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CONTENTS 1

The purpose of this work is to improve stability and performance of selected
matrix decompositions in numerical linear algebra. Chapter 1 examines the Locally
Optimal Block Preconditioned Conjugate Gradient (LOBPCG) algorithm used to
compute eigenvector-eigenvalue pairs for large sparse symmetric matrices or sym-
metric matrix pencils. Modifications are developed and analyzed to improve both
performance and reliability. Numerical experiments demonstrate the final algorithm
often operates several times faster than competing versions and succeeds in process-
ing difficult matrices for which other versions fail.

Chapters 2 extends the work on symmetric eigenvalue problems by developing
an algorithm specialized to resolve eigenpairs in the interior of the spectrum of a
symmetric matrix. An new Spectral Target Residual Descent (STRD) algorithm is
proposed based on LOBPCG. This algorithm is demonstrated to reduce the num-
ber of iterations required to achieve convergence by roughly half. The component
subroutines of STRD also have generalized versions to process interior eigenvalues of
symmetric matrix pencils.

Chapter 3 explores a variation on the QR decomposition with Column Pivoting
using randomized-sampling to process pivoting decisions. Randomized QRCP elim-
inates the leading order of communication by processing column pivots on a much
smaller sample matrix. This produces blocks of column pivots that are processed
with BLAS-3 operations on the original matrix. Sample update formulations are
explored that allow full matrices to be factorized without re-compressing the matrix
after each block iteration. Related low-rank factorizations are also developed and
compared in numerical experiments. These experiments show approximation quality
for structured matrices to be comparable, and often better than, approximations
based on QRCP. Furthermore, performance is shown to be nearly as good as QR
without pivoting, which is often an order of magnitude faster than QRCP.



2

Chapter 1

A Robust and Efficient
Implementation of LOBPCG

1.1 Contributions and results

This research develops stability and performance improvements for the LOBPCG
symmetric iterative eigenvalue solver. Prior to this work, the most stable frame-
work for implementing LOBPCG had been explored in the work of Hetmaniuk and
Lehoucq [32]. Despite the increased stability of their approach, failure cases were
still frequently observed due to remaining difficulties in implementation details of
ortho [65].

1.1.1 Robustness and reliability

The first priority of this research is to resolve remaining robustness and reliabil-
ity issues observed in other implementations of LOBPCG. The algorithm devel-
oped resolves instabilities in ortho and svqb which eliminates the primary point
of failure—that is ill-conditioning of the search subspace basis—in other implemen-
tations of LOBPCG. Furthermore, this work identifies inadequacy of the standard
convergence detection method: the relative residual norm threshold. An alternative
convergence detection computation is proposed and analyzed that resolves test cases
that otherwise fail to show convergence.

1.1.2 Performance and efficiency

The second priority of this work is to maximize performance so that the resulting
implementation remains useful and practical for applications in research and devel-
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opment. These performance improvements include extending prior work on implicit
update transformations for basis products. Implicit update error in product repre-
sentations is analyzed in order to identify and avoid cases in which such updates
create numerical instability. Safe mechanisms are proposed to reduce the costs asso-
ciated with ortho and svqb. Furthermore, an alternative computation for aggregate
basis updating is proposed to eliminate a second call to ortho that is needed in each
iteration of the version by Hetmaniuk and Lehoucq. This alternative formulation en-
ables another optimization that substantially reduces communication costs through
a simultaneous matrix-multiply-and-update mechanism.

1.1.3 Results

Stability improvements allow difficult matrices to be reliably processed where other
implementations fail. This algorithm also exhibits a significant improvement in
performance. Typical test cases finish between one sixth and one third of the
time required by competing high-performance subroutines. These improvements to
LOBPCG make it an attractive and reliable tool for researchers dealing with very
large sparse symmetric matrices in related fields of science and engineering. The sub-
stantial reduction in processing time and increased robustness of this method will
allow scientists and engineers to make better use of numerical eigenvalue tests for
large finite-element models and ultimately improve the rate of progress in research.

