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Mercer KE, Yeruva L, Pack L, Graham JL, Stanhope KL,
Chintapalli SV, Wankhade UD, Shankar K, Havel PJ, Adams SH,
Piccolo BD. Xenometabolite signatures in the UC Davis type 2
diabetes mellitus rat model revealed using a metabolomics platform
enriched with microbe-derived metabolites. Am J Physiol Gastrointest
Liver Physiol 319: G157-G169, 2020. First published June 8, 2020;
doi:10.1152/ajpgi.00105.2020.—The gut microbiome has the poten-
tial to create or modify xenometabolites (i.e., nonhost-derived metab-
olites) through de novo synthesis or modification of exogenous and
endogenous compounds. While there are isolated examples of xeno-
metabolites influencing host health and disease, wide-scale character-
ization of these metabolites remains limited. We developed a metabo-
lomics platform (“XenoScan”) using liquid chromatography-mass
spectrometry to characterize a range of known and suspected xeno-
metabolites and their derivatives. This assay currently applies authen-
tic standards for 190 molecules, enriched for metabolites of microbial
origin. As a proof-of-principle, we characterized the cecal content
xenometabolomics profile in adult male lean Sprague-Dawley (LSD)
and University of California, Davis type 2 diabetes mellitus (UCD-
T2DM) rats at different stages of diabetes. These results were corre-
lated to specific bacterial species generated via shotgun metagenomic
sequencing. UCD-T2DM rats had a unique xenometabolite profile
compared with LSD rats, regardless of diabetes status, suggesting that
at least some of the variation is associated with host genetics.
Furthermore, modeling approaches revealed that several xenometabo-
lites discriminated UCD-T2DM rats at early stages of diabetes versus
those at 3 mo postdiabetes onset. Several xenometabolite hubs corre-
lated with specific bacterial species in both LSD and UCD-T2DM
rats. For example, indole-3-propionic acid negatively correlated with
species within the Oscillibacter genus in UCD-T2DM rats considered
to be prediabetic or recently diagnosed diabetic, in contrast to glu-
conic acid and trimethylamine, which were positively correlated with
Oscillibacter species. The application of a xenometabolite-enriched
metabolomics assay in relevant milieus will enable rapid identification
of a wide variety of gut-derived metabolites, their derivatives, and
their potential biochemical origins of xenometabolites in relationship
to host gastrointestinal microbial ecology.

NEW & NOTEWORTHY We debut a liquid chromatography-mass
spectrometry (LC/MS) platform called the XenoScan, which is a

Correspondence: S. H. Adams (shadams@uams.edu); B. D. Piccolo
(bdpiccolo@uams.edu).

http://www.ajpgi.org

0193-1857/20 Copyright © 2020 the American Physiological Society

metabolomics platform for xenometabolites (nonself-originating me-
tabolites). This assay has 190 in-house standards with the majority
enriched for microbe-derived metabolites. As a proof-of-principle, we
used the XenoScan to discriminate genetic differences from cecal
samples associated with different rat lineages, in addition to charac-
terizing diabetes progression in rat model of type 2 diabetes. Com-
plementing microbial sequencing data with xenometabolites uncov-
ered novel microbial metabolism in targeted organisms.

diabetes; metabolomics; microbiota; xenometabolites

INTRODUCTION

A great deal of research has focused on the role of the gut
microbiome in modulating host physiology and health, includ-
ing associations between specific intestinal microbe popula-
tions and metabolites with the function of gastrointestinal tract
and systemic immune systems (37, 55), liver function and
steatosis (10), amino acid metabolism (27), gut hormone re-
lease (11), brain development and behavior (13a), kidney
function (28), and other physiological systems. Some of the
strongest evidence that specific bacteria or groups of bacteria
impact physiological function stems from fecal/cecal content
transfer studies, in which donor obesity phenotypes were
transferred to recipients (47, 52). Recently, clinical application
of this strategy has shown promise, with fecal transfer from
healthy donors to patients suffering from inflammatory bowel
disease (IBD) helping mitigate IBD-associated symptoms (54).

Most studies of gut microbiome-host interactions have fo-
cused on correlations between abundances of specific microbes
and specific (patho)physiological variables, which allows for
hypothesis-generation in terms of the potential bacterial taxa
that are involved. However, the specific molecular signals
underlying microbe-to-host communication and gut-derived
metabolites that reflect shifts in microbial populations, ecol-
ogy, and biochemistry remain to be fully elaborated. There is
a massive genetic potential (number of genes and gene vari-
ants) for the gut microbiome; when coupled to the large
biomass of microbes in the gastrointestinal tract, and the
complex molecule mixtures in foods, there is tremendous
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enzymatic and nonenzymatic capacity for generating xenome-
tabolites. This can occur via de novo synthesis, through mi-
crobial conversion of exogenous components (e.g., phytonutri-
ents, fibers, oligosaccharides, pharmacological agents, etc.),
and via microbial modification of host-derived molecules (pri-
mary bile acids, urea, etc.). The latter may also be referred to
as “cometabolites” since they involve metabolism by both host
and microbe(s). Much work remains to fully categorize xeno-
metabolites and their nomenclature, to determine which of
these metabolites serve as modulators of mammalian physiol-
ogy, and to understand their specific microbial and food-
derived origins.

Metabolomics has proven quite valuable to identify molec-
ular biomarkers of microbial metabolism; however, few labo-
ratories have dedicated authentic standard libraries that encom-
pass the wide breadth of metabolites associated with microbial
activities. Furthermore, most large-scale metabolomics plat-
forms have standard and spectral libraries that generally en-
compass human and mammalian metabolic pathways, which
complicates identification of microbial specific metabolites. To
address this issue, we have developed a metabolomics platform
that enables a greater focus on “nonhost” xenometabolites,
xenometabolite derivatives, cometabolites, and related mole-
cules, which can be applied to better understand alterations in
microbial environments. This platform, which we term
“XenoScan,” currently has >190 authentic in-house xenome-
tabolite standards curated from published literature and is
continuously growing. As a proof-of-concept, we utilized the
XenoScan to extend our previous work in the UC Davis type 2
diabetes mellitus (UCD-T2DM) Rat model (45). Our results,
herein, demonstrate that the XenoScan can detect genetic/
strain-specific differences in microbial metabolism, distinguish
early and late states of diabetes, and identify species-specific
relationships between bacterial taxa and xenometabolites.

