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Third-order optical conductivity of an electron fluid
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2Deparz‘ment of Physics, Columbia University, 538 West 120th Street, New York, New York 10027

® (Received 23 November 2017; published 20 February 2018)

‘We derive the nonlinear optical conductivity of an isotropic electron fluid at frequencies below the interparticle
collision rate. In this regime, governed by hydrodynamics, the conductivity acquires a universal form at any
temperature, chemical potential, and spatial dimension. We show that the nonlinear response of the fluid to

a uniform field is dominated by the third-order conductivity tensor ¢® whose magnitude and temperature
dependence differ qualitatively from those in the conventional kinetic regime of higher frequencies. We obtain
explicit formulas for ¢® for Dirac materials such as graphene and Weyl semimetals. We make predictions for the
third-harmonic generation, renormalization of the collective-mode spectrum, and the third-order circular magnetic

birefringence experiments.

DOI: 10.1103/PhysRevB.97.075432

I. INTRODUCTION

In typical metals and semiconductors, electrons experi-
ence frequent collisions with impurities and phonons. The
combined rate I'y = Igis + ['pn of these collisions far ex-
ceeds the rate I'. of electron-electron scattering. However,
in several pure materials, the opposite case I'y < I'ee has
recently shown to be possible in arange of temperatures. Under
such conditions [1,2] electrons behave as a fluid that obeys
hydrodynamic equations [3]. Evidence for the hydrodynamic
behavior has been obtained from dc transport experiments with
two-dimensional (2D) electron gases in GaAs [4], graphene
[5-7], and a quasi-2D metal PdCoO,; [8]. These discoveries
stimulated many theoretical studies [9-21]. The conceptual
simplicity of hydrodynamics arises from dealing with only a
few degrees of freedom: the local temperature 7 (r,t), chemical
potential u(r,?), and the flow velocity u(r,#). The complicated
many-body collisions need not be considered explicitly. In our
previous paper [20], we used this hydrodynamic formalism
to calculate the electrodynamic response of an electron fluid,
in particular, its linear and second-order nonlinear optical
conductivities. The magnitude and functional form of these
quantities in the hydrodynamic regime of frequencies @ << Tee
were shown to differ qualitatively from their counterparts in the
conventional kinetic regime @ > I'c.. Here we continue this
line of investigation by addressing the third-order nonlinearity,
which controls, e.g., the third-harmonic generation (Fig. 1), the
Kerr effect, and four-wave mixing.

One reason the third-order nonlinearity warrants attention
is dictated by the symmetry. In general, the electrodynamic
response of a conductor is characterized by the tensors o
describing the components of the induced current proportional
to the nth power of the electric field. (The definition of these
tensors is given in Sec. II). Unless the field is very strong,
the nonlinear response of a material lacking the inversion
symmetry is dominated by the second-order conductivity o®.
However, in centrosymmetric systems, such as graphene, o®
must vanish if the electric field is uniform, in which case the
third-order conductivity o® becomes more important.
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As we show below in this paper, the derivation of the
nonlinear conductivities is straightforward within a certain
model that we call the Dirac fluid. This model is simple
yet flexible enough to describe several types of solid-state
materials. The model assumes that the quasiparticles of the
system behave as Dirac fermions with the energy-momentum
dispersion &2(p) = m>v* + p?v?. The massless case m = 0
corresponds to electrons in graphene; the massive case m > 0
is a reasonable approximation for narrow-gap semiconduc-
tors. Neglecting fermion-fermion interactions, one can readily
compute the equilibrium thermodynamic parameters of this
system [9,10,13,17,20], such as the pressure P = P(u,T) and
the energy density ng = ng(u,T). The crucial simplification
of the Dirac model is that the energy-momentum tensor of
the moving fluid can be derived from that of the static one
by a Lorentz transformation with v in lieu of the speed of
light c. (In the noninteracting case, the moving fluid is defined
as the Fermi distribution of quasiparticles with the Doppler-
shifted energies e(p) — pu.) The Lorentz invariance ensures
that the hydrodynamic equations of a Dirac fluid have a simple
“relativistic” form [3,9,10,13,14,17,20]. Precisely because v #
¢, the solid-state systems with real Coulomb interactions are
not truly Lorentz invariant. However, the Dirac fluid should
be a reasonable approximation if the Coulomb interactions
are not too strong, so that P and ng are dominated by the
kinetic energy. Besides graphene, examples of such Dirac
fluids may include the surface states of topological insulators
and three-dimensional Dirac/Weyl semimetals.

