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Abstract 

Quantifying the Impact of Flight Predictability on Strategic  

and Operational Airline Decisions 

by 

Lu Hao 

Doctor of Philosophy in Engineering – Civil and Environmental Engineering 

University of California, Berkeley 

Professor Mark Hansen, Chair 

 

In this thesis, we examine how the predictability of travel time affects both the 

transportation service providers’ strategic and operational decisions, in the context of air 

transportation. Towards this end, we make three main contributions. The first is the 

development of accurately measuring predictability of travel time in air transportation to 

best model airline decision behavior. The measure is sensitive to the different nature 

that’s driving the decision. The second is an empirical investigation of the relationship 

between the best-measured travel time predictability and the transportation service 

providers’ strategic and operational decisions to gain insights into the significance of the 

impact of predictability. The third contribution is proposing an algorithm to improve 

predictability in order to save cost in the strategic decision process through re-sequencing 

the departure queue at the airport. 

We consider the strategic decision as the setting of the scheduled travel time for each trip 

that typically happened six months before the travel date. On the operational side, we 

investigate into the decision of the amount of fuel loaded to each flight in the daily 

operation. We assume that the decisions are based on the predictability of historical travel 

time performance. When quantifying predictability, it is important to realize that the 

service providers have different priority of considerations when making the strategic 

(scheduling) and the operational (fuel loading) decisions. Therefore, we apply different 

metrics for predictability to modeling the different decision behaviors and prove that the 

best-fitting measure of predictability is not uniform across different type of decisions. 

Regarding the strategic decision making, the profit-driven nature of the service provider 

encourages discounting the effects of extremely long historical travel times. Therefore, 

segmenting the historical travel time distribution is crucial in our effort of measuring 

predictability. On the other hand, when making day-to-day operational decisions, 

specifically fuel loading decisions in this study, the safety-driven nature of the service 

provider prevails over others and it pays more attention to extreme events. Therefore a 

metric capturing the tail effects such as the variance and standard deviation is a more 

appropriate measure of predictability in this context. 

In modeling the relationship between predictability and scheduled travel time setting, we 

seek both analytical insights and empirical evidences. Firstly this relationship is studied 

with empirical data and multiple regression models. We develop the ―percentile model‖ 

where the distribution of the historical travel time for an air trip is depicted by the 

difference between every 10th percentiles. We find that gate delay plays a minor role in 

setting scheduled travel time and that scheduled travel times have decreasing sensitivity 
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to historical travel times toward the right tail of the distribution. To specifically link 

schedule setting with the trip’s on-time performance, a scheduled travel time adjustment 

model is further developed. Poor on-time performance leads to increased scheduled travel 

time in the next planning period. With the behavior model results showing that both the 

median travel time and the ―inner right tail‖ of the distribution affect schedule setting, an 

impact study is conducted to validate these impacts with evidence in the historical data. 

This impact from behavioral modeling is validated with real data in year 2006-2008 and 

2009-2011, and their corresponding scheduled travel times in the later period. 

Furthermore, by studying the travel performance difference based on different changes in 

scheduled travel time, we conclude that ignoring the impact on schedule changes when 

considering potential benefits of improved travel time distribution could lead to 

inaccurate results. 

We complement the strategic behavioral modeling findings with proposing a practical 

algorithm that optimizes the sequence of departure queue on the airport to improve travel 

time predictability. The end objective is to reduce scheduled travel time through 

improved predictability and thus save cost for travel service providers. We present 

algorithms to sequence departures on a daily basis. For the objective function, scheduled 

travel time is viewed as a cost for airlines to be minimized. For each flight, the assigned 

slot generates a new travel time and this time contributes proportionally to the future 

scheduled travel time, as revealed in estimating the ―percentile model‖. Assuring that the 

on-time performance is not greatly sacrificed is also important. Therefore the objective 

function also includes delaying the flight’s arrival performance as part of the ―cost of 

assignment‖. In this way, we develop a multi-objective algorithm to sequence departure 

flights to improve predictability, reduce airline scheduled travel time, and increase on-

time performance. 

To investigate the relationship between predictability and fuel loading decisions, we 

develop a set of multiple regression models considering clusters of standard deviation of 

the estimates. The unpredictability under performance may cause decision makers (airline 

dispatchers) to load more fuel onto aircraft, and thus causing extra fuel consumed to carry 

this excessive fuel. We acquired a large and recent dataset with flight-level fuel loading 

and consumption information from a major US airline. With this data, firstly the 

relationship between the amount of loaded fuel and travel time predictability performance 

is estimated using statistical model. Predictability is measured with metrics such as 

standard deviation of travel time so that the tail effect of the distribution is properly 

captured. We find that one minute of standard deviation in airborne time within a month 

for the same OD pair and shift of day would lead to 0.95 minute increase in loaded 

contingency fuel and 1.85 minute loaded contingency and alternate fuel. Then, the impact 

of predictability on loaded fuel is translated into fuel consumption and ultimately, fuel 

cost for US domestic operations. If there is no unpredictability in the aviation system, the 

reduction in the loaded fuel would be 6.4 and 12.5 minute per trip, respectively. This 

ultimately translates into a cost to US domestic air carriers on the order of $88 – $345 

million per year. 
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1. Introduction 

1.1 Problem Statement 

The idea of predictability—also referred to as reliability or (inversely) as variability—is 

not a new idea in the field of ground transportation and there is extensive research in that 

domain on predictability concepts, measurement, and valuation. In that literature, 

(un)reliability mainly refers to the unpredictable variations in travel time and is thus 

directly related to uncertainty of travel time (Carrion and Levinson, 2012). Operationally, 

reliability or predictability is inversely related to dispersion of travel times between 

individual OD pairs or on specific routes, metrics for which include variance, standard 

deviation, mean absolute deviation, and inter-quartile range, to name a few. A rapidly 

growing body of literature addresses measurement and valuation of travel time variability, 

and the goal of enhancing reliability seems to be an increasing priority for policy makers 

(Börjesson, M., Eliasson, J., Franklin, J.P., 2012). It is also now standard that transit 

operators regularly publish statistics on reliability (Börjesson, M., Eliasson, J., Franklin, 

J.P., 2012). In the realm of commercial air transportation, the percentage of flights 

arriving within 15 minutes of their scheduled times is tracked by DOT and widely 

published on online flight booking sites. Despite the resemblance between air 

transportation and other scheduled transportation modes, predictability is still a relatively 

new concept in the realm of air transportation. The Federal Aviation Administration 

(FAA), like most air navigation service providers, continuously seeks to better 

understand and address customer requirements, and improve the quality of service 

provided. Metrics for quality of the service has long been centered on delay. Thus 

reducing delay has been the major service quality objective. Recently, however, the 

concept of predictability has received more attention in service quality assessments. 

Therefore, understanding how to best measure predictability and how to assess the 

potential benefit of enhanced predictability makes a substantial contribution to the 

research society and will be the major focus of this body of research. 

The majority of the literature on predictability in transportation assesses predictability by 

measuring variability in the ―travel time,‖ which could be a road trip travel time, gate-to-

gate time of a given flight, or taxi-out time of an aircraft on the airfield. There is a variety 

of variability measurements: difference between actual trip time and scheduled trip time 

(Kho et al., 2005), standard deviation of travel time distribution (Bates et al., 2001; 

Lomax et al., 2003; Ettema and Timmermans, 2006; Riikka and Paavilainen, 2010), 

standard deviation over the mean travel time (Taylor 1982; Lomax et al., 2003), 

difference between travel time percentiles (Bolczak et al., 1997; Ettema and Timmermans, 

2006; Gulding et al., 2009) and the difference in expected and actual travel delays (Cohen 

and Southworth, 1999; Liu and Hansen, 2014). None of these studies explicitly consider 

the temporal aspect of predictability. In contrast, Ball et al. (2000) find that error in 

predicting flight departure time decreases as the departure of a flight approaches. They 

proposed a metric termed integrated predictive error that takes this effect into account.  

Other studies are not concerned with predictability per se, but rather focus on methods for 

predicting travel time on the basis of the information available prior to the 
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commencement of the travel. These studies focus on road networks and are motivated by 

the increasing use of routing and navigation decision support tools (Borokhov et al., 

2011). Linear regression, based on a combination of the current information—system 

variables—and historical travel time information, has served as one of the main 

methodologies (Kwon et al., 2000; Zhang and Rice, 2003; Rice and Zwet, 2004). 

Considering the importance of prediction timeliness in the application, the algorithms are 

usually designed to be simple, fast and scalable (Rice and Zwet, 2004). In these studies, 

the travel time predictions are intended to guide travel decisions but are not linked to 

performance measurement. In the broader literature on systems, a concept closely related 

to predictability is entropy. Entropy has been used to measure unpredictability of a set of 

possible events since its introduction into information theory by Shannon (1948). Studies 

have been carried out to validate the application of entropy analysis in stochastic 

processes (Cover and Thomas, 1991; Ciuperca and Girardin, 2005; Jacquet et al., 2008).  

In the realm of air transportation, block time is analogous to travel time in ground 

transportation. Block time is the interval that commences when an aircraft moves under 

its own power for the purpose of flight and ends when the aircraft comes to rest after 

landing. Block times for specific flights—e.g. United 364 from San Francisco to 

Washington Dulles—vary from day to day. Therefore, metrics that capture the variation 

of flight block time over time would be an appropriate approach to measure predictability 

in the aviation system. It is also worth our attention that in commercial air transportation, 

there are various aspects where decisions made by service providers can be influenced by 

block time (un)predictability. The different processes of making these decisions might be 

driven by contradicting considerations underlying the service providers’ overall objective 

of maximizing profitability. For example, on one hand the service providers (airlines) 

might want to operate at minimal cost, on the other hand they would be willing to spend 

more than the minimal cost to assure the quality of the service provided. These different 

considerations often co-exist in the decision making process but the trade-offs between 

them may vary for different kinds of decisions. Therefore attentions should be paid when 

quantifying predictability to see its impact on these different kinds of decisions in 

commercial air transportation. 

There are two types of decisions to be investigated in this research: the strategic
1
 and the 

operational airline decisions. We consider the strategic decisions as the setting of the 

scheduled travel time for each trip (the scheduled block time) that typically happened six 

months before the travel date. Choosing the scheduled block time is similar to travelers’ 

choice of departure time when they have a preferred arrival time. Various researchers in 

ground transportation have shown that travel time reliability is a significant factor that 

affects traveler’s departure time decision. Therefore, it is natural to assume an analogous 

relationship between scheduled block time and block time reliability. There are, however, 

few studies of how scheduled block time is decided and how the concept of predictability 

(reliability) is incorporated into this decision.  

                                                            
1 “Strategic‖ decisions, as used here, refer to planning decisions made several months prior to the day of 

operation, as opposed to decisions made on the day of operation.  



3 
 

Scheduled block time is an important airline cost driver. Again compared to the ground 

transportation studies where the travel time reliability is found to have a strong effect on 

departure time scheduling, block time reliability is expected to be a significant factor in 

deciding scheduled block time. If the relationship can be understood, there may be 

opportunities for the FAA and other air navigation service providers to allocate resources 

to make block time scheduling more efficient, through improved predictability. For 

example, a clearer understanding of the link between block time variability (predictability) 

and scheduled block time might lead to the development of innovative air traffic 

management practices that will help improve predictability and thus allow shorter 

scheduled block times, while also furthering the FAA’s goal of improving predictability. 

On the operational side, we investigate the decision of the amount of fuel to be loaded to 

each flight in the daily operation. Unlike ground transportation, fuel loading contributes 

to the overall fuel consumption of a trip and thus to the airline cost. Flight dispatchers 

load contingency fuel in order to ensure that a flight can complete its mission without 

using any of its 45 minute reserve. The amount of contingency fuel loaded depends upon 

the dispatcher’s perception of the risk of unexpected delays or reroutes, a part of which 

can be captured by flight time (un)predictability. Thus, the amount of fuel loaded may 

depend upon flight time variability. Extra boarded fuel results in additional weight of the 

aircraft and thus additional fuel burn cost. 

This body of research aims to contribute to the understanding of how predictability 

affects airline decision making in various contexts and how these relationships can be 

used to save cost for air transportation service providers. In particular, we investigate two 

mechanisms through which improving predictability may reduce airline costs. The first is 

the scheduled block time effect. We conjecture that certain changes in the distribution of 

realized block times may reduce scheduled block times, and that the scheduled block time 

change may, in turn, reduce the airline scheduling cost. The next two chapters examine 

this, first by considering, in Chapter 2, the relationship between scheduled block time and 

flight time predictability and then, in Chapter 3, the air traffic management algorithms to 

adjust flight time predictability in order to save scheduled block time. The second 

mechanism is related to fuel loading. Here, we hypothesize that the distribution of 

realized block times affects the amount of contingency fuel airlines load onto flights, 

which in turn affects aircraft weight and fuel burn. This is the subject of Chapter 4. 

Chapter 5 offers conclusions and future research directions. 

 

1.2 Recent Trend of Flight Predictability 

Before investigating into the relationship between airline decisions and predictability, in 

this section a general trend of flight predictability for the past few years is presented. This 

helps better understand the historical trend of the metric of interest, as well as its 

relationship with other factors affecting aviation system performance, such as flight delay, 

flight on-time performance and on a larger scale, the overall economy. 
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1.2.1    Definition of Flight Predictability  

We employ the Bureau of Transportation Statistics (BTS) Airline Service Quality 

Performance System (ASQP) database to characterize airline schedule and operations. 

This database contains detailed performance information for individual flights by major 

US air carriers between points within the United States. These flight records are 

aggregated to define flight predictability. The aggregation of flights is by specific airlines, 

flight numbers, origins, and destinations: e.g. AA 112 from ORD-LGA. The time unit for 

aggregation is quarter.  

For each quarter, we assume that there is a uniform scheduled block time (denoted as 

SBT, hereinafter) for each individual flight, which is the elapsed time between the 

scheduled departure and the scheduled arrival. In the actual dataset, the condition where 

SBT is not uniform is rare. The median value of SBT in the quarter is used for such 

situations. The actual flight block time (denoted as FT) for each flight is the time from 

actual departure to actual arrival. FT has three components, taxi-out, airborne, and taxi-in. 

Another important component of the flight phase is the departure delay of a flight. 

Departure delay (or gate delay) refers to the elapsed time from scheduled departure time 

to actual departure time, the time that the aircraft leaves the gate. In some occasions a 

flight leaves the gate earlier than its scheduled departure time, and the departure delay for 

such flight is thus negative. To include the departure delay into total flight time, we also 

define effective flight time (EFT). EFT is defined as the time duration from scheduled 

departure time to actual arrival time. EFT can be decomposed into departure delay, taxi-

out time, airborne time and taxi-in time.  

In this section, flight predictability is defined as the variability of flight time for an 

individual flight, defined as above in terms of airline, OD, and flight number. The 

quarterly variance of EFT, FT, and the four components for each individual flight are 

calculated and used to measure flight predictability. For each quarter, the average 

variance across all the flights flown in that quarter is computed to represent the 

aggregated predictability level of that quarter. To conduct a thorough examination of the 

trends of flight time reliability over recent years, we collected the data from 2004 to 2010, 

quarterly. We consider flights flown on weekdays only, and, to guarantee robustness of 

our dataset, only the flights flown at least 50 times on weekdays in a quarter are 

considered. There are in total 28 quarters that we studied and roughly 10,000 qualifying 

individual flights that flew 50 or more times on weekdays in each quarter.  

1.2.2    Trends in Flight Predictability  

Variability in effective flight time (EFT), flight time (FT), and their components are all 

indicators for predictability. In this section, we use variance to measure variability. Let 

iftT be the time for component  , , ,i departuredelay taxiout airborne taxi in of flight 

f F on day t T of a given quarter. The variance for component i for the quarter is 

defined as  

21
  ( ) ( )

1
if ift if

t

VAR T T T
T

 

                                                    (1.1) 
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, where    ̅̅ ̅̅  is the average value for 
iftT over the     days in the quarter. Since the effective 

flight time is the sum of the four components, we also have: 

   (    )  ∑    (   )  
 

 
∑ ∑    (       )                                   (1.2) 

, where the second term includes the covariances between the various flight components.  

To summarize variability for a quarter, we take the average of the results for the 

individual flights. Thus, for example,    (   )  
 

   
∑    (    ) . Figure 1.1 shows 

the results after further averaging these values across all the 28 quarters in our data set. 

From Figure 1.1, we see that the average variance of effective flight time is slightly over 

1000 min
2
, which corresponds to a standard deviation of just over 30 min. The variance 

of departure delay is the largest source of EFT variance and accounts for over 80% of the 

total EFT variance. The second largest source is taxi-out time variance, accounting for 

about 8%. Airborne time variance accounts for 5.5% while the variance of taxi-in time 

and covariances are very minor contributors to EFT variability. The dominance of 

departure delay as a contributor reflects the effects of delay propagation, airline internal 

factors, and air traffic management. Propagated delay from an upstream flight will often 

generate departure delay on a downstream leg with the same aircraft (this is called late 

aircraft delay in the departure delay). Delays can also propagate if flights are held for late 

connecting passengers or crews. Airline internal delays, including boarding delays and 

mechanical problems, also primarily manifested in departure delays. Finally, traffic 

management initiatives (TMI’s), such as ground delay programs and airspace flow 

programs, are designed to shift delays from the air to the ground, and much of the delay 

resulting from TMI’s takes the form of departure delay.   

 

Figure 1.1 Sources of EFT Variance, Aggregated over 2004 to 2010 
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Taxi-out time is also a significant contributor to flight time variability. Much of the 

variability in taxi-out time is caused by departure queues, which can be affected by many 

unpredictable factors, such as traffic levels and weather conditions. Also, part of the 

departure delay effect is sometimes shifted from the gate to taxi-out time, because 

delayed flights may push back from the gate so that it can be reported that they departed 

―on-time.‖ Airborne time variability, the third most important source of EFT variability, 

is mainly the result of en route weather and wind conditions. On the other hand, taxi-in 

time is quite stable, and covariances between different EFT components are negligible 

sources of variation in effective flight time. 

1.2.3    Trends of Predictability Performance 

From the above section we gain a general sense of the magnitude and composition of 

EFT variability. We now focus on trends in variability. Figure 1.2 shows the trends of the 

quarterly variances of EFT, FT and departure delay from year 2004 to 2010. Firstly, we 

can see that the trends of EFT variance and departure delay variance are highly consistent. 

Just as Figure 1.1 shows that departure delay is the major source of EFT variability, 

Figure 1.2 reveals that it is the dominant driver of changes in variability over the years. 

The variance of FT is much smaller and seems to remain flat over the study period. EFT 

and departure delay variance increased starting in 2004 and peaked in the year 2007. The 

peak extended to 2008 and then experienced a sharp decrease. This trend is consistent 

with the air traffic volume across the years: 2007 was the busiest year in history and the 

subsequent economy recession caused a decrease in air transportation demand and flight 

traffic. It thus appears that flight predictability is highly correlated with air traffic volume 

and other performance metrics, such as delay. This is expected because unreliability tends 

to increase when the traffic is at higher level. 

 

Figure 1.2 Trends of EFT, FT, Departure Delay Variances, 2004 to 2010. 
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Figure 1.3 provides a further decomposition of the variance. On a smaller scale, we more 

clearly observe the trends of FT variance and other components. The trend of FT variance 

is similar to that of EFT and departure delay in Figure 1.2, where the peak comes around 

2007 and decreases occurred after 2008. Taxi-out time variance has a consistent trend 

with the FT, suggesting that taxi-out time is a major source of FT reliability and drives 

the trend to a large extent. On the other hand, the trend of taxi-in time remains flat over 

the years, validating our conclusion that taxi-in time is the most stable component of the 

four. The variance of airborne time exhibits a different pattern, changing periodically 

with a cycle of a year, peaking in the first and fourth quarters and taking the lowest value 

in the third quarter. Airborne time predictability is largely unaffected by the surges and 

declines in traffic that influence EFT and FT. The periodic pattern might be attributed to 

the jet stream phenomena. Jet streams are fast flowing, narrow air currents found in the 

atmospheres. They are caused by a combination of the earth’s rotation and atmospheric 

heating. Within North America, the time needed to fly east across the continent can be 

decreased by about 30 minutes if an airplane can fly with the jet stream, or increased by 

more than that amount if it must fly west against it. The effect of jet stream on aircrafts is 

larger in cold air, so the disruption of airborne time appears to be higher in winter. 

Seasonal effects can also be observed in the trend of FT and taxi-out variability, although 

with a pattern of fluctuation that is nearly opposite, with variability higher in the summer. 

This is probably because summer is the busiest season leading to more crowded ground 

situation. Also convective weather (weather caused by the current in the atmosphere 

induced by heated air, mainly thunderstorms) in the summer could generate severe 

ground delays, resulting in less reliable ground time.  

 

Figure 1.3 Trends of FT, Taxi-out Time, Airborne Time and Taxi-in Time Variance, 

2004 to 2010 
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In summary, the concept of predictability in air transportation is measured in terms of the 

the variability of effective flight time and its various components in this section. 

Throughout this body of research, we will further investigate how such metrics capturing 

the variability of flight time affect different airline decisions. In this section, we also 

analyzed trends in predictability performance over the past few years by applying these 

metrics to a large set of US domestic flights. It is found that predictability performance 

has similar trends with traffic volume and flight delay. The time-based metric is further 

decomposed to see proportion of different contributions. We found that departure delay 

(gate delay) is the component that contributes the most to the variability of total effective 

flight time and it largely drives EFT performance. 
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2. Strategic Decision Modeling 

In this chapter, the relationship between flight predictability and airline strategic 

decisions, i.e., the SBT decision is modeled using various modeling techniques. Figure 

2.1 illustrates SBT in the context of flight time decomposition. SBT is the time duration 

between the scheduled (computer reservation system, or CRS) departure and scheduled 

arrival time. The actual block time (FT) is the time between actual departure and arrival 

time and varies from day to day for the same flight. The block time can be further 

decomposed into taxi-out, airborne and taxi-in time. The time between scheduled and 

actual departure time is defined as departure delay, or gate delay.  

 

Figure 2.1 Scheduled Block Time (SBT) in the Context of Flight Time Decomposition. 

(Deshpande, V., Arikan, M., 2012.) 

 

Airlines face a difficult set of trade-offs in setting SBT. They must balance their cost 

saving motive against their desire for good schedule adherence. The choice of SBT is 

somewhat similar to travelers’ choice of departure time when they have a preferred 

arrival time, except the decision must be made much further in advance. While traveler 

choice is made based on considerations including time saving and the disutility of a late 

arrival, SBT setting is mainly driven by market forces and the profit motive. Various 

researches in ground transportation have shown that travel time variability significantly 

affects travelers’ departure time decisions. Therefore, despite the difference in motivation, 

it is natural to assume an analogous relationship between SBT and block time variability 

in air transportation.  
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2.1 Literature Review 

2.1.1    Travel Time Reliability in Ground Transportation 

The research into surface travel time reliability has followed many branches. As 

mentioned above, setting SBTs is roughly analogous to urban travelers choosing 

departure time. When travellers have a preferred arrival time, such as work start time 

during the morning commute, they choose departure time based on prior knowledge of 

travel time on the pre-selected route. The time duration between the selected departure 

time and preferred arrival time is then fixed and serves as an implicit ―scheduled‖ travel 

time. The actual travel time may deviate from this ―scheduled‖ time from day to day due 

to traffic conditions, reflected by the variation in actual arrival time. This analogy is 

further developed in Table 2.1. 

 

Table 2.1 Analogy of the Travel Time Reliability Concept between Ground 

Transportation and Air Transportation 

Concept Ground transportation Air transportation 

Decision  Departure time Block time 

Scheduled travel time Preferred arrival time – 

Selected departure time 

Scheduled block time 

Actual travel time Actual arrival time – 

Selected departure time 

Actual block time 

Prior knowledge Historical travel times Historical block times 

Cost of earliness/excessive 

scheduled block times 

Lost utility from reduced 

time at origin 

Excess labor expense, 

reduced aircraft utilization 

Costs of 

lateness/insufficient block 

times 

Late penalty, work 

constraints 

Degraded on-time 

performance , traveler 

inconvenience, delay 

propagation 

 

In ground transportation, traveler costs due to early or late arrivals are assumed to 

influence departure time decisions. A traveler’s preferred arrival time (PAT) serves as a 

reference point that determines whether an arrival at a particular time is early or late. The 

classic example is the morning commute, in which the work start determines the PAT. 

