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Hybrid Stabilization of Linear Systems with
Reverse Polytopic Input Constraints

Pedro Casau, Ricardo G. Sanfelice, Carlos Silvestre

Abstract—This paper addresses the problem of globally uni-
formly exponentially stabilizing a linear system to the origin
by output feedback while avoiding a prescribed set of input
values. We consider that the set of input values to avoid is
given by the union of a finite number of closed polytopes that
do not contain the origin and we refer to this restriction as a
reverse polytopic input constraint. We show that the synthesis
of the hybrid controller can be performed by solving a set of
linear matrix inequalities for the full state feedback case, and
by solving a set of bilinear matrix inequalities for the output
feedback case. The resulting closed-loop hybrid system is shown
to satisfy key conditions for well-posedness and robustness to
small measurement noise. Furthermore, we apply the proposed
hybrid controller to the stabilization of a single-input linear
system subject to reverse polytopic constraints on the norm of
the input. The behavior of the corresponding closed-loop hybrid
system is validated by simulations.

I. INTRODUCTION

A. Background & Motivation

The development of controllers for systems subject to input

constraints has been on the spotlight over the last few decades.
In [1], it was shown that the global asymptotic stabilization

of linear systems subject to saturation constraints by static

state feedback is possible if and only if the system is small-
input asymptotically null-controllable, that is, if there exists

a globally stabilizing control law for arbitrarily small bounds

on the input. Moreover, to find such controller the plant must
not have eigenvalues with positive real part, as shown in [2].

Alternatively, it is possible to semi-globally exponentially sta-

bilize input-constrained linear plants with no eigenvalues with
positive real part using linear feedback, as shown in [3], [4],

that is, for each compact set of initial conditions, there exists

a linear feedback that exponentially stabilizes all solutions
starting from that set, without violating the constraints. More

recently, the problem of semi-global stabilization with rate

and magnitude constraints on the input has been addressed
in [5]. Finally, let us remark that a more computationally
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expensive method for the stabilization of linear systems subject

to input constraints consists on the real-time computation of
a finite input sequence that minimizes a given cost function

and that belongs to a given (bounded) set [6], [7]. The set
of input constraints is usually considered to be a polytope,

because these sets can be described by a finite number of

linear inequalities, rendering the optimization problem easier
to solve.

The aforementioned control strategies can be used for
asymptotic or semi-global stabilization of underactuated me-

chanical systems, for example. Unfortunately, solutions to

these problems often overlook the situations where continuous
control laws are ineffective (see e.g. [8, Eq. (25)]). The limi-

tations of continuous feedback in the stabilization of dynamic

systems were first recognized in [9] and [10], providing the
motivation for the research of nonsmooth control techniques

which is still a topic of active research. In this paper, we

acknowledge the limitations of continuous feedback, and make
use of novel hybrid control techniques to address the problem

of stabilizing a linear system subject to reverse polytopic input

constraints. This constraint can be used to enclose a set of
input values that should be avoided by the controller. Particular

applications where such constraints may be useful include:
1) the stabilization of a quadrotor vehicle, where one wishes

to avoid the free-fall condition (c.f. [11]); 2) tracking for an

autonomous surface vehicle, where the condition of zero thrust
should be avoided (c.f. [12]); 3) spacecraft stabilization by

means of two control moment gyros, where the gimbal-locking

condition is to be avoided (c.f. [13]). We make extensive use
of the hybrid systems framework in [14] which, in particular,

provides conditions for the stability of a set for a hybrid system

under the influence of small perturbations.

B. Contributions & Organization of the Paper

In Section III, we address the problem of designing a controller

that globally uniformly exponentially stabilizes the origin of
a linear plant subject to polyhedral input constraints. The

proposed hybrid controller relies on appropriate switching

between multiple linear controllers that must satisfy the fol-
lowing conditions: 1) each linear controller must be a stabi-

lizing controller for the linear plant in the absence of input

constraints, and; 2) there must be a large enough number
of linear controllers to guarantee that, whenever the input

approaches the unwanted polyhedra, another controller that

does not violate the input constraints is available in the
collection. Under the previous conditions, we show that the

maximal solutions to the closed-loop system are complete, the
origin of the linear plant is globally uniformly exponentially

stable, and the stability is robust to small perturbations.

In Section IV, we show that if the region of input values
to avoid is a polytope that does not contain the origin, then
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it is possible to stabilize the linear system and avoid the

given input values by switching between two linear controllers.

Interestingly, these controllers can be designed using controller
synthesis tools from the literature of robust control. In Sec-

tion IV-A, we demonstrate the applicability of the proposed

strategy to the stabilization of a single-input system subject
to constraints on the norm of the input and we compare

the hybrid feedback that we propose with saturated feedback

for the double integrator, under the influence of exogenous
disturbances. In Section V, we provide some concluding

remarks and, in the next section, we introduce some notation

as well as fundamental results that are used throughout the
paper. The paper [15] is a preliminary version of this work that

deals with the problem of stabilizing a linear system subject to
singular constraints of the input, rather than reverse polytopic

constraints.

II. PRELIMINARIES

N denotes the set of natural numbers and 0. Rn denotes

the n-dimensional Euclidean space, with the inner product
〈u, v〉 = u⊤v defined for each u, v ∈ Rn, and the in-

duced norm |v| =
√
〈v, v〉 for each v ∈ R

n. For each
i ∈ {1, 2, . . . , n}, ei ∈ Rn is equal to zero, except the i-
th entry, which is equal to 1 and 1n ∈ Rn denotes a vector

where each entry is equal to 1. Given v, u ∈ R
n, we say

that v � u (v � u) if e⊤i v ≤ e⊤i u (e⊤i v ≥ e⊤i u) for each

i ∈ {1, 2, . . . , n}. Similarly, we say that v ≺ u (v ≻ u) if
e⊤i v < e⊤i u (e⊤i v > e⊤i u) for each i ∈ {1, 2, . . . , n}. The set

of n×m matrices with real entries is denoted by Rn×m. The

set of n × n real symmetric matrices whose eigenvalues are
positive (non-negative) is denoted by Sn>0 (Sn≥0). Similarly, the

set of n × n real symmetric matrices whose eigenvalues are

all negative (non-positive) is denoted by Sn<0 (Sn≤0). We use

(v, u) in place of
[
v⊤ u⊤

]⊤
at times as each element (v, u)

of a product space Rn ×Rm can be identified with a column

vector as follows: (v, u) =
[
v⊤ u⊤

]⊤
.

