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A simple way to test for collinearity in spin symmetry broken

wave functions: general theory and application to Generalized

Hartree Fock

David W. Small and Eric J. Sundstrom and Martin Head-Gordon

Department of Chemistry, University of California,

Berkeley, California 94720 and Chemical Sciences Division,

Lawrence Berkeley National Laboratory, Berkeley, California 94720

(Dated: February 17, 2015)

Abstract

We introduce a necessary and sufficient condition for an arbitrary wavefunction to be collinear,

i.e. its spin is quantized along some axis. It may be used to obtain a cheap and simple computa-

tional procedure to test for collinearity in electronic structure theory calculations. We adapt the

procedure for Generalized Hartree Fock (GHF), and use it to study two dissociation pathways in

CO2. For these dissociation processes, the GHF wave functions transform from low-spin Unre-

stricted Hartree Fock (UHF) type states to noncollinear GHF states and on to high-spin UHF type

states, phenomena that are succinctly illustrated by the constituents of the collinearity test. This

complements earlier GHF work on this molecule.
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I. INTRODUCTION

Electronic structure practitioners have long relied on spin-unrestricted Hartree Fock

(UHF) and Density Functional Theory (DFT) for open-shell and strongly correlated sys-

tems. A key reason for this is that the latter’s multiradical nature is partially accommo-

dated by unrestricted methods: the paired spin-up and spin-down electrons are allowed to

separate, while maintaining their spin alignment along a three-dimensional axis, i.e. their

spin collinearity. But, considering the great potential for diversity in multitradical systems,

it is not a stretch to concede that this approach is not always reasonable. For some of the

more overt substantiations of this, we might look to spin frustrated systems, which, vir-

tually by definition, defy the (single determinantal) idea of spin alignment. This category

connects to important molecular examples, such as models of the core of the Photosyn-

thetic Oxygen-Evolving Complex,1–4 and also extended-system phenomena like noncollinear

magnetism.5–8 There are also more subtle reproaches to unchecked UHF usage. For example,

tenable theoretical treatments of paramagnetic systems, such as liquid oxygen,9 require a full

range of spin orientations for their radical units. If one chooses to take the spin polarized,

single-determinant approach for systems like any of these, the collinearity constraint of UHF

should be removed, i.e. Generalized Hartree Fock (GHF) should be used.

GHF has been researched for a long time,10–24 and while it has only rarely been used, it

is gaining momentum. For example, GHF has recently been used to obtain interesting new

perspectives on a variety of fullerenes.25 The existing or potential application of noncollinear-

ity in Electronic Structure Theory extends well beyond GHF, and we will mention a few

examples now. GHF’s DFT cousin, usually referred to as “noncollinear DFT”, has received

significant attention. The construction of noncollinear functionals is not as straightforward

as in the collinear case, and so several schemes for this have been put forth and it remains

an active research area.26–37

Noncollinearity is also of interest for correlated wavefunction-based approaches. Non-

collinear wave functions are used to parameterize collinear, symmetry purified states in

Projected Quasiparticle Theory.38,39 Noncollinearity seems especially germane to geminal

theory. UHF-type spin polarization has been incorporated into Generalized Valence Bond

Perfect Pairing40,41 and into other strongly orthogonal geminal approximations,42–44 and in-

cluding GHF-style polarization may be a sensible next step. We expect spin polarization
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and noncollinearity to also be relevant for nonorthogonal geminal methods, such as recently

developed ones based on the seniority concept.45–51 We also note that there may be molecu-

lar systems for which the variationally optimal wave function in the Jastrow Antisymmetric

Geminal Power approximation52–57 is noncollinear.

Just as a UHF calculation may or may not actually break spin symmetry, a calculation

in which noncollinearity is allowed may or may not produce a truely noncollinear result.

Drawing a conclusion as to the latter is less trivial than it may seem. In GHF, for example,

even if the canonical HF orbitals are a mixture of spin-up and spin-down parts, it does not

imply noncollinearity, so a conclusion (usually) cannot be obtained by a casual inspection of

orbital coefficients. Spin-symmetry breaking is usually quantified by the squared-total-spin

expectation value, and an analogue of this for collinearity should be part of any noncollinear

calculation. At this point, it is fitting to note that there exists a well-respected and rigorous

classification of the various forms of HF, including UHF and GHF, which exhibits, among

many things, certain distinguishing properties of noncollinear HF wave functions.11 How-

ever, at least in our perception, the classification does not entail a practical procedure for

collinearity testing, and even if we are incorrect on this matter, such methodology would be

limited in the sense that it would be specific to HF wavefunctions. Thus, to our knowledge,

this problem has not been adequately addressed before, and it is thereby the focus of this

paper. We will develop some basic theory for general wave functions, specialize it to GHF,

and apply the result to some simple GHF calculations.

