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RESEARCH Open Access

Fat and vitamin intakes during pregnancy
have stronger relations with a pro-
inflammatory maternal microbiota than
does carbohydrate intake
Siddhartha Mandal1,2, Keith M. Godfrey3, Daniel McDonald4, Will V. Treuren5, Jørgen V. Bjørnholt1,6,7,
Tore Midtvedt8, Birgitte Moen9, Knut Rudi10, Rob Knight4,11, Anne Lise Brantsæter1, Shyamal D. Peddada12

and Merete Eggesbø1*

Abstract

Background: Although diet is known to have a major modulatory influence on gut microbiota, knowledge of the
specific roles of particular vitamins, minerals, and other nutrients is limited.
Modulation of the composition of the microbiota in pregnant women is especially important as maternal microbes
are transferred during delivery and initiate the colonization process in the infant. We studied the associations
between intake of specific dietary nutrients during pregnancy and gut microbiota composition.

Methods: Utilizing the Norwegian NoMIC cohort, we examined the relations between intakes of 28 dietary macro-
and micronutrients during pregnancy, derived from food frequency questionnaires administered to 60 women in
the second trimester, and observed taxonomic differences in their gut microbiota four days after delivery (assessed
through Illumina 16S rRNA amplicon analysis).

Results: Higher dietary intakes of fat-soluble vitamins, especially vitamin D, were associated with reduced microbial
alpha diversity (p value <0.001). Furthermore, using recently developed statistical methodology, we discovered that
the variations in fat-soluble vitamins, saturated and mono-unsaturated fat, and cholesterol intake, were associated
with changes in phyla composition. Specifically, vitamin D, mono-unsaturated fat, cholesterol, and retinol were
associated with relative increases in Proteobacteria, which is a phylum known to encompass multiple pathogens and to
have pro-inflammatory properties. In contrast, saturated fat, vitamin E, and protein were associated with relative
decreases in Proteobacteria.

Conclusions: The results in this article indicate that fats and fat-soluble vitamins are among the most potent dietary
modulators of gut microbiota in mothers. The shifts in microbiota due to diet need to be further studied alongside gut
microbiota changes during pregnancy to better understand the impact on infant gut microbiota.
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Background
Among all factors which affect human gut microbiota
(GM), dietary intake is one of the most important and
easily manipulated [1]. Dietary nutrients modulate gut
microbiota which in turn affects human health and
diseases [2, 3]. Scott et al. (2013) provided an extensive
review of the effects of modulating dietary components on
gut microbiota. Research on germ-free mice has dem-
onstrated host-microbial interactions whereby microbes
develop symbiotic relationships, deriving energy from
nutrients that are undigested by the host [4, 5].
Most research examining the influence of diet on gut

microbes has focused on combinations of resistant starch,
polysaccharides, and fats. Several authors have studied the
effect of specialized diets on overweight subjects [2, 6–8].
Typical findings in these studies revolve around a decrease
in carbohydrate intake causing a decrease in butyrate and
decrease in butyrate producing bacteria, such as Roseburia
and Eubacterium. However, most of these studies are based
on specific dietary regimes and small sample sizes.
There is an extensive literature studying the effect of

vitamin deficiency (especially vitamins A and D) on
immune responses [9, 10] and other health effects such
as macular degeneration and musculoskeletal health. It
is plausible that some of the effects of vitamins are
mediated through an effect on GM composition, yet
there is limited literature on the associations between
vitamins or minerals and gut microbiota. Antimicrobial
effects of vitamin D have been reported: Vitamin D
boosts innate immunity by facilitating production of
anti-microbial peptides and cytokines [11]. Further, vita-
min D has also been shown to affect microbes such as
Mycobacterium tuberculosis and hence slowing the pro-
gression to tuberculosis [12]. Gut bacteria can also affect
vitamin concentration. For example, LeBlanc et al. (2013)
reviewed some possible mechanisms for de novo synthesis
of vitamins by lactic acid bacteria [13].
Microbiota is remodeled at several sites in the body dur-

ing pregnancy, likely in preparation for childbirth. In a
longitudinal study, Romero et al. (2014) demonstrated that
the vaginal microbial composition of a pregnant woman
differs from a non-pregnant woman, including increased
abundance of Lactobacillus and decreased abundance of
phylotypes associated with bacterial vaginosis [14].
Collado and Isolauri (2008) reported differences in gut
microbial composition [15], specifically Bacteroides,
Clostridium, and Staphylococcus, between overweight and
normal-weight women during pregnancy. Koren et al.
(2013) studied metabolic changes and remodeling of the
gut microbiome between the first and third trimesters of
pregnancy [16]. During this period, they reported a
dramatic change in gut microbiota composition, including
an increase in Actinobacteria and Proteobacteria and a
reduction in species richness.