MATERIALS AND METHODS

Animals

Male UCD-T2DM rats were utilized for the current study. The
UCD-T2DM rat model spontaneously develops diabetes while con-
suming a standard low-fat, low-sugar rodent chow diet, has a poly-
genic origin of obesity, has an inherited B-cell defect, and retains
functional leptin signaling. Full description of the UCD-T2DM rat
lineage has been previously described (12, 30). This study was
approved by the University of California, Davis Institutional Animal
Care and Use Committee (Protocol No. 18267) and all methods
involving animals were carried out in accordance with the institutional
guidelines and regulations.

Study Design

In-depth study details have been previously described (45). Briefly,
all rats were singly housed within the same room at the animal facility
in the Department of Nutrition, had Carefresh bedding and ad libitum
access to standard chow (2018 Telkad Global; Harlan Laboratories),
and were on a 14:10-h light-dark schedule. Male UCD-T2DM rats
were selected for inclusion if ~180 days old and had nonfasting blood
glucose <200 mg/dL (i.e., prediabetic, referred to as PD), nonfasting
blood glucose >200 mg/dL for the previous 7-14 days (i.e., recent
onset of diabetes, referred to as RD), and nonfasting blood glucose
>200 mg/dL for the previous 90 days (i.e., 3-mo post-onset of
diabetes, referred to as D3M). Male LSD rats aged 180 days were also
studied as a metabolic healthy nonobese control group. Microbial
analysis (16S rRNA and shotgun metagenomic sequencing) of ani-
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mals used in this study has previously been conducted and a major
effect of collection year was observed even though UCD-T2DM rats
had been maintained at the same animal facility for >12 yr (45). Thus
the current study only reports results from rats collected during 2016.
Final sample numbers (n) were as follows: LSD =7, PD =9,
RD = 10, and D3M = 5. Since only two animals were available from
6-mo diabetic rats (D6M) from 2016, these animals were not included
for analyses herein.

Sample Collection

As previously described (45), rats were given a 200 mg/kg ip dose
of pentobarbital sodium after a 13-h fast. Fully anesthetized rats were
exsanguinated via cardiac puncture between ca. 0800 and 1100. Cecal
tissue was immediately removed after exsanguination and blotted dry.
A hole was punched into the cecal tissue, and a cecal content sample
was squeezed into a sterile 1.5-mL microcentrifuge tube. Samples
were immediately placed in a —80°C freezer until analysis.

Metagenomic Sequencing

Total DNA was extracted from cecal content samples (0.1-0.3 g)
using the DNeasy PowerSoil HTP 96 Kit (Qiagen, Germantown, MD)
following the manufacturer’s instructions. Sequencing libraries were
generated from extracted DNA samples using Nextera XT reagents
including dual indexes. Libraries were quantitated using Qubit ds-
DNA reagents and pooled and sequenced using NextSeq 500 high-
output reagents (150-bp paired reads). Alignment of reads and taxo-
nomic binning was conducted with MEGAN Community Edition
software. Reads were aligned against the National Center for Biotech-
nology Information nonredundant database (NCBI-nr) with the DIA-
MOND program, and taxonomic analysis was then performed with
Meganizer. Median sample depth for samples used in this study herein
was 2.38 Gbp. Species level sequencing count data were exported
from MEGAN as a csv file and further analyzed using the R Statistical
Language (version 3.6.0). Sequencing data are publicly available at
the NCBI Sequence Read Archive (Accession No. SRP140861;
https://www.ncbi.nlm.nih.gov/sra).

Metabolomics Analyses

In-depth description of analytical workflow has been previously
published (46). For each animal, duplicate cecal samples were pre-
pared and subjected to analysis. Cecal contents (~25 mg) were
resuspended in 500 pL 50% aqueous methanol plus 25 pL recovery
standard ['*C]valine (42 uM) and homogenized using a Precellys 24
homogenizer (Bertin Corp) at 5,300 rpm for two 30-s cycles. Homog-
enates were then extracted in 1 mL of ice-cold acetonitrile. Experi-
mental pools, used for quality control (QC) samples, were prepared by
pooling equal volumes (100 nL) of each sample extract. Samples and
QC extracts were evaporated to dryness under a nitrogen stream and
reconstituted in 300 wL 5% aqueous methanol containing an internal
standard (lorazepam, 5.1 wM final concentration; Sigma Aldrich, St.
Louis, MO). Chromatography was performed on a Dionex Ultimate
3000 UHPLC as using an XSelect CSH C18 reversed phase column
(2.1 X 100 mm, 2.5 pm) kept at 49°C as previously described with
minor modification (46). All samples, including duplicates, from each
diet group assayed in mixed and random order. Detection was carried
out on a Q-Exactive Hybrid Quadrupole-Orbitrap mass spectrometer
with data acquisition executed using Xcalibur 4.0 software as previ-
ously described (46). All samples were analyzed by positive and
negative electrospray ionization (ESI+/—) full-mass spectrometry
(MS) scan mode.

