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A METHOD BASED ON TOTAL VARIATION FOR NETWORK
MODULARITY OPTIMIZATION USING THE MBO SCHEME∗

HUIYI HU† , THOMAS LAURENT‡ , MASON A. PORTER§ , AND ANDREA L. BERTOZZI†

Abstract. The study of network structure is pervasive in sociology, biology, computer science,
and many other disciplines. One of the most important areas of network science is the algorithmic
detection of cohesive groups of nodes called “communities”. One popular approach to find com-
munities is to maximize a quality function known as modularity to achieve some sort of optimal
clustering of nodes. In this paper, we interpret the modularity function from a novel perspective: we
reformulate modularity optimization as a minimization problem of an energy functional that consists
of a total variation term and an `2 balance term. By employing numerical techniques from image
processing and `1 compressive sensing—such as convex splitting and the Merriman-Bence-Osher
(MBO) scheme—we develop a variational algorithm for the minimization problem. We present our
computational results using both synthetic benchmark networks and real data.

Key words. social networks, community detection, data clustering, graphs, modularity, MBO
scheme.

AMS subject classifications. 62H30, 91C20, 91D30, 94C15.

1. Introduction. Networks provide a useful representation for the investigation
of complex systems, and they have accordingly attracted considerable attention in
sociology, biology, computer science, and many other disciplines [48, 49]. Most of
the networks that people study are graphs, which consist of nodes (i.e., vertices) to
represent the elementary units of a system and edges to represent pairwise connections
or interactions between the nodes.

Using networks makes it possible to examine intermediate-scale structure in com-
plex systems. Most investigations of intermediate-scale structures have focused on
community structure, in which one decomposes a network into (possibly overlapping)
cohesive groups of nodes called communities [51].1 There is a higher density of con-
nections within communities than between them.

In some applications, communities have been related to functional units in net-
works [51]. For example, a community might be closely related to a functional module
in a biological system [36] or a group of friends in a social system [59]. Because com-
munity structure in real networks can be very insightful [22, 25, 49, 51], it is useful to
study algorithmic methods to detect communities. Such efforts have been useful in
studies of the social organization in friendship networks [59], legislation cosponsorships
in the United States Congress [61], functional modules in biology networks [27, 36],
and many other situations.

∗This work was supported by UC Lab Fees Research grant 12-LR-236660, ONR grant
N000141210838, ONR grant N000141210040, AFOSR MURI grant FA9550-10-1-0569, NSF grant
DMS-1109805. M.A.P. was supported by a research award (#220020177) from the James S. Mc-
Donnell Foundation, the EPSRC (EP/J001759/1), and the FET-Proactive project PLEXMATH
(FP7-ICT-2011-8; grant #317614) funded by the European Commission.
†Department of Mathematics, University of California, Los Angeles. Los Angeles, CA, USA.
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1Other important intermediate-scale structures to investigate include core-periphery structure

[55] and block models [16].
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To perform community detection, one needs a quantitative definition for what
constitutes a community, though this relies on the goal and application one has in
mind. Perhaps the most popular approach is to optimize a quality function known as
modularity [44, 45, 47], and numerous computational heuristics have been developed
for optimizing modularity [22, 51]. The modularity of a network partition measures
the fraction of total edge weight within communities versus what one might expect if
edges were placed randomly according to some null model. We give a precise definition
of modularity in equation (2.1) in Section 2.1. Modularity gives one definition of the
“quality” of a partition, and maximizing modularity is supposed to yield a reasonable
partitioning of a network into disjoint communities.

Community detection is related to graph partitioning, which has been applied to
problems in numerous areas (such as data clustering) [38,50,57]. In graph partitioning,
a network is divided into disjoint sets of nodes. Graph partitioning usually requires
the number of clusters to be specified to avoid trivial solutions, whereas modularity
optimization does not require one to specify the number of clusters [51]. This is a
desirable feature for applications such as social and biological networks.

Because modularity optimization is an NP-hard problem [7], efficient algorithms
are necessary to find good locally optimal network partitions with reasonable com-
putational costs. Numerous methods have been proposed [22, 51]. These include
greedy algorithms [12,46], extremal optimization [6,17], simulated annealing [28,32],
spectral methods (which use eigenvectors of a modularity matrix) [47,54], and more.
The locally greedy algorithm by Blondel et al. [5] is arguably the most popular com-
putational heuristic; it is a very fast algorithm, and it also yields high modularity
values [22,35].

In this paper, we interpret modularity optimization (using the Newman-Girvan
null model [45,49]) from a novel perspective. Inspired by the connection between graph
cuts and the total variation (TV) of a graph partition, we reformulate the problem of
modularity optimization as a minimization of an energy functional that consists of a
graph cut (i.e., TV) term and an `2 balance term. By employing numerical techniques
from image processing and `1 compressive sensing—such as convex splitting and the
Merriman-Bence-Osher (MBO) scheme [41]—we propose a variational algorithm to
perform the minimization on the new formula. We apply this method to both syn-
thetic benchmark networks and real data sets, and we achieve performance that is
competitive with the state-of-the-art modularity optimization algorithms.

The rest of this paper is organized as follows. In Section 2, we review the definition
of the modularity function, and we then derive an equivalent formula of modularity
optimization as a minimization problem of an energy functional that consists of a total
variation term and an `2 balance term. In Section 3, we explain the MBO scheme and
convex splitting, which are numerical schemes that we employ to solve the minimiza-
tion problem that we proposed in Section 2. In Section 4, we test our algorithms on
several benchmark and real-world networks. We then review the similarity measure
known as the normalized mutual information (NMI) and use it to compare network
partitions with ground-truth partitions. We also evaluate the speed of our method,
which we compare to classic spectral clustering [38, 57], modularity-based spectral
partitioning [47, 54], and the GenLouvain code [31] (which is an implementation of a
Louvain-like algorithm [5]). In Section 5, we summarize and discuss our results.

2. Method. Consider an N -node network, which we can represent as a weighted
graph (G,E) with a node set G = {n1, n2, . . . , nN} and an edge set E = {wij}Ni,j=1.
The quantity wij indicates the closeness (or similarity) of the tie between nodes ni
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and nj , and the array of all wij values forms the graph’s adjacency matrix W = [wij ].
In this work, we only consider undirected networks, so wij = wji.

2.1. Review of the Modularity Function. The modularity of a graph parti-
tion measures the fraction of total edge weight within each community minus the edge
weight that would be expected if edges were placed randomly using some null model
[51]. The most common null model is the Newman-Girvan (NG) model [45], which

assigns the expected edge weight between ni and nj to be
kikj
2m , where ki =

∑N
s=1 wis

is the strength (i.e., weighted degree) of ni and 2m =
∑N
i=1 ki the total volume (i.e.,

total edge weight) of the graph (G,E). When a network is unweighted, then ki is the
degree of node i. An advantage of the NG null model is that it preserves the expected
strength distribution of the network.