Thus, both pregnancy itself and dietary quality and
micronutrient content may affect gut microbial compos-
ition. The composition of the microbiota in a pregnant
woman at delivery likely affects the gut microbiome of
the newborn, because maternal microbes are transferred
during passage through the birth canal and initiate the
colonization process in the infant [17, 18]. Young children
have substantially similar gut microbiota to their own
mothers than to unrelated individuals [19]. Increased
knowledge of how foods and nutrients can modulate gut
composition in the pregnant women is thus of import-
ance, not only for the mother but also for the unborn
child.
In this article, we analyzed the relationships between

dietary intake of 28 nutrients assessed by a food frequency
questionnaire administered during pregnancy and gut
microbiota in close conjunction with delivery. We utilized
the NoMIC cohort, a cohort which oversampled pre-
term deliveries, and studied the 60 mothers out of 550
who also had available prospective dietary data collected.
In addition to the intake of carbohydrates, fats, and
protein, we also studied individual micronutrients. Using
recently developed statistical methodologies [20], we ana-
lyzed dietary intake in relation to both microbial diversity
and microbial composition in an attempt to understand
the ways in which dietary components modulate the gut
microbiota during pregnancy.

Results
Characteristics of the variables of interest
Table 1 shows descriptive statistics for the dietary com-
ponents and other variables included in subsequent ana-
lyses. In Fig. 1a, we present the standardized intakes of
the dietary components and the correlations between
these components. The figure shows that intakes of most
dietary components (except alcohol and sugar) were
positively correlated with each other. In Fig. 1b, individ-
ual specific phyla level microbial composition is pre-
sented in terms of relative abundances of Actinobacteria,
Proteobacteria, Firmicutes, Bacteroidetes, and Other,
where Other comprise all remaining phyla.

Association of dietary nutrients with gut microbiota

a) Microbial diversity
In order to explore the associations between
nutrient intakes and diversity in gut microbiota, we
employed a variable selection using Bayesian model
averaging (Additional file 1: Figure S1). For both
whole tree phylogenetic and Shannon’s diversity,
vitamin D showed the strongest statistical
associations. Other variables associated with
phylogenetic diversity were other fat-soluble vitamins
(retinol and vitamin E), cholesterol, and trans-fat.
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However, the inclusion probabilities for all variables
other than vitamin D were small. We then used linear
regressions, adjusting for maternal pre-pregnancy BMI
and parity, to quantify the effects of these variables. For
whole tree phylogenetic diversity, significant inverse
associations were observed for vitamin D, retinol, and
cholesterol (% change in diversity per unit increase
of the vitamin; −7.8 %, p = 0.001, −5.6 %, p = 0.031,
−5.3 %, p = 0.043, respectively) (Additional file 1:
Table S1). In contrast, for Shannon’s diversity, only
vitamin D was significantly (and negatively) associated
(−5.1 % change in diversity per unit increase in vitamin
D intake, p < 0.001). Measures of beta diversity such
as weighted and unweighted UniFrac distances did
not show any clustering according to the dietary
components (data not shown).

b) Microbial composition
We explored the associations of 28 specific
nutrients (Table 2) in relation to microbial phyla
composition (shown in Fig. 2) and on microbial

genera (shown in Fig. 3), and these findings are
summarized below by nutrient group. Detailed
results containing the estimates of the regression
coefficients, p values, and R2 for the models are
provided in the Additional file 1: Table S2.