The acquired data set, composed of full MS and data-dependent
MS, raw files, was processed using Compound Discoverer 3.0
using an untargeted metabolomics workflow including retention
time alignment, unknown compound detection, compound-group-
ing across all samples, gap filling and metabolite identification
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using online, and “in-house” data-dependent MS,-fragmentation
spectral databases (ddMS,). Software parameters for alignment
were as follows: adaptive curve model, 5-ppm mass tolerance, and
0.2-min maximum shift for alignment. Software parameters for
detecting unknown compounds were as follows: mass tolerance for
detection of 10 ppm, intensity tolerance of 30%, S/N threshold of
3, and minimum peak height of 1e6, and parameters for compound
groups were a mass tolerance of 10 ppm and retention time
tolerance 0.15 min. Gap filling was performed across all samples
using the Real Peak detection method, a mass tolerance of 10 ppm
and S/N threshold of 1.5. Metabolites were identified by using
MassList [accurate mass = 5 ppm, retention time (RT) = 15stoa
known standard], mzCloud (online ddMS, database), and mzVault
(in house ddMS, database) and given the following confidence
levels: Level 1 identification if accurate mass, retention time, and
MS? spectra matching to mzVault or mzCloud; and Level 2
identification if accurate mass, retention time matching to known
standard, and no ddMS, information. For the current paper, only
specific, Level 1 metabolites were utilized for final analysis.

The term ‘“xenometabolites” refers to “nonself” metabolites/com-
pounds and their derivatives (i.e., derived from microbes, food/plants,
pharmaceutical, industry, etc.). The current xenometabolomics platform
(XenoScan) was constructed using 190 authentic standards (Supplemen-
tal Table S1: https://doi.org/10.6084/m9.figshare.11419383.v1). Identifi-
cation of library components was based largely on an exhaustive survey
of the extant literature related to known gut microbial and other xeno-
metabolites, plus in some cases deduction of microbial origins of select
metabolites based on conditions in which literature reports characterized
the molecules (Supplemental Table S1). In addition to strict xenometabo-
lites, we expanded our library to include metabolites that would not be
identified in a host organism without comodification by a foreign en-
zyme/organism (e.g., bacterial enzymatic deconjugation of bile acids in
cecum and large intestines).

Peak area values were generated on metabolites identified in the
cecal content samples within our in-house library (i.e., not limited to
only xenometabolites). All detected metabolites were normalized
using vector normalization on log transformed data. Average relative
standard deviation (RSD) of duplicate samples was 24.1% and 23.0%
in negative and positive modes, respectively. The average of duplicate
samples was used. RSDs of QC samples were calculated for all
detected metabolites. A total of 7 and 13 metabolites from negative
and positive modes, respectively, had mean RSD >40% and were
removed from statistical analyses. Metabolites were further filtered to
include only xenometabolites and their derivatives including come-
tabolites (Supplemental Table S2), resulting in a total of 82 metabo-
lites that were ultimately used for statistical analysis (47 and 35 in
negative and positive modes, respectively).

Data Preprocessing and Statistical Analysis

All statistical analyses were conducted in R version 3.6.0. Metab-
olites were assessed individually for outliers using an iterative appli-
cation of Grubbs’ test (33) on log-transformed data. Identified outliers
were removed, which affected <0.7% of the total data. Imputation of
all missing data, including missing data due to technical and outlier
assessment, was conducted using the K-nearest neighbor algorithm
from the impute package (22). Sample outliers were visually assessed
using sample boxplots and principal component analysis (PCA). No
samples were removed from statistical analysis due to sample outlier
assessments. Group differences in metabolites were assessed with
Kruskal-Wallis tests followed by correction for multiple comparisons
using Benjamini and Hochberg’s false discovery rate (FDR) method-
ology (4). Mann-Whitney U tests were used when two groups were
compared, followed by FDR correction. PCA was used to reduce the
dimensionality of metabolomics data and then summarized in two-
and/or three-dimensional plots. Data were log transformed and scaled
to unit variance before PCA assessment. Partial least squares-discrim-
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inant analysis (PLS-DA) was used to determine whether the global
metabolome could accurately predict group classification. PLS-DA
was determined using the caret package (35) with training parameters
set to fourfold cross-validation with five repeats. Average classifica-
tion accuracy across each cross-validation repeat was assessed to
determine performance of PLS-DA models. The optimal number of
PLS-DA latent variables (LVs) was chosen based on which LV had
the highest average classification accuracy. Variable importance in
projection (VIP) was calculated by fitting a PLS-DA model in the pls
package (40) using the parameters determined in the caret workflow,
followed by VIP assessment using the plsVarSel package (39). Con-
fidence intervals (95%) were then assessed for VIP calculations using
the boot package (8, 13). Metabolites with bootstrapped VIP confi-
dence intervals >0.8 were selected as metabolites contributing to
class discrimination in PLS-DA models (39). PLS-DA scores were
visualized on the first three L'Vs using the rgl package (2). Full details
of preprocessing steps related to shotgun metagenomic taxonomy
data, including removal of poorly sequenced samples and low abun-
dant species, have previously been reported (45). Functions from the
phyloseq (38) and vegan (41) packages were routinely used in this
workflow. The centered log-ratio transformation was applied to the
taxonomy data before analyses. Taxonomy and metabolomics data
were combined, and Spearman’s correlations were assessed using the
rcorr() function in Hmisc (21). Correlations were conducted on LSD
rats and combined PD and RD rat groups. We analyzed PD and RD
groups together to increase our overall power and due to the similarity
in microbiota and metabolomics phenotypes (herein and Refs. 44, 45).
Correlations were not conducted on D3M (i.e., later stage diabetic
rats) due to the small sample size. Data that had a significant group
difference were used in the correlation analysis. Significant correla-
tions were then imported into Cytoscape (version 3.7.1) for network
visualization. Supplemental material is available at https://doi.org/
10.6084/m9.figshare.11419383.v1 including the data sets, R code, and
supplemental files generated during the current study.

