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Abstract

In April 2010, the Deepwater Horizon oil rig caught fire and exploded, releasing almost 5 million

barrels of oil into the Gulf of Mexico over the ensuing 3 months. Thousands of workers participated

in the spill cleanup and response efforts. The Gulf Longterm Follow-up Study (GuLF STUDY)

being conducted by the National Institute of Environmental Health Sciences (NIEHS) is an epidemi-

ological study to investigate potential adverse health effects among these response workers. Many

volatile chemicals were released from the oil into the air, including total hydrocarbons (THC) that

include benzene, toluene, ethylbenzene, xylene (BTEX), and hexane. Our goal is to estimate ex-

posure levels to these toxic chemicals for groups of workers in the study (hereafter called exposure

groups) with likely comparable exposure distributions. Although a large number of air measure-

ments was collected, many exposure groups are characterized by a large percentage of censored

measurements (below the analytic methods’ limit of detection) or small sample sizes. Here we use

THC, which is a composite of the volatile components of oil, the measurements of which have a low

degree of censoring, as a predictor to develop linear models for estimating BTEX and hexane air

exposure with higher degrees of censoring. We present a novel Bayesian hierarchical linear model

that allows us to model, for different exposure groups simultaneously, exposure levels of a second

chemical while accounting for censoring in both THC and the chemical of interest. We illustrate the

methodology by estimating exposure levels for exposure groups on the Development Driller III, a

rig vessel charged with drilling one of the relief wells. The model provided credible estimates in this

example for geometric means, arithmetic means, variances, correlations, and regression coefficients

for each group. This approach should be considered when estimating exposures in situations when

multiple chemicals are correlated and have varying degrees of censoring.

KEYWORDS Bayesian Statistics, Bivariate Left-Censoring, Correlation, Deepwater Horizon

Oil Spill, Exposure Assessment, total hydrocarbons (THC)

Introduction

On April 20, 2010, the Deepwater Horizon oil rig caught fire, exploded, and sank two days later,

resulting in the release of almost 5 million barrels of oil into the Gulf of Mexico over the ensuing 3

months. Thousands of workers were involved in the cleanup response (hereafter called response).

Oil releases many harmful chemicals into the air reported as total hydrocarbons (THC). Total

hydrocarbons is a composite of the volatile components of oil. Some of the more volatile components
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include benzene, toluene, ethylbenzene, and xylene (BTEX) as well as hexane. A review of the

literature by D’Andrea and Reddy (2014) found that increased exposure to these chemicals in

prior spills was associated with a variety of detrimental health effects. The National Institute for

Environmental Health Sciences (NIEHS) is conducting the GuLF STUDY to investigate potential

adverse health exposure to these chemicals. Once estimates of exposure levels have been developed,

epidemiologists will use these estimates to assess the relationships between various health outcomes

and these exposures.

Exposures were measured using passive dosimeters worn by workers. The over 24,000 personal

air samples (simultaneously measuring multiple chemicals resulting in about 140,000 measurements)

included a number of results at or below the analytic limits of detection(LOD). Even these low

levels of exposure are of interest because of possible additive or synergistic effects with other

exposures experienced at the time (e.g. other oil components, dispersants, particulates, heat, and

long working hours). Furthermore, the proportion of measurements below the LOD are a function

of the sensitivity of the method and duration of measurement. Therefore values may be below

the LOD because the test is insufficiently sensitive, not because they are necessarily negligible. In

addition, a low exposed group is often used in epidemiological studies as the reference population

to which higher exposed groups are compared. Thus, it is of interest to assess even these exposures

below the LOD.

We, therefore, sought a statistical model that allows us to predict exposure levels to oil-related

chemicals using the corresponding THC measurements because censoring is much more prevalent

among these other chemical measurements. Equally important, the statistical model must properly

account for uncertainty in the estimates. Specifically, we seek to quantify the uncertainty in our

estimate of each censored observation and account for that uncertainty in our estimate of the

relationship between oil-related chemicals and THC. This will allow us to gain insight over and above

approaches that substitute a single value for all values below the LOD. Therefore, we constructed

a hierarchical Bayesian regression modeling framework that accounts for censored observations in

both THC and the chemical of interest (including cases when both the chemical and THC are

censored). In this paper, we model THC as the predictor (X) and consider the response (Y ) to

be one of the following: benzene, toluene, ethylbenzene, xylene, or hexane. After establishing a

relationship between THC and each of these chemicals of interest, we can use this relationship to

generate relatively unbiased exposure estimates for each of these chemicals for groups of workers

expected to have similar distributions of exposures (hereafter called exposure groups, EGs).
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In the next section, we briefly describe the underlying chemistry for the relationship between

THC and the chemicals of interest and review the statistical methodology currently in use to

account for censored data. This is followed by a discussion of the importance of including censored

data when estimating exposures by presenting particularly striking data from one of the rig ships

in our study (the Discoverer Enterprise). Then we provide a description of the Bayesian modeling

framework and evaluate our methodology with a simulation study conducted at a various censoring

levels in X and Y , and conclude with an example of xylene exposure estimates, derived from this

method, for a subset of EGs on another rig ship (the Development Driller III ).

Background on the Relationships of Oil-related Chemicals

THC is a composite of the volatile components of crude oil that make up approximately 20% of the

crude oil released in the Deepwater Horizon spill. Only about 10% of the volatile components (or

2% of the composition of the crude oil) combined is attributed to BTEX and hexane. This means

for a particular exposure measurement, the concentration of the specific BTEX chemical or hexane

will be a small fraction of the THC concentration. The analytical method sensitivity of the BTEX

chemicals and hexane is more sensitive than that of THC (about 3 ppb for the former vs. 100 ppb

for THC). Considering that the BTEX and hexane components comprised less than 10% of the

THC by weight, the measurement data of the individual chemicals were more highly censored than

the THC measurements.

The bases for the relationships of the chemical components in oil or in other mixtures are the

Ideal Gas Law and Raoults Law (Stenzel and Arnold, 2015). The vapor concentration (VC) of a

pure chemical in the air above a chemical’s liquid surface, at a specific liquid temperature, is the

ratio of the chemical’s vapor pressure (VP) divided by the atmospheric pressure. With mixtures

such as crude oil, the VP of each chemical component in the mixture is lower than that of the pure

chemical. The degree of lowering is related to the chemical’s percent composition in the mixture

and its molecular weight. This lower VP is referred to as the chemical’s adjusted vapor pressure

(AVP). Once the AVP is determined, it can be divided by atmospheric pressure to estimate the

VC of the chemical component in the air above the mixture surface. If the composition (in mass

percent) of the mixture generating the vapor is constant, then the VC of each component will be

constant, resulting in the relative VCs of the components of the mixture being constant (Stenzel and

Arnold, 2015). This relative relationship of two components in the air can therefore be estimated
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from the correlation of the components in a group of two corresponding sets of air measurements.

