFGR/ and /INFEL/

data.

. In MEMREQ, set variables INCOR in /CONTR/; and NBLOK and NINFB in

/STORY/.

. In CONTRL, allocate the following arrays in blank common (see KDRU to KTANK

in /STOR/):

a) DRUIfINCOR = 2.

b) DTANif INCOR = 2.

c) BETAK if KBETA in /DAMPG/ = 0.

d) IINFB if INCOR = 3.

e) IAD, INFB, EFFK and TANK.

. In CONTRL, open the following scratch files:

a) NFBEG if INCOR = 3. NFBEG stores DINFB if INCOR = 2; and DINFB,

" DTANand DRU if INCOR s 2 (see Sections 2.5.4 and 2.5.5).

b) NFCUR and NFUPD if NBLOK = 1 for storing /INFGR/ and /INFEL/ blocks (see
Section 2.5.4).

. In CONSOL, fill the INFB buffer. by reading the /INFGR/ and /INFEL/ blocks from

scratch file NFSCRT and set up the [AD array.

69

" If INFB cannot accomodate all /INFGR/ and /INFEL/ blocks (i:e., NBLOK > 1), then

CONSOL performs the following steps until all /INFGR/ and /INFEL/ blocks are read

from NFSCRT and all INFB blocks are written to NFBEG.

a) Fill INFB with as many consecutive /INFGR/ or /INFEL/ blocks as will fit in
INFB, setting IAD for each block.

b) Write INFB to NFBEG.

c) Set IAD for the next /INFGR/ or /INFEL/ block to 1.

3.7. FORM INITIAL TANGENT STIFFNESS AND BETA-K DAMPING

The flow chart for this phase is as follows.

[CONTRL

— STIFFT4
ADRESS (for /INFEL)) ”}6}555}5"5}565&5{
ASSEM (for TANK)
ASSEM _(for BETAK)

B SSTATE., A Ut —

The following main tasks are performed.

1.

In CONTRL, call STIFFT after detecting the first analysis separator (*GRAV,
*STAT, *REST, *ACCN, *DISN, *FORN, *MODE or *SPEC).

In ADRESS, copy /INFGR/ and/or /INFEL/ for the current element group and
element from INFB. If the required block is not in INFB, write INFB to NFUPD and
refill INFB from NFCUR.

In STIFXX call the element subroutine STIF##, where ## is the element type number
for the current group (see KELEM in /GENINFY)).

In STIF##, fdrm the element stiffness matrix.

In ASSEM, assemble the element stiffness into TANK (see KTANK in /STOR/).

70

6. In STIFFT, scale the element stiffness by BETAO (in /GENINF/) for the current
element group to obtain the element beta-K damping matrix.

7. In ASSEM, assemble the element beta-K damping into BETAK (see KBETAK in
/STORY/).

8. In CONTRL, open the .SXX file (unit NFPERM), where XX is segment number 0.

9. In SSTATE, write blank common, all labeled commons and INFB to the .SXX file.

This saves the unstressed structure state.
3.8. PROCESS ANALYSIS PARAMETERS

The flow chart for this phase is as follows.

[CONTRL

ANAPAR reads the *PARAMETERS data, and modifies variables and arrays in labeled

common blocks, as follows.

Type of Analysis Parameter Modified Variables and Arrays

Viscous Damping Scale Factors ALPHA and BETA in /DAMPG/

Collapse Displacements DISMAX and RTNMAX in /COLPSE/

Event Overshoot Scale Factors OVFAC in /GENINF/

Element Parameters IELPR and RELPR in /GENINF/

Output Intervals for Static Analysis all variables in /OUTS/

Output Intervals for Dynamic Analysis all variables in /OUTD/

Control Parameters for Dynamic Analysis KEVEN, KENRC, KEQBC and
MAXEVD in /INDIC/

Time Step Parameters for Dynamic Analysis | DTAUTO, DTCONS, DTMAX and
DTMIN in /AUTO/

71

Parameters for Variable Time Step Scheme

DTRED, DTINC, TOLHII, TOLHIS,
TOLLOI. TOLLOS, TOLMX and
NSINC in /AUTO/

3.9. IDENTIFY ANALYSIS TYPE

The flow chart for this phase is as follows.

MAIN

|— CONTRL

The following main tasks are performed in CONTRL.

1.

4
5
6.
7

3

*SPEC, *ACCN, *ACCR, *VELN, *VELR, *DISN, *DISR, *FORN, *FORR).

analysis was also *GRAV.

static state (i.e., preceding analysis was *GRAV, *STAT or *REST).

.10.1. Main Tasks

The flow chart for this phase is as follows.

. For-*ACCR check that the preceding analysis was *ACCN or *ACCR.
. For *VELR check that the preéeding analysis was *VELN or *VELR.

For *DISR check that the preceding analysis was *DISN or *DISR.

. For *FORR check that the preceding analysis was *FORN or *FORR.

3.10. SET UP LOADS FOR ANALYSIS SEGMENTS

Check that the separator is valid (i.e., one of *GRAYV, *STAT, *REST, *MODE,

For *GRAYV, check that the structure is in the unstressed state or the preceding

For *STAT., *ACCN, *VELN, *DISN and *FORN, check that the structure is in a

72

[CONTRL

3.10.2. Loads for *GRAY Analysis - Subroutine INGRAV

The flow chart for setting up *GRAYV loads is as follows.

ICONTRL

ADRESS for /INFGR/ for each group

GLODXX -1 for each loaded element
GLOD## —_ SFORCE

The following main tasks are performed.

1. In INGRAYV, read the *GRAV data; initialize XLOD (see KXLOD in /STOR/) to
zero; call INELOD to update XLOD for applied static element load patterns; call
INNLOD to update XLOD for applied static nodal load patterns; and update XLOD

for inertial loads.

73

. In INELOD, read applied static element load patterns from .ELD file.

. In INELOD, for each applied element load pattern and each loaded element group
read SETLOD and ELFACT arrays from .ELD file.

. In ADRESS, copy /INFGR/ and/or /INFEL/ block for current element from INFB. If
required block is not in INFB, write INFB to NFUPD and refill INFB from NFCUR.

. In INELOD, for each loaded element extract factors for the loaded element from

ELFACT and call GLODXX. |
. In GLODXX, call element subroutine GLOD## where ## is the element type numbef
for the loaded element group (see KELEM in /GENINFY).

. In GLOD##, set up the element end clamping forces in array ELFINT(ndof); and call
the base program subroutine SFORCE. NDOF is the number of element DOFs (see
NEDOF in /GENINF/) for the loaded element.

. In SFORCE, use the element LM array to assemble the contribution of ELFINT to
XLOD.

. In INNLOD. read applied static nodal load patterns from .STA file and assemble their

contribution in XLOD.

3.10.3. Loads for *STAT Analysis - Subroutine INSTAT

The flow chart for setting up *STAT loads is as follows.

CONTRL

The following main tasks are performed.

1. In'INSTAT, read the *STAT data and set the variables DISA, DISMA, SLFAC,
TLOAD, JDOF, LDOF, KDC, KLC and MAXFP in /STAT/; NSTEPS in /TIME/; and
MAXEY in /EVENTY/.

74

2. In INSTAT, initialize XLOD (see KXLOD in /STOR/); call INNLOD to update
XLOD due to applied static nodal load patterns; and update XLOD due to inertial
loads.

3. In INNLOD, read applied static nodal load patterns from .STA file and assemble their

contribution in XLOD.
3.10.4. Loads for *VELN or *VELR Analysis - Subroutine INVELN

The flow chart for setting up *VELN or *VELR loads is as follows.

CONTRL

The following main tasks are performed.

1. In INVELN, read the *VELN or *VELR data and set the variables DT, TIMAX, TIM
and NSTEPS in /TIME/; and KAUTO in /INDIC/.

2. For *VELN in INVELN:
a) Call INNVEL to set up VEL (seec KVEL in /STOR/) due to applied initial velocity

patterns.

b) Scale VEL to match the specified initial kinetic energy.

3. In INNVEL, read applied initial velocity patterns from .VEL file and assemble their

contribution in VEL.
3.10.5. Loads for *ACCN or *ACCR Analysis - Subroutine INACCN

The flow chart for setting up *ACCN or *ACCR loads is as follows.

CONTRL

75

The following main tasks are performed.

1.

S.

In INACCN, read the *ACCN or *ACCR data and set the variables DT, TIMAX,
TIM and NSTEPS in /TIME/; and KAUTO in /INDIC/.

For *ACCN in INACCN, set the variables TFAC, RECFAC, COROT, NDFREC and
NPAIRS in /ADFREC/; and TADF in /TITADF/.

. In ADFRB, read time-acceleration blocks (see /ASDFRC/, /ADFREC, and /LOADP/)

for the applied records from .ACC file, and write blocks containing data for times
between TIM and TIM+TIMAX on the scratch file, NFASDF.

In INACCN, set the variables INBL and LNBL in /ASDFRC/; and NPADF in
/ADFREC/.

In INACCN, initialize the array NBL (in /ASDFRC)/) to zero.

3.10.6. Loads for *DISN or *DISR Analysis - Subroutine INDISN

The flow chart for setting up *DISN or *DISR loads is as follows.

CONTRL

The following main tasks are performed.

1.

In INDISN, read the *DISN or *DISR data and set the variables DT, TIMAX, TIM
and NSTEPS in /TIME/; and KAUTO in /INDIC/. |

For *DISN in INDISN, set the. variables TFAC, RECFAC, DTIME, NDFREC and
NPAIRS in /ADFREC/; and TADF in /TITADF/.

In @FRB, read time-displacement blocks (see /ASDFRC/, /ADFREC, and /LOADP/)

for the applied records from .DIS file, and write blocks containing data for times

76

between TIM and TIM+TIMAX on the scratch file, NFASDF. If number of applied
records exceeds 6, the block size on NFASDF is different from that on .DIS file.

4. In INDISN, set the variables INBL and LNBL in /ASDFRC/; and DFFAC, JDFREC,
NPADF and NDSFR in /ADFREC/.

5. In INDISN, initialize the a'rray NBL (in /ASDFRC/) to zero.

3.10.7. Loads for *FORN or *FORR Analysis - Subroutine INFORN

The flow chart for setting up *FORN or *FORR loads is as follows.

CONTRL

The following main tasks are performed.

1. In INFORN, read the *FORN or *FORR data and set the variables DT, TIMAX, TIM
and NSTEPS in /TIME/; and KAUTO in /INDIC/.

2. For *FORN in INFORN, set the variables TFAC, RECFAC, DTIME, NDFREC and
NPAIRS in /ADFREC/; and TADF in /TITADF/.

3. In ADFRB, read time-force blocks (see /ASDFRC/, /ADFREC, and /LOADP/) for the
applied records from .FRC file, and write blocks containing data for times between
TIM and TIM+TIMAX on the scratch file, NFASDF. If number of applied records
exceeds 6, fhe block size on NFASDF is different from that on .FRC file.

4. In INFORN, set the variables INBL and LNBL in /ASDFRC/; and DFFAC, JDFREC,
NPADF and NDSFR in /ADFREC/.

5. InINFORN, initialize the array NBL (in /ASDFRC/) to zero.

77

3.11. PERFORM ANALYSIS
3.11.1. Main Tasks

The flow chart for this phase is as follows.