RESULTS

The Cecal Xenometabolome Discriminates UCD-T2DM Rats
from Lean Sprague-Dawley Controls

The UCD-T2DM rat spontaneously develops a diabetic
phenotype, characterized by a polygenic origin of obesity and
peripheral insulin resistance, while maintaining functional lep-
tin signaling (12). We previously assessed the cecal contents
from age-matched UCD-T2DM rats at differing stages of
diabetes progression for shotgun metagenomic sequencing and
global, untargeted metabolomics enriched for metabolites as-
sociated with pathways related to energy metabolism (45).
Although the previous metabolomics assay demonstrated that
the cecal metabolome is altered with diabetes progression, that
analysis platform was not optimized to fully characterize me-
tabolites directly associated with microbial metabolism. There-
fore, we leveraged samples from the prior cohort to determine
whether the xenometabolome and related metabolites are al-
tered by the progression of diabetes. Of the 190 metabolites
available as authentic standards in our XenoScan platform, 82
were detected in either UCD-T2DM rat groups (regardless of
diabetes status) or lean Sprague-Dawley (LSD) control rats
(Supplemental Table S2). Of these, 39 metabolites were sig-
nificantly different (FDR <0.05) in pairwise comparisons of
cecal concentrations (quantifier ion peak areas) between the
UCD-T2DM rat groups and LSD controls (Fig. 1A4). Further-
more, only seven of these did not intersect with metabolites
identified in pairwise assessments between LSD and UCD-
T2DM rats considered to be at an early stage of diabetes
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Fig. 1. A: differential abundant metabolites between LSD rats (n = 7), UCD-T2DM rats before the onset of diabetes (PD; n = 9), recent onset (RD; n = 10),
and 3 mo post-onset (D3M; n = 5). Metabolites were selected if found to have a statistically altered group after FDR correction (Kruskal-Wallis Test, FDR <
0.05). Adjacent bargraph to heatmap shows the log-transformed median peak area for each metabolite. Cyan bar indicates xenometabolite, and beige bar indicates
microbial modified metabolite. B: Venn diagram indicating the intersection of metabolites with FDR < 0.05 under the following tests: /) all experimental groups
(LSD, PD, RD, and D3M) using Kruskal-Wallis test, 2) LSD vs PD groups using Mann-Whitney U test, and 3) LSD vs. RD groups using Mann-Whitney U tests.
C: PCA of xenometabolomics data. All metabolites were included in the PCA. Data were scaled to unit variance before PCA assessment. CA, cholic acid; CDCA,
chenodeoxycholic acid; FDR, false discovery rate; LSD, lean Sprague-Dawley; PCA, principal component analysis; TDCA, taurodeoxycholic acid; UCD-T2DM,

UC Davis Type 2 Diabetes Mellitus; UDCA, ursodeoxycholic acid.

development (PD: prediabetic; RD: recent diabetic, diabetes
onset <2 wk; Fig. 1B), suggesting the majority of the variation
in the assay was due to differences between LSD rats and
UCD-T2DM rats (indicating a genetic strain effect contributing
at least some of the metabolite variance). This was highlighted
by PCA, which showed discrimination between LSD and
UCD-T2DM rats along PC1 and PC2, accounting for 39% of
the overall variance in the data (Fig. 1C).

We next investigated whether the xenometabolome could
discriminate all groups using a multivariate approach. Model-
ing with PLS-DA showed good discrimination with four-group
classification (Fig. 2A; 82.6% prediction accuracy with 4-fold
cross-validation). With the use of a VIP cutoff of 0.8, acetic
acid, crotonobetaine, ectoine, tetradecanedioic acid, 4-hy-
droxybenzoic acid, a-hydroxyisobutyric acid, azelaic acid,

glycodeoxycholic acid, and quinic acid were identified as
discriminant metabolites (Fig. 2B and Supplemental Table S3).
Of these, only crotonobetaine, ectoine, and glycodeoxycholic
acid had an FDR >0.2 in univariate analyses. In terms of
directionality, acetic acid, 4-hydroxbenzoic acid, a-hydroxy-
isobutyric acid, and quinic acid were found to be lower in LSD
rats compared with UCD-T2DM groups, while tetradecane-
dioic acid was higher in LSD rats compared with UCD-T2DM
rats (Fig. 20).

The data described above strongly suggest that the variance
is mostly attributed to differences between LSD and UCD-
T2DM rats. As we are unable to conclusively distinguish
which differences between LSD and UCD-T2DM rats are due
to genetic, metabolic, or microbiota effects, we next considered
whether the XenoScan could differentiate different stages of
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Fig. 2. A: PLS-DA of untargeted xenometabolomics in LSD (n = 7), UCD-T2DM rats before the onset of diabetes (PD; n =
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9), recent onset (RD; n = 10), and

3 mo post-onset (D3M; n = 5). PLS-DA scores dimension shown for first 3 latent variables. B: VIP for metabolites that had a bootstrapped VIP 95% confidence
interval > 0.08. Lines indicate bootstrap percentile interval using 500 bootstrap replicates. C: Boxplots display group differences of metabolites identified in B.
Pairwise differences in groups were assessed by Tukey’s test. Groups differing from LSD rats: #P value < 0.05 and #P value < 0.01. “Groups differing from
PD rats: P value < 0.05. GDCA, glycodeoxycholic acid; LSD, lean Sprague-Dawley; PLS-DA, partial least squares-discriminant analysis; UCD-T2DM, UC
Davis type 2 diabetes mellitus; VIP, variable importance in projection; LV, latent variable.

