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Co-Location of QTL for Vigor and Resistance to Three Diseases
in Juglans microcarpa × J. regia Rootstocks
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Abstract: A QTL on chromosome 4D of the Juglans microcarpa × J. regia genome that
co-located resistance against Agrobacterium tumefaciens, Phytophthora pini, and Phytoph-
thora cinnamomi disease scores was investigated for additional traits. Phenotypic data
for Pratylenchus vulnus counts and tree height were analyzed in this study for the same
hybrids previously used to identify this QTL. Using the same GBS genotype data, the same
co-located QTL for A. tumefaciens and Phytophthora spp. disease scores were reproduced
and the QTL for P. vulnus counts and tree height were co-located with resistance to A. tume-
faciens and Phytophthora spp. Moreover, we found GBS genotype data to harbor additional
genetic variation unrelated to any of the traits analyzed. Marker-assisted and genomic
selection models were created and assessed for their performance in selection. The ability
to predict traits using SNP data was strongest with two-year tree height, followed by A.
tumefaciens disease score, three-year tree height, Phytophthora spp. disease score, and P.
vulnus counts. These results suggest a shared mechanism of action that links disease to
tree height. Moreover, deploying these selection models would assist efforts in walnut
improvement for rootstock genotypes.

Keywords: walnut; QTL; host–pathogen interaction; rootstock; genomic selection; marker-
assisted selection

1. Introduction
Walnuts make a substantial contribution to the California economy, ranking 10th

among all California commodities and valued at USD 1.022 billion in 2021 [1]. Crown
gall (caused by Agrobacterium tumefaciens), Phytophthora crown and root rot (Phytophthora
spp.), and root lesion nematode (Pratylenchus vulnus) are important rootstock diseases
of California walnuts that reduce their value. Agrobacterium tumefaciens is a rod-shaped,
Gram-negative soil bacterium, while Phytophthora spp. are soilborne oomycetes. These
microbes obstruct the vascular tissues with tumors (A. tumefaciens) or kill root, crown, and
trunk tissues directly (Phytophthora spp.). Both pathogens cause disease by inhibiting the
flow of nutrients and water to the grafted scion, the upper portion of the plant, reducing
crop productivity while imperiling plant health. Pratylenchus vulnus, an obligate migratory
endoparasitic nematode, causes crop losses by damaging the root cortical tissue and
consuming plant nutrients, which ultimately impedes the flow of nutrients and water to
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the scion [2]. The most recent estimate suggests that these root diseases collectively cost the
California walnut industry USD 241 million (~20% of the total farm gate value) per year [3].

Quantitative Trait Locus (QTL) analysis provides a powerful approach to locate and
understand the functional basis of important genetic traits in tree crops. QTL mapping stud-
ies in tree crops have identified numerous QTL for various growth-related traits, such as
stem diameter, tree height, and the number of whorls, providing valuable insights into
the genetic control of these traits. For example, a study on Hevea brasiliensis identified
24 QTL for stem diameter, 7 for tree height, and 7 for the number of whorls [4]. Simi-
larly, a study on Populus deltoides and Populus simonii hybrids identified a total of 208 QTL
for drought-related traits, leading to the development of molecular identification markers for
drought tolerance [5]. Most relevantly, co-located QTL for resistance to Agrobacterium tumefa-
ciens disease score, Phytophthora pini, and Phytophthora cinnamomi were found on chromosome
4D of the Juglans microcarpa × Juglans regia genome [6]. It is important to note that most traits
in tree crops are influenced by a large number of underlying QTL, and more research is needed
to capture a large proportion of the genetic variation [7]. Therefore, QTL analysis provides
valuable information for understanding the genetic basis of important traits in tree crops and
has the potential to complement functional genomics analyses for crop improvement [4–8].

Another beneficial outcome of QTL analysis is the foundation for marker-assisted selec-
tion (MAS). MAS has demonstrated significant efficacy in tree crops compared to no selection,
particularly in expediting the breeding process and enhancing the accuracy of trait selection.
Once a QTL has been identified, these markers are used to predict phenotypes in breeding lines
with unknown phenotypes to pre-select for potentially beneficial accessions. This contrasts
with traditional methods, where selection is based solely on the often laborious determination
of phenotypic traits. Several studies have highlighted the advantages of MAS, such as its
ability to improve the efficiency of plant breeding, especially in tree species where breeding is
time-consuming and challenging due to the genetic complexity of traits [9]. The use of MAS
led to higher genetic gain and cost efficiency compared to traditional selection methods when
dealing with complex traits controlled by multiple genes [10,11]. In grapes, marker-assisted
selection increased the selection efficiency for seedlessness in the fruit. The author’s in silico
analysis started with only 52% of the 1012 plants being seedless, and after selection 92% of the
547 plants were seedless [10]. While genomic selection has gained prominence, MAS remains
a valuable tool with traits controlled by a few or single loci.