CONTRL

for *REST .

DYNMIC for dynamic analysis

::I'he following main tasks are performed.
1. In CONTRL, to perform a *GRAV, *STAT, *REST, *ACCN, *ACCR, *VELN,
*VELR, *DISN, *DISR, *FORN or *FORR analysis:
a) Call EXINIT.
b) Call GRSOL for *GRAV.
¢) Call STATIC for *STAT.
d) Call REST for *REST.
e) Call DYNMIC for *ACCN, *ACCR, *VELN, *VELR, *DISN, *DISR, *FORN
or *FORR. .
f) Call SEGEND.
2. In CONTRL, to perform a *MODE analysis:

b)
<)

78

Save blank common from L(KWKSPC) to L(KEFFK-1) on scratch file NFRES.
This makes space available for storing mode shapes, a flexibility matrix, and other
data. EFFK, TANK and some arrays before WKSPC in blank common are used in
the analysis.

Call MODCON to perform the analysis.

On completion of the analysis, restore blank common from NFRES.

. In CONTRL, to perform *SPEC analysis:

a)

b)

<)

a)

b)

©)
d)

g)

h)

Save .blank common from L(KWKSPC) to L(KIAD-1) on scratch file NFRES.
This makes space available for storing response results, and other data. IAD, INFB
and some arrays before WKSPC in blank common are used in the analysis.

Call SPECON to perform the analysis. |

On completion of the analysis, restore blank common from NFRES.

. In EXINIT:

Initialize variables KENR, KRESIS and KTIT in /INDIC/; all variables in /OUTP/;
NTIME and NPTIME in /RHIST/; and IQUIT and NEVEN in /EVENTY/.
Increment analysis segment number, NSEG (in /CONTR/).

Write heading for the segment on the .OUT file (unit NFOUTP in /TAPES/).

Call PRLOG to write heading and starting energy log for the segment on the .SLO
file (unit NFLOG). The heading and starting energy log for *REST is not written
here, but later in REST.

Update the .LST file.

Open and write initial data to .RXX file (unit NFRES), where XX is the analysis
segment number (see Chapter 4).

Open and write initial data to .EXX file (unit NFENVP), where XX is the analysis

segment number (see Chapter 4).

Open scratch file, unit NFPRNT, to save time-history results for printout.

79

i) Write analysis title on the .ECH file.

5. In GRSOL, STATIC and REST perform *GRAV, *STAT and *REST analysis,
respectively, and write solution log for each substep to .ECH file (unit IOU); write
energy log for each substep to .SLO file (unit NFLOG); write load-history results for
printout to unit NFPRNT; write load-history results for post-processing to .RXX file
(unit NFRES); write envelope results for printout to .OUT file (unit NFOUTP); write
static and P-A work done for each element group (see ENEG and EEXT in
/ENRGY/) to .OUT file (unit NFOUTP); write envelope results for post-processing to
EXX file (unit NFENVP); and write structure state data to .SXX file (unit
NFPERM).

6. In DYNMIC perform the dynamic analysis, and write solution log for each substep to
.ECH file (unit IOU); write energy log for each time step to .SLO file (unit NFLOG);.
write time-history results for printout to unit NFPRNT; write time-history results for
post-processing to :RXX file (unit NFRES); write envelope results for printout to
.OUT file (unit NFOUTP); write static, damping and P-A work done for each element
group (see ENEG, ENRD and EEXT in /ENRGY/) to .OUT file (unit NFOUTP);.
write envelope results for post-proceséing to .EXX file (unit NFENVP); and write
structure state data to .SXX file (unit NFPERM).

7. In SEGEND, close .RXX and .EXX files.

8. In REHIST, read results for printout from unit NFPRNT, and write the results for
each output item (see /RHIST/) to .OUT file (unit NFOUTP). For element results
output, REHIST copies element results to the /THELM/ block and calls THPRXX.

9. In THPRXX, call the element subroutine THPR##, where ## is the element type
number for the element (see KELEM in /GENINF)). '

10. In THPR##, write heading and element results from /THELM/ to the .OUT file.

11.

12.

13.

80

In MODCON, read the *MODE data; perform *MODE analysis; and write periods,
mass participation factors and mode shapes to .OUT file (unit NFOUTP) and .MXX
file (unit NFMODE), where XX is the analysis segment number.

In SPECON, read the *SPEC data; read speciﬁed‘response spectra from .SPC file;
read periods and mass participation factors from .MXX file (unit NFMODE) and write
to .UXX file (unit NFMRSL); read mode shapes from .MXX file; for each mode shape
calculate nodal displacements, element results, section forces and generalized
displacements and write to .UXX file; calculate modal amplitudes; write response for
each mode to .OUT file; form SRSS combination and write to .OUT file.

On completion of the analysis return to CONTRL and read the next separator line.

a) For *PARAMETERS proceed to Process Analysis Parameters.

b) For *STOP proceed to End Analysis Session.

¢) For an analysis separator proceed to Identify Analysis Type.

More detailed flow charts and task descriptions for GRSOL, STAT, REST, DYNMIC,
MODCON and SPECON are given in the following sections.

3.11.2. *GRAY Analysis - Subroutine GRSOL

The flow chart for this subroutine is as follows.

81

[CONTRL

— GRSOLT— prLop

— OPTSOL

— ADRESS (for INFGR/) for each group

— EQBM

— PRSTAT
— ENERS
— PRLOG
— UPLOG
— SSTATE

The following main tasks are performed.

1.

A A

In PRLOD, write the gravity load vector, XLOD (see KXLOD in /STOR/), to .ECH
file (unit IOU).

In UPDATS, form EFFK and factorize (see KEFFK in /STORY/).

In OPTSOL, solve for DDIS (see KDDS in /STORY/).

In GRSOL, update DIS (see KDIS in /STOR/).

In COLCHK, check if collapse displacements (see /COLPSE/) have been exceeded. If
so,-set IRDOF, IREVNT, IRNOD and IQUIT (see /EVENT)).

In GRSOL, set KSAVE, KPPSV, KPOUT, KENVS and KENVP (see /OUTP/).

In DISSAV:

82

a) Update nodal displacement envelopes (see KENP, KENN, KISTP, KISTN in
/STORY/).

b) If KENVS=1, write nodal displacement envelopes for post-processing to .EXX file
(unit NFENVP).

¢) If KENVP=1, write nodal displacement envelopes for printout to .OUT file (unit
NFOUTP). |

d) If KPPSV=1, write nodal displacements for post-processing to .RXX file (unit
NFRES).

e) If KPOUT=1, write nodal displacements for printout to unit NFPRNT.

8. In RESPON, initialize SEFOR, RINTS and RINT to zero (see KSEFOR, KRINTS
and KRINT in /STOR/); and set KSAV=MAX(KPPSV,KPOUT).

9. In ADRESS, copy /INFGR/ and/or /INFEL/ from INFB for current element group and
element.

10. In RESPXX, call element subroutine RESP##, where ## is the element type number
(see KELEM in /GENINF)).

11. In RESP##, update element state (i.e, /INFEL/ block); calculate static and P-A work
done in the element; calculate element resisting force vectors RELAS and RINIT; if
KSAV=1 put element results in /THELM/.

12. In SEFORC, assemble RELAS and RINIT into structure section forces, SEFOR.

13. In RESPON, assemble RELAS and RINIT into RINTS and RINT.

14. In RESPON, update ENER and EEXT (see /ENRGYY/) for work done in the element.v

15. In STIFXX, call element subroutine STIF##, where ## is the element type number
(see KELEM in /GENINF)).

16. In STIF##, calculate change in element stiffness, FK.

17.In ASSEM, assemble FK into TANK (see KTANK in /STORY/). -

18. In RESPON, if KENVP=1, call ENPRXX for each element.

19.

20.

21.

22.
23.

24.

25.
26.

83

In ENPRXX, call element subroutine ENPR##, where ## is the element type number

(see KELEM in /GENINF/).

In ENPR##:

a) for first element, write heading for element envelopes to .OUT file.

b) write element envelopes to .OUT file.

In RESPON:

a) If KPPSV=1, write element results (from /THELM/) for post-processing to .RXX
file (unit NFRES).

b) If KPOUT=1, write element results (from /THELM/) for printout to unit
NFPRNT. '

In RESPON. if KENVP=1 call PREWRK.

In PREWRK, write energy log for each element group (see ENER, ENED and EEXT

in /ENRGY/) to .OUT file. '

In SECSAV:

a) Transform section forces, SEFOR, from global axes to section axes.

b) Update section envelopes (see KSECEN, KISECE in /STORY/).

¢) If KENVS=1, write section envelopes for post-processing to .EXX file (unit
NFENVP).

d) If KENVP=1, write section envelopes for printout to .OUT file (unit NFOUTP).

e) If KPPSV=1, write section forces for post-processing to .RXX file (unit NFRES).

f) If KPOUT=1, write section forces for printout to unit NFPRNT.

In RESPON, assemble support spring forces into RINTS and RINT.

In GENSAV:

a) Form generalized displacements, RDS, corresponding to DIS (see KDIS in
/STOR/).

84

b) Update generalized displacement envelopes (see KRDSEN and KIRDSE in
/STORY/).
¢) If KENVS=1, write generalized displacement envelopes for post-processing to
.EXX file (unit NFENVP).
d) If KENVP=1, write generalized displacement envelopes for printout to .QUT file
(unit NFOUTP).
e) If KPPSV=1, write generalized displacements for post-processing to .RXX file
(unit NFRES).
f) If KPOUT=1, write generalized displacements for printout to unit NFPRNT.
27. In UPDATS, update effective stiffness, EFFK.
28. In EQBM, compute unbalanced load, RU (see KRU in /STOR/); determine UNBL,
UNBF and UNBM (in /EVENT)).
29. In PRSTAT, write solution log to .ECH file (unit IOU).
30. If KENR =0 (in /INDIC), then
a) In ENERS, perform energy balance computations.
b) In PRLOG, write energy log to .SLO file (unit NFLOG).
31. If KSAVE=1 (in /OUTP/), then
a) In UPLOG, open .SXX file (unit NFPERM), where XX is the analysis segment
number.

b) In SSTATE, write structure state to .SXX file.
3.11.3. *STAT Analysis - Subroutine STATIC

The flow chart for this subroutine is as follows.

85

[CONTRL
— STATIC— pRrLOD

— OPTSOL (for XLOD)
— OPTSOL (for RU)

— ADRESS (for INFGR/) for each group

ADRESS (for /INFGR/)

— EQBM

— PRSTAT
— ENERS
— PRLOG
— UPLOG
— SSTATE

STATIC is very similar to GRSOL. The hew subroutines in STATIC are shown in bold

characters in the flow chart.

he

86

The loading for a *STAT analysis is applied in one or more steps, controlled by load

factor and/or displacement increments. Within each step an event-to-event solution

strategy is used, dividing each step into substeps at each event.

The following main tasks are performed in each substep.

1.

9.

In OPTSOL, solve for displacement increment, DDIS, due to XLOD, the load

corresponding to a unit load factor.