diabetes within UCD-T2DM rats (prediabetic, recent onset of
diabetes, and 3-mo post-onset of diabetes). When comparing
differences among the 3 UCD-T2DM rat groups, 24 metabo-
lites were altered before FDR correction; however, none main-
tained statistical significance at FDR =0.05 (Supplemental
Table S2). In contrast to the univariate results, PLS-DA mod-
eling with jasmonic acid, w-hydroxyhippuric acid, cholic acid,
indole-3-carboxaldehyde, w-desmethylangolensin, ursodeoxy-
cholic acid, ergothioneine, and ectoine resulted in robust cross-
validation prediction accuracy (Fig. 3, A and B and Supple-
mental Table S4; 80.4% accuracy; 4-fold cross-validation; 6
latent variables), suggesting that a multivariate model is nec-
essary to uncover variation associated with diabetes status in
this model. While the metabolites selected by PLS-DA mod-
eling were not determined to be significant at FDR <0.05 in
univariate analysis, they still had FDR <0.2 except for ectoine
and w-hydroxyhippuric acid (Supplemental Table S2). All
selected metabolites showed within-group differences with

post-hoc analyses (Dunn’s test), mainly driven by differences
at 3 mo post-onset of diabetes. Abundances of cholic acid,
ursodeoxycholic acid, indole-3-carboxaldehyde, and jasmonic
acid were all lower in D3M rats relative to PD and RD rats
(Fig. 3C). Ectoine trended higher in D3M rats relative to PD
and RD rats (P = 0.061 and 0.056 to PD and RD, respectively).
Only ergothioneine showed a different pattern than the others,
with PD rats having higher abundances relative to RD and
D3M groups.

Xenometabolites Correlate Strongly to Subsets of Bacterial
Species within an Experimental Group

Correlations within LSD rats. We next wanted to identify
bacterial species and xenometabolite correlations that could
signal which bacterial species regulate the cecal metabolite
pool (e.g., through production, degradation/metabolism or me-
tabolite conversions). Due to the disparate metabolic states of
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Fig. 3. A: PLS-DA of untargeted xenometabolomics in UCD-T2DM rats before the onset of diabetes (PD; n =

9), recent onset (RD; n = 10), and 3 mo post-onset

(D3M; n = 5). PLS-DA scores dimension shown for first 3 latent variables. B: VIP for metabolites that had a bootstrapped VIP 95% confidence interval >0.08.
Lines indicate bootstrap percentile interval using 500 bootstrap replicates. C: boxplots display raw metabolomics data for metabolites identified in B group
differences of metabolites. Pairwise differences in groups were assessed by Tukey’s test. Groups differing from D3M rats: *P value < 0.05 and **P value <
0.01. *Groups differing from RD rats P value < 0.05. CA, cholic acid; PLS-DA, partial least squares-discriminant analysis; UCD-T2DM, UC Davis type 2
diabetes mellitus; UDCA, ursodeoxycholic acid; VIP, variable importance in projection; LV, latent variable.

LSD and UCD-T2DM rats, and the confounding “strain effect”
on metabolome and microbiome (discussed above), analyses
focused only within-group (i.e., correlations between xenome-
tabolites and bacterial species within LSD or within UCD-
T2DM groups). We used strict criteria to filter low abundant
taxa to combat the high prevalence of zeros in microbial
sequencing data, understanding that this potentially increases
type II error rate. In LSD rats, the majority of correlations of
xenometabolites were among species within the Bacteroidia
and Clostridia classes (Fig. 4 and Supplemental Fig. S1).
Based on the correlation network (Fig. 4 and Supplemental Fig.
S1), several metabolites served as major intersection points for
select bacteria. For example, taurodeoxycholic acid, 2-amino-
phenol, 3,5-dihydroxybenzoic acid, protocatechuic acid, N-w-
acetylhistamine, cholic acid, and trimethylamine-N-oxide
(TMAO) had at least 6 negative correlations with bacterial
species primarily in the class of Clostridia. For example,
Faecalibacterium prausnitzii, Intestinimonas butyriciprodu-

cen, Flavonifractor plautii, and Oscillibacter valericigenes
were bacterial species negatively correlated to taurodeoxy-
cholic acid, 2-aminophenol, and 3,5-dihydroxybenzoic acid.
Blautia schinki, B. obeum, and Anaerotruncus colihominis
were negatively correlated with 3,5-dihydroxybenzoic acid and
N-w-acetylhistamine, whereas p-aminobenzoic acid, hexanoic
acid, and gluconic acid were metabolites that positively corre-
lated with Clostridia-grouped bacteria (Fig. 4, panels 1 and 2).
Examples include correlations among hexanoic acid and glu-
conic acid, with Ruminococcus albus, R. callidus, and Butyr-
ivibrio fibrisolven.

There were fewer total correlations among xenometabolites
and bacteria within the Bacteroidia class compared with the
amount observed with the Clostridia class. Major xenometabo-
lite hubs of negative correlations with species within the
Bacteroidia class included hydroxyphenyl lactic acid, p-cresol
sulfate, equol, and indole-3-propionic acid. Indole-3-propionic
acid and equol were negatively correlated to Bacteroides ceci-
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Fig. 4. Spearman’s correlation network of xenometabolites and bacterial species in LSD (n = 7). Edges (i.e., correlations) connect xenometabolites (rectangles)

and bacterial species (ovals) at P < 0.05. Orange edges indicate Spearman’s rho

> 0 and blue edges indicate Spearman’s rho < 0. Network in fop left of figure

is the full network. Labeled boxes in the full network are enlarged and adjacent to the full network. Xenometabolites are only annotated in the enlarged panels
for clarity. The full network is provided in a larger format in Supplemental Fig. S1. Xenometabolite data were peak areas, and bacterial species data were
centered-log ratios of sequencing count data. CA, cholic acid; CDCA, chenodeoxycholic acid; GDCA, glycolithocholic acid; TDCA, taurodeoxycholic acid.