The interior of a set S ⊂ Rn is denoted by intS, its closure

is denoted by clS, and its boundary is denoted by bdS. The
polar set of S ⊂ Rn is

S◦ :=
⋂

x∈S

{y ∈ R
n : 〈x, y〉 ≤ 1}.

The convex hull of a set S ⊂ Rn is the set of all possible

convex combinations of points within S and it is denoted by
conv(S). The domain of a set-valued map M : Rm ⇒ Rn is

given by domM := {x ∈ Rm : M(x) 6= ∅}. A polyhedra

P(M,m) ⊂ R
p is given by

P(M,m) := {u ∈ R
p : Mu � m} (1)

for some (M,m) ∈ Rs×p × Rs and for some s ∈ N\{0},
see [16] for more information.

Lemma 1. For each (M,m) ∈ Rs×p×Rs and for each δ > 0,

we have that P(M,m) ⊂ P(M,m+1sδ).

Lemma 2. For each (M,m) ∈ Rs×p×Rs and for each δ > 0,

if P(M,m) 6∈ {∅,Rp} then

P(M,m+1sδ) 6∈ {∅,Rp}, (2a)

P(M,m) ⊂ int(P(M,m+1sδ)). (2b)

Proof. If P(M,m+1sδ) = ∅, then it follows from Lemma 1 that
P(M,m) ⊂ P(M,m+1sδ) = ∅, which is a contradiction, since

we have assumed that P(M,m) 6= ∅. On the other hand, if

P(M,m+1sδ) = Rp, then M = 0 and m+ 1sδ � 0 (any other

combination of values for M and m + 1sδ would generate
either the empty set or a finite intersection of halfspaces

(c.f. [16, Section 1.1]). Since M = 0 in this case, it follows

that P(M,m) is equal to either Rp or ∅, which is a contradiction.
This proves (2a). The boundary of P(M,m+1sδ) is given by

bd
(
P(M,m+1sδ)

)
=

s⋃

i=1

{u ∈ R
p : e⊤i Mu = e⊤i (m+ 1sδ)}

∩ P(M,m+1sδ),

(c.f. [16, Theorem 8.2]). Since P(M,m+1sδ) is not equal to

∅ nor R
p, then, from the observation that no points in the

boundary of P(M,m+1sδ) belong to P(M,m), it follows that

P(M,m) ⊂ int(P(M,m+1sδ)). This concludes the proof of (2b).

Lemma 3. Given (M,m) ∈ Rs×p ×Rs, the following holds:

P(M,m) ∩ cl(Rp\P(M,m+1sδ)) = ∅ (3)

for each δ > 0.

Proof. Given (M,m) ∈ Rs×p × Rs, we have that

cl(Rp\P(M,m+1sδ)) =

s⋃

i=1

{u ∈ R
p : e⊤i Mu ≥ e⊤i (m+ 1sδ)}

Therefore, for each u ∈ cl(Rp\P(M,m+1sδ)), it follows that

e⊤i Mu ≥ e⊤i (m+ 1sδ), for some i ∈ {1, 2, . . . , s}. However,
if u ∈ P(M,m) then it satisfies e⊤i Mu ≤ e⊤i m, for each

i ∈ {1, 2, . . . , s}; hence, since δ > 0, u ∈ Rp does not

belong simultaneously to cl(Rp\P(M,m+1sδ)) and P(M,m),
which proves (3).

Theorem 1. Given (M,m) ∈ Rs×p×Rs for some s ∈ N\{0},

if P(M,m) is bounded, then there exists a ∈ Rs such that a ≻ 0,

M⊤a = 0, and 1
⊤
s a = 1.

Proof. Let mi = e⊤i m for each i ∈ {1, 2, . . . , s} and

let M̃ ∈ Rs×p be such that e⊤i M̃ = e⊤i M/mi for each

i ∈ {1, 2, . . . , s}. Since e⊤i Mx ≤ mi ⇐⇒ 1
mi

e⊤i Mx ≤ 1
for each x ∈ Rp, then

P(M,m) = P
(M̃,1s)

. (4)

From [16, Theorem 9.1] and (4), it follows that

P◦
(M,m) = conv

(
{0, M̃⊤e1, M̃

⊤e2, . . . , M̃
⊤es}

)
.

It follows from [16, Theorem 6.1] and the assumption that
P(M,m) is bounded that 0 ∈ int(P◦

(M,m)). Thus, using the

definition of convex hull, we see that P◦
(M,m) can be rewritten

as follows

P◦
(M,m) = {x ∈ R

p : x = M̃⊤b for some b � 0, 1
⊤
s b = 1}.

(5)

In particular, since 0 ∈ int(P◦
(M,m)), it follows that there exists

ǫ > 0 such that ǫB := {x ∈ Rp : |x| < ǫ} ⊂ int(P◦
(M,m)).

Hence, ǫ M̃⊤ei

|M̃⊤ei|
∈ P◦

(M,m), which, from (5), implies the

existence of bi ∈ Rs satisfying M̃⊤bi = −ǫ M̃⊤ei

|M̃⊤ei|
, bi � 0

and 1
⊤bi = 1 for each i ∈ {1, 2, . . . , s}. Let

ãi :=

∣∣∣M̃⊤ei

∣∣∣

ǫ

(
1 +

|M̃⊤ei|
ǫ

)bi +
1(

1 +
|M̃⊤ei|

ǫ

)ei
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for each i ∈ {1, 2, . . . , s}. It is straightforward to verify that

M̃⊤ãi = 0, 1⊤
s ãi = 1 and ãi � 0 for each i ∈ {1, 2, . . . , s}.