Gaver is one of the earliest advocates for this approach. In (Gaver, 1968) a framework for 
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explaining variability in trip-scheduling decisions is introduced given a delay distribution 

and the costs of arriving early or late. Vickrey (1969) considered the tradeoff faced by 

travelers between queue delay and schedule delay of late or early arrivals. (Knight, 1974) 

and (Pells, 1981) posited the existence of a ―safety margin‖. Knight (1974) proposed the 

hypothesis that departure time for morning commute trips is chosen when the marginal 

utility of time spent at home is equal to the expected marginal utilities of arriving early to 

work and arriving late to work. Pells (1981) further added the need to minimize the 

frequency of late arrivals as an influential factor. Another important contribution is Small 

(1982). His theoretical model addresses departure time choice, taking into account 

workplace considerations (such as a policy linking departure times and working hours 

with merits or penalties to the wage rate) in the traveler utility function. The influence of 

workplace constraints on value of time is then assessed. The model proposed in Small 

(1982) is typically estimated using a discrete choice model based on the above utility 

function. To expand modeling traveler’s choices to include uncertainty, Noland and 

Small (1995) expressed this uncertainty in the form of a random variable with given 

probability density function.  

1 2 3 4
0

( ( , )) ( , ) ( ) ( ) ( ) ( )d r d r r r LE U t T U t T f T dT E T E SDE E SDL P   


                       (2.1) 

In Equation 2.1, the utility function is determined by the choice of departure time (td) as 

well as travel time (Tr). Reliability is reflected by setting travel time as a random variable 

rather than a given value. The elements of the above equation are the scheduling cost for 

early (SDE) and late (SDL) arrivals. PL is the probability of late arrival, which also 

reflects travel time unreliability because this probability is affected by the dispersion of 

travel time. The source of the travel time dispersion (or variability) is assumed to be non-

recurrent congestion. Moreover, the dispersion may increase the tendency of early 

arrivals, thus high earliness costs can be incurred. This indicates that variability and 

scheduling costs are related. Noland and Small (1995) found that the uncertainty in travel 

time affects both the departure time choice and the expected costs. As uncertainty 

increases, travellers shift their departure time earlier to avoid late arrivals, corresponding 

to an increase in the analogous ―Scheduled block time‖. More recent work (Fosgerau and 

Karlstrom, 2010) proved mathematically the statement in Bates et al. (2001), that the 

term 2 3( ) ( )E SDE E SDL   approximates the impact of standard deviation in the utility 

function.  

2.1.2    Airline Scheduling Strategies 

One attempt to predict SBT using historical data is by Coy (2006). A two-stage statistical 

model of airlines’ SBT is applied in the paper. Realized block time is found to be an 

effective predictor of SBT, having a parameter very close to 1. In addition, arrival times, 

airport utilizations, and poor weather conditions are found to be significant predictors of 

block time (Coy, 2006). The variability (inversely reliability) of block time, however, is 

not directly considered in this study. In fact, while the idea of making flight schedules 

more ―robust‖—immune to the disruptive impact of delays—has emerged in the past 

decade and applied in a wide range of scheduling decisions, there is little literature that 

takes predictability (reliability) into account in the analysis of SBTs. Airline schedule 
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development has always been one of the most challenging planning activities for airlines. 

A critical component of the schedule activity is the choice of SBTs, which depend on 

several factors. According to some airline schedulers, many airlines decide SBTs based 

on fixed percentiles of actual block time distributions built from historical data (Sohoni et 

al., 2011). Sohoni et al. argue, however, such techniques have not resulted in good on-

time performance (OTP) of the schedule during operations. According to the U.S. 

Department of Transportation, a flight is on time if it arrives at its destination gate less 

than 15 minutes after its scheduled arrival time. The OTP is computed based on SBTs 

and airlines perceive their OTP as an important operational measure of their schedule 

reliability (Sohoni et al., 2011). However airlines face a key trade-off between increasing 

flight SBTs to improve schedule reliability and additional planned costs, so they often fail 

to adequately adjust block times and typically do not incorporate uncertainty in their 

planned schedule. Sohoni et al. define two service-level metrics for an airline schedule to 

incorporate reliability and develop a stochastic integer programming formulation to 

adjust existing schedule by changing departure time to maximize expected profit, while 

ensuring the two service levels.  

Chiraphadhanakul and Barnhart (2013) focused on schedule slack, defined as the 

additional time allocated beyond the expected time required for each aircraft connection, 

passenger connection, or flight leg. Considering the complexity of robust scheduling, 

they studied how to more effectively utilize the existing slacks rather than simply having 

more slacks to achieve a more robust schedule. Slacks can absorb delay to keep the 

system more reliable, however at a very high cost per minute.  They developed the 

concept of effective slack (the total aircraft/passenger slack after accounting for the 

historical arrival delay) with a certain upper bound, as an optimization objective.  

Mayer and Sinai (2003) explored the factors affecting SBT using data on nearly 67 

million flights between 1988 and 2000. They found that average SBT is almost exactly 

equal to the median block time excluding departure delay, notwithstanding that flights on 

average leave about 10 minutes after scheduled departure time. The (un)predictability of 

block time is in some way captured in their SBT model where certain percentile of the 

historical block time distribution other than merely the median (50
th

 percentile) is 

incorporated as explanatory variable. However, their SBT model is behaviorally 

unrealistic since it relates the SBT decision in a given month, which is set several months 

beforehand, to realized flight times in the same month. In addition to an unrealistic 

temporal structure, the model is incorrect in assuming that SBTs are based on operating 

results for a single month, and in aggregating taxi-out and flight time components, which, 

as discussed below, airlines consider separately. Therefore, the need to understand the 

relationship between flight predictability, captured in historical block time performance, 

and airlines’ SBT setting behavior with a deeper and more practical approach is still 

unsatisfied. 

The impact of airline schedules is profound for both airlines and the FAA. The direct 

impact of SBT on flight delays would naturally influence airline on-time performance. 

Deshpande and Arikan (2012) analyzed empirical flight data published by the Bureau of 

Transportation Statistics to estimate the scheduled on-time arrival probability of each 

commercial domestic flight. To calculate scheduled on-time arrival probability, they used 
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both the DOT’s 15-minute on-time metric and also defined their own on-time metric 

without the 15 minutes buffer. They claimed that definition for on-time performance is 

crucial and questioned the DOT’s 15-minute on-time metric. The structural estimation 

approach from econometrics is then used to impute the ratio of leftover (overage) cost to 

shortage (underage) cost for each flight. Their results regarding the distribution of the 

cost ratio show that airlines systematically ―underemphasize‖ flight delays, i.e., the 

implied flight delay costs are less than the implied costs of early arrivals for a large 

fraction of flights. This is interesting and different from what we have learned from 

ground transportation, while consistent with Sohoni et al. (2011), where they find from 

their conversations with airline planners that airlines tend to have a shorter SBT to save 

cost, willing to incur more delay and thus less on-time reliability.  

Other research has considered the impact of SBT on airlines’ cost. In Zou and Hansen 

(2012), the conventional delay characterization is extended into two distinct sets: delay-

buffer and time based. These operational performance measures are then incorporated 

into the airline cost models, using an aggregate, statistical cost estimation approach. In 

the delay-buffer model, schedule buffer is defined to be the difference between the 

scheduled flight time and the 5
th

, 10
th

, and 20
th

 percentiles of all observed flight time. 

Results from estimating a variety of delay-buffer models reveal that both delay and 

schedule buffer are important cost drivers. The coefficients suggest 0.6% increase in 

variable cost would occur if there is a 1-min increase in average delay against schedule or 

a similar increase in schedule buffer. Since a large portion of SBT is schedule buffer, the 

ability to reduce SBTs (without increasing delay against schedule) could thus lead to 

significant cost savings. 

2.1.3    Industry Practice 

Airline schedule planning is typically conducted in four sequential (and sometimes 

iterative) stages, namely schedule generation, fleet assignment, aircraft routing and crew 

pairing/rostering. The major focus in this chapter is the schedule generation process. This 

stage of work involves demand modeling, market forecasting and initial schedule 

establishment. Airlines often start route planning well ahead of operations to set up a 

preliminary timetable to generate maximum profits with limited resources such as aircraft 

fleets, capital investments and human resources (Wu, 2010). The schedule construction 

phase begins with the route system. Strategic development focuses on future schedules 

which may range from a few months to ten years depending on the air carriers’ policies, 

while tactical strategies focus on short-term changes to the schedule and routes, sometimes 

on a daily basis (Bazargan, 2010).  

We interviewed the block time setting group from a major US airline in order to gain a 

more detailed understanding of the SBT-setting process. The group confirmed that 

historical performance data is the primary basis for setting SBT. Schedulers at the airline 

categorize the data by quarter, origin-destination pair, departure time-of-day window, and 

aircraft type. The time window is based on the frequency of flights and is normally 15-30 

minutes. After the historical data is grouped, the primary basis for choosing SBT for a 

flight is the Block Time Reliability (BTR). For commercial flights, the percentile at which 

the SBT lies among actual block times is reported as BTR. In other words, the BTR for a 
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certain flight group is the percentage of realized flights whose block time is shorter than or 

equal to its SBT. BTR is different from the DOT-reported on-time performance, which 

compares scheduled and actual arrival time, and is thus affected by gate delay at the origin 

airport. Also, the DOT metric, unlike BTR, counts a flight as ―on-time‖ if it is less than 15 

minutes late. DOT on-time performance is not specifically considered by the block time 

group, but is considered an important objective by a different part of the organization, the 

flight network group. The network group works with the SBT provided by the block time 

group and gives feedback for SBT adjustment if they feel on-time performance will be 

unsatisfactory. There are intensive discussions between the two groups and the adjustment 

is basically reflected in the choice of the target BTR. 

The target BTR for this airline is normally in the 65%-75% range. Adjustments are made 

according to airport and flight characteristics as well as feedback from other internal 

groups. In the case of airlines operating hub-and-spoke networks, schedulers may set a 

lower BTR for flights into hub airports because these airports have high gate utilization, 

which makes early arrivals highly disruptive. The airline we interviewed sets a BTR as 

low as 65% for its major hub airport, in order to reduce early arrivals. Regarding the 

flight-specific characteristics, for long-haul flights, whose block time distributions tend to 

be more dispersed, the BTR for setting SBT is in general lower, in order to reduce average 

earliness. A frequent request from the network planning group is for the block time group 

to a lower SBT, both to be more competitive with other airlines and so that there can be 

longer scheduled turn times. Lastly, it is worth noting that when this airline sets SBT, it 

gives little consideration to gate delay, even though it affects on-time performance. This 

may be because historical gate delay is not considered predictive of future gate delay.  

Besides the extensive interview with one specific airline, colleagues interviewed other 

airlines and an airline consultant regarding SBT setting behavior. The findings confirm 

that most carriers employ a similar target BTR-based SBT setting process. The range of 

percentiles is generally in 65%-75%. There are other variations regarding how much 

historical data to use, how to break the year into different season units to set SBT, and 

what factors are considered in deciding the specific target BTR for a given flight. After 

SBT is set, all the carriers interviewed monitor the on-time performance of flights and 

adjust SBTs when that performance is too low. 

 

2.2 Mean-variance Model 

As a first-step effort to capture predictability in historical block time and its relationship 

to SBT setting, a traditional mean-variance model is applied to capture both the centrality 

and dispersion of actual block time in this section. Variance or standard deviation of 

historical block time is used to define and measure flight (un)predictability. The 

underlying relationship between SBT and flight predictability (reliability) is empirically 

investigated using a statistical approach based on past operating experience of individual 

flights.  
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2.2.1    Model Specification 

The mean-variance model intends to include the mean and variance (or standard 

deviation) together as factors that affect the setting of SBT. This approach is originated 

from the risk-return models in finance for decision making. In the context of ground 

transportation, the key idea is that not only travel time is a source of impact on travellers’ 

choice, but also is travel time variability (or unreliability). In the literature, mean-

variance is the usual name for the approach in transportation literature, despite the fact 

that various measures for travel time centrality and dispersion are actually used besides 

mean and variance, such as standard deviation. 

Adopting the form of mean-variance model into the realm of block time scheduling in air 

transportation, we assume that both the centrality and dispersion of EFT have influence 

on SBT. To examine the impact of EFT deeper, in the model EFT is decomposed into its 

four components: departure delay, taxi-out time, airborne time and taxi-in time. Although 

in section 1.2 the flight predictability is measured by variance, to achieve a consistent 

unit in this model the standard deviation is used rather than the variance. The pattern of 

standard deviation of each component should be similar to the trends in section 1.2. 

Similarly, 
ay

iftT  is the time for component  , , ,i departuredelay taxiout airborne taxi in of 

flight f F on day t T of quarter {1,2,3,4}a  in year y Y . The standard deviation 

for component i for quarter a  in year y is defined as  

  (     )  √
 

     
∑ (        

  
  

̅̅ ̅̅ ̅̅ ̅)
 

                                                    (2.2) 

Where ay

ifT  is the average value for 
ay

iftT over the       days in quarter a  of year y . In 

the mean-variance model, both the average value and the standard deviation of each of 

the four components serve as explanatory variables for SBT setting. The formulation of 

the model is: 

4
, 1

2

( )a y ay ay y

f i if i if a a

i i a

SBT T sd T Q const  



                   (2.3)  

Where , 1a y

ifSBT   is the scheduled block time of flight f F  in quarter a  of the year 1y  . 

Intercept is kept in the model. Also, to capture the seasonal variation, dummy variables
y

aQ  are included besides the intercept and set to 1 if the variable is observed in quarter 

{2,3,4}a  in year y Y , and 0 otherwise. 

In the formulation, we assume that schedulers set SBT for a flight with the knowledge of 

actual flight information of the same quarter in the previous year. This setting implies 

that schedulers focus on flight experience during the same season for which they are 

scheduling. In this section, the year 2009 and 2010 are chosen to be studied (i.e.,

2009y  ). Thus SBT in 2010 is modeled with the actual flight data from the same 

quarter in 2009. 
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2.2.2    Estimation Results 

Estimation results are shown in Table 2.2. From the R
2 

results, the mean-variance model 

explains almost 100% of the variation in SBT. Consistent with our expectation, the 

average of each component of effective flight time has a positive influence on the SBT of 

the same quarter in the following year. However, the values of coefficients vary a lot. The 

coefficients imply that and additional 1 minute of average taxi-out time and airborne time 

will result in 1.05 minute and 1.03 minute in next year’s SBT, respectively. 1 minute of 

actual taxi-in time will lead to a smaller value of 0.79 minute in SBT. The most 

interesting fact is that our results suggest that the influence of average actual departure 

delay is vanishingly small—only 0.01 minute per minute of average departure delay—as 

well as insignificant. On first glimpse, this result is quite surprising because departure 

delay is a major source of flight time variation in effective flight time. It appears that 

airlines ignore historical departure delay experience in setting SBTs. One reason may be 

that a large component of departure delay is late aircraft delay, and, since this depends on 

aircraft rotations that vary from quarter to quarter, the results of a previous quarter are 

assumed not to be predictive. This has been suggested in Deshpande and Arikan (2012). 

The fact that average taxi-out time, which is affected by some of the same factors as 

departure delay but not by delay propagation, has a much larger impact on SBT, provides 

some additional support for this theory.  

 

Table 2.2 Estimation Results for the Mean-variance Model 

Variable Description Estimate SE p-Value 

Intercept   0.7280 0.206 0.0004 

    ̅̅ ̅̅ ̅̅ ̅ Mean departure delay 0.0119 0.008 0.1358 

     ̅̅ ̅̅ ̅̅ ̅̅  Mean taxi-out time 1.0458 0.010 <0.0001 

    ̅̅ ̅̅ ̅̅  Mean airborne time 1.0314 0.001 <0.0001 

     ̅̅ ̅̅ ̅̅ ̅ Mean taxi-in time 0.7921 0.024 <0.0001 

sd(D
ay

f) Standard deviation of departure delay 0.0313 0.006 <0.0001 

sd(TO
ay

f) Standard deviation of taxi-out time -0.1599 0.012 <0.0001 

sd(A
ay

f) Standard deviation of airborne time -0.2051 0.019 <0.0001 

sd(TI
ay

f) Standard deviation of taxi-in time 0.1209 0.031 0.0001 
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Estimation results for standard deviations of the components are contrary to expectation. 

Capturing the unreliability of actual flight time, the standard deviations are expected to 

have a positive impact on SBT. However, it is found that the standard deviations of taxi-

out time and airborne time, which are the major sources of block time unreliability, both 

have negative coefficients, suggesting that an increase in unreliability would reduce SBT, 

all else equal. On the other hand, the standard deviations of departure delay and taxi-in 

time have a positive coefficient, implying that 1 minute increase in the standard deviation 

will increase the SBT by 0.03 and 0.12 minute, respectively, for departure delay and taxi-

in time. It is worth noting that mean departure delay and taxi-in time have a coefficient 

that is less than one, while mean taxi-out time and airborne time coefficients that are 

larger than 1. It appears that schedulers create buffers by adding fixed percentages to 

mean values for the major flight time components rather than directly taking into account 

standard deviations.  

From these results, we can conclude that while SBT is highly influenced by historical 

average flight times, when these historical averages are pulled up as a result of high 

dispersion, the effect of dispersion is discounted. Put another way, given two flights with 

the same historical average flight time, but one with a greater flight time dispersion than 

the other, the flight with more dispersion will have a lower SBT, because the ―far right 

tail‖ flights that are bringing up both the mean and the dispersion and not considered. 

Similar results are found in Mayer and Sinai (2003) regarding the impact of standard 

deviation of historical block time on SBT. Therefore, the distribution of block time must 

be characterized in a more detailed way than simple second-moment metrics if its impact 

on SBT setting is to be understood. To examine more closely how the ―right tail‖ affects 

SBT setting, we developed the percentile model in the next section. 

 

2.3 Percentile Model 

As a measure of travel time variability in ground transportation, most studies have used 

either the standard deviation or the average delay relative to scheduled arrival time 

(Börjesson et al., 2012). However, both Mayer and Sinai (2003) and our mean-variance 

model in section 2.2 find that the standard deviation of actual block time reduces SBT. 

This is probably because airlines disregard extremely long actual flight times when setting 

SBTs to maintain competitiveness and efficiency. For the major airline we interviewed, 

the rule for SBT setting seems to be a specific BTR (block time reliability) target, i.e. a 

Q
y
2 Dummy variable for Quarter 2 -0.1986 0.111 0.0070 

Q
y
3 Dummy variable for Quarter 3 -0.6625 0.112 <0.0001 

Q
y
4 Dummy variable for Quarter 4 -0.0423 0.110 0.7004 

R-square  0.9962   
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certain percentile of the historical block time distribution. Thus, we developed a model 

with the percentile statistics of the actual flight time. The huge amount of historical data in 

the field of air transportation allows us to employ this approach to empirically investigate 

SBT setting behavior.  

2.3.1    Data and Modeling 

In this section, the relationship between block time distribution and SBT setting is 

modeled empirically, using multiple regression in order to understand the relationship 

between SBT and past operational experience. The variables capture the difference in 

percentile of historical block time; therefore the model is called the percentile model. The 

percentile model is a generalization of the BTR target model, and assumes that, because of 

the adjustments to the BTR that airlines make based on on-time performance, competition, 

and other factors, the SBT is influenced by more than a single percentile of the historical 

block time distribution. For the same reason, other variables than the historical block time 

distribution that might also affect the SBT decisions are also included in the model. It 

should also be noted that, in contrast to Deshpande and Arikan (2012), these models do 

not attempt to rationalize airline behavior by reference to a cost function for lateness and 

earliness. The structural estimation approach in Deshpande and Arikan (2012) links block 

time decisions to different factors that affect the relative cost of earliness and lateness. Our 

aim is to develop a model that comports more directly with stated airline practice which is 

expressed in terms of BTR rather than cost function minimization. Such a model can be 

used to predict how SBT will respond to changes in the distribution of realized block 

times, especially over the short term where model coefficients can be expected to be fairly 

stable. 

The data on which the percentile model is estimated are collected from three sources: the 

Airline On-time Performance dataset, the air carrier statistics data from US DOT T-100 

Domestic segment with U.S. carrier, Form 41 database, and the aircraft type information 

from a combined dataset including B43, OAG and FAA registry aircraft. We referred to 

three sources of aircraft type information to guarantee a master dataset that could cover 

most tail number (an identification number painted on an aircraft, frequently on the tail, 

that represents an aircraft registration number) information in the BTS dataset. The details 

about matching these multiple datasets will be discussed shortly. The first two datasets are 

both acquired from the Bureau of Transportation Statistics (BTS). We employ the Bureau 

of Transportation Statistics (BTS) Airline On-time Performance data to characterize 

airline schedule and operations. This database contains detailed performance information 

for individual flights by major US air carriers between points within the United States. 

These flight records are aggregated to capture the distribution of historical flight time. The 

aggregation of flights is by specific airline, origin-destination pair, 30-minute departure 

time window, and aircraft type. For instance, ATL BOS 20 B757 DL means the group of 

flights from ATL to BOS at departure time window between 10:00 to 10:30 am flying 

Boeing 757 by Delta Air Lines. While more cumbersome than simple flight number 

tracking as used in Mayer and Sinai (2003), this method allows is not dependent on 

airlines maintaining the same flight numbering from one time period to the next. The time 

unit for the aggregation is quarter. Each flight group is referred to as an individual flight in 

this research.  
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For each quarter, we assume that there is a single SBT for each individual flight, which is 

the elapsed time between the scheduled departure and the scheduled arrival time. 

However, since there are occasional variations within the quarter, the median value of 

SBT in the quarter is used as the dependent variable. The distribution of actual flight time 

is captured by calculating differences in percentiles of the historical flight time data. To 

separate the effect of different flight phases, we distinguish taxi-out time and the non-taxi-

out time, which includes airborne and taxi-in time (hereafter this is called NTO time, for 

brevity). Also, because gate delay is expected to have a different effect than flight time, 

we include the difference in percentiles for gate delay separately. This differentiation by 

flight phase contrasts with Deshpande and Arikan (2012), which subtracts the delay 

caused by late arriving aircraft but otherwise combines the times in all three phases. The 

variables capturing the distribution of gate delay could include the effects from late 

arriving aircraft, as well as other factors. For individual flight f in day t, the 50
th

 to 100
th

 

percentiles of the different components of block time and gate delay are calculated. The 

50
th

 percentile or median taxi-out time (NTO time, gate delay), denoted as , ,

0.5

f q yTO  (
, ,

0.5

f q ynonTO  , , ,

0.5

f q ydep ) of individual flight f F in quarter q of year y are all included in the 

model. The variability of flight time is further captured by the differences between every 

10
th

 percentiles from 50
th

 to 100
th

. For example, , , , , , ,

56 0.6 0.5

f q y f q y f q ydTO TO TO   
is the difference 

between the 50
th

 and 60
th

 percentile of taxi-out time for flight f. This approach depicts the 

distribution of components of flight time information in a manner that can represent the 

industry practice of BTR (block time reliability)-based block time setting found in our 

interview. The different segments of percentiles capture how SBT is influenced by 

successively rarer but higher realized flight time values, reflecting the reliability of 

historical flight time. While flight time percentiles are also considered in Mayer and Sinai 

(2003), there the actual percentiles rather than the differences between percentiles are 

used. This makes it difficult to interpret results in terms of how much emphasis carriers 

place on different regions of the flight time distribution. 