In OPTSOL, solve for the displacement increment, RU, due to unbalanced load at the

end of the preceding substep.

In DISCON:

a) Calculate the proportions FF and FU of DDIS and RU, respectively, that must be
applied to satisfy the load control and displacement contfol conditions.

b) Update IFLIP, IPSIGN, ISIGN and MAXFP in /STAT/; and IREVNT in
/EVENT/.

In STATIC. combine displacment increments as follows.
DDIS = FF x DDIS + FU x RU

In EVNFAC, calculate the smallest event factor for any element, FACMIN; and set
variables IRELM, IREVNT and IRGRP in /EVENTY/.

In FACTXX, call element subroutine FACT##, where ## is the element type number
(see KELEM in /GENINFY/).

In FACT##, calculate the smallest event factor for the element.

In STATIC, scale DDIS to event.
DDIS = FACMIN x DDIS

In STATIC, update AFAC and FACC in /EVENT/; and FDIS and FLOD in /STAT/.

10. In CONFAC:

87

a) Set IEVEN=0 if step is complete because SLFAC or DISA (see /STATY/) has been
reached.

b) “Set IQUIT=1 if segment is complete because TLOAD or DISMA (see /STAT/)
has been reached.

c) Set IQUIT=-1 if NSTEPS, MAXFP or MAXEV have been reached (see
/EVENTY/, /STAT/ and /TIME/).

11. In COLCHK, check if collapse displacements (see /COLPSE/) have been exceeded. If
so, set IRDOF, IREVNT, IRNOD and IQUIT (see /EVENT)).

12. In STATIC, update variables in /OUTP/.

13. Perform state determination; update EFFK; perform unbalanced load computations
and write solution log to .ECH file; perform energy balance computations and write
energy log to .SLO file: and write structure state as for *GRAYV analysis.

14. In STATIC:

a) If IQUIT=0, proceed to next substep (if IEVEN= 1') or step (if IEVEN=0).
b) If IQUIT=1, segment has been completed successfully. Return to CONTRL.
¢) IfIQUIT=-1, segment could not be completed. Return to CONTRL.

3.11.4. *REST Analysis - Subroutine REST

The flow chart for this subroutine is as follows.

88

CONTRL
— REST 71— pRLoG

— OPTSOL (for XLOD)
— OPTSOL (for RU)

ADRESS (for INFGR/) for each group

— COLCHK

— ADRESS (for7INFGFw for each group

— EQBM

— PRSTAT
— ENERS
— PRLOG
— UPLOG
— SSTATE

REST is very similar to STATIC, and there are no new subroutines.

The following initial tasks are performed.
1. In REST:
a) Compute XLOD as follows (see 'KXLOD, KEXTS, KRINTS and KRU in

/STOR/).)
XLOD = EXTS - RINTS - RU

89

b) Modify external loads as follows.
EXTS=RINTS
- EXT=RINTS

¢) Set VEL and ACC to zero (see KVEL, KACC in /STOR/).

d) Modify energy variables as follows (see /ENRGY)/).
TEP = TEP + TEW - TEI - TED
TEE = TEP + TESO

TEK = 0.0
TEI =0.0

TEW = 0.0

TEAD =0.0

ENRD =0.0

e) Set second column of SPDSP (see KSPDSP in /STORY/) to zero.
2. In PRLOG, write starting energy log to .SLO file (unit NFLOG).
3. In UPDATS, form EFFK (see KEFFK in /STOR/).

In *REST analysis XLOD corresponds to a load factor of unity, and is applied in a single
step. Within the step, an event-to-event solution strategy is used, dividing the step into’

substeps at each event.

The following main tasks are performed within each substep.

1. In OPTSOL, solve for displacement increment, DDIS, due to XLOD.

2. In OPTSOL, solve for displacement increment, RU, due to unbalanced load at end of'
préceding substep.

4. In REST, combine displacment increments, as follows.
DDIS = FF x DDIS + RU

where FF is the remaining load factor.
5. In EVNFAC, calculate smallest event factor for any element, FACMIN; and set
variables IRELM, IREVNT and IRGRP in /EVENTY/.

90

6. In REST, if FACMIN < 1.0 set IEVEN = 1, otherwise set IEVEN = 0 and IQUIT=1.

7. In REST, scale DDIS to event.
DDIS = FACMIN x DDIS

8. In REST, update FACC in /EVENT/; and FLOD in /STAT/; and the remaining load
factor, FF.

9. In REST, set IREVNT=8 and IQUIT=-1, if MAXEV has been exceeded (see
/EVENT)).

10. In COLCHK, check if collapse displacements (see /COLPSE/) have been exceeded. If
so, set IRDOF, IREVNT, IRNOD and IQUIT (see /EVENT)).

11. In REST, set KSAVE, KPPSV, KPOUT, KENVS and KENVP in /QUTP/."

12. Perform state determination; update EFFK; perform unbalanced load computations
and write solution log to .ECH file; perform energy balance computations and write
energy log to .SLO file; and write structure state; as for *STAT analysis.

13.In REST:

a) If IQUIT=0 and IEVEN=1, proceed to next substep.
b) IfIQUIT=1, segment has been completed successfully. Return to CONTRL.
¢) IfIQUIT=-1, segment could not be completed. Return to CONTRL.

3.11.5. Dynamic Analysis - Subroutine DYNMIC

The flow chart for this subroutine is as follows.

91

[CONTRL
— DYNMIC

PRLOG
UPLOG
SSTATE

The following initial tasks are performed.

1. In DYNMIC, set MODIFY=2 (see /AUTO/) éo that EFFK is formed at the start of the
analysis.

2. In DYNMIC, set ISSAV=0 to indicate that a back-up of INFB, TANK and RU has
not been made (see KINFB, KTANK, KRU, KDINFB, KDTAN and KDRU in
/STOR/ and Section 2.5.5).

For each time step the following tasks are performed.
1. In DYNMIC, initialize ERRS, ERRI (in /AUTO/) to zero.
2. If MODIFY=-1 (i.e., preceding time step was aborted and a new step has to be taken
with a smaller step size), do the following.
a) If ISSAV=1, in RESTOR, restore INFB, TANK and RU from the back-up to the
.values at the start of the step. If ISSAV=0, no restoration is necessary as the time

step was aborted in the first substep.

3)

4

92

b) In SETVEC, restore TTSAVE, TTPSV, TTPOUT and TTENVP in /OUTP/ to
the values at the start of the step.
¢) In SETVEQC, do the following (see /STOR/) so that EXT, DIS, VEL and ACC

have values corresponding to the start of the step.
EXT = EXT - DEXT
DIS = DISI
VEL = VELI
ACC=ACCI

¢) In SETVEC, restore work quantities in /ENRGY/ to the values corresponding to
the start of the step.

d) In DYNMIC, for ground displacement analysis, set total displacement in SPDSP to
the values corresponding to the start of the step.

In SETVAL update variables in /OUTP/; and set the following for a new step.
DISI = DIS
VELI = VEL
ACCI = ACC
ENRI=0

If MODIFY = 0O (see /AUTO/):

a) In DAMPER, update integration coefficients in INTCOF/.

b) In UPDATE, form effective stiffness, EFFK (see KEFFK in /STOR)/).

¢) In DYNMIC, set MODIFY=0.

To form DEXT (see KDEXT in /STOR/) do the following.

a) In INTPOL, compute increments of ground accelerations (for *ACCN or
*ACCR), ground displacements (for *DISN or *DISR) or dynamic forces (for
*FORN or *FORR) from the dynamic force records in TASDF in /ASDFRC/.

b) In DYNMIC. initialize DEXT to zero. -

9.

93

c) In GADEXT, assemble contributions due to ground acceleration increments in
DEXT for *ACCN or *ACCR.

d) 'In GDDEXT, assemble contributions due to grouhd displacement increments in
DEXT for *DISN or *DISR.

¢) In DFDEXT, assemble contributions due to dynamic force increments in DEXT
for *FORN or *FORR.

In EFLOAD, form effective load, XLOD (see KXLOD in /STORY/), for current step.

In STEP, do either of the following.

a) Advance the solution by a step and set MODIFY=1 if the time step size is to be
increased for the next step.

b) Abort the step; set MODIFY=-1; and set ISSAV=1 if the step was aborted after
the first substep. If ISSAV=1, a back-up copy of INFB, TANK and RU has been
made in memory or on file.)

In DYNMIC, if MODIFY =-1, repeat the step with a reduced time step size (i.e., go

to step 1).

In DYNMIGC, set ISSAV=0 for the next step.

10. In PRLOG, write energy log to .SLO file (unit NFLOG).
11. If KSAVE=1 (in /OUTP/), then

a) In UPLOG, open .SXX file (unit NFPERM), where XX is the analysis segment
number.

b) In SSTATE, write structure state to .SXX file.

The flow chart in subroutine STEP is as follows.

94

DYNMIC
— STEP 71— opTsoL

for each group

— COLCHK

ADRESS (for /INFGR/) for each group

— EQBM
— PRDYN
— ENERD
— CORECT
— INCDT

STEP is similar to STATIC. The new subroutines in STEP are shown in bold characters in

the flow chart.

If KEVEN=1 (in /INDIC/), an event-to-event solution strategy is used, dividing each step

into substeps at each event. If KEVEN=0, the step consists of a single substep.

95

The following main tasks are performed in each substep.

1.

8.

In OPTSOL, solve for displacement increment, DDIS, due to XLOD, where XLOD is
the.remaining effective load.

Iin EVNFAC, if KEVEN:I, calculate the smallest event factor for any element,
FACMIN; and set variables IRELM, IREVNT and IRGRP in /EVENT/. Otherwise set
FACMIN=1.0.

In STEP, if FACMIN < 1.0, set IEVEN = 1, otherwise set IEVEN = 0.

In STEP, scale DDIS to event:
DDIS = FACMIN x DDIS

In STEP, set XLOD to the remaining effective load:
XLOD = (1.0 - FACMIN) x XLOD

In STEP, calculate CVEL and CACC for substep (see KCVEL and KCACC in

/STOR/).

If KAUTO=2, then

a) In STEROR, calculate static force (i.e., midstep equilibrium) and inertia force (i.e.? .
equivalent impulse) errors and update ERRS and ERRI in /AUTOY/.

b) If ERRS < TOLHIS, ERRI < TOLHIS, IEVEN=1, and ISSAV=0, then in SAVE,
backup INFB, TANK and RU, and in STEP, set ISSAV=1.

¢) If ERRS > TOLHIS or ERRI > TOLHII, then in STEP, set
DTNEW = DT x DTRED
DTOLD =DT -
DT = DTNEW
MODIFY = -1

. (see /AUTOY/); in PRDYN, write solution log to .ECH file; and return to DYNMIC
to repeat the step with a reduced step size.

In STEP, update DIS, VEL and ACC.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.
19.

96

In STEP, if IEVEN=1 (i.e., not last substep), set KSAVE, KPPSV, KPOUT, KENVS

and KENVP in /OUTP/ to zero.