Fat-soluble vitamins (vitamins D, E, and retinol)
We detect significant associations between the three
fat-soluble vitamins (vitamin D, E, and retinol) and
microbial composition at the phylum level (expressed
through pairwise ratios of microbial phyla Phylum 1/
Phylum 2). Vitamin D was associated with increases in
Actinobacteria/Proteobacteria, Actinobacteria/Bacteroidetes,
Proteobacteria/Firmicutes, and Other/Bacteroidetes (Fig. 2d).
Higher intake of vitamin E was associated with a decrease
in Proteobacteria relative to Actinobacteria, Firmicutes and
Other, and increase in from Other/Bacteroidetes (Fig. 2e),
while increase in retinol was related to the increase in the
ratio of Proteobacteria relative to Actinobacteria and
Firmicutes (Fig. 2f). At the genus level, we observed the
following differentially abundant genera against increasing
intake of fat-soluble vitamins; Staphylococcus (higher
relative abundance) against vitamin D, Sutterella (lower)
against vitamin E, and Methanobrevibacter (higher)
against retinol (Fig. 3, top row).

Fat components
Increased saturated fat intake was related to an increase
in the Other/Proteobacteria as well as Other/Firmicutes
(Fig. 2b). Interestingly, the converse appears to be true
with respect to monounsaturated fat, where an increase
in the intake of monounsaturated fat resulted in a sig-
nificant increase in Firmicutes, Proteobacteria, and
Bacteroidetes relative to Other phyla (Fig. 2a). Further-
more, there was a significant reduction of Actinobacteria/
Proteobacteria. Increased cholesterol intake resulted in a
significant increase in Firmicutes and Proteobacteria rela-
tive to Other phyla (Fig. 2c). At the genus level, we identify
Ruminococcus (lower relative abundance) and Lachnobac-
terium (higher) to be differentially abundant against
increased saturated fat intake. Lachnobacterium and
Methanobrevibacter were detected (higher relative
abundance) against increased intake of trans-fat. We
also identified microbes belonging to Firmicutes and
Actinobacteria (that were not identified at the genera
level) to be decreased and increased, respectively,
against increased intake of polyunsaturated fat (Fig. 3,
top and middle row).

Protein, carbohydrate, and minerals
Increased intake of protein was related to a significant de-
crease of Proteobacteria/Firmicutes and Proteobacteria/
Other (Fig. 2g). Among carbohydrates, we found that an
increased intake of saccharide significantly reduced the

Table 1 Characteristics of 60 women participating in the NoMIC
study according to demographic variables

Variable Mean SD

Gestational age (in days) 264.3 27.2

Pre-pregnancy BMI 22.9 3.5

Pre-pregnancy weight (in kg) 64.7 10.6

Weight at delivery (in kg) 78.5 10.9

n Percentage

Preterm delivery

No 39 65.0

Yes 21 35.0

Mode of delivery

Vaginal 43 72.0

C-section 17 28.0

Maternal education

Less than 12 years 5 8.0

Equal to 12 years 9 15.0

More than 12 years 46 77.0

Maternal smoking

No 45 75.0

Yes 15 25.0

Maternal antibiotics

Anytime during pregnancy 17 28.0

Month before birth 4 6.7

Supplement used (third trimester)

Vitamin 18 30.0

Cod liver oil 17 28.0

Omega 3 24 40.0
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ratio Actinobacteria/Firmicutes (Fig. 2h) but an opposite
relationship was seen with an increased intake of sugar
(Fig. 2i). Finally, among all minerals, increased phosphorus
levels resulted in a significant increase in Proteobacteria
relative to Firmicutes (Fig. 2j). Methanobrevibacter was
the only genus detected as differentially abundant
against an increased intake of total protein and carbo-
hydrates. Against increased fiber intake, Sutterella was
differentially abundant while Rothia and unclassified
Firmicutes were detected against increased sugar intake
(Fig. 3, bottom row).