Note that the hydrodynamic regime probed by recent dc
transport experiments [5—7] is less than 1 THz wide. If one
wants to expand it toward higher w, it is necessary to increase
I'ee, which can be done by raising electron temperature T
(Fig. 2). This must be done without heavily increasing the
electron-phonon scattering rate I'yp, which is also temperature-
dependent. One possible solution [20] is to work with (steady
or transient) states where electrons are “hot” but lattice stays
“cold.” Such nonequilibrium states can be created by optical
pumping or electric-current heating.

©2018 American Physical Society
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FIG. 1. Illustration of the third-order optical nonlinearity in
graphene.

At frequencies w > I'ee where the hydrodynamic theory
fails, the response of the system is better described by
more conventional approaches, e.g., the Boltzmann kinetic
equation neglecting electron-electron collisions. Among the
Dirac materials, graphene has been the most common target
of such calculations. Nonlinear conductivity of graphene has
been addressed in many theoretical studies [20,22-33]. As
discussed in our previous paper [20], the differences between
the hydrodynamic and kinetic regimes (Fig. 2) become con-
spicuous at temperatures 7 exceeding the chemical potential
., where graphene contains two types of carriers, electrons,
and thermally excited holes. In the kinetic regime, electrons
and holes tend to move in opposite directions when driven by
the electric field. Their contributions to the electric current add
up. In the hydrodynamic regime, due to frequent interparticle
collisions, all the carriers tend to move together. Hence, the
electron and hole currents partially cancel. As a consequence,
there is an increased effective mass per unit charge, resulting
in reduced linear and second-order nonlinear conductivities
[20]. In this paper, we show that the third-order electrodynamic
response also exhibits distinct behaviors in the two regimes, in
accord with this physical picture.

The remainder of the paper is organized is follows.
Section II gives a summary of our main results such as the
analytical formula for the third-order nonlinear conductivity of
an isotropic Dirac fluid. This formula is simple and universal.

Kinetic

i Hydrodynamic

__________ oo

0 ' L L
0 200 400 600 800 1000
Temperature (K)

FIG. 2. Schematic: Kinetic and hydrodynamic domains in the
frequency-temperature diagram of graphene for the carrier density
n = 102 cm™2, corresponding to the zero-temperature chemical po-
tential (n,0) = 0.12eV. The (upper) dashed line separating the two
regimes is w = I'ee(n,T). The lower dashed line is the momentum
relaxation rate due to electron scattering by acoustic and A} zone-
boundary phonons.

Itis valid for any mass m, chemical potential ., temperature 7,
and space dimension d if momentum nonconserving processes
can be neglected, I'; — 0. We also discuss the general form
of the higher nonlinear conductivities tensors o of odd order
n. In Sec. III, we introduce the relativistic hydrodynamic
equations and apply them to the massless case, such as
graphene. In Sec. IV, we give the derivation of ¢, including
the case of an external applied magnetic field. In Sec. V, we
apply our results for 0@ to computing the third harmonic
generation. In Sec. VI, we discuss the Kerr effect and its
influence on the hydrodynamic collective modes of the fluid. In
Sec. VII, we compute the magnetic-field-induced third-order
circular birefringence. The concluding remarks are given in
Sec. VIII. Appendix A provides a summary of the analytical
expressions for the thermodynamic quantities of a massless
Dirac fluid. Appendix B outlines the derivation of o for a
more realistic case of a finite scattering rate I';.

II. MAIN RESULTS

The Nth-order nonlinear ac conductivity o™ is defined as
arank (1, N) tensor, which maps electric fields to the N'th order
electrical current:

iM(q,0)

=Y > 5 (XN:(qa,wa) - (q,w)>

Vi-UN (qr,01),(g2,@2) ...(gn,@N) a

(N)
X O’ivl...UN(qlva)lqu’wZ ) »‘lN,CUN)
X E, (q1,0)E,)(q2,@2)...E, (qn, ). ey

The even, e.g., second-order conductivities vanish at zero
momentum in centrosymmetric systems. We therefore focus
on odd-order (e.g., N = 3) conductivities and disregard O(qz)
nonlocal corrections.

For a general d-dimensional charged ideal fluid with O(d)
(rotation and reflection) symmetry, the Nth-order nonlinear
optical conductivity is found to be
w __ iD"

ivivy...uy

- —Ai ViV2... VN (2)
wiwy ...wWN

where
Aivyvy..vy = 6iv,8up15-..6vy vy + permutations 3)

is the totally symmetric rank N + 1 tensor, which is the sum
of the N!! isotropic tensors. Note that O(d) symmetry only
requires that ™) is a linear combination of the isotropic
tensors. As we will show later, due to the additional condition
of thermal equilibrium in the hydrodynamic regime, o™ can
only be proportional to the totally symmetric rank N + 1 tensor
Ajy,v, ..vy- The hydrodynamic Nth-order optical weight DEIN)
should be understood as a thermodynamic quantity, which is
generally unknown.