Competition with other airlines flying the same market may motivate a shorter SBT so 

that the airline appears to offer faster service, or a longer SBT so that it appears more 

reliable. Therefore, we include variables that depict the OD pair competitiveness in the 

model. To capture competition for the OD pair, the Herfindahl index (also known as 

Herfindahl–Hirschman Index, or HHI) is applied. It is an economic concept widely 

applied in areas such as competition law, technology management (Liston-Hayes and 

Pilkington, 2004), and so on. It measures concentration in a market and is defined as the 

sum of the squares of the market shares of the 50 largest firms (or summed over all the 

firms if there are fewer than 50) within the industry, where the market shares are 

expressed as fractions. Increases in the HHI generally indicate a decrease in competition 

and an increase of market power. For the purpose of our analysis, the market share of a 

carrier in an OD pair can be expressed as the portion of number of seats provided in the 

total number of seats serving this market. For market od, the HHI can be calculated as: 

 

2

1

N
odi

od

i od

s
HHI

s

 
  

 


                       (2.4) 

http://en.wikipedia.org/wiki/Economics
http://en.wikipedia.org/wiki/Market_share
http://en.wikipedia.org/wiki/Market_power
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where Sodi is the number of seats provided by carrier i flying this OD pair, Sod is the total 

number of seats provided in this OD pair, and N is the number of carriers in this OD pair. 

Thus, in a market with two carriers that each provides 50 percent of seats, HHI equals 

0.5
2
+0.5

2
 = 1/2. A smaller HHI indicates a more competitive route. The US DOT T-100 

database provides number of seats for domestic OD pairs and carriers to calculate the 

HHI.  

Moreover, based on our interview with the industry, airlines give special consideration to 

their hubs, where they have the majority of the gates and the traffic. Most airlines adopt 

some variation of a hub-and-spoke system. Major carriers operate up to five hubs; while 

smaller ones typically have one hub located at the center of the region they serve 

(Bazargan, 2010). The airline we interviewed claims to set shorter SBTs for flights into 

their major hub airports to avoid early arrivals that can be highly disruptive to their 

operations. Therefore, in the percentile model we include dummy variables HUBO and 

HUBD that are airline and airport specific. They indicate whether the origin/destination 

airport is a major operation hub for the specific carrier, for each individual flight.  

Lastly, air fare and load factor information of the individual flight might also affect the 

SBT decision. Airline schedulers might assign longer SBT for more expensive flights to 

ensure more reliable service, or shorter SBT to appear more attractive to high value 

passengers. Some industry observers also suggest that airlines set higher SBTs for flights 

with higher load factors. Thus load factor and fare variables are included in the percentile 

model as well. The information is merged into the major dataset by OD pair, carrier and 

quarter. The variables are denoted as LFod and Fod. 

In the formulation, we assume that schedulers set SBT for a flight with the knowledge of 

actual flight information and the HHI competition index of the same quarter in the 

previous two consecutive years. This implies that schedulers focus on flight experience 

during the same season for which they are scheduling. In this section, the years 2009, 

2010 and 2011 are chosen to be studied, with the SBT in 2011 modeled based on the 

actual flight data from the same quarter in 2009 and 2010. The actual flight information in 

the two years are aggregated together to calculate the percentiles. The resulting model, 

with y=2011, and h(y) indicating the two years prior to y, in this case years 2009 and 2010, 

is: 

5
, , , ( ) , , ( ) , , ( ) , , ( )

1 0.5 2 0.5 3 0.5 4, 5

1

5 5
, , , ( ) , , ( ) ( )

4, 5 4, 5 1 2

1 1

( ) ( )

q y f q h y f q h y f q h y f q h y

f i i i

i

f q y h y f q h y h y

i i i i i i O D od

i i

h y h y

od od

SBT TO nonTO dep dTO

dnonTO ddep HUB HUB HHI

LF F

   

    

  

 


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

 
3

1

i i

i

Dist Quarter const


   

   (2.5) 

 

The flight data are filtered to exclude Saturday flights, which is also based on the airline 

interview from which we learned that Saturday flights are treated separately. The BTS 

dataset contains 12,900,424 flights for year 2009 and 2010. Excluding Saturday flights 
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reduces it to 11,322,930 observations. Tail number (representing an aircraft registration 

number) is used to match the aircraft type information into the main database from the 

three databases mentioned above, starting with B43 dataset and using the other two 

datasets mentioned above if there was no match. For flights in the BTS dataset with 

missing tail numbers, the aircraft type information of all the flights with the same OD pair 

and same airline in the same month is used to fill the missing information. For cases where 

there were multiple aircraft types in the group, the aircraft type for the majority of flights 

is used to fill in the missing observations. With this dataset, the aggregation by OD pair, 

airline, time window, aircraft type, and quarter is conducted, generating 457,496 

individual flights. The HHI variable is merged into the dataset identified by OD pair and 

quarter. The number of observation after this merging is 148,869. To assure robustness in 

the data, we only include the flights that are frequently flown in a quarter in the two years. 

Therefore, to be included in the data set, an individual flight must have been flown at least 

50 times in a given quarter over 2009 and 2010, not including Saturdays. After this filter is 

applied, the estimation data set consists of 42,625 observations, each corresponding to an 

individual flight with a given departure time window, flying a given aircraft type, operated 

by a given airline, between a given origin and destination. Lastly, the load factor and fare 

information are merged into the dataset identified by OD pair, carrier and quarter 

information. This merging reduces the number of observations to 34,809 individual 

flights, which is the final dataset on which our analysis is performed. 

2.3.2    Estimation Results 

The estimation results on the whole dataset are shown in Table 2.3. The R
2
 explains 

almost 100% of the variation in SBT. Distance is positively related to SBT, suggesting 

that there is more unpredictability in longer flights that is not reflected in the historical 

block time distribution and SBTs are set to be longer—at a rate of 4 min per 1000 miles—

to take this into consideration. We can see that the coefficients for the gate delay 

distribution are all quite small and some are not significant. SBT increases 0.2 minutes for 

every 1 minute increase in median gate delay, but, surprisingly, decreases as the difference 

between the median and the 60
th

 percentile increases. These results confirm that historical 

gate delay is not a strong consideration in setting SBT, but also suggest that it does have 

some effect. 

The coefficient on median NTO time is 0.986, which is close to 1, indicating that this is a 

major determinant of SBT. The , ,

, 1

f q y

i id 
variables are intended to capture the variability of 

non-taxi-out flight time over the right tail of the distribution where it exceeds the median 

value. The 1-minute increase in the interval between 50
th

 and 60
th

 percentile generates a 

0.48 minute increase in SBT. The coefficient decreases to 0.22 minutes for the interval 

between 70
th

 and 80
th

 percentile and to essentially 0 (-0.0089 minutes) for the far right end 

tail of the distribution. These results show that SBT is strongly affected by the left tail of 

the NTO flight time distribution (as reflected by the median), while the ―inner right tail‖ 

has a moderate effect, whereas the effect of the outer right tail above the 70
th

 percentile 

has a rather small effect. This is somewhat consistent with the airline practice described in 

section 2.1.3, in so far as airlines claim to choose SBT for a BTR target of around 70%. 

Thus, it is expected that more weight is put on the inner right tail (below 70
th

 percentile) 

and the far right tail (above 70
th

 percentile) is down-weighted. There are, however, 
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significant differences between these results and a ―pure‖ BTR target model, as will be 

discussed below. 

The pattern is similar for the taxi-out component of flight time, but the coefficients are 

somewhat smaller. For example, the median taxi-out time has a coefficient 0.709 (as 

compared to 0.986 for the NTO time). This is probably because, as indicated in our 

interview, airlines give more consideration to terminal and gate assignment changes and 

less to historical data in predicting taxi out times. The right tail of the distribution also has 

a rapidly decreasing pattern, from 0.5 for d56 to 0.0007 for d90. For the gate delay 

variables, 1-minute increase in median gate delay increases 0.24 minute in SBT. This 

impact is relatively small compared to the flight time variables. The right tail of the 

distribution has even smaller impacts that are generally insignificant. 

The HHI variable has a negative coefficient. Higher HHI indicates lower competitiveness 

for the OD pair. Thus, a negative coefficient means that if the OD market is highly 

competitive, airlines will increase SBT. This suggests that competition drives airlines 

toward improving on-time performance instead of publishing a shorter SBT. Regarding 

the effect of airline hub airports, the dummy variable for origin hub airport is not quite 

significant, while the effect of destination hub airport is marginally significant, with a 

coefficient of -0.633. Schedulers thus tend to set a shorter SBT for flights from and into 

the airline’s hubs, more for destination. This is consistent with the airlines interviewees’ 

statement that they set shorter SBT for their hub airports in an effort to avoid early 

arrivals. However, the magnitude of this adjustment is quite small—about 0.5 minute. 

The load factor is not a significant factor for setting SBT. The fare for the flight with the 

same OD pair and carrier in a quarter will affect SBT setting. Schedulers set a longer SBT 

for more expensive flights. A one dollar increase in the fare for the individual flight leads 

to 0.0046 minute increase in SBT, which is a quite small impact. 

The percentile model represents airlines’ composite SBT-setting behavior, in a manner 

that explicitly shows the weight they place on different regions of the historical 

distribution of realized block times. Far less weight is put on the extreme right tail of the 

distribution compared to the median, or even the inner right tail. In essence, these results 

reveal that airlines plan for the ―normal‖ scenario, not the few ―extreme‖ historical cases 

with exceedingly long realized block times, lying around the far right tail of the 

distribution. Therefore, our results reveal the airlines’ emphasis for efficiency in their 

schedule while tolerating that a certain portion of flights will have longer block times than 

scheduled and will be delayed. To further interpret the results of the percentile model, two 

hypothetical models for the SBT setting process are shown in the last two columns in 

Table 2.3 to compare with our estimation results.  

The first hypothetical model (termed HM1) assumes that the SBT is solely determined by 

the average historical block time. In a CDF plot, the area above the plot corresponds to the 

mean value of the variable. Now consider a model where the mean value of realized flight 

time solely determines SBT. In this hypothetical model the coefficient of mean flight time 

would be 1. Using the CDF plot, we can translate the mean flight time into an expression 

based on percentile differences. If we divide the plot into 50
th

, 60
th

… 100
th

 percentiles and 
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assume the plot is piecewise linear between percentiles, then the mean value can be 

expressed as the sum of the areas above the CDF plot between each percentile line. For 

example, the area between 0 and 50
th

 percentile value corresponds to the contribution to 

the mean of the median flight time value, and can be calculated using the percentile value 

as the area of a trapezoid. This can be repeated for each 10
th

 percentile interval of the tail 

above the 50
th

 percentile of the distribution. The specification for hypothetical model 1 

thus becomes: 

0.50.75 0.45 56 0.35 67 0.25 78 0.15 89 0 0  . 5 90SBT Q d d d d d           

  (2.6) 

 

 

Table 2.3 Estimation Results for the Percentile Model 
 

 Percentile Model  HM 1 HM 2 

Variable Estimate p-Value Coefficient Coefficient  

Intercept  6.961 <.0001 - - 

distod 0.002 <.0001 - - 

, ,

0.5

f q ynonTO  0.986 <.0001 0.75 1 

, ,

56

f q ydnonTO  0.481 <.0001 0.45 1 

, ,

67

f q ydnonTO  0.428 <.0001 0.3 1 

, ,

78

f q ydnonTO  0.221 <.0001 0.25 0 

, ,

89

f q ydnonTO  0.069 <.0001 0.15 0 

, ,

90

f q ydnonTO  -0.0089 <.0001 0.05 0 

, ,

0.5

f q yTO  0.709 <.0001 0.75 1 

, ,

56

f q ydTO  0.550 <.0001 0.45 1 

, ,

67

f q ydTO  0.432 <.0001 0.3 1 

, ,

78

f q ydTO  0.211 <.0001 0.25 0 

, ,

89

f q ydTO  0.077 <.0001 0.15 0 

, ,

90

f q ydTO  0.00066 0.5710 0.05 0 
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, ,

0.5

f q ydep  0.235 <.0001 - - 

, ,

56

f q yddep  -0.102 <.0001 - - 

, ,

67

f q yddep  0.017 0.1018 - - 

, ,

78

f q yddep  -0.0094 0.1146 - - 

, ,

89

f q yddep  0.0019 0.4371 - - 

, ,

90

f q yddep  -0.00195 <.0001 - - 

1

yQuarter  -0.904 <.0001 - - 

2

yQuarter  -1.524 <.0001 - - 

3

yQuarter  -0.591 <.0001 - - 

HHIod -0.633 <.0001 - - 

HUBO -0.373 <.0001 - - 

HUBD -0.484 <.0001 - - 

LFod -0.281 0.4103 - - 

Fod 0.0046 <.0001 - - 

R-square 0.9964 

 

Hypothetical model 2 (HM2) is a pure version of the airlines’ BTR-based behavior. It 

assumes that SBT is equal to a certain percentile of the historical block time; here we 

assume the 70
th

 percentile. Then the parameters of the median and the difference between 

50
th

 and 60
th

, 60
th

 and 70
th

 percentiles would be 1, since the sum of these variables is 

exactly the 70
th

 percentile value, and the coefficients for the differences above 70
th

 

percentile would be 0, indicating that the airline doesn’t consider the far right tail. The 

equation of HM2 is thus: 

0.51 1 56 1 67 0 78 0 89 0 90 SBT Q d d d d d           

  (2.7) 

 

Table 2.3 compares the results between the percentile model and the hypothetical models. 

HM1 only considers the mean value of flight time. In the estimated percentile model, the 

coefficient for the median NTO flight time (nonTO0.5) is larger in the percentile model. 

The coefficients for the differences from the 50
th

 to 100
th

 percentile decrease at a faster 
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rate in the estimated model than they do for HM1. This clearly shows that, compared to 

HM1, SBT schedulers place more weight on the left side of the flight time distribution 

while down-weighting the far right tail, particularly above the 70
th

 percentile. For the taxi-

out component, the median value is closer to HM1. However, every interval above the 50
th

 

percentile has a smaller coefficient than under HM1. These findings are broadly consistent 

with previous literature where the implied flight delay costs are less than the implied costs 

of early arrivals for a large fraction of flights (Deshpande and Arikan, 2012). Put another 

way, airlines tend to be ―optimistic‖ when they choose the SBT, tolerating longer delays 

in order to realize the advantages of shorter SBTs. However, our results go further in 

showing that airlines specifically discount delays associated with the roughly 20% of 

flight realizations with the longest durations, while paying some attention to the inner right 

tail for the block time distribution. 

HM2 assumes SBT is solely based on the 70
th

 percentile of actual block time and thus 

ignores flight times beyond these values. In the estimated percentile model, the 

coefficients for the median values are close to 1, as in this hypothetical model.  In contrast 

to that model however, the inner right tail parameters are less than 1 and outer right tail 

parameters are greater than 0. Thus, compared to HM2, the estimated percentile model 

shifts weight from the inner right to the outer right tail. One interpretation of this is that 

the regression model, when estimated for a large diverse set of flights, captures a 

composite of different BTR standards. Thus, for the NTO component, 97% of flights have 

a standard at or above 50%, 44% have a standard at or above 60%, and so forth. However, 

it is also possible that the different regions of the block time distribution are indirectly 

taken into account through the various adjustments airlines make to the nominal BTR 

standard. This seems the more likely explanation for the small but significant influence of 

the far right tail, since we have heard no reports of airlines setting the BTR threshold at 

80%, 90%, or 100%. 

Returning to the comparison with the morning commute, we observe from these results 

that airlines are more willing to be late than most workers. While most workers would not 

want to be late 20% of the time, airlines pay little attention to block times over the 80
th

 

percentile. When doing this they accept that 20% of the flights would have block times 

longer than the schedule they set. In exchange for this, they reduce earliness and avoid the 

high costs of setting longer block times. 

 

2.4 SBT Adjustment Model 

The percentile model in the above section reveals that different parts of the historical 

block time distribution have different impacts on SBT setting. However, as discussed in 

section 2.1.3, SBT is sometimes adjusted based on other considerations. One common 

situation is that if a lower on-time performance is observed for a certain flight, there will 

be incentives for the schedulers to adjust SBT to improve on-time performance. The 

percentile model is designed to reflect the SBT setting in a static setting, thus the 

adjustment in response to on-time performance and various other factors is difficult to 
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capture. In this section, we model SBT adjustment to depict the relationship between 

SBT setting and various schedule adherence metrics, including on-time performance. 

2.4.1    Model Specification 

The SBT adjustment model analyzes changes in SBT for individual flights in a certain 

quarter between two consecutive years. We assume that the schedulers adjust SBT 

according to historical flight performance data. In other words, based on past 

performance, schedulers either increase or decrease the SBT, or leave it unchanged from 

the same quarter of the previous year. For two consecutive years y and 1y   , the 

difference in SBT in quarter q  for each flight f F is denoted as:
, 1 ,q q y q y

f f fSBT SBT SBT    and is used as the dependent variable. 

In our SBT adjustment model, the schedulers are assumed to base their judgment for a 

certain flight on the past on-time performance and the distribution of positive and 

negative deviation realized block times from the SBT. We consider two on-time 

performance metrics: A0 and A14. A14 is based on the DOT definition: a flight is on 

time if it arrives at its destination gate less than 15 minutes after its scheduled arrival time. 

Let ,

, 1q y

f io   if the i
th

 realization of the flight f F  that flew a total of N times in quarter 

q  of year y is on time, and 0 other wise. Then the explanatory variable depicting the 

quarterly on-time performance is: 
,

,
,

,14

q y

f i
q y i

q yf
f

o

A
N




. The A0 on-time performance 

is stricter than A14, counting a flight as on time only if it arrives no later than its 

scheduled arrival time. The calculation for A0 is similar to that of A14, and is denoted as 
,0q y

fA  . A0 and A14 are included in two separate models because we found that they are 

too strongly correlated to allow satisfactory results from including them in the same 

model. 

In addition to on-time performance, positive and negative deviations between realized 

and scheduled block times may also lead to SBT adjustments. Thus, terms that 

characterized these deviations are included as explanatory variables. The negative 

deviation (ND) for the i
th

 realization of the flight f F  that flew in quarter q  of year y

is , ,

,max( ,0)q y q y

f f iSBT ABT  where ,

,

q y

f iABT  indicates the actual block time of this single 

realized flight. Similarly, the positive deviation (PD) is , ,

,max( ,0)a y a y

f i fABT SBT  for the 

i
th

 realization of flight f. Note that these deviations only reflect the block time, not gate 

delay. The latter is, however, reflected in the on-time performance variables A0 and A14.  

A percentile-based approach similar to that used in the percentile model is applied to 

create the deviation variables used in this model. As discussed in section 2.3, the inner 

and outer right tails of historical distribution exert different impacts on SBT setting. 

Therefore, we calculated the median and two parts of the right tail distribution of the 

positive and negative deviations. The median ND (PD) for individual flight f F  is 

denoted as ,

0.5

q y

fND ( ,

0.5

q y

fPD ) over the N realized flights in the quarter. The inner right tail 

is the difference between the 75
th

 percentile and the median value. For negative deviation, 
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, , ,

0.75 0.5

q y q y q y

inner f f fND ND ND  , and similarly for positive deviation. The outer right tail is 

calculated as the difference between the 100
th

 percentile and the 75
th

 percentile of the 

distribution. For example,  , , ,

1 0.75

q y q y q y

outer f f fND ND ND   is the outer tail for negative 

deviation. These variables are calculated for each individual flight over a quarter and 

included as explanatory variables. 

In addition, certain airport and OD pair characteristics might also affect the adjustment to 

SBT. Therefore, the HHI, HUB, load factor and fare variables defined in the percentile 

model are also matched and included in this SBT adjustment model. We estimated two 

separate models, each including one of the on-time variables, A0 or A14, but otherwise 

identical. 
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In the estimation of the SBT adjustment model, the flights are grouped in the same way 

as in section 2.3 for the percentile model to calculate the respective variables. Years 2009, 

2010 and 2011 are again chosen to be studied. The difference between the SBT in 2010 

and 2011 is modeled with the actual flight performance data from the same quarter in 

years 2009 and 2010, combined. 

2.4.2    Estimation Results 

Estimation results for the A0 and A14 SBT adjustment models are shown in Table 2.4. 

The estimation results from the two models are quite similar. The R
2
’s indicate that both 

models explain about 18% of the variation in the adjustment of SBT from year 2010 to 

year 2011. This is well below the R
2 
for the percentile model presented earlier. While the 

root mean square error for both the SBT percentile and SBT adjustment models is about 

4.7 minutes, the overall variance is SBT is much greater than that in SBT adjustment, 

leading to a larger R
2
. From the results, we can see that the intercept is around 6 to 7 

minutes. The coefficients for the on-time performance variables are -3.93 and -3.67 for 

A14 and A0, respectively, showing, as expected, that downward adjustments in SBT are 

associated with higher on-time performance. All else equal, a flight with perfect on-time 

performance, as measured by A0, would have an SBT adjustment 3.7 minutes lower than 

a flight that is always late. For A14, which is a more lenient on-time performance 

measure, this difference is a slightly larger 3.9 minutes. 
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Turning to the deviation variables, we find that the coefficients on negative deviation 

(ND) have stronger impacts than the coefficients on the corresponding positive deviation 

(PD) coefficients. For example, in the A0 model the coefficient on median ND is -0.318 

and compared to a coefficient on the median PD of 0.278. Thus, as suggested in the 

earlier results, airlines react to SBT’s in excess of realized times (negative deviations) 

more strongly than realized times in excess of SBTs (positive deviations). Additionally, 

we find that while the coefficients decrease as we move along the right tails of both the 

ND and PD distributions, they do so much more rapidly in the case of PD. Put another 

way, experience with unusually early flights is more likely to shift SBTs down than 

experience with unusually late flights to shift SBTs up. 

 

Table 2.4 Estimation Results for the SBT Adjustment Model 

 

A14 Model A0 Model 

Variable Estimate p-Value Variable Estimate p-Value 

Intercept 7.015 <.0001 Intercept 6.064 <.0001 

,14q y

fA  -3.932 <.0001 ,0q y

fA  -3.672 <.0001 

,

0.5

q y

fND  -0.352 <.0001 
,

0.5

q y

fND  -0.318 <.0001 

,q y

inner fND  -0.136 <.0001 
,q y

inner fND  -0.132 <.0001 

,q y

outer fND  -0.020 0.0020 
,q y

outer fND  -0.021 0.0011 

,

0.5

q y

fPD  0.304 <.0001 
,

0.5

q y

fPD  0.278 <.0001 

,q y

inner fPD  0.031 0.0229 
,q y

inner fPD  0.0295 0.0297 

,q y

outer fPD  -0.0024 0.0346 
,q y

outer fPD  -0.0014 0.2051 

1

yQuarter  -1.984 <.0001 1

yQuarter  -1.961 <.0001 

2

yQuarter  -2.608 <.0001 2

yQuarter  -2.567 <.0001 

3

yQuarter  -1.461 <.0001 3

yQuarter  -1.414 <.0001 

HHIod 1.081 <.0001 HHIod 0.996 <.0001 

HUBO -0.661 <.0001 HUBO -0.700 <.0001 
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HUBD -0.391 <.0001 HUBD -0.375 <.0001 

distod 0.00047 <.0001 distod 0.00044 <.0001 

LFod -1.323 0.0003 LFod -1.533 <.0001 

Fod 0.0027 0.0001 Fod 0.0027 0.0001 

R-square 0.1795  R-square 0.1813  

 

The intercept, combined with quarterly dummy variables, suggest a tendency to increase 

SBTs between 2010 and 2011. If negative and positive deviations were both zero, and on-

time performance were 1, then the change in SBT under the A0 model would range 2.4 

minutes for the fourth quarter to 0.4 minutes for the 2
nd

 quarter. One possible explanation 

is that fuel prices were considerably higher in 2011, encouraging airlines to operate at a 

lower cost index (the ratio of time cost to fuel cost used by flight management systems to 

set economical speeds). 

 

2.5 Impact Analysis 

The percentile model in section 2.3 shows the impact of the distributions of historical 

block time on SBT setting. Different segments of the distribution have varying impacts 

on the SBT, with left and inner right tails of the distribution the most influential. In the 

real system block time distributions are constantly changing, and SBTs updated in 

response to the changing distributions, as well as other factors. It is of interest to observe 

these changes over a period of time, and in particular to observe the contributions of the 

changing distributions and SBT adjustments to changes in schedule adherence metrics. In 

this section, we perform such an analysis. Its aim is not to estimate a model, but simply to 

document how observed changes in SBT and the distribution of realized block time work 

together to change schedule adherence. 