The correlation approach is typically used in assessing exposure when analogous data from one

chemical in a mixture are used to estimate exposures to another chemical in the mixture.

The exposures to THC, BTEX and hexane, as experienced by workers who participated in

the Deepwater Horizon oil spill response, could have come from a number of sources including:

the spilled crude oil, various solvents used in cleaning agents or in paints, chemicals associated

with specific activities such as the drilling mud used in the drilling of the relief wells or chemicals

associated with operating the equipment and vessels, fuels, or engine exhausts. The chemical

composition, and concentration of those chemicals, varies substantially in these mixtures. If the

predominant source of the THC was crude oil, and the composition of the oil did not change, a

strong correlation should be observed between the measurement results for each of the chemical

components and THC across the various EGs. In contrast, if the predominant source of exposure

was the solvents and other chemicals in the workplace, weaker correlations would be expected

because the composition of the solvents and other chemicals likely varied across the products

used at the worksites and thus across the EGs. If the primary source was fuel exhausts, and

the composition of the fuel was relatively constant, which is not expected, a correlation would

be observed for those groups exposed to fuel or emissions, but the correlation would be different

from that observed related to crude oil. Only a small portion of the personal measurements were

collected on workers handling fuel or working near engine exhausts, and therefore this correlation

would impact a very limited number of EGs.

A complicating factor related to oil spills is that the composition of released crude oil does not

remain constant. The components in the oil can evaporate, dissolve into water, or be broken down

by sunlight or bacteria. These processes are referred to as oil weathering and will result in a change

in crude oil composition.

When the Deepwater Horizon sank it caused the oil to be released 5000 feet below the surface.

Some of the weathering occurred to the oil as it rose to the surface, but once oil reached the surface,

significant oil weathering occurred within a few days. During the period when the well was leaking,

fresh leaking oil replaced the weathered oil on the surface, leading to a pseudo steady state that

should result in an approximately constant crude oil composition and should lead to observable

and strong correlations over the period the oil was being released. In cases where the integrity of

the surface barrier of the oil or tar (arising from the weathered oil) was maintained, such as is the

case with undissolved submerged oil, the volatile components of the crude should remain within
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the crude oil plume or tar and only be released when the surface barrier is broken. Thus, release of

crude oil volatile components could occur after the well was capped at significant distances in space

or time from the original source of the spill. This phenomenon is also why the THC concentration

can vary over time and space. From the perspective of this paper, it is not necessary to definitively

identify the reason for the correlations between THC and the chemicals of interest, but rather, if, by

empirical observation, correlations are constant over a defined time period, then these correlations

can be used to estimate exposures to the THC components for the workers involved in the response.

Since the relationship is known to be linear in nature, we further assessed whether an intercept

was necessary using a cross-validation approach. From this analysis (not shown), we concluded

that including an intercept allowed us to predict exposure levels while minimizing the influence

of outlying observations. Additionally, chemical concentrations are often depicted on a ln scale to

better meet normality assumptions. This proved to be appropriate for our data. Therefore, the

final model uses an intercept and the natural log scale for both the predictor and response.

From the occupational health literature, it is known that exposures may differ across a variety

of determinants including job title, activity, and location. EGs are identified for a unique set of

determinants and therefore within an EG, exposure distributions are assumed to be similar. The

intensity of exposure can vary among EGs because of variations in tasks performed and the duration

of these tasks, but the correlations between the specific chemicals and THC concentrations should

be constant because the dominant source of the exposure is the crude oil. Since the ultimate goal

in exposure assessment is providing exposure estimates for each of these EGs, we simultaneously

modeled multiple EGs, each having its own intercept and slope coefficient to allow us to distinguish

different levels of exposure among these different EGs. To draw unbiased inferences, we allowed the

slope and intercept estimates to be influenced by other EGs in the model when censoring was high

or sample size was low. This makes the model estimates for particular EGs more stable because the

model formulates a global intercept and global slope estimate to use when information is limited.

Left Censoring Statistical Methods

Limited research exists on a statistical methodology that can account for left censoring in occu-

pational health data. Methods commonly used in occupational health studies with censored data

in one variable include classical methods where we impute the censored values. Some examples of

these methods include β-substitution, LOD/
√

2, and LOD/2. These methods are fully discussed

in Ganser and Hewett (2010). Although methods such as β-substitution were developed to find
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the best imputed single value, such imputative strategies may not properly account for the in-

herent uncertainty in the imputed estimates and may introduce bias if the estimate is based on

a small sample size or a high percentage of censored observations. A discussion of such substi-

tution methods, including β-substitution, maximum likelihood and simple Bayesian models using

non-regression approaches has been presented in Huynh et al. (2014, 2015).

Most statistical methods related to censoring focus on modeling survival data with a censored

response and/or censored predictor. Statisticians often use these methods to study informative

missingness, a situation where a particular known mechanism leads to missing or censored data.

For example, Herring et al (2004) studied non-ignorable missingness in covariates. Their methods,

however, only considered missing predictors and did not account for LOD left-censored responses.

May et al (2011) analyzed LOD-censoring in multiple covariates in a generalized linear model

framework using a Monte Carlo version of the Expectation Maximization (EM) algorithm. The

EM algorithm is a classical iterative procedure used to estimate parameters of a model using

expectations and by maximizing the likelihood. Likewise, Chen et al (2013) developed a framework

to account for left censoring due to LOD in a Bayesian longitudinal study of overall pesticide

concentrations measured over time, which were then used to predict pesticide poisoning symptoms.

While both these methods considered censoring in more than one variable, these methods did

not consider LOD-based censoring in multiple chemicals with possibly different LODs, and these

methods did not model multiple EGs. Classical approaches for accounting for censoring in both

response and predictors have been developed in Chu et al (2005), who used a likelihood based two-

component mixture model to assess the correlation between two immunodeficiency (HIV) viral load

measurements. Specifically, Chu et al assumed that X or Y could each be modeled by a mixture of

two distribution components rather than a single normal distribution. Our work looks to expand

this idea to a Bayesian context where we assess inference using a single component (compared

to multiple components). We use a bivariate normal distribution framework to represent linear

regressions and infer on both components X and Y .

Previous research by Huynh et al (2015) suggests that Bayesian models have advantages over

frequentist methods such as β-substitution for censored analyses in occupational health studies.