In particular, since e⊤i bi ≥ 0 and ǫ > 0, it follows that

e⊤i ãi ≥
ǫ

ǫ+
∣∣∣M̃⊤ei

∣∣∣
> 0,

for each i ∈ {1, 2, . . . , s}. Then, defining a := 1
s

∑s
i=1 ãi, it

follows that M̃⊤a = 0, 1⊤
s a = 1 and a ≻ 0, which concludes

the proof.

A hybrid system H with state space Rn is defined as

follows:
ξ̇ ∈ F(ξ) ξ ∈ C

ξ+ ∈ G(ξ) ξ ∈ D
(6)

where C ⊂ Rn is the flow set, F : Rn ⇒ Rn is the flow map,

D ⊂ Rn denotes the jump set, and G : Rn ⇒ Rn denotes the

jump map. A solution ξ to H is parametrized by (t, j), where
t denotes ordinary time and j denotes the jump time, and its

domain dom ξ ⊂ R≥0 × N is a hybrid time domain: for each
(T, J) ∈ dom ξ, dom ξ∩ ([0, T ]×{0, 1, . . .J}) can be written

in the form ∪J−1
j=0 ([tj , tj+1], j) for some finite sequence of

times 0 = t0 ≤ t1 ≤ t2 ≤ · · · ≤ tJ , where Ij := [tj , tj+1]
and the tj’s define the jump times. A solution ξ to a hybrid
system is said to be maximal if it cannot be extended by

flowing nor jumping and complete if its domain is unbounded.

The projection of solutions onto the t direction is given by
ξ↓t(t) := ξ(t,J (t)) where J (t) := max{j : (t, j) ∈ dom ξ}.
If a hybrid system satisfies the so-called hybrid basic condi-

tions, then its set of solutions has good structural properties,
which, in particular, enabled the development of a robust

stability theory for hybrid systems [14, Assumption 6.5]. Let

A ⊂ R
n denote a closed set and |ξ|A := infy∈A |ξ − y|.

The set A is globally uniformly exponentially stable in the

t-direction for the hybrid system H if each maximal solution

ξ is complete with dom ξ unbounded in the t-direction and if
there exist strictly positive real numbers k, λ such that each

solution ξ satisfies

|ξ(t, j)|A ≤ k exp(−λt) |ξ(0, 0)|A (7)

for each (t, j) ∈ dom ξ. The gradient of a function V : Rn →
R at ξ is denoted by ∇V (ξ) and the generalized directional

derivative of V evaluated at ξ with direction v is denoted by

V •(ξ, v) (see [17] for more information).

Theorem 2. If the hybrid system (6) satisfies the hybrid basic

conditions [14, Assumption 6.5], then a closed set A ⊂ R
n

is globally uniformly exponentially stable in the t-direction

for (6) if each maximal solution ξ to the hybrid system is

complete and there exist positive real numbers α, α, η, p and

a continuous function V : Rn → R that is locally Lipschitz

on an open neighborhood of cl(C) satisfying

α |ξ|pA ≤ V (ξ) ≤ α |ξ|pA ∀ξ ∈ C ∪ D ∪ G(D) (8a)

V •(ξ, f) ≤ −ηV (ξ) ∀ξ ∈ C, f ∈ F(ξ) (8b)

V (g) ≤ V (ξ) ∀ξ ∈ D, g ∈ G(ξ) (8c)

G(D) ∩ D = ∅. (8d)

Proof. Let ξ denote a solution to (6) defined for each

(t, j) ∈ dom ξ and, with a slight abuse of notation, let

V (t, j) := V (ξ(t, j)). From (8a), we have that V (t, j) is non-
negative for each (t, j) ∈ dom ξ. From (8b), it follows that V

strictly decreases during flows and, from (8c), it follows that

V (t, j+1) ≤ V (t, j) for each (t, j), (t, j+1) ∈ dom ξ. From

arguments similar to those in [18, Lemma C.1], it follows that
V (t, j) ≤ V (0, 0) exp(−ηt) for each (t, j) ∈ dom ξ. From the

set of inequalities (8a), we have that

|ξ(t, j)|A ≤

(
α

α

) 1
p

|ξ(0, 0)|A exp

(
−
η

p
t

)

for each (t, j) ∈ dom ξ. This implies that every solution to (6)

is bounded and, since they are complete by assumption, we

conclude that they are precompact, i.e., complete and bounded.

Since the hybrid system (6) satisfies the hybrid basic con-

ditions and its solutions are precompact, it follows from [19,
Lemma 2.7] that there exists ς > 0 such that tj+1− tj ≥ ς for

each (tj+1, j), (tj , j) ∈ dom ξ with j ≥ 1, thus t ≥ (j − 1)ς
for each (t, j) ∈ dom ξ. Consequently, we have that t ≥
(t + j) ς

1+ς
− ς, thus t → ∞ as t + j → ∞, and dom ξ is

unbounded in the t direction.

Remark 1. The notion of uniform exponential stability dis-

cussed in this paper is borrowed from [20] and it reflects the

fact that the bound (7) is satisfied uniformly over all possible
jumps of the solutions to the hybrid system.

III. CONTROLLER DESIGN

In this section, we address the problem of exponentially

stabilizing

ẋ = Ax+Bu, y = Cx (9)

where x ∈ Rn denotes the state of the system, y ∈ Rm denotes

the output, A ∈ Rn×n, B ∈ Rn×p, C ∈ Rm×n denote the

data of the system for some m,n, p ∈ N\{0}, and u ∈ Rp

denotes the input, which is subject to reverse polytopic input

constraints, defined next.