Applied to the Dirac fluid, which has (quasi) Lorentz
symmetry, the linear optical conductivity is recovered as
0jj = %5,- ; where the hydrodynamic Drude weightis D, =
wne’/m* (see, e.g., Supplemental Material of Ref. [20]). The
most important result of this paper is that the third-order
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nonlinear optical conductivity is given by

iD”
o = h Ailmn
wi1wrw3
DY
= (ailgmn + 81'17161}1 + ainalm)- (4)

W1 wrw3

ilmn

Here the third-order optical weight,
p® = 1= Coe e 1-Cie W <ﬂ>4, )
31 m*3? 31 phvt\

is expressed in terms of thermodynamic quantities and the
asymptotic velocity v. These quantities are defined in Sec. III
below.

III. HYDRODYNAMICS

A. Hydrodynamic equations

The hydrodynamic equations for an ideal relativistic
charged fluid are [3]

0, T" = J,F"", 9,J" =0, (6)

where T"* is the energy-momentum tensor, F'* is the elec-
tromagnetic field tensor, and

JH=(pv,§), J= U,y Jo), (N

is the four-current and its spatial part, respectively. By ideal we
mean a fluid with vanishing viscosity and thermal conductivity.
Although a “covariant” notation is implemented, Eqgs. (6)
hold even for systems without Lorentz symmetry because the
conservation of the stress tensor requires only the translational
symmetry. The form of stress tensor for a general interacting
fluid is unknown; however, for Lorentz-invariant systems, i.e.,
Dirac fluids, the stress tensor is related to thermodynamic
quantities [3]:

T = Wutu' — Pgh". ®)

The four-current is related to the proper charge den-
sity through J* = pout = ppy(v,u) = p(v,u) where y =
1/4/1 — u?/v2. In solid-state systems, the v is the asymp-
totic velocity such that electrons have a Dirac-like energy-
momentum dispersion sf, =( pv)2 + (mv?)?. The thermody-
namic quantities, the proper charge density py = eng, the
enthalpy density W, and the pressure P are all defined in the
fictitious proper frame moving with the local liquid. Note that
n = p/e is defined as the effective charge-carrier density and
is, in general, not the same as particle density. For example,
in graphene at high temperature, there are both electrons
and holes, and n will be the number of electrons minus the
number of holes. We define the hydrodynamic effective mass
as m* = W/(nv?). And we define

n (oW n (0P 1 oP
Co=rl) —1=—(5) =—5(5
WA on /i W\on /,,, mv*\on /i,

©))

as the dimensionless bulk isentropic modulus of the electron
fluid [20]. For example, it has the value 1/d for massless Dirac
particles in space dimension d. Out of the three thermodynamic
quantities W, P, and py, only two are independent. Thus the

independent variables are any two thermodynamic quantities
and the local flow velocity u. This set of Egs. (6) is closed.

Alternatively, these hydrodynamic equations can be derived
from the Boltzmann kinetic equation with the interparticle
collision integral but neglecting the many-body interaction
correction to the thermodynamic quantities, as shown in
Ref. [13] and also the covariant version in Appendix C.

From Eq. (8), the first part of Egs. (6) could be written in
another form:

Wutd,u" —98"P +u"utd, P = J,F"". (10)

Separating the time and spatial components in a proper way,
Egs. (6) have another form:

(8, + ukak)ui = (—B,P — I/t,'a;P + ,OE,'

YW
v .
+p€ikluszl —uij- E) (11)
d(ng) + V(y*Wu) = j-E, (12)
do+V-j=0, (13)

where ny = y?W — P is the energy density of the electrons
(relative to zero doping and temperature case), andngg = W —
P is the same quantity but in the proper frame. Equation (11)
is the relativistic version of the Euler equation, Eq. (12) is
the conservation of the energy current, and Eq. (13) is the
conservation of the charge current. Terms due to viscosity and
dissipative thermal conductivity are neglected because they
affect the conductivities only through O(g?) terms. To simplify
the notations, the asymptotic velocity has been taken to be
v = 1 except for the Lorentz force term due to the magnetic
field B. Note that the magnetic field is related to the electric
oneby V x E = —c~!9,B. Since we neglect finite-q effects in
this paper, we must set V x E = 0, so that the magnetic field
is considered time independent.

Starting from Egs. (11)—(13), we can compute the linear and,
in principle, any higher-order nonlinear optical conductivities
o™ by expanding all the dynamic variables in powers of the
electric field E. This procedure and its results are presented in
the following sections.