Comparing the frequentist methods of maximum likelihood estimation, β-substitution, and reverse

Kaplan Meier methods, Huynh et al (2014) concluded that the β-substitution method was less

biased and provided lower root mean squared error estimates than the other two methods under

conditions of high censoring (>50%) and small (n=5-10) sample sizes. After assessing these fre-
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quentist methods, Huynh et al (2015) compared Bayesian models to the β-substitution method.

At various censoring levels, Bayesian models performed similarly (for bias and root mean squared

error) to the β-substitution method for generating exposure estimates. The Bayesian models, how-

ever, also provided variance estimates, i.e. credible intervals, whereas the β-substitution method

did not provide equations for calculating confidence intervals for many statistics of interest to us

(i.e. geometric means, geometric standard deviations (GSDs) defined as the exponentiated standard

deviation of a variable on the ln scale, and 95th percentiles). Our contribution here is to expand

upon the earlier work of Huynh et al. (2014, 2015) and propose a method for regression settings

where either the dependent variable or the independent variable, or both, may be censored in one

or more EG(s).

Importance of Censored Data

Because of the high level of censoring in our data, we determined whether the presence of censored

data influences the relationship between oil-related chemicals. To do so, we analyzed data from var-

ious EGs on one of the drilling rigs charged with stopping the oil release, the Discoverer Enterprise.

While our primary analysis in this paper focuses on analysis of the Development Driller III, the

Discoverer Enterprise provided a particularly vivid example of the importance of censored data.

We considered the relationship of THC to the BTEX chemicals and hexane because we assumed

they all came from the source (i.e. crude oil) and THC had the lowest level of censoring. An overall

regression of all outside measurements of workers who spent most of the time on the outside of the

rig’s living areas, such as the galley and sleeping quarters was performed accounting for censoring

and not accounting for censoring, and 95% credible intervals were obtained for the slope and inter-

cept. We generally found that there was a difference in the intercepts and slopes between groups of

measurements with censored data and those without. For example, for benzene, approximately 86

percent of the measurements were censored as were 11 percent of the THC observations (Figure 1).

Using inverse-gamma priors on the variance components, we found that the 95% credible interval

for the slope was significantly positive when including censored data, while the credible interval for

the slope included 0 when censored data were excluded.

Although we recognize that bias cannot be formally assessed using the comparison of these two

datasets due to not knowing the true mean estimate, we believe, nevertheless, that these findings

cogently demonstrate that additional censored data apparently provide important information that
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could result in biasing the results if we omit them. If the slope was truly 0, we would expect

the benzene exposure levels to be constant for all levels of THC. This is contrary to expectations

arising from the oil composition. After accounting for censored information, we clearly saw that

lower THC levels were associated with lower benzene exposure levels, as expected from physical and

chemical laws. Similar discrepancies in slope and intercept estimates were found for the other four

chemicals when comparing non-censored models to models including censored data (not shown).

Thus, including the censored observations allows us to utilize more information over a wider range

of values and yields more statistical power (because of larger sample sizes) to detect significant

relationships between the chemicals.

Statistical Methods

First, consider a fairly standard hierarchical linear regression framework assuming that all mea-

surements on Y and X are above their respective LODs. Instead of focusing solely upon the

conditional distribution of Y |X, which proves restrictive when extending to censored or partially

observed measurement pairs (X and Y ), we prefer to work with a joint distribution for Y and X.

We build this joint distribution by first modeling X ∼ N(µ, σ2X) and then modeling the conditional

distribution Y |X ∼ N(β0 + β1X,σ
2
Y |X). A Bayesian hierarchical model is formulated by assigning

prior distributions on these parameters. We use a customary univariate normal prior for µ, the

mean of X with mean θµ and variance σ2µ, a bivariate normal prior for β = (β0, β1)
> with mean

vector µβ and variance-covariance matrix Vβ, and inverse-gamma priors for the variances σ2X and

σ2Y |X . This yields the joint distribution

IG(σ2Y |X | a, b)× IG(σ2X | c, d)×N(µ | θµ, σ2µ)×N(β |µβ,Vβ)

×
m∏
j=1

N(Xj |µ, σ2X)×
m∏
j=1

N(Yj |β0 + β1Xj , σ
2
Y |X) , (1)

where we use the standard parametrizations for the normal N(·, ·) and inverse-gamma IG(·, ·)

distributions, as given in, e.g., the text by Gelman et al. (2013). The shape parameters (a and

c) and scale parameters (b and d) in the IG densities stipulate the extent of prior information on

the variance components. For example, the a priori means for σ2Y |X and σ2X are
b

a− 1
and

d

c− 1
,

respectively, while the variances are
b2

(a− 1)2(a− 2)
and

d2

(c− 1)2(c− 2)
, respectively. Now consider

the situation we face: some measurements on X and Y are below LOD and, hence, not known
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exactly. Let LODj(X) and LODj(Y ) be the limits of detection on a ln scale for the j-th observation

on X and Y , respectively. Let CX = {j : Xj ≤ LODj(X)} and CY = {j : Yj ≤ LODj(Y )} be the

sets of indices for which Xs and Y s are censored, and let OX and OY denote the complements of

CX and CY , respectively. The Bayesian hierarchical model is the joint distribution

IG(σ2Y |X | a, b)× IG(σ2X | c, d)×N(µ | θµ, σ2µ)×N(β |µβ,Vβ)

×
∏
j∈OX

N(Xj |µ, σX)×
∏
j∈CX

TN(Xj |µ, σX ;−∞, LODj(X))

×
∏
j∈OY

N(Yj |β0 + β1Xj , σ
2
Y |X)×

∏
j∈CY

TN(Yj |β0 + β1Xj , σ
2
Y |X ;−∞, LODj(Y )) , (2)

where TN(Z |µ, σ2; a, b) denotes the truncated normal distribution with mean µ, variance σ2, and

truncated between a and b with −∞ ≤ a < Z < b ≤ ∞.