A partition g = {gi}Ni=1 of the graph (G,E) consists of a set of disjoint subsets
of the node set G whose union is the entire set G. The quantity gi ∈ {1, 2, . . . , n̂}
is the community assignment of ni, where there are n̂ communities (n̂ ≤ N). The
modularity of the partition g is defined as

Q(g) =
1

2m

N∑
i,j=1

(
wij − γ

kikj
2m

)
δ(gi, gj) , (2.1)

where γ is a resolution parameter [53]. The term δ(gi, gj) = 1 if gi = gj and δ(gi, gj) =
0 otherwise. The resolution parameter can change the scale at which a network is
clustered [22,51]. A network breaks into more communities as one increases γ.

By maximizing modularity, one expects to obtain a reasonable partioning of a
network. However, this maximization problem is NP hard [7], so considerable effort
has been put into the development of computational heuristics to obtain network
partitions with high values of Q.

2.2. Reformulation of Modularity Optimization. In this subsection, we
reformulate the problem of modularity optimization by deriving a new expression
for Q that bridges the network-science and compressive-sensing communities. This
formula makes it possible to use techniques from the latter to tackle the modularity-
optimization problem with low computational cost.

We start by defining the total variation (TV), weighted `2-norm, and weighted
mean of a function f : G→ R:

|f |TV :=
1

2

N∑
i,j=1

wij |fi − fj | ,

‖f‖2`2 :=

N∑
i=1

ki |fi|2 ,

mean(f) :=
1

2m

N∑
i=1

kifi , (2.2)

where fi = f(ni). The quantity 1
2

∑N
i,j=1 wij |fi − fj | is called the total variation

because it enjoys many properties of the classical total variation
∫
|∇f | of a function

f : Rn → R [11]. For a vector-valued function f = (f (1), . . . , f (n̂)): G → Rn̂, we
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define

|f |TV :=

n̂∑
l=1

|f (l)|TV ,

‖f‖2`2 :=

n̂∑
l=1

‖f (l)‖2`2 , (2.3)

and mean(f) :=
(
mean(f (1)), . . . ,mean(f (n̂))

)
.

Given the partition g = {gi}Ni=1 defined in Section 2.1, let Al = {ni ∈ G, gi = l},
where l ∈ {1, 2, . . . , n̂} (n̂ ≤ N). Thus, G = ∪n̂l=1Al is a partition of the network
(G,E) into disjoint communities. Note that every Al is allowed to be empty, so g is a
partition into at most n̂ communities. Let f (l) : G→ {0, 1} be the indicator function

of community l; in other words, f
(l)
i equals one if gi = l, and it equals zero otherwise.

The function f = (f (1), . . . , f (n̂)) is then called the partition function (associated with
g). Because each set Al is disjoint from all of the others, it is guaranteed that only a
single entry of fi equals one for any node i. Therefore, f : G→ V n̂ ⊂ Rn̂, where V n̂

V n̂ := {(1, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, . . . , 0, 1)} = {~el}n̂l=1

is the standard basis of Rn̂.

The key observation that bridges the network-science and compressive-sensing
communities is the following:

Theorem 2.1. Maximizing the modularity functional Q over all partitions that
have at most n̂ communities is equivalent to minimizing

|f |TV − γ‖f −mean(f)‖2`2 (2.4)

over all functions f : G→ V n̂.

Proof. In the language of graph partitioning, vol(Al) :=
∑
ni∈Al

ki denotes the
volume of the set Al, and Cut(Al, A

c
l ) :=

∑
ni∈Al,nj∈Ac

l
wij is the graph cut of Al and

Acl . Therefore,

Q(g) =
1

2m

(2m− ∑
gi 6=gj

wij
)
− γ

2m

n̂∑
l=1

 ∑
ni∈Al,nj∈Al

kikj


= 1− 1

2m

(
n̂∑
l=1

Cut(Al, A
c
l ) +

γ

2m

n̂∑
l=1

volA2
l

)

= 1− γ − 1

2m

(
n̂∑
l=1

Cut(Al, A
c
l )−

γ

2m

( n̂∑
l=1

volAl · volAcl

))
, (2.5)

where the sum
∑
gi 6=gj wij includes both wij and wji. Note that if χA : G→ {0, 1} is



A Method Based on Total Variation for Network Modularity Optimization 5

the indicator function of a subset A ⊂ G, then |χA|TV = Cut (A,Ac) and

‖χA −mean(χA)‖2`2 =

N∑
i=1

ki

∣∣∣∣χA(ni)−
vol(A)

2m

∣∣∣∣2
= vol(A)

(
1− vol(A)

2m

)2

+ vol (Ac)

(
vol (A)

2m

)2

=
vol(A) · vol (Ac)

2m
.

Because f (l) = χAl
is the indicator function of Al, it follows that

|f |TV − γ‖f −mean(f)‖2`2 =

n̂∑
l=1

{
|f (l)|TV − γ‖f (l) −mean(f (l))‖2`2

}
=

n̂∑
l=1

{
Cut(Al, A

c
l )− γ

vol(Al) · vol(Acl )

2m

}
. (2.6)

Combining (2.5) and (2.6), we conclude that maximizing Q is equivalent to min-
imizing (2.4).

With the above argument, we have reformulated the problem of modularity max-
imization as the minimization problem (2.4), which corresponds to minimizing the
total variation (TV) of the function f along with a balance term. This yields a novel
view of modularity optimization that uses the perspective of compressive sensing (see
the references in [37]). In the context of compressive sensing, one seeks a solution of
function f that is compressible under the transform of a linear operator Φ. That is,
we want Φf to be well-approximated by sparse functions. (A function is considered
to be “sparse” when it is equal to or approximately equal to zero on a “large” portion
of the whole domain.) Minimizing ‖Φf‖`1 promotes sparsity in Φf . When Φ is the
gradient operator (on a continuous domain) or the finite-differencing operator (on a
discrete domain) ∇, then the object ‖Φf‖`1 = ‖∇f‖`1 becomes the total variation
|f |TV [37, 43]. The minimization of TV is also common in image processing and
computer vision [10,37,43,56].

The expression in equation (2.5) is interesting because its geometric interpretation
of modularity optimization contrasts with existing interpretations (e.g., probabilistic
ones or in terms of the Potts model from statistical physics [47, 51]). For example,
we see from (2.5) that finding the bipartition of the graph G = A∪Ac with maximal
modularity is equivalent to minimizing

Cut(A,Ac)− γ

2m
vol(A) · vol (Ac) .

Note that the term vol(A) · vol (Ac) is maximal when vol(A) = vol (Ac) = m. There-
fore, the second term is a balance term that favors a partition of the graph into two
groups of roughly equal size. In contrast, the first term favors a partition of the graph
in which few links are severed. This is reminiscent of the Balance Cut problem in
which the objective is to minimize the ratio

Cut (A,Ac)

vol(A) · vol (Ac)
. (2.7)

In recent papers Refs. [8,9,29,30,52,58], various TV-based algorithms were proposed
to minimize ratios similar to (2.7).
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3. Algorithm. Directly optimizing (2.4) over all partition functions f : G→ V n̂

is difficult due to the discrete solution space. Continuous relaxation is thus needed to
simplify the optimization problem.