Sensitivity analysis
Since the NoMIC cohort involved an oversampling of
preterm mothers, it is not representative of the general
Norwegian population. In addition, maternal pre-
pregnancy BMI is a potential confounder of the diet-
microbe associations. Hence, we carried out the above
analysis while adjusting for gestational age and maternal
BMI and provide the results in the Additional file 1:
Table S3. There were few changes in the effect sizes with
the significance pattern remaining unchanged for most
associations. Overall gestational age was a significant
factor only for the ratios of Actinobacteria relative to
Firmicutes and Proteobacteria, with a decrease in Acti-
nobacteria. For the diet-related associations, the effects
of saccharide and sugar were only marginally significant
on Actinobacteria relative to Firmicutes, although the ef-
fect sizes were similar. In addition, mono-unsaturated fat,
thiamine, and vitamin C were significantly associated with
Actinobacteria/Firmicutes. The associations between total

protein intake with Proteobacteria/Others and vitamin D
with Bacteroidetes/Others are not statistically significant
after adjusting for gestational age. As an additional sensi-
tivity analysis, we provide the dietary association results
within the strata of term deliveries (Additional file 1: Table
S4) and observed that the effect sizes are consistent with
the earlier analysis.
We also performed sensitivity analysis for the associa-

tions of fat-soluble vitamins and microbial composition
in mothers who did not use vitamin D, vitamin E, retinol
(vitamin A) supplements, eg., restricting solely to dietary
intakes and achieved similar results for most associations
(Additional file 1: Table S5).

Discussion
In this article, we studied the relationship between in-
take of dietary components during pregnancy and ma-
ternal gut microbiota assessed four days after delivery.
Several of our findings are important and novel due to
lack of literature on diet-microbiota associations during
the crucial period of pregnancy and the detected associa-
tions with multiple nutrients other than the commonly
studied carbohydrates, fat, and protein components. We
observed that dietary intakes of fat-soluble vitamins, as
well as variations in saturated and mono-unsaturated fat
intake, were associated with significant changes in phyla
composition. The largest number of significant associations
was observed with Proteobacteria, a phylum known to en-
compass multiple pathogens and to have pro-inflammatory
properties [21]. Specifically, mono-unsaturated fat, vitamin

Fig. 1 Correlation of dietary components and microbial compositions for subjects. a Heatmap showing correlations among the 34 dietary components
using Pearson’s correlation coefficient between the standardized dietary components. b Relative abundances of major phyla in the 60 subjects, arranged
according to decreasing relative abundance of Actinobacteria
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D, and retinol were associated with shifts towards
Proteobacteria.
Using Bayesian variable selection, one of our other

main findings was that higher vitamin D intake was spe-
cifically associated with decreased alpha diversity. Low
microbial diversity is often associated with diseases such
as inflammatory bowel disease [22, 23], obesity [24], aut-
ism [25], allergy [26], and asthma [27, 28]. This finding
is thus in contrast to studies proposing high vitamin D
intake as protective against some of the same disorders,

for instance asthma [29]. However, there is support in
the literature for high vitamin D intake also being associ-
ated with adverse health effects [30]. Increased intakes
of vitamin D were also associated with increased levels
of Actinobacteria and Proteobacteria at the phylum level,
which are known to encompass multiple low-pathogens
and Staphylococcus at the genus level. The associations
with vitamin D might perhaps be explained by its anti-
microbial properties, whereby higher intake suppresses
certain groups of bacteria thereby leading to a relative

Table 2 Median and inter-quartile ranges for the dietary components in 60 women in the analysis

Dietary component Units Median IQR Minimum 5th percentile 95th percentile Maximum