The above assumes that the relationship between Y and X remains the same across EGs. We

now extend (2) to multiple EGs by allowing the slope and intercept to vary across EGs. We call

this model the hierarchical Bayesian EG model. Let Yij and Xij be the j-th measurement on Y and

X, respectively, in exposure group i, where i = 1, 2, . . . , NEG, and j = 1, 2, . . . ,mi. With analogous

definitions of OX , OY , CX and CY , the joint distribution is

IW (Vβ |S, ω)×N(µβ |θµ,Vµ)×
NEG∏
i=1

N(µi | ν, γ2)×N(βi |µβ,Vβ)

×
NEG∏
i=1

IG(σ2Y |Xi | ai, bi)× IG(σ2Xi | ci, di)×
∏

(i,j)∈OX

N(Xij |µi, σ2Xi)

×
∏

(i,j)∈CX

TN(Xij |µi, σ2Xi ;−∞, LODij(X))×
∏

(i,j)∈OY

N(Yij |β0i + β1iXij , σ
2
Y |Xi)

×
∏

(i,j)∈CY

TN(Yij |β0i + β1iXij , σ
2
Y |Xi ;−∞, LODj(Y )) , (3)

where β0i and β1i are the intercept and slope parameters for exposure group i, µi is the mean

of X’s for each EG i, σ2Y |Xi is the conditional variance of Y |Xi for exposure group i and σ2Xi is

the variance of Xi for EG i. These two variances are assumed to be distributed independently

across the EGs as inverse-gamma distributions. While the shape and scale of these inverse-gamma

distributions are allowed to vary across the EGs in (3), in practice it is difficult to have strong

prior information regarding these distributions, so we will assume that ai = a, bi = b, ci = c

and di = d and specify values for a, b, c and d. The µi’s are also modeled a priori as normal
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distributions, independent across EGs. For prior distributions on the regression coefficients, we

define βi = (β0i, β1i)
> as the 2× 1 vector containing the intercept and the slope for EG i, which is

distributed as a bivariate normal distribution with mean µβ and a 2×2 variance-covariance matrix

Vβ. Again, these coefficients are assumed to be independent across EGs, but they borrow strength

by shrinking the EG means to µβ. Finally, µβ is assigned a Gaussian prior and Vβ is modeled a

priori with an inverse-Wishart (IW ) distribution with parameters S and ω (see, e.g., Gelman et

al., 2013).

The posterior distribution for the model parameters is proportional to the corresponding joint

distribution in the respective models (1), (2) and (3). The posterior distribution is evaluated using

numerical methods, arguably the most popular being Markov chain Monte Carlo (MCMC) algo-

rithms such as the Gibbs sampler and Metropolis-Hastings algorithms (see, e.g., Gilks, Richardson,

and Spiegelhalter, 1996; Marin and Robert, 2007; Carlin and Louis, 2008; Gelman et al. 2013;

Brooks, Gelman, Jones and Meng, 2011). MCMC algorithms produce samples from the marginal

posterior distribution of each unknown parameter in (1). All subsequent inference proceeds from

these samples. Models (1), (2) and (3) are easily implemented in both Openbugs and RJAGS and

easily evaluated. The code for these programs are provided in the supplementary materials.

Posterior Predictive Model Comparisons: D-statistics

Once the posterior distribution has been evaluated, e.g., using MCMC, Bayesian model assessment

often proceeds from simulating replicates of the observed data (e.g., Gelman et al., 2013). To be

specific, for (1), the joint posterior predictive distribution of the replicates for the i-th observation,

Yrep,i and Xrep,i, is given by

p(Yrep,i, Xrep,i | yobs, xobs) =

∫
N(Yrep,i |β0 + β1Xrep,i, σ

2
Y |X)×N(Xrep,i |µ, σ2

X)× p(θ | yobs, xobs)dθ , (4)

where yobs and xobs are the observed Y ’s and X’s, respectively, and θ = {β0, β1, µ, σ2X , σ2Y |X}. We

draw samples from (4) by first sampling θ(l) from the posterior distribution p(θ | yobs, xobs), then

sampling X
(l)
rep,i ∼ N(µ(l), σ

2(l)
X ), and finally sampling Y

(l)
rep,i ∼ N(β

(l)
0 + β

(l)
1 X

(l)
rep,i, σ

2(l)
Y |X). This is

repeated for i = 1, 2, . . . , n.

For the censored model (2), how the replicates will be generated depends upon how X and Y

have been measured. If both X and Y are above their respective LODs for the i-th observation,

the posterior predictive distribution is the same as in (4), and we generate the replicates Yrep,i

and Xrep,i as described above. When X is above the LOD for the i-th observation, we draw the
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replicates X
(l)
rep,i ∼ N(µ(l), σ

2(l)
X ) for each posterior sample θ(l). This is done irrespective of whether

Y is above its LOD for that observation.

Now suppose that for the i-th observation, Y is above its LOD, but X is below its LOD.

Bayesian inference treats unmeasured variables as unknown parameters, and any imputation of

unmeasured variables must be carried out by sampling from the posterior distribution of the un-

measured variable. To be specific, let Xc,i be the random variable denoting the unmeasured, or

censored, X for the i-th observation. Note that replicates are defined only for observed data, so Xc,i

is not a replicate and will not be used in model assessment. However, it will be sampled in order to

correctly sample the replicate Yrep,i. Using the posterior samples µ
(l)
X and σ

2(l)
X , we will draw X

(l)
c,i ∼

TN(µ
(l)
X , σ

2(l)
X ;−∞, LODj(X)). Then, for each X

(l)
c,i , we draw Y

(l)
rep,i ∼ N(β

(l)
0 + β

(l)
1 X

(l)
c,i , σ

2(l)
Y |X).

Finally, consider the model in (3). This extends (2) by allowing the parameters to vary by EG.

Sampling the replicates will be the same as for (2) with θ now being the collection of all model

parameters in (3).

For model comparisons, we use the replicated data to construct a “D-statistic” developed by

Gelfand and Ghosh (1998) as an option for Bayesian predictive model assessment. The “D-statistic”

can be computed for each model and can be used to compare different models fitted to the same

dataset. Specifically, we compare the replicated data to the observed data by computing a goodness-

of-fit measure G and a predictive variance P that penalizes more complex models. For (3), we

compute

G =
∑

(i,j)∈OY

(
yij − µYrep,ij

)2
+

∑
(i,j)∈OX

(
xij − µXrep,ij

)2
and P =

∑
(i,j)∈OY

σ2Yrep,ij +
∑

(i,j)∈OY

σ2Xrep,ij ,

(5)

where yij and xij are the observed measurements on Y and X, respectively, µYrep,ij and µXrep,ij

are the means, and σ2Yrep,ij and σ2Xrep,ij are variances of Yrep,ij and Xrep,ij , respectively. The means

and variances of Yrep,ij and Xrep,ij used in (5) are computed from their samples. We then calculate

D = G + P as a metric for comparing models. Lower D-statistics are preferred. See Gelfand and

Ghosh (1998) for theoretical details.
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Simulation Studies

Methods

We performed three simulation experiments under different levels of LOD censoring. Table 1

describes the parameters we set for all three scenarios. We started off by dividing a set of 300

observations into 10 groups of various sizes ranging from 9 to 92, which is similar to what we see

in the GuLF STUDY measurement data.