3.1. Ginzburg-Landau Relaxation of the Discrete Problem. Let Xp

Xp = {f | f : G→ V n̂}

denote the space of partition functions. Minimizing (2.4) over Xp is equivalent to
minimizing

H(f) =

{
|f |TV − γ‖f −mean(f)‖2`2 , if f ∈ Xp

+∞ , otherwise
(3.1)

over all f : G→ Rn̂.
The Ginzburg-Landau (GL) functional has been used as an alternative for the TV

term in image processing (see the references in Ref. [4]) due to its Γ-convergence to the
TV of the characteristic functions in Euclidean space [33]. Reference [4] developed a
graph version of the GL functional and used it for graph-based high-dimensional data
segmentation problems. The authors of Ref. [23] generalized the two-phase graphical
GL functional to a multi-phase one.

For a graph (G,E), the (combinatorial) graph Laplacian [11] is defined as

L = D−W , (3.2)

where D is a diagonal matrix with nodes of strength {ki}Ni=1 on the diagonal and W
is the weighted adjacency matrix. The operator L is linear on {z|z : G → R}, and
satisfies:

〈z,Lz〉 =
1

2

∑
i,j

wij(zi − zj)2 ,

where zi = z(ni) and i ∈ {1, 2, . . . , N}.
Following the idea in Refs. [4,23], we define the Ginzburg-Landau relaxation of H

as follows:

Hε(f) =
1

2

n̂∑
l=1

〈f (l),Lf (l)〉+
1

ε2

N∑
i=1

Wmulti(fi)− γ‖f −mean(f)‖2`2 , (3.3)

where ε > 0. In equation (3.3), Wmulti : Rn̂ → R is a multi-well potential (see
Ref. [23]) with equal-depth wells. The minima of Wmulti are spaced equidistantly,
take the value 0, and correspond to the points of V n̂. The specific formula for Wmulti

does not matter for the present paper, because we will discard it when we implement
the MBO scheme. Note that the purpose of this multi-well term is to force fi to go
to one of the minima, so that one obtains an approximate phase separation.

Our next theorem states that modularity optimization with an upper bound on
the number of communities is well-approximated (in terms of Γ-convergence) by min-
imizing Hε over all f : G → Rn̂. Therefore, the discrete modularity optimization
problem (2.4) can be approximated by a continuous optimization problem. We give
the mathematical definition and relevant proofs of Γ-convergence in the Appendix.
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Theorem 3.1 (Γ–convergence of Hε towards H). The functional Hε Γ-converges
to H on the space X = {f | f : G→ Rn̂}.

Proof. As shown in Theorem A.2 (in the Appendix), Hε + γ‖f −mean(f)‖2`2 Γ-
converges to H+γ‖f−mean(f)‖2`2 on X. Because γ‖f−mean(f)‖2`2 is continuous on
the metric space X, it is straightforward to check that Hε Γ-converges to H according
to the definition of Γ-convergence.

By definition of Γ-convergence, Theorem 3.1 directly implies the following:

Corollary 3.2. Let f ε be the global minimizer of Hε. Any convergent subse-
quence of fε then converges to a global maximizer of the modularity Q with at most n̂
communities.

3.2. MBO Scheme, Convex splitting, and Spectral Approximation. In
this subsection, we use techniques from the compressive-sensing and image-processing
literatures to develop an efficient algorithm that (approximately) optimizes Hε.

In Ref. [41], an efficient algorithm (which is now called the MBO scheme) was
proposed to approximate the gradient descent of the GL functional using threshold
dynamics. See Refs. [2,18,20] for discussions of the convergence of the MBO scheme.
Inspired by the MBO scheme, the authors of Ref. [19] developed a method using a PDE
framework to minimize the piecewise-constant Mumford-Shah functional (introduced
in Ref. [42]) for image segmentation. Their algorithm was motivated by the Chan-Vese
level-set method [10] for minimizing certain variants of the Mumford-Shah functional.
Note that the Chan-Vese method is related to our reformulation of modularity, because
it uses the TV as a regularizer along with `2 based fitting terms. The authors of
Refs. [23, 40] applied the MBO scheme to graph-based problems.

The gradient-descent equation of (3.3) is

∂f

∂t
= −(Lf (1), . . . ,Lf (n̂))− 1

ε2
∇Wmulti(f) +

δ

δf

(
γ‖f −mean(f)‖2`2

)
, (3.4)

where ∇Wmulti(f) : G → Rn̂ is the composition of the functions ∇Wmulti and f .
Thus, one can follow the idea of the original MBO scheme to split (3.4) into two parts
and replace the forcing part ∂f

∂t = − 1
ε2∇Wmulti(f) by an associated thresholding.

We propose a Modularity MBO scheme that alternates between the following two
primary steps to obtain an approximate solution fn : G→ V n̂:

Step 1.
A gradient-descent process of temporal evolution consists of a diffusion term
and an additional balance term:

∂f

∂t
= −(Lf (1), . . . ,Lf (n̂)) +

δ

δf

(
γ‖f −mean(f)‖2`2

)
. (3.5)

We apply this process on fn with time τn, and we repeat it for η time steps
to obtain f̂ .

Step 2.
We threshold f̂ from Rn̂ into V n̂:

fn+1
i = ~egi ∈ V n̂ , where gi = argmax{1≤l≤n̂}{f̂

(l)
i } .
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This step assigns to fn+1
i the node in V n̂ that is the closest to f̂i.

To solve (3.5), we implement a convex-splitting scheme [21,60]. Equation (3.5) is

the gradient flow of the energy H1 +H2, where H1(f) := 1
2

∑n̂
l=1〈f (l),Lf (l)〉 is convex

and H2(f) := −γ‖f − mean(f)‖2`2 is concave. In a discrete-time stepping scheme,
the convex part is treated implicitly in the numerical scheme, whereas the concave
part is treated explicitly. Note that the convex-splitting scheme for gradient-descent
equations is an unconditionally stable time-stepping scheme.

The discretized time-stepping formula is

f̂ − fn

τn
= −δH1

δf
(f̂)− δH2

δf
(fn)

= −(Lf̂ (1), . . . ,Lf̂ (n̂)) + 2γ~k � (fn −mean(fn)) , (3.6)

where (~k � f)(ni) := kifi, f̂ : G→ Rn̂, (ki is the strength of node ni), and fn : G→
V n̂. At each step, we thus need to solve(

(1 + τnL)f̂ (1), . . . , (1 + τnL)f̂ (n̂)
)

= fn + 2γτn~k � [fn −mean(fn)] . (3.7)

For the purpose of computational efficiency, we utilize the low-order (leading)
eigenvectors (associated with the smallest eigenvalues) of the graph Laplacian L to
approximate the operator L. The eigenvectors with higher order are more oscillatory,
and resolve finer scale. Leading eigenvectors provide a set of basis to approximately
represent graph functions. The more leading eigenvectors are used, the finer scales can
be resolved. In the graph-clustering literature, scholars usually use a small portion of
leading eigenvectors of L to find useful structural information in a graph [3,11,13,47,
57], (note however that some recent work has explored the use of other eigenvectors
[14]). In contrast, one typically uses much more modes when solving partial differential
equations numerically (e.g., consider a psuedospectral scheme), because one needs to
resolve the solution at much finer scales.