Energy kJ 9693.11 2944.616 4446.9238 6444.502 12274.603 15628.0185

Total protein g 88.29 24.41 47.315 60.077 117.199 138.4564

Total fat g 72.00 29.17 42.6707 49.028 119.742 163.0225

Saturated fat g 28.28 10.57 16.2139 18.763 49.097 70.2995

Total trans-fat g 2.22 1.46 0.7147 1.031 4.547 8.7354

Monounsaturated fat g 22.50 8.17 13.061 15.343 37.794 47.3162

Polyunsaturated fat g 13.50 5.62 7.1054 8.904 27.798 32.4678

Cholesterol g 0.22 0.10 119 153.8 411.7 473

Total carbohydrate g 308.97 77.66 121.9611 195.504 404.833 536.0477

Starch g 143.64 51.91 60.1423 91.217 215.446 225.462

Fiber g 31.88 12.99 9.7115 19.917 47.254 55.1066

Saccharide g 145.18 65.84 35.7406 89.833 214.339 294.8139

Sugar g 53.40 38.58 13.1777 18.267 123.172 213.0867

Alcohol g 0.00 0.00 0 0 0.019 2.2635

Retinol μg 822.50 746.00 136 190.1 2373.25 4575

Betacarotene μg 1894.00 1661.00 607 1021.9 5271.4 9934

Vitamin D μg 3.13 2.34 0.5386 0.856 6.517 34.1235

Vitamin E mg 9.50 4.00 4 5 16 17

Thiamine mg 1.58 0.51 0.739 1.039 2.047 2.5115

Riboflavin mg 1.89 0.92 0.6309 1.065 2.808 4.2915

Niacin mg 19.97 5.63 11.828 14.558 26.228 28.8022

Vitamin B6 mg 1.54 0.56 0.8507 1.051 2.07 2.6655

Folate μg 266.50 93.75 130 171.85 409.5 537

Vitamin B12 μg 5.66 4.22 2.4648 2.863 12.607 15.3611

Vitamin C mg 158.00 107.00 39 52.6 287.8 406

Calcium mg 914.00 464.75 356 461.7 1617.6 2249

Iron mg 11.80 3.12 4.9057 7.296 15.636 20.3218

Sodium mg 3159.50 809.50 1832 2094.7 4442.2 4904

Potassium mg 3992.00 1429.25 2004 2725.15 5319.05 7468

Magnesium mg 404.00 126.25 170 267 511 689

Zinc mg 11.82 3.29 5.7411 7.295 14.78 20.1115

Selenium μg 53.00 13.50 28 33.85 73.05 88

Copper mg 1.46 0.42 0.7122 0.98 1.792 2.2134

Phosphorus mg 1733.00 530.00 733 1115.3 2303.85 3073

Water 3144.00 1399.00 1427 1721.55 4423.55 7292
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increase in possibly pathogenic groups. However, more
studies are needed to clarify the role between dietary in-
take of vitamin D and health and also on the role of
contaminants that may coexist in citamin D-rich food.
Interestingly, vitamin E and retinol had decreasing and
increasing effects on Proteobacteria, respectively.
Lower vitamin E and fiber intakes were associated with

higher levels of Sutterella, which has been reported to
be higher in abundance in infants with autism and some
gastrointestinal disorders [31]. Further research might be
warranted to confirm or refute these findings and delin-
eate possible mechanistic role of fat-soluble vitamins in
autism spectrum disorders.
Interestingly, saturated and mono-unsaturated fat in-

takes had opposing associations with the gut microbiota at
phyla level. A higher dietary intake of mono-unsaturated
fat and cholesterol, linked with adverse effects on hu-
man health, was associated with relative increase in the
Proteobacteria phylum. On the other hand, saturated

fat was associated with decreases in Firmicutes and Pro-
teobacteria. The result suggests that certain types of fat
may be associated with a pro-inflammatory gut micro-
biota, which could be a potential explanation for its ad-
verse effects on human health.
Higher intake of proteins and carbohydrates has been

associated with an increase in methanogens, and certain
methanogens have been identified as important in
removal of excess hydrogen and increasing the yield of
energy from nutrients [32]. However, detailed knowledge
on the role of these bacteria on human health is still
unclear. The lack of associations between phyla compos-
ition and fiber and sugar (often reported in studies of
dietary regime changes) could be attributed to less vari-
ation in these factors in our study sample.
Studies such as Koren et al. (2012) and Yatsunenko et al.

(2012) have shown that maternal gut microbiota changes
during pregnancy and is associated with gestational age at
delivery, with increase in Proteobacteria and inflammation

Fig. 2 Associations of increase in specific dietary nutrients with major microbial phyla, Actinobacteria, Proteobacteria, Firmicutes, Bacteroidetes, and Other
(comprised of all other phyla) based on a multiple linear regression model. Panels a-j show the significant shifts in microbial composition against specific
nutrients using networks. In each network, a node represents a phylum and a directed arrow from Phyla 1 to Phyla 2 represents a statistically significant
increase. The value (x) on each edge represents a x-fold increase in Phyla 2 compared to Phyla 1, with each unit standard deviation (SD) increase in the
corresponding dietary variable. The value (x) is calculated as exp(β), where β is the regression coefficient corresponding to the linear regression of the ratio
Phyla 2/Phyla 1 on the dietary variables. For example, there is a 3.63 times increase in Actinobacteria compared to Proteobacteria for 1 SD increase in
vitamin E intake
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in the mucosal surfaces. However, in our study, the associa-
tions between dietary intake and maternal gut microbiota
were not significantly influenced by gestational age. Higher
gestational age was significantly associated with an increase
in Actinobacteria; however, very few dietary associations
were altered in terms of statistical significance after adjust-
ment for gestational age. This indicates that gestational age
is not a confounder for the relationship between diet and
gut microbiota as it is only tied to one of the factors and
not both, e.g., gestation is not associated with maternal
diet. Thus, the oversampling of preterm mothers in the
cohort did not affect the results. In addition, adjustments
for maternal pre-pregnancy BMI provided similar results.
Although this study focused on the gut microbiota, it