Problem 1. Given a finite subset M of N, a linear system (9),

and a family of closed convex polytopes {P(Mi,mi)}i∈M in

R
p such that 0 6∈ P(Mi,mi) for each i ∈ M, design a hybrid

controller Hc = (Cc,Fc,Dc,Gc) with state variable xc ∈ R
ℓ

satisfying

ẋc ∈ Fc(xc, y) (xc, y) ∈ Cc ⊂ R
ℓ × R

m,

xc ∈ Gc(xc, y) (xc, y) ∈ Dc ⊂ R
ℓ × R

m,
(10)

and output κ(xc, y) ∈ Rp for each (xc, y) ∈ Rℓ × Rm, such

that

Ã := {(x, xc) ∈ R
n × R

ℓ : x = 0} (11)

is globally uniformly exponentially stable in the t-direction

for the closed-loop system resulting from the interconnection

between (9) and (10) while satisfying the constraint

κ(xc, y) 6∈
⋃

i∈M

P(Mi,mi) (12)

for each (xc, y) ∈ Cc. �

To illustrate the applicability of a controller that is able to

tackle reverse polytopic input constraints (12), we provide the
following examples.

Example 1. Consider the full-state feedback problem for (9)
with data

A =

[
0 1
0 0

]
, B =

[
0
1

]
,
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and assume that |u| should not take values in the interval

[0.5, 1.5]. This constraint can be cast in the form of (12) with

M = {1, 2} and

M1 = −M2 =
[
1 −1

]⊤
, m2 = m1 =

[
1.5 −0.5

]⊤
.
�

Example 2. Consider the following system

ṗ = v, v̇ = rũ+ g

where p ∈ R3 and v ∈ R3 are the states of the system, r ∈ R3

satisfying |r| = 1 and ũ ∈ R are the inputs and g ∈ R3 is

a constant different than 0. This system models the evolution

of the position and velocity of a quadrotor vehicle [8] and, by
setting r = (u − g)/ |u− g| and ũ = |u− g| with u ∈ R3, it

takes the form of (9) with

A =

[
0 I3
0 0

]
, B =

[
0
I3

]
,

as long as u 6= g. This constraint can be encompassed

by (12) by setting M = {1}, M1 =
[
I3 −I3

]⊤
and

m1 =
[
g⊤ −g⊤

]⊤
. �

A. Outline of Proposed Solution

To solve Problem 1, we propose a collection of N linear

controllers of the form

ż = Aσz +Bσy (13a)

u := κσ(z, y) := Kσ

[
z
y

]
, (13b)

where z ∈ Rk represents the controller state, u ∈ Rp is the

input which is assigned to the control law (z, y) 7→ κσ(z, y),
y ∈ Rm is the input of the controller, and Aσ ∈ Rk×k, Bσ ∈
Rk×m, Kσ ∈ Rp×(k+m) for each σ ∈ N := {1, 2, . . . , N}.

The design of an appropriate controller switching law guaran-
tees that (12) is satisfied. Furthermore, we provide conditions

on the parameters N and (Aσ, Bσ,Kσ) for each σ ∈ N , that

guarantee global uniform exponential stability of (11) in the
t-direction.

Given (Mi,mi) ∈ Rsi×p×Rsi with si ∈ N for each i ∈ M,

a family of N controllers as in (13) and δ+ > 0, we define

the set-valued map

ρ(z, y) :=
{
σ ∈ N : κσ(z, y) ∈ C+

}
(14)

for each (z, y) ∈ Rk × Rm, where

C+ := cl

(
⋂

i∈M

(
R

p\P(Mi,mi+1si
δ+)

))
.

The map (14) identifies the index σ ∈ N of those controllers
whose output κσ(z, y) does not violate the given input con-

straints.

Defining xc := (z, σ) ∈ Rk ×N and Υ := Rk ×N × Rm,

we construct the hybrid controller

Fc(xc, y) :=

(
Aσz +Bσy

0

)

∀(xc, y) ∈ Cc :=
{
(xc, y) ∈ Υ : κσ(z, y) ∈ C−

}
,

(15a)

Gc(xc, y) := (z, ρ(z, y))
∀(xc, y) ∈ Dc := {(xc, y) ∈ Υ : κσ(z, y) ∈ D−},

(15b)

where

C− := cl

(
⋂

i∈M

(
R

p\P(Mi,mi+1si
δ−)

))
, (16a)

D− :=
⋃

i∈M

P(Mi,mi+1si
δ−). (16b)

The interconnection between (9) and (15) results in the hybrid
system H = (C,F ,D,G) with state space E := Rn ×Rk ×N
and dynamics


ẋ
ż
σ̇


 = F(x, xc) :=



Ax+Bκσ(z, Cx)
Aσz +BσCx

0


 (x, xc) ∈ C



x+

z+

σ+


 ∈ G(x, xc) :=




x
z

ρ(z, Cx)


 (x, xc) ∈ D

(17)
with

C := {(x, xc) ∈ E : (xc, Cx) ∈ Cc}, (18a)

D := {(x, xc) ∈ E : (xc, Cx) ∈ Dc}. (18b)

Note that the reverse polytopic input constraint (12) is

satisfied for the hybrid system (17), as shown next.

Lemma 4. Let δ− > 0, condition (12) holds for each (xc, y) ∈
Cc and (z, x) 6∈

⋃
i∈M P(Mσ

i
,mi) for each (x, xc) ∈ C, where,

for each i ∈ M,

Mσ
i := MiKσ

[
Ik 0
0 C

]
. (19)

Proof. It follows from Lemma 2 that P(M,m) ⊂
int
(
P(M,m+1sδ)

)
for each (M,m) ∈ Rs×p × Rs, s ∈ N\{0}

and δ > 0. Thus

⋃

i∈M

P(Mi,mi) ⊂ int

(
⋃

i∈M

P(Mi,mi+1si
δ−)

)
.