Motivated by the known utility and many successes of using leading eigenvectors
(and discarding higher-order eigenvectors) in studying graph structure, we project f
onto the space of the Neig leading eigenvectors to approximately solve (3.7). Assume

that fn =
∑
s φsa

n
s , f̂ =

∑
s φsâs, and 2γτn~k � (fn −mean(fn)) =

∑
s φsb

n
s , where

{λs} are the Neig smallest eigenvalues of the graph Laplacian L. We denote the
corresponding eigenvectors (eigenfunctions) by {φs}. Note that ans , âs, and bns all
belong to Rn̂. With this representation, we obtain

âs =
ans + bns
1 + τnλs

, l ∈ {1, 2, . . . , Neig} (3.8)

from (3.7) and are able to solve (3.7) more efficiently.
We summarize our Modularity MBO scheme in Algorithm 1. Note that the time

complexity of each MBO iteration step is O(N).
Unless specified otherwise, the numerical experiments in this paper using a ran-

dom initial function f0. (It takes its value in V n̂ with uniform probability by using
the command rand in Matlab.)

3.3. Two Implementations of the Modularity MBO Scheme. Given an
input value of the parameter n̂, the Modularity MBO scheme partitions a graph into
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Algorithm 1 The Modularity MBO scheme.

Set values for γ, n̂, η, and τn = dt.
Input ← an initial function f0 : G → V n̂ and the eigenvalue-eigenvector pairs
{(λs, φs)} of the graph Laplacian L corresponding to the Neig smallest eigenvalues.
Initialize:
a0s = 〈f0, φs〉;
b0
s = 〈2γdt~k � (f0 −mean(f0)), φs〉.

while fn 6= fn−1 and n ≤ 500: do
Diffusion:
for i = 1→ η do

ans ←
an
s +bn

s

1+dtλs
, for s ∈ {1, 2, . . . , Neig};

fn ←
∑
s φsa

n
s ;

bns = 〈2γdt~k. ∗ (fn −mean(fn)), φs〉;
i=i+1;

end for
Thresholding:

fn+1
i = ~egi ∈ V n̂, where gi = argmax{1≤l≤n̂}{f̂

(l)
i }.

n = n+ 1;
end while
Output ← the partition function fn.

at most n̂ communities. In many applications, however, the number of communities
is usually not known in advance [22, 51], so it can be difficult to decide what values
of n̂ to use. Accordingly, we propose two implementations of the Modularity MBO
scheme. The Recursive Modularity MBO (RMM) scheme is particularly suitable for
networks that one expects a large number of communities, whereas the Multiple Input-
n̂ Modularity MBO (Multi-n̂ MM) scheme is particularly suitable for networks that
one expects to have a small number of communities.

Implementation 1. The RMM scheme performs the Modularity MBO scheme
recursively, which is particular suitable for networks that one expects to have a large
number of communities. In practice, we set the value of n̂ to be large in the first
round of applying the scheme, and we then let it be small for the rest of the recursion
steps. In the experiments that we report in the present paper, we use n̂ = 50 for the
first round and n̂ = min(10, |S|) thereafter, where |S| is the size of the subnetwork
that one is partitioning in a given step. (We also tried n̂ = 10, 20 or 30 for the first
round and n̂ = min(10, |S|) thereafter. The results are similar.)

Importantly, the minimization problem (2.4) needs a slight adjustment for the
recursion steps. Assume for a particular recursion step that we perform the Modular-
ity MBO partitioning with parameter n̂ on a network S ⊂ G containing a subset of
the nodes of the original graph. Our goal is to increase the modularity for the global
network instead of the subnetwork S. Hence, the target energy to minimize is

H(S)(f) := |f |(S)TV − γ
m(S)

m

∥∥∥f −mean(S)(f)
∥∥∥2
`2
,

where f : S → V n̂ ⊂ Rn̂, the TV norm is |f |(S)TV = 1
2

∑
i,j∈S wij |fi − fj |`1 , the total

edge weight of S is 2m(S) =
∑
i∈S ki, and mean(S)(f) = 1

2m(S)

∑
i∈S kifi. The rest of
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the minimization procedures are the same as described previously.
Note that this recursive scheme is adaptive in resolving the network structure

scale. The eigenvectors of the subgroups are recalculated at each recursive step, so
the scales being resolved get finer as the recursion step goes. Therefore Neig need not
to be very large.

Implementation 2. For the Multi-n̂ MM scheme, one sets a search range T for
n̂, runs the Modularity MBO scheme for each n̂ ∈ T , and then chooses the resulting
partition with the highest modularity score. It works well if one knows the approx-
imate maximum number of communities and that number is reasonably small. One
can then set the search range T to be all integers between 2 and the maximum number.
Even though the Multi-n̂ MM scheme allows partitions with fewer than n̂ clusters, it
is still necessary to include small values of n̂ in the search range to better avoid local
minimums. (See the discussion of the MNIST “4-9” digits network in Section 4.2.1.)
For different values of n̂, one can reuse the previously computed eigenvectors because
n̂ does not affect the graph Laplacian. Inputting multiple choices for the random ini-
tial function f0 (as described at the end of Section 3) also helps to reduce the chance
of getting stuck in a minimum and thereby to achieve a good optimal solution for the
Modularity MBO scheme. Because this initial function is used after the computation
of eigenvectors, it only takes a small amount of time to rerun the MBO steps.

In Section 4, we test these two schemes on several real and synthetic networks.

4. Numerical Results. In this section, we present the numerical results of ex-
periments that we conducted using both synthetic and real network data sets. Unless
otherwise specified, our Modularity MBO schemes are all implemented in Matlab,
(which are not optimized for speed). In the following tests, we set the parameters of
the Modularity MBO scheme to be η = 5 and τn = 1.

4.1. LFR Benchmark. In Ref. [34], Lancichinetti, Fortunato, and Radicchi
(LFR) introduced an eponymous class of synthetic benchmark graphs to provide
tougher tests of community-detection algorithms than previous synthetic benchmarks.
Many real networks have heterogeneous distributions of node degree and community
size, so the LFR benchmark graphs incorporate such heterogeneity. They consist of
unweighted networks with a predefined set of non-overlapping communities. As de-
scribed in Ref. [34], each node is assigned a degree from a power-law distribution with
power ξ; additionally, the maximum degree is given by kmax and mean degree is 〈k〉.
Community sizes in LFR graphs follow a power-law distribution with power β, subject
to the constraint that the sum of the community sizes must equal the number of nodes
N in the network. Each node shares a fraction 1 − µ of its edges with nodes in its
own community and a fraction µ of its edges with nodes in other communities. (The
quantity µ is called the mixing parameter.) The minimum and maximum community
sizes, qmin and qmax, are also specified. We label the LFR benchmark data sets by
(N, 〈k〉, kmax, ξ, β, µ, qmin, qmax). The code used to generate the LFR data is publicly
available provided by the authors in [34].