is reasonable to assume that dietary nutrients may also
affect the microbiota in other bodily locations such as
the mouth and skin. Furthermore, information regarding
microbial metabolites including short-chain fatty acids
could further enhance our understanding of the poten-
tial mechanism underlying these findings.

Limitations
The major limitation of this study is its small sample size,
yet we observe strong signs of association. Although this
study focuses on Norwegian mothers, an influence of diet-
ary vitamin and fat intakes is likely to be generalizable to
pregnant women in other settings. Further studies will be
required to define if the findings are relevant for the adult
population in general.
Our food frequency questionnaires (FFQ) estimates of

nutrient intakes are likely to contain inaccuracies. How-
ever, the FFQ-based intake estimates were validated
against 4-day weighed food diaries and good correlations
observed for most nutrients except vitamin E. The esti-
mates of vitamin D intake was in addition validated
against analysis of plasma 25-hydroxy-vitamin D con-
centrations and found to distinguish between high
and low vitamin D intake [33]. In this paper, we were
interested in the effects of dietary intake over the lon-
ger term, for which more accurate dietary intake as-
sessment methodologies are not feasible. Finally, any

Fig. 3 Boxplots to describe log OTU abundances of differentially abundant genera identified by a compositional analysis against the dietary variables,
categorized as below and above the median intake of the corresponding nutrient. Genera abundance is obtained from OTU table summarized at
genus level and testing procedure based on log-ratio analysis is described in Additional file 1
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misclassification of intake is likely to move the esti-
mates towards the null.
Maternal gut microbiota was sampled four days after de-

livery. Sampling during delivery would have been even
more optimal but not feasible in this study. Misclassifica-
tion in dietary exposure would bias the results towards the
null and thus reduce the chances of observing an effect.
Short-term dietary exposures would probably have revealed
more associations; however, in our case, the dietary infor-
mation is aggregated over long term and hence we believe
that such long-term observed effects are indeed interesting.
From the multivariate models, we observed that the R2

values range from 0.62 to 0.37 (0.86 to 0.37 after adjust-
ing for gestational age) and hence other factors such as
hormonal- and delivery-related changes could be factors
that are associated with maternal gut microbiota compos-
ition. If we consider a directed acyclic graph for the asso-
ciation of diet with gut microbiota, hormonal change is
not a confounder since it is unlikely to affect the dietary
intake during pregnancy. Hence, there is little reason to
believe that these would introduce a bias with regard to
previous intake of vitamins and fat.
Confounding by other factors that may affect dietary

intake cannot be excluded. However, our results were
surprisingly unaffected when adjusting for the most
obvious potential confounding factor (maternal BMI).
Moreover, confounding by a general effect of healthy
dietary patterns would not give rise to the varying asso-
ciations with particular micro- and macronutrients that
we observed. Further studies in larger numbers of sub-
jects will be required to know if the associations found
are truly the effects of the individual nutrients or
whether they reflect intakes of the foods rich in these
nutrients. Metagenomic sequencing or personalized
culture collections could provide further indications of
strain-specific effects associated with intakes of particu-
lar nutrients. For the associations with fat-soluble vita-
mins, further work is needed to determine whether
contaminants in dietary sources rich in vitamin D may
play a role.