Use of QTL analysis in conjunction with other omics approaches has several advan-
tages over the use of QTL analysis alone, which results in uneven sampling of the genome
and potentially missing critical markers [12]. Combining QTL analysis or GWAS with
transcriptomic, proteomic, or metabolomic approaches is becoming increasingly popular
and shows promise in identifying potential causal genetic-trait relationships [13]. A major
QTL had been found in walnut rootstocks for resistance to A. tumefaciens (crown gall) and
Phytophthora spp. in Juglans hybrids created by crossing J. microcarpa half-sib mother trees
DJUG 31.01 (henceforth 31.01) and DJUG 31.09 (henceforth 31.09) with the cultivated J. regia
cv. Serr (henceforth cv. Serr) [6]. A small subset of the hybrids from the breeding popula-
tions used previously were analyzed in this study using transcriptomics. The differentially
expressed genes suggested that cell wall biogenesis was involved in resistance to these
pathogens and tree height [2]. In the work reported here, the QTL for A. tumefaciens and
Phytophthora spp. disease scores, and a novel QTL for tree height and P. vulnus counts, all
were co-located in the same region. Furthermore, these QTL were employed for genomic
selection and marker-assisted selection with exceptional selection accuracies. This research
builds on the foundation of molecular biology research in walnuts by providing further
clues to root disease mechanisms and adds value to the breeding efforts in the industry by
reducing the ratio of work inputs to desirable genetic output.
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2. Results
2.1. QTL Mapping and Marker Selection

To discover markers for P. vulnus counts and tree height at two and three years of tree age,
the mapped markers of 31.01, 31.09, and cv. ‘Serr’ from seedlings of 31.01 × ‘Serr’ and 31.09 ×
‘Serr’ were downloaded from Ramasamy et al. [6] (Supplementary Table S2 of the paper). See
methods Section 4.3, “Phenotypic Analysis”, for detailed definitions of the traits analyzed in
this study. For 31.01, no markers were removed by the minor allele frequency (MAF) threshold
of 0.1, 52 markers were removed by the missing sample of 0.95, no samples were removed by
the missing marker threshold of 0.5, and 2152 data points (0.64% of the data) were imputed.
For 31.09, 2 markers were removed by the MAF threshold of 0.1, 5 markers were removed
by the missing sample of 0.95, no samples were removed by the missing marker threshold of
0.5, and 417 data points (0.11% of the data) were imputed. For cv. ‘Serr’ from the cross with
31.01, no markers were removed by the MAF threshold of 0.1, 40 markers were removed by
the missing sample of 0.95, 1 sample was removed by the missing marker threshold of 0.5,
and 1514 data points (0.56% of the data) were imputed. For cv. ‘Serr’ from cross with 31.09,
no markers were removed by MAF threshold of 0.1, 42 markers were removed by missing
sample of 0.95, no samples were removed by missing marker threshold of 0.5, and 1177 data
points (0.41% of the data) were imputed.

For the 31.01 haplotype, recursive feature elimination showed that markers 31.01_Jm4D
_26168643, 31.01_Jm4D_26359154, and 31.01_Jm4D_26669075 were shared amongst the
most important eight predictors by mean decrease in impurity (MDI) across two- and
three-year tree heights, and two- and three-year P. vulnus counts, A. tumefaciens disease
score, and Phytophthora spp. disease score (File S1). For the 31.09 haplotype, recursive
feature elimination showed that markers X31.09_Jm4D_26359154, X31.09_Jm4D_25625822,
and X31.09_Jm4D_25101968 were shared amongst the most important eight predictors
across two- and three-year tree heights, and three-year P. vulnus counts, A. tumefaciens
disease score, and Phytophthora spp. disease score but not two-year P. vulnus counts (File S2).
Overall, most of the important predictors were markers from chromosome Jm4D. rrBLUP
coefficients of these markers for each trait showed that they were amongst the largest nega-
tive effects of the markers selected by the rfe function and indicated that disease resistance
and lower tree height were associated with the b allele (Files S3 and S4, Figures S1 and S2).

Moreover, logarithm of the odds (LOD) scores displayed major distinct peaks along
31.01 and 31.09 chromosomes 4D for each trait except for two-year P. vulnus counts
in the 31.09 haplotype (Figures 1 and 2). LOD significance thresholds at α = 0.05 for
31.01 × cv. Serr were 3.3, 3.1, 3.2, 3.2, 3.3, and 3.3 for two- and three-year P. vulnus counts,
two- and three-year tree height, A. tumefaciens disease score, and Phytophthora spp. disease
score, respectively. These thresholds resulted in 31, 17, 65, and 59 significant markers on
Jm4D for two- and three-year P. vulnus counts, two-year tree height, and A. tumefaciens
disease score, respectively (Table 1). The markers for three-year tree height and Phytoph-
thora spp. disease score were split into 65 and 14, and 38 and 3 for chromosomes 4D and
6D, respectively. Furthermore, these markers spanned 12,109,447, 5,298,334, 30,660,994,
and 30,060,179 base pairs on Jm4D for two- and three-year P. vulnus counts, two-year tree
height, and A. tumefaciens disease score, respectively. The distances for three-year tree
height and Phytophthora spp. disease score QTL were split into 30,660,994 and 3,493,793,
and 21,190,695 and 3,720,218 base pairs for chromosomes 4D and 6D, respectively. The top
markers by LOD score were 31.01_Jm4D_26669075 two- and three-year P. vulnus counts
and two- and three-year tree height (Table 2). For A. tumefaciens and Phytophthora spp.
disease scores, 31.01_Jm4D_26168643, 31.01_Jm4D_26359154, and 31.01_Jm4D_26669075
were shared as top makers because they had the same LOD and covered 500,432 base pairs
on chromosome 4D.
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Table 1. All significant markers from QTL mapping on the 31.01 × cv. Serr progeny with LOD
threshold α = 0.05. This defines the QTL. Length is QTL length in base pairs. Markers are the number
of unique markers within the QTL.