1.2 Introduction to LOBPCG

Locally Optimal Block Preconditioned Conjugate Gradient (LOBPCG) [41] is a
widely used algorithm for computing a few algebraically smallest (or largest) eigenval-
ues and the corresponding eigenvectors of a symmetric definite matrix pencil (A,B)
in which A is symmetric and B is symmetric positive definite. When B is identity,
the problem becomes a standard symmetric eigenvalue problem.

There are three main advantages of this method when compared with the classical
Krylov subspace-based methods. First, LOBPCG can employ a good preconditioner
when one is available which sometimes dramatically reduces computation time. Sec-
ond, the three-term recurrence used by the algorithm keeps memory required rela-
tively low making it possible to tackle problems at a very large scale. Third, because
the algorithm is blocked it can be implemented efficiently on modern parallel com-
puters. Nearly every component of the algorithm can be formulated in level-3 dense
or sparse BLAS operations that are highly tuned for efficient parallel scaling.
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However, it has been observed that the algorithm can breakdown or suffer from
numerical instability when it is not implemented carefully. In particular, basis vec-
tors forming the subspace from which the approximate solution to the eigenvalue
problem is extracted can become linearly dependent. This problem becomes pro-
gressively worse when the number of eigenpairs to be computed is relatively large
(e.g., hundreds or thousands.)

A strategy proposed in the work of Hetmaniuk and Lehoucq [32] addresses this
issue. Their strategy is based on performing additional orthogonalization to ensure
that the preconditioned gradient is numerically B-orthogonal to both the current
and the previous approximations to the desired eigenvectors. However, this strategy
can become expensive when the number of eigenpairs to be computed is relatively
large. More importantly, reliability can be severely compromised due to numerical
instability within the orthogonalization steps.

This chapter presents an efficient and reliable implementation of LOBPCG. We
develop a number of techniques to significantly enhance the Hetmaniuk–Lehoucq
(HL) orthogonalization strategy in both efficiency and reliability. We also adopt
an alternative convergence criterion to ensure achievable error control in computed
eigenvalue–eigenvector pairs.

This chapter is organized as follows. Section 1.3 describes the basic LOBPCG
algorithm. In Section 1.4, we discuss numerical difficulties one may encounter in
LOBPCG and the HL strategy for overcoming these difficulties. Techniques for
further improving stability are discussed in Section 1.5. In Section 1.6 we cover ad-
ditional techniques for improving all other aspects of LOBPCG. In Section 1.7 error
analysis is developed to justify these improvements. Section 1.8 presents numerical
experimental results to illustrate the effectiveness of these techniques.

1.3 The basic LOBPCG algorithm

We denote the eigenvalues of the symmetric definite pencil (A,B) arranged in an
increasing order by λ1 ≤ λ2 ≤ · · ·λn. Their corresponding eigenvectors are denoted
by x1, x2, ..., xn. The first k ≤ n eigenvectors and eigenvalues are

X =
[
x1 x2 · · · xk

]
and Λ = diag

([
λ1 λ2 · · · λk

])
satisfying AX = BXΛ.

It is well known that X is the solution to the trace minimization problem

min
XTBX=I

trace(XTAX). (1.1)
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The LOBPCG algorithm developed by Knyazev seeks to solve (1.1) by using the
following eigenvector approximation update formula

X(i+1) =
[
X(i) W (i) P (i)

]  C
(i+1)
1

C
(i+1)
2

C
(i+1)
3

 .

Parenthetical superscript indices indicate the matrix is stored in an array that will
be overwritten by subsequent iterations. W (i) is the preconditioned gradient of the
Lagrangian

L(X,Λ) = trace(XTAX)− trace
[
(XTBX − I)Λ

]
(1.2)

associated with (1.1) at X(i),

W (i) = K−1(AX(i) −BX(i)Θ(i)) with Θ(i) = X(i)TAX(i),

where K is any preconditioner. P (i) is an aggregated update direction from previous
searches recursively defined as

P (i+1) =
[
W (i) P (i)

] [ C
(i+1)
2

C
(i+1)
3

]
.