B. Hydrodynamic regime of graphene

Hydrodynamic regime is not a phase of matter but a domain
of frequency-momentum diagram (see, e.g., Fig. 1 of Ref. [20])
where the hydrodynamic equations work well as an effective
theory. This regime is defined by inequalities 'y, w << [ee
and g < le_el, which can be satisfied in some pure solid-state
systems. The electron-electron collision rate ['ee(n,7") that
sets the upper bound on the hydrodynamic regime depends
on temperature and doping level of the electron system. For
example, in graphene, I, scales as ~ In(2uu/T)(T? /) at low
T and as ~o>T at T > u with « ~ 1. For a rough estimate,
we connect these two formulas by a naive interpolation with
the relative weights /(T 4+ ) and T /(T + w), respectively.
The corresponding boundary of the hydrodynamic domain
(blue region) is shown by the upper dashed line in Fig. 2. The
other important scattering rate shown in the same Figure is
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I';. For ultraclean graphene encapsulated in hexagonal boron
nitride (hBN), the major contribution to I'; is the electron-
phonon scattering I'y,. The electron-phonon scattering sup-
presses the hydrodynamic behavior if I'pp > I'ee. However,
our theoretical estimation of 'y, and I'ee indicates that the
hydrodynamic regime of graphene is fairly large, as shown
in Fig. 2. Furthermore, in a nonequlibrum situation where
the electron system is at high temperature 7" while the lattice
temperature 7; remains low, I'e. is enhanced while the I'p, =
[pn(77, T ,n) remains small, and so the hydrodynamic window
could be wider. Such a nonequlibrum situation can be realized
either through optical pumping [34] or by Joule heating due to
an electric current [35].

Recent experiments [5—8] explored the dc transport in
several pure 2D conductors in the regime 'y < e, i.e.,
near the horizontal axis @ = 0 of Fig. 2. These measure-
ments revealed signatures of viscous electron flow, which
manifest themselves through a combination of high viscosity
v = v%/ T and geometrical restriction on the flow. Because
of the particular focus of these studies, the lower viscosity,
higher temperature regime was labeled as nonhydrodynamic.
From our point of view, viscosity is just one of very many
hydrodynamic phenomena rather than its essential element.
Actually, in the high-temperature regime, where the electron-
hole plasma becomes a more perfect fluid [10], hydrodynamic
effects should be of crucial importance. They are predicted to
give dramatically different optical responses compared to the
noninteracting kinetic theory [20].

IV. THIRD-ORDER NONLINEAR OPTICAL
CONDUCTIVITY

A. The general charged fluid

Since we neglect the O(g?) nonlocal corrections, o ¥ could
be derived by simply considering the fluid driven by a uniform
electric field. (The dynamic magnetic field B is zero in this
case.) The hydrodynamic Eqgs. (6) simplify to

ap=pE, 8p=0, 85,=0, (14)

where p is the momentum density and S, = §/n is the
entropy per unit charge. The last relation in Eqs. (14) comes
from the fact that the hydrodynamic flow is isentropic. The
second relation in Eqs. (14) comes from the charge continuity
equation. It entails that the charge density p stays constant.
In turn, the first relation in Eqgs. (14) implies that p is strictly
linear in E. If the electric field in the system is composed of
Fourier harmonic with amplitudes E, and frequencies w,, then
the momentum density is

N .
! —iw,
p= Z w—pEae ol (15)
a=1 a

The current density can be treated as a thermodynamic function
of n, S,, and p:

i=i®n,S,,p). (16)

Since particle density and entropy are conserved, the Nth-
order current where N = 2m + 1, is just the Nth-order Taylor
expansion of j with respect to p. Due to the isotropy of the fluid,
current density must be parallel to the momentum: j = jp.

Therefore,

1
(N) _ N o\ 2ym
i = S Oy D@ b (17)
Using Eq. (15), we find the Nth-order current of frequency
w=3"aw,tobe

Ny N H=D"

i = };}(3p J)Z;;;;;jfj;;;;5iv15vzv3~-5vN71vN

X EywEsy, ... Enyy +perm(1,2,...,N). (18)

Here and below, “perm” stands for permutations. Therefore,
Eq. (2) is proven with

—2)m!
DV = %( ). (19)

B. The Lorentz invariant fluid (Dirac fluid)

As we mentioned above, Eqgs. (14) imply that the charge
density p is a constant. From Lorentz invariance, the current
is j; = pu; and therefore ji(3) = pu?) . The flow velocity u
can be found from its nonlinear relation to the momentum
pi = Wyzui. The left-hand side is linear in electric field, thus
the third-order terms on the right-hand side must vanish:

0= Wuf3) + W(%E” + Wu(l)zuf-l). (20)
It follows that

IW 2
w® 2 (_) ng 2
W= “51) —_ O ”z(']) _ [ 28n0/S, + 4@ ”z('])-
w

! w
(2D
From the relativistic relation n = yn, we have
no = n(l —u?/2 + Ow")), (22)
Thus, n{ = nu™?/2 and
1 = L(Cie = Duu. 23)

Therefore, we arrive at
J@ = pu® = 3(Cie — D(p/ WY, 24)
which renders the third-order optical weight Eq. (5).