If IEVEN=0 (i.e., last substep), then:

a) In COLCHK, check if collapse displacements (see /COLPSE/) have been
exceeded. If so, set IRDOF, IREVNT, IRNOD and IQUIT (see /EVENT)).

b) In STEP, set KSAVE, KPPSV, KPOUT, KENVS and KENVP in /OUTP/.

In DISSAV, update nodal displacement envelopes (see KENP, KENN, KISTP,

KISTN in /STOR/); if KENVS=1, write nodal displacement envelopes for post-

processing to .EXX file (unit NFENVP); if KENVP=1, write nodal displacement

envelopes for printout to .OUT file (unit NFOUTP); if KPPSV=1, write nodal

displacements for post-processing to .RXX file (unit NFRES); if KPOUT=1, write

nodal displacements for printout to unit NFPRNT.

In VELSAYV, if KPPSV=1, write nodal velocities and accelerations for post-processing

to .RXX file (unit NFRES).

In RESPON, initialize SEFOR, RINTS and RINT to zero (see KSEFOR, KRINTS

and KRINT in /STOR/): and set KSAV=MAX(KPPSV,KPOUT).

In ADRESS, copy /INFGR/ and/or /INFEL/ blocks for current element from INFB.

In RESPXX, call element subroutine RESP##, where ## is the element type number.

In RESP##, update element state (i.e, /INFEL/ block); calculate static, damping and P-

A work done in element; calculate element end resisting forces, RELAS, RDAMP and

RINIT; if KSAV=1, put element results in /THELM/.

In SEFORC, assemble RELAS, RDAMP and RINIT into structure section forces,

SEFOR.

In RESPON, assemble RELAS, RDAMP and RINIT into RINTS and RINT.

In RESPON, update ENER, ENED and EEXT (see /ENRGY/) for work done in the

element.

20.
21.
22.
23.
24,
25.
26.

27.
28.

29.

30.
31

97

In STIFXX, call element subroutine STIF##, where ## is the element type number.

In STIF##, calculate change in element stiffness, FK.

In ASSEM, assemble FK into TANK (see KTANK in /STOR)).

In RESPON, if KENVP=1 call ENPRXX for each element.

In ENPRXX, call element subroutine ENPR##, where ## is the element type number.

In ENPR## write element envelopes to .OUT file.

In RESPON:

a) If KPPSV=1, write element results (from /THELM/) for post-processing to .RXX
file (unit NFRES).

b) If KPOUT=1, write element results (from /THELM/) for printout to unit
NFPRNT.

In RESPON, if KENVP=1 call PREWRK.

In PREWRK, write energy log for each element group (see ENER, ENED and EEXT

in /ENRGYY/) to .OUT file.

In SECSAYV, transform section forces, SEFOR, from global axes to section axes;

update section envelopes (see KSECEN, KISECE in /STOR)/); if KENVS=1 write

section envelopes for post-processing to .EXX file (unit NFENVP); if KENVP=1

write section envelopes for printout to .OUT file (unit NFOUTP); if KPPSV=1 write

section forces for post-processing to .RXX file (unit NFRES); and if KPOUT=1 write

section forces for printout to unit NFPRNT.

In RESPON, update RINTS and RINT for support spring forces.

In GENSAYV, form generalized displacements, RDS, corresponding to DIS (see KDIS

in /STOR/); update generalized displacement envelopes (see KRDSEN and KIRDSE

in . /STOR/); if KENVS=1 write generalized displacement envelopes for post-

processing to .EXX file (unit NFENVP); if KENVP=1 write generalized displacement

envelopes for printout to .OUT file (unit NFOUTP); if KPPSV=1 write generalized

98

displacements for post-processing to .RXX file (unit NFRES); and if KPOUT=1 write
generalized displacements for printout to unit NFPRNT.
32. In UPDATE, update effective stiffness, EFFK due to changed TANK.
33. In STEP, assemble inertia forces and alpha-M damping forces in RINT. -
34. In STEP, update EXT due to applied DEXT in the substep.
35.In EQBM, compute unbalance load, RU (see KRU in /STOR/); determine UNBL,
UNBF and UNBM (in /EVENT)).
36. In PRDYN, write solution log to .ECH file (unit IOU).
37. If KENR =0 (in /INDIC), in ENERD, perform energy balance computations.
38. If IEVEN=1, in STEP, go to next substep.
39. If IEVEN=0, then |
a) In CORECT, if KENRC=1 (in /INDIC/) perform velocity correction.
b) In CORECT, if KEQBC=l (in /INDIC/), perform acceleration modification to
improve equilibrium.
¢) In STEP, compute kinetic energy for energy log.
d) If KAUTO=2 (in /AUTOY/), in INCDT , increase time step size for next step and
set MODIFY=1.

3.11.6. *MODE Analysis - Subroutine MODCON

a) Theory

The eigenproblem to be solved is

Ko=w>Mé (3.1)

where K is the stiffness matrix, M is the diagonal mass matrix with possible zero terms on

the diagonal, ¢ is a mode shape, and w is the circular frequency corresponding to ¢. The

99

massless DOFs must be eliminated from Equation 3.1, which can be written in partitioned

l:_lidd &do] 94 o2 Md Q:] 94
KL, Kol|o,] L0 ole, 2

where ¢, and ¢, are the mode shape components at the mass and massless DOFs,

form as follows.

respectively, and M, is a diagonal mass matrix. Using static condensation, one can obtain,

the reduced eigenproblem.

(Ka - KoK K)o, = K0, = 0> M, ¢, (33)

—d LS

In DRAIN, instead of calculating K, the flexibility matrix F, = K3' is obtained by in

K KuollEs| [1
[_fs:o lsm][zo]=[g] (3.4)

where [is a unit matrix. Although the DOFs are partitioned in Equation 3.4, there is no

effect solving

need for this in the implementation. In DRAIN, F, is obtained a column at a time, by
successively applying unit loads at each mass DOF, and extracting the displacements

produced at mass DOFs.

Equation 3.3 is converted to standard form

Eod, ==, (3.5)
where
F, =M%F M} (3.6)
and

o, =M%o, (3.7

100

Equation 3.5 is solved by Hessenberg's QR iteration in subroutine HQRWT, and self-

orthonormal eigenvectors, &, , are obtained. That is
B, = QIMEMSD, = OTM, B, =1 (3.8)
Each eigen vector .634 is premultiplied by M’ to obtain M, ¢, and the full mode shape is

obtained by in effect solving

1 [Ku Kuill® M
— ;" 0 j=al_ 42, 3.9
| K Ky 90 0
In DRAIN, the loading terms are placed in rows corresponding to mass DOFs and the

. .1
solution vector is —¢ .
R

b) Implementation

The flow chart for MODCON is as follows.

[CONTRL
— MODCON -,

The fbllowing main tasks are performed.
1. In MODCON, read *MODE data. -
2. In DYNDOF, identify the mass DOFs.

101

In FLEX, form flexibility matrix, F, .
In DYNPR, form F,.
In I.-IQRWT, solve for the eigenvectors, @, .

In DYNPR, write mode periods to .OUT file (unit NFOUTP).
In DYNPR, form unit modal loads, M, ¢,.

NS »n W

8. In DYNPR, compute mass participation factors in translational directions and write to

.OUT file.
9. In MODE, calculate expanded mode shapes, ¢/w?.

10. In MODE, write unit mode shapes to .OUT file.
11. In MODE, write periods, mass participation factors and mode shapes to .MXX file

(unit NFMODE).
3.11.7. *SPEC Analysis - Subroutine SPECON

The flow chart for this subroutine is as follows.

CONTRL
— SPECON -
— SPECF
— MODFOR -
for each element |
iikzéaﬁ§§S(bnmw¢lo z
I
| |'— SEFORM FLIN##
— INSACC E
— MODAMP
SRSSCO PRSNDS
PRSSEC
PRSRDS

The following initial tasks are performed.

1.
2.

102

In SPECON, read the *SPEC data.
In SPECEF, read applied response spectra into array TASDF in /ASDFRC/.

The following tasks are performed only if a .UXX file has not already been written.

1.

In SPECON, fead periods and mass participation factors from .MXX file (unit
NFMODE) and write to .UXX file (unit NFMRSL).

For each mode shape on .MXX file:

a) In SPECON, read mode shape from .MXX file.

b) In MODFOR, calculate nodal displacements and write to .UXX file.

¢) In MODFOR, initialize section forces, SEFOR, to zero.

d) Inelement subroutine FLIN##, calculate element results for each element.

e) In SEFORM, assemble element contribution to section forces, SEFOR.

f) In MODFOR, write element results for each element group to .UXX file.

g) In MODFOR, transform section forces, SEFOR, from global axes to section axes.
h) In MODFOR, write section forces, SEFOR, to .UXX file.

i) In MODFOR, calculate generalized displacements and write to .UXX file.

The following tasks are performed to corﬁplete the analysis.

1.

In SPECON, read periods and mass participation factors from .UXX file.

. In INSACC, calculate spectral acceleration for each mode.

2
3.
4

In MODAMP, calculate modal amplitudes.

. In SRSSCO, calculate response (i.e., nodal displacements, element results, section

forces and generalized displacements) for each mode, and for SRSS combination; and
write to .OUT file (unit NFOUTP). SRSSCO reads individual modal results from
UXX file. PLIN## prints the response for each element.

3.12. END SESSION -

The analysis session ends with one of the following conditions.

103

1. IQUIT=-1: last analysis segment could not be completed.

2. *STOP separator is read from input file.

3. Program stops because of errors in the input file or insufficient memory.

The flow chart for this phase is as follows.

MAIN
L CONTRL

The following tasks are performed.

1. In CONTRL, write farewell message to the .ECH file (unit IOU).

2. In MAIN, close files and stop program execution.

4. STRUCTURE OF PERMANENT FILES -- DRAIN-2DX AND 3DX
4.1. INTRODUCTION

In section 2.4, the permanent files created by DRAIN-2DX and 3DX were listed. Some of
these files are binary files that may be used by other programs, particu]arly for post-

processing. In this chapter, the structures of these files are described in detail.
4.2. FILES FOR LOAD PATTERNS AND LOAD RECORDS
4.2.1. .ELD File - Element Load Patterns

The .ELD file contains static element load patterns, each specified by *ELEMLOAD data.
Each new pattern is appended to the .ELD file, in subroutine INGPAT. The applied

patterns are retrieved for *GRAV analyses in subroutine INELOD.

Each pattern consists of a number of FORTRAN records as follows.

1. First record.

Variable | Type Description

PATID character*4 | Pattern name.
PATIT character*40 | Pattern title.
NGRPL integer Number of element groups loaded by the pattern.

2. For each loaded element group, two records as follows.

a) First record.

Variable | Type | Description

IGRC integer | Element group number.

NLOD integer | Number of element load sets for this group.

104

b) Second record.

105

Array Description
'ﬁTLOD(ninl,nlod) Element load sets. Each column of SETLOD contains

a load set. NINL is the length of a load set from array
NINFL in /GENINF/. NLOD is the number of element
load sets.

ELFACT(nlod,nmem)

Load set scale factors for elements of the group. Each
column of ELFACT contains the load set scale factors
for one element. NMEM is the number of elements
from array NELEM in /GENINF/.