We set the true parameters using common characteristics of the data (not shown). Since

the model uses a natural logged response and predictor, the parameters listed reflect what the

parameters would be on the natural log scale for both X and Y . Specifically, we selected for each

group a slope parameter between 0.6 and 1, which, for example, corresponds to the slopes generally

found between ln(THC) (X) and ln(xylene) (Y ). Based on previous regression models, we set

intercept values between -2.5 and -0.5 (in ln(ppb) units), where an intercept can be interpreted as

the mean estimate of ln(xylene) when ln(THC) is 0.

Then, also using common characteristics of the data, we set the mean of X to be between 5 and

7.25 ln(ppb) (148.4 ppb and 1408.1 ppb). Next, we set the variances to be between 1.44 and 5.29

for X and 0.49 and 3.24 for Y |X, corresponding to GSDs ranging from 3.3 to 10 for X, and from

2 to 6 for a second chemical Y . We then generated Xs from N(µx, σ
2
X) and, for each generated X,

we drew a Y from N(β0i + β1iX,σ
2
Y |Xi), where µi, σ

2
Xi

, β0i, β1i, and σ2Y |Xi are as defined earlier.

The parameters described above were kept for all simulation studies. After assigning the param-

eters, three scenarios were defined. For the first scenario, the censoring levels were below 31% in

both X and Y , corresponding to lower levels of LOD censoring. In the second scenario, the censor-

ing on X remained the same as scenario 1, but we increased the censoring on Y to 25-50%. Finally,

in the third scenario, censoring on X remained as in scenario 1, but the censoring ranged from

25-70% in Y , to demonstrate a scenario with highly censoring (censoring > 50%) in the predicted

variable of some groups. Censoring levels among the groups varied within a scenario, allowing for

similar sample sizes to have different censoring levels. To be consistent, the percent censored in Y

was always greater than or equal to the percent censored in X (as is generally seen in our GuLF

STUDY data).

In order to create censoring, we determined the quantiles in each scenario corresponding to

above or below each percentage censoring. All values below the quantile were censored or became

missing. Following this, a set of LODs was assigned for each group in a uniform distribution just
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below the quantile chosen. This allowed for multiple LODs for each group, due to, in our data,

different durations of sampling (i.e. 4-18 hr). We implemented our Bayesian models by running

an additional 10,000 MCMC iterations after 5,000 initial iterations for burn-in. In our model,

we used inverse-gamma priors on the variance components. We also conducted simulation studies

using informative uniform priors on the standard deviations with GSDs ranging from 1.01 to 12.

Estimates of the intercept and slope parameters were similar, but the variance estimates varied

more under the inverse-gamma priors as expected. The results with uniform priors on the standard

deviations are included in the supplementary materials.

In our model, we used an inverse-Wishart prior on Vβ with 2 degrees of freedom. The 2 by

2 scale matrix of this prior had upper left element 200, lower right element 0.2, and 0 otherwise.

A normal prior was placed on µβ with a mean vector 0 and variance-covariance matrix Vµ. The

variance-covariance matrix Vµ had variances of 1,000,000 and covariances of 0. We used a normal

prior on each µi with mean 0 and variance 100,000 for all 10 groups. Then, finally, we used an

inverse-gamma distribution on the σ2Xi and σ2Y |Xi for each group with shape parameter 0.01 and

scale parameter 0.01.

We also compared our hierarchical Bayesian EG model in (3) with three simpler models for

each of the three scenarios described earlier. For model comparisons, we replicated the observed

Xs and observed Y s from the respective models. In the first model, only an intercept was included

for prediction of X and Y ; X was not used in the estimation of Y , and each group was modeled

separately. This assumed different variances for each group where we simply modeled means,

not accounting for additional information. The second model had a global intercept and global

slope, where groups were not modeled separately but as one group. The third model used varying

intercepts for groups but assumed that all groups had the same slope estimate. In all of the above

models, we account for censoring in X and Y . D-statistics were used to compare models.

Results

The results of the model comparison for all three scenarios indicate that the hierarchical Bayesian

EG model was preferred according to the D-statistic (Table 2). The D-statistic, in all scenarios, was

lower for the hierarchical Bayesian EG model than for the other three model types. This finding

demonstrates that if groups really did have their own intercept and slope estimates, the hierarchical

Bayesian EG model would be preferred over the simpler models. Across all three scenarios, modeling

the groups separately was meaningful. The D-statistics should not be compared across scenarios
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since the datasets between the three scenarios were fundamentally different due to the different

levels of censoring. G-statistics were consistently higher for the common intercept and common

slope model, indicating that there were great deviations between the replicates based on this model

and the real values. The real values were not generated based on a single regression line, and were,

as described above, based on individual regression lines per group. Thus, this finding was expected.

The credible intervals (CI) are provided for the intercept (β0), slope (β1), variance of X (σ2X),

and variance of Y |X (σ2Y |X) to see if they contained the true value of the parameter (Table 3). In

all scenarios, all parameters were contained within the credible intervals. In scenario 1, all slopes

were significantly positive, although group 6 was barely so. This particular group had a small

number of non-censored samples below 10 that likely led to the wide credible interval. Thus, slope

estimation was reasonable in this scenario and followed what we would expect based on the values

we provided. The upper bounds on the variance of X in groups 3 and 7 were quite high. However,

in both of these cases, we had set the highest variances for these parameters of the groups, so this

result was expected.

In scenario 2 with moderate censoring in Y (25-50% censoring), the credible intervals tended

to slightly wider for the slopes compared to scenario 1. With increased censoring, there was less

certainty and smaller non-censored sample sizes to estimate the true parameters. For group 6, the

slope was insignificant as seen from the 95% credible interval, which marginally includes 0. We note

that the 90% credible interval (not shown) did not include 0, indicating significance at this level.

For most groups, the upper bounds of the variance of Y |X increased from scenario 1 to scenario 2.

As censoring increased in Y , there may have been more variability that went into estimation of Y

at lower values of X, increasing the variance of Y |X in some cases.

In scenario 3 containing some high levels of censoring in Y , the group with the highest censoring,

group 2, had an increased median posterior intercept and a decreased median posterior slope

compared to scenarios 1 and 2 (medians not shown). Since censoring was relatively high in this

scenario, our model began to use inference from other groups to model this group. Overall, the

slopes for the other groups were lower than this group. Therefore, this group’s slope estimate at

very high levels of censoring closely reflected the slopes of other groups.

To summarize, these results highlight that the model performed well under a variety of levels

of censoring and that the 95% credible intervals contained the true parameters. It is expected that

as censoring increases the relationships will change, but the model clearly was able to generate

reasonable estimates and model the data adequately at levels < 70% censoring.
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Illustrative Example of the Deepwater Horizon Oil Spill

In this preliminary analysis, we focused on seven EGs who worked between May 15 and July 15,

2010 on the Development Driller III (DD3), a rig ship charged with drilling one of the relief wells.