C. 2D Dirac fluid with a static magnetic field

The uniform hydrodynamic equations with a static magnetic
field are

1
O pi = pE; + pzeijkujBk, p=0, 9,5, =0. (25

The momentum density p is no longer strictly linear in E.
Below we focus on the 2D case, so the Dirac fluid is on x-y
plane and the static magnetic field is in the z direction. The
linear conductivity is modified to [9]

Dh / T

P (iwd;j — weeij), (26)

O','j =

where ¢; is the antisymmetric tensor in 2D, and w. =
eB/(m*c) is the hydrodynamic cyclotron frequency. Note that
w, 18, in general, not equal to the usual cyclotron frequency
because the hydrodynamic effective mass m* = W/(nv?) is
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not exactly the same as the quasiparticle effective mass in
a Fermi liquid. From the Euler equation, the third-order
momentum is related to the third-order flow velocity

1
.G 3
—lwspg ) = ,OZGijkM5~ e 27)

where w; is the frequency of the third-order current (the sum

frequency). Together with the relation
P = Wud + 5(1 = GWaMPu?,  (28)

we get the equation for the third-order current

My )Y = —(1 Ci) s W GOR0, (29)
where M = p 51, therefore
1 w
V= S0 = Co)imon@)( )
0
1 w.
= 5(1 - Cise)Flwsoia(ws)o—al(wl)ka(wZ)Gkn(wS)
X E1 Eym E3n + perm(1,2,3). (30)

The symmetrized third-order conductivity reads

o _ 1 4

w.
imn = 3 Cise)Flwsaia(ws)aal(wl)akm(wZ)Ukn(a)3)

+ perm(1,2,3)(/,m,n), (3D

where perm(1,2,3)(/,m,n) denotes the 3! = 6 permutations of
the indices (I,m,n) together with (1,2,3). Therefore, we have
proven that the third-order conductivity o is determined by
the linear one o.

For moderate magnetic field w, < w, and the case of a
single frequency w; = wy = w3 = w, we can expand o® to
linear order in B:

(3)
iD 4w,
3 . -
ai(lrr)m wg |:Ailmn + l—3wL Dilmn:| s (32)

where Eilmn = Slmein + (Slneim + 5mn6il'

D. Analysis of ¢®

The simple tensorial structure of Eq. (4) is a result of
rotational symmetry and local equilibrium nature of an ideal
charged fluid. For comparison, in the high-frequency ki-
netic/quantum regime of graphene, the tensorial structure of
o® is more complicated due to contributions from interband
transitions and disorder scattering effects [25,27,28]. In the
hydrodynamic regime, the interband transitions are suppressed
by fast e-e scattering, resulting in the simple expression of
Eq. (4).

The magnitude of hydrodynamic o® is also different from
that of the kinetic theory. Applied to graphene at 7 = 0, our
result for Df) is

8 €4vp
487 Rk

DT =0) = =2DY, (33)

which is twice the third-order spectral weight D,(f) from the
collisionless Boltzmann transport theory [22,25,28]. This dif-

ference could be measured by, e.g., third harmonic generation
to be discussed in Sec. V.

Comparing the third-order nonlinear response with the
usual linear one, we notice that the third-order current is
suppressed by the parameter

2
£= (‘ef/‘“) <1 (34)

m=*v

This factor is different in the nonrelativistic and the ultrarela-
tivistic regimes because m* depends on the Fermi momentum
pr. As a result, in the nonrelativisitic case, parameter & is
smaller by the factor of (vr/v)? < 1 than the ultrarelativistic
case. This factor vanishes for a system with the parabolic
dispersion, which corresponds to v — oo. Indeed, for such
a system, all nonlinearities at zero g should be absent because
of the Galilean invariance (Kohn’s theorem). On the other
hand, in graphene at zero temperature, which is an example of
the ultrarelativistic system, m*v = pp, so that & = (8p/pr)>.
Here 6p = —eE/w has the physical meaning of the amplitude
of electron momentum oscillation caused by the electric field.

The third-order conductivity Eq. (4) diverges at the zero
frequency limit, which is unphysical. In reality, the divergence
is curbed by the momentum relaxation rate I'y, similar to the
first-order conductivity. A simple but crude way to include
the effect of the momentum relaxation is to change all the
frequencies w, to ] = w, + ily. However, this approach
neglects the increase of entropy density due to momentum
relaxation. Thus, special care needs to be taken to compute
the true nonlinear dc response, as shown in Appendix B.