II. THEORY

A. Collinearity for general wavefunctions

We will work with an arbitrary normalized wavefunction |Ψ⟩ for no electrons. For the

following, we define ⟨O⟩ = ⟨Ψ|O|Ψ⟩, where O is any operator.

To determine if |Ψ⟩ is collinear, we ask if it is an eigenvector of some axial spin operator,

i.e. a spin operator associated with some Cartesian axis. More explicitly, we determine if

there exists a unit vector c ∈ R3 such that |Ψ⟩ is an eigenvector of

c · S = c1S1 + c2S2 + c3S3, (1)

where S = (Sx,Sy,Sz)
t, the elements of this vector being the usual many-electron axial spin
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operators.

It is useful to think of the varying candidate axes of our search as arising from rotations of

the chosen z axis. Any such rotation is given by a 3x3 orthogonal matrix with determinant

equal to 1, R, which rotates any point c to Rc. Likewise, c · S gets rotated to (Rc) · S.

R will transform the x, y, z axes into a new set of axes; the columns of R are unit vectors

corresponding to these axes. The familiar single-spin commutation relationships of the axial

spin operators are valid for any set of spin axes forming a right-handed coordinate system,

and these relationships, unlike the anticommutation ones, extend to the many-electron case:

[(Rej) · S, (Rek) · S] = ϵjkl i (Rel) · S, (2)

where i =
√
−1, ej is the j-th column of the 3x3 identity matrix, I, and ϵjkl is the Levi-

Civita symbol. For any set of axes, we can look at expectation values of the three associated

spin operators

χR =
(
⟨(Re1) · S⟩, ⟨(Re2) · S⟩, ⟨(Re3) · S⟩

)t
. (3)

For every y ∈ R3,

⟨y · S⟩ = y ·
(
⟨Sx⟩, ⟨Sy⟩, ⟨Sz⟩

)t
= y · χI , (4)

so

χR =
(
(Re1) · χI , (Re2) · χI , (Re3) · χI

)t
= Rt χI . (5)

Let ϵ0 = ∥χI∥, where we are using the Euclidean norm. We observe that ∥χR∥ = ϵ0 for all

rotation matrices R. In other words, ϵ0 is a conserved quantity, and will thereby be useful.

Suppose temporarily that |Ψ⟩’s spin is quantized in the direction corresponding to a unit

vector v0. Without loss of generality, we may assume that the associated eigenvalue s is non-

negative. There exists a rotation matrix R such that Re3 = v0. Then (Re3) · S|Ψ⟩ = s|Ψ⟩.

This, along with eq. (2), implies that the expectation values along the Re1 and Re2 axes

must be zero. This means that χR = (0, 0, s)t = se3, which implies s = ϵ0. We next note

that χI = RχR = sRe3 = sv0. Therefore, if s ̸= 0, the quantization axis is given by

v0 = ϵ−1
0 χI .

We return to the general case and consider the implications of the preceding para-

graph. Of course, the eigenvalue spectrum of any axial spin operator is {−no/2,−no/2 +

4



1, . . . , no/2− 1, no/2}. If ϵ0 is not one of these values, we definitely do not have a collinear

state. For GHF wavefunctions, this property has been noted before.17 If ϵ0 is equal to one

of the non-zero eigenvalues, then the quantization axis, if it exists, is in the direction given

by v0. We may then simply test if |Ψ⟩ is an eigenvector of v0 · S. A straightforward way to

do this is to use

µ(c) = ⟨(c · S)2⟩ − ⟨c · S⟩2. (6)

This quantity is non-negative and is 0 if and only if |Ψ⟩ is an eigenvector of c ·S. Therefore,

in this case, we can simply evaluate µ(v0).

If ϵ0 = 0 and no is even, we do not immediately have a candidate direction for the

potential quantization axis. But, we can develop a procedure that can be uniformly applied

for any ϵ0 value. Given the previously stated property of µ, we simply need to determine

if this function has a root, i.e. a unit vector c such that µ(c) = 0. For this, we must first

convert the expression for µ into one that is more readily usable.

For the first term on the RHS of eq. (6), it is straightforward to see that

⟨(c · S)2⟩ = ctXc, (7)

where

X =


⟨S2

x⟩ ⟨SxSy⟩ ⟨SxSz⟩

⟨SySx⟩ ⟨S2
y⟩ ⟨SySz⟩

⟨SzSx⟩ ⟨SzSy⟩ ⟨S2
z⟩

 . (8)

X is Hermitian, and may well have complex off-diagonal elements, but because c is real, we

only need the real part of X here.