Conclusions
Our analyses provide novel inferences linking the
mother’s dietary intake of specific nutrients during preg-
nancy with her gut microbiota composition in the im-
mediate postpartum period. Given the relative stability
of the adult gut microbiome, dietary intervention may
be the most effective way to modify intestinal health.
Importantly, the composition of the microbiota in

pregnant women at delivery has a direct impact on the
gut microbiome of the newborn as maternal microbes
initiate the colonization process in the infant. Bäckhed
et al. (2015) demonstrated shared microbial features in
the mother and infant gut microbiome, including several

important microbial species such as Bifidobacterium
longum and Bacteroides fragilis [34], pointing to transfer
of microbes from maternal gut microbiota to the child.
A recently published study on Sprague Dawley rats dem-
onstrated the effects of maternal gut microbiota and
metabolomic profiles on modulating the risk of obesity
[35], which indicates the implication on infant health
outcomes at least in animal studies. Thus, the observed
compositional shifts in maternal gut microbiota may
lead to corresponding shifts in infant gut microbiota and
affect long-term infant health [36]. Future studies are
needed where dietary intakes of fat and fat soluble
vitamins during pregnancy are studied in further detail in
context of the early infant microbiota and may provide
helpful insights to optimize dietary recommendations dur-
ing pregnancy.

Methods
Description of the cohort
NoMIC is a birth cohort established for the overall pur-
pose of studying the establishment of the gut microbiota
during infancy and its consequences for child health
[37]. Participating mothers were recruited to NoMIC by
a pediatrician at the maternity ward in a county hospital
in South-Norway. When a preterm-birth mother was
enrolled, two mothers of consecutively born term infants
were recruited. Hence, the NoMIC cohort has an over-
sampling of preterm deliveries and is not a proper rep-
resentative cohort for the general Norwegian population.
Recruitment started in November 2002 and was completed
in May 2005. Mothers who were fluent in Norwegian were
eligible for the cohort.
Containers for fecal samples and a questionnaire were

handed out to the participants at the maternity ward
after informed consent form had been given. Mothers
were asked to collect and freeze one fecal sample from
herself at postpartum day 4, as well as samples from her
infant when it was 4, 10, 30, 120 days and 1 and 2 years
old. Study personnel retrieved samples and kept them
frozen during transport. Samples were stored at −20 °C
at the Biobank of the Norwegian Institute of Public
Health upon arrival. More details of the study popula-
tion have been given previously [37, 38]. Linkage to the
Norwegian Medical Birth Registry (MBR) [39] and link-
age to the MoBa study were performed for the study
subjects. This provides prospective data on exposures
during pregnancy as well as the opportunity to quality
check maternal reports.
In total, 608 mothers agreed to participate in the study

and to collect fecal samples at six time points during the
first 2 years of age. Sixty mothers (9.9 %) did not return
any samples. Microbial data was available for 183 mothers
and 60 of these 183 women also had dietary information
collected through linkage to the MoBa study. Maternal
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gut microbiota sequenced from these 60 mothers repre-
sents the study sample in the current paper.

Exposure—dietary and other variables
Dietary intakes were recorded through an extensive
food frequency questionnaires (FFQ) administered to
MoBa participants in week 22 of pregnancy, covering
255 food items through 40 groups of questions (available
at https://www.fhi.no/globalassets/migrering/dokumenter/
pdf/instrument-documentation-q2.pdf). Food frequencies
were converted to nutrient intakes using FoodCalc (http://
www.ibt.ku.dk/jesper/foodcalc) and the Norwegian Food
Composition Table [40]. The nutrient intake data has been
validated in previous publications [33]. The validation
studies concluded that the MoBa FFQ is a valid tool that
is equipped to measure nutrient intake in pregnant
women and can distinguish between women with high
and low intake. Intakes of 34 dietary components includ-
ing energy, macro-, and micronutrients, and water were
available. Vitamins and minerals were measured in milli-
grams or micro-grams while fat, carbohydrates, and pro-
tein were measured in grams. Information on intake of
multi-vitamin supplements including cod liver oil and
omega-3 fatty acids were obtained from separate MoBa
questionnaires administered at 15 and 30 weeks and used
for sensitivity analysis.