V. THIRD HARMONIC GENERATION

One quantity we can derive from o® [Eq. (4)] is the third
harmonic generation (THG) [28,36]. Assume the ac electric
field of the incident light is in the x direction:

E(t) = £ E(w)e ™ +c.c. (35)
The current, which determines the observable THG signal is

jO) =202 (0,0,0)E()’e™ 3 +c.c. (36)

XXXX

Therefore, 0¥ (w,w,w) represents the magnitude of the

THG. This quantity is plotted in Fig. 3 as a function of 7.

3

[\

Kinetic

THG (arb. units)

—

Temperature

FIG. 3. The THG signal as a function of temperature at fixed n.
The frequency of incident light is iw = /20 with & being the zero
temperature Fermi energy. The blue curve is the prediction of the
hydrodynamic theory Eq. (4), the green curve is from the RPA [27].
The observable signal should behave as sketched by the dashed curve.
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Also shown in Fig. 3 is the prediction of the conventional
theory based on random-phase approximation (RPA), [27,28],
which is valid in the kinetic regime. The two curves exhibit
different behavior. At zero temperature, the hydrodynamic
theory predicts the THG signal, which is twice that of the
kinetic theory. However, since I'ee = 0 at T = 0, the electron
system much be in the kinetic regime (Fig. 2), and so the actual
o (w,w,w) should be close to the kinetic theory value, as
sketched by the dashed line. As temperature increases, ['ee
grows, and the system will experience a crossover from the
kinetic to hydrodynamic regime at certain 7. This crossover
temperature is determined by I'ec(n,7*) = w. As temperature
increases further, the hydrodynamic third-order optical weight
drops as D\” oc (m*)™3 o« T=° due to the thermal enhance-
ment of the hydrodynamic effective mass m*(n,T). Therefore,
the THG drops much faster than what the conventional kinetic
theory would predict.

VI. THE KERR EFFECT AND THE DEMONS

The Kerr effect refers to the change of the effective
permittivity of a medium due to the third-order nonlinearity
[37,38]. For a 2D charged Dirac fluid, this effect is more
conveniently described as the shift of the effective conductivity.
One manifestation of the Kerr effect is the renormalization of
the frequency of the collective modes in a strong optical field.
In the kinetic regimes, these modes are the familiar plasmons
[36,39]. In the hydrodynamic regime, they are the demons
[17,20].

In general, to describe the collective modes, we need to
study response at a finite ¢g. For small enough ¢, we can
approximate the result using g = 0 quantities, as follows. The
charge density fluctuation could be represented by means of
the Fourier amplitude o, 4:

0= Puge 8 +cc. 37)

Assuming ¢ is in the % direction, the corresponding Fourier
amplitude of the electric field is E, = (—iq)v, 0w ¢, Where v,
is the Coulomb potential. In 2D, it is given by v, = 27 /kq.
The electric field induces the current

Jx(@) = 0(@)E, + 300 (0,0,—0)ELELE}.  (38)

XXXX
Using the charge continuity equation 9,0 + Vj = 0, we obtain

—iwp + q*vy0(@)p + 3q4v36§§x(m,a),—w)ppp* =0.
(39
The weak-field dispersion can be obtained from this equation

by dropping the last term. When this term is retained, the
dispersion acquires the frequency shift proportional to o:

3i
b0 = =400, (©,0,-0)|pu.q
3, 3 2
= —Eq Vg0 ey (@, 0,—W)|E 4| (40)

[To obtain this relation, we also assumed that the linear
conductivity has the Drude form o (w) oc w™'.] Applied to
Eq. (4), we obtain the fractional shift of the frequency of the

\®]
T

—_
T

Frequency (THz)

: 0 1000 2000 3000

Wave Vector (cm‘l)

FIG. 4. The dispersion of the demons in the hydrodynamic regime
of graphene. The black curve is for the weak field limit while the
red dashed curve includes the Kerr-effect-induced shift in a strong
field (E = 10* V/cm). The carrier density and temperature are n =
102 cm™2 and T = 300K.

demon:
Sw 9, DY 3
W = 20 v Eegl’ = == Gk, (4

where & is defined by Eq. (34). The negative sign of the shift
means the collective mode is softened by the strong field. The
reason for this is that the third-order conductivity is opposite
in sign compared to the linear one, which is due to the current j
being a concave function of the momentum density p in a Dirac
fluid. The results for the original and shifted demon dispersion
in graphene is illustrated by Fig. 4. It is remarkable that an
appreciable shift occurs already at a relatively low field of
E =10*V/cm.