2.5.1    Methodology 

We observe changes in actual block time distributions and SBTs for individual flights (as 

defined above) between two time epochs. For this comparison, year 2007 is of particular 

interest because it is an extremely busy year with a large amount of delay. It is a 

reasonable speculation that the highly dispersed block time, observed in section 1.2.3, will 

lead to significantly different behavior in SBT setting compared to years in which the 

system was less congested. It is also suspected that various flight performance metrics will 

also exhibit different patterns. Since our percentile model requires two years of data for 

setting SBT, we include year 2006 and 2007 as one group in the impact study. The data 

from year 2009 and 2010 are used as the other group for comparison.  
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For the two-year data set, the flights are aggregated in the same manner as before: by OD 

pair, departure time window, aircraft type, carrier and quarter; each distinct combination 

of these attributes is treated as an individual flight. Merging the two groups of two-year 

data together, there are 8,353 observations in total with at least 50 realizations in each 

period. From section 2.3, we learnt that the inner right tail of the block time distribution 

has the most impact on SBT setting, in addition to the median actual block time. Therefore, 

in a process similar to that described in section 2.4, we calculated the inner right tail of the 

historical block time distribution as the difference between the median and the 75
th

 

percentile as well as the median value. The average median block time decreased 0.66 

minutes between 2006-2007 and 2009-2010; the standard deviation of this change was 

4.92 minutes. For the inner right tail, the average change is -0.21 minutes, with a standard 

deviation of 2.84 minutes. The before and after time periods used for the impact study are 

close together, suggesting that there was little change in how block times are set between 

the two periods. They are also close to the time period used for estimating the percentile 

model, so that the behaviors shown in that model, such as the focus on the inner right tail 

of the flight time distribution, should also be in effect. 

We want to compare the changes in block time distribution to changes in SBT. Therefore, 

the dataset is divided into nine separate ―scenarios‖ where the median block time and the 

inner right tail could increase, decrease, or remain the same across these two time periods. 

If the change in median or inner right tail is less than one standard deviation from the 

mean change, then the flight is assigned to the ―Average‖ group for that variable. If there 

is a change greater than one standard deviation above the mean change, then the 

observation is categorized as an ―Increase‖, and conversely for ―Decrease‖. (We use the 

terms ―Increase‖ and ―Decrease‖ somewhat loosely, since they are defined in terms of 

deviation from the average change; however, since the average change is close to zero 

these terms are appropriate.) Table 2.5 below lists the counts and frequency (in the 

brackets) for each of the nine scenarios in the 8,353 observations. Around 5,000—61%—

of the observations fall into the ―Average‖ category for both median and the inner right 

tail of the block time distribution. However, there are still reasonably large counts for each 

scenario. Notably, this is the case even for scenarios involving an increase in one metric 

and a decrease in the other. The margins of Table 2.5 show the marginal counts and 

frequencies. 

 

Table 2.5  Summary of Nine Scenarios and Their Counts and Frequency in the Dataset 
 

 Median BT 

 Increase Average Decrease Total 

Inner 

Right 

Tail 

Increase 226 

(0.027) 

598 

(0.072) 

142 

(0.017) 

966 

(0.116) 
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of BT Average 657 

(0.079 

5125 

(0.614) 

733 

(0.088 

6515 

(0.781) 

Decrease 88 

(0.011) 

521 

(0.062) 

263 

(0.031) 

872 

(0.104) 

Total 971 

(0.117) 

6244 

(0.748) 

1138 

(0.136) 

8353 

(1.00) 

 

For each scenario, we are interested in the changes in SBT and various schedule adherence 

metrics in the years immediately after 2006-07 and 2009-10: i.e. the years 2008 and 2011. 

Firstly we study the changes in SBT. For each scenario in both years, the median SBT for 

each individual flight is calculated, as defined in section 2.3 and the average SBT for each 

scenario is recorded and compared for the two years. Moreover, the on-time performance 

metrics—A0 and A14—and average ND and PD of the flights for each scenario are also 

calculated and compared. Lastly, we investigate how the change in SBT affects these 

metrics, by calculating their values under the counter-factual scenario in which the SBT in 

2011 is the same as that in 2008. 

2.5.2    Results  

Table 2.6 shows the impact analysis results. The nine scenarios are numbered as 1 to 9 

from the upper left cell horizontally to the bottom right cell in Table 2.5. The second 

major column in Table 2.6 presents the results from comparing SBTs in year 2008 and 

year 2011—the years immediately following the two-year periods considered in Table 2.5. 

The upper half shows the average SBT values, where the bottom part shows the average 

change in SBT and its standard deviation. The largest increase (decrease) of SBT happens 

where both median and inner right tail of previous years’ actual block time increased 

(decreased). Median block time change is clearly the major determinant of whether SBT 

increases or decreases. However, the effect of the inner right tail is also significant. 

Comparing scenario 1 and 7, where median BT increased and the inner right tail increased 

and decreased respectively, the change in SBT has a 3.5 minutes greater in the former case. 

These differences are 3.3 and 3.2 minutes when we make similar comparisons for the 

scenarios with the same median BT (scenarios 2 and 8) and a reduced median BT 

(scenarios 3 and 9).  Differences among the various median scenarios for a given inner 

right tail scenario are also fairly consistent—around 9 minutes. These results further 

validate the finding that—contrary to previous studies such as Mayer and Sinai (2003) —

the inner right tail of the distribution matters in SBT setting. Finally, in scenario 5, where 

both the median and the inner right tail are in the ―average‖ category, average SBT 

decreases 0.35 minutes. This is in line with the small reductions in the average median and 

average inner right tail between the two periods. 



32 
 

To further illustrate the changes in actual block time distribution and the change in SBT, 

one representative individual flight is picked from each scenario and the empirical CDF of 

historical block time in year 2006-2007 and 2009-2010 is plotted in Figure 2.2. The 

vertical lines in each graph denote the SBT for the earlier year (2008—dashed line), and 

the newer year (2011—solid line). The graph shows patterns similar to those found Table 

2.6. The middle column is especially interesting as it illustrates scenarios where median 

BT does not change while the inner right tail varies. In the top graph where inner right tail 

increased, the SBT also increased, and conversely for the graph in the middle bottom.  

 

Figure 2.2 Empirical CDF of Actual Block Time for Representative Flights under the 

Nine Scenarios 

 

Regarding the performance metric results in Table 2.6 below, we note first that there is 

overall improvement in on-time performance and reduction in average PD between 2008 

and 2011. Average ND also increased for most scenarios. These overall results derive 

from changes in block time distributions (and in the case of the on-time metrics, gate delay) 

combined with changes in SBT. The impact of the latter is isolated by comparing the 2011 

results with the 2011’ results, which show what the 2011 performance would have been if 

SBTs had not changed from their 2008 values. We see that changes in SBT have sizable 

impacts. For example in Scenario 1—median increases and right tail increases—a large 

increase in on-time performance between 2008 and 2011, as well as a large reduction in 
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average PD (and increase in average ND) are mainly due to a 6 minute increase in SBT. 

On the other hand, in Scenario 9—median and right tail decrease—reductions in SBT 

virtually eliminate what would otherwise be substantial increases in on-time performance 

and decreases in average PD. More generally, the magnitudes of differences in on-time 

performance between 2011 and 2011’, which reflect only the impact of SBT change, are 

comparable to the magnitudes of the overall differences 2008 and 2011. In the case of 

average PD, changes resulting from SBT adjustment are of somewhat larger magnitude 

than the overall changes observed. In sum, changes in SBT are as large or larger a driver 

of change in schedule adherence between 2008 and 2011 as changes in the underlying 

operational performance. 

 

Table 2.6 Changes in SBT and Various Performance Metrics for Different Scenarios, 

2008 vs. 2011 

 

  SBT (min) A0 A14 

Scenario Scenario 

Description 

2008  2011 2008 2011 2011’ 2008 2011 2011’ 

1 Med +, IRTail + 150.591 156.425 0.526 0.679 0.557 0.762 0.842 0.803 

2 Med avg., IRTail 

+ 

153.834 155.107 0.546 0.631 0.598 0.776 0.822 0.820 

3 Med –, IRTail + 218.986 214.877 0.517 0.599 0.675 0.716 0.794 0.828 

4 Med +, IRTail 

avg. 

150.112 153.750 0.550 0.669 0.571 0.797 0.857 0.832 

5 Med avg., IRTail 

avg. 

118.388 118.040 0.593 0.632 0.638 0.818 0.845 0.853 

6 Med –, IRTail 

same 

181.443 176.533 0.554 0.540 0.647 0.757 0.777 0.828 

7 Med +, IRTail – 199.307 201.574 0.509 0.657 0.584 0.757 0.851 0.817 

8 Med avg., IRTail 

– 

158.923 156.873 0.539 0.581 0.621 0.742 0.788 0.810 

9 Med –, IRTail – 184.304 176.956 0.491 0.511 0.620 0.668 0.705 0.763 

  SBT Change 

(min) 

ND (min) PD (min) 
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Scenario  Scenario 

Description 

mean  s.t.d 2008 2011 2011’ 2008 2011 2011’ 

1 Med +, IRTail + 5.834 6.323 4.939 8.966 5.414 6.397 3.579 5.861 

2 Med avg., IRTail 

+ 

1.273 6.429 5.456 7.322 6.624 5.069 3.642 4.218 

3 Med –, IRTail + -4.109 7.968 8.313 8.871 11.833 6.139 4.524 3.377 

4 Med +, IRTail 

avg. 

3.638 6.513 4.654 7.186 5.148 5.336 3.219 4.818 

5 Med avg., IRTail 

avg. 

-0.348 5.113 4.722 5.293 5.595 3.554 2.870 2.825 

6 Med –, IRTail 

avg. 

-4.909 6.637 7.596 6.352 9.879 4.343 4.312 2.930 

7 Med +, IRTail – 2.267 7.995 6.817 9.132 7.933 6.250 3.744 4.812 

8 Med avg., IRTail 

– 

-2.050 6.733 6.739 7.196 8.704 5.078 4.050 3.508 

9 Med –, IRTail – -7.348 8.024 9.396 7.629 13.219 5.827 5.030 3.272 

 

2.6 Conclusion 

In this chapter, the impact of predictability on airlines’ strategic decision—scheduled 

block times setting—is studied by means of econometric models that relate scheduled 

block times to previous operational experience, as well as through validation with the 

real-world historical data. We developed three types of multiple regression models to 

incorporate the effect of predictability, each with different definitions and metrics for 

predictability. The first type is the mean-variance model and our results indicate that 

departure delay has little influence on scheduled block-time, although it is a major 

contributor to effective flight time in real operations. Schedulers do not consider 

historical departure delay information, perhaps because they believe that historical 

departure delay information does not reliably predict the future. Also, in the mean-

variance model, the effect of flight time variability turns out to be negative. This is 

contrary to expectation based on the urban trip scheduling literature. It appears that block 

time schedulers account for variability by adding a certain percentage to the mean block 

time rather than considering historical block time variance/standard deviation (one metric 

for flight predictability) directly.  



35 
 

The second model is called the percentile model and is intended to capture flight 

predictability in a different approach. According to one airline, SBT is set using a BTR 

(block time reliability, the percentile at which the SBT lies among the actual block times) 

target. We developed the percentile model in order to capture airlines’ BTR-based 

practice. The variability in block time is captured by increments between every 10
th

 

percentile above the median (50
th

 percentile). This enables us to observe how different 

regions of the historical block time distribution are considered in SBT setting. The 

different components of the block time, i.e., the taxi-out and non-taxi-out phase of the 

flight are also separately treated in the model. Other variables, such as gate delay, 

distance, airport hub status, and market concentration are also included in the model. The 

estimation results of the percentile model suggest that the entire right tail of the block 

time distribution is considered when setting SBT, but that the inner right tail up to 70
th

 

percentile receives by far the most consideration. In general, airlines are willing to 

experience occasional severe delays in exchange for a shorter SBT. Other notable results 

include that again historical gate delay is virtually ignored, that historical taxi-out time is 

given somewhat less weight in the SBT setting compared to the non-taxi-out component 

of flight, that airlines with hubs tend to set shorter SBTs for their hub-bound flights, and 

that competition encourages longer SBTs. A comparison between the percentile model 

and an assumed model that only considered the mean flight time value suggests that 

airlines tend to put more weight on earliness than lateness as they decide their scheduled 

block time. Thus it suggests that airlines are willing to experience delays to realize the 

efficiency benefits of scheduling shorter SBTs.  

The third econometric model developed in this chapter is the SBT adjustment model, 

which captures the impact of on-time performance that is not reflected in the percentile 

model. We also analyze cross-year adjustments in SBTs based on the distributions of 

earliness and lateness relative to schedule, in addition to on-time performance. This model 

models the adjustment of SBT’s across year and reveals that airlines adjust their SBTs for 

individual flights in response to their historical on-time performance. It also reveals that 

SBTs are adjusted to mitigate persistent earliness and lateness, but that the earliness 

(negative deviation) effect is stronger.  

Finally, to investigate changes in block time distributions and associated scheduled block 

times that actually result from a change in operating conditions in the NAS, we compare 

the high traffic period around 2007 with the period of curtailed traffic around 2010 to 

analyze the impact of the historical distributions of actual block times on SBT. Real data 

are used to demonstrate that when changes in block time distributions—in particular the 

median and inner right tail—occur, significant adjustments in SBTs often result, and that 

the impacts of these adjustments on schedule adherence is great or greater than the 

changes in the underlying operational performance. With the efforts to fully understand 

the complete cycle of SBT setting through estimating the three behavioral models, this 

piece of analysis explicitly links the relationship between the changes in actual block 

time distribution and SBT. This fills a missing piece of the NEXTGEN benefit analysis 

by relating changes in flight time distributions with changes in SBT. 

This body of research is critical to assessing the consequences of improvements to the 

National Airspace System (NAS), such as those contemplated under NEXTGEN. Such 
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improvements will affect the distributions of realized block times for individual flights. 

This change in distribution may affect both the SBT and deviations of actual block times 

from the SBT. It is important to consider both effects, since they have different economic 

implications. Changes in SBT influence a host of related costs including crew time and 

aircraft ownership, as well as the earliness and lateness of flights relative to the schedule. 

In current practice, however, the impact of a NAS improvement on SBT is not explicitly 

considered. In essence, it is assumed that any reduction in realized block time has the 

same economic value regardless of its impact on SBT. In the future, NEXTGEN is 

expected to be a major source of change in operational performance, and therefore SBTs, 

and finally of deviations between scheduled and realized times. It is clear from our results 

that knowledge of the change in average block times is not sufficient to understand these 

impacts, since a given change in the average can arise from many different changes in the 

distribution. This suggests that business cases for NAS improvements should pay more 

attention to impacts on the distribution of block times, instead of the average. Broadly 

speaking, improvements that push in the far right tail of the distribution will affect delays 

and on-time performance but not the SBT, while improvements that shift the inner right 

tail will effect scheduled block times but have limited impact on on-time performance. 

There is benefit from either change, but the nature of the benefit is fundamentally 

different, and it is important that NEXTGEN business cases recognize this. 

Beyond this specific focus, the study in this chapter provides a perspective on how the 

phenomenon of transport system reliability is manifested in the specific mode of 

scheduled air transport. As suggested above, setting SBT is somewhat analogous to 

scheduling the morning commute. However, there are important differences because the 

SBT must be set well in advance, and also in the perceived penalties of earliness and 

lateness. As we shall see, these differences cause airlines to focus on a particular part of 

the block time distribution when setting SBT. The innovative methodology required to 

reveal this behavior is a further contribution of our work in this chapter. 
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3. Improving Predictability through Airport 

Departure Queue Sequencing 

In section 2.3, through estimating the percentile model we have found a relationship 

between SBT and the distribution of realized times, by phase of flight. In this chapter, we 

use those estimation results and seek a practical approach to achieve the benefit of 

predictability, in the form of reduced SBT. More specifically, we consider how departure 

queue sequencing at the airport surface can be used to change the block time (especially 

taxi-out time) distribution for flights. Through this day-of-operations practice, the benefit 

of the adjustment would be reflected on savings in future SBT. In addition, we also 

investigate the trade-off between block time (taxi-out time) adjustment and flight on-time 

performance in the optimization process.  

 

3.1 Departure Queue Management 

The need for a more automated system to better manage and improve the operation of 

aircraft departure queues at the airport has been recognized for a long time. All major 

airports have a Ramp Control or Ground Control procedure for the management of 

separation of all surface movement on airport taxiways, inactive runaways, holding areas, 

transitional aprons, and intersections (ADFMS report). However, the procedures to 

establish a departure queue are usually on a ―first-come, first-serve‖ basis, whose major 

goal is to ensure separation and safety, but not to improve efficiency (ADFMS report). 

One main cause of inefficiency in this domain is that, under high traffic conditions, 

multiple aircraft pushback at around the same time and contest for the runway. This leads 

to many aircraft taxiing to the runway simultaneously and long runway queues as well as 

congestion effects on taxiways. (Liu et al., 2014) 

One methodology to address this problem is departure metering (Malik et al., 2010; 

Brinton et al., 2011; Nakahara et al., 2011; Simaiakis et al., 2011; Simaiakis, 2013). One 

approach to achieve departure metering is N-control, which controls the queue length by 

metering pushbacks from the gate, so as to maintain but not exceed levels of airfield 

occupancy that allow for efficient runway utilization (Simaiakis et al., 2011; Simaiakis, 

2013). The suggested pushback rates generated by the N-control algorithm are provided to 

ground controllers, adding to their current responsibility of maintaining separation and a 

smooth flow of aircraft on taxiways. A second approach is called Collaborative Departure 

Queue Management (CDMQ). This approach assigns flight operators taxiway entry slots 

according to ration-by-schedule principle (Brinton et al., 2011), to manage the length of 

the runway queue. A method similar to CDQM was developed and implemented at JFK 

airport in 2010. More recently, the method called Airport Departure flow Management 

System (ADFMS) has also been developed and proposed to be implemented at PHL 

airport. ADFMS achieves departure queue sequencing through implementing two 

important functions: Departure Slot Scheduling and Departure Queue Management. The 

former meters demand to match departure capacity and enables airlines to trade departure 
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slots among themselves. The latter divides the departure queue into physical and virtual 

components, assigning expected pushback times that allow aircraft to remain at their gates 

as long as possible while still meeting their assigned departure slot times. 

All the methods mentioned above manage runway queue length by controlling flights in 

the ramp area only. Another surface traffic management system, known as the Spot And 

Runway Departure Advisor (SARDA), extends automated decision support to other areas 

including taxiways, queue areas, and the runway (Liu et al., 2014). Specifically, SARDA 

advises on actual pushback time, sequence and timing for spot release, sequence for take-

offs, and sequence for active runway crossings (Jung et al., 2010; Malik et al., 2010; 

Gupta et al., 2012; Hoang et al., 2011). Unlike the tools mentioned above, the SARDA 

advisories are provided to both ground and local controllers in the control tower. In such 

cases, the local controller is responsible to keep the runway operations, including take-off, 

landing and runway crossings, both safe and efficient by providing separations between 

aircrafts and safely sequencing departures and arrivals. The ground controllers are 

responsible for the ground movement of aircraft taxiing or vehicles operating on taxiways 

or inactive runways and preventing runway incursion is their primary responsibility. 

In the existing literature on performance evaluation of these automation technologies, 

attention has been focused on throughput increases, delay reductions, and fuel savings 

(Simaiakis and Balakrishnan, 2009; Simaiakis et al., 2011; Nakahara and Reynolds, 2012; 

Gupta et al., 2013; Hao et al., 2015). In addition to efficiency concerns, emission reduction 

is another major objective because aircraft taxiing on the surface contribute significantly 

to the fuel burn and emissions at airports (Simaiakis and Balakrishnan, 2009).  

More recent work has proposed predictability metrics to evaluate runway operations (Liu 

et. al, 2014). Unpredictability is measured as the integration over time t of standard 

deviation of remaining taxi-out time at time point t over time. Results from a human-in-

the-loop simulation show that SARDA is able to reduce unpredictability of taxi-out time 

through improving surface operations, by 46% and 39% under high and medium traffic 

levels, respectively (Liu et. al, 2014). Another study used the term ―Flexibility‖ as a key 

performance metric, which essentially reflects the predictability of the system (Wojcik et. 

al, 2013). Over a long period of time, predictability can be measured with long-term 

statistics of how well the originally intended schedules of flights were met in actual 

operations (Wojcik et al., 2013). Flexibility is provided to operators in their decision 

making process to mitigate disruptions of the schedule. Thus, increased flexibility may be 

used to limit the unpredictability, especially under unfavorable operating conditions. 

Through the use of virtual queuing (VQ) in departure operations, operators are provided 

with additional flexibility in prioritizing flights for departure and allowing flights with 

more expensive delays to skip ahead in the departure queue. Flexibility metrics derived 

from delay recovered with VQ relative to physical queuing (PQ) are compared under a 

variety of operational scenarios. The benefit of the predictability, i.e., the additional 

flexibility, is the reduction of operating cost because the cost of departure queuing delay 

can vary widely among flights. Fast-time simulations assuming a variety of operator cost 

functions and optimization objectives are developed and the results indicate that inter-

operator exchanges to reduce the size of small physical queues could substantially 
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improve operator flexibility performance, measured in the average and the standard 

deviation of positive delay per flight (Wojcik et. al, 2013). 

In this research, the percentile model proposed in section 2.3 captures the impact of flight 

predictability on SBT setting better than the traditional mean-variance model. The 

distribution of the historical block time— specifically the taxi-out time component—for a 

flight is depicted by the difference between every 10
th

 percentiles. It is found that SBTs 

have decreasing sensitivity to historical taxi-out times toward the right tail of the 

distribution. In other words, airlines put different weights on different segments of the 

historical taxi-out time distribution when deciding SBTs for the next planning period, with 

more weight on the median and inner right tail of the distribution, and downplayed weight 

on the outer right tail of the distribution (beyond 80
th

 percentile). Their ―optimistic‖ 

scheduling behavior is rooted in the profit-driven nature of the airline operation. 

With the existing linkage between surface operations and predictability improvements, 

and between increased predictability and benefit in saving SBT, it is a reasonable 

expectation that the surface operation management could, if so desired, be used to improve 

strategic predictability of taxi-times in a manner that could ultimately allow reductions in 

SBTs. Airlines consider SBT to be very expensive. Thus, saving in SBT through improved 

surface operations can be an additional substantial benefit of the departure queue 

management. When air traffic controllers manage aircraft in the departure queue, they 

seldom consider the impact of their decisions on flight predictability reflected through the 

actual taxi-out time of the flight. This is because improving predictability, i.e., the 

distribution of taxi-out time, does not carry any immediate operational benefit. Rather, the 

benefit would be realized in the long run when historical block time distributions affect the 

choice of SBT. 

This chapter aims at filling the missing link between surface operations and strategic 

planning, through the improvement of flight predictability. It investigates the impact of 

flight predictability on SBT and the potential of improvement for SBT that can be attained 

through improved flight predictability. In this chapter, we propose to build on the 

estimation results of the percentile model that reveals the relationship between SBT and 

flight predictability, especially the distribution of historical taxi-out time. We propose to 

use departure queue sequencing to achieve adjustments in realized taxi-out times and, over 

time, in the distribution of these times. The adjustments can then be translated into 

changes in SBT using the relationship revealed by the percentile model. Through this 

analysis, we are able to determine the potential benefits of operational improvements at a 

strategic planning level. This adds to the set of mechanisms through which improved 

surface traffic management can generate value. Therefore, this chapter applies the results 

from the percentile model by directly taking the improvement on SBT into consideration 

when analyzing the impact of a NAS operational improvement. In this way, we are able to 

explore a heretofore unrecognized mechanism for realizing benefit from surface operation 

improvements.  
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3.2 Departure Queue Optimization Model 

There are two things about the percentile model in section 2.3 that specifically encourage 

us to use it to help construct the optimization model in this chapter. Firstly, the percentile 

model aggregates flights in a way that best replicates the industry SBT setting practice (by 

origin-destination pair, aircraft type, 30-minute departure time window, and airline), 

among other studies. Therefore, we have more confidence in developing our optimization 

with the purpose of helping airlines reduce SBT. Secondly, the percentile model includes 

the distribution of the taxi-out time and the non-taxi-out time components of block time 

separately. In this way, the impact of taxi-out time on airline’s future SBT setting can be 

more directly predicted. Given that this study focuses on airport surface operation that 

adjusts only the taxi-out time of the flights, this characteristic of the percentile model is 

ideal.  