Trait Chromosome Unique Markers Length (bp) Percent Variance Explained
Two-year P. vulnus Counts 4D 31 12,109,447 13.9%

Three-year P. vulnus Counts 4D 17 5,298,334 13.1%
Two-year Tree Height 4D 65 30,660,994 70.3%

Three-year Tree Height 4D 65 30,660,994 41.4%
Three-year Tree Height 6D 14 3,493,793 4.8%

A. tumefaciens Disease Score 4D 59 30,060,179 45.4%
Phytophthora spp. Disease Score 4D 38 21,190,695 21.0%
Phytophthora spp. Disease Score 6D 3 3,720,218 6.1%

For 31.01 × cv. Serr, these QTL explained 13.9%, 13.1%, 70.3%, and 45.4% of the
variation in the phenotypic data for two- and three-year P. vulnus counts, two-year tree
height, and A. tumefaciens disease score, respectively, all from Jm4D (Table 1). The variances
explained for three-year tree height and Phytophthora spp. disease score were split into
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41.4% and 4.8%, and 21.0% and 6.1% for chromosomes 4D and 6D, respectively. Conversely,
just the top marker from each QTL explained 15.7%, 12.9%, 67.1%, 33.8%, 44.1%, and 18.9%
for two- and three-year P. vulnus counts, two- and three-year tree height, A. tumefaciens
disease score, and Phytophthora spp. disease score, respectively (Table 2).

Table 2. Top markers by LOD from QTL mapping on the 31.01 × cv. Serr progeny.

Trait Marker(s) Chromosome LOD Length (bp) Percent Variance Explained
Two-year P. vulnus Counts 31.01_Jm4D_26669075 4D 9.8 0 15.7%

Three-year P. vulnus Counts 31.01_Jm4D_26669075 4D 7.6 0 12.9%
Two-year Tree Height 31.01_Jm4D_26669075 4D 44.9 0 67.1%

Three-year Tree Height 31.01_Jm4D_26669075 4D 22.2 0 33.8%
A. tumefaciens Disease Score 31.01_Jm4D_26168643 4D 28.4 500,432 44.1%
A. tumefaciens Disease Score 31.01_Jm4D_26359154 4D 28.4 500,432 44.1%
A. tumefaciens Disease Score 31.01_Jm4D_26669075 4D 28.4 500,432 44.1%

Phytophthora spp. Disease Score 31.01_Jm4D_26168643 4D 11.1 500,432 18.9%
Phytophthora spp. Disease Score 31.01_Jm4D_26359154 4D 11.1 500,432 18.9%
Phytophthora spp. Disease Score 31.01_Jm4D_26669075 4D 11.1 500,432 18.9%

LOD significance thresholds at α = 0.05 for 31.09 × cv. Serr were 3.2, 3.2, 3.4, 3.3,
3.2, and 3.3 for two- and three-year P. vulnus counts, two- and three-year tree height, A.
tumefaciens disease score, and Phytophthora spp. disease score, respectively. These thresholds
resulted in 31, 19, and 46 significant markers on Jm4D for two- and three-year tree height
and Phytophthora spp. disease score, respectively (Table 3). For two-year P. vulnus counts,
these markers were split into amounts of three and two for chromosomes Jm4D and Jm3D,
respectively. For three-year P. vulnus counts, these markers were split into amounts of 14 and
39 for chromosomes Jm4D and Jm 1D, respectively. For A. tumefaciens disease score, these
markers were split into amounts of 59 and 1 for chromosomes Jm4D and Jm7D, respectively.

Table 3. All significant markers from QTL mapping on the 31.09 × cv. Serr progeny with LOD
threshold α = 0.05.