During this time period, efforts by other vessels were being made to stop the oil release. In addition,

dispersants were being injected at the Gulf floor and on the surface of the water to break up the

oil and reduce atmospheric concentrations of oil-derived substances.

The EGs considered are summarized in Table 4. Censoring in the THC measurements ranged

from 0-25% and in the xylene measurements from 0-32.3%. Censoring was higher for xylene than

for THC in most of the groups. Sample sizes ranged from 6-96. A total of 169 observations was

considered in this analysis.

Inverse-gamma priors on the variance components were used for modeling. The prior parame-

ters used for modeling were the same as described in the simulation study, except with seven groups

instead of ten. We also used informative uniform priors on the standard deviation of THC and

standard deviation of xylene |THC. The GSDs for these informative priors were set to be between

1.01 and 12 for these parameters as these are the GSDs that have been observed in our GuLF

STUDY datasets. To test how influential the priors would be, both models were compared. The

GSD estimates tended to be higher in the inverse-gamma prior case, which influenced the upper

bounds of the parameter estimates. However, inference was not substantially changed between

models (most patterns remained consistent). Figures of the intercepts, slopes, correlation coeffi-

cients, geometric means (GM), GSDs, and arithmetic means (AM) using the uniform priors are

provided in the supplementary materials (Figures 8-14).

Convergence diagnostics, as assessed by Gelman Rubin statistics and trace plots, indicated

that convergence was almost immediate. The Gelman Rubin diagnostics were less than 1.2 for all

parameters of interest for the first 5,000 iterations of the model. Therefore, to ensure all parameters

had converged adequately, we used 25,000 iterations after 5,000 iterations of burn-in.

Figure 2 displays a plot of the non-censored datapoints and separate linear regression lines

for each EG. As demonstrated by this plot, particular EGs may have had slightly different linear

relationships. In general, most points tended to follow a linear trend that could be summarized by

a single regression line. However, the censored information must be included in order to know how

the relationships differ among EGs. The plot also indicates that a few of the observations may be

outliers. Nevertheless, since every point is considered important in our dataset, outliers were not
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excluded.

A model comparison like that performed for the simulation study was repeated for this dataset.

We compared our hierarchical Bayesian EG model to an intercept only model, a global slope and

intercept model, and an EG-specific intercept with a global slope model. As earlier, we used D-

statistics. In this case, the single intercept and slope model accounting for censoring in X and Y

had the lowest D-statistic of the models tested (Table 5). This is related to the relatively low degree

of censoring in this dataset and the highly linear trend among most of the non-censored data points

as shown in Figure 2. In addition, the P statistic was elevated in the hierarchical Bayesian EG

model because many additional parameters were estimated compared to other models. However,

we still argue that our hierarchical model provides additional inference that may be useful. While

the D-statistic indicates that the single slope and intercept was a good fit for the data, that model

doesn’t allow us to fully grasp the differences in the chemical relationship between ln(THC) and

ln(xylene) for these different EGs, since all groups were modeled together.

As previously discussed, limited work has been done to incorporate a linear relationship in

estimation while accounting for censoring in X and Y . From this model comparison, we can see that

a common slope with a common intercept model and common slope with varying intercept models

were superior to the intercept only model. Therefore, accounting for the additional information

from the linear relationship was useful.

The global parameter estimates from the hierarchical Bayesian EG model are displayed in

Table 6. The overall intercept posterior median estimate was -1.49 in natural log units, but this

estimate was not significant. The lack of significance suggests that when ln(THC)=0 (or THC=1

ppb), ln(xylene)=0 (or xylene=1 ppb). The global slope estimate was significantly positive with a

median posterior estimate of 0.70. This indicates that for every one unit increase in ln(THC), there

is a corresponding 0.70 ln unit increase in xylene. The large amount of variance in the intercept

(33.31) is likely due to the low accuracy and precision of the analytical method near the chemical’s

LOD. The relatively low variability in the slope estimate, however, suggests that there is likely to

be one major source generating these exposures.

Median and 95% credible intervals for the intercept, slope, correlation, GSD of xylene, GSD

of THC, GSD of xylene |THC, AM of THC, and AM of xylene are reported in Table 7. The

corresponding figures, including figures for the GMs, are included in the supplementary materials

(Figures 1-7).

The floorhand/roughneck and the operations technician/operator had the highest median es-
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timates for both THC and for xylene for the slope, GMs, GSDs and AMs, as well as the highest

credible intervals for these statistics. These groups were characterized by having some very high

and some very low measurements for each of the two chemicals (e.g., for the floorhand/roughneck,

the measurements ranged for THC >5000 ppb to <LOD of 100 ppb). These groups were directly

involved in the drilling, tasks that had the highest exposures, but the work also varied from day to

day and hour to hour, resulting in the high variability. The roustabout and crane operator (who

often worked together) and the ROV technician generally had low GMs and AMs for both THC

and xylene.

The correlation estimates between ln(THC) and ln(xylene) were all quite strong; all were sig-

nificantly positive with median posterior estimates above 0.6. The correlations were strongest

for the ROV EG (median correlation posterior estimate: 0.94) and IH-Safety (0.89). The floor-

hand/roughneck and operations technician/operator EGs had the lowest median correlation poste-

rior estimates but the credible intervals were once again very wide for both these EGs. Given the

variability of the tasks, these jobs may have more than one source of THC or xylene exposure.

Discussion

In general, these results demonstrated that this new method is promising for estimating exposures

under a variety of levels of censoring of multiple EGs. These findings suggest that we could be

biasing the exposure levels if we simply use the non-censored data to predict the mean exposure in

the study since we would be omitting known, and apparently important, information. Therefore,

it is important to include censored data information. Our model provides a potential avenue for

accounting for these censored data when left-censoring occurs in both X and Y in a linear regression

context. Our work highlights that the chemical relationship between two chemicals, such as the

BTEX or hexane and THC, can be used to estimate exposures when one chemical is less highly

censored.

Our simulation study showed that the model will perform well under low, moderate, and mod-

erate to high levels of censoring in Y while having censoring levels low in X. D-statistics indicated

that our model was consistently the best model in each scenario of the simulation study. All 95%

credible intervals contained the true simulated parameters. Estimation was relatively robust for

small sized EGs or with groups with higher levels of censoring.

Our application of the methodology to the GuLF STUDY data indicated patterns consistent
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with the measurement data and tasks being performed. Expected high exposure jobs that involved

a variety of tasks had higher levels of exposure, higher variability and wider credible intervals than

jobs that were expected to have lower levels of variability. Higher censoring and smaller sample

sizes increased the width of the credible intervals.