Section 2.3 gives a complete set of coefficients from their percentile model describing the 

impact of the block time distribution, separately for each component of block time, on 

airline SBT setting in Table 2.3. For the interest of the study in this chapter, the 

optimization only adjusts the taxi-out time for each flight. Therefore, we are only 

interested in the taxi-out time portion of the percentile model. Table 3.1 lists the 

estimation results from percentile model for taxi-out time, which is a partial representation 

of Table 2.3. 

Table 3.1 Partial Estimation Results from the Percentile Model in Section 2.3 

 

 Percentile Model  

Variable Estimate p-Value 
, ,

0.5

f q yTO  0.709 <.0001 
, ,

56

f q ydTO  0.550 <.0001 
, ,

67

f q ydTO  0.432 <.0001 
, ,

78

f q ydTO  0.211 <.0001 
, ,

89

f q ydTO  0.077 <.0001 
, ,

90

f q ydTO  0.00066 0.5710 

 

3.2.1    Problem Formulation 

In this section, we develop a set of methodologies for the daily airport surface operation 

to optimize the block time distribution for each flight, over a certain time period, with a 

final objective of reducing the SBT.  

As mentioned before, SBT is the time duration between the scheduled departure and 

scheduled arrival time. The actual block time is the time between actual departure and 

arrival time and varies from day to day for the same flight. The block time can be further 

decomposed into taxi-out, airborne and taxi-in time. For this study, the changes made to 



41 
 

surface operation are aimed at adjusting the taxi-out time for each flight. The taxi-out 

time for a flight is the time duration between the flight’s actual departure time, and the 

wheels-off time (the time the aircraft takes off and leaves the runway). In the percentile 

model, the block time is decomposed into the three components and the distribution of 

each component is separately included in the model. Therefore, it is logical to adjust the 

taxi-out component through optimizing surface operations, and analyze the impact on 

SBT using the estimation results from the percentile model. 

The optimization of surface operations is realized through re-sequencing the departure 

queue at the airport. After flights pushback from the gate, they enter the ramp area, where 

aircrafts form a queue for departure at the runway threshold. Air traffic controllers 

receive the departure requests, and establish the sequence of departing aircraft by 

requiring them to adjust ground operations, if necessary, to achieve proper spacing. 

(ORDER JO 7110.65V, 2014). Other information, such as departure delay, runway 

configuration and coordination with arrival aircrafts, are also considered in the process. 

However, the major objective, aside from ensuring safety, is to handle requests to enter 

the taxi-way system in roughly the order they are received. Once established within a 

queue on a taxiway, the queue cannot be reordered if the width and configuration of the 

airport aprons, taxiways, and runways cannot support the simultaneous movement of 

aircraft within what is normally restricted space (ADFMS report). This study develops an 

algorithm to re-sequence the departure queue, with an objective of improving flight 

predictability. The algorithm is applied to real airline performance data from the Bureau 

of Transportation Statistics (BTS) Airline On-time Performance database, which contains 

detailed performance information for individual flights by major US air carriers between 

points within the United States. The re-sequencing process can be achieved in practice by 

the ―virtual queue‖ concept. The optimization generates the departure queue sequence, 

and flights are granted the information regarding the time to leave the gate. In this way 

they can leave the gate and enter the departure queue in the desired sequence. 

The optimization is performed on a daily basis and is formulated as an assignment 

problem. All the flights departing in a day form a flight pool, I. For each flight i I , there 

is a corresponding wheels-off time slot j, which is the time when the aircraft takes off. All 

the slots comprise a slot pool, J, which has the same size as I. In this study, we assume 

that the wheels-off slots are known in advance, based on historical flight performance 

information. On a given day, the flights are re-assigned to the slots under our algorithm to 

achieve better predictability, resulting in a re-sequenced departure queue. The assignment 

results are presented by matrix X, where Xij =1 if flight i is assigned to wheels-off slot j, 

and is zero otherwise. The optimization can be expressed as: 

Min ∑            

s.t. ∑            

       ∑            

      ∑    (           )  ∑                  
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The objective of the optimization is to minimize the total ―cost of assignment‖, summed 

over all the assignments, i.e., the Cijs, throughout the day. The specification for the ―cost 

of assignment‖ will be explained in greater detail shortly.  To guarantee the feasibility of 

the re-sequencing, there are several constraints. The first two constraints are to assure that 

all the flights in the day are assigned to one and only one slot, and that all the slots are 

assigned to one and only one flight. The last constraint is included to guarantee the 

operational feasibility of the assignment. It is not possible for a flight to take off at a 

wheels-off time slot earlier than the time it leaves the gate. There is also a minimum taxi-

out time required for the flight, between its departure time and wheels-off time. In this 

study, the minimum taxi-out is calculated as the minimum of the 20
th

 percentile of the 

taxi-out time distribution of the same flight i over a month, and the actual taxi-out time for 

the flight at the day of operation. The third constraint says that flight i can only be 

assigned to a wheels-off slot that is after flight i’s departure time by at least the minimum 

taxi-out time for this flight.  

The definition for an individual flight i is more complicated than merely categorizing by 

flight number. The aggregation of flights is by specific airline, origin-destination pair, 30-

minute departure time window, and aircraft type. This is the same aggregation used to 

calculate the block time distribution variables in the percentile model (see Section 2.3.1). 

This method is identified by airline block time setting groups, and they choose the SBT 

for each of the individual flights as a group. Therefore, it is a reasonable and consistent 

aggregation method for defining predictability if we want to build on the percentile model 

and study the impact of the departure sequence optimization on SBT. The time unit for the 

aggregation in this chapter is month.  

3.2.2    Cost of Assignment 

All the flights departing a certain airport on a single day can potentially be re-sequenced 

under certain feasibility constraints. For each flight, its actual block time starts as it leaves 

the gate and enters the departure queue. Then it proceeds through the taxi-out, airborne 

and taxi-in phase, the time durations of which are the three components of the block time. 

The percentile model gives a complete set of coefficients describing the impact of the 

block time distribution, separately for each component of block time, on airline SBT 

setting. The coefficients for the different segments of the taxi-out time distribution are 

listed in Table 3.1. Besides the interpretation of the results described in section 2.3.2, 

another way to interpret these results is on a flight level. For example, for a given flight i 

on a specific day d, its actual taxi-out time TOi 
d
 makes a certain contribution to the SBT 

setting in the next planning period when schedulers are using this period of historical 

performance as reference. The SBT set for this flight is SBTi and the contribution is 

,i dSBT .The contribution depends on which segment of the distribution this actual taxi-

out time data point falls in and can be quantified by the estimation results presented in 

Table 3.1. The contribution is the difference between the actual taxi-out time and its 

nearest lower-bound percentile in the historical distribution, plus all the 10
th

 percentile 

segments below the actual taxi-out time. These segments are weighted by the coefficients 

given in Table 3.1, denoted as j ’s. The mathematical formulation is: 
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, 1 ,50 , 4 , 5 , 4

1

min(max( ,0), )d

i d i j i i j i j i j

j

SBT TO TO TO TO TO    



                                  (3.1) 

where 
,i jTO  is the value of the j

th
 percentile of the historical taxi-out distribution for flight 

i, where j=5,…,10. The percentiles are calculated using two years of historical taxi-out 

times, consistent with the way the data is processed in section 2.3 for the percentile model. 

The aggregation method is also the same as in section 2.3, and the time unit is by quarter. 

For this interpretation, the underlying assumption is that the historical distribution for 

calculating 
,i jTO is stable through time and is going to repeat for the existing time period 

when TOi 
d
 happens, providing the percentile values as parameters in the objective 

function. Even though the re-sequencing process changes the actual taxi-out time on a 

daily basis, and thus changes the distribution, in this study we still use the original 

distribution to extract the parameters in the optimization and keep them the same for the 

case study conducted in this chapter. The parameters are only indicating percentile values 

we used in the objective function; and they do not reflect the true on-going taxi-out times 

during the optimization period. This is reasonable because in this research, we only 

conducted the optimization daily for a month. If the time horizon of the optimization is to 

be expanded, the parameters (percentile values) extracted from historical distribution will 

also need to be updated to consider the newly adjusted taxi-out times. Even when just 

considering one month, in the real-world setting, this scenario of stable monthly block 

time distribution is still hard to achieve. We make this assumption more reasonable by 

selecting multiple years of historical data when calculating the different percentile values. 

The detailed method for this calculation will be discussed in section 3.2.3 shortly.  

For example, suppose flight i has a distribution of historical taxi-out time characterized 

with the 50
th

 through the 100
th

 percentile. If on a specific day d, the flight experiences a 

taxi-out time TOi 
d 

that falls between the 70
th

 and 80
th

 percentile of the flight’s historical 

taxi-out time distribution, denoted as TOi,70 and TOi,80. Then, the contribution of this 

flight’s taxi-out time to the SBT being set during the next planning period would be: the 

difference between TOi 
d
 and TOi,70, plus the difference between the 50

th
 and 60

th
, and 60

th
 

and 70
th

 percentile of this flight’s historical taxi-out time distribution, and plus the median 

value of the distribution. Again all these components should be weighted by the 

coefficients in Table 3.1 as: 

, 1 ,50 1 ,60 ,50 2 ,70 ,60 3 ,70( ) ( ) ( )d

i d i i i i i i iSBT TO TO TO TO TO TO TO              
  

(3.2) 

In the context of this study, we are interested in adjusting the distribution of actual taxi-out 

time to reduce SBT. Therefore, the cost of the assignment Cij that we are trying to 

minimize in the optimization should be the contribution to its future SBT, for the flight i 

assigned to a wheels-off time slot j. On a certain day, flight i is assigned to slot j through 

the optimization, generating a new taxi-out time which is the new wheels-off time minus 

the original departure time of the flight, ij i iTO WheelsOff Dep  . The ―cost of 

assignment‖ associated with this assignment is thus measured by the contribution to SBT 

from the new taxi-out time, TOij, denoted as:  
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1

min(max( ,0), )ij j ij i j i j i j

j

C TO TO TO TO   



   
                                               

(3.3) 

 

3.2.3    Benefit Mechanism of the Cost of Assignment 

Through the optimization process, the total daily ―cost of assignment‖, i.e., the total 

contribution to future SBT summed over all flights in the day, is minimized. In fact, by 

re-assigning flights based on such an objective function daily for a period of time, we are 

actually able to change the historical distribution of taxi-out time for each flight. In this 

way, the parameters (percentile values) extracted from the updated actual taxi-out times 

are therefore adjusted in the favored direction, i.e., towards reducing the future SBT. In 

this section, a simplified example is provided to illustrate the mechanism of SBT 

reduction through the optimization with the ―cost of assignment‖ specified in section 

3.2.2. 

Table 3.2 Percentile Values and Parameters for the Hypothetical Flight 

 

Taxi-out Time Hypothetical 

Value (min) 

Variable in 

Percentile Model 

Estimate 

TO50 15 , ,

0.5

f q yTO  0.709 

TO60 17 , ,

56

f q ydTO  0.550 

TO70 18 , ,

67

f q ydTO  0.432 

TO80 20 , ,

78

f q ydTO  0.211 

TO90 22.5 , ,

89

f q ydTO  0.077 

TO100 26 , ,

90

f q ydTO  0.00066 

 

Table 3.2 above shows the values for different percentiles of the taxi-out time for a 

hypothetical flight. For purposes of this example, assume that the  taxi out times can take 

one of these six values listed—50% of the time the value is 15, 10% of the time it is 17, 

10% of the time it is 18, and so on. Now suppose that, through re-sequencing, the 22.5 

minute taxi-out times can all be changed to 20 minute taxi-out times. This brings the 90
th

 

percentile taxi out time down from 22.5 to 20. The resulting change in scheduled block 

time would be 4 89 90 800.077 ( ) 0.077 2.5 0.19mindTO TO TO        . This is exactly 

the difference in the assignment cost in Equation 3.3 between an assignment to a 22.5 

min taxi-out time and the assignment to a 20 min taxi-out time. By similar logic, it can be 

shown that if the 22.5 taxi-out times all became 18 minutes, the block time reduction 

would be: 

 4 89 3 78 90 80 80 700.077 ( ) 0.211 ( )

0.077 2.5 0.211 2 0.61min

dTO dTO TO TO TO TO         

    
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This is again the difference in the cost of assignment using Equation 3.3. Although in 

actuality taxi-out times vary continuously and it is not possible to make the same 

substitutions from day to day, the same reasoning applies to the ―one-off‖ substitutions 

that are made using our assignment model. In summary, through the simplified example 

in this section, we have how the optimization we designed captures the impact of re-

sequencing the taxi-out time distribution, and consequently on future SBT. 

3.2.4    Optimization Result and Impact on SBT 

The cost of assignment defined in section 3.2.2 directly represents the contribution of the 

taxi-out time to SBT, in the unit of minute. Therefore, the optimization minimizes the total 

contribution from all the flights’ taxi-out times to their corresponding SBTs in the future, 

on a daily basis. The daily optimization is conducted for 26 days in January 2011, at John 

F. Kennedy International Airport (JFK), excluding Saturday operations, which is 

consistent with the data processing method used in section 2.3.1. By comparing the 

difference between the original value of the objective function and the optimized value, 

we would acquire the direct benefit of improved predictability, realized through the 

optimization. For each day, a significant reduction in the objective value is achieved. 

Dividing this reduction by the number of flights in the day, the per flight saving for SBT 

can then be calculated. Averaging over the 26 days of our optimization, the optimization is 

able to reduce the contribution of taxi-out time to future SBT by 0.61 minutes per flight.  

JFK is notorious for its busy air traffic, especially the busy surface operations which often 

result in excessive taxi-out times. Given the fact that JFK is among the ten airports that 

have the longest taxi-out times (BTS, 2007), the benefit from departure queue re-

sequencing is expected to be significant for JFK. To compare the effect of the proposed 

algorithm, we apply the optimization to other two less congested airports: the Dallas/Fort 

Worth International Airport (DFW), and the San Francisco International Airport (SFO), 

during the same 26 days in January 2011. Respectively, the re-sequencing process 

described above reduces the contribution of taxi-out time to future SBT by 0.27 minutes 

per flight for DFW, and 0.23 minutes per flight for SFO.  

Table 3.3 presents the result of the optimization for the three airports in greater detail. 

Column 2 and 3 show that DFW airport has the largest number of daily operations, as well 

as the largest portion of flights that are re-sequenced through the process. Among the three 

airports, the proportion of flights changed in the daily optimization is perfectly correlated 

with the number of daily operations at the airport. JFK is the airport with the most 

congested surface operation among others, and the optimization produces the greatest 

improvement in the future SBT (the largest reduction). For the other two airports, the 

reduction is much smaller, about 1/3 to 1/2 of the reduction in JFK.  

The last two columns show another important performance metric—the on-time 

performance—of the three airports, before and after the optimization. Although on-time 

performance is not directly considered in the objective function of the optimization, 

changing the wheels-off time of the flight will consequently change the arrival time of the 

flight, thus possibly affecting the on-time performance. The objective function aims at 

pulling the inner right tail of the distribution closer to the center, and therefore we would 
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expect the optimization might also improve the consequent on-time performance of the 

flights. In our study, the on-time performance is calculated on a per airport, daily basis. 

For flight i departing airport j in day d, OTi=1 if   the flight arrives less than 15 minutes 

after its scheduled arrival time at the destination airport (excluding 15 minutes). Then for 

day d and airport j, the on-time performance is 
∑    
    
   

    
⁄  . Nj,d is the total number of 

flights in day d at airport j. The new actual arrival time of the flight after it is re-sequenced 

in the queue depends solely on the newly assigned wheels-off time. In this study we 

consider the airborne time and taxi-in time of the flight remain unchanged.  

 

Table 3.3 Optimization Results of the Departure Queue Re-sequencing Algorithm 
 

Airport Average 

No. Flights 

per day 

Proportion of 

Flights Changed 

SBT 

Reduction 

(min) 

Original On-

time 

Performance 

On-time 

Performance 

Improvement 

DFW 441 60.31% 0.273 0.609 0.0016 

JFK 236 52.84% 0.611 0.434 0.0096 

SFO 129 46.84% 0.240 0.782 -0.0059 

 

In Table 3.3, the average original on-time performance across the 26 days and the average 

improvement on the on-time performance through the optimization is shown. Based on the 

original data, the on-time performance is the lowest at JFK, which is not surprising given 

its surface congestion. Meanwhile, JFK is also the airport that sees the greatest 

improvement after the re-sequencing: the on-time performance is increased by 0.0096, or 

1.7%. The on-time performance is also slightly increased for DFW; however it is 

decreased for SFO, which is also the airport with the smallest reduction of SBT through 

the process. Overall, Table 3.3 shows that re-sequencing can reduce scheduled block time, 

not hugely but tangibly, and that flights from airports with greater level of surface 

congestion benefit the most from the re-sequencing proposed in this study. 
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Figure 3.1 Taxi-out Time before and after Re-sequencing: JFK, 01/02/2011. 

 

Figure 3.1 provides a closer look at how taxi-out times for individual flights are changed 

by the re-sequencing process, at JFK on a specific day, 01/02/2011. For each flight on this 

date, X axis represents its original taxi-out time, and Y axis shows its new taxi-out time 

after the re-sequencing. The straight line is a 45 degree line and the observations falling on 

this line have unchanged taxi-out times, i.e., these flights are not re-sequenced through the 

process. Of the 152 flights on 01/02/2015 at JFK, 71 flights fall on this line (46.7%). 

Observations falling above the straight line in Figure 3.1 are flights with a longer taxi-out 

time after the re-sequencing; and 35 flights (23%) fall into this category. The average 

increase of taxi-out time per flight is 11.3 minutes. 46 observations (30.3%) are below the 

straight line, meaning that they have a shorter new taxi-out time, and the average reduction 

is 8.8 minutes. The daily optimization process switches the sequence in the queue for over 

half of the flights; and the flights ending up with longer taxi-out times are slightly more 

than those with shorter taxi-out times after the re-sequencing. The magnitude for the 

increase is also higher on average than the average decrease in taxi-out time. From Figure 

3.1 this difference in the magnitude of the change can also be observed as flights are 

scattered further above than below the straight line.  
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Figure 3.2 Departure Queue Diagram before and after the Optimization for JFK, DFW 

and SFO, 6am-9am on 01/02/2011. 

 

Figure 3.2 provides the results from the departure queue sequencing, during certain time 

duration in a particular day, for the three airports. The actual departure times of the flights 

included fall between 6am and 9am. The blue line reflects the gate departure time of each 

flight, which is not changed in the optimization process. The red and green line represent 

the wheels-off time for each flight, before and after the re-sequencing respectively. For all 

the three airports, it can be observed that a significant amount of flights during the three 

hours are switched through the optimization. Since the optimization is re-assigning the 

flights to existing wheels-off slots, we can see a balanced outcome where certain flights 

are switched to earlier wheels-off times, while other flights are pushed back in the 

departure queue. JFK is the airport with the fewest number of operations (30 departing 

flights). Different patterns of how the optimization changes the queue sequence are 

observed. For example, for the 6
th

 flight to the 11
th

 flight in the queue, originally the 

earlier flight is assigned to a later wheels-off time slot, which is contrary to the first-in-

first-served practice. The re-sequencing yields a queue that’s more consistent with first-in-

first-out pattern, where the flights leaving the gate earlier gain an earlier wheels-off time 

in the departure queue. On the contrary, at a later time for the 16
th

 to 19
th

 flight in the 

queue, originally the flights are sequenced in the same order as how they leave the gate. 

The re-sequencing process mixed up the order and the new queue is no longer in a first-in-

first-out fashion.  

Comparing these two segments, the earlier one has a short average taxi-out time for the 

flights, where the departure time is close to the wheels-off time; while in contrast the later 

segment has a much longer average taxi-out time for the flights. This indicates that the 

optimization process may work differently for time periods with busy surface operations 

and less busy ones. For peak hours with busy operations and longer taxi-out times, the 

flights’ taxi-out times are more likely to fall on the right tail of their distribution (beyond 

the median value), and the optimization process tends to interrupt the first-in-first-out 
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pattern and switch flights around in the queue to achieve the best adjustment to the actual 

taxi-out times, and thus to the future SBT. On the other hand, during less busy hours, the 

taxi-out times of the flights are shorter and the re-sequencing process tends to smooth out 

the variation in the queue and make it more in line with a first-in-first-served pattern. 

For DFW, we can also observe the effect of the optimization that pulls the queue towards 

both the left and right side at different positions. We can also observe the two patterns in 

the JFK case where the queue is adjusted differently, but more often we see cases where 

flights are adjusted to be more consistent with the first-in-first-served pattern (for 

example, the 31
th

 to 38
th

, and the 42
th

 to 48
th

 flight in the queue). In general, these 

situations again happen where the average taxi-out times are shorter; and the optimization 

results in a pattern that is contrary to the first-in-first-out pattern when taxi-out time are 

greater (for example, the 10
th

 to 20
th

 flights in the queue). There are also a few more 

extreme events where the flight is significantly delayed and thus experiences a very long 

taxi-out time after the optimization. Compared to JFK and DFW, fewer flights are re-

sequenced drastically in the departure queue at SFO. Figure 3.3 below provides a similar 

illustration of the original and new taxi-out times for the flights on 01/02/2011 at SFO. 

Among the 231 flights on that day, 104 remained the same taxi-out times. Again over half 

of the flights are re-sequenced in the departure queue through the process. 52 flights 

(22.5%) ended up with longer taxi-out times, and the average increase is 7.71 minutes for 

these flights. The remaining 75 flights (32.5%) are re-sequenced to have shorter taxi-out 

times, and the average reduction is 5.35 minutes. Similar as the same results from JFK, the 

magnitude of the increase is higher. However, the scale of the change is much smaller 

compared to JFK, for both positive and negative changes.  

 

 

Figure 3.3 Taxi-out Time before and after Re-sequencing: SFO, 01/02/2011. 
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3.3 The Effect of On-time Performance 

The formulation of the ―cost of assignment‖ identified in section 3.2 optimizes the 

contribution of actual taxi-out time to future SBT. However, the sole focus on reducing 

future SBT makes it less realistic, since there are other objectives the airlines consider in 

the re-sequencing process. For example, as briefly mentioned in section 3.2.3, the process 

would definitely affect the on-time performance, which is an important performance 

metric in airline operations. Since the percentile block-time model gives little weight to 

the far right tail of the distribution, it is possible that the optimization will deliberately 

assign extremely long taxi-out times to certain flights where the contribution to future 

SBT is negligible to ensure other flights gain more benefits (SBT reduction) from 

reduction at the ―inner right tail‖ of the distribution. In these cases, the on-time 

performance (fraction of flights that arrive less than 15 minutes behind schedule) of the 

delayed flights may be compromised. Additionally on-time performance is affected by 

gate delay, which plays a very small role in scheduled block time setting (see Chapter 2). 

Therefore, in this section, the trade-off between impact on SBT and the on-time 

performance of the flight is taken into consideration when designing the ―cost of 

assignment‖. 