Trait Chromosome Unique Markers Length (bp) Percent Variance Explained
Two-year P. vulnus Counts 3D 2 372,371 7.0%
Two-year P. vulnus Counts 4D 3 54,916 8.2%

Three-year P. vulnus Counts 1D 39 24,916,299 8.5%
Three-year P. vulnus Counts 4D 14 9,378,085 16.7%

Two-year Tree Height 4D 31 21,274,993 20.1%
Three-year Tree Height 4D 19 10,480,961 17.2%

A. tumefaciens Disease Score 4D 59 31,696,222 39.7%
A. tumefaciens Disease Score 7D 1 0 7.0%

Phytophthora spp. Disease Score 4D 46 29,549,284 17.5%

These markers spanned 21,274,993, 10,480,961, and 29,549,284 bases on Jm4D for two-
and three-year tree height, and Phytophthora spp. disease score, respectively (Table 3). For
two-year P. vulnus counts, these distances were split into 54,916 and 372,371 base pairs
for chromosomes Jm4D and Jm3D, respectively. For three-year P. vulnus counts, these
distances were split into 9,378,085 and 24,916,299 base pairs for chromosomes Jm4D and Jm
1D, respectively. For A. tumefaciens disease score, these distances were split into 31,696,222
and 0 base pairs for chromosomes Jm4D and Jm7D, respectively.

The top marker(s) by LOD score were X31.09_Jm4D_23906200, X31.09_Jm4D_23960954, and
X31.09_Jm4D_23961116 for two-year P. vulnus counts, X31.09_Jm4D_26359154 for three-year P. vul-
nus counts, 31.09_Jm4D_25101968 for two-year tree height, X31.09_Jm4D_26359154 for three-year
tree height, X31.09_Jm4D_26359154 for A. tumefaciens disease score, and X31.09_Jm4D_23816262
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and X31.09_Jm4D_24259264 for Phytophthora spp. disease score. Two-year P. vulnus counts had
three top markers because the LOD scores were the same. These top markers spanned 54,916, 0,
0, 0, 0, and 443,002 base pairs for two- and three-year P. vulnus counts, two- and three-year tree
height, A. tumefaciens disease score, and Phytophthora spp. disease score, respectively.

For 31.09 × cv. Serr, the variance explained in the phenotypic data for these QTL was
7.0% and 8.2% on chromosomes Jm3D and 4D for two-year P. vulnus counts, 8.5% and 16.7%
on chromosomes Jm1D and 4D for three-year P. vulnus counts, 20.1% on chromosome Jm4D
for two-year tree height, 17.2% on chromosome Jm4D for three-year tree height, 39.7%
and 7% on chromosomes Jm4D and Jm7D for A. tumefaciens disease score, and 17.5% on
chromosome Jm4D for Phytophthora spp. disease score (Table 3). Conversely, just the top
marker from each QTL explained 8.2%, 17.3%, 23.5%, 17.1%, 36.9%, and 17.6% for two- and
three-year P. vulnus counts, two- and three-year tree height, A. tumefaciens disease score,
and Phytophthora spp. disease score, respectively (Table 4).

Table 4. Top markers by LOD from QTL mapping on the 31.09 × cv. Serr progeny.

Trait Marker(s) Chromosome LOD Length (bp) Percent Variance Explained

Two-year P. vulnus Counts 31.09_Jm4D_23906200 4D 3.9 54,916 8.2%

Two-year P. vulnus Counts 31.09_Jm4D_23960954 4D 3.9 54,916 8.2%

Two-year P. vulnus Counts 31.09_Jm4D_23961116 4D 3.9 54,916 8.2%

Three-year P. vulnus Counts 31.09_Jm4D_26359154 4D 7.1 0 17.3%

Two-year Tree Height 31.09_Jm4D_25101968 4D 6.2 0 23.5%

Three-year Tree Height 31.09_Jm4D_26359154 4D 7.5 0 17.1%

A. tumefaciens Disease Score 31.09_Jm4D_26359154 4D 18.9 0 36.9%

Phytophthora spp. Disease Score 31.09_Jm4D_23816262 4D 11.0 443,002 17.6%

Phytophthora spp. Disease Score 31.09_Jm4D_24259264 4D 11.0 443,002 17.6%

The cv. Serr haplotype showed no such QTL peaks nor did it have any significant
markers for any trait in either cross (Figures 1 and 2).
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The top markers were highly correlated with each other, as were many other markers
that tended to correlate by chromosome (Figures 3 and 4). Moreover, PCA suggested that
chromosome 4D is just one part of the total variation in the GBS data. In the 31.01 haplotype,
chromosome 3S explained about as much variation in the data as 4D, and 5D and 1S explained
about double the variation in the data as chromosome 4D (Figure 3). In the 31.09 haplotype,
chromosome 4D explained a relatively minor amount of variation in the GBS data relative to
the other chromosomes.
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Ellipses are labeled by chromosome of origin in black.
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2.2. Prediction Accuracy of RF and rrBLUP Models to Discover Markers for P. vulnus

We used the rfe function from the caret package to estimate not which but how many
markers to use in the marker-assisted selection (MAS) approach via random forest (RF)
modeling. By default, the rfe function retained the top four markers for two-year tree height
and two- and three-year P. vulnus counts and A. tumefaciens disease score. Conversely, for
three-year tree height and Phytophthora spp. disease score, the rfe function retained all
946 markers. For our genomics selection (GS) approach, the ridge regression (rrBLUP)
function uses all markers by default, albeit differently than standard regression.