For the second term on the RHS of eq. (6), we note that because the spin operators are

Hermitian, χI is real. Combining this with eq. (4), we have

⟨c · S⟩2 = (c · χI)
2 = (ctχI)(χ

t
Ic) = ct(χIχ

t
I)c. (9)

Putting these results together, we have

µ(c) = ctAc, (10)

where

A = Re(X)− χIχ
t
I . (11)
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A is Hermitian, indeed real symmetric, and c is normalized, so we can use the variational

principle to see that the global minimum of µ is the lowest eigenvalue of A, which we will

denote by µ0. This establishes our collinearity test: |Ψ⟩ is collinear if and only if µ0 = 0. If

the latter is true, the axis of spin quantization is given by the eigenvector associated with

µ0.

To obtain computation-ready expressions for the constituents of the collinearity test, we

find it convenient to work in second quantization, where we have

Sm =
∑
pq

(Sm)pqa
†
paq, (12)

where m is x, y, or z, the p and q indices correspond to a set {ϕp} of orthonormal orbitals

that spans the one-electron space, and

(Sm)pq = ⟨ϕp|Sm|ϕq⟩. (13)

Using this, we get

SmSn =
∑
pqrs

(Sm)pq(Sn)rsa
†
paqa

†
ras

=
∑
pqrs

(Sm)pq(Sn)rsa
†
p(δqr − a†

raq)as

=
∑
ps

(SmSn)psa
†
pas +

∑
prqs

(Sm)pq(Sn)rsa
†
pa

†
rasaq (14)

=
∑
ps

(SmSn)psa
†
pas +

∑
p<r,q<s

(Smn)prqsa
†
pa

†
rasaq, (15)

where

(Smn)prqs = (Sm)pq(Sn)rs − (Sm)rq(Sn)ps

− (Sm)ps(Sn)rq + (Sm)rs(Sn)pq, (16)

this being the fully (anti)symmetrized form of the pertinent matrix elements. We therefore

also have

SmSn =
∑
ps

(SmSn)psa
†
pas +

1

4

∑
prqs

(Smn)prqsa
†
pa

†
rasaq. (17)

We may use these results to obtain

⟨Sm⟩ =
∑
pq

(Sm)pqPpq (18)
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and

⟨SmSn⟩ =
∑
ps

(SmSn)psPps +
1

4

∑
prqs

(Smn)prqsD
pr
qs , (19)

where P and D are the one and two particle reduced density matrices for |Ψ⟩, respectively.

The one-electron part of the RHS of eq. (19) can be simplified. For the one-electron spin

space, we have the known properties

ŝ2m =
1

4
I, (20)

where I is the identity operator, and

ŝmŝn = ϵmno
i

2
ŝo, (21)

wherem,n, o is any permutation of x, y, z, and ϵmno is the Levi-Civita symbol for the ordering

x, y, z. These properties remain correct when we move to the one-electron spin-orbital space.

This is because, in this space, the basic spin operators are given by a tensor product:

Ŝm = I ⊗ ŝm, (22)

the identity operator here being that for the spatial one-electron space. Of course, the

actions of Ŝm and Sm coincide in the one-electron space. We have ŜmŜn = I ⊗ ŝmŝn, etc.,

and the applicability of the above-mentioned properties follows. Since SmSn is the matrix

representation of ŜmŜn for the chosen orbital basis, we see that∑
ps

(SmSm)psPps =
1

4
no (23)

and

Re

(∑
ps

(SmSn)psPps

)
= 0, for m ̸= n, (24)

so the term in parentheses in the latter equation does not contribute to the corresponding

element of A. In the Appendix, we describe how A has a simplified block structure when

|Ψ⟩ happens to be a real wave function. We are now ready to apply the above results to

GHF.

B. Specialization to GHF

We now assume that |Ψ⟩ is a GHF or complex GHF (cGHF) wave function, and that

{ϕp} is the molecular-orbital basis. Obtaining computable forms for the necessary spin
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expectation values is much like deriving the usual expression for the HF energy; eqs. (12) and

(15) bear a clear resemblance to the second-quantization form of the Hamiltonian operator.

First, we have

⟨Sm⟩ =
no∑
i=1

(Sm)ii = tr(Om), (25)

where the latter is the trace of Om, the occupied-occupied block of Sm. Next, applying eq.