VII. THIRD-ORDER CIRCULAR BIREFRINGENCE

In the presence of an applied magnetic field, there is a finite
second term xw, in Eq. (32), which causes the third-order
circular birefringence. As in Sec. IVC, let us consider a 2D
system subject to a normally incident monochromatic light of
frequency w with the electric field polarized in the x direction.
The generated third-order current has frequency w; = 3w and
has a nonzero y-component

XXXX

. . 3
jeBw) =0 Elw) = sz)E,

3 (4iw
yGBw) =0l EXw)=iD) = ——). @2
jyGo) = o Edw) =i D)) 5 = 2)
In the dissipationless limit, w is real, and j, has a 7 /2 phase
difference relative to j,. Therefore, the third harmonic light
will be elliptically polarized with the principal axis along x.
Its ellipticity, conventionally denoted by tan 6, is given by

Js

Jx

_4wc

tanf = = ——.
3w

(43)

Therefore, the ellipticity scales as w. = eB/m*c, which de-
cays with temperature if the carrier density » is fixed. This is
illustrated by Fig. 5 for the case of graphene. From Eq. (26),
there is also circular birefringence in the linear response, with
tan 0 = w./w, which differs only by the constant numerical
factor 4/3. It is also plotted in Fig. 5, for an easy comparison.
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0.2

Ellipticity
=

0 L
0 1
Temperature (10° K)

FIG. 5. Circular birefrigence in graphene according to the hydro-
dynamic theory. The blue line is the ellipticity of the third-harmonic
light (| E,/E,]|) as a function of temperature at n = 10> cm™2. The
black line is the ellipticity of the first-harmonic reflected light. The
frequency is @ = 1.41 THz, the magnetic field is B = 0.1 T. Inset:
illustration of the elliptical polarization.

VIII. DISCUSSION

We showed that the third-order nonlinear conductivity o>
of a Dirac fluid has a universal functional form for any mass,
chemical potential, temperature, and space dimension. It is
remarkable that the third-order and the linear conductivities are
simply related through Eqs. (5) and (31). Although we have
used graphene as an example in the numerical calculations,
our formulas, e.g., Egs. (4) and (5), hold for any Lorentz-
invariant Dirac fluid. As such, these formulas should be a good

J

approximation to surface states of topological insulators and
Dirac/Weyl semimetals, provided they are in the hydrodynamic
regime. We also studied the field-induced renormalization of
the dispersion of the collective modes (demons) and the third-
order circular birefringence in the presence of a static magnetic
field.

In the future, it would be interesting to investigate hydro-
dynamics of non-Dirac fluids, that is, systems without the
Lorentz symmetry. This will be important for more realistic
modeling of ultrapure solid-state systems where hydrodynamic
regime has been reported (GaAs, graphene, and PdCo0O;). In
the above systems, although the quasiparticle band dispersion
is approximately Dirac-like, the Coulomb interaction tends
to break this quasi Lorentz symmetry because it propagates
with the speed of light ¢ rather than v. Moreover, for ultrathin
slabs of Weyl semimetals, the contribution from the Fermi
Arc surface states might be appreciable. The latter forms an
electron fluid that breaks the rotational symmetry and therefore
needs special treatment. It would also be interesting to study
nonlinear thermal transport in the Dirac fluid. The case of
phonon fluids has been studied half a century ago [40].
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APPENDIX A: THERMODYNAMIC QUANTITIES IN GRAPHENE

For convenience, below we list the expressions for the thermodynamic quantities of graphene in the noninteracting limit. The

charge density n(w,T') [17] is

o] 1 MZ TC2 T2 T2
n= / Lf(n,T,€) — £(0,0,6)]g(e)de = —2—2[ 32 +4—2Liz(—6"/T)}, (AD)
—c0 T h vy 3 u m
where Li(x) is the polylogarithm function. The energy density n g is defined relative to the (u,7T) = (0,0) case:
00 2 T3 7.[2 " 1 /1«3
— _ —— 2,22 ii(—e T
ng = [m [f(w,T,e) — £(0,0,€)]eg(e)de = - hzv%[ 3T + 373 4 Liz(—e™ )j|
3 2 3
_ H T I —u)T
= ﬁh%% |:1 +7 2 12;L13(—e RISV, (A2)
The enthalpy density is W = %ng, the pressure is P = %n g, and the entropy density is
oP 1 2 T T T
5 = <_> = _’2’“_2[2712— — 12=Lip(—e Ty — 36—2Li3(—e-W)]. (A3)
or ), 3w h*vg 7 22 %
The hydrodynamic effective mass m*(u,T) is
1L W(u.T)
W T)= 5 ———r. A4
m*(w,T) o2 T (A4)
The dimensionless bulk isentropic modulus is
Cie = ! _ 1] (AS)
BT m? w d 2
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APPENDIX B: DERIVATION OF ¢® WITH MOMENTUM AND ENERGY RELAXATION