To avoid model overfitting, we manually retained the top eight markers from the
random forest function for three-year tree height and Phytophthora spp. disease score, which
resulted in increased prediction accuracy over the default 946 markers selected. Using the
top eight markers for modeling seemed to produce optimal prediction accuracies across all
traits. Please see Methods Section 4.6. “Prediction and Selection Performance Estimation”
for more details.

The predictive accuracy of the top markers for each trait was assessed by a machine
learning approach and correlation analyses using the randomForest and rrBLUP packages
in R. RF and rrBLUP machine learning models resulted in the greatest prediction accuracy
for two-year tree height followed by A. tumefaciens disease score, three-year tree height,
Phytophthora spp. disease score, two-year P. vulnus counts, and three-year P. vulnus counts
(Figure 5 and Table 5). On average, the RF approach outperformed rrBLUP, and predictions
made in the 31.01 haplotype outperformed predictions made in the 31.09 haplotype. The
only scenarios where the average p-value fell below the significance threshold of 0.05 were
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two and three-year P. vulnus counts and two-year tree height with the rrBLUP modeling
method in the 31.09 maternal haplotype and three-year P. vulnus counts with the rrBLUP
method in the 31.01 maternal haplotype.
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Table 5. Prediction accuracies (r) and their significance for each trait assessed by Pearson correlation
of model-predicted vs. actual values. Each value in the table is the average correlation coefficient
representing prediction accuracy estimates. Stars indicate the average p-value for each boxplot of
correlations. “***” average p-value less than 0.001, “**” average p-value between 0.01 and 0.001, “*”
average p-value between 0.05 and 0.01.

Method Female Parent A. tumefaciens
Disease Score

Phytophthora spp.
Disease Score

Three-Year
Tree Height

Three-Year
P. vulnus
Counts

Two-Year
Tree Height

Two-Year
P. vulnus
Counts

RF 31.01 0.67 *** 0.49 ** 0.59 *** 0.33 ** 0.84 *** 0.35 **
RF 31.09 0.58 *** 0.38 ** 0.31 * 0.34 * 0.46 * 0.19

rrBLUP 31.01 0.46 *** 0.36 ** 0.52 *** 0.24 0.73 *** 0.25 *
rrBLUP 31.09 0.42 ** 0.25 * 0.37 * 0.31 * 0.51 * 0.19

To assess prediction accuracy more practically, the null hypothesis that artificial selec-
tion had no effect on phenotypic values was tested. To do this, we arranged each data
split’s actual values by their predicted values, then selected the top 25% of the data and
extracted only the actual values. These data became the “selected values”. We then com-
pared the selected values to all the actual values (no selection) using a Student’s t-test. This
was repeated 15 times for each trait and method combination. As with the performance
assessment by correlation, on average, the RF approach outperformed rrBLUP, and predic-
tions made in the 31.01 haplotype outperformed predictions made in the 31.09 haplotype
(Figure 6 and Table 6). In all traits, the use of selection resulted in more desirable phenotypic
values. However, average p-values fell below the significance threshold of 0.05 for two and
three-year P. vulnus counts for all instances of the rrBLUP modeling method and the RF
method in just the two-year P. vulnus counts-female parent 31.09 instance. Moreover, the
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rrBLUP modeling method’s average p-values fell below the significance threshold for all traits
under the 31.09 haplotype. Other selection analyses falling below the significance threshold
included all instances of the rrBLUP method for Phytophthora spp. disease score. The scenarios
with the highest significance were two-year tree height in the 31.01 haplotype regardless of
the modeling method and A. tumefaciens disease score with RF regardless of the maternal
haplotype. Selection for Phytophthora spp. disease score yielded high levels of significance
with the RF approach, while that of two- and three-year P. vulnus counts had lower values.
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Table 6. Selection performance by trait, method, and female parent. Each cell represents average
phenotypic values of traits comparing t-test estimates of using selection vs. no. Stars indicate the
average p-value for each boxplot of correlations. “***” average p-value less than 0.001, “**” average
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Stat Method Female
Parent

A. tumefaciens
Disease Score

Phytophthora spp.
Disease Score

Three-Year
Tree Height

Three-Year
P. vulnus
Counts

Two-Year
Tree Height

Two-Year
P. vulnus
Counts

Selection RF 31.01 1.54 *** 25.8 * 134 . 30.1 * 127 *** 5.02 .
No Selection RF 31.01 2.36 *** 37.9 * 112 . 59.3 * 89.3 *** 12.5 .