(15) and grouping equal terms, we obtain

⟨SmSn⟩ =
no∑
i=1

(SmSn)ii +
no∑

i,j=1

(
(Sm)ii(Sn)jj − (Sm)ij(Sn)ji

)

=
no∑
i=1

(SmSn)ii + ⟨Sm⟩⟨Sn⟩ − tr(OmOn). (26)

When we substitute this into eq. (11), the ⟨Sm⟩⟨Sn⟩ term will be cancelled by the corre-

sponding element of χIχ
t
I . Incorporating eqs. (23) and (24), and noting that the trace of a

product of Hermitian matrices is real, we obtain

Amn = −tr(OmOn) + δmn
1

4
no. (27)

These elements may be readily computed via

Om = C∗
(
L⊗ 1

2
σm

)
C, (28)

where C is the matrix of occupied orbital coefficients, ∗ denotes the conjugate transpose, L

is the overlap matrix for the spatial atomic orbital basis, and σx, σy, and σz are the Pauli

matrices. Note that this equation corresponds to lexicographically ordered atomic spin

orbitals in which the spatial component lies to the left of the spin part, i.e. the sequence is

ψ1α, ψ1β, ψ2α, ψ2β, . . ..

III. GHF CALCULATIONS

We used the cc-pVDZ58 basis and the Q-Chem program59 for all calculations in this

section.

In what follows, “GHF” will generally be used to refer to explicitly real GHF code and

things that have been computed with it, regardless of the collinearity statuses of the results.

In the same way, “cGHF” will be used to refer to calculations employing complex expansion
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coefficients, without necessarily implying conclusions as to the collinearity or fundamental

complexity of the results.

In all of the following examples, we performed HF stability analyses.60 In the GHF case,

we checked for internal instabilities, in which the energy may be lowered by orbital rotations

within the domain of GHF, and external instabilities, where the energy may be lowered by

rotations into the cGHF domain. The results of the former analysis will be stated as “GHF

→ GHF stable” or “GHF → GHF unstable”, and we will use “GHF → cGHF . . .” for the

latter analysis. Again, these stability statuses pertain to the type of code being used, and

are not being used to imply anything about collinearity nor fundamental complexity.

A. CO2: Symmetric Dissociation

For this example, we consider linear D∞h geometries of CO2 of varying C-O bond lengths.

For this PES, UHF cannot qualitatively describe the ground state at dissociation. In this

region, the ground state is a coupling of the three triplet atoms into an overall singlet. UHF

treats the unpaired electrons of triplet entities with an αα or a ββ in the spin component.

Defining ms to be the spin quantum number along the principle axis, three copies of the

preceding two spin vectors cannot be combined into an overall ms = 0 state, which is how

UHF approximates singlets. Under ms = 0 constraints, the best UHF can do is put an αα

on one atom, an ββ on another atom, and an αβ on the third atom. For the third atom,

these two spins are attached to different p orbitals, which corresponds to an equal-weighted

combination of the atom’s triplet ground state and its open-shell singlet counterpart, which

is higher in energy. The ms = 0 UHF energy at dissociation is therefore higher than the

sum of the ground-state energies of the three atoms.

In the dissociation limit, the singlet ground state becomes degenerate with some higher-

multiplicity ground states, some of which can be qualitatively approximated with UHF. The

overall lowest-energy UHF solution puts an αα on two of the atoms and a ββ on the third

atom, giving a ms = 1 state with no singlet component. Unlike the ms = 0 case, the ms = 1

energy is size consistent. This is also true in the ms = 3 case, where, at dissociation, an αα

is assigned to each atom.

It is of interest to see if GHF can improve on the preceding UHF problems. Such GHF

explorations have appeared in a recent paper,23 which we will refer to as “JHS11”. In JHS11
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Fig. 6, the authors show a zoom-in on the PES region in which spin-symmetry breaking HF

solutions break away from RHF. Two of the shown curves are labelled as GHF and, within a

certain bond-length range, are lower in energy than the shown UHF curves. We observe that

one of the “GHF” solutions appears to coalesce with a UHF solution, which is also asserted

by the JHS11 authors, yet the curve is still labelled “GHF” in that region. Accordingly,

we do not assume that the JHS11 authors are strictly claiming these two curves correspond

to noncollinear solutions, but rather that they are merely indicating that the curves are

the lowest-energy results found with their GHF code. Thus these two HF solutions are

appropriate for application of our collinearity test. We would like to make it clear that the

purpose here is to further clarify the corresponding results of JHS11, not dispute them.