In the homogeneous case, the hydrodynamic equations are
0+ Ta)pi = pEi, dng=puE; —Tgdng —TiWu?, 8,0 =0, (B1)

where I'; is the phenomenological momentum relaxationrate, I'; can be called the cooling rate, dn g = ng — ngeqis the fluctuation
of energy density with respect to its steady-state value, and I'; is the relaxation rate of the center-of-mass kinetic energy of a
moving fluid. The last equation entails p is constant. Therefore jl-(S) = ,oul(-3), and the momentum p; is strictly linear in electric

field, same as the dissipationless case. The third-order velocity can be found from Eq. (20):

3 2\ (1
u® = —(WOSW +u)ud, (B2)
By rotational symmetry, the leading-order perturbation to the scalar quantities are second order in the electric field [20]:
1 2 wy —ill 2
n? = ——nou?, 2P = —2 "5 w0yl 4 perm, n'? =n? - wu®’, (B3)
2 w+wy+ilg

where “perm” stands for permutations among subscripts 1, 2, and 3, corresponding to frequencies w;, w,, and w3, respectively.
Note the difference between density ng and energy density n g in proper frame and their counterparts n, ng in laboratory frame.
With the second-order expansion of the enthalpy

W ow
wO= (=) aP+(—) D, (B4
8n0 nEo 3]’150 no

we are ready to write down the third-order flow velocity

JF .
u? = — LW _lno u% 4 oW @ ~ lrlf 1l + perm | — W02 +u? [u, (BS)

w ano nEo 2 8nEO no wr+wr+ilg o anEo o
where we defined ] = w, + iT";. The equation for the Fourier amplitude u® (w,) of the combined frequency w;, = w; + wy + w3
becomes

1 (oW 1 oW wf —ill oW
3 2 k m 1 1
Gy [ (== _ — 1 Uy Uy erm
: |:W<3”0)nm< 2n0)+ <8nE0>no<wl +a)z+i1“5) (anE0>no+ ]Ml/uz}usl P
_ [ Lmo(OWA (AW (oW or +o; = .Zirk uluSull + perm
2 W 81/1() nEo BnEo 1o 2 al’lE() 1o w + wy + lFE ]

1 oW 2iT; —ilg — 2iTy, M 1) 1
= | Cie—1- : 123 ' -
2|: se (3n50)n0< w) +wy + il )i|u1,bt2,u3, + perm (B6)

After the standard symmetrization procedure, Eq. (B6) renders o® with dissipation. The cooling rate I'z could arise due to
electron-phonon coupling and is crucial for eliminating the divergence of ¢ in the dc limit. In this dc limit, due to work done
by the electric field, the electron-hole fluid would be heated up by order E?/ 'z, thus inducing a large correction to the current
at the third order. This is a physical reason why setting 'z — 0 would lead to a diverging o®.

In the dissipationless limit, Eq. (B6) becomes Eq. (23). Moreover, it can be readily checked that if 'y + 2Ty = 2I'y, Eq. (B6)
becomes identical to Eq. (23) as well. Under this condition, the fluid dynamics becomes isentropic again: the kinetic energy is
lost to the environment due to momentum relaxation instead of converted into heat of the fluid.

APPENDIX C: RELATIVISTIC BOLTZMANN EQUATION

The relativistic Boltzmann equation is
(P"0, + FuP"3p,) fR(X, P) = I[fR], (ChH

where fr(X,P) is the relativistic distribution function and I[ fz] is the collision integral due to interactions. Note that the
space-time coordinate X* and the momentum P* = mu* are covariant ones. For a given X*, the distribution function fz(X,P)
can be defined as the density of world lines whose local tangent is P*. Mathematically, fx(X, P) is a scalar function defined on
the tangent bundle of the d + 1 dimensional space-time. If we focus on one species of particle with a fixed mass m, then fz(X, P)
is related to the ordinary distribution function through

frRX,P) = f(t,r,p)S(E* — p* —m?). (C2)
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We integrate Eq. (C1) over P to get the charge continuity equation:

3, J" =0,

JH = /dPP”fR(X,P) = /dp (1,v) f(t,r,p), (C3)

which is the second equation in Egs. (6).

Next, we multiply Eq. (C1) by P and again integrate it over P. We get the continuity equation for the energy-momentum

tensor,

9. T" = F)J",

1
™ = /dPP“P”fR(X,P) = /dp PP f(t.r.p), (C4)

which is the first equation in Egs. (6).
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