The LFR benchmark graphs has become a popular choice for testing commu-
nity detection-algorithms, and Ref. [35] uses them to test the performance of several
community-detection algorithms. The authors concluded, for example, that the lo-
cally greedy Louvain algorithm [5] is one of the best performing heuristics for max-
imizing modularity based on the evaluation of the normalized mutual information
(NMI) (discussed below in this section). Note that the time complexity of this Lou-
vain algorithm is O(M) [22], where M is the number of nonzero edges in the network.
In our tests, we use the GenLouvain code (in Matlab) Ref. [31], which is an im-



A Method Based on Total Variation for Network Modularity Optimization 11

plementation of a Louvain-like algorithm. The GenLouvain code a modification of
the Louvain locally greedy algorithm [5], but it was not designed to be optimal for
speed. We implement our RMM scheme on the LFR benchmark, and we compare
our results with those of running the GenLouvain code. We use the recursive version
of the Modularity MBO scheme because the LFR networks used here contain about
0.04N communities.

We implement the modularity-optimization algorithms on severals sets of LFR
benchmark data. We then compare the resulting partitions with the known com-
munity assignments of the benchmarks (i.e., the ground truth) by examining the
normalized mutual information (NMI) [15].

Normalized mutual information (NMI) is a similarity measure for comparing
two partitions based on the information entropy, and it is often used for testing
community-detection algorithms [34, 35]. The NMI equals 1 when two partitions are
identical, and it has an expected value of 0 when they are independent. For an N -
node network with two partitions, C = {C1, C2, . . . , CK} and Ĉ = {Ĉ1, Ĉ2, . . . , ĈK̂},
that consist of non-overlapping communities, the NMI is

NMI(C, Ĉ) =
2
∑K
k=1

∑K̂
k̂=1 P (k, k̂)log

[
P (k,k̂)

P (k)P (k̂)

]
−
∑K
k=1 P (k)log [P (k)]−

∑K̂
k̂=1 P (k̂)log

[
P (k̂)

] , (4.1)

where P (k, k̂) =
|Ck∩Ĉk̂|

N , P (k) = |Ck|
N , and P (k̂) =

|Ĉk̂|
N .

We examine two types of LFR networks. One is the 1000-node ensembles used in
Ref. [35]:

LFR1k : (1000, 20, 50, 2, 1, µ, 10, 50) ,

where µ ∈ {0.1, 0.15, . . . , 0.8}. The other is a 50,000-node network, which we call
“LFR50k” and construct as a composition of 50 LFR1k networks. (See the detailed
description below.)

4.1.1. LFR1k Networks. We use the RMM scheme (with Neig = 80) and
the GenLouvain code on ensembles of LFR1k(1000, 20, 50, 2, 1, µ, 10, 50) graphs with
mixing parameters µ ∈ {0.1, 0.15, . . . , 0.8}. We consider 100 LFR1k networks for each
value of µ. The resolution parameter γ equals one here.

In Fig. 4.1, we plot the mean maximized modularity score (Q), the number of
communities (Nc), and the NMI of the partitions compared with the ground truth
(GT) communities as a function of the mixing parameter µ. As one can see from
panel (a), the RMM scheme performs very well for µ < 0.5. Both its NMI score
and modularity score are competitive with the results of GenLouvain. However, for
µ ≥ 0.5, its performance drops with respect to both NMI and the modularity scores
of its network partitions. From panel (b), we see that RMM tends to give partitions
with more communities than GenLouvain, and this provides a better match to the
ground truth. However, it is only trustworthy for µ < 0.5, when its NMI score is very
close to 1.

The mean computational time for one ensemble of LFR1k, which includes 15
networks corresponding to 15 values of µ, is 22.7 seconds for the GenLouvain code
and 17.9 seconds for the RMM scheme. As we will see later when we consider large
networks, the Modularity MBO scheme scales very well in terms of its computational
time.
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Fig. 4.1. Tests on LFR1k networks with RMM and GenLouvain. The ground-truth communities
are denoted by GT.

4.1.2. LFR50k Networks. To examine the performance of our scheme on
larger networks, we construct synthetic networks (LFR50k) with 50,000 nodes. To
construct an LFR50k network, we start with 50 different LFR1k networksN1, N2, . . . , N50

with mixing parameter µ, and we connect each node in Ns (s ∈ {1, 2, . . . , 50}) to
20µ nodes in Ns+1 uniformly at random (where we note that N51 = N1). We
thereby obtain an LFR50k network of size 50, 000. Each community in the origi-
nal Ns, s = 1, 2, . . . , 50 is a new community in the LFR50k network. We build four
such LFR50k networks for each value of µ = 0.1, 0.15, . . . , 0.8, and we find that all
such networks contain about 2000 communities. The mixing parameter of the LFR50k
network constructed from LFR1k(µ) is approximately 2µ

1+µ .

By construction, the LFR50k network has a similar structure as LFR1k. Im-
portantly, simply increasing N in LFR(N, 〈k〉, kmax, ξ, β, µ, qmin, qmax) to 50,000 is
insufficient to preserve similarity of the network structure. A large N results in more
communities, so if the mixing parameter µ is held constant, then the edges of each
node that are connected to nodes outside of its community will be distributed more
sparsely. In another words, the mixing parameter does not entirely reflect the balance
between a node’s connection within its own community versus to its connections to
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other communities, as there is also a dependence on the total number of communities.
The distribution of node strengths in LFR50k is scaled approximately by a factor

of (1 + 2µ) compared to LFR1k, while the total number of edges in LFR50k is scaled
approximately by a factor of 50(1 + 2µ). Therefore, the probability null model term
kikj
2m in modularity (2.1) is also scaled by a factor of (1+2µ)

50 . Hence, in order to probe
LFR50k with a resolution scale similar to that in LFR1k, it is reasonable to use the
resolution γ = 50 to try to minimize issues with modularity’s resolution limit [53].
We then implement the RMM scheme (Neig = 100) and the GenLouvain code. Note
that we also implemented the RMM scheme with Neig = 500, but there is no obvious
improvement in the result even though there are about 2000 communities. This is
because the eigenvectors of the subgroups are recalculated at each recursive step, so
the scales being resolved get finer as the recursion step goes.
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Fig. 4.2. Tests on LFR50k data with RMM and GenLouvain.

We average the network diagnostics over the four LFR50k networks for each value
of mixing parameter. In Fig. 4.2, we plot the network diagnostics versus the mixing
parameter 2µ

1+µ for µ ∈ {0.1, 0.15, . . . , 0.8}. In panel (a), we see that the performance
of RMM is good only when the mixing parameter is less than 0.5, though it is not as
good as GenLouvain. It seems that the recursive Modularity MBO scheme has some
difficulties in dealing with networks with very large number of clusters.

However the computational time of RMM is lower than that of the GenLouvain
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code [31] (though we note that it is an implementation that was not optimized for
speed). The mean computational time for an ensemble of LFR50k networks, which
includes 15 networks corresponding to 15 values of µ, is 690 seconds for GenLou-
vain and 220 seconds for the RMM scheme. In Table 4.1, we summarize the mean
computational time (in seconds) on each ensemble of LFR data.