Selection RF 31.09 1.5 *** 16.5 * 113 46.7 . 98.4 * 13.9
No Selection RF 31.09 2.32 *** 26.4 * 99.3 94.1 . 70.6 * 19.4

Selection rrBLUP 31.01 1.72 ** 31 143 * 40.3 124 *** 6.47
No Selection rrBLUP 31.01 2.36 ** 37.9 112 * 59.3 89.3 *** 12.8

Selection rrBLUP 31.09 1.84 . 19.9 . 120 . 54.4 86.6 13.5
No Selection rrBLUP 31.09 2.32 . 26.4 . 99.3 . 94.1 70.6 19.6
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3. Discussion
3.1. Co-Located QTL

Machine learning methods were successfully implemented in QTL analyses [14,15]
and using non-traditional and traditional statistical methods reproduced the co-located
QTL spanning, 31.01_Jm4D_26168643, 31.01_Jm4D_26359154, and 31.01_Jm4D_26669075,
for A. tumefaciens disease score and Phytophthora spp. disease score discovered by [6].
Moreover, the QTL for two- and three-year tree height and two- and three-year P. vulnus
counts mapped to the same region (Figures 1 and 2). While the co-located QTL were
also present in the 31.09 × cv. Serr progeny, the peaks were not as high, and their exact
location varied slightly between traits. This result raises some fundamental questions.
Why would tree height also be under this QTL? Do any gene(s) within these QTL have
SNPs? What are these gene(s) and their function(s)? The co-location of this many QTL for
disease resistance suggests a nonspecific and robust disease resistance mechanism, as a
gene-for-gene or induced mechanism seems unlikely for such broad-spectrum resistance.
Moreover, the co-location of two- and three-year tree height QTL, traits seemingly unrelated
to pathogenesis, to the same loci supports the hypothesis that the resistance is due to some
pre-formed factor potentially related to the tree’s height. One such pre-formed factor
is the plant cell wall, which is known to affect both the growth and disease-resistance
characteristics of plants [6,16–20]. A recent study analyzing transcriptomes of four hybrids
from this study and three from another breeding population found that gene expression
coding for cell wall biogenesis was a significant biological process correlated with tree
height, A. tumefaciens root and crown gall size, and Phytophthora spp. root and crown
rot [2]. Saxe et al. found that increasing the expression of cell wall biogenetic genes was
correlated with increasing tree height, and susceptibility to A. tumefaciens and Phytophthora
spp. Similarly, we found that all traits co-located to this QTL on chromosome 4D showed
the same relationship. Increasing tree height and increasing susceptibility to all pathogens
was associated with the ‘a’ allele and decreasing tree height and resistance to all pathogens
was associated with the ‘b’ allele (Files S3 and S4). Given the size of the LOD peaks for the
QTL, fine mapping with higher marker density or a multi-omics approach has a higher
chance of increasing the understanding of what genes or genetic elements are involved in
the causality of these traits. Fine mapping could also improve the resolution of said QTL
and may further increase the accuracy of selection models. In addition to fine mapping
using higher marker densities, one could also employ transcriptomics to reveal the impact
of the SNPs on the functional part of the genome. As has been observed in most RNAseq
studies, not just one gene is differentially expressed, but thousands are [2]. And these genes
can be analyzed for enrichment in biological processes correlated with the trait, giving
more than just gene-level insights.

3.2. MAS and GS Prediction Accuracy

While QTL analysis can help understand the genetic basis underlying phenotypes, it
also offers the potential for high throughput selection. Co-located QTL have been reported
in these J. microcarpa × J. regia hybrids [6]; however, their ability to predict phenotypes
was not assessed. We found a wide range in the ability of the selected markers to predict
these phenotypes. Given that the predictors for each trait were largely the same, it seems
likely that there are varying degrees of environmental or technical variation skewing the
phenotypic data. For example, tree height, A. tumefaciens disease score (root and crown
gall size), and Phytophthora spp. disease score (root and crown rot) are direct measures of
the plant or plant response. Conversely, P. vulnus counts were generated by counting the
number of nematodes per gram of root, an indirect measure of the host response. Perhaps
the relationship between root lesions caused by P. vulnus and these QTL would be greater
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than the nematode count. Another reason for the large differences in prediction accuracy
could be the genomic sequencing approach. Genotyping-by-sequencing was used to
generate SNPs for this population. While this method is a powerful tool for SNP discovery,
it has the drawback of potentially sampling the genome unevenly [12], thus missing critical
markers for some traits. We observed that predictions using a MAS approach with fewer
markers were better than the those found with the GS approach, which used all available
markers with regularization (Figures 5 and 6, Tables 5 and 6). This is likely due to the
presence of such a major QTL in each cross as MAS tends to outperform GS in such cases,
while complex traits regulated by many QTL favors the use of GS [21,22].

While the predictive models have varying accuracies, they can be deployed in the
same breeding population from which they were built to increase the efficiency of the
artificial selection of the traits analyzed in this study. For example, utilizing these models
to enhance rootstock selection for A. tumefaciens disease score and tree height would be
the most effective given that they yielded the highest accuracies (Figure 5 and Table 5),
and that their simulated selection effectiveness was the most significant (Figure 6 and
Table 6). While two-year tree height yielded the highest accuracy overall, the three-year
height data were more relevant, realistic, and prudent, as the prediction accuracy decreased
substantially from two years to three years. For example, relying on a model based on the
two-year data may overestimate the true accuracy of the model, as these trees develop and
live much longer than two years.