Since

cl





⋂

i∈M

(

R
p\P(Mi,mi+1si

δ−)

)



 = R
p\ int





⋃

i∈M

P(Mi,mi+1si
δ−)





it follows that

κσ(z, y) 6∈ int

(
⋃

i∈M

P(Mi,mi+1si
δ−)

)

for each (xc, y) ∈ Cc, yielding the first part of the lemma.

From the definition of P(M,m) in (1), the condition

κσ(z, Cx) ∈ P(M,m) is satisfied if and only if MKσ

[
z
Cx

]
�

m, thus (12) is equivalent to (z, x) 6∈ P(Mσ
i
,m) where Mσ

i is
given by (19).

B. Properties of Solutions to H

To guarantee that maximal solutions to (17) are complete, one

needs to guarantee that D ⊂ domG, which is to say: ρ(z, y) 6=
∅ for all (xc, y) ∈ Dc. Sufficient conditions that guarantee this
property are provided next.

Lemma 5. Given finite sets N ,M ⊂ N, (Mi,mi) ∈ Rsi×p×
R

si for each i ∈ M, Kσ ∈ R
p×(k+m) for each σ ∈ N , and

δ+ > δ− > 0, if, for each (i, σ) ∈ M × N , there exists



5

σ′ ∈ N such that, for each j ∈ M, there is a solution µ � 0
to

µ⊤

[
Mσ

i

Mσ′

j

]
= 0, µ⊤

[
mi + 1siδ

−

mj + 1sjδ
+

]
< 0 (20)

where Mσ
i is given by (19), then D ⊂ domG. �

Proof. If, for each (i, σ) ∈ M×N , there exists σ′ ∈ N such
that, for each j ∈ M, the following set of inequalities is not

feasible

Mσ
i

[
z
x

]
� mi + 1siδ

−, Mσ′

j

[
z
x

]
� mj + 1sjδ

+, (21)

then, for each (z, x) ∈ P(Mσ
i
,mi+1si

δ−), there exists σ′ ∈
N such that (z, x) 6∈ P(Mσ′

j
,mj+1sj

δ+) for all j ∈ M. The

feasibility of the conditions in (21) may be cast as follows:

minimize 0
subject to Mσ

i w � mi + 1siδ
−

Mσ′

j w � mj + 1sjδ
+

(22)

where we have used w := (z, x) for the sake of compactness.
From [21, Section 5.2.2], it follows that (22) is not feasible if

the dual problem is unbounded. The dual problem to (22) is:

maximize −µ⊤

[
mi + 1siδ

−

mj + 1sjδ
+

]

subject to µ⊤

[
Mσ

i

Mσ′

j

]
= 0, µ � 0.

(23)

From (20), it follows that there exists a feasible point µ to (23)
such that

−µ⊤

[
mi + 1sδ

−

mj + 1sδ
+

]
> 0.

Noticing that, for each a > 0, aµ is still a solution to (23), we
conclude that (23) is unbounded provided that (20) hold.

The conditions (20) ensure that D ⊂ domG, which is a

key point in proving that H in (17) satisfies the hybrid basic
conditions given next.

Lemma 6. Given finite sets N ,M ⊂ N, (Mi,mi) ∈ Rsi×p×
R

si for each i ∈ M, Kσ ∈ R
p×(k+m) for each σ ∈ N ,

and δ+ > δ− > 0, if (20) holds, then the hybrid system (17)

satisfies the hybrid basic conditions [14, Assumption 6.5].

Proof. The set C in (18a) is closed because C− in (16a) is
closed. The set D in (18b) is closed because D− (16b) is the

union of closed sets. The function F in (17) is single-valued,

continuous, and defined for each (x, xc) ∈ C. The property
D ⊂ domG follows from Lemma 5 and local boundedness rel-

ative to D follows from the fact that ρ takes values on a com-
pact set. To prove outer-semicontinuity, let {(xj , zj, σj)}j∈N

denote a sequence in D that converges to (x, z, σ), and

{σ′
j}j∈N denote a sequence satisfying σ′

j ∈ ρ(zj , Cxj) for

each j ∈ N converging to σ′. Suppose that σ′ 6∈ ρ(x, z, σ).

Then, there exists ℓ ∈ M such that Mσ′

ℓ

[
z Cx

]⊤
< mℓ +

1sℓδ
+, and, by continuity, M

σ′

j

ℓ

[
zj Cxj

]⊤
< mℓ + 1sℓδ

+,

for sufficiently large j, where M
σ′

j

ℓ is given by (19). However,

this contradicts that σ′
j ∈ ρ(zj, Cxj) for each j ∈ N, thus

proving the outer semicontinuity of G relative to D.

Central to the proof of uniform exponential stability is the

completeness of maximal solutions, because, in particular, if
there exists (x, z, σ) ∈ D such that G(x, z, σ) ∩ (C ∪ D) =

∅, then, since C is closed, the solution to the hybrid system

cannot be extended, which is something we want to avoid.

Lemma 7. Given finite sets N ,M ⊂ N, (Mi,mi) ∈ Rsi×p×
Rsi for each i ∈ M, Kσ ∈ Rp×(k+m) for each σ ∈ N ,

and δ+ > δ− > 0, if (20) holds, then every maximal solution

to (17) is complete.

Proof. This proof follows from an application of [14, Propo-
sition 2.10].