3.3.1    Updated Objective Function 

In this section, a second piece in the objective function will be added to account for on-

time arrival performance as part of the ―cost of assignment‖ as well. In this way, we 

develop a multi-objective algorithm to sequence departure flights to improve 

predictability, reduce airline scheduled block time, while maintaining on-time 

performance. On a certain day, flight i is assigned to slot j through the optimization, 

generating a new taxi-out time which is the new wheels-off time minus the original 

departure time of the flight, 
ij j iTO WheelsOff Dep   . In addition to the contribution to 

future SBT of this new taxi-out time, as described in section 3.2, we also calculated the 

new on-time performance of the flight with the updated taxi-out time. As mentioned in 

section 3.3, we assume that the airborne time iAir and taxi-in time iTaxiIn for flight i 

remain the same after being re-sequenced. The new actual arrival time of the flight i 

assigned to slot j is therefore ij j i iArr WheelsOff Air TaxiIn   . If the flight arrives less 

than 15 minutes after its scheduled arrival time at the destination airport, then the on-time 

performance of this flight, OTij=1. Otherwise, OTij=0. In our study, we minimize the 

objective function, which should exert cost to airline operations. Therefore it is the 

dummy variable reflecting the flight not being able to arrive on time that should be 

included in the ―cost of assignment‖. We then develop the variable Delayij=1-OTij that 

reflects whether the flight is delayed or not and incorporate that into our objective function 

to be minimized in the optimization. The updated ―cost of assignment‖ is now: 

5

, 4 , 5 , 4

1

min(max( ,0), )ij j ij i j i j i j ij

j

C TO TO TO TO Delay   



    
                                        

(3.4) 
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The new ―cost of assignment‖ has two components that airlines try to minimize in their 

operations: the contribution to future SBT, and the on-time performance of the flight. As 

in section 3.2, the daily optimization is conducted for 26 days in January 2011, at JFK, 

DFW and SFO airports (excluding Saturday operations as in estimating the percentile 

model). Since the new objective function contains two parts with different units and 

magnitudes, we cannot simply compare the original value of the objective function and the 

optimized value as in section 3.2. Instead, we calculate the change in the contribution to 

SBT in minutes, and the change in daily average on-time performance separately. Table 

3.4 presents the results from the optimization, both with the original objective function in 

section 3.2, and the updated one incorporating on-time performance proposed in this 

section. Firstly, the proportion of re-sequenced flights in the queue remains the same as 

before. Nearly or over half of the flights are re-sequenced in the new optimization model 

as well, and this proportion is positively correlated with the number of daily operations.  

 

Table 3.4 Optimization Results of the Departure Queue Re-sequencing: Basic and 

Updated Objective Functions 
 

Airport Average 

No. Flights 

per day 

Proportion of 

Flights Changed 

SBT 

Reduction 

(min) 

Original On-

time 

Performance 

On-time 

Performance 

Improvement 

 Basic objective function 

DFW 441 60.31% 0.273 0.609 0.0016 

JFK 236 52.84% 0.611 0.434 0.0096 

SFO 129 46.84% 0.240 0.782 -0.0059 

 Incorporating on-time performance 

DFW 441 60.42% 0.270 0.609 0.0142 

JFK 236 53.04% 0.608 0.434 0.0232 

SFO 129 46.87% 0.235 0.782 0.0080 

 

A significant per flight reduction in the contribution to future SBT, as well as a significant 

increase in daily on-time performance (except SFO) is achieved. Compared to the basic 

objective function, the reduction in SBT is slightly reduced. The difference in SBT 

reduction between the basic and the updated objective function is the largest for JFK 

(around 3.6% reduction), and smaller for DFW (1% reduction) and SFO (2% reduction). 
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In exchange of the less reduction in future SBT, the daily on-time performance of the daily 

flights is improved, since the current objective function now directly incorporates the 

number of delayed flights. The greatest absolute improvement in on-time performance 

compared to the prior optimization happens at JFK, where the on-time performance 

improvement is increased by 0.0136, while the improvement is 0.0126 for DFW. For SFO, 

originally the optimization would decrease the on-time performance of the airport 

compared to the original sequencing. The new optimization considers late arrivals as a 

cost in the objective function being minimized and yields positive improvement from the 

original on-time performance by 0.008, which is an increase of 0.0139 from the original 

version of optimization. Compared to JFK and DFW, SFO has less issue on the surface; it 

has other issues, such as foggy weather limiting runway operations that are more crucial in 

impacting its flight performance. Therefore, the on-time performance is less sensitive to 

departure re-sequencing, and the proposed optimization is less effective in improving the 

on-time performance at the airport compared to others; however it is still effective in 

increasing the daily on-time performance in the updated optimization version. 

 

 

Figure 3.4 Taxi-out Time before and after Re-sequencing, with the Original and Updated 

Optimization: JFK, 01/02/2011. 

 

Figure 3.4 provides the comparison of the changes in taxi-out times for both the original 

and updated version of the re-sequencing. Similarly as before, the straight line in the graph 

indicates unchanged taxi-out times through the re-sequencing. Observations above the line 

have longer new taxi-out times and those below the line have shorter new taxi-out times. 

The two versions of the optimization have mostly similar outcome and many observations 

overlap in the graph. For the original optimization version, for those flights with a shorter 

taxi-out time, the average reduction in taxi-out time is 8.8 minutes, while it is 11.2 minutes 

for the updated optimization version with on-time performance. For the flights with a 
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higher taxi-out time after the re-sequencing, the average increase for the original 

optimization is 11.3 minutes, and 14.3 in the updated version. The updated version of 

optimization increases both the positive and negative change in taxi-out times. It more 

aggressively adjusts the taxi-out times for the flights, reducing taxi-out times for a better 

on-time performance, while maintaining the increase in taxi-out times at acceptable level 

and not further interrupting on-time performance. 

3.3.2    Sensitivity Analysis 

The optimization conducted in section 3.3.1considers both the reduction in future SBT and 

the improvement in daily on-time performance as benefit from the departure queue re-

sequencing. However, on a per flight level, the algorithm weighs the reduction in SBT and 

the on-time performance equally. In this section, we propose to adjust the relative weight 

of the two components in the objective function to investigate the sensitivity of the re-

sequencing process. The new formulation of the ―cost of assignment‖ is now: 

5

, 4 , 5 , 4

1

min(max( ,0), )ij j ij i j i j i j ij

j

C TO TO TO TO Delay   



     
                                   

(3.5) 

By changing the value of α, we will be able to adjust the cost of delay relative to the cost 

of contribution to future SBT in the objective function and see how the optimization 

result varies. In this section, we only consider the two airports with the most and least 

effectiveness from the optimization in section 3.2 and 3.3: JFK and SFO. Table 3.5 shows 

the result of the sensitivity analysis with different values of α. For both airports, the 

trends for SBT reduction and on-time performance improvement as α increases are 

similar to each other. As α gets larger, the optimization focuses more on reducing delayed 

flights, and thus is less inclined to strategically delay certain flights to the further right 

tail of the taxi-out time distribution. Therefore, the reduction of the contribution to future 

SBT decreases as α gets larger. In exchange, the improvement in on-time performance 

grows significantly larger as more weight is allocated to this factor. For SFO, originally 

the optimization decreases the on-time performance. Adding the on-time performance 

piece into the objective function turns the trend and now the on-time performance is 

increased after the re-sequencing, and the increase gets larger as more weight is allocated 

to the on-time performance factor. Using the updated objective function, from Table 3.5, 

we observe the trade-off between maintaining on-time performance and adjusting the 

distribution to reduce future SBT. The adjustment is restrained more (especially the cases 

where taxi-out time is strategically prolonged) as on-time performance plays a more 

important role in the objective function. 
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Table 3.5 Results of the Sensitivity Analysis Changing Relative Weights in the Updated 

Objective Function: JFK and SFO 

 

 

Another interesting finding from Table 3.5 is that while the improvement of the on-time 

performance through the optimization is significant, it is still limited. Beyond certain 

value of α (50 for JFK and 10 for SFO), the changes remain the same and more weight 

for on-time performance no longer change the result of optimization. These limits 

indicate the maximum room for improving on-time performance through re-sequencing. 

In other words, using all the available resources to re-sequence the departure queue, these 

limits are the best we can improve upon the on-time performance, which is about 8% 

increase for JFK, and only 1.5% for SFO. One possible explanation about this limited 

impact of re-sequencing is that flights are delayed in batches. If one flight is about to be 

delayed (arriving more than 14 minutes after its scheduled arrival time), it is highly likely 

that the other flights departing at similar times are also delayed. It is hard for this flight to 

get out of the ―delayed pool‖ of flights, without resulting in another flights being delayed. 

Therefore, the proportion of the delayed flights for the day has limited room to be 

decreased. Another reason is that taxi-out is less dominant a component determining 

whether the flight is delayed. When leaving the gate, the departure delay is already 

incurred by the flight and the re-sequencing only adjusts the taxi-out time of the flight 

after it leaves the gate. Gate delay is a more dominant component and changing the taxi-

out time doesn’t have an overwhelming power to change the expected delay situation of 

the flight. 

Figure 3.5 illustrates the results of the optimization, with the original and updated 

objective function, for JFK, during a 2-hour period in one specific day. Comparing the 

 JFK SFO 

α Proportion 

of Flights 

Changed 

SBT 

Reduction 

(min) 

On-time 

Performance 

Improvement 

Proportion of 

Flights 

Changed 

SBT 

Reduction 

(min) 

On-time 

Performance 

Improvement 

0 52.84% 0.611 0.0096 46.84% 0.240 -0.0059 

1 53.04% 0.608 0.0232 46.87% 0.235 0.0080 

2 52.50% 0.601 0.0276 46.87% 0.232 0.0108 

 5 52.77% 0.581 0.0336 46.47% 0.231 0.0112 

10 52.83% 0.576 0.0345 46.68% 0.231 0.0112 

50 52.47% 0.576 0.0345 46.64% 0.231 0.0112 
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two graphs, one significant change of the sequence happens around the 75
th

 flight, where 

the updated optimization with on-time performance incorporated into the objective 

function has effectively prevented delaying this flight in the queue, most likely in an 

effort to maintain the on-time performance of this flight. This example helps explain the 

difference of the outcome lying between the two optimization processes. 

 

 

 

Figure 3.5 Departure Queue Diagram for the Original and Updated Optimization for JFK, 

2pm-4pm on 01/02/2011. 
 

From Table 3.5 we learned that the trade-off between SBT reduction and on-time 

performance improvement varies as weight given to on-time performance is adjusted. 

However, the scales of the changes in the two components in the objective function are 

quite different. Figure 3.6 plots the trade-off between the two dimensions and provides a 

more direct illustration of the scale of changes, for both JFK and SFO. The values of α 

increase as the plot goes from left to right. From the figure, we can clearly see that the 

reduction in SBT decreases while the improvement of on-time performance increases as 

more weight is assigned to the cost of on-time performance. For both JFK and SFO, the 

plot displays an ―elbow-shape‖ frontier. At first great on-time improvement is achieved 
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with slight compromise of the SBT reduction for incremental increase in α; after a certain 

point, we need to sacrifice greatly in reducing SBT to trade for a marginal increase in on-

time performance. For both airports, the elbow is when α is in the range between 1 and 2 

(derived from combining the results in Table 3.5 and Figure 3.6). One last thing to notice 

is that the points on the plots overlap at the left end. This is consistent with the 

observation from Table 3.5 that beyond certain value of α, no improvement in on-time 

performance can be obtained. 

 

 

Figure 3.6 Sensitivity Analysis Frontier: JFK and SFO 
 

These results show that while incorporating the on-time performance compromises the 

efficiency in reducing SBT to some extent, this can lead to a small but measurable gain in 

on-time performance. Overall, the sensitivity analysis shows that the proposed 

optimization is still able to reduce future SBT significantly, while also maintaining prior 

levels of daily on-time performance for flights departing the airport. 
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3.4 Conclusion 

In this chapter, the benefit of improved predictability reflected on reduced SBT is 

quantified. Predictability is improved through sequencing the departure queue at the 

airport, with the objective of adjusting the distribution of taxi-out time in a way that can 

allow airlines to set shorter SBTs in the future. We build on the results of the percentile 

model in section 2.3 that reveals the relationship between SBT setting and historical 

block time (more specifically, taxi-out time) and define objective functions that capture 

the contribution of the daily taxi-out time of each flight to its future SBT. The sequencing 

process re-assigns the flights in a day to the existing take-off slots at the airport and 

minimizes the contribution to future SBT, with constraints that guarantee the feasibility 

and the one-to-one matching of the assignment. 

The first form of the objective function we applied strictly replicates the different 

contributions to SBT from each segment of the taxi-out time distribution estimated from 

the percentile model. In an effort to also take on-time performance into consideration, an 

alternative form of the objective function is also developed. A case study is conducted 

with three airports: JFK, DFW and SFO in January 2011. The daily optimization is 

conducted for the 26 non-Saturday days in the month; and the average saving in future 

SBT per flight is calculated. On average, through the optimization airlines can save 0.61 

minutes of future SBT per flight in JFK, 0.27 minutes in DFW, and 0.23 minutes in SFO. 

This shows that the benefit of reduced SBT of the proposed re-sequencing varies across 

airports and is more valuable at airports with more congested surface operations. 

The proposed objective function focuses solely on reducing future SBT, which is not the 

only objective of concern to airlines. As a result, it is possible that some flights’ taxi-out 

times are strategically prolonged because the contribution to additional SBT is negligible 

on the far right tail of the taxi-out time distribution. This may compromise the on-time 

performance of the flight, which is also an important metric for the airlines. Therefore, 

we also develop a multi-objective optimization that aims at both reducing future SBT and 

improving airport daily on-time performance. A case study is conducted for JFK and SFO, 

as well as a sensitivity analysis. A trade-off between the two components in the objective 

function is observed. While the SBT reduction is slightly compromised with on-time 

performance added (around 0.6%), the increase in the improvement of on-time 

performance is huge (around 141.8%). As the weight given to on-time performance 

grows larger in the sensitivity analysis, the SBT reduction continues to get smaller, in 

exchange of an increase in the on-time performance; and the difference between the 

percentage changes of the two components become less drastic. Beyond certain weight 

given to on-time performance, the optimization becomes stable and is no longer sensitive 

to this weight. 

These results show that if reducing SBT is the only goal of the airport surface 

management, then the departure queue sequencing process should further delay the 

―hopeless‖ flights whose expected taxi-out time is predicted to be much longer than 

historical performance. When adding on-time performance into the objective function, 
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the reduction in SBT is compromised to some extent, but with greater gain in improved 

on-time performance. However, airport departure queue management involves multiple 

objectives including delay, fuel burn, etc. This study contributes to the existing literature 

by pointing out another potential factor to consider, which is predictability, and 

demonstrated the benefit in the form of reduced future flight SBT. Neglecting this benefit 

might lead to suboptimal airport surface management decisions and reduced value for 

airlines and other stakeholders. In future research, incorporating other objectives in 

addition to the single predictability objective function considered in this chapter would be 

a promising research direction. 

As a final remark, the benefit quantified in this chapter, especially in the form of reduced 

SBT, is contingent to the length of application of this re-sequencing process. In this 

chapter, re-sequencing is conducted consecutively over the period of a month. The 

reduction of future SBT on a per flight level specified by the optimization process is 

under the assumption that the daily optimization is performed for a month and only the 

taxi-out times during this month is considered as historical performance for future SBT. 

In reality, multiple years of historical block time (taxi-out time) information is used 

aggregately by the airlines to determine their future SBTs. Therefore, in order to truly 

achieve the benefit, the re-sequencing process should be repeated for a period much 

longer than only one month as in this study. Extending the optimization period will also 

undermine the assumption of the historical block time distribution being stable and thus 

using the same percentile values for the extended optimization would no longer be valid. 

The optimization process changes the actual taxi-out times and the parameters should be 

updated for the later periods because the distribution has been changed and is no longer 

stable throughout time. Since in the percentile model, flights are aggregated by quarter, it 

is reasonable to update the taxi-out time distribution and the parameters for the 

optimization on a quarterly basis. Despite the fact that we only conducted the 

optimization for a limited period of time in this study, the findings in this chapter still 

demonstrate that there is substantial benefit in airlines’ long-term strategic planning from 

departure re-sequencing. The study in this chapter contributes to the aviation community 

by proving that among all the benefit objectives of the surface management tools in the 

pipeline, there is the additional possibility of using these tools to allow airlines to set 

shorter SBTs. How to adjust the one-month optimization and make it more practical for 

implementation is a promising direction for future research. 
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4. Operational Decision Modeling 

In chapter 2 and 3, we focus mainly on the relationship between flight time predictability 

and the scheduled block time setting decision, which is major airline cost driver. In this 

chapter, another aspect of the airline decision, i.e. the operational decision that happens 

on a daily basis for the airlines is considered. In the scope of this study, we investigate an 

additional benefit mechanism from improved predictability—fuel savings, which is 

another major cost driver for airlines.  

On first consideration, it may seem implausible that increasing predictability will affect 

fuel consumption. An automobile commute, after all, burns the same amount of gas in 

following a certain route with a certain speed profile, whether that speed profile is highly 

variable or very consistent from day to day. The difference between an automobile 

commute and a flight by an aircraft is the role of the loaded fuel. For both modes, it is not 

uncommon to arrive at the destination with extra loaded fuel in the tank as a form of 

contingency against risk. However, while for automobiles the weight of the tank is nearly 

negligible compared to the vehicle, fuel loaded to an aircraft accounts for a large portion 

of the total aircraft weight. Moreover, loading this fuel is not without penalty. Again 

unlike the automobile commute where the vehicle’s fuel burn rate is quite stable, aircraft 

fuel burn is highly sensitive to aircraft weight. In summary, the fact that extra loaded fuel 

causes significant additional fuel burn differentiates a flight by aircraft from an 

automobile commute. Considering this, in aviation the decision of the amount of fuel 

loaded to the aircraft for an flight, termed fuel uplift, is a much more delicate economic 

tradeoff than automobile trips, where this is a simple matter of occasionally filling up the 

tank. On one hand, airlines must load a sufficient quantity of fuel for flights to avoid any 

risk of fuel exhaustion and to reduce the likelihood of a fuel-related diversion. In practice, 

this means that considerably more fuel is loaded than is likely to be burned, and thus that 

most flights land with considerable fuel in their tanks.  

Even the most stingy and courageous flier would be willing to pay for some extra fuel to 

ensure that a flight has enough fuel on-board to complete its mission. Indeed, toward this 

end federal regulations stipulate minimum fuel reserves that must be boarded to each 

flight, and in some conditions also require sufficient fuel to fly to an alternate airport. In 

addition to reserve and alternate fuel, contingency fuel is also boarded. The amount of 

contingency fuel loaded is discretionary, and reflects the airline dispatcher’s assessment 

of the ―downside‖ risks that may lead to additional fuel burn beyond what is projected by 

the flight plan. Contingency fuel, together with the decision of carrying extra fuel to fly 

to an alternate airport when it is not required by federal regulation, thus represents the 

dispatcher’s hedge against unpredictability. This, in combination with the effect of fuel 

uplift on fuel burn, suggests a connection between unpredictability and fuel consumption. 

Recognizing the link between fuel consumption and predictability allows for both the 

monetization of predictability and the identification of new strategies for reducing 

aviation fuel consumption. There is intense focus on reducing fuel consumption from all 

stakeholders both to preserve the financial health of the airline industry and minimize 

environmental impact. Airlines are moving aggressively to reduce fuel consumption 
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because of rising fuel costs, which have gone from $21 billion in 2009 to $31 billion in 

2012, and now account for 27% of airline operating costs, based on Bureau of 

Transportation Statistics data (BTS, 2009; 2012). Higher fuel costs force airlines to 

increase their ticket prices, which in turn suppresses demand. While fuel prices decreased 

in 2014, the price fluctuation only showcases the instability of the international fuel 

market. Consider that in 2008, jet fuel prices reached levels more than three times those 

of 2004, followed by a sharp decrease in 2009. Many interpret the current 2015 period as 

a ―bust‖ and argue that the long term trend is still toward higher prices (The State of the 

Global Markets Report, 2015). In addition to issues with supply and prices, in the future, 

climate change policies and environmental attitudes of potential air travelers may further 

increase or destabilize effective fuel prices (Ryerson et al., 2013). Thus, by economizing 

on fuel airlines reduce their exposure to an economic ―wild card.‖  

In this chapter, we investigate the relationship between flight time predictability and fuel 

consumption for a major US carrier. As discussed before, there is a direct physical 

relationship between fuel uplift and fuel consumption. Moreover, the fuel uplift 

determined by dispatchers may be affected by the flight time unpredictability. This might 

be the underlying mechanism to explain the results found by Ryerson et al. (2014) that 

when airlines add additional ―buffer‖ time to flight schedules, fuel consumption increases. 

In this study, we exploit a large and recent flight-level dataset provided by a major US 

airline and merge this dataset with other publicly available datasets that incorporate NAS 

operating characteristics. The data included for each flight are the amount of loaded fuel, 

fuel burn and its rate, scheduled, planned, and actual flight times, and delays. We 

measure unpredictability of a flight by the standard deviation of airborne time among all 

the flights between a specific OD pair, departure time bank and month. This dataset 

enables us to estimate the relationship between unpredictability and fuel uplift, while 

controlling for other relevant factors such as terminal weather and traffic. Then by 

exploiting established relationships between fuel uplift and fuel consumption, we are able 

to evaluate the value of predictability in terms of cost savings from less consumed fuel.  

 

4.1 Literature Review 

To investigate the impacts of flight predictability on fuel loading or any other aspect of 

airline behavior, the first step is to define and measure flight predictability. The idea of 

reliability or (inversely) variability as an equivalent to predictability is not new in the 

field of ground transportation, where (un)reliability mainly refers to the unpredictable 

variations in travel time and is thus directly related to uncertainty of travel time (Carrion 

and Levinson, 2012). As a measure of travel time variability in ground transportation, 

most studies have used either the standard deviation or the average delay relative to 

scheduled arrival time (Börjesson et al., 2012), although some studies include both, while 

other studies use percentiles of the travel time distribution (Brownstone and Small, 2005). 

The most common approach for non-scheduled services with relatively high travel time 

variability, such as car trips and urban high-frequency transit trips, seems to be the so-

called ―mean-variance‖ approach, where the formulation (with a linear-additive form) 

contains only the mean and standard deviation of the travel time (Noland and Polak, 2002; 
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Hollander, 2006). Hollander (2006) further argues that ―mean-variance‖ formulation may 

in practice not be able to capture the full disutility of travel time variability. 

For low-frequency scheduled services with relatively low travel time variability, such as 

long-distance train or air trips, using the ―average delay‖ as the variability measure seems 

to be the most common approach (Börjesson and Eliasson, 2011). By assuming that all 

travelers’ preferred arrival times are equal to the scheduled arrival time, the form 

expressing variability with ―average delay‖ can be derived. Wardman (2001), followed 

by Abrantes and Wardman (2011) include a meta-analysis of British valuations of 

average delay. However, Börjesson and Eliasson (2011) argue that the value of ―average 

delay‖ is not proportional to delay risk, suggesting average delay underestimates the 

value of unreliability, using survey results conducted on long-distance train passengers.  

The analogy between travel time unreliability in ground and air transportation leads to the 

use of similar standard deviation metrics in air transportation, as employed in this chapter. 

In the realm of air transportation, the block time, commonly referred to as flight time, for 

a flight is the analogue for travel time in ground transportation. It is defined as the time 

between when an aircraft pushes back from the gate for the purpose of flight and when 

the aircraft comes to rest at the gate after landing. The block time can be further 

decomposed into taxi-out, airborne and taxi-in time. Among the three components, the 

airborne time is generally the largest component. In section 2.3 we use the different 

percentiles of block time as metrics for block time predictability. Block times percentiles 

are found to better predict scheduled block time than other metrics, including standard 

deviation.   

Previous research on predictability valuation in an aviation context is fairly limited. 

Hansen et al. (2001) use factor analysis to devise a predictability metric whose cost 

impact is estimated by including the metric as an argument in an airline cost function. 

More recent studies, including the study in chapter 2 in this body of research, focus on 

the relationship between flight time dispersion and SBT, which is a major cost driver for 

airlines. Other mechanisms through which predictability generates value for airlines are 

more difficult to document and quantify. One approach is to identify airline planning and 

operating behaviors that both influence system cost and are influenced by predictability. 