muris, B. thetaiotaomicron, and Parabacteroides goldsteinii.
Sterocobilin, pyrocatechol, and 2-hydroxybenzoic acid served
as intersection points for positive correlations within the Bac-
teroidia class (Fig. 4, panels 3 and 4). Within the Bacteroidia
class, several Bacteroides spp. were positively correlated to
both pyrocatechol and 2-hydroxybenzoic acid, including B.
fragilis, B. finegoldii, B. coprophilus, and B. dorei.
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Only 12 correlations were maintained in LSD rats after
adjusting all correlations for multiple comparisons using Ben-
jamini and Hochberg’s false discovery rate correction (Fig. 5).
All of these correlations were perfectly monotonic (i.e., Spear-
mans rho = 1) and were among species from the orders Bac-
teroidales, Clostridiales, and Spirochaetales. In LSD rats,
tryptophan-related metabolites, indole-3-propionic acid and
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p-cresol sulfate were negatively correlated to Parabacteroides
goldsteinii and a Prevotella sp., respectively. Benzoic acid-
related xenometabolites, pyrocatechol and 2-hydroxybenzoic
acid, were positively correlated to Bacteroides dorei. Other
correlations within the Bacteroidales order included a positive
correlation between crotonobetaine and a Prevotella sp. and
sterocobilin and Alloprevotella tannerae. Clostridium clostrid-
ioforme and the Lachnospiraceae bacterium A4 were both
negatively correlated to monosaccharides, hexanoic acid and
gluconic acid, respectively. Marvinbryantia formatexigens and
Acetivibrio ethanolgignens were negatively correlated to N-
acetylhistamine derivatives, while Oscillibacter valericigenes,
Intestinimonas butyriciproducens, and Flavonifractor sp. were
negatively correlated to 3,5-dihydroxybenzoic acid.
Correlations within UCD-T2DM rats. We next assessed
relationships between xenometabolites and bacterial species
within UCD-T2DM rats. Similar to LSD rats, correlations in
UCD-T2DM rats classified at an early stage of diabetes consisted
of primarily the Bacteroidia and Clostridia classes; however, a
noticeable cluster of correlations between xenometabolites and
species within the Proteobacteria phyla was also observed (Fig. 6
and Supplemental Fig. S2). For example, dihydrocaffeic acid and
indole-3-carboxyaldehyde intersected with several species within
the Deltaproteobacteria class (including Desulfovibrio desulfuri-
cans, D. fairfieldensis, D. piger, Bilophila wadsworthia, and
Mailhella masiliensis) (Fig. 6, panel I). A bacterium within the
Alphaproteobacteria class, Acidiphilium sp., correlated with mul-
tiple xenometabolites, including indole-3-carboxyaldehyde, nico-
tinic acid, raffinose, genistein, indole-3-acetic acid, azelaic acid,
hexanoic acid, pimelic acid, urolithin A, and 2-hydroxybenzoic
acid (Fig. 6, panel 1 and Supplemental Fig. S2). Gluconic acid,
trimethylamine, homoprotocatechuic acid, and dimethyalanine
served as hubs for several positive correlations among species

within the Clostridia class, whereas indole-3-propionic acid,
2-phenylacetamide, and protocatechuic acid were intersection
points for negative correlations among species within the Clos-
tridia class (Fig. 6, panels 2 and 4). Indole-3-propionic acid, in
particular, was negatively correlated with Oscillibacter valeri-
cigenes, O. ruminantium, Butyricicoccus pullicecorum, Eubacte-
rium plexicaudatum, and Flavonifractor plautii. Additionally,
glycitein and 2-aminophenol served as hubs for negative correla-
tions among several Bacteroidia species (Fig. 6, panel 3), includ-
ing negative correlations between glycitein and Alloprevotella
rava and A. tannerae and between 2-aminophenol and Parabac-
teroides chinchilla, P. goldsteinii, and Prevotella copri. In con-
trast to the LSD rats, no correlations remained after adjusting for
multiple comparisons.

DISCUSSION

Microbes produce or modify a myriad of small molecules
that have the potential to influence host health and disease. For
example, microbiota-derived xenometabolites (e.g., short chain
fatty acids, indoles) and microbe-modified endogenous metab-
olites (e.g., secondary bile acids) have a wide range of effects
on host immunity (3, 29, 58), energy metabolism (5, 50), and
hormone secretion (11, 32), and other functions. Furthermore,
a wide range of microbe-regulated xenometabolites have been
hypothesized to contribute to disease sequelae of obesity [e.g.,
lipopolysaccharide (13a)], diabetes [e.g., hydrocinnamic acid
and indole-3-lactic acid (43)], cardiovascular disease [e.g.,
trimethylamine N-oxide (51)], kidney disease [e.g., cresol- and
indoxyl-sulfate (60)], and various other diseases (24, 49, 61).
In addition, our work in the UCD-T2DM Rat model and human
controlled feeding studies has suggested that changes in the
host’s metabolic health status can drive changes in the xeno-
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metabolome (6, 45). While mechanisms behind many of these
relationships have yet to be fully identified, much work is
being done to identify xenometabolites and characterize their
relationship with host physiology. In this study, we describe a
metabolomics platform, the “XenoScan,” which is uniquely
enriched in “nonself” xenometabolites, their derivatives, and
associated molecules. By strict definition, exogenously derived
metabolites can emanate from microbial metabolism, foods
and food components, environmental and industrial sources, or
microbe modification of host metabolites. The latter may also
be termed “cometabolites” since they stem from metabolism of
host and microbe(s).

Importantly, results from the XenoScan assay of cecal con-
tents correctly classified disparate rat strains and diabetes
stages. Many of these changes were concurrent with genetic-
and diabetes stage-dependent shifts in the microbiome. These
findings concur with previous reports that have documented
differences in microbial composition due to disparate mouse
genetics (9, 16, 17, 34, 42, 53). The latter studies used ampli-
con and genomic sequencing-based methods, which do not
address functional alterations of the gut microbiota; thus, there
has been a push to combine metabolomics and microbiomics

technologies. With much interest focused on human health,
many core metabolomics laboratories have libraries enriched
for mammalian metabolism. As such, metabolomics results
from microbiota-related studies have a large proportion of
host-derived or metabolically shared metabolites that may not
be directly related to microbial alterations or exogenous me-
tabolite sources. To our knowledge, the XenoScan is the first
liquid chromatography-mass spectrometry (LC/MS)-based
metabolomics platform with a library specifically enriched in
metabolites known or suspected microbial or “nonself” origins,
which can be a strong complement to microbial taxonomic
survey methods. As knowledge of microbe-associated metab-
olites grows, the XenoScan serves as a dynamic and evolving
platform that can accommodate increasing numbers of xeno-
metabolites verified through authentic chemical standards.