Sequencing and data processing
Sequencing of the V4 region of the 16S rRNA gene using
the Illumina HiSeq instrument resulted in a total of 183
maternal samples with an average of 108,743 (+/−68,090)
sequences per sample after demultiplexing. Unless noted
otherwise, all data processing was performed using QIIME
1.7.0 [41]. A closed-reference OTU picking procedure was
used to map sequences against the Greengenes 13-8 refer-
ence set of 16S rRNA gene sequences. Information on
DNA purification and PCR is provided in Additional file 1.

Statistical analysis
For descriptive purposes, we studied the ranges of the diet-
ary components and correlations between the standardized
dietary variables (subtracting the mean and dividing by the
standard error). Pearson’s correlation was used to study the
correlation between these dietary components. The QIIME
[41] pipeline was used to compute measures of alpha and
beta diversity, which measure diversity within and between
microbial communities, respectively. Alpha diversity
was measured using two metrics, Shannon’s diversity
and whole tree phylogenetic diversity [42]. A Bayesian
model selection procedure [43] was used to identify
dietary variables most strongly associated with maternal
GM alpha diversity. For each of the top five selected vari-
ables, we used standard linear regressions (after adjusting
for maternal pre-pregnancy BMI and parity) of diversity on

continuous standardized dietary variables and computed
the percentage changes in microbial alpha diversity against
dietary intake. We analyzed the maternal microbial samples
to describe beta-diversity through weighted and unweighted
UniFrac [44] measures and principal coordinate analysis of
the dissimilarity matrix.
Due to the compositional nature of microbial data,

there are intrinsic constraints that impede the use of
methodology developed for data in Euclidean space.
Also, it is important to note that actual abundances of a
particular taxon in an ecosystem (gut) are unobservable
and not equal to abundances in the sample (fecal). How-
ever, the relative abundance of the taxon in the sample
is representative of the same in the gut. Hence, using the
principles of ANCOM [20], which is based on Aitchi-
son’s logistic-normal formulation for compositional data
[45], we investigated the effects of dietary components
on log-ratios of four major microbial phyla (Actinobac-
teria, Firmicutes, Proteobacteria, and Bacteroidetes) and
all remaining phyla combined together (denoted by
Other), with respect to each other, amounting to ten mi-
crobial log-ratios as the response variables. We regressed
each of these log-ratios on the various dietary variables
in a multiple regression model. Thus, there are ten linear
models and each model has 28 dietary variables, as listed
in Table 2. Since the daily consumption of these 28 diet-
ary variables are different by several orders of magni-
tude, for each person, we standardized the consumption
of each dietary variable across samples by subtracting
each value by its mean over all samples and dividing by
its standard deviation. Such centered multiple regression
analysis is commonly conducted in statistics literature
when dealing with situations such as the present situ-
ation where the explanatory variables differ by several
orders of magnitude to avoid issues related to multicolli-
nearity as well as practical interpretability of the data
(see page 155, [46]). For each significant association be-
tween a dietary variable and a microbial ratio (Phyla 2/
Phyla 1), we compute a fold increase (=exp(β), where β
is the regression coefficient) representing the relative in-
crease in Phyla 2 compared to Phyla 1 for unit increase
in the standardized dietary variable. Due to small num-
ber of hypothesis (10 in this case), we did not perform
multiple testing correction for this particular analysis.
For each model, we also provided the multiple R2 values
that show the proportion of explained variation due to
the predictors in the model.
In addition, we also performed a compositional analysis

on the data summarized at the genera level, using the
combinations of ratio-wise p values (according to
ANCOM) to detect differentially abundant genera against
particular dietary variables used in the above analysis.
These analyses were restricted to microbial genera de-
tected in at least 5 % of the total number of subjects in the
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study. A multiple correction using Benjamini-Hochberg
procedure is applied in this analysis controlling for false
discoveries at 5 % level. For illustrative purposes, we plot-
ted the log OTU abundances for each detected genus
against specific dietary nutrients, categorized as intake
below and above the median.
To assess the robustness of the results, we carried out

sensitivity analyses for detecting compositional shifts
under two different situations. Firstly, we repeated the
analysis after adjusting for maternal pre-pregnancy BMI.
The second sensitivity analysis was performed on the
group of women who did not use vitamin supplements
during the month leading into the third trimester.

Additional file

Additional file 1: A word document containing supplementary
information including details of DNA processing, statistical methods, R-code,
supplementary tables and figures cited in the article. (DOC 331 kb)
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