Using our GHF code, we isolated two HF solutions, hereafter denoted as sol. 1 and sol. 2,

that, at least in terms of energy, match those found in JHS11 as discussed above. We plot

the corresponding curves in Fig. 1. Firstly, we need to make a note regarding the comparison

of this figure and JHS11 Fig. 6. We did stability analyses for the sol. 2 data, which showed

GHF → GHF (and GHF → cGHF) stability from bond lengths 1.63 Å up to at least 1.8 Å,

the latter being the rightmost point we considered for this solution. Sol. 2 is GHF → GHF

unstable to the left of 1.63 Å, which may be a reason that, in JHS11 Fig. 6, the sol. 2 curve

does not continue to the left of about 1.6 Å. We found that by using Direct Inversion of the

Iterative Subspace (DIIS),61,62 sol. 2 could be followed to the left indefinitely. Moving on,

Fig. 1 also includes the basic results of the collinearity test. Indeed, each solution is truely

noncollinear for some geometries. However, each solution is actually collinear for more than

half of the shown bond-length range.

The details of the collinearity test for sol. 2 are shown in Fig. 2, where we plot ϵ0 and µ0.

To the left of 1.6 Å, µ0 and ϵ0 are both 0, which indicates that in this region the solution

is equivalent to an ms = 0 UHF solution, in fact one that does not appear in JHS11 Fig. 6.

To the right of 1.7 Å, µ0 returns to a value of 0, while here ϵ0 settles to a value of 1. This

confirms that this GHF solution coalesces with a ms = 1 UHF solution, as stated in JHS11.

To summarize these results, sol. 2 may be characterized as an ms = 0 UHF solution that

undergoes a local (in the sense that only some of the spins are rotated) noncollinear spin

rotation to end up as an ms = 1 UHF solution. Interestingly, moving to the left, it appears

that sol. 2 is not heading toward coalescence with the RHF curve. Indeed, this solution

remains spin-symmetry broken at least down to 1 Å. It reaches a minimum at around 1.27
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Å, where it has ⟨S2⟩ = 1.34 and a binding energy of 82.8 kcal/mol. In this case, GHF is

not producing the “desired” result of connecting the lowest-energy UHF at equilibrium, i.e.

RHF, to the lowest-energy UHF at dissociation.

Moving to the right in JHS11 Fig. 6, sol. 1 does not appear to be joining with any shown

UHF solution. To investigate this, we attempted to track our sol. 1 into the dissociation

region. We ran stability analyses, which showed that sol. 1 is GHF → GHF (and GHF →

cGHF) stable from 1.46 to 1.79 Å, after which it becomes GHF → GHF unstable. For longer

bond lengths, we found that it is possible to remain on sol. 1 indefinitely by using DIIS.

The principal components of the collinearity test are shown in Fig. 3. From the µ0 curve,

we see that sol. 1 is noncollinear for a wide range of geometries, but eventually returns to

collinearity to the right of about 2.5 Å. In the noncollinear region, µ0 exhibits singularities

at around 1.8 and 2.4 Å. These are the result of crossings, or possibly very narrow avoided

crossings, in the eigenvalues of the A matrix. Accordingly, in Fig. 3 we have included curves

for the other two eigenvalues, which we label µ1 and µ2. Note the µ1-µ2 degeneracy at

collinear geometries, which is one manifestation of the familiar fact that any two orthogonal

axes spanning the plane perpendicular to the primary spin axis of a (non-RHF) UHF solution

are equivalent to each other.

We plot the sol. 1 energy in Fig. 4. The curve goes over a hump and eventually dissociates

to the ground-state limit described above. Sol. 1’s nature can be understood by looking at its

ϵ0 curve, which is shown in Fig. 4. We first observe that over most of the range shown, the ϵ0

value is not an integer, which indicates noncollinearity. In this case, µ0 is needed only when

ϵ0 is 0, 1, 2, or 3. Given the µ0 results, the ϵ0 curve shows that sol. 1 may be characterized

as an ms = 0 UHF solution that undergoes a local noncollinear spin rotation to end up as

an ms = 3 UHF solution. This rotation is quite a bit more significant than that observed

in sol. 2, because sol. 1 transforms from a singlet-type wave function to a septet-type wave

function, entailing complete rotations of three spins. Sol. 1 also does not appear to be

heading toward coalescence with the RHF curve; indeed, JHS11 Fig. 6 shows that sol. 1 and

RHF cross. The JHS11 authors were unable to track sol. 1 to the left of 1.46 Å, and neither

were we: we separately tried the Maximum Overlap Method,63 SCF Metadynamics,64 and

cGHF, including combining these with various optimization algorithms, but to no avail. We

do note that, moving to the left, sol. 1’s ⟨S2⟩ value is rapidly decreasing: it is 1.35, 1.25,

1.14, and 0.93 at 1.49, 1.48, 1.47, and 1.46 Å, respectively. Thus sol. 1 may be heading
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towards coalescence with an RHF solution.