In an effort to investigate how different components of delay impact fuel consumption, 

Ryerson et al. (2014) use simulated and actual airline fuel consumption data and find that 

fuel attributed to planned delays accounts for about 20% of the fuel that can be attributed 

to unplanned delays. Ryerson et al. (2014) conjecture that additional fuel loaded in the 

planning phase adds weight to the aircraft, thus increasing fuel consumption. The present 

study focuses on this effect. 

Despite the important role fuel loading plays in fuel consumption, there is little literature 

specifically on fuel loading practice as a driver of airline fuel efficiency. Many other 

avenues for reducing fuel burn in the aviation sector have received far more attention. 

These include substituting all connecting flights in the US with non-stop flights (Jamin et 

al., 2004), substituting narrow body jets with turboprops (Ryerson and Hansen, 2010), 

and implementing Continuous Descent Approaches (CDA) and Airspace Flow Programs 

(AFP) aiming at coordinating ground and air operations (Clarke et al., 2004). There is 
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significant work investigating ground-based fuel savings measures such as single-engine 

taxi (Khadilkar et al., 2012) and delayed pushback procedures (Simaiakis et al., 2012).  

 

4.2 Airline Fuel Loading Practice 

The determination of fuel uplift for a specific flight is an important and safety-critical 

aspect of airline flight planning. During the flight planning phase, flight plans are created 

by dispatchers at the airline operations control center. There is a small body of literature 

regarding airline dispatch and flight planning; see Karisch et al. (2012) for a 

comprehensive look at the topic. In the following section, we provide a short background 

on flight planning and fuel loading.  

As flight crew members on the ground, flight dispatchers perform a number of duties to 

ensure the safe operation of a flight from its origin to destination. Dispatchers prepare a 

flight plan for each flight, about two hours prior to departure. Each dispatcher typically 

works a 9 or 10 hour shift during which, for domestic dispatchers, about 40 flights will be 

planned. The flights for a particular dispatcher’s desk are typically organized by 

geographic region. Dispatchers typically work the same desk, and thus the same set of 

flights, from day to day. In addition to flight planning, dispatchers perform other duties to 

ensure the safe operation of a flight from origin to destination. These include providing 

pilots with real-time updates, coordinating between various parties to resolve 

maintenance issues, and continuously monitoring the flight from takeoff to landing.  

The information typically considered by dispatchers when planning flights – and loading 

the fuel –includes current and forecasted weather conditions at the origin, destination, and 

en route, restrictions or notifications from air traffic control, and specific flight routings. 

Each flight plan identifies characteristics of the flight, such as the trajectory from origin 

to destination, and critically for our study, the quantity of fuel to be loaded. The fuel 

uplifted is in quantities classified as mission fuel, reserve fuel, and discretionary fuel 

(sometimes termed contingency fuel by U.S. carriers); while in practice the fuel is 

uplifted as a single quantity, the classification of fuel into these three categories allows us 

to investigate any additional fuel uplift that could be reduced for fuel savings. Flight 

planning and dispatching is greatly different between flights within and outside the 

continental US (CONUS); the following discussion, and forthcoming analysis, will focus 

flights within the CONUS.  

Mission and Reserve Fuel: U.S. Federal Aviation Regulations (14 C.F.R. § 91, E-CFR 

2014) (FARs) require a domestic commercial flight to uplift enough fuel to complete the 

flight to the intended destination airport, miss the landing approach at the intended 

destination airport, fly from the destination airport to the alternate airport (if required by 

weather conditions), and hold in the air for 45 minutes at normal cruising speed (Federal 

Aviation Administration, 2008). This mandated fuel quantity is broken into two 

categories: mission fuel and reserve fuel. The mission fuel is calculated by the flight 

planning system (FPS) upon selection of a route by the dispatcher. The reserve fuel is the 

quantity of fuel an aircraft needs to fly for 45 minutes at normal cruising speed, 
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presumably to enter a holding pattern above either the destination airport or an alternate 

airport or to enter a holding pattern en route in the case of reduced airport or airspace 

capacity. The reserve fuel is not input by the dispatcher but rather calculated by FPS. 

Alternate Fuel: The hold fuel, or alternate fuel, is the quantity of fuel that would be 

needed to fly from the destination airport to the alternate airport. The designation of an 

alternate airport, however, requires input from the dispatcher. An alternate airport is an 

airport in the general vicinity of the destination airport that will serve as the designated 

destination in the event of some flight disruption at the original destination, such as 

adverse weather, congestion, airport closures, etc. When an alternate airport is listed on a 

flight release, the FPS calculates the additional fuel needed to miss a landing approach at 

the original destination and then fly to the alternate airport.  

If a dispatcher adds an alternate airport to a flight release, it is for one of two reasons. The 

first is that the designation of the alternate airport (and the fuel loading that it requires) is 

required by the FARs because of weather conditions. The FARs require a flight to carry 

enough fuel to travel to an alternate airport if the weather conditions are such that 

visibility is less than 3 miles and the ceiling at the destination airport (defined as the 

distance above the earth's surface of the lowest layer of clouds (e-CFR)) is less than 2000 

feet at the flight’s Estimated Time of Arrival (ETA) ± 1 hour. The second reason a 

dispatcher might add an alternate to the flight release is that the dispatcher wants to 

provide extra buffer in the case where capacity is unexpectedly reduced and the flight 

needs additional fuel to complete its mission (or divert to the alternate). The dispatcher 

might have access to a different (and possibly internal) weather forecast or they might 

perceive there will be high levels of congestion when the flight in question enters the 

destination terminal airspace. In this case, the act of adding an alternate airport to a flight 

release is similar to adding contingency fuel, except the dispatcher chooses an alternate 

airport instead of a number of contingency fuel minutes.  

Sometimes a second alternate airport is added to the flight plan, although this is never 

required by FARs. A dispatcher may add a second alternate if the first alternate airport is 

predicted to have marginal weather and the dispatcher does not feel fully secure by only 

having one alternate.  

Contingency Fuel: Discretionary fuel, often termed contingency fuel in the U.S. (not to 

be confused with the portion of European required reserve fuel termed ―contingency 

fuel‖), may be uplifted onto a flight. Contingency fuel is, in essence, a reflection of 

expected operational degradation, or unpredictability.  Contingency fuel is for use in the 

case of unexpected conditions during the flight, such as additional time on the ground or 

in the air from unexpected delays, re-routing, flight level changes or airborne holding. It 

is typically measured in minutes based on the fuel burn rate of the aircraft in normal 

cruise conditions. This allows dispatchers to think in terms of flight time uncertainty 

rather than fuel burn uncertainty. Airline policy may dictate a minimum amount of 

contingency fuel for a domestic flight (for example, 10-15 minutes) regardless of flight 

conditions, but dispatchers usually add more. As explained by Karisch et al. (2012), 

dispatchers may be presented with guidance regarding the historical distribution of actual 

fuel burn relative to planned fuel burn for similar flights to help them determine 
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contingency fuel . In practice, however, dispatchers uplift more contingency fuel than 

even the far right tail of this distribution would suggest, in order to provide extra 

protection against unforeseen circumstances. Airline management at our study airline, 

and anecdotally at many others, encourages dispatchers to reduce contingency fuel, since 

it is extremely rare for a flight to divert because of low fuel. 

 

4.3 Modeling Fuel Loading Behavior 

4.3.1    Data Collection 

To estimate the impact of unpredictability on fuel uplift, data are collected from three 

sources: fuel and flight statistics from a major United States-based air carrier, weather 

information from the National Oceanic and Atmospheric Administration (NOAA), and 

airport data from the FAA Aviation system Performance Metrics (ASPM) database. 

The US carrier used in our analysis operates an extensive domestic and international 

network serving all continents except Antarctica. The dataset provided from the airline 

includes all domestic flights between April 2012 and May 2013, inclusive. There are 

altogether 810,227 flights during the 14 months for which data is collected. The airline 

dataset contains flight-by-flight data on planned and actual fuel consumption, fuel uplift 

in all categories (taxi, contingency, and alternate) in units of minutes, as well as flight 

information such as equipment, origin and destination, planned and actual flight times 

(the so called OOOI times: Out from the gate, Off the origin runway, On the destination 

runway, and In at the destination gate), and delay information. It also provides actual fuel 

burn data from gate to gate.  

The weather data collected from the NOAA database include both the actual weather and 

weather forecast (TAFs) information for major US airports. The actual and forecast 

weather information contains ceiling, visibility as well as indicators of the presence of 

thunderstorms, snow, and visibility conditions by hour, date, and airport. Visibility 

condition is expressed in terms of whether visual flight rules (VFR) or instrument flight 

rules (IFR) are in effect; these respectively indicate overall favorable or unfavorable 

terminal weather conditions. The weather data was matched with the flight-level airline 

dataset to recreate the conditions seen by dispatchers during the time of flight planning. 

Dispatchers typically make fuel loading decisions around the time the flight plan is 

created. Small deviations in this time do occur from flight to flight, but typically these 

decisions are made 2 hours prior to the flight’s scheduled departure time. We will refer to 

this time as the dispatch time. We merge the weather data with the flight-level data to 

recreate the real-time and forecast weather that was available at the dispatch time for each 

flight. For the real-time weather, we find the actual weather at the origin and destination 

at the dispatch time. For the forecast weather, first we have to find the most recent 

forecast that was issued prior to the dispatch time and refer to the forecast conditions for 

the origin at the planned departure time and for the destination at the planned arrival time. 

This allows us to identify the following weather conditions for each flight: 1. the actual 

weather at the origin and destination airports two hours prior to the scheduled flight 

http://www.noaa.gov/
http://en.wikipedia.org/wiki/Continents
http://en.wikipedia.org/wiki/Antarctica
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departure time (as the actual weather at time of flight planning could influence dispatcher 

fueling decisions) and 2. the most recent forecasted weather (as forecasted two hours 

prior to the flight departure) for the origin and destination airports at the scheduled times 

of arrival and departure. These time frames for defining weather variables are consistent 

with the flight planning process revealed by our on-site observations and discussions with 

flight dispatchers. 

The FAA ASPM database includes quarter hourly data for the 77 large airports in US on 

arrival traffic conditions. It contains average arrival delay for each quarter hour of day for 

each airport to depict level of congestion at the airport. 

The three datasets are merged in a manner that will be described below. After merging 

and some filtering to keep the dataset robust that will be explained shortly, there are 

448,660 flights in the dataset during the 13-month time period.  

4.3.2    Estimation Methodology 

We seek to statistically estimate the contribution of flight unpredictability to contingency 

fuel uplift. As noted above, in addition to loading contingency fuel per se, dispatchers 

sometimes add fuel by adding alternates. We therefore estimate two separate models: one 

with contingency fuel uplift as the dependent variable, and the other with contingency 

plus alternate fuel uplift as the dependent variable. As explained above, in both cases we 

express this fuel quantity in minutes, which is a common practice in fuel loading. We 

denote   (                                 ) as the contingency fuel uplifted on the 

individual flight from airport      to airport      on date d, in month  , with planned 

departure and arrival times torig and tdest, planned by distpatcher     working in shift  . 
The times torig and tdest specify the hour and quarter-hour of planned departure and arrival. 

The empirical definition of predictability (discussed below) will also require including 

the month m and shift s when the flight departs as arguments. We divide the departure 

time of the flight into three shifts in a day: 5am to 3pm as the morning shift, 3pm to 10pm 

as the afternoon shift, and 10pm to 5am as the midnight shift, based on the actual shifts 

used for dispatchers’ work schedules. To capture variation across dispatchers’ fuel uplift 

practices we also index the identity of the dispatcher who planned this specific flight, 

denoted as dis. Similarly, we define variable    ( )  with the same arguments as 

  ( )  which is the sum of contingency and alternate fuel, reflecting the total amount of 

fuel uplift for contingencies/unplanned events.   

The variables   ( )  and    ( )  are the dependent variables in our models. The 

independent variables will capture flight predictability and other variables that affect 

contingency and alternate fuel uplift, such as weather and traffic demand. As a metric for 

predictability, we use the standard deviation of actual airborne time for flights serving the 

same orig-dest pair with a departure time in the same shift s taking place in the same 

month m. We segment flights in this manner based on interviews with the airline 

dispatchers who indicated that fuel loading judgment is most greatly impacted by month, 

shift, and orig-dest pair. In contrast, the aircraft type and specific flight number are not 

specifically considered because most dispatchers do not pay attention to these details in 

fuel loading decisions. The calculation of the standard deviation of actual airborne time 
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takes place on these aggregated sets of flights segmented by m, s, orig, and dest. This is 

denoted as       (             ). To ensure robustness, only combinations of these 

arguments with more than 25 flights are kept in our dataset. (After applying this filter, 

our data set contains 7589 unique combinations of m, s, orig, and dest.) By examining the 

effect of dispersion in historical flight performance, we seek to capture the impact of the 

unpredictability in flight time on dispatcher uplift of contingency fuel and alternate fuel. 

We also include the associated mean value        (             )  to capture 

uncertainty that arises from increasing average flight duration, which may result in less 

reliable forecasts of conditions en route and at the destination airport. Note that only 

airborne time is considered, because it is the largest component of the total flight time 

and an even more dominant source of fuel burn.  

In addition to the dispersion of airborne time, the difference between actual airborne time 

and planned airborne is also a reflection of unpredictability. In everyday operation, the 

actual airborne time is sometimes different from the planned airborne time due to 

unforeseen en route conditions. Thus in this model, we include the mean and standard 

deviation of the difference in airborne time from flight plan. The variable     
                                           is calculated for each flight, and used 

to calculate the mean and standard deviation       (             )  and 

     (             ). 

We assume that dispatchers consider experience in the recent past when making fuel 

uplift decisions. Thus we specify our models so that decisions for flights taking place in 

month m are based on the above flight performance metrics for the previous month m-1.  

As noted in section 4.2, the addition of an alternate on a flight plan, and the related fuel 

consumption, may be mandated by federal regulations due to certain weather conditions. 

In an effort to separate the impact of predictability and the presence of weather, we define 

variables to capture the weather conditions that trigger the mandated addition of an 

alternate. The weather information includes two parts: the actual and forecasted 

information for both the origin and destination airport. Even though dispatchers are only 

supposed to base their fuel loading decisions on the forecasted weather at the departure 

and arrival times of the flight, we discovered, from our observation and interview with 

dispatchers in the airline’s control center, that they also consider current weather 

conditions at the time of their flight planning. Thus current weather information at the 

time the flight was planned is also included in the model. Moreover, the weather 

conditions at both the destination airport (denoted as dest) and the origin airport (denoted 

as orig) are included, since both may affect flight time and fuel burn. 

For the forecasted weather at destination airport dest (or origin airport orig), the hourly 

NOAA data is merged to the realized flight by the time    in which the flight is planned 

to arrive (depart) in the flight plan. Variable       (            ) is 1 if the forecast 

ceiling at airport dest in day d and time      , is lower than 2000 feet and 0 otherwise. 

Similarly,       (            ) is 1 if the forecasted visibility at airport dest in day d 

and time       is lower than 3 nautical miles and 0 otherwise. These criteria for low 

ceiling and low visibility are the thresholds specified in the Federal Aviation Regulations 

(FAR) for alternate requirements—FAR sections 121.619 and 135.223. To further 
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capture overall conditions, the variable    (            ) is 1 if the airport dest has IFR 

conditions at time       of day d, and 0 otherwise. IFR stands for instrumental flight rules, 

which is an overall indicator of poor visibility for airport operations. It is also acquired 

from the NOAA weather dataset. The NOAA weather also provides dummy variables 

indicating snow and thunderstorms at the airport. Variable       (            ) 
(        (            )) is 1 if snow (thunderstorms) is forecasted at airport dest in 

day d and time      , and 0 otherwise. Variables describing forecast weather at the origin 

airports are defined in a similar way, with origin airports denoted as orig, and based on 

the time      . In addition to the forecasted weather condition, the actual weather 

conditions at dispatch time are also included. The variables are similar to the forecasted 

ones, but without the suffix _F. The actual weather variables are merged to the flights 

based on the assumed dispatch time—two hours prior to the planned departure time of the 

flight, i.e.     . 

Lastly, to capture the effect of congestion at the destination airport on contingency and 

alternate fuel uplift, we include a variable depicting arrival delay at the destination airport. 

Variable    (            )  is the average arrival delay per flight in minutes at 

destination airport dest in day d and time      . The quarter hourly average arrival delay 

information is obtained from the ASPM dataset. 

As the airline dataset includes flight-specific information regarding the dispatcher 

identity and there exists substantial variation in fuel loading behavior across dispatchers, 

fixed effects for individual dispatchers are included in the model. Each flight has a 

specific dispatcher dis, with the fixed effect captured in variable     . We additionally 

define a fixed effect for each month. The purpose of this variable is to capture seasonality 

effects not captured explicitly by our terminal congestion and weather variables. For 

example, en route weather conditions are highly subject to seasonality and greatly 

influence fuel loading decision. However, the en route weather conditions are not 

captured in the terminal weather variables that we include in the model. The monthly 

fixed effects are denoted as   . 

Using the variables defined above, we assume a linear specification for the CF and TOT 

models and estimate it using OLS. The choice of a linear specification is mainly for 

convenience. Also, the linear model can be viewed as a first order approximation of a 

more general model around the mean values in the data. Other model specifications may 

be explored in future research. 

As both models have the same specification, we present them using a single equation 

whose dependent variable, Y, may be either CF or TOT. The model formulations are as 

follows.  
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  (4.1) 

 

4.3.3    Estimation Results 

The estimation results are shown in Table 4.1. Note that because our assumption is that 

the fuel uplift is impacted by the flight performance data of the previous month, the 

model is estimated on 13 out of the 14 months covered by our data set. The left portion of 

Table 4.1 shows the estimation results for Equation 4.1 where Y=CF, meaning that the 

dependent variable is contingency fuel in minutes. The top part of the table shows the 

intercept and the predictability metrics. Average airborne time over the past month has a 

small positive coefficient, indicating that longer flights are loaded with slightly more 

contingency fuel than shorter flights—about 1.5 minutes more for a 100 minute increase. 

The coefficient on the standard deviation of airborne time, stdair, is 0.88, indicating that 

one minute of variation in the airborne time in previous month will lead to the uplift of an 

average of almost one minute of additional contingency fuel. This indicates that an 

increase in the unpredictability of the daily flight operation, based on our metric, will lead 

to an increase in contingency fuel uplift at an almost one- to-one ratio. The deviations 

captured in variables avgdif and stdif both have significant coefficients as well. Variable 

avgdif has a small negative coefficient, indicating that an increase in the average disparity 

between actual and planned flight time slightly decreases fuel uplift. A possible 

explanation of this seemingly counter-intuitive result is that when there is en route 

convective weather, planned routings are very conservative, often resulting in time-

saving reroutes during the flight. Thus avgdif may be capturing the degree to which a 

flight is subject to en route convective weather, with a lower value indicating that a flight 

is more subjective. The positive coefficient on stdif could also reflect this, as well as 

other sources of uncertainty that make some flights more difficult to be planned 

accurately than others. In any case, the most important message from these results is that 

dispatchers fueling decisions are much more strongly influenced by the day-to-day 

variability in flight time, as measured by stdair, than by patterns of discrepancy between 

planned and actual times. 

The middle part of Table 4.1 shows the estimates for the weather variables, separated by 

destination and origin airport. Most weather dummy variables have a positive coefficient, 

indicating that adverse weather at the airports will increase contingency fuel uplift. 

Thunderstorms have the largest impact and low ceiling the smallest. Overall, forecasted 

weather has a larger impact on the uplift of contingency fuel than the actual weather, 

indicating that dispatchers’ fueling decisions are more affected by the weather forecast 

than the actual weather at time of flight planning. However the actual weather conditions 

still have significant effects, validating our observation on dispatcher behavior. Moreover, 

the weather conditions at the destination airport, both actual and forecasted, are greater 
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contributors to contingency fuel than the weather conditions at the origin airport. As the 

arrival is the more unpredictable phase of the flight and could induce a large amount of 

fuel consumption from holding or rerouting due to adverse weather, these results are 

consistent with our expectations. Lastly, regarding the traffic conditions at the destination 

airport, a 1-minute increase in the average arrival delay at the destination will lead to a 

0.14 minute increase in the contingency fuel loaded. Arrival delay can derive from arrival 

queuing at the destination airport, which may lead to airborne holding, but it may also 

derive from gate delay at the origin, which has little impact on fuel burn. This probably 

explains why the arrival delay coefficient is considerably less than 1. 

 

Table 4.1  Estimation Results for Fuel Uplift Models 
 

  Contingency min Total min 

Variable Name  Variable Abbreviation Estimate P-value Estimate P-value 

Intercept  20.601 <.0001 20.883 <.0001 

Average Airborne Time  avgair 0.0153 <.0001 0.0103 <.0001 

Standard Deviation of Airborne 

Time 

stdair 0.883 <.0001 1.657 <.0001 

Average Difference in Airborne 

Time from Flight Plan 

avgdif -0.0279 <.0001 0.0938 <.0001 

Standard Deviation of the 

Difference in Airborne Time from 

Flight Plan 

stdif 0.0096 <.0001 0.0361 <.0001 

Low Ceiling Indicator at 

Destination Airport 

lowc_dest -0.0377 0.7191 10.399 <.0001 

Forecasted Low Ceiling Indicator 

at Destination Airport 

lowc_dest_forecast 1.686 <.0001 14.057 <.0001 

Low Visibility Indicator at 

Destination Airport 

lowv_dest 1.858 <.0001 16.041 <.0001 

Forecasted Low Visibility 

Indicator at Destination Airport 

lowv_dest_forecast 3.483 <.0001 24.774 <.0001 

Thunderstorm Indicator at 

Destination Airport 

tstorm_dest 3.267 <.0001 22.457 <.0001 

Forecasted Thunderstorm 

Indicator at Destination Airport 

tstorm_dest_forecast 8.875 <.0001 51.952 <.0001 

Snow Indicator at Destination 

Airport 

snow_dest 1.0046 <.0001 11.896 <.0001 

Forecasted Snow Indicator at 

Destination Airport 

snow_dest_forecast 3.322 <.0001 26.517 <.0001 

IFR Condition Indicator at 

Destination Airport 

IFR_dest 0.658 <.0001 16.886 <.0001 

Average Quarter Hourly Arrival 

Delay at Destination Airport 

Arrival delay_dest 0.136 <.0001 0.514 <.0001 
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Low Ceiling Indicator at Origin 

Airport 

lowc_ori -0.145 0.1785 -0.0621 0.8434 

Forecasted Low Ceiling Indicator 

at Origin Airport 

lowc_ori_forecast 0.0527 0.6710 -0.672 0.0635 

Low Ceiling Indicator at Origin 

Airport 

lowv_ori 0.470 0.0002 0.175 0.6297 

Forecasted Low Ceiling Indicator 

at Origin Airport 

lowv_ori_forecast 0.793 <.0001 2.023 <.0001 

Low Visibility Indicator at Origin 

Airport 
tstorm_orig 1.625 <.0001 1.824 0.0188 

Forecasted Low Visibility 

Indicator at Origin Airport 

tstorm_orig_forecast 5.627 <.0001 8.381 <.0001 

Snow Indicator at Origin Airport snow_orig 0.734 0.0002 -1.135 0.0497 

Forecasted Snow Indicator at 

Origin Airport 

snow_orig_forecast 1.263 <.0001 0.0933 0.8536 

IFR Condition Indicator at Origin 

Airport 

IFR_orig 0.643 <.0001 1.997 <.0001 

January Dummy  month 1 -1.279 <.0001 -4.679 <.0001 

February Dummy month 2 -0.631 <.0001 -3.080 <.0001 

March Dummy month 3 -1.219 <.0001 -8.636 <.0001 

April Dummy month 4 1.018 <.0001 -1.784 <.0001 

May Dummy month 5 1.068 <.0001 1.633 <.0001 

June Dummy month 6 2.037 <.0001 2.811 <.0001 

July Dummy month 7 5.079 <.0001 14.467 <.0001 

August Dummy month 8 3.559 <.0001 9.974 <.0001 

September Dummy month 9 1.9999 <.0001 3.799 <.0001 

October Dummy month 10 0.912 <.0001 0.131 0.6888 

November Dummy month 11 -1.785 <.0001 -8.920 <.0001 

December Dummy month 12 0.000 - 0.000  

R-square  0.2623  0.4163  

The right-hand columns of Table 4.1 include the estimation results using the sum of 

contingency minutes and the alternate fuel in minutes as the dependent variable. The 

estimation results are generally similar to the contingency fuel model on the left-hand 

side. The intercept of 20 minutes is similar to the intercept from the contingency fuel 

model. Since most adverse weather conditions are considered, the intercept depicts a 

typical amount of fuel uplift for a good weather day when alternates are not required. 