4.2.2. .STA File - Static Load Patterns

The .STA file contains static nodal load patterns, each specified by *NODALOAD data.

Each new pattern is appended to the .STA file, in subroutine INSPAT. The applied

patterns are retrieved for *GRAV or *STAT analysis in subroutine INNLOD.

Each pattern-consists of two FORTRAN records as follows.

1. First record.

Variable | Type

Description

PATID character*4

Pattern name.

PATIT character*40

Pattern title.

2. Second record.

Array Type | Description
XPAT(3,nnods) in 2DX | real | Nodal loads for the pattern. NNODS is total
XPAT(6,nnods) in 3DX number of nodes (in /CONTRY/).

4.2.4. .ACC, .DIS and .FRC Files - Dynamic Load Records

The .ACC, .DIS and .FRC files contain ground acceleration, ground displacement and

dynamic force records, respectively. Each record is specified by *ACCNREC, *DISPREC

or *FORCREC data. Each new record is appended to the corresponding file in subroutine

106

INAXL. The records are later retrieved in subroutine ADFRB for applicztion'in dynamic

(*ACCN, *ACCR, *DISN, *DISR, *FORN, or *FORR) analysis.

The data for each record consists of a large number of time-value pairs. This data is
divided into blocks, each containing 121 time-value pairs. The first pair in any block is the

same as the last pair in the preceding block (see /ASDFRC/, /ADFREC/ and /LOADP).

Each record consists of a number of FORTRAN records as follows:

1. First record.

Variable | Type Description
PATID character*4 Record name.
PATIT character*40 | Record title.

NREC integer Number of (121 time-value pair) blocks for the
record.

2. NREC records, each consisting of 121 time-value pairs.

Array Type | Description
ACCP(2,MPAIRS) real Time-value pairs (MPAIRS is in /LOADP/).

4.2.5. .SPC File - Response Spectra

The .SPC file contains response spectra, each specified by *SPECTRUM data. Each new
spectrum is appended to the .SPC file in subroutine INSPEC. The applied spectra are

retrieved for *SPEC analysis in subroutine SPECF.

Each spectrum consists of two FORTRAN records as follows.

107

1. First record.

Variable | Type Description

PATID character*4 | Spectrum name.
PATIT character*40 | Spectrum title.

KODS integer Spectrum type code.
0 : Acceleration.
1: Velocity.
2 : Displacement.
2. Second record.
Array Type | Description

PRESP(2.MPSPEC) | real | Period-response pairs. MPSPEC is in /LOADP/
and equal to 141. '

4.2.6. .VEL File - Initial Velocity Patterns

The .VEL file contains initial velocity patterns, each specified by *NODALVEL data.
Each new pattern is appended to the .VEL file in subroutine INVPAT. The applied
patterns are retrieved for *VELN or *VELR analysis in subroutine INNVEL.

Each pattern consists of two FORTRAN records as follows.

1. First record.

Variable | Type Description

PATID character*4 Pattern name.
PATIT character*40 | Pattern title.

2. Second record.

Array Type | Description

XPAT(3,nnods) in 2DX | real | Nodal velocities for the pattern. NNODS is
XPAT(6,nnods) in 3DX total number of nodes (in /CONTR/).

108

4.3. FILES FOR POST-PROCESSING

4.3.1. .GEO File - Structure Geometry

The .GEO file contains structure geometry data. The .GEO file is set up in subroutine

INELEM.

The data consists of FORTRAN records as follows.

1. First record.

Variable | Type

Description

NDTP integer

Number of compound node types +1.

NSNDS integer

Total number of subnodes in all compound node
types.

NNODS | integer

Total number of nodes.

NTNDS integer

Total number of nodes and subnodes.

NEQQ integer

Total number of equations + 1.

FNAME character*8

Problem name.

IHED character*40

Problem title.

2. ‘-If NDTP > 1, one record as follows.

Array Description '

NSB(ndtp) Location of first subnode for each compound node
type in arrays NDFSB and COSB. The number of
subnodes in compound node type NT is equal to
NSB(nt+1)-NSB(nt).

NDFSB(3,nsnds) in 2DX | DOF codes for all subnodes of each compound node

NDFSB(6,nsnds) in 3DX | type, as follows.

0 : Absolute displacement.

1: Restrained (not a DOF).

2 : Relative displacement w.r.t. main node.

3 : Special degree of freedom (i.e., not a conventional
translation or rotation).

COSB(2,nsnds) in 2DX
COSB(3,nsnds) in 3DX

Coordinate offsets from main node for subnodes of
each compound node type.

3. One record.

109

Array Description
NDID(3.nnods) | Node identification array.
1: Node number.
2 : Compound node type (0 = not a compound node).
3 : Location of nodal DOFs in ID array. For compound nodes,

the subnode DOFs immediately follow the main node DOFs

in the ID array.

4. One record.

Array

Description

COORD(2,nnods) in 2DX | Nodal coordinates, in ascending node number
COORD(3,nnods) in 3DX | order.

5. One record.

Array

Description

ID(3,ntnds) in 2DX
ID(6,ntnds) in 3DX.

Equation numbers for displacements at each node and
subnode, coded as follows. '

NEQQ : Restrained displacement.

+n: Displacement is unrestrained and unslaved. 'n'=
equation number.

-n : Displacement is slaved. 'n' = sequence number of
master node.

6. Two records for each element group.

a) First record.

Variable | Type

Description

| IGRC integer

Element group number.

KEL integer

Element type number.

NMEM integer

Number of elements.

NELNOD | integer

Number of nodes per element.

IEHD character*40 | Group title.

110

b) Second record.

Array Type | Description

IELNOD(nelnod,nmem) | real Sequence number of nodes for each element.

4.3.2, . EXX File - Result Envelopes

The .EXX files contain result envelopes for post-processing, organized in FORTRAN
records as follows.

1. First record written in subroutine EXINIT.

Variable | Type Description

IHED character*40 | Problem title (in /TITLE/).

FNAME | character*8 | Problem name (in /TITLE/).

ANAL character*4 | Analysis segment type (in /TITLE/).
IHEDA -character*40 | Analysis title (in /TITLE/).

NSEG integer Analysis segment number (in /CONTR)).

* 2. Second record written in EXINIT. ‘

: Variable | Type Description

NDTP integer | Number of compound node types +1 (in /CONTR/).
NNODS | integer | Total number of nodes (in /CONTR/).

NTNDS | integer | Total number of nodes and subnodes (in /CONTR/).
NELGR integer | Number of element groups (in /CONTRY/).
NELTOT | integer | Total number of clements (in /CONTRY/).

NSSEC integer | Number of structure sections.

NRDS integer | Number of generalized displacements.

111

3. Third record written in EXINIT.

Array Description

NSB(ndtp) Location of first subnode for each compound node type in
arrays NDFSB and COSB. The number of subnodes in
compound node type NT is equal to NSB(nt+1)-NSB(nt).

NDID(3,nnods) | Node identification array.

1: Node number.

2 : Compound node type number (0 = not a compound node).

3 : Location of nodal DOFs in ID array. For compound nodes,
the subnode DOFs immediately follow the main node DOFs
in the ID array.

4. Fourth record written in EXINIT.

Array Description

NELEM(nelgr) | Number of elements in each group.

KELEM(nelgr) | Element type number for each group.

NINFT(nelgr) | Number of output items per element for static or dynamic
analyses for each group.

5. The subsequent records consist of result envelopes. Data for each envelope consists of
up to 8 records. Records 1 to 4 are written in subroutine DISSAV; if NSSEC > 0;
records S and 6 are written in subroutine SECSAYV; and if NRDS > 0, records 7 and 8
are written in subroutine GENSAV. Presently there is no provision to save element

envelopes on the .EXX file.

112

R.No. | Array Type Description
1. DENP(3,ntnds) in 2DX real*4 | Positive nodal displacement
DENP(6,ntnds) in 3DX envelopes.
2. ISTP(3,ntnds) in 2DX integer | Step numbers for DENP.
ISTP(6,ntnds) in 3DX .
3. DENN(3,ntnds) in 2DX real*4 | Negative nodal displacement
DENN(6,ntnds) in 3DX envelopes.
4. ISTN(3,ntnds) in 2DX integer Step numbers for DENN
ISTN(6,ntnds) in 3DX
3. SECENV(3,6,nssec) in 2DX | real*4 | Section force envelopes. 2nd
’ SECENV(6,6,nssec) in 3DX index indicates the envelope
type as follows.
1: Total positive.
2 : Total negative.
3 : Static positive.
4 : Static negative.
5 : Damping positive.
6 : Damping negative.
6. ISECEN(3,6,nssec) in 2DX | integer | Step numbers for SECENV.
ISECEN(6,6,nssec) in 3DX
7. RDSENV(2,nrds) real*4 | Positive and negative
generalized displacement
envelopes.
8. IRDSEN(2,nrds) integer | Step numbers for RDSENV.

4.3.2. .RXX File - Result Histories

SEGEND. The data consists of a number of FORTRAN records, as follows.

The .RXX files contain time or load history results for post-processing. The .RXX file is

opened in subroutine EXINIT for each analysis segment and closed in subroutine

113

1. First record written in EXINIT.

Variable | Type Description

THED character*40 | Problem title (in /TITLE/).

FNAME | character*8 | Problem name (in /TITLE/).

ANAL character*4 | Analysis segment type (in /TITLE)).
IHEDA character*40 | Analysis title (in /TITLE/).

NSEG integer Analysis segment number (in /CONTR)).

2. Second record written in EXINIT.

Variable | Type Description .

NDPOST | integer | Number of nodes and subnodes in a post-processing set.

NELTHP | integer | Number of elements in a post-processing set.

NPSECP | integer | Number of structure sections in a post-processing set.

NNRDSP | integer | Number of generalized displacements in a post-processing
set. '

3. If NDPOST > 0, one record.

Array Description

INFNOD(3,ndpost) | Information for each node and/or subnode in post-
processing set, as follows.

1: Node number.

2: Compound node type number (0 = not a compound
node).

3: Subnode number (0 = main node).

114

4. If NELTHP > 0, one record.

Array Description

INFELM(4,nelthp) Information for each element in post-processing
set, as follows.

1: Element group number.
2 : Element type number.

3 : Element number.
4

: Number of output items per element (length of
element results).

5. If NPSECP > 0. one record.

Array Description
INFSEC(npsecp) Numbers of structure sections in a post-processing
set.

6. If NNRDSP > 0, one record.

Array Description

INFRDS(nnrdsp) Numbers of generalized displacements in a post-
processing set.

7. The subsequent records consist of results for post-processing. The results at each step
consists of the following records.

a) First record, written in subroutine GRSOL, STATIC, REST or STEP.

Variable | Type | Description

KSTEP integer | Step number.

TIME real*4 | Current time for dynamic analysis segment.
Current load factor for static analysis segment.

b) If NDPOST > 0, one record, written in subroutine DISSAV.

Array Type | Description

DISP(6,ndpost) real*4 | Node and subnode displacements.

115

c) If NDPOST > 0, two records for a dynamic analysis segment (ANAL='"ACCN',

'ACCR', 'VELN', 'VELR', 'DISN', 'DISR', 'FORN' or 'FORR'), written in
‘subroutine VELSAV.