4. Materials and Methods
4.1. Plant Material

“Juglans microcarpa trees DJUG 31.01 and DJUG 31.09 (USDA National Clonal
Germplasm Repository, Davis, https://www.ars.usda.gov/pacific-west-area/davis-ca/
natl-clonal-germplasm-rep-tree-fruit-nut-crops-grapes/, accessed on 10 January 2020)
were used as mother trees in hybridization with J. regia cv. Serr in the springs of 2012–2015.
Female flowers were sealed in pollen-impermeable semi-porous bags (PBS 10-1, PBS Inter-
national, Crawley, UK) prior to opening, using non-absorbent cotton (Custom Hospital,
Clackamas, OR, USA) to cushion and seal the bags around the branch after male flowers
had been removed. When female flowers began opening (at the stigma separation stage),
previously collected cv. Serr pollen was injected into the bags using a syringe. The bags
were removed 3–4 weeks after pollination and immature nuts were tagged. The nuts were
collected while still immature and with intact hulls (July–August), and stored refriger-
ated (up to several weeks). Embryos were extracted from nuts, germinated in vitro, and
micropropagated to produce clones for disease resistance testing” [6].

4.2. GBS and SNP Discovery

“Genomic DNA was isolated with the CTAB plant genomic DNA isolation method
from micro-propagated F1 hybrids and J. microcarpa and cv. Serr parents. DNA was diluted
to the uniform concentration of 55 ng/µL. GBS involved complexity reduction by PstI re-
striction enzyme digestion. Groups of 96 samples including both parents were multiplexed
using unique barcodes, and single-end sequenced with the Illumina HiSeq2000 platform at
the Genomic Diversity Facility of Institute of Biotechnology, Cornell University. SNPs were
called with Tassel-GBS pipeline v2.0 using default settings except that a minimum mapping
quality of 2 was used in SAMToGBSdbPlugin. Illumina reads were deconvoluted using
the barcodes, and reads were filtered and trimmed to 64 bp to construct unique tags. The J.
microcarpa Jm31.01_v1.0 and J. regia JrSerr_v1.0 genome sequences were combined into a
single fasta file and used as a reference. Unique tags were aligned onto the reference se-
quences with the BWA-aln aligner. High-quality SNPs were selected among SNPs obtained

https://www.ars.usda.gov/pacific-west-area/davis-ca/natl-clonal-germplasm-rep-tree-fruit-nut-crops-grapes/
https://www.ars.usda.gov/pacific-west-area/davis-ca/natl-clonal-germplasm-rep-tree-fruit-nut-crops-grapes/
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from the Tassel-GBS pipeline with VCFtools, BCFtools, and in-house awk and Python
scripts. Non-segregating SNPs and calls below a threshold of five reads were removed.

The following convention was implemented in naming the markers. Each name was
started with that of the mapping population followed by the abbreviated names of the
genome and chromosome, and ended with the location of the SNP in the registry of the
corresponding JrSerr_v1.0 or Jm31.01_v1.0 pseudomolecule” [6].

4.3. Phenotypic Analysis

The phenotyping of these hybrids for resistance to A. tumefaciens and Phytophthora
spp. has been described in detail [6]. Briefly, the phenotype used for A. tumefaciens disease
score was a visually assessed rank on a scale of one (no gall) to four (complete girdling
of the plant from gall). The phenotype used for Phytophthora spp. disease score was a
visually assessed percentage of crown or root rotted after pathogen inoculation of either P.
cinnamomi or P. pini. The average percentages of crown and root rot for P. cinnamomi and P.
pini were entered into the analysis and were then referred to as “Phytophthora spp.”.

To phenotype hybrids for P. vulnus counts, at least six clonal saplings of each hybrid
and commercial comparatives RX1 and VX211 [23,24] were planted in a series of field
experiments from 2014 to 2018. The hybrids used in this study were propagated from tissue
cultures and developed into saplings in greenhouse culture. At the Kearney Agricultural
Research and Extension Center (36.6015◦ N, 119.5109◦ W), saplings were planted in rows
of 3.35 m distance at 1.65 m spacing within the row. About one month after planting,
every tree was concomitantly inoculated with ~1000 vermiform P. vulnus and second-stage
juveniles (J2) of Meloidogyne incognita by dispensing infested field soil from underneath
infected perennial crops at the base of the tree. Selected trees of the genotype groups were
chosen for root collections for nematode evaluations. A 20–25 cm-deep trench was dug
next to the tree to collect young roots of the respective tree genotype avoiding suberized
roots. Kept cool in plastic bags until processing within 48 h of collection, the roots were
chopped into 1.2 cm pieces and 20 g portions placed on top of Baermann funnels. In a
mist chamber apparatus, the roots were intermittently sprayed with water at 27 ◦C for five
days. After this, the extracts were collected and P. vulnus were identified and counted [25].
Nematode numbers were recorded on a per 1 g basis. In each dormant season, the height
of each of the trees in these nematode field screens was measured from the ground level
perpendicularly to the maximum height of the trees with an extended ruler. Thus, the tree
height was measured under nematode-infested conditions.