As previously noted, the gut microbiota has been implicated
in the pathogenesis of insulin resistance and diabetes (7, 14, 47,
52). Thus archived cecal content samples from our previous
work in the UCD-T2DM rat to leverage the XenoScan platform
and further examine how diabetes alters the composition and
metabolic function of the gut microbiota. When applying
“global” metabolomics approaches to cecal contents (45) or
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blood plasma (44) in this model, we have observed a potential
genetic effect when comparing LSD to UCD-T2DM rats, since
nondiabetic LSD and prediabetic UCD-T2DM rats had distinct
metabolite signatures. Using the XenoScan platform herein, we
again were unable to distinguish whether cecal xenometabolite
differences between LSD and UCD-T2DM rats are due to
genetics/strain or due to differences in metabolic status. Fo-
cusing just within UCD-T2DM rat groups, we found a handful
of xenometabolites that discriminated rats considered as pre-
diabetic or recently diagnosed as diabetic versus rats with fully
developed and untreated diabetes. Most of these are derived
from plant sources (e.g., jasmonic acid, ergothioneine, and
genestein). However, diets were not different in these animals,
so changes in these diet-derived xenometabolites are likely the
result of altered host or microbial metabolism. We acknowl-
edge that potential differences in food intake across groups,
and potential differences in total cecal contents (which would
alter the absolute pool size) should be taken into account and
controlled experimentally in future studies of these rat models.
Regardless, the xenometabolites that discriminated the spec-
trum of diabetes status in the current experiment are interesting
to consider. Jasmonic acid, for instance, acts as a hormone in
plants, akin to mammalian eicosanoids, and is typically syn-
thesized in response to pathogens and insects (15, 20). While
the current study cannot determine a specific role for jasmonic
acid, there is also evidence suggesting that jasmonic acid is
produced by fungi to subvert plant hormonal response (18),
which underlies the complex behaviors that microbes and
colonies utilize to compete with other microbes. Two nonx-
enometabolite bile acids, cholic acid and urosodeoxycholic
acid, were also found to be lower in D3M rats compared PD
and RD rats. These bile acids are primary and secondary bile
acids, respectively, and their abundance in cecal contents are
likely the result of bacterial enzymatic deconjugation. Thus
their reduction in advanced diabetes may suggest either de-
creased synthesis due to diabetes-associated hepatic injury (1)
or alterations in microbial metabolism (45). Further assessment
will be required to fully characterize these findings in this
model.

Very little is known about the microecological environment
within the gastrointestinal tract and the interaction between
microbes and small molecules in vivo. A major goal of the
XenoScan metabolomics assay is to assist in the identification
of microbe-metabolite relationships and then generate new
hypotheses that can be further investigated. In the current
study, several xenometabolites and associated molecules ap-
pear to serve as metabolic hubs where clades of bacteria cluster
around certain metabolites. The correlations may signal that
these microbes contribute to the metabolism of the hub metab-
olite and/or that the metabolite milieu regulates microbe ecol-
ogy. In LSD rats, for instance, taurodeoxycholic acid, 2-amino-
phenol, 3,5-dihydroxybenzoic acid, N-omega-acetylhistamine,
protocatechuic acid, cholic acid, and trimethylamine-N-oxide
had at least five species within the Clostridia class that were
negatively correlated to each metabolite, whereas p-aminoben-
zoic acid, hexanoic acid, and gluconic acid had several positive
correlations among Clostridia-specific species. The combina-
tion of these xenometabolites together do not indicate a specific
metabolic pathway, but their close association may suggest
how clusters of metabolites promote specific niches for certain
clades. An example of this can be gleaned from short-chain

XENOSCAN: A LC/MS PLATFORM ENRICHED IN XENOMETABOLITES

fatty acid fermentation, which lowers pH levels and in turn,
increases butyrate-producing bacteria, and suppresses Bacte-
roides spp. (56). Thus combinations of xenometabolites could
alter the intestinal chemical environment (e.g., pH, osmolality)
and produce favorable conditions for certain microbes. Fur-
thermore, clusters of correlations among chemically similar
xenometabolites provide evidence of microbial metabolism.
Many of the strongest correlations within LSD rats were
among hydroxybenzoic acids (2-hydroxybenzoic acid, pyrocat-
echol, and 3,5-dihydroxybenzoic acid), which had positive
correlations with species within the Bacteroidales order and
negative correlations with species in the Clostridiales order,
suggesting that these metabolites promote Bacteroidales and
suppress Clostridiales. Intriguingly, these hydroxybenzoic me-
tabolites are thought to be derived from plants but are also
synthesized by intestinal bacteria from polyphenols and fla-
vonoids (26). Additional investigations will be required to
determine whether the hydroxybenzoic acids and other xeno-
metabolites possess biological activity and contribute to the
physiological function of these animals. The current results
provide an important framework and foundation for these
efforts.