R.No. | Array Type | Description
1. VELO(6,ndpost) | real*4 | Node and subnode velocities.
2. ACCE(6,ndpost) | real*4 | Node and subnode accelerations.

d) NELTHP records, written in subroutine RESPON.

Array Type | Description

THOUT(*) real*4 | Element results. The length of element results depends
on the element.

e) If NPSECP > 0, one record, written in subroutine SECSAV.

Array Type | Description

SECFRC(6,npsecp) in 2DX = | real*4 | Static and damping section forces.

SECFRC(12,npsecp) in 3DX Static followed by damping for each
section.

f) If NNRDSP > 0, one record, written in subroutine GENSAV.

Array Type | Description
GEDISP(nnrdsp) real*4 | Generalized displacements.
4.4, MODAL ANALYSIS FILES

4.4.1. MXX File - Mode Shapes

The .MXX files contain results from mode shapes and periods analysis. The results consist:

of the following FORTRAN records, written in subroutine MODE.

116

1. First record.

Variable | Type Description

FNAME | character*8 Problem name (in /TITLE/).

ITHED character*40 | Problem title (in /TITLE/).

ANAL character*4 | Analysis segment type (in /TITLE/).
IHEDA character*40 | Analysis title (in /TITLE/).

2. Second record.

Variable | Type Description
NEQ integer | Length of cach mode shape (in /EQNSY/).
NVEC integer | Number of mode shapes.

3. Third record.
Array Description
EVAL(nvec) Mode periods.

4. Fourth record.

Array Description

XLM(2,nvec) in 2DX Mass participation factors in translational directions
XLM(3,nvec) in 3DX for each mode.

5. NVEC records, one for each mode shape.

Array +{ Description
EVEC(neq)

Mode shape = ¢/w*. Where, ¢ is mass normalized

mode shape; w = 27/T; and T= mode period.

4.4.2. .UXX File - Modal Responses

The .UXX files contain responses for unit modal amplitudes. The results consist of the

following FORTRAN records, written in subroutine SPECON.

. First record.

117

Variable | Type Description

"NVEC integer | Number of mode shapes.

LENGTH | integer | Minimum length of record buffer required to read the

Tesponse results.
. Second record.
Array Description
'EVAL(nvec) Mode periods.
. Third record.
Array Description
XLM(2,nvec) in 2DX Mass participation factors in translational directions -
XLM(3,nvec) in 3DX for each mode.

. NVEC sets of records, one set per mode shape as follows.

a) One record.
Array Type | Description
‘| RESNDS(3,ntnds) in 2DX real*4 | Response node and subnode
RESNDS(6.ntnds) in 3DX displacements.
b) NELGR records, one for each element group.

Array Type

Description

RESELM(nlin,nmem) | real*4

Element response results. NLIN is the number
of result items per element for the group
(NLINF in /GENINF/). NMEM is the number
of elements for the group (NELEM in

/GENINF)/).
¢) If NSSEC > 0, one record.
" Array Type | Description
RESSEC(3,nssec) in 2DX real*4 | Response static section forces.
RESSEC(6,nssec) in 3DX

d) If NRDS > 0, one record.

118

Array

Type

Description

RESRDS(nrds)

real*4

Response generalized displacements.

S. DRAIN-BUILDING -- SPECIAL FEATURES
5.1. DRAIN-BUILDING MODEL -- FLOORS AND INTERFLOORS

In all DRAIN programs the structure is modeled as an assemblage of nonlinear elements
connected at nodes. In DRAIN-BUILDING there is also a higher level of organization,
according to which the structure is modeled as an assemblage of floors connected by
interfloors. The floors and interfloors are then assemblages of elements connected at

nodes. Figure 5.1 shows a simple floor and interfloor.

1st FLOOR NODE
COLUMN

INTERFLOOR NODE
~_—2nd FLOOR NODE
BRACE
AFLOOR AN INTERFLOOR
AND FLOOR ELEMENTS AND INTERFLOOR ELEMENTS

FIG. 5.1. FLOORS AND INTERFLOORS

A floor consists of elements such as slabs and beams, usually but not necessarily lying in a
horizontal plane. An interfloor consists of elements such as columns, walls and braces,
which connect two floors. In general both floors and interfloors are 3D structures made up

of 3D elements. However, a floor could bé a 2D structure.

In most cases an interfloor will connect a floor to the floor immediately above or below, as
shown in Figure 5.2a. However, an interfloor can connect any two floors, as shown in
Figures 5.2b through 5.2d. Note that an interfloor can connect floors at the same level
(e.g., an interfloor could be a bridge connecting floors in adjacent towers), as shown in
Figure 5.2c. An interfloor can also connect only one floor. For example, in a building on

sloping ground the ground nodes can be regarded as belonging to the interfloor rather than

119

120

a ground "floor". The interfloor is then connected only to the floor above, as shown in

Figure 5.2d.

floors interfloors

Fl ﬁ:-:;:g:g:~:-:~:~:~:~:~:~~»:.;.;.;4;;4;4;.;.;4;.;.;.;4;A;‘;4;‘;,;.;.;.;A;.;,;.;,,,;.».,A:,:,:,:_:_:‘:: Fl
I1 1 »

Fz R e RO R Fz o —
2 I2 ATRIUME

N I5
I3

F4 mu . L

() (b)

F4 R - | . m

(©) (d)

FIG. 5.2. FLOOR AND _lNTER?LOOR EXAMPLES

Formally, a floor is an assemblage of elements connected only to the nodes of that floor.
An interfloor is an assemblage of elements connected to nodes, which belong to (a) floor 1
of the interfloor (the floor above or below), (b) floor 2 of the interfloor (the second of the

two connected floors), and/or (¢) the interfloor itself.
5.2. FLOOR AND INTERFLOOR TYPES AND INSTANCES

A multistory building may have many identical floors and interfloors, which differ only in
their spatial locations. Floors that differ from each other only in their locations can be

assigned the same floor type. Similarly, interfloors that differ from each other only in their

121

spatial locations can be assigned the same inferfloor type. In the input data, floor and
interfloor types are defined first. Floor and interfloor instances are then positioned in

space to define the analysis model.

The following main tasks are performed in defining the analysis model.
1. Define Floor Types: For each floor type define the following.

a) Coordinates of floor nodes, relative to a floor origin. These coordinates are used
to calculate the dimensions and orientations of the floor elements.

b) Nodal masses.

c) Whether the nodal displacements are unrestrained, restrained, spring supported or
slaved. A rigid floor diaphragm can be defined by slaving the nodes éo a master
node for the floor.

d) Element properties and connectivity.

2. Define Interfloor Types: For each interfloor type define the following.

a) Location of the origin of floor 2 relative to the origin of floor 1. This defines the
interfloor height and the horizontal locations of the floors relative to each other.
This information is needed to determine the dimensions and orientations of the
interfloor elements.

b) Coordinates of interfloor nodes (if any) relative to the origin of floor 1.

¢) Nodal masses.

d) Whether the nodal displacements are unrestrained, restrained or spring supported. .

e) Element properties and connectivity.

3. Specify Floor Instances: For each floor instance define the following.

a). Its floor type.

b) The coordinates of its origin. This locates the floor in 3D space.

4. Specify Interfloor Instances: For each interfloor instance define the following.

a) Its interfloor type.

122

b) Its floor 1 and floor 2 instances. This locates the interfloor in 3D space. It also
provides redundant information, since floors 1 and 2 are also defined for the

interfloor type. This information is checked for consistency.
5.3. ADVANTAGES OF USING FLOORS AND INTERFLOORS

There are two major advantages of using floor and interfloor types and instances. First, it
is easier to prepare the input data. Second, floors and interfloors are convenient modules

for setting up the data structures in the program.

The input data is easier to prepare mainly because the nodes, elements, load patterns and
results output specifications are input for floor and interfloor types, and the data does not
have to be repeated for each instance. It is also simpler to define nodes and elements for a
floor or interfloor type, since the coordinates and node numbering system are local to the
type rather than global for the building as a whole. A useful feature of the program is that
if two floor types have the same node loéations but different member sizes, one type can

be derived from the other without repeating all of the input data.

The program data structures are simplified for two main reasons. First, much of the data
can be stored with the floor and interfloor types, so that the volume of data is reduced.
The data storage for a type is very similar to that used for a complete structure in DRAIN-
3DX. Second, each floor and interfloor instance can be treated as a subassembly, ‘
contributing a subassembly stiffness to the complete structure stiffness. This leads to a
hypermatrix form for the structure stiffness [5], which is convenient logically and also
allows very large structures to be analyzed with modest memory requirements. This aspect

of the program is described in detail in the following sections.

A disadvantage of using floors and interfloors is that there is no direct concept of a frame.
For the design of a building it can be convenient to regard the structure as a series of

multistory frames connected by floor diaphragms. A DRAIN-BUILDING model does not

123

have this form. It is possible, however, to define a frame, by specifying that it consists of
certain elements from the floor and interfloor instances. The results could then be
organiZed frame-by-frame as a post-processing operation. This has not been done in the

current version of the program, but is planned as a future extension.
5.4. HYPERMATRIX STRUCTURE OF THE STIFFNESS MATRIX

The stiffness matrix of a DRAIN-BUILDING model consists of symmetric row and
column partitions, each corresponding to a floor or interfloor instance. Figure 5.3 shows a

simple example.

floors interfloors F1 11 F2 12 F3 I3 F4

MODEL STIFFNESS HYPERMATRIX

. Diagonal Floor Blocks
B Diagonal Interfloor Blocks

Off-diagonal Blocks Coupling Two Floors

Off-diagonal Blocks Coupling a Floor and an Interfloo

FIG. 5.3. STRUCTURE OF THE STIFFNESS HYPERMATRIX

Since the matrix is symmetric, only the off-diagonal blocks above the diagonal plus the

upper triangular portions of the diagonal blocks need to be stored.

The elements of a floor instance contribute stiffness coefficients to the corresponding

diagonal floor block only. The elements of an interfloor instance can contribute stiffness

124

coefficients to three diagonal and three off-diagonal blocks. The diagonal blocks
correspond to the nodes in floor 1, floor 2 and the interfloor itself. The off-diagonal blocks
couple the diagonal blocks. If there are no interfloor nodes the interfloor elements

contribute stiffness coefficients to only two diagonal blocks and one off-diagonal block.

The blocks of the stiffness hypermatrix are stored on a direct-access file. Memory buffers
are provided to store up to three diagonal and three off-diagonal blocks (less if there are

no interfloor nodes). The buffer sizes are based on the largest block sizes.

During assembly of the element stiffnesses into the stiffness hypermatrix (TANK), there
must generally be three diagonal blocks and three off-diagonal blocks in memory at any
time. However, if the current interfloor has no interfloor nodes, only two diagonal blocks
and one off-diétgonal block are needed. Section 5.7 describes the assembly procedure in

detail.

The base program subroutine HYPSOL has been developed to solve the hypermatrix
equations. HYPSOL r2quires three blocks in memory at any time. The algorithm is

described in Section 5.8.