Coefficient matrices C
(i+1)
1 , C

(i+1)
2 , and C

(i+1)
3 are determined at each step of

LOBPCG by solving the constrained minimization problem (1.1) within the subspace
S(i) spanned by X(i), W (i), and P (i). That is,(

S(i)TAS(i)
)
C(i+1) =

(
S(i)TBS(i)

)
C(i+1)Θ(i+1). (1.3)

where S(i) is a matrix whose columns are a basis of S(i) which is constructed

S(i) =
[
X(i) W (i) P (i)

]
with corresponding C(i+1) =

 C
(i+1)
1 C

(i+1)
1⊥

C
(i+1)
2 C

(i+1)
2⊥

C
(i+1)
3 C

(i+1)
3⊥

 .

The leading k columns of C(i+1) form C
(i+1)
x = [C

(i+1)
1 ;C

(i+1)
2 ;C

(i+1)
3 ] which are

the components used to compute X(i+1). Remaining columns give the orthogonal
complement within the search subspace.

Θ(i+1) is a diagonal matrix containing approximations to the desired eigenvalues.
If k smallest eigenpairs are sought then eigenvalues are sorted in ascending order.
Otherwise if the largest eigenpairs are sought the order is reversed. Solving the
projected eigenvalue problem (1.3) is often referred to as the Rayleigh–Ritz procedure.
Combining these steps produces Algorithm 1, the basic LOBPCG algorithm. We
leave details of convergence control to section 1.5.
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Algorithm 1 The basic LOBPCG algorithm

Input:
X(0) is m× nx matrix of initial approximate eigenvectors.
nv ≤ nx is the number of converged eigenvectors requested.
τ is the threshold used to determine eigenpair convergence.

Output:
X is m× nv matrix of approximate eigenvectors.
Λ is nv × nv diagonal matrix of approximate eigenvalues.

1: function [X,Λ]=lobpcgKnyazev(X(0), nv, τ)
2: [C(1),Θ(1)] = RayleighRitz(X(0));
3: X(1) = X(0)C(1);
4: R(1) = AX(1) −BX(1)Θ(1);
5: P (1) = [];
6: do i = 1, 2, . . .
7: W (i) = K−1R(i);
8: S(i) =

[
X(i),W (i), P (i)

]
;

9: [C(i+1),Θ(i+1)] = RayleighRitz(S(i));
10: X(i+1) = S(i)C(i+1)(:, 1 : nx);
11: R(i+1) = AX(i+1) −BX(i+1)Θ(i+1);
12: P (i+1) = S(i)(:, nx + 1 : end)C(i+1)(nx + 1 : end, :);
13: Determine number of converged eigenpairs nc.
14: while nc < nv
15: Return converged eigenpairs in X and Λ;
16: end function

1.4 Numerical stability and basis selection

In Algorithm 1, the Rayleigh–Ritz procedure for solving (1.3) is a critical point
of numerical instability unless it is implemented carefully due to the fact that the
projection STBS can be ill-conditioned or rank deficient. This holds regardless of the
conditioning of B. The standard Rayleigh–Ritz procedure is outlined in Algorithm 2.

When S is not B-orthonormal, we must first perform a Cholesky factorization of
STBS to obtain an upper triangular factorR that is used to transform the generalized
eigenvalue problem into a standard eigenvalue problem

RTR = STBS and
[
R−T

(
STAS

)
R−1

]
Z = ZΘ. (1.4)

This allows us to solve C = R−1Z.
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Algorithm 2 Rayleigh–Ritz analysis

Input:
S is m× ns matrix basis for the search subspace.
*Columns must be linearly independent and well-conditioned with respect to the
metric B.

Output:
C is ns × ns solution components of S.
Θ is ns × ns diagonal matrix of Rayleigh quotients.
These satisfy CT (STBS)C = Ins and CT (STAS)C = Θ.