LFR1k LFR50k
GenLouvain 22.7 s 690 s

RMM 17.9 s 220 s
Table 4.1

4.2. MNIST Handwritten Digit Images. The MNIST database consists of
70,000 images of size 28 × 28 pixels containing the handwritten digits “0” through
“9” [62]. The digits in the images have been normalized with respect to size and
centered in a fixed-size grey image. In this section, we use two networks from this
database. We construct one network using all samples of the digits “4” and digit “9”,
which are difficult to distinguish from each other and which constitute 13782 images
of the 70000. We construct the second network using all images. In each case, our
goal is to separate the distinct digits into distinct communities.

We construct the adjacency matrices (and hence the graphs) W of these two
data sets as follows. First, we project each image (a 282-dimensional datum) onto 50
principal components. For each pair of nodes ni and nj in the 50-dimensional space,

we then let wij = exp
(
− d2ij

3σ2

)
if either ni is among the 10 nearest neighbors of nj

or vice versa; otherwise, we let wij = 0. The quantity dij is the `2 distance between
ni and nj , the parameter σ is the mean of distances between ni and its 10th nearest
neighbor.

In this data set, the maximum number of communities is 2 when considering only
the digits “4” and “9”, and it is 10 when considering all digits. We can thus choose
a small search range for n̂ and use the Multi-n̂ Modularity MBO scheme.

4.2.1. MNIST “4-9” Digits Network. This weighted network has 13782
nodes and 194816 weighted edges. We use the labeling of each digit image as the
ground truth. There are two groups of nodes: ones containing the digit “4” and ones
containing the digit “9”. We use these two digits because they tend to look very
similar when they are written by hand. In Fig. 4.2.1(a), we show a visualization of
this network, where we have projected the data projected onto the second and third
leading eigenvectors of the graph Laplacian L. The difficulty of separating the “4” and
“9” digits has been observed in the graph-partitioning literature (see, e.g., Ref. [30]).
For example, there is a near-optimal partition of this network using traditional spec-
tral clustering [38, 57] (see below) that splits both the “4”-group and the “9”-group
roughly in half.

The modularity-optimization algorithms that we discuss for the “4-9” network use
γ = 0.1. We choose this resolution-parameter value so that the network is partitioned
into two groups by the GenLouvain code. The question about what value of γ to
choose is beyond the scope of this paper, but it has been discussed at some length in
the literature on modularity optimization [22]. Instead, we focus on evaluating the
performance of our algorithm with the given value of the resolution parameter. We
implement the Modularity MBO scheme with n̂ = 2 and the Multi-n̂ MM scheme,
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and we compare our results with that of the GenLouvain code as well as traditional
spectral clustering method [38,57].

Traditional spectral clustering is an efficient clustering method that has been used
widely in computer science and applied mathematics because of its simplicity. It cal-
culates the first k nontrivial eigenvectors φ1, φ2, . . . , φk (corresponding to the smallest
eigenvalues) of the graph Laplacian L. Let U ∈ RN×k be the matrix containing the
vectors φ1, φ2, . . . , φk as columns. For i ∈ {1, 2, . . . , N}, let yi ∈ Rk be the ith row
vector of U . Spectral clustering then applies the k-means algorithm to the points
(yi){i=1,...,N} and partitions them into k groups, where k is the number of clusters
that was specified beforehand.

On this MNIST “4-9” digits network, we specify k = 2 and implement spectral
clustering to obtain a partition into two communities. As we show in Fig. 4.2.1(b),
we obtain a near-optimal solution that splits both the “4”-group and the “9”-group
roughly in half. This differs markedly from the ground-truth partition in panel (a).

For the Multi-n̂ MM scheme, we use Neig = 80 and the search range n̂ ∈
{2, 3, . . . , 10}. We show visualizations of the partition at n̂ = 2 and n̂ = 8 in
Figs. 4.2.1(c,d). For this method, computing the spectrum of the graph Laplacian
takes a significant portion of the run time (9 seconds for this data set). Impor-
tantly, however, this information can be reused for multiple n̂, which saves time.
In Fig. 4.2.1(e), we show a plot of this method’s optimized modularity scores ver-
sus n̂. Observe that the optimized modularity score achieves its maximum when we
choose n̂ = 2, which yields the best partition that we obtain using this method. In
Fig. 4.2.1(f), we show how the partition evolves as we increase the input n̂ from 2 to
10. At n̂ = 2, the network is partitioned into two groups (which agrees very well with
the ground truth). For n̂ > 2, however, the algorithm starts to pick out worse local
optima, and either “4”-group or the “9”-group gets split roughly in half. Starting from
n̂ = 7, the number of communities stabilizes at about 4 instead of increasing with n̂.
This indicates that the Modularity MBO scheme allows one to obtain partitions with
Nc ≤ n̂.

In Table 4.2, we show computational time and some network diagnostics for all
of the resulting partitions. The modularity of the ground truth is QGT ≈ 0.9277.
Our schemes obtain high modularity and NMI scores that are comparable to those
obtained using the GenLouvain code (which was not intended by its authors to be
optimized for speed). The number of iterations for the Modluarity MBO scheme
ranges approximately from 15 to 35 for n̂ ∈ {2, 3, . . . , 10}.

Nc Q NMI Purity Time (seconds)
GenLouvain 2 0.9305 0.85 0.975 110 s

Modularity MBO (n̂ = 2) 2 0.9316 0.85 0.977 11 s
Multi-n̂ MM (n̂ ∈ {2, 3, . . . , 10}) 2 0.9316 0.85 0.977 25 s
Spectral Clustering (k-Means) 2 NA 0.003 0.534 1.5 s

Table 4.2

The purity score, which we also report in Table 4.2, measures the extent to which
a network partition matches ground truth. Suppose that an N -node network has
a partition C = {C1, C2, . . . , CK} into non-overlapping communities and that the
ground-truth partition is Ĉ = {Ĉ1, Ĉ2, . . . , ĈK̂}. The purity of the partition C is
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Fig. 4.3. (a)–(d) Visualization of partitions on the MNIST “4-9” digit image network by
projecting it onto the second and third leading eigenvectors of the graph Laplacian. Shading indicates
the community assignment. (e)–(f) Implementation results of the Multi-n̂ Modularity MBO scheme
on the MNIST “4-9” digit images. In panel (a), shading indicates the community assignment. The
horizontal axis represents the input n̂ (i.e., the maximum number of communities), and the vertical
axis gives the (sorted) index of nodes. In panel (b), we plot the optimized modularity score as a
function of the input n̂.

then defined as

Prt(C, Ĉ) =
1

N

K∑
k=1

maxl∈{1,...,K̂}|Ck ∩ Ĉl| ∈ [0, 1] . (4.2)
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Intuitively, purity can by viewed as the fraction of nodes that have been assigned
to the correct community. However, the purity score is not robust in estimating the
performance of a partition. When the partition C breaks the network into commu-
nities that consist of single nodes, then the purity score achieves a value of 1. hence,
one needs to consider other diagnostics when interpreting the purity score. In this
particular data set, a high purity score does indicate good performance because the
ground truth and the partitions each consist of two communities.