In Figs. 2 and 4, we have included data for ⟨Sx⟩ and ⟨Sz⟩ to illustrate that although

collinear, i.e. essentially UHF, solutions may be found with GHF code, they will generally

be spin rotations of, and thereby not exactly the same as, their counterparts computed with

traditional UHF codes. For example, both solutions exhibit non-zero values for ⟨Sx⟩ even

when they are collinear, which cannot occur in a traditional UHF computation.

B. CO2: Asymmetric Dissociation

Another interesting aspect of CO2 is its asymmetric dissociation into CO and O, which

is also found in JHS11. Following those authors, we will consider linear geometries with one

C-O bond fixed at 1.16 Å, while varying the other C-O bond length. Since the ground state

of CO2 at equilibrium is singlet, and the ground states of CO and O are singlet and triplet,

respectively, the asymmetric dissociation involves a true intersystem crossing.

In JHS11 Fig. 9, there are two curves labelled as GHF. We have reproduced, again in

terms of matching energies, these two solutions with our GHF code, and we plot them,

along with the basic results of collinearity testing, in Fig. 5. For this, we first found sol. 1,

starting at 1.7 Å. We followed the solution down to 1.63 Å, whereupon it becomes RHF.

Also starting from the initial 1.7 Å point, we followed sol. 1 to the right. At 1.78 Å, sol. 1

becomes GHF → cGHF unstable, but it remains GHF → GHF stable up until 1.81 Å, after

which it becomes unstable. Using DIIS, we were able to follow sol. 1 to the right indefinitely.

To recap, sol. 1 is GHF → cGHF stable from 1.63 Å up until 1.77 Å and GHF → GHF

stable from 1.63 Å up until 1.81 Å. We plot the energy and µ0 curves for sol. 1 in Fig. 6. For

sol. 1, ϵ0 = 0 at all points shown. This gives us no information regarding collinearity, so this

is a good example of when we must rely on µ0. Sol. 1 is noncollinear for all points to the

right of 1.63 Å. It is of note that its relative energy does not approach 0 in the dissociation

limit. In fact, its energy limit is lower than the sum of the ms = 0 CO and ms = 0 O UHF

energies. We were unable to find any HF solutions for CO and O that match the dissociation

limit of sol. 1. It is possible that no such solutions exist, akin to how the RHF energy in the

dissociation of a covalent bond does not correspond to any HF energies for the associated

atoms. An analysis of local spin populations may be helpful here, but this is getting outside

the present scope, and we have not yet implemented such capabilities in our GHF code.
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We obtained sol. 2 by following the GHF → cGHF instability of sol. 1 at 1.78 Å, and then

following this to the left and right. All of our data for sol. 2 was obtained with our cGHF

code. Given that this data energetically matched the JHS11 curve, which was obtained with

explicitly real orbitals, we suspected that our sol. 2 is equivalent to a real GHF solution.

Indeed, for one geometry, we used our GHF code to try to obtain a solution of the same

energy as that from our cGHF code, and were successful. It is therefore likely that our

cGHF-code sol. 2 is equivalent to the solution found in JHS11. However, it must be noted

that this is not a proof that our sol. 2 is fundamentally real, this requiring a different testing

procedure.

We plot the ϵ0 and µ0 curves for sol. 2 in Fig. 7. As was the case for symmetric-dissociation

sol. 1, sol. 2 here exhibits a crossing in the µ0 curve. Fig. 7 reveals that sol. 2 is a local

noncollinear spin rotation of an ms = 0 UHF solution into an ms = 1 UHF solution. The

JHS11 authors state that sol. 2 connects to the ms = 1 UHF curve, but do not assert that

it connects to the ms = 0 UHF curve; indeed, the JHS11 Fig. 9 curve appears to come to a

halt to the left of 1.77 Å. This may relate to the observation that in moving from 1.77 to 1.76

Å, our sol. 2 goes from being cGHF → cGHF stable to unstable, i.e. the solution is unstable

to the left of this point, and stable to the right. We note in passing that this means that

sol. 1 and sol. 2 are both stable at e.g. 1.77 Å. We did many cGHF calculations (at intervals

of 0.001 Å) in this region to confirm that sol. 2 indeed coalesces with the ms = 0 UHF

curve. Thus, in contrast to the symmetric-dissociation case, here GHF is able to connect

the lowest equilibrium solution to the lowest solution at dissociation. It should be noted

that these UHF solutions are approximating exact states of differing spin multiplicities, so

their connection is unphysical, considering the absence of spin-orbit coupling.