These results suggest that the correlation between THC and its volatile components may be a

powerful tool to use for generating exposure estimates, particularly when censoring is lower in one

chemical than in another chemical. The correlations were surprisingly strong (median posterior

estimates from 0.64 to 0.94) in all EGs allowing for this estimation to be robust. The strong

correlations indicate that we may be able to use them as Bayesian priors for the prediction of

xylene exposure when xylene exposure was not detected for EGs on a variety of other vessels in

the study.

This method also appears to more properly account for values below a LOD than other methods.

Instead of simply ignoring censored data or substituting a single value, we are able to fully estimate

the distribution of each chemical. We are able to use the known information that the chemical was

censored to generate estimates. This helps us avoid having potentially biased estimates.

Our results were dependent on the level of censoring. Although we used a range of censoring

for X and Y in the simulation study, for some EGs in the real study we see even higher levels

of censoring or even smaller sample sizes. This is likely to result in increased uncertainty, and

therefore, it is recommended that our model be used with caution at higher levels and smaller

sample sizes than evaluated here.

These results depended on the relationship between THC and its volatile components being

linear in nature. If the relationships were not linear, this methodology would not work sufficiently.

We also assumed that each volatile component on a ln scale was normally distributed. Other

distributions were not investigated.

Additionally, here one chemical was used for predicting each single BTEX chemical or hexane.

Future work should explore expanding this work to a scenario with multiple X censored variables.

It is possible that by including more than one chemical as predictors, we can obtain even stronger

estimates of exposure. Likewise, researchers should further investigate whether modeling the ob-

served values with truncated normal distributions above the LOD is statistically worthwhile over

that of modeling observed data as normally distributed.

19



Acknowledgments

We would like to thank Wendy McDowell, Tran Huynh, and other members of the GuLF STUDY

for their continued efforts. This research was supported by the Intramural Research Program of the

NIH, National Institute of Environmental Health Sciences (Z01 ES102945) and the NIH Common

Fund.

References

Brooks S, Gelman A, Jones G, Meng X. (2011) 1st ed. Handbook of Markov Chain Monte Carlo.

Boca Raton, FL: Chapman & Hall/CRC. ISBN 1420079417.

Carlin BP, Louis TA. (2008) 3rd ed. Bayesian Methods for Data Analysis. Boca Raton, FL:

Chapman & Hall/CRC. ISBN 1584886978.

Chen H, Quandt SA, Grzywacz JG, Arcury TA. (2013) A Bayesian multiple imputation method

for handling longitudinal pesticide data with values below the limit of detection. Environ-

mentrics; 24(2):132-42.

Chu H, Moulton LH, Mack WJ, Passaro DJ, Barraso PF, Muñoz A. (2005) Correlating two
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Tables and Figures

True Parameter Values Scenario 1 Scenario 2 Scenario 3

Group N β0 β1 σ2
X σ2

Y |X µx X < LOD (%) Y < LOD (%) X < LOD (%) Y < LOD (%) X < LOD (%) Y < LOD (%)

1 9 -1.50 0.70 2.25 1.00 5.50 22.2 22.2 22.2 33.3 22.2 33.3
2 50 -2.50 1.00 2.25 1.44 6.75 10.0 10.0 10.0 50.0 10.0 70.0
3 10 -2.00 0.80 4.00 3.24 6.50 20.0 30.0 20.0 30.0 20.0 40.0
4 92 -2.00 0.80 2.25 1.00 6.50 15.2 25.0 15.2 41.3 15.2 59.8
5 20 -1.50 0.70 1.44 0.49 6.80 5.0 10.0 5.0 35.0 5.0 35.0
6 12 -1.20 0.65 2.56 1.44 5.50 25.0 25.0 25.0 25.0 25.0 25.0
7 15 -2.00 0.80 5.29 3.24 6.20 13.3 13.3 13.3 26.7 13.3 33.3
8 14 -2.50 1.00 1.44 1.00 7.25 14.3 14.3 14.3 35.7 14.3 50.0
9 16 -0.50 0.60 2.25 1.69 5.00 18.8 25.0 18.8 43.8 18.8 43.8
10 62 -1.50 0.70 2.89 1.96 6.25 21.0 30.6 21.0 30.6 21.0 59.7

Table 1: Simulation study scenarios for assessing oil-related chemical exposure. β0 is the intercept, β1 is the slope, σ2X is the variance of
X, σ2Y |X is the variance of Y |X, and µx is the mean of X.

Scenario Model D-Statistic P G
1 Intercept Only Model 2710.0 1681.7 1028.4

Common Intercept and Common Slope 2775.0 1591.8 1183.3
Common Slope and Varying Intercepts 2748.5 1706.6 1041.8
Hierarchical Bayesian EG Model 2690.8 1664.1 1026.6

2 Intercept Only Model 2656.6 1632.0 1024.6
Common Intercept and Common Slope 2731.8 1535.3 1196.5
Common Slope and Varying Intercepts 2635.5 1617.9 1017.6
Hierarchical Bayesian EG Model 2602.9 1595.9 1007.0

3 Intercept Only Model 2517.0 1476.5 1040.5
Common Intercept and Common Slope 2555.1 1362.1 1193.0
Common Slope and Varying Intercepts 2415.1 1431.5 983.6
Hierarchical Bayesian EG Model 2404.2 1417.8 986.4

Table 2: Model Comparison: Simulation study of models for assessing exposure to oil-related chemicals
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Scenario1 Scenario 2 Scenario 3