C. Stability Properties of H

Given {Kσ}σ∈N ⊂ R
p×(k+n), it follows from (17) that the

dynamics of the variables (x, z) during flows are described by
[
ẋ
ż

]
= Ãσ

[
x
z

]
(24)

where

Ãσ :=

[
A+BKy

σC BKz
σ

BσC Aσ

]
,

for each σ ∈ N and for some {Kz
σ}σ∈N ⊂ Rp×k,

{Ky
σ}σ∈N ⊂ Rp×m satisfying Kσ :=

[
Kz

σ Ky
σ

]
. Next, we

show that, using the controller (15), if the controller gain Kσ

is selected so that the origin of the system (24) is exponentially

stable, then the set

A := {(x, xc) ∈ E : x = z = 0} ⊂ Ã (25)

where Ã is given by (11), is globally uniformly exponentially

stable in the t-direction for the hybrid system (17). Moreover,
the input constraint (12) is satisfied, provided that the condi-

tions (20) hold.

Theorem 3. Given finite sets N ,M ⊂ N and (Mi,mi) ∈
Rsi×p × Rsi for each i ∈ M, if there exist P ∈ S

n+k
>0 ,

Kσ ∈ Rp×(k+m), Aσ ∈ Rk×k, Bσ ∈ Rk×m and δ−, δ+ ∈ R

satisfying 0 < δ− < δ+ such that (20) holds and

Ã⊤
σ P + PÃσ ∈ S

n+k
<0 ∀σ ∈ N (26)

then the set A in (25) is globally uniformly exponentially stable

in the t-direction for system (17) and the constraint (12) holds.

Proof. Since P ∈ S
n+k
>0 , the function

V (x, z, σ) :=
[
x⊤ z⊤

]
P

[
x
z

]

is positive definite relative to A, and satisfies (8a) with
α = λmin(P ) and α = λmax(P ). Moreover, since (26)

holds, the derivative of V is negative definite relative to (25)

and (8b) holds for some η > 0. Since during jumps only the
variable σ changes, we have that V (g) = V (x, z, σ) for each

g ∈ G(x, z, σ) and for each (x, z, σ) ∈ D. Thus, V is non-

increasing on each jump and (8c) is satisfied.

Noting that jumps of the hybrid system map the output

κσ(z, y) from D− to C+, it follows from 0 < δ− < δ+

and Lemma 3 that D− ∩ C+ = ∅ and, consequently, we

have G(D) ∩ D = ∅; thus, (8d) holds, meaning that there

is a lower bound on the time between jumps. The desired
result follows from Theorem 2 by noticing that V is strictly

decreasing during flows and the conditions of Lemmas 6 and 7

are satisfied by assumption. It follows from Lemma 4 that (12)
holds along any solution to the closed-loop system.
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D. Robustness to “Outer Perturbations”

Let us consider the perturbation of H = (C,F ,D,G) given by

the hybrid system H∆ = (C∆,F∆, D∆, G∆) with data

F∆(x, xc) := conv (F(((x, xc) + ∆ν((x, xc))B) ∩ C))
+ ∆ν((x, xc))B ∀(x, xc) ∈ C∆

(27a)

G∆((x, xc)) := {(x̄, x̄c) ∈ R
n × R

ℓ : (x̄, x̄c) ∈ g +∆ν(g)B,
g ∈ G(((x, xc) + ∆ν((x, xc))B) ∩ D)} ∀(x, xc) ∈ D∆

(27b)

where

C∆ := {(x, xc) ∈ E : ((x, xc) + ∆ν(x, xc)B) ∩ C 6= ∅},

D∆ := {(x, xc) ∈ E : ((x, xc) + ∆ν(x, xc)B) ∩ D 6= ∅},

with ∆ ∈ (0, 1) and ν : Rn+ℓ → R≥0 is a continuous function
which outer perturbs the dynamics of the nominal hybrid

system H, capturing perturbations such as measurement noise,

unmodeled dynamics and exogenous disturbances that are
bounded by the perturbation function ν. If these perturbations

are small enough, then the properties of the original system
carry over to the perturbed hybrid system, as proved next.

Theorem 4. Given finite sets N ,M ⊂ N and (Mi,mi) ∈
Rsi×p × Rsi for each i ∈ M, if there exist P ∈ S

n+k
>0 ,

Kσ ∈ Rp×(k+m), Aσ ∈ Rk×k, Bσ ∈ Rk×m and δ−, δ+ ∈ R

satisfying 0 < δ− < δ+ such that (20) and (26) hold, then

there exist k, λ > 0 such that each solution ξ to H in (17)

satisfies

|ξ(t, j)|A ≤ k exp(−λt) |ξ(0, 0)|A (29)

for all (t, j) ∈ dom ξ. Moreover, for each compact set E ⊂ E
and ǫ > 0, there exists ∆⋆ > 0 such that, for each ∆ ∈
(0,∆⋆], the maximal solutions ξ∆ to H∆ in (27) from E satisfy

|ξ∆(t, j)|A ≤ k exp(−λt) |ξ∆(0, 0)|A + ǫ

for all (t, j) ∈ dom ξ∆.

Proof. It follows from Lemma 6 that the hybrid system (17)

satisfies the hybrid basic conditions. Thus, (27) also does
(c.f. [22, Theorem 5.4]). Then, the theorem is a direct con-

sequence [22, Theorem 6.6] and Theorem 3.

In other words, the set A is said to be semi-globally
practically asymptotically stable for the perturbed system (27),

in the sense that, for each compact set of initial conditions and

ultimate bound on the tracking error, ǫ > 0, there exists a small
enough ∆, such that the norm of each solution to (27) is upper

bounded by the sum of ǫ and the exponential upper bound of

the original system (29).

IV. AVOIDING POLYTOPIC INPUT CONSTRAINTS WITH

TWO CONTROLLERS

We are able to solve Problem 1 using (15) with N = {1, 2}
and controller gains K1,K2 satisfying K2 = γK1 for some
γ ∈ R, provided that the following assumption holds.