We focused our correlation analysis in the UCD-T2DM rats
on the combined PD and RD groups to increase statistical
power and because the study design has continually demon-
strated that these groups have similar microbial and metabolic
profiles (44, 45). While the PD group is not considered diabetic
based on their nonfasting glucose levels, prediabetic UCD-
T2DM rats are hyperinsulinemic, have enlarged pancreatic
islets, and have increased liver triglycerides when compared
with LSD controls (12); thus, our categorization of PD rats
likely differs from RD classified rats based mainly on nonfast-
ing glucose concentrations. When we derived a correlation
network using these combined groups, we found a wide variety
of xenometabolites that associated with species primarily in the
Bacteroidetes, Firmicutes, and Proteobacteria phyla. With the
focus on indole-3-propionic acid as an example (Fig. 5, panel
2), this metabolite was negatively correlated to several species
within the Oscillibacter genus, including O. valericigenes and
O. ruminantium. The genus Oscillibacter was identified in
2007 (25), and bacteria within this genus are gram-negative
obligate anaerobes that are considered to be beneficial to
mammals due to their putative butyrate production (19, 36).
Oscillibacter spp. are not known to carry the reductase needed
for indole-3-propionic acid and its negative relationship with
this metabolite would further suggest that these bacteria do not
produce it. Oscillibacter spp. were also positively correlated to
gluconic acid and trimethylamine, the latter of which is a
bacteria-derived metabolite proposed to be detrimental to host
health due to association of its derivative TMAO with cardio-
vascular disease (31). While there are likely many other tax-
onomy-metabolite relationships that can be highlighted within
the correlation network, this particular example demonstrates
how a single metabolite (e.g., butyrate) may not fully encom-
pass the metabolic process of a microbial ecosystem and its
interaction with the host organism. The ability to generate a
more comprehensive metabolite landscape reflective of mi-
crobe metabolism and ecology is a major strength of analytical
platforms such as the XenoScan.

Bacterial production of indole-3-propionic acid has gener-
ally been indicated with Clostridium sporogenes (59), but has
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been noted for other Clostridium and Peptostreptococcus spe-
cies (48). Paradoxically, the XenoScan identified abundances
of indole-3-propionic acid even though C. sporogenes was not
identified in the metagenomic analysis (data not shown) nor
were any other bacterial species previously known to produce
indole-3-propionic acid. To date, indole-3-propionic acid pro-
ducers have been identified using culture (59) or bioinformatic
prediction methods (14). In our correlation analysis, the ma-
jority of correlations among bacterial species and indole-3-
propionic acid were negative, suggesting that none of the
correlations were based on metabolite production. We specu-
late that indole-3-propionic acid may be a marker of resource
competition, where its abundance may signal bacterial species
that have a competition disadvantage. Alternatively, negative
correlations for metabolites may signal that certain bacteria
catabolize or further metabolize parent molecules, thus lower-
ing the cecal pool size of the latter. More work will need to be
done in this model to confirm this hypothesis and to determine
how this metabolite and other metabolites can be modified
when known producers are not apparent.

We report herein the first LC-MS-based untargeted metabo-
lomics platform with an authentic metabolic library enriched in
xenometabolites and related molecules, but several limitations
should be discussed. We acknowledge that the term “xenome-
tabolite” can technically apply to a wider class of molecules
that are not necessarily microbe-derived (e.g., vitamins, phar-
maceuticals, plant-derived molecules, etc.). The terminology
itself is derived from the Latin “xeno,” thus defining metabo-
lites/compounds that emanate wholly or in part from “nonself”
or “foreign” sources. As the field evolves, some xenometabo-
lites may be categorized based on compartmentalization and
context. For example, short-chain fatty acids (SCFAs) can also
be produced by mammals during combustion of macronutrients
in the mitochondria and in that specific context are not xeno-
metabolites. Yet, this class of molecules is produced robustly
by gut bacteria and so the gut luminal SCFAs are predomi-
nantly xenometabolites. It should also be acknowledged that
large spectral repositories, like the Global Natural Products
Social Molecular Networking (GNPS) (57), have the ability to
predict the identification of a greater number of xenometabo-
lites than our platform, but annotating and identifying many
metabolites (especially microbial metabolites) without access
to authentic standards remains a challenge. Another limitation
to the current study of gut content metabolomics is that total
cecal content weight was not determined, so the total cecal
pool sizes of metabolites (e.g., concentration multiplied by
total content) cannot be accurately known. Lastly, in the
current analyses we largely excluded host-derived metabolites
to highlight the xenometabolomics profile of our samples, but
of course the gastrointestinal environment contains significant
metabolic inputs from the host. Thus other factors than the
xenometabolome will associate with or impact the microbial
ecology in addition to the metabolites profiled here.

In addition to the classification and technological limita-
tions, our study highlighted the current statistical challenges
associated with microbiota-metabolome exploratory analyses.
We were careful to utilize appropriate methods to minimize
type I errors; however, our penalization for multiple hypothe-
sis-based tests either contradicted the multivariate results or
rendered our correlations analysis insignificant. While we un-
derstand the need to minimize type I errors, we also point that
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1) correlations noted herein are not causative and should be
considered hypothesis generating until confirmed with targeted
studies and 2) our type II error rate was likely significantly
increased due to stringent abundance criteria in the shotgun
metagenome taxonomy data combined with the multiple com-
parison correction. Also, it is important to note that FDR
assumptions typically consider each comparison as indepen-
dent from one another; yet, many metabolites are related in
pathways in other aspects of metabolism and thus traditional
FDR approaches have limitations in “omics” studies.

In conclusion, the application of a new metabolomics plat-
form enriched in xenometabolites discriminated LSD rats from
UCD-T2DM rats, concurrent with microbial composition dif-
ferences associated with host genetics/strain. In addition, we
were able to discriminate UCD-T2DM rats with 3 mo post-
onset of diabetes from those without diabetes or <2 wk
post-onset of diabetes, providing yet another example of host
metabolic health influencing the gut microbial ecosystem.
Examples of how this method can be used in combination with
taxonomy data to generate new hypotheses were provided:
future studies will be needed to confirm which specific mi-
crobes regulate levels of specific metabolites and vice versa.
We feel this is the next evolutionary step in combining metabo-
lomics and microbiomics to delineate fully the complex met-
abolic ecology in the mammalian intestine.
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