The base program subroutine HYPMUL is used for forming hypermatrix-vector products.
HYPMUL requires one block in memory at any time. The algorithm is described in

Section 5.9.
5.5. ORDERING OF BLOCKS IN THE HYPERMATRIX

In all DRAIN programs, Crout's factorization is used to solve the equations. In DRAIN-
2DX and 3DX the stiffness matrix is stored in compacted column form, omitting the terms
above the first nonzero term in each column, and storing all terms below, up to and
including the diagonal term. This type of storage can be termed compc.tcted column,
envelope, or skyline storage [6, 9]. In DRAIN-BUILDING, essentially the same storage

scheme is used for. storing the blocks of the stiffness hypermatrix. The term compacted

125

column is used in this report for the conventional storage scheme used in DRAIN-2DX
and 3DX. In this chapter, the terms envelope storage, block envelope and envelope
structure are used for describing the hypermatrix storage scheme of DRAIN-

BUILDING.

The initially zero terms above the first nonzero-term in any column remain zero during
factorization, and hence never need to be stored. Initially zero terms below the first
nonzero term may or may not "fill in" (i.e., become nonzero) during factorization,
depending on the structure of the analysis model and the way in which the nodes are
numbered. In DRAIN-2DX and 3DX it is assumed that all such terms will fill in, since the
computational cost of keeping track of individual terms is not warranted. This is not the
case with DRAIN-BUILDING, however, since hypermatrix blocks, not single scalars, are

involved.

In DRAIN-BUILDING, the amount of block fill-in depends on the ordering of the floor.
and interfloor instances. Figure 5.4 shows a simple example with two different orderings
and the corresponding fill-in blocks. Note that in ordering 2 some blocks within the block
envelope do not suffer fill-in. Such blocks do not have to be stored or operated upon.
However, initially zero blocks must be created for the filled in blocks. Ordering 1 would
normally be used (possibly numbered upwards rather than downwards), and would be
computationally more efficient than ordering 2 in most cases. However, DRAIN-

BUILDING permits the floor instances to be input in any order.

126

thtg?ﬁlésnot
fill-in

blocks
that

fill-in

F4 e
ORDERING 1 ORDERING 2

FIG. 5.4. BLOCK FILL-IN IN TWO ORDERINGS

The order of the stiffness blocks in the hypermatrix is determined by the input order of the

floor instances, as follows.

1. The floor blocks are in the floor input sequence.

2. If an interfloor connects two floors, its block is placed immediately before the block
for the second of the two floors. If more than two interfloors are to be placed before
any floor, their blocks are placed in the input sequence of their first floors.

3. If an interfloor connects only one floor, its block is placed immediately before the

block for that floor.

For a simple multistory building, if the order of input of the floor instances follows the
natural top-down or bottom-up sequence, then a penta-diagonal hypermatrix results (i.e.,
Ordering 1 in Figure 5.4). If there are no interfloor nodes, a tri-diagoffal hypermatrix

results. In these cases there is no block fill-in.

127

Figure 5.5. shows two additional examples.

I1 I3
oy — 12 14
I3 F3 12 FS
F4 14 15
IS
FS mm] mm mmfF5 Flmm [m= mmF6
Fl1I1 F2I12F3I3F414 I5 F5 FINN F2I2F3 13 F4I4 F515F6

(@) (b)

FIG. 5.5. BLOCK FILL-IN IN TWO CASES

In Figure 5.5a, the ordering is from the top down and leads to a lot of block fill-in. In
Figure 5.5b, the ground nodes are divided between floors F1 and F6, and the floor
instances are specified clockwise around the frame. This results in a penta-diagonal

hypermatrix.

In general the program will execute faster if (a) there is less fill-in and (b) the nonlinear
elements are located at the end of the hypermatrix. The reason for (b) is that each time the
stiffness changes, only the block columns starting from the first modified block column are
refactQ(ized (block columns before the first modified block column do not change). If it is
known that only certain floors or interfloors become nonlinear, the program will probably
execute most efficiently if these floors and interfloors are placed at the end of the

hypermatrix. For example, if a simple building has base isolation but is otherwise linear, it

128

is most efficient to order the floors top down. Conversely, if a nonlinear passive control
system is placed in the top story, the most efficient ordering will be bottom up. If a
yielding story or isolation system is near midheight, it may be most efficient to specify the

middle floors last.

In the program, only stiffness blocks that are initially nonzero or suffer fill-in are stored
and operated upon. Blocks are not stored if they are initially zero and do not suffer fill-in.
Such blocks can be determined as follows.

1. Set array IND(N,N) to store "1" for each initially filled block, and "0" for each initially
zero block, where N = number of diagonal biocks. All diagonal blocks and all coupling
blocks are assumed to be filled.

2. ForJ=2toNandI=1to]J-1,if IND(I,J) =0, then
a) For K=11toI-1if IND(K,I) =1 and IND(K,J) = 1, then reset IND(L,J) to 1.

3. If for any instance, there are no DOFs (because the instance does not have any nodes
or all its nodes are restrained), then set the corresponding diagonal entry, IND(J,J),

and off-diagonal entries, IND(1,J) and IND(J,I), for I = Jto 0.

The program follows essentially this procedure before setting up array IENV, which is

described in Section 5.6.
5.6. HYPERMATRIX STORAGE SCHEME
5.6.1. Storage of Stiffness Blocks

The stiffness blocks of the hypermatrix are stored on a direct-access file. Two arrays,

IEXNYV and IENV, are used for addressing, as follows.

129

Array

Description

IEXNV(nfif+1)

Location of the first nonzero block in IENV for each block
column (i.e., pointer to the start of each block column in
IENV). NFIF is the number of block rows (and block
columns), which is equal to the number of floor and interfloor
instances. For uniformity in indexing, IEXNV(nfif+1) is set
equal to NZERO+1.

IENV(nzero)

Addresses (i.e., record number offsets on the direct access file
- see Section 5.6.4) of blocks within the block envelope. For
blocks that are initially zero and do not suffer fill-in, IENV is
set to 0. NZERO is the number of blocks within the block
envelope.

Figure 5.6 illustrates the scheme for ordering 2 shown in Figure 5.4.

Al1 A13 A15
A2 A24 A25 A26 A27
A33 A35

Ad4 A4S A4 A47
AS5 AS6 AS57

SYMMETRIC
AB6 A67

A77

ON DISK [A11]A22 |A13|A33

A24

IENV {1]2]3]0]4]5

Ad4/1A15 SJAJS A45 JASS [A26 ﬁ46 ASE|A66 A27IA47 A57l667 A77
9] 10

111210 |13]14] 151 16|10 17| 18] 19] 20

e

IEXNV |1 12 |3 |6

14|19 25

FIG. 5.6. ADDRESSING SCHEME FOR STIFFNESS BLOCKS OF HYPERMATRIX

With this scheme, some of the address computations are as follows.

130

1. The number of block rows, JLEN, within the block envelope, in block column J is
given by
JLEN = IEXNV(J+1) - IEXNV(J)
2. The block row number, IFST, of the first nonzero block in block column.J is given by
IFST=J+1-JLEN
3. The address of (I,J) block, IILOC, in IENV is given by
IJLOC = IEXNV(J+1) - (J-I) -1
provided IFST <1 < J.
4. The address of the diagonal (J,J) block, JJLOC, in IENV is given by
JILOC = IEXNV(J+1) - 1

5.6.2. Storage of a Diagonal Block

Envelope storage is used for each diagonal block. Two arrays, ISTIF and STIF are used

for each block, as follows.

Array Description

ISTIF(neq+1) Location of first nonzero term in STIF for each column (i.e.,
pointer to the start of each column in STIF). NEQ is the
number of columns (and rows) in the stiffness block. For
uniformity in indexing, [ISTIF(neq+1) is set equal to NSTF+1.

STIF(nstf) Values within the envelope, from the first nonzero term to the
diagonal term for each column. NSTF is the total number of
terms within the envelope.

131

Figure 5.7 illustrates the scheme.

- att a12 a3
a2 a3 a2s
a33 a34 a3s
a44 ads a47
SYMMETRIC as5 as7
acé a67
a77

a13 a«lazska S |a45|as5 [a66|ad47|a57|a67]a77

////'

FIG. 5.7. STORAGE SCHEME FOR A DIAGONAL BLOCK

STIF|at11|at2}a22

ISTIF| 1 | 2

The matrix ISTIF iS set as follows.

1. An array MSTIF of length NEQT, equal to the total number of structure DOFs, stores
the row number of the first nonzero term for each column of the stiffness hypermatrix.
This is the global row number.

2. For a diagonal stiffness block, let:

a) NEQ be the number of rows (and columns) in the block.
b) NFST+1 be the global number of the first row (and first column) of the block.

3. SetISTIF(1) = 1.

4. Forcolumn] (for 1 = J s NEQ) of the stiffness block:

a) The column starts at global row number, JSTRT, given by
] STR'I" = MAX (MSTIF(NFST+J),NFST+1).
b) The column ends at global row number, JEND, given by

132

JEND = NFST +J.

¢) The number of terms in the column, JLEN, is given by
JLEN =JEND - JSTRT + 1.

d) Set ISTIF(J+1) = ISTIF(J) + JLEN.

With this scheme, some of the address computations for a block are as follows.
1. The number of rows, JLEN, in column J is given by
JLEN = ISTIF(J+1) - ISTIF(QJ)
2. The row number, IFST, of the first nonzero term in column J is given by
IFST=J+1-JLEN
3. The address of term (1,J), IJLOC, in STIF is given by
IJLOC = ISTIF(J+1) - (J-I) -1
provided IFST <1 s J |
4. The address of the diagonal term (J,J), JJLOC, in STIF is given by
JJLOC = ISTIF(J+1) - 1

The row or column numbers I, J and IFST referred to above are local to the block. The

global row or column numbers are obtained by adding NFST to these numbers.
5.6.3. Storage of an Off-diagonal Block

Envelope storage is used for each off-diagonal block. Two arrays, ISTIF and STIF are

used for each block, as follows.

133

Array Description

ISTIF(neqc+1) | Location of first nonzero term in STIF for each column (i.e.,

- pointer to start of each column in STIF). NEQC is the number
of columns in the stiffness block. For uniformity in indexing,
ISTIF(neqc+1) is set equal to NSTF+1.

STIF(nstf) Values within the envelope, from the first nonzero term to the
last term for each column. NSTF is the total number of terms
within the envelope.

Figure 5.8 illustrates the scheme.

a2t a23
a3t al33] a34

adi a43| ad4 a47

STIF |a21 a31]|a4d1

a23|a33/a43 |a34|ad4|aq7 -
ISTIF{1 |4)4 |7 |9]9 |9 |10

|F1G. 5.8. STORAGE SCHEME FOR AN OFF-DIAGONAL BLOCK

The matrix ISTIF is set as follows.
1. An array MSTIF of length NEQT, equal to the total number of structure DOFs, stores
the row number of the first nonzero term for each column of the stiffness hypermatrix. |
2. For an off-diagonal stiffness block, let:
a) NEQC be the number of columns in the block.
b) " NEQR be the number of rows in the block.
¢) NCFST+1 be the global number of the first column of the block.
d) NRFST+1 be the global number of the first row of the block.
3. Set ISTIF(1)=1.