Finally, we have plotted ⟨Sx⟩ and ⟨Sz⟩ for sol. 2 in Fig. 8. We did not include ⟨Sy⟩ because

its curve looks just like that for ϵ0. We note that non-zero values for ⟨Sy⟩, such as those

found here, would not be possible within an (explicitly real) GHF code, as shown in the

Appendix. As stated previously, we think that sol. 2 is equivalent to a real GHF solution,

which would have a ⟨Sy⟩ value of 0. As do the above examples, this illustrates the point

that HF solutions whose exact forms can be obtained only with a GHF or cGHF calculation

are not necessarily noncollinear nor fundamentally complex; these “simpler” HF solutions

can take on diverse appearances when they show up in GHF and cGHF calculations. In

contrast, non-zero ⟨Sy⟩ values can have more physically meaningful implications when they
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arise in fundamentally complex GHF solutions, such as those reported recently for various

fullerenes.25

IV. DISCUSSION AND CONCLUSIONS

In this paper, we have introduced a simple collinearity test that may be applied to any

spin-symmetry broken wave function. To summarize the test, a wave function is collinear if

and only if µ0 = 0, where

µ0 = min
c∈S2

(
⟨(c · S)2⟩ − ⟨c · S⟩2

)
, (29)

with S2 being the unit sphere. µ0 and the minimizing c are obtained by computing the

lowest eigenpair of the matrix defined in eq. (11) (see also eq. (27) for the GHF case). Also

useful is

ϵ0 =
√
⟨Sx⟩2 + ⟨Sy⟩2 + ⟨Sz⟩2, (30)

which indicates noncollinearity if it is not an allowed value of |ms|, this fact having been

utilized previously for the GHF case.17 When ϵ0 is an allowed value of |ms|, no collinearity

conclusion may be drawn without further information, and so µ0 serves to complete the

picture. In the GHF case, if µ0 = 0, the wave function is equivalent to a UHF wave function

with 1
2
(nα − nβ) = ϵ0, and so plots of µ0 and ϵ0 effectively characterize GHF solutions.

We focused on the test’s application to GHF and cGHF calculations. The test may be

performed at the end of such calculations, with a cost negligible compared to that of the

SCF optimization steps. We studied two dissociation pathways for CO2. The components of

the collinearity test provided a clear picture of the basic physical character of the pertinent

HF solutions: they showed how ms = 0 UHF solutions in the equilibrium region undergo

noncollinear spin rotations in GHF to connect to the lowest-energy UHF solutions in the

dissociation region, which have nonzero ms values. To our knowledge, the observations that

the pertinent GHF solutions connect to disparate UHF solutions in both of these regions are

novel results for this molecule, thus complementing earlier work on it.

We showed that, in the CO2 asymmetric dissociation, GHF is able to connect the lowest

HF solutions at equilibrium and dissociation. However, the pertinent solution is not always

the lowest-energy one. It is of interest to see if this remains true when larger basis sets and/or

other methods, e.g. noncollinear DFT methods, are used. In contrast, GHF does not appear

14



to be able to make such connections in the symmetric dissociation. It is possible that this

occurs in one of the solutions, but a conclusion on this matter was prevented by numerical

difficulties. These GHF behaviors are in opposition with the exact ground-state PES’s: the

latter involves a crossing in the asymmetric dissociation, but not in the symmetric one. This

is just one example of the generally known fact that GHF can sometimes connect states of

different spin multiplicities, which is technically unphysical in the absence of e.g. spin-orbit

interactions. We argue that more experimentation with GHF is needed to determine if this

kind of behavior is ultimately useful or detrimental.

Our CO2 asymmetric dissociation calculations touched on an interesting aspect of SCF

optimizations. For sol. 1 at 1.78 Å, the energy is GHF → GHF stable and GHF → cGHF

unstable. However, the lower-energy solution to which this instability leads is, we think,

another (real) GHF solution. In other words, the tools associated with a more complicated

HF level (in this case cGHF) were able, indeed required, to find the connection between

two solutions of a simpler HF level (in this case real GHF). We have observed analogous

behavior for other molecules and different HF levels, as have other researchers.47 It would

be of interest to further study this phenomenon. However, it should be recognized that it is

not always operative: in the CO2 asymmetric dissociation, sol. 2 is the upper curve at 1.77

Å, yet it is cGHF → cGHF stable there. This exemplifies the fact that stability analysis

only tests whether a solution is a local minimum.