β0 β1 σ2
X σ2

Y |X β0 β1 σ2
X σ2

Y |X β0 β1 σ2
X σ2

Y |X
Group CI CI CI CI CI CI CI CI CI CI CI CI
1 (-4.89, -0.56) (0.46, 1.23) (0.72, 12.29) (0.20, 2.30) (-5.30, -0.50) (0.44, 1.28) (0.67, 9.96) (0.21, 3.23) (-5.17, -0.43) (0.44, 1.25) (0.67, 9.02) (0.21, 3.40)
2 (-3.19, -0.80) (0.74, 1.11) (1.93, 4.51) (0.73, 1.71) (-4.29, -0.96) (0.75, 1.22) (1.95, 4.64) (0.84, 2.80) (-3.65, 0.14) (0.66, 1.14) (1.93, 4.54) (0.48, 2.26)
3 (-4.63, 1.96) (0.20, 1.00) (2.55, 27.37) (0.77, 9.88) (-4.98, 1.94) (0.20, 1.04) (2.59, 28.67) (0.77, 10.81) (-5.64, 2.00) (0.20, 1.09) (2.57, 26.46) (0.87, 14.75)
4 (-3.13, -1.05) (0.68, 0.96) (1.78, 3.46) (0.63, 1.27) (-3.12, -0.83) (0.66, 0.96) (1.77, 3.43) (0.51, 1.13) (-3.38, -0.48) (0.62, 0.98) (1.76, 3.41) (0.48, 1.31)
5 (-2.59, 2.00) (0.19, 0.87) (0.62, 2.42) (0.43, 1.85) (-3.63, 1.42) (0.28, 1.00) (0.64, 2.47) (0.32, 2.00) (-3.59, 1.37) (0.29, 0.99) (0.64, 2.49) (0.32, 1.97)
6 (-3.33, 2.12) (0.01, 0.89) (1.38, 10.95) (0.69, 8.14) (-3.60, 2.16) (-0.01, 0.92) (1.38, 11.93) (0.68, 8.40) (-3.60, 2.03) (0.01, 0.92) (1.34, 10.49) (0.69, 8.02)
7 (-5.40, -1.36) (0.57, 1.15) (3.04, 15.76) (0.83, 4.87) (-6.43, -1.77) (0.61, 1.27) (3.17, 19.30) ( 0.83, 5.82) (-6.63, -1.71) (0.62, 1.30) (3.05, 16.65) (0.62, 4.55)
8 (-4.31, 1.98) (0.39, 1.21) (0.60, 3.69) (0.55, 3.37) (-5.22, 2.42) (0.33, 1.30) (0.61, 3.78) (0.60, 5.20) (-5.48, 2.54) (0.28, 1.28) (0.60, 3.83) (0.77, 11.13)
9 (-2.86, 1.30) (0.22, 0.91) (1.86, 10.70) (0.78, 5.07) (-4.12, 1.25) (0.22, 1.04) (1.90, 11.26) (0.83, 8.20) (-4.06, 1.22) (0.22, 1.05) (1.85, 11.14) (0.81, 7.42)
10 (-3.03, -0.40) (0.50, 0.87) (2.63, 6.07) (0.99, 2.47) (-3.11, -0.46) (0.50, 0.88) (2.65, 6.02) (0.97, 2.53) (-4.26, -0.66) (0.53, 0.99) (2.68, 6.16) (0.92, 3.21)

Table 3: Simulation study credible intervals for parameters in our hierarchical Bayesian EG model. β0 is the intercept, β1 is the slope,
σ2X is the variance of X, and σ2Y |X is the variance of Y |X. The median and 95% credible intervals (CI) are reported for each parameter.
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Exposure Group N % Censored THC % Censored Xylene
Derrick Hand 6 0.0 0.0
Floorhand/Roughneck 10 10.0 10.0
Crane Operator 16 12.5 31.3
Roustabout 96 19.8 32.3
Operations Technician or Operator 10 20.0 20.0
ROV Technician 12 25.0 25.0
IH-Safety 19 10.5 5.3

Table 4: Description of EGs (Number of EGs=7) on the DD3 May 15-July 15, 2010 assessed in
this preliminary analysis as part of the GuLF STUDY.

Model D-Statistic P G
Intercept Only Model 772.0 479.1 292.8
Common Intercept and Common Slope 732.4 406.0 326.4
Common Slope and Varying Intercepts 750.3 440.6 309.8
Hierarchical Bayesian EG Model 790.2 471.0 319.2

Table 5: Model Comparison of models for accessing worker exposure to xylene on the DD3

Model Parameter Median 95% Credible Interval
µβ0

-1.49 (-6.47, 3.46)
µβ1 0.70 (0.45, 0.97)
Σ11 33.31 (13.06, 123.21)
Σ22 0.06 (0.02, 0.27)
ρ(µβ0

, µβ0
) -0.16 (-0.75, 0.58)

Table 6: Preliminary Results:DD3 May 15-July 15, 2010 hierarchical Bayesian EG model global
parameter estimates
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Derrick Hand Floorhand/Roughneck Crane Operator Roustabout Operations Technician ROV Technician IH-Safety
or Operator

Parameter Median 95% CI Median 95% CI Median 95% CI Median 95% CI Median 95% CI Median 95% CI Median 95% CI
Intercept -1.98 (-4.76, 0.86) -1.65 (-4.67, 1.24) -1.34 (-3.51, 0.61) -2.84 (-4.29, -1.51) -0.96 (-3.86, 1.65) -1.03 (-2.49, 0.21) -0.49 (-1.73, 0.58)
Slope 0.76 (0.36, 1.17) 0.72 (0.33, 1.13) 0.62 (0.32, 0.95) 0.91 (0.69, 1.14) 0.68 (0.28, 1.09) 0.64 (0.44, 0.86) 0.59 (0.43, 0.78)
Correlation 0.78 (0.32, 0.97) 0.64 (0.27, 0.89) 0.69 (0.35, 0.88) 0.70 (0.57, 0.80) 0.67 (0.27, 0.91) 0.94 (0.77, 0.99) 0.89 (0.70, 0.96)
GSD of THC 2.55 (1.73, 8.50) 4.63 (2.72, 16.11) 2.90 (2.12, 5.21) 3.09 (2.63, 3.83) 5.45 (2.88, 25.05) 3.24 (2.08, 9.05) 2.68 (2.00, 4.57)
GSD of Xylene |THC 1.76 (1.38, 3.70) 3.76 (2.32,11.79) 2.00 (1.57, 3.39) 2.82 (2.40, 3.50) 3.48 (2.12, 12.38) 1.31 (1.19, 1.66) 1.36 (1.24, 1.61)
GSD of Xylene 2.64 (1.80, 7.55) 6.04 (3.31, 20.47) 2.68 (1.95, 4.86) 4.32 (3.46, 5.80) 5.87 (3.02, 25.49) 2.24 (1.65, 4.55) 1.95 (1.63, 2.67)
AM of THC (ppb) 1472 (701, 12168) 3454 (1170, 60690) 871 (503, 2321) 675 (517, 944) 2050 (601, 98761) 852 (420, 5030) 889 (554, 2016)
AM of Xylene (ppb) 42 (20, 277) 144 (39, 3487) 20 (12, 50) 35 (24, 59) 121 (33, 4747) 23 (15, 57) 32 (24, 50)

Table 7: Preliminary Results: DD3 May 15-July 15, 2010 hierarchical Bayesian EG model parameter estimates
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Figure 1: Comparing slope 95% credible intervals for only non-censored observations and for all out-
side observations (censored and non-censored) on the Enterprise in the THC and benzene datasets.
The dots in each bar represent the median posterior samples.
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Figure 2: Non-censored relationships by EG on the DD3 from May 15-July 15, 2010. The plot
displays all the non-censored datapoints for each EG and the corresponding linear relationship for
each of those non-censored EG datasets.
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