Assumption 1. Given (M,m) ∈ R
s×p × R

s, P(M,m) is a

compact set such that 0 6∈ P(M,m). �

In this direction, notice that for any bounded set P(M,m) ⊂
Rp, it follows from Theorem 1 that there exists a vector v ∈ Rs

such that M⊤v = 0 and v ≻ 0. Let v : Rs × R≥0 → Rs and

v : Rs × R≥0 → Rs be functions that satisfy

e⊤j v(v, δ
+) =

{
e⊤j v if e⊤j (m+ 1sδ

+) < 0

0 otherwise
(30a)

e⊤j v(v, δ
+) =

{
e⊤j v if e⊤j (m+ 1sδ

+) > 0

0 otherwise
(30b)

for each j ∈ {1, 2, . . . , s}. These quantities are used in the

next corollary to compute the range of values of γ ∈ R that
allow Problem 1 to be solved.

Corollary 1. Given (M,m) ∈ R
s×p×R

s, let N := {1, 2} and

suppose that Assumption 1 holds, so that there exists v ∈ Rs

satisfying M⊤v = 0 and v ≻ 0. Then, for each δ−, δ+ ∈ R

satisfying

0 < δ− < δ+ < −
v(v, δ+)⊤m

v(v, δ+)⊤1s

, (31)

where v : Rs×R≥0 → Rs satisfies (30a), there exist γ, γ ∈ R

satisfying γ < γ such that, for each γ ∈ (0, γ) ∪ (γ,+∞), if

there exists P ∈ S
n+k
>0 such that (26) holds with K2 = γK1,

then the set (25) is globally uniformly exponentially stable in

the t-direction for (17) and the constraint (12) holds.

Proof. The desired result follows from Theorem 3 by showing
that the conditions (20) are satisfied for each σ ∈ N := {1, 2}.

Using the fact that K2 = γK1 and µ :=
[
µ⊤
1 µ⊤

2

]⊤
, we

rewrite (20) for σ = 1 as follows:




[
Ik 0

0 C⊤

]
K⊤

1 M⊤(µ1 + γµ2) = 0

µ1, µ2 � 0

−µ⊤
1 (m+ 1sδ

−)− µ⊤
2 (m+ 1sδ

+) > 0

(33)

Choosing µ1+γµ2 = v, where v ∈ Rs is such that M⊤v = 0
and v ≻ 0, we have that the conditions (33) are satisfied if

−γµ⊤
1 (m+ 1sδ

−)− (v − µ1)
⊤(m+ 1sδ

+) > 0, (34)

since γ > 0 by assumption. Notice that, for each ξ ∈ P(M,m),

we have Mξ � m which, together with the fact that v ≻ 0,

implies that

v⊤m ≥ 0. (35)

For functions v, v satisfying (30) it follows that v =
v(v, δ+)+v(v, δ+) and from (35) we have that v(v, δ+)⊤m ≥
−v(v, δ+)⊤m. Since v(v, δ+)⊤m ≤ v(v, δ+)⊤(m+1sδ

+) ≤
0 and δ− > 0, it follows that v(v, δ+)⊤(m + 1sδ

−) > 0.

Then, condition (34) is equivalent to

γ <
(v(v, δ+)− v)⊤(m+ 1sδ

+)

v(v, δ+)⊤(m+ 1sδ−)
= −

v(v, δ+)⊤(m+ 1sδ
+)

v(v, δ+)⊤(m+ 1sδ−)
,

when µ1 = v(v, δ+). Since v(v, δ+)⊤(m + 1sδ
−) <

v(v, δ+)⊤(m+ 1sδ
+) < 0, it follows that

v(v, δ+)⊤(m+ 1sδ
+)

v(v, δ+)⊤(m+ 1sδ−)
< 0.

On the other hand, if µ1 = v(v, δ+), then conditions (33) are

satisfied if

γ > −
v(v, δ+)⊤(m+ 1sδ

+)

v(v, δ+)⊤(m+ 1sδ−)
.
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Similarly, conditions (20) with σ = 2 may also be verified
with µ1 = v(v, δ+) or µ1 = v(v, δ+) provided that

γ < −
v(v, δ+)⊤(m+ 1sδ

−)

v(v, δ+)⊤(m + 1sδ+)
or γ > −

v(v, δ+)⊤(m+ 1sδ
−)

v(v, δ+)⊤(m+ 1sδ+)
,

respectively. We conclude that the conditions (20) are satisfied
for all γ ∈ (0, γ) ∪ (γ,+∞) with

γ := min

{

−
v(v, δ+)⊤(m+ 1sδ

−)

v(v, δ+)⊤(m+ 1sδ+)
,−

v(v, δ+)⊤(m + 1sδ
+)

v(v, δ+)⊤(m+ 1sδ−)

}

(36a)

γ := max

{

−
v(v, δ+)⊤(m+ 1sδ

−)

v(v, δ+)⊤(m + 1sδ+)
,−

v(v, δ+)⊤(m + 1sδ
+)

v(v, δ+)⊤(m + 1sδ−)

}

(36b)

Since condition (26) is satisfied, the desired result follows from

Theorem 3.

It is important to note that, for any δ−, δ+ ∈ R satisfying

0 < δ− < δ+, the jump set D and its image through the
jump map G(D) do not intersect. This is a pivotal property

in the proof of Corollary 1, because it guarantees that there

are no discrete solutions to the hybrid system. In addition,
by maximizing the difference δ+ − δ−, one increases the

distance between the P(M,m+1sδ−) and P(M,m+1sδ+), making

the closed-loop system less prone to chattering.

The parameters γ and γ determine how far γ must be from

γ = 1 in order to satisfy the conditions (20). In the statement

of Corollary 1, we do not provide γ nor γ explicitly, but (36)
provides some conservative estimates for these bounds. More

stricter values for these variables can be obtained numerically
for each particular application.

Since γ, γ in (36) do not depend on the controller gains,

one may select γ prior to the design of the controller gains.
Then, for a fixed γ, one computes the controller gains that

satisfy (26) as follows: find Bc ∈ Rk×m, Ac ∈ Rk×k,

Ky ∈ R
p×m, Kz ∈ R

p×k and P ∈ S
n+k
>0 such that (32)

holds and it can be cast as an LMI optimization problem for

the full-state feedback case [21]. For the output feedback case,
the problem can be cast as BMI optimization problem [23].