4.4. Data Cleaning and Preparation

The genotype data for 31.01 and 31.09 and cv. Serr “Serr” analysis were cleaned using
the snpReady package in R [26]. The data used for QTL mapping and marker-assisted
selection/genomic selection were converted from “a” to 1 and “b” to 2. Using the raw.data()
function, SNP data from the genotype matrix were cleaned by removing markers with an
MAF of 0.1, a sweep sample rate of 0.5 or higher, a call rate of 0.95 or higher, and imputing
data points with the “k-nearest markers” method. See the raw.data() function from the
snpReady package for more details. The data used for QTL mapping was not imputed and
was converted back to a/b coding before analysis.

4.5. QTL Mapping

We performed QTL mapping using the “QTL” package in R [27]. After loading the
data as a cross object, we calculated the genotype probabilities and then performed a single
QTL scan using the marker regression (mr) method. To further refine the mapping step, we
performed permutation testing via 1000 permutations to calculate a significance threshold
at alpha = 0.05 for each marker’s Logarithm of the Odds (LOD) score. These LOD scores
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and significance thresholds were used to generate the LOD plots (Figures 1 and 2). To
estimate the total variation explained by each QTL, we built a multiple regression model
in R with all significant markers within the QTL and reported the adjusted R2 of the full
model. We performed the same analysis for the top three markers.

4.6. Prediction and Selection Performance Estimation

RF and rrBLUP approaches were used on each trait in this study to assess the markers’
predictive power. To assess model accuracy for RF and rrBLUP approaches while lowering
the risk of overfitting, we used 70% of the data for training and 30% for testing.

After evaluating different numbers of top markers and their prediction accuracies
with the rfe function from the caret package in R, we opted to utilize the top eight markers
as described in the results. The rrBLUP package utilizes all markers for prediction in a
ridge regression approach, with critical differences over standard regression or random
forest models. Please see the package information for more details [28].

For the RF approach, a random forest model was built on the training data and its top
eight markers were extracted by mean decrease in impurity (MDI). Then, these markers
were used as predictors to train a new random forest model for predicting the phenotypes
of the testing data.

Prediction accuracy was assessed by calculating the Pearson correlation coefficient of
the predicted vs. actual values of the testing data with a one-tailed alternative hypothesis
predicting whether the correlation coefficient would be positive rather than negative.
Marker selection and accuracy estimation was repeated 15 independent times, and the
average p-value of these tests was reported. For selection performance, we used the same
70/30 training and testing splits to produce the predicted values. The testing values used
for prediction were then arranged by their accompanying predicted values, and the top 25%
of that data were extracted and defined as the “selected values”. These selected values were
then compared to a “no selection” scenario in which all the testing values were kept. We
used a Student’s t-test with a one-tailed alternative hypothesis predicting that the predicted
values would be less (if disease score was being analyzed) or more (if tree height was being
analyzed). This was repeated 15 independent times, and the average p-value of these tests
was reported (Figure 6 and Table 6).

4.7. R Code and Availability

The R statistical software R version 4.4.0 (2024-04-24 ucrt) was used in Rstudio version
2023.6.0.421 to facilitate all statistical analysis and visualization produced in this study [29,30].
The following R packages were used:

caret [31], data.table [32], dplyr [33], ggplot [34], ggprism [35], ggtext [36], kableExtra [37],
knitr [38], OmicsAnalyst [39], openxlsx [40], qtl [27], randomForest [41], rmarkdown [42],
rrBLUP [28], sjPlot [43], snpReady [26], stringr [44], tibble [45], tidytable [46], tidytext [47],
tidyr [48], webshot2 [49].

A repository for the code used in this study can be found at [https://github.com/
hsaxe/Walnut_Root_QTL] (accessed on 1 January 2025).

5. Conclusions
This study provided further insights into the genetics of walnut root diseases. The

co-location of tree height and the root system disease traits of nematode count, Phytophthora
disease score, and crown gall disease score to a single QTL is a novel finding worth further
investigation. It begs the question of how a single QTL could regulate many disease-related
traits and tree height. Moreover, we provided actionable knowledge by leveraging these
QTL to predict these traits using just the SNPs. Such knowledge provides the potential to

https://github.com/hsaxe/Walnut_Root_QTL
https://github.com/hsaxe/Walnut_Root_QTL
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improve the breeding efficiency of walnut rootstocks. Furthermore, fine mapping of this
region could yield further benefits to both outcomes of this study. Fine mapping also paves
the way for an optimized MAS pipeline by narrowing down the best markers to use for
advanced selection of future, unphenotyped progeny. Lastly, this GBS data contain other
variation that is not explained by any of the traits reported here. Therefore, the GBS data
can serve as a resource to be further mined for QTL for drought resistance, blackline, or
other agronomic traits of interest in walnut roots.
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