We close by stating that the collinearity test may be employed as part of a practical

realization of Fukutome’s classification of determinantal wave functions.11 Using the termi-

nology employed by Fukutome, the test distinguishes between spin axial and torsional HF

wave functions. Essentially, the two remaining facets of the classification are concerned with

time reversal symmetry and the “magnetic operations”. It can be shown that the latter

relate to the separation of essentially real wavefunctions and ones that are fundamentally

complex. The goal of putting these concepts into practical computational usage and joining

the result with the collinearity test lays ground for future work.
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APPENDIX: BLOCK STRUCTURE OF A FOR REAL |Ψ⟩

Here, we will comment on the simplified structure of A when |Ψ⟩ is a real wave function.

As to the latter property, we mean that for any real one-electron basis, every coefficient of

|Ψ⟩’s expansion relative to the corresponding determinants is real. To be precise regarding

the reality of the one-electron basis, the usual one-electron spin states, α and β, are taken

to be real. For simplicity, we will here choose the ϕp to be of the form ζpωj, where the ζj

form a set of real orthonormal spatial orbitals and ωj is α or β. The corresponding one and

two electron density matrices for |Ψ⟩ are real. We have ⟨ζpωj|Sm|ζqωk⟩ = δpq(σm)jk/2, where

σx, σy, and σz are the Pauli matrices. It follows that Sy is purely imaginary and Sx and Sz

are purely real. This means that Sxy, Syx, Syz, and Szy are purely imaginary. As with

the two-electron integral array, Smn is a Hermitian matrix, where we are grouping indices

1 and 2 into a compound index, and likewise with indices 3 and 4. In the same way, the

two-electron density matrix is Hermitian. The trace of a product of two Hermitian matrices,

one purely imaginary and the other purely real, is 0. Applying this to eqs. (18) and (19),

we see that in the present case, ⟨Sy⟩ is 0, as are the two-electron parts of ⟨SxSy⟩, ⟨SySx⟩,

⟨SySz⟩, and ⟨SzSy⟩. Therefore, in this case, Axy = Ayx = Ayz = Azy = 0, i.e. the matrix has

a block structure. Both blocks need to be considered in the collinearity test.
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(2004).

33 J. E. Peralta, G. E. Scuseria, and M. J. Frisch, Phys. Rev. B 75, 125119 (2007).

34 S. Sharma, J. K. Dewhurst, C. Ambrosch-Draxl, S. Kurth, N. Helbig, S. Pittalis, S. Shallcross,

L. Nordström, and E. K. U. Gross, Phys. Rev. Lett. 98, 196405 (2007).

35 F. G. Eich and E. K. U. Gross, Phys. Rev. Lett. 111, 156401 (2013).

36 G. Scalmani and M. J. Frisch, J. Chem. Theory Comput. 8, 2193 (2012).

37 I. W. Bulik, G. Scalmani, M. J. Frisch, and G. E. Scuseria, Phys. Rev. B 87, 035117 (2013).
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39 C. a. Jiménez-Hoyos, T. M. Henderson, T. Tsuchimochi, and G. E. Scuseria, J. Chem. Phys.

136, 164109 (2012).

40 G. J. O. Beran, B. Austin, A. Sodt, and M. Head-Gordon, J. Phys. Chem. A. 109, 9183 (2005).

41 K. V. Lawler, D. W. Small, and M. Head-Gordon, J. Phys. Chem. A 114, 2930 (2010).

18



42 V. A. Rassolov, J. Chem. Phys. 117, 5978 (2002).

43 V. A. Rassolov and F. Xu, J. Chem. Phys. 126, 234112 (2007).

44 P. Jeszenszki, V. Rassolov, P. R. Surján, and A. Szabados, Mol. Phys. (2014), in press.

45 P. A. Limacher, P. W. Ayers, P. A. Johnson, S. De Baerdemacker, D. Van Neck, and P. Bultinck,

J. Chem. Theory Comput. 9, 1394 (2013).

46 P. A. Johnson, P. W. Ayers, P. A. Limacher, S. D. Baerdemacker, D. V. Neck, and P. Bultinck,

Comp. Theor. Chem. 1003, 101 (2013).

47 P. A. Limacher, T. D. Kim, P. W. Ayers, P. A. Johnson, S. De Baerdemacker, D. Van Neck,

and P. Bultinck, Mol. Phys. 112, 853 (2014).

48 K. Boguslawski, P. Tecmer, P. W. Ayers, P. Bultinck, S. De Baerdemacker, and D. Van Neck,

Phys. Rev. B 89, 201106 (2014).

49 K. Boguslawski, P. Tecmer, P. A. Limacher, P. A. Johnson, P. W. Ayers, P. Bultinck, S. De

Baerdemacker, and D. Van Neck, J. Chem. Phys. 140, 214114 (2014).
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