Therefore, it is reasonable to see a similar intercept for the two models. Most other 

coefficients are larger than the CF model. The coefficient estimate for standard deviation 

of airborne time is twice as large as the coefficient from the contingency-only model, 

implying that dispatchers uplift approximately 1.66 minutes more fuel for a 1-minute 

increase in the standard deviation of airborne time. This suggests that alternate fuel is a 

major component of dispatchers’ hedge against uncertainty. Again the impact of airborne 

time unpredictability is much larger than the impact of flight plan unreliability, the mean 

and standard deviation of which now both have positive, albeit very small, impacts. 



72 
 

Since the dependent variable now includes alternate fuel, the weather conditions at the 

destination airport have a more dominant impact. The coefficients for all the destination 

airport weather variables are significant, for both actual and forecasted weather, and are 

around 9 times larger in magnitude than the corresponding coefficients from the 

contingency-only model. For origin airports, the coefficients are similar to those in the 

contingency-only model, and some variables are not statistically significant, such as real-

time low visibility and low ceiling.  

The bottom part of Table 4.1 shows the monthly fixed effects. For ease of presentation 

the estimates of the dispatcher fixed effects are excluded. December is chosen as the 

baseline month to which all other months are compared. We see that summer months, 

especially July and August, have larger coefficients than other months. These two months 

are during thunderstorm season, which greatly impacts contingency and alternate fuel 

uplift. Although the adverse weather variables, in particular the thunderstorm variables, 

are included to account for the impact of convective weather, there are still effects from 

en route thunderstorms and other weather conditions that vary seasonally which cannot 

be captured by the airport weather variables. The absolute difference in contingency fuel 

due to monthly fixed effects is almost 7 minutes, with the largest fuel load in July and the 

smallest in November. If we consider alternate fuel as well, the scale is much larger, 

ranging from -9 to 15 minutes for November and July, respectively, but the trend is much 

the same.  

 

4.4 Cost-to-Carry Analysis 

The previous section established that unpredictability in airborne time will lead to an 

increase in fuel uplift. The significance of this additional uplift is both financial and 

environmental. The rate of fuel consumption increases with weight; said another way, 

you spend fuel to carry fuel. There is a measurable cost to carry, or the pounds of fuel 

consumed per pound of fuel carried per mile. This rate varies across aircraft types and 

flight lengths with a general rule of thumb being that it costs about one-quarter to one 

half-pound of fuel to carry a pound of fuel (Leigh, 1995). There is therefore an additional 

amount of fuel consumed that can be attributed to the additional contingency and 

alternate fuel uplifted as a result of unpredictability. In this section, we quantify this 

added fuel and then translate it into fuel consumption, and then into costs in terms of 

purchase expense and emissions of carbon dioxide (CO2), the most abundant of the 

Greenhouse Gas (GHG) contributing to climate change.   

In an aviation system with no operational unpredictability, the standard deviation in 

airborne time would be zero. It follows that the coefficient    on the variable 

      (      ) represents the fuel penalty of unpredictability. For the 448,660 realized 

flights during the 13 months for which data is collected, there are 7,589 groups of 

od_month_shift. For each flight observation, we calculate          (        ) as 

the contribution of variation in airborne time to the loaded fuel of this flight. The average 

contribution of the total 448,660 flights is then calculated. In a perfect scenario where no 

variation in airborne time exists, the loaded contingency fuel would be reduced by 6.12 
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minutes per flight. If we consider the sum of contingency fuel and alternate fuel, the 

reduction would be 11.28 minutes per flight. Again the loaded fuel is in the unit of 

minutes, which is a common practice in flight planning. While a perfect predictability 

scenario might include other differences, such as the elimination of differences between 

planned and actual flight times, we ignore those here because their impacts are small 

compared to that of standard deviation. 

To estimate the savings in cost to carry from perfect predictability, we translate the 

excess minutes of contingency and alternate fuel of each individual flight into pounds of 

fuel using the fuel consumption per minute rates provided by the airline. These rates are 

specific to a particular flight, based on information in the flight plan such as equipment 

type and weather conditions. We next translate this into a quantity of fuel burned due to 

the loading of additional fuel using the airline cost to carry rates in units of lb per lb per 

mile. The results are presented in Table 4.2 in four categories. The first is the average 

fuel consumed (in lbs) due to additional uplift per operation. The second is the total 

amount of additional fuel consumed (in lbs) over the entire set of flights for which data 

are available. Due to reporting difficulties and the manual method some aircraft require 

for fuel reporting, the master airline dataset covers about 80% of the total operations. As 

such, the third category is the total amount of additional fuel consumed, in lbs, across the 

airline. We collected monthly domestic flight counts from the BTS T-100 Segment 

Database and extrapolated our results to these monthly counts. The fourth category is the 

total amount of additional fuel consumed (in lbs) across all airlines for all domestic 

operations. We collected domestic operational counts for all US carriers (those with 

$20M or more in revenue per year) from the BTS T-100 Segment Database and 

extrapolated our results to this operational count again on a monthly basis.  

The fuel quantified in the first two rows of Table 4.2 can be translated into airline 

monetary cost and environmental externalities of fuel consumption. Reducing fuel 

consumption is a major initiative of the aviation industry as a whole. It is a way to reduce 

costs, and environmental impacts particularly related to climate change, manage the risk 

related to fuel price fluctuations and uncertainty surrounding a future environmental 

policy, and improve consumer perceptions of ―greenness‖. As such there are many 

initiatives being considered in the form of policies, operational changes, and technology 

deployments. These ranges come from airline driven changes such as emphasizing single 

engine taxi procedures (Simaiakis and Balakrishnan, 2010; Nikoleris et al., 2011) and the 

federally-driven Next Generation Air Transportation System (NextGen) which promises 

significant fuel consumption reduction. We can translate the fuel savings from increased 

predictability into costs in terms of fuel prices and CO2 emissions. As fuel prices 

fluctuate throughout the year and airlines have their own fuel contracts that may change 

the fuel cost they see, we estimate the cost to carry for three fuel prices: the average for 

the study year, about $3.00/gallon; and plus/minus $1.00/gallon (Airlines for America, 

2013). To convert excess fuel into lbs of CO2, we utilize the U.S. Environmental 

Protection Agency conversion factor for Jet Fuel (EPA, 2013a). The benefit results are 

presented in Table 4.2 below.  
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Table 4.2 Annual Cost to Carry Additional Contingency and Alternate Fuel from for 

Unpredictability in Terms of Fuel lbs, Fuel cost (*: in millions), and CO2.  
 

Metric  Mean per 

Operation 

Sum over 

Operations 

in the 

Dataset 

Sum Extrapolated 

Over the Airline 

Extrapolated over 

all Domestic 

Operations 

Fuel 

(lbs)  

Contingency  48.35 1.07*10
7
 3.56*10

7
 

 

4.04*10
8
 

 

Contingency 

and 

Alternate 

90.73 2.01*10
7
 6.69*10

7
 7.58*10

8
 

CO2 

(lbs)  

Contingency  155.11 3.44*10
7
 1.14*10

8
 1.30*10

9
 

Contingency 

and 

Alternate 

291.07 6.46*10
8
 2.14*10

8
 2.43*10

9
 

Fuel cost 

at 

$2/gallon  

Contingency  $14.43 $3.20* $10.64* $120.55* 

Contingency 

and 

Alternate 

$27.08 $14.41* $19.96* $226.22* 

Fuel cost 

at 

$3/gallon 

 

Contingency  $21.65 $11.07* $15.95* $180.82* 

Contingency 

and 

Alternate 

$40.62 $21.62* $29.94* $339.33* 

Fuel cost 

at 

$4/gallon 

 

Contingency $28.86 $14.76* $21.27* $241.10* 

Contingency 

and 

Alternate 

$54.17 $28.82* $39.91* $452.43* 

 

The results in Table 4.2 provide us with the value, in terms of monetary costs and 

environmental externalities, of predictability. On a per flight basis, this value is $14.43 - 

$54.17 depending on fuel prices and whether alternate fuel is considered. Across all 

domestic flights, this value ranges from $120.55 – $452.43 million per year. To put these 

results in perspective, we first consider that in 2011 (a close proxy for our time frame) the 

total amount of jet fuel consumed was 12.1 billion gallons (EPA, 2013b). Therefore, the 

total amount of fuel consumed due to the lack of predictability in the system is about 1%. 

One percent may seem like a small number, however, it is in line with current initiatives 

branded as fuel saving ―green‖ initiatives. Consider that the 1% translates to about 50-

100 lbs per flight burned due to excess uplift (Table 4.2). These values are also 

comparable to the savings estimated from use a continuous descent approach as 

compared to a conventional step-down approach (Cao, et al., 2011).  
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There are numerous efforts and research taking place to reduce fuel consumption on the 

ground and during descent and these involve investment, institutional change 

management, and the cooperation of federal, state, local, and private stakeholders as well 

as the traveling public (Cao, et al., 2011). Our results show that efforts to increase 

predictability should be included under the same umbrella. Additionally, reductions in 

fuel uplift and associated cost to carry, both monetary and environmental, should be 

included in the benefit assessments of programs such as NEXTGEN that are likely to 

improve predictability by making the NAS less vulnerable to adverse conditions. 

 

4.5 Conclusion 

In this chapter, the relationship between flight predictability and contingency fuel loading, 

which is a major airline operational decision, is studied using detailed empirical data. 

Flight predictability is mainly depicted by the variation of airborne time because that 

most strongly affects dispatchers’ decision on contingency fuel loading. Flights are 

grouped by OD pair, departure time of day and month based on our observation of 

dispatchers’ fuel loading behavior. We found 1 minute of standard deviation of airborne 

time would lead to an additional 0.88 minutes of contingency fuel loaded to each flight. If 

we also consider alternate fuel, there would be a 1.66 minutes increase in the sum of 

contingency and alternate fuel for a 1 minute increase in standard deviation of airborne 

time. Our other findings show that the deviation from planned flight time has a much 

smaller but significant impact on loaded fuel than overall airborne time variability, 

indicating dispatchers are more influenced by overall variability rather than flight plan 

accuracy; the forecasted weather at the destination airport is the most influential weather 

factor for fuel loading, among which thunderstorm is the largest contributor, and low 

ceiling is the smallest. Also, there are significant seasonal fixed effects, with dispatchers 

loading fuel more fuel in the summer (July and August), probably to account for en-route 

thunderstorms and other weather factors not included in in our model. 

To further quantify the impact of flight predictability on fuel loading, we calculate the 

value of flight predictability assuming a hypothetical scenario where there is no 

variability of airborne time for flights in a given OD pair, shift, and month. If the 

standard deviation of airborne time for all the flights are zero, on average there is a 

reduction of 6.12 minute per flight of contingency fuel, and 11.28 minute per flight of the 

sum of contingency and alternate fuel. This extra boarded fuel requires additional fuel to 

carry. Based on our calculation, for an average flight 48.35 lbs of fuel is consumed to 

carry the extra contingency fuel and 90.73 lbs to carry the extra contingency and alternate 

fuel that results from flight time variability. This translates into a cost to US domestic 

airlines on the order of $120.55 – $452.43 million per year. Social costs from additional 

emissions of GHG, not explicitly estimated here, add to this total value. Of course, it is 

not realistic to assume that all variability in flight times can be eliminated. The figures 

presented should be viewed as a heretofore unrecognized potential benefit from 

increasing predictability. Individual projects large or small that improve predictability 

can tap into this potential benefit, and in some cases this may tip the balance for the 

project business case. For purposes of comparison, a recent study estimates that flight 
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delay, which likewise can never be eliminated but is the major motivation for NEXTGEN, 

costs the US airline industry around $10 billion per year (Zou and Hansen, 2012).  

Our analysis establishes a behavioral link between flight time variability and fuel loading. 

Given that link, we have estimated the potential cost and emission savings from reducing 

variability. With our analysis, the FAA’s proposed study on flight predictability is 

provided with a more complete benefit motivation. The improvement in flight operational 

predictability will benefit not only the operational performance, but also the airlines’ 

long-term fuel cost, which is rather the strategic planning aspect. Neglecting the less 

obvious benefit manifested in this study would lead to underestimating benefit in 

improving predictability. Lastly, another way to attain these savings is to change 

dispatcher behavior, since it is not obvious that there is a sound operational reason to load 

more contingency fuel because flight time varies, since much of this variation is captured 

in the flight plan.  
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5. Conclusion 

5.1 Contributions 

This body of research presents a methodology to quantify the impact of flight 

predictability on airlines’ strategic and operational decisions. It also proposes a 

methodology to improve predictability through managing the aircraft queue at the 

departure airport, the benefit of which is reflected mainly on the saving in the airlines’ 

strategic decisions. The strategic decision that we consider is the scheduled block time, 

which is typically decided six months before the travel date. On the operational side, we 

investigate the decision of the amount of fuel loaded to each flight in the daily operation. 

Our concept of predictability is based on the variability of flight times and the different 

components of flight time. 

In this research we develop two sets of empirical models for the two types of airline 

decisions. The dependent variables are the different decisions made by the airlines: the 

scheduled length of the flight (scheduled block time, SBT) and the amount of fuel to be 

loaded. To explore the impact of flight predictability on these decisions, the performance 

of historical flight times is measured and included as explanatory variables in the two sets 

of models. Given the different natures of the two types of decisions, the quantification of 

the historical flight time performance is also different for the two models.  

For the SBT setting model, we develop three empirical models to capture this behavior. 

The most accurate model among the three is the ―percentile model‖ that segments the 

distribution of historical flight travel time (block time) in great detail. Flight 

predictability is captured by increments between every 10
th

 percentile above the 50
th

 of 

historical flight time, by different flight phase. For the two components of the block time, 

airlines consistently have a skewed focus on the left and inner right tail of the distribution 

and almost neglect the far right tail (beyond the 80
th

 percentile). In general, airlines are 

willing to experience occasional severe delays in exchange for a shorter SBT. This 

represents their ―optimistic‖ behavior in schedule design which is largely driven by the 

profit-seeking nature of the airline business. Notable results from the three empirical 

models include that historical gate delay is virtually ignored, that airlines with hubs tend 

to set shorter SBTs for their hub-bound flights, that competition encourages longer SBTs, 

and that airlines adjust their SBTs in response to the flight’s historical on-time 

performance, as well as the persistent earliness and lateness, with earliness having a 

stronger effect. Also, the impact analysis with the airline performance data demonstrates 

that changes in block time distributions—in particular the median and inner right tail—

often cause significant adjustments in SBTs, and that the impacts of these adjustments on 

schedule adherence is greater than the changes in the underlying operational performance. 

This leads to the next piece of this research, where an algorithm is proposed to improve 

predictability with reducing SBT as one of the objectives in a practical setting. 

In this thesis, we present algorithms and practical rules to sequence departures at the 

airport to adjust historical flight time distribution and improve flight predictability on a 

daily basis. The mechanism is that the existing wheels-off times for the flights in a certain 
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day on a certain airport form a slot pool. In the optimization, we reassign these flights 

into the wheels-off slots, based on a certain objective and constraints that assure the 

feasibility of the assignment. The objective function is expressed in the form of the ―cost 

of the assignment‖. SBT is viewed as a cost for the airlines to be minimized. For each 

flight, the assigned slot generates a new taxi-out time and this time contributes 

proportionally to the future SBT, based on results from the percentile model. In addition 

to reducing SBT, assuring that the on-time performance for the flights is not greatly 

sacrificed is another important aspect of the optimization. Therefore a second piece in the 

objective function is added to include on-time arrival performance as part of the ―cost of 

assignment‖ as well. In this way, we develop a multi-objective algorithm to sequence 

departure flights to improve predictability, reduce airline scheduled block time, while 

maintaining on-time performance. Through this real-time sequencing decision, we 

observe that future SBT can be reduced about half a minute, on a per flight basis. If the 

on-time performance consideration is added to the objective function, the reduction in 

scheduled block time is compromised to some extent, but in return the on-time 

performance of the flights can also be improved. Overall, our results for this part of the 

research show that there are opportunities to reduce scheduled block times and increase 

on-time arrival performance through re-sequencing airport departure queue, but the 

magnitude of the potential gains is modest. Further research is required to compare the 

value of the gains with the costs of implementing a re-sequencing process through which 

they could be realized. 

Finally, the relationship between flight predictability and another aspect of the airline 

decision making—fuel loading on the day of operation—is investigated using empirical 

modeling and the benefit of predictability is quantified through constructing hypothetical 

scenarios. The dependent variable being modeled is the amount of contingency and 

alternate airport fuel loaded on the flight. We depict flight predictability by the variation 

of airborne time because that most strongly affects dispatchers’ decision on contingency 

fuel loading. We found one minute of standard deviation of airborne time would lead to 

about 0.88-1.66 minutes of additional contingency and alternate fuel loaded by airline 

dispatchers. We also find that the deviation from planned flight time has a much smaller 

but significant impact on uplifted fuel than overall airborne time variability, indicating 

the influence of (un)predictability on dispatchers is higher than that of flight plan 

accuracy. We calculate the value of flight predictability assuming a hypothetical scenario 

where there is no variability of airborne time for all flights. Under this scenario, on 

average there is a reduction of 6-11 minutes per flight of loaded fuel. This extra uplifted 

fuel requires additional fuel to carry and it translates into a cost to US domestic airlines 

on the order of $121-$452 million per year. Social costs from additional emissions of 

GHG, not explicitly estimated here, add to this total cost. This research provides one of 

the first analyses of the link between flight predictability and fuel consumption, and 

opens a new research frontier on the fuel loading and fuel management process. 

In this research, we present two different mechanisms of how flight predictability is 

quantified and how it affects airline decision. Historical flight time performance data are 

utilized for the quantification of flight predictability. Viewing the two sets of models 

focusing on different aspects of the airline operation from a higher level, we gain a more 

systematic insight about how to best quantify predictability to measure its impact on 
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airline decisions. In chapter 2, the standard deviation of historical block time is shown not 

to be a good explanatory variable to explain the airline SBT setting behavior. The 

percentile based segmentation of the distribution is a better measure of predictability and 

captures the stronger effect of the ―inner right tail‖ than the far right tail. Rooted in this 

―optimistic‖ behavior is the airlines’ profit-driven motivation, from which they tolerate 

delay for more efficient SBT. On the other hand, in chapter 4, the standard deviation of 

historical block time is actually an accurate measure to depict the airline fuel loading 

behavior. This means that the airlines’ fuel loading behavior considers the extreme cases 

that happened in the past and it shows the airlines’ safety concerns, which is another 

important aspect of this business. Viewing these two types of decisions and their 

relationships with predictability, we should be aware that when facing the complicated 

nature of airline operation with conflicting drivers, there is no single predictability metric 

that is appropriate for all situations. Different metrics are required for different contexts 

within the whole value chain of airline business. 

For the two different mechanisms, this research also takes a system-level view to quantify 

the potential benefits of predictability. With our analysis, the decision in the aviation 

community to target flight predictability as a performance goal is provided with a more 

complete benefit motivation. For strategic decisions, we sought to understand the 

connection between SBT and the historical flight time distribution. With the behavioral 

link, this study contributes to the existing literature by demonstrating the benefit of 

predictability in the form of reduced future flight SBT through airport surface queue 

management, without much loss in other performance metrics. On the operational 

decision side, our analysis establishes a behavioral link between flight time variability 

and fuel loading. Given that link, we have estimated the potential pool of fuel cost and 

emission savings from improved predictability. Our models will help decision makers 

understand the impact of predictability in multiple areas such as airline scheduling, fuel 

cost and environmental externalities. This research has identified such benefit 

mechanisms and quantified their potentials. From this research, we conclude that the 

increased emphasis on predictability as a dimension of aviation system performance is 

well founded, and that improvements in predictability, like reductions in delay, can be 

monetized. 

 

5.2 Future Work 

The research presented in this thesis can be extended in many directions. For the SBT 

setting models, the role of gate delay in the decision process is worth further investigation. 

For the airport surface management algorithm, the scale of the optimization can be 

extended to longer time periods, as well as more airports nationwide. Moreover, 

alternative forms of the ―cost of assignment‖ can be utilized to improve the practicability 

of the optimization. For the airline fuel loading study, more advanced cost-to-carry 

analysis than simply applying airline conversion rate (such as flight fuel burn simulation) 

can be applied. It is also worth further investigation regarding how to effectively change 

dispatcher behavior to reduce excess fuel loading. 
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In the behavior models in section 2 we found that airlines virtually ignore historical gate 

delay in setting SBTs. On the other hand, gate delay is the dominant source of variation in 

effective flight time (observed in section 1.2). In future research it may be desirable to 

decompose gate delay by cause—later arriving aircraft, ground delay programs, etc.—and 

analyze the effects separately. Also, it may be possible to improve on-time performance 

significantly by adjusting SBT to reflect expected gate delay, again possibly disaggregated 

by cause, to the extent it can be predicted from past experience.  

The optimization in chapter 3 is conducted only over a period of one month and only on 

three airports. A natural extension of this research is to apply this algorithm to re-

sequence departure queues over a longer time period, and on more airports. As mentioned 

in section 3.4, the benefit in reduced SBT revealed in chapter 3 can only be achieved if 

the optimization is conducted consistently for years, generating changed distribution of 

historical block time. Thus extending the study temporally will relax the one month 

constraint and help observe the benefit more realistically. Moreover, understanding and 

comparing the benefit of re-sequencing on multiple airports in US will provide a holistic 

view and help prioritize airports for improving predictability. Also, it would be 

interesting to understand the relationship between magnitude of benefit and other airport 

characteristics to build a model that better predicts benefits of predictability on the airport 

level in the future. 

The formulation of the ―cost of assignment‖ identified in chapter 3 does a good job in 

accurately optimize the contribution of actual taxi-out time to future SBT. However, the 

calculation of the objective function depends too much on the estimation results from the 

SBT percentile model. The percentile model uses only three years of historical 

performance data; therefore using the exact coefficients of the percentile model might not 

be generalized enough for the daily optimization, especially for future time periods. 

Therefore, another future research topic is developing an objective function that takes 

advantage of the trends along the historical taxi-out time distribution reflected by the 

percentile model (e.g. inner right tail matters, far right tail has little impact on future SBT 

setting), without relying too much on the specific estimation results. Such research would 

help the optimization to rely less on the estimation results of the percentile model, and 

therefore to be easier to implement in the airport daily operation and less subject to 

estimation inaccuracies.  

The cost-to-carry analysis in chapter 4 directly applies the airline’s fuel burn rate when 

translating additional loaded fuel due to lack of predictability to fuel consumption. This is 

an accurate methodology for processing the airline specific dataset. However, different 

airlines might have different aircraft configuration and thus different fuel burn rate, 

which makes the analysis in this study less convincing when extrapolated to all domestic 

operations. One potential improvement is to use simulation models to directly estimate 

cost-to-carry for different aircraft types. Another potential research path is to focus on 

practical ways to achieve these savings. One way is to change dispatcher behavior. While 

it is sensible to increase fuel uplift in response to flight time variability, many believe that 

overall dispatchers load too much contingency fuel and sometimes include alternates that 

are not called for. This may include fuel related or unrelated to unpredictability, 

measured as flight time variability in this study. Whether, and how, it may be possible to 
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persuade dispatchers to attenuate the influence of flight time variability in their fuel 

loading decisions, or reduce fuel loads motivated by other factors, is another subject of 

future research.  
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