Observe in Table 4.2 that all modularity-based algorithms identified the correct
community assignments for more than 97% of the nodes, whereas standard spectral
clustering was only correct for just over half of the nodes. The Multi-n̂ MM scheme
takes only 25 seconds. If one specifies n̂ = 2, then the Modularity MBO scheme only
takes 11 seconds.

4.2.2. MNIST 70k Network. We test our new schemes further by consider
the entire MNIST network of 70,000 samples containing digits from “0” to “9”. This
network contains about five times as many nodes as the MNIST “4-9” network. How-
ever, the node strengths in the two networks are very similar because of how we
construct the weighted adjacency matrix. We thus choose γ = 0.5 so that the modu-
larity optimization is performed at a similar resolution scale in both networks. There
are 1001664 weighted edges in this network.

We implement the Multi-n̂ MM scheme with Neig = 100 and the search range
n̂ ∈ {2, 3, . . . , 20}. Even if Nc is the number of communities in the true optimal so-
lution, the input n̂ = Nc might not give a partition with Nc groups. The modularity
landscape in real networks is notorious for containing a huge number of nearly degen-
erate local optima (especially for values of modularity Q near the globally optimum
value) [26], so we expect the algorithm to yield a local minimum solution rather than a
global minimum. Consequently, it is preferable to extend the search range to n̂ > Nc,
so that the larger n̂ gives more flexibility to the algorithm to try to find the partition
that optimizes modularity.

The best partition that we obtained using the search range n̂ ∈ {2, 3, . . . , 20}
contains 11 communities. All of the digit groups in the ground truth except for the
“1”-group are correctly matched to those communities. In the partition, the “1”-
group splits into two parts, which is unsurprising given the structure of the data. In
particular, the samples of the digit “1” include numerous examples that are written
like a “7”. This set of samples are thus easily disconnected from the rest of “1”-group.
If one considers these two parts as one community associated with “1”-group, then
the partition achieves a 96% correctness in its classification of the digits.

As we illustrate in Table 4.3, the GenLouvain code yields comparably successful
partitions as those that we obtained using the Multi-n̂ MM scheme. By comparing the
running time of the Multi-n̂ MM scheme on both MNIST networks, one can see that
our algorithm scales well in terms of speed when the network size increases. While
the network size increases five times (5×) and the search range gets doubled (2×),
the computational time increases by a factor of 11.6 ≈ 5× 2.

The number of iterations for the Modluarity MBO scheme ranges approximately
from 35 to 100 for n̂ ∈ {2, 3, . . . , 20}. Empirically, even though the total number of
iterations can be as large as over a hundred, the modularity score quickly gets very
close to its final value within the first 20 iteration.

The computational cost of the Multi-n̂ MM scheme consists of two parts: the
calculation of the eigenvectors and the MBO iteration steps. Because of the size of
the MNIST 70k network, the first part costs about 90 seconds in Matlab. However,
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one can incorporate a faster eigenvector solver, such as the Rayleigh-Chebyshev (RC)
procedure of [1], to improve the computation speed of an eigen-decomposition. This
solver is especially fast for producing a small portion (in this case, 1/700) of the leading
eigenvectors for a sparse symmetric matrix. Upon implementing the RC procedure in
C++ code, it only takes 12 seconds to compute the 100 leading eigenvector-eigenvalue
pairs. Once the eigenvectors are calculated, they can be reused in the MBO steps for
multiple values of n̂ and different initial functions f0. This allows good scalability,
which is a particularly nice feature of using this MBO scheme.

Nc Q NMI Purity Time (second)
GenLouvain 11 0.93 0.916 0.97 10900 s

Multi-n̂ MM (n̂ ∈ {2, 3, . . . , 20}) 11 0.93 0.893 0.96 290 s / 212 s*
Modularity MBO 3% GT (n̂ = 10) 10 0.92 0.95 0.96 94.5 s / 16.5 s*

∗Calculated with the RC procedure.
Table 4.3

Another benefit of the Modularity MBO scheme is that it allows the possibility
of incorporating a small portion of the ground truth in the modularity optimization
process. In the present paper, we implement the Modularity MBO using 3% of the
ground truth by specifying the true community assignments of 2100 nodes, which we
chose uniformly at random in the initial function f0. We also let n̂ = 10. With
the eigenvectors already computed (which took 12 seconds using the RC process),
the MBO steps take a subsequent 4.5 seconds to yield a partition with exactly 10
communities and 96.4% of the nodes classified into the correct groups. The authors
of Ref. [23] also implemented a segmentation algorithm on this MNIST 70k data with
3% of the ground truth, and they obtained a partition with a correctness 96.9% in
15.4 seconds. In their algorithm, the ground truth was enforced by adding a quadratic
fidelity term to the energy functional (semi-supervised). The fidelity term is the `2
distance of the unknown function f and the given ground truth. In our scheme,
however, it is only used in the initial function f0. Nevertheless, it is also possible
to add a fidelity term to the Modularity MBO scheme and thereby perform semi-
supervised clustering.

4.3. Network-Science Coauthorships. Another well-known graph in the com-
munity detection literature is the network of coauthorships of network scientists. This
benchmark was compiled by Mark Newman and first used in Ref. [47].

In the present paper, we use the graph’s largest connected component, which
consists of 379 nodes representing authors and 914 weighted edges that indicate coau-
thored papers. We do not have any so-called ground truth for this network, but it
is useful to compare partitions obtained from our algorithm with those obtained us-
ing more established algorithms. In this section, we use GenLouvain’s result as this
pseudo-ground truth. In addition to Modularity-MBO, RMM, and GenLouvain, we
also consider the results of modularity-based spectral partitioning methods that allow
the option of either bipartitioning or tripartitioning at each recursive stage [47,54]..

In Ref. [47], Newman proposed a spectral partitioning scheme for modularity op-
timization by using the leading eigenvectors (associated with the largest eigenvalues)
of a so-called modularity matrix B = W−P to approximate the modularity function
Q. In the modularity matrix, P is the probability null model and Pij =

kikj
2m is the

NG null model with γ = 1. Assume that one uses the first p leading eigenvectors
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{u1,u2, . . . ,up}, and let βj denote the eigenvalue of uj and U = (u1|u2| . . . |up). We
then define N node vectors ri ∈ Rp whose jth component is

(ri)j =
√
βj − αUij ,

where α ≤ βp and j ∈ {1, 2, . . . , p}. The modularity Q is therefore approximated as

Q ' Q̂ = Nα+

n̂∑
l=1

‖Rl‖2`2 , (4.3)

where Rl =
∑
gi=l

ri is sum of all node vectors in the lth community (where l ∈
{1, 2, . . . , n̂}).

A partition that maximize (4.3) in a given step must satisfy the geometric con-
straints Rl · ri > 0, gi = l, and Rl · Rh < 0 for all l, h ∈ {1, 2, . . . , n̂}. Hence, if
one constructs an approximation Q̂ using p eigenvectors, a network component can
be split into at most p+ 1 groups in a given recursive step. The choice p = 2 allows
either bipartitioning or tripartitioning in each recursive step. Reference [47] discussed
the case of general p but reported results for recursive bipartitioning with p = 1. Ref-
erence [54] implemented this spectral method with p = 2 and a choice of bipartitioning
or tripartioning at each recursive step.