The following example illustrates the previous remarks for the

double integrator system.

Example 3. Using M =
[
1 −1

]⊤
and m =

[
1.5 −0.5

]⊤
,

we see that v = 1
⊤
2 satisfies M⊤v = 0. From (30) and

with this choice of v, we have that v(v, δ+) =
[
1 0

]⊤
and

v(v, δ+) =
[
0 1

]⊤
for any δ+ ∈ [0, 0.5). If δ+ = 0.5, then

v(v, δ+) = 0 and v(v, δ+) =
[
1 0

]⊤
. If δ+ > 0.5, then

v(v, δ+) = 12 and v(v, δ+) = 0.

Choosing δ+ = 0.1, δ− = 0.01, it is straightforward to

check that γ ≈ 0.265 and γ ≈ 3.77. Selecting γ = 3.8, we

find a controller gain K1 ∈ R1×2 that satisfies (32) using the

strategy outlined in [21, Section 7.3.1] for LTI systems (with
Bw = B), yielding K1 =

[
−0.4834 −0.9429

]
. �

A. Satisfying an Input Norm Constraint with Two Controllers

In this section, we consider the stabilization of the single-input

system of the form (9) that is subject to norm constraints on

the input: |u| 6∈ P(M,m) for some closed segment satisfying
Assumption 1.

Corollary 2. Given M1 = −M2 :=
[
1 −1

]⊤
and m1 =

m2 =
[
m+ m−

]⊤
, suppose that Assumption 1 holds and let

N := {1, 2}. Then, for each δ−, δ+ ∈ R satisfying

0 < δ− < δ+ < −m−, (37)

there exist γ, γ ∈ R satisfying γ < γ such that, for each

γ ∈ (0, γ)∪(γ,+∞), if (26) holds, then the set (25) is globally

uniformly exponentially stable in the t-direction for the closed-

loop system resulting from the interconnection of (9) (with

p = 1) and (15) with K2 = γK1 and the constraint (12)
holds.

Proof. The desired result follows from Theorem 3 by showing
that the conditions (20) are satisfied for each σ ∈ N := {1, 2}
and K1,K2 as defined in the statement. It turns out that the

conditions (20) are the same as (33), thus the desired results
holds by noting that (37) equates to (31) when v = 12.

As we have mentioned in Section I, it is possible to asymp-
totically stabilize the origin of double integrator in Example 1

without violating the input constraints |u| 6∈ [0.5, 1.5], using

the saturated feedback u = −λ sat (K1x/λ) + w, where
w ∈ R represents an exogenous disturbance, sat(x) :=
max{min{x, 1},−1} and λ ∈ (0, 0.5). In the sequel, we

compare the behavior of the double integrator subject to
the constraint |u| 6∈ [0.5, 1.5] using the saturated control

law and the hybrid controller developed in this section, by
means of simulation results. We recall that the aforementioned

input constraint can be cast as a reverse polytopic input

constraint (12) with M := {1, 2}, M1 = −M2 =
[
1 −1

]⊤

and m1 = m2 =
[
1.5 0.5

]⊤
, as shown in Example 1.

Moreover, we make use of the controller data K1, K2, δ+ and

δ− that was selected in Example 3. Fig. 1 depicts the behavior
of the double integrator for the hybrid controller on the left and

for the saturated controller on the right, using a saturation level

λ = 0.25 and initial condition (x1(0, 0), x2(0, 0), q(0, 0)) =
(−3.6205, 2.1210, 2). It is possible to observe that both con-

trollers are able to drive the state towards the equilibrium point,

but the hybrid controller provides a faster convergence rate,
as expected. It is also possible to observe that there exists

a positive lower bound for the time between switches of the

controller, which is a consequence of G(D) ∩D = ∅ and [19,
Lemma 2.7], thus preventing Zeno solutions.

Fig. 2 depicts the behaviour of both closed-loop systems
under the influence of a disturbance w for the same initial

conditions as in the Fig 1. The disturbance w that was

constructed following the ideas in [24] and its magnitude is
given in Fig. 3. In this situation, both the hybrid controller and

[
A⊤ + C⊤Ky⊤B⊤ C⊤B⊤

c

Kz⊤B⊤ A⊤
c

]
P + P

[
A+BKyC BKz

BcC Ac

]
∈ S

n+k
<0

[
A⊤ + γC⊤Ky⊤B⊤ C⊤B⊤

c

γKz⊤B⊤ A⊤
c

]
P + P

[
A+ γBKyC γBKz

BcC Ac

]
∈ S

n+k
<0 .

(32)
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Fig. 1. Comparison between the hybrid controller on the left and the saturated
feedback law on the right without exogenous disturbances. The dashed vertical
lines represent jumps on the hybrid controller.
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Fig. 2. Comparison between the hybrid controller on the left and the saturated
feedback law on the right with exogenous disturbances. The dashed vertical
lines represent jumps on the hybrid controller.

the saturated feedback law satisfy the input constraints, but, in
the case of the saturated feedback law, the state is diverging.

V. CONCLUSION

In this paper, we presented a hybrid controller that is able to

globally uniformly exponentially stabilize in the t-direction a

linear system subject to reverse polytopic input constraints.

t

w
(t
)

10−1 100 101 102 103 104
0

0.05

0.1

0.15

Fig. 3. Magnitude of the disturbance used in the simulation associated with
Fig. 2.

We made use of a numerical example to illustrate that: 1) the
controller design for the full state feedback case can be

solved by means of linear matrix inequalities; 2) the controller

parameters can be tuned to reduce chattering and increase
robustness to measurement noise/disturbances; 3) the proposed

hybrid controller can be applied to the stabilization of single-

input systems subject to norm constraints on the input.
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