134

4. For columnJ (for 1 s J = NEQC) of the stiffness block:
a) The column starts at global row number, JSTRT, given by
JSTRT = MAX (MSTIF(NRFST+J),NRFST+1)
provided JSTRT < NRFST + NEQR. Otherwise there are no terms in the column.
b) The column ends at global row number, JEND, given by
JEND = NRFST + NEQR.
¢) The number of terms in the column, JLEN, is given by
JLEN = MAX (0, JEND - JSTRT + 1)
d) Set ISTIF(J+1) = ISTIF(J) + JLEN

With this scheme, some of the address computations are as follows.
1. The number of rows, JLEN, within the envelope, in column J is given by
JLEN = ISTIF(J+1) - ISTIF(J)
JLEN can be zero for some columns.
2. The row number, IFST, of the first nonzero term in column J is given by
IFST = NEQR + 1 - JLEN
Note that if JLEN=0, then IFST > NEQR, and there are no nonzero terms in the
column.
3. The address of term (I,J), JLOC, in STIF is given by
IJLOC = ISTIF(J) + 1 - IFST = ISTIF(J+1) - (NEQR-I) -1
provided IFST <1 =<]

The row or column numbers I, J and IFST referred to above are local to the block. The
global row number is obtained by adding NRFST to the local row number. The global

column number is obtained by adding NCFST to the local column number.
5.6.4. Hypermatrices in DRAIN-BUILDING -

In DRAIN-BUILDING there are four hypermatrices, as follows.

135

1. TANK - unfactorized static tangent stiffness. TANK is updated whenever there is a
stiffness change in any element.

2. EFFK - factorized effective stiffness. EFFK is updated whenever TANK is updated, or
when there is change in the time step size.

3. BETAK - beta-K damping matrix (not factorized).

4. DTAN - backup of TANK, used for restoring TANK when the time step must be

repeated in the variable time step scheme.

These four hypermatrices all have the same envelope structure, both at the global level

(arrays IENV and IEXNV) and the local level (array ISTIF for each stiffness block).

All data blocks (STIF blocks for EFFK, TANK, BETAK and DTAN) are stored on a
FORTRAN direct access file, unit NFSTFB. All index blocks (array ISTIF for each
stiffness block) are stored on a second FORTRAN direct access file, NFSTFA. The array
IENV directly gives the record numbers of the index blocks on NFSTFA. The record
numbers of the data blocks on NFSTFB, for EFFK, TANK, BETAK and DTAN are
obtained by adding the offsets NOFEK, NOFTK, NOFBK and NOFDK, respectively, to
the values in IENV. These offsets are set as follows.

NOFEK =0

NOFTK = NOFEK + NNZERO

NOFBK = NOFTK + NNZERO

NOFDK = NOFBK + NNZERO

where NNZERO is the number of nonzero blocks within the block envelope of the

hypermatrix.
5.7. ASSEMBLY OF ELEMENT STIFFNESSES

For forming or updating the tangent stiffness hypermatrix (TANK), the elements are

processed one floor or interfloor instance at a time. Before any instance is processed,

136

subroutine GTBLKA writes any existing memory blocks to the direct-access file and
~ computes the addresses of the blocks that may need to be updated while processing the
~ current instance. If there is a stiffness change in an element, the affected stiffness blocks
are copied' into the memory buffers in subroutine GTBLKS and updated.in subroutine
ASSEMO. These blocks remain in memory until all the elements in the current instance
havé been processed. The blocks are then written to the direct-access file, in subroutine

GTBLKA.
/STFBLK/ stores the record numbers of memory blocks.

The variables in /STFBLK/ are as follows.

Variable Description

INMEM Code for existence of blocks in memory, as follows.

0 : Blocks are not in memory. Bring them into memory if and
when the stiffness of an element changes in the current
instance, and reset the code to 1.

1 : Blocks are in memory. Write them to the NFSTFB file after
processing elements of the current instance.

Before processing the elements of any instance, the record
numbers of the blocks required for the current instance are
computed and INMEM is set to 0.

137

LSTBLK(6)

Record numbers of stiffness blocks that may change due to
changes in element stiffnesses for elements of the current
instance. The blocks are in the following order.

For a floor:

5 : Diagonal block for the floor.
1-4and 6: 0.

For an interfloor with interfloor nodes:

: Diagonal floor 1 block.

: Off-diagonal block coupling floor 1 and floor 2.

: Diagonal floor 2 block.

: Off-diagonal block coupling floor 1 and interfloor.
: Diagonal block for the interfloor.

: Off-diagonal block coupling floor 2 and interfloor.

O WN R

For an interfloor with no interfloor nodes:

1 : Diagonal floor 1 block.

2 : Off-diagonal block coupling floor 1 and floor 2.
3 : Diagonal floor 2 block.

4-6: 0.

The stiffness blocks are stored in memory buffers STIF1 through STIF6 .and ISTIF1

through ISTIF6 (see KSTIF and KISTIF in /STOR7/ in Chapter 6).

The following tasks are done in GTBLKA.

1. If INMEM=1, write the memory blocks STIF1-STIF6 to the direct access file,

NFSTFB. The record numbers of the memory blocks are obtained form LSTBLK in

/STFBLK/.

2. Initialize array LSTBLK t0 0.

3. Set LSTBLK for the current instance.

The following tasks are done in ASSEMO.

1. If INMEM=0, call GTBLKS to read the stiffness blocks into memory.

2. Assemble the stiffness coefficients into the affected memory blocks.

The following task are done in GTBLKS.

138

1. Copy the required blocks STIF1-STIF6 and ISTIF1-ISTIF6 (see KSTIF and KISTIF

in /STOR7/) from units NFSTFB and NFSTFA, respectively. The record numbers are
obtained from LSTBLK in /STFBLK/.

2. Set INMEM=1.

The element "location matrix" (LM array) determines the terms to be modified. The value
in LM for any DOF is as follows.
a) n: For an independent (unslaved) DOF , n=IFIF + LEQ*3
where, .
IFIF = 0 if the DOF belongs to the currént tloor or interfloor instance,
1 if the DOF belongs to the floor 1 of the interfloor, and
2 if the DOF belongs to the floor 2 of the interfloor.
LEQ = local equation number for the DOF
Given n, [FIF and LEQ can be recovered as follows:
IFIF = MOD(n,3).
LEQ =n/3.
b) n: For a Z rotation slaved to the floor master node, n=IFIF + LEQ*3
where,
IFIF = 0 if the DOF belongs to the current floor instance,
1 if the DOF belongs to the floor 1 of the interfloor, and
2 if the DOF belongs to the tloor 2 of the interfloor.
LEQ = local equation number for the Z rotation of the floor master node.
Given n, IFIF and LEQ can be recovered as for (a).
¢) -n:Fora X orY translation slaved to the floor master node,
n = [FIF + NDISP*3 + NLOC*9
where,

IFIF =0, 1 or 2 as for (b).

139

NDISP = 1 for X translation, 2 for Y translation.
al X or 2 for translational Y DOF = MOD(n,9)/3.
"NLOC = sequence number of the slaved node.
Given n, IFIF, NDISP and NLOC can be recovered as follows:
IFIF = MOD(n,3).
NDISP = MOD(n,9)/3.
NLOC = n/9.

Let for (1,J) term of the element stiffness:

1. IfIFIF(I)=0 and IFIF(J)=0, then STIFS is updated.

2. IfIFIF(I)=0 and IFIF(J)=1 or vice versa, then STIF4 is updated.
3. If IFIF(I)=0 and IFIF(J)=2 or vice versa, then STIF6 is updated.
4. IfIFIF(I)=1 and IFIF(J)=1, then STIF1 is updated.

5. IfIFIF(I)=1 and IFTF(J)=2 or vice versa, then STIF2 is updated.
6. If IFIF(1)=2 and IFIF(J)=2 or vice versa, then STIF3 is updated.

The terms in STIF1-STIF6 which arc updated depend on:

a) LEQ(I) if element DOF, I, is independent or slaved Z rotation.

b) NDISP(I) and NLOC(]) if element DOF, 1, is slaved X or Y translation.
¢) LEQ(QJ) if element DOF, J, is independent or slaved Z rotation.

d) NDISP(J) and NLOC(J) if element DOF, J, is slaved X or Y translation.

For cases (b) and (d) the array FMASTC in /CNTFIF/ gives the coordinates of the master
node; the array COORD (see KCOORD in /STOR3/) for the floor gives the coordinates of
the slaved node; and the array ID (see KID in /STOR3/) for the floor gives the equation

numbérs of the master node. See subroutine ASSEMO for implementation details.

140

5.8. HYPERMATRIX EQUATION SOLVER -- HYPSOL
5.8.1. Introduction

The set of equations to be solved is .

Ax=b (5.12)
in which A is the stiffness hypermatrix, b is the load vector increment and x is the
displacement increment to be determined. Equation 5.1 can be expanded to show the row

and column partitions, as follows.

Ay Ap - Anllx b,
A:x én - _A_z,. X2 _b.z
. . . =q". (5.1b)
A.nl Anz All’l .iEn =na
Hypermatrix A is symmetric and A; = A%, , where A; is the (i, j) block of A.
To solve these equations, A is factored as follows.
A=UTDU (5-2)

in which U is a unit upper triangular matrix and D is a diagonal matrix.

The hypermatrices A and U haye the same envelope structure. The stiffness blocks of A

are replaced by those of U as the factorization proceeds. The diagonal terms in diagonal

blocks, U ;, arc known to be unity, and are used to store the diagonal terms of D ;.

Given the factorization (Equation 5.2), the cquations are solved in three steps as follows.
Solve UTz=b for z (5.3)
Solve Dy=2z for y (5.4)
Solve Ux=y for (5.5)

I=

141
Equation 5.3, is a lower triangular system of equations. This is the forward substitution
step.

Equation 5.4, is a diagonal system of equations. This step involves the division of each

term in z by the corresponding diagonal term in D.

Equation 5.5, is an upper triangular system of equations. This is the backward substitution
step.

5.8.2. Factorization

In Equation 5.2,
D; =0 if i#j | 5.6)
U;=0 if i#L orifi>j 5.7
where, L; is the block row number of the first nonzero block in block column j.

The block A; is, thus given by

ULD,U,) 5.9)

The factorization of A proceeds block column by block column. At the time of.
factorization of block column j, all blocks A, for i < j and k < i have been replaced by
U,. Also, all diagonal blocks A, fori <j have been replaced by U,; and D,..

Equation 5.8, fori <j is as follows.

4= S(UIp.u,)+Uiny,
m(‘v-‘q)
i=-1
o UNDU;)=4;- 3{vi(p.u,)} 5.9)

142

In Equation 5.9, U, and U,; have already been formed and are stored in place of A, and
A, respectively. The block A, actually stores the product D, U, that occurs on the
R.H.S. in Equation 5.9. Each step, k, in the formation of A; constitutes a non-symmetric
update of the off-diagonal block 4;. Once A; is formed, then Equation 'S.9 is a lower
tﬁa.ngular system of equations that is solved to replace A; by the product D, u,.

Equatio<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>