In Table 4.4, we report diagnostics for partitions obtained by several algorithms
(for γ = 1). For the recursive spectral bipartitioning and tripartitioning, we use
Matlab code that has been provided by the authors of Ref. [54]. They informed us
that this particular implementation was not optimized for speed, so we expect it to be
slow. One can create much faster implementations of the same spectral method. The
utility of this method for the present comparison is that Ref. [54] includes a detailed
discussion of its application to the network of network scientists. Each partitioning
step in this spectral scheme either bipartitions or tripartitions a group of nodes.
Moreover, as discussed in Ref. [54], a single step of the spectral tripartitioning is by
itself interesting. Hence, we specify n̂ = 3 for the Modularity MBO scheme as a
comparison.

Nc Q NMI Purity Time (seconds)
GenLouvain 19 0.8500 1 1 0.5 s

Spectral Recursion 39 0.8032 0.8935 0.9525 60 s
RMM 23 0.8344 0.9169 0.9367 0.8 s

Tripartition 3 0.5928 0.3993 0.8470 50 s
Modularity MBO 3 0.6165 0.5430 0.9974 0.4 s

Table 4.4

From Table 4.4, we see that the Modularity MBO scheme with n̂ = 3 gives
a higher modularity than a single tripartition, and the former’s NMI and purity
are both significantly higher. When we do not specify the number of clusters, the
RMM scheme achieves a higher modularity score and NMI than recursive biparti-
tioning/tripartitioning, though the former’s purity is lower (which is not surprising
due to its larger Nc). The RMM scheme and GenLouvain have similar run times.
For any of these methods, one can of course use subsequent post-processing, such as
Kernighan-Lin node-swapping steps [47,51,54], to find higher-modularity partitions.
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5. Conclusion and Discussion. In summary, we have presented a novel per-
spective on the problem of modularity optimization by reformulating it as a minimiza-
tion of an energy functional involving the total variation on a graph. This provides an
interesting bridge between the network science and compressive sensing communities,
and it allows the use of techniques from compressive sensing and image processing to
tackle modularity optimization. In this paper, we have proposed MBO schemes that
can handle large data at very low computational cost. Our algorithms produce com-
petitive results compared to existing methods, and they scale well in terms of speed
for certain networks (such as the MNIST data). In our algorithms, after computing
the eigenvectors of the graph Laplacian, the time complexity of each MBO iteration
step is O(N).

One major part of our schemes is to calculate the leading eigenvector-eigenvalue
pairs, so one can benefit from the fast numerical Rayleigh-Chebyshev procedure in
Ref. [1] when dealing with large, sparse networks. Furthermore, for a given network
(which is represented by a weighted adjacency matrix), one can reuse previously com-
puted eigen-decompositions for different choices of initial functions, different values
of n̂, and different values of the resolution parameter γ. This provides welcome flexi-
bility, and it can be used to significantly reduce computation time because the MBO
step is extremely fast, as each step is O(N) and the number of iterations is empirically
small.

Importantly, our reformulation of modularity also provides the possibility to incor-
porate partial ground truth. This can accomplished either by feeding the information
into the initial function or by adding a fidelity term into the functional. (We only
pursued the former approach in this paper.) It is not obvious how to incorporate
partial ground truth using previous optimization methods. This ability to use our
method either for unsupervised or for semi-supervised clustering is a significant boon.
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Appendix A. The notion of Γ-convergence of functionals is now commonly used
for minimization problems. See Ref. [39] for detailed introduction. In this appendix,
we briefly review the definition of Γ-convergence and then prove the claim that the
graphical multi-phase Ginzburg-Landau functional Γ-converges to the graph TV. This
proof is a straightforward extension of the work in Ref. [24] for the two-phase graph
GL functional.

Definition A.1. Let X be a metric space and let {Fn : X → R ∪ {±∞}}∞n=1 be
a sequence of functionals. The sequence Fn Γ-converges to the functional F : X →
R ∪ {±∞} if, for all f ∈ X, the following lower and upper bound conditions hold:

(lower bound condition) for every sequence {fn}∞n=1 such that fn → f , we have

F (f) ≤ lim inf
n→∞

Fn(fn) ;

(upper bound condition) there exists a sequence {fn}∞n=1 such that

F (f) ≥ lim sup
n→∞

Fn(fn) .
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Reference [23] proposed the following multi-phase graph GL functional:

GLmulti
ε (f̂) =

1

2

n̂∑
l=1

〈f̂ (l),Lf̂ (l)〉+
1

ε2

N∑
i=1

Wmulti(f̂(ni))

where f̂ : G → Rn̂ and Wmulti(f̂(ni)) =
∏n̂
l=1 ‖f̂(ni) − ~el‖2`1 . See Sections 2 and 3

for the definitions of all of the relevant graph notation. Let X = {f̂ | f̂ : G → Rn̂},
Xp = {f | f : G → V n̂} ⊂ X, and Fε = GLmulti

ε for all ε > 0. Because f̂ can be
viewed as a matrix in RN×n̂, the metric for space X can be defined naturally using
the `2 norm.

Theorem A.2. (Γ-convergence). The sequence Fε Γ-converges to F0 as ε →
0+, where

F0(f̂) :=

{
|f̂ |TV = 1

2

∑N
i,j=1 wij‖f̂(ni)− f̂(nj)‖`1 , if f̂ ∈ Xp ,

+∞ , otherwise .

Proof. Consider the functional Wε(f) = 1
ε2

∑N
i=1Wmulti(f(ni)) and

W0(f) :=

{
0 , if f ∈ Xp ,

+∞ , otherwise .

First, we show that Wε Γ-converges to W0 as ε → 0+. Let {εn}∞n=1 ⊂ (0,∞)
be a sequence such that εn → 0 as n → ∞. For the lower bound condition, sup-
pose that a sequence {fn}∞n=1 satisfies fn → f as n → ∞. If f ∈ Xp, then
it follows that W0(f) = 0 ≤ lim infn→∞Wεn(fn) because Wε ≥ 0. If f does
not belong to Xp, then there exists i ∈ {1, 2, . . . , N} such that f(ni) 6∈ V n̂ and
fn(ni) → f(ni). Therefore, lim infn→∞Wεn(fn) = +∞ ≥ W0(f) = +∞. For the
upper bound condition, assume that f ∈ Xp and fn = f for all n. It then follows
that W0(f) = 0 ≥ lim supn→∞Wεn(fn) = 0. Thus, Wε Γ-converges to W0.

Because Z(f) := 1
2

∑n̂
l=1〈f (l),Lf (l)〉 is continuous on the metric space X, it is

straightforward to check that the functional Fεn = Z + Wεn satisfies the lower and
upper bound condition and therefore Γ-converges to Z +W0.

Finally, note that Z(f) = |f |TV for all f ∈ Xp. Therefore, Z +W0 = F0 and one
can conclude that Fεn Γ-converges to F0 for any sequence εn → 0+.
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