1: function [C,Θ]=RayleighRitz(S)

2: D =
(
diag(STBS)

)−1/2
;

3: Cholesky factorize RTR = DSTBSD.
4: Solve symmetric eigenvalue problem

(
R−TDSTASDR−1

)
Z = ZΘ.

5: C = DR−1Z;
6: end function

When STBS is poorly conditioned or numerically singular, Cholesky factoriza-
tion may fail. Even if factorization succeeds R may be poorly conditioned thus
introducing significant roundoff error in the transformed problem (1.4) as well as the
final transformation C = R−1Z. This is often problematic since near linear depen-
dence of columns in S naturally emerges when some columns of X(i) become accurate
eigenvector approximations. Corresponding columns in both W (i) and P (i) become
small in magnitude and thus exhibit large relative error. See section 1.7 for further
analysis.

A proper implementation of the LOBPCG algorithm should deflate converged
eigenvectors by keeping them in X(i) but exclude corresponding columns from W (i)

and P (i). This technique is referred to as soft locking. In order to produce reli-
able results, converged eigenpairs should be counted consecutively beginning with
the extreme eigenvalue. Some implementations allow out-of-order locking which can
slightly improve performance, but care must be taken to avoid skipping eigenvalues
when returning results. Another technique that helps overcome poor scaling is to
normalize each column of W (i) and P (i) before performing the Rayleigh-Ritz pro-
cedure. This is equivalent to scaling STBS by a diagonal matrix D which should
be rounded to integer powers of 2 to avoid truncation error. Although this form
of scaling does not alter mantissa arithmetic in R, it can dramatically improve the
condition number with respect to inversion, which is significant as R−1 is applied
three times in this computation. [14]

Unfortunately, neither soft-locking nor simple scaling fundamentally solve the
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numerical instability that potentially leads to a breakdown. We observe that even
with soft locking and diagonal scaling STBS can still become ill-conditioned. When
the number of eigenpairs to be computed is relatively large, STBS can become ill-
conditioned before any approximate eigenvectors in X(i) are sufficiently accurate.
This failure is quite common and is observed in some of the cases we tested in
Section 1.8. We also provide a detailed example of this phenomenon in Section 1.5.1.

1.4.1 Basis selection

Hetmaniuk and Lehoucq (HL) proposed a way to overcome the numerical difficulty
associated with ill-conditioning in STBS [32]. Their basic approach is to keep X,
W and P blocks in the subspace S mutually B-orthogonal. They refer to this as a
basis selection strategy for S.

Assuming the blocks X(i) and P (i) are B-orthonormal already, the basis selection
scheme proposed by HL is performed in two steps on each iteration:

1. Before Rayleigh-Ritz has been performed, W (i) is obtained from residuals and
then B-orthogonalized against both X(i) and P (i). Columns of W (i) are then
B-orthonormalized.

2. After Rayleigh-Ritz has been performed, P (i+1) is implicitly B-orthogonalized
against X(i+1). This is done by forming C

(i+1)
p from [0; C

(i+1)
2 ; C

(i+1)
3 ] which is

orthogonalized against C
(i+1)
x in the metric S(i)TBS(i). The result is then or-

thonormalized in the same metric producing fully orthonormal blocks X(i+1) =
S(i)C

(i+1)
x and P (i+1) = S(i)C

(i+1)
p .

HL use the procedure ortho to carry out both of these orthogonalization steps.
For implementation, they reference work by Stathopolous and Wu (SW) [65]. The
procedure ortho operates in two nested loops. In the outer loop a candidate basis
is orthogonalized against an existing orthonormal basis, called the external basis,
using classical Gram–Schmidt. In the inner loop, the remainder is orthonormalized
using the singular value decomposition. This is done by a function called svqb.
These procedures are outlined in Algorithms 3 and 4. Both of these versions have
been altered to incorporate a metric M which will be used as both M = B and
M = STBS. The original versions only considered M = I.

By constructing an orthonormal basis for S, HL are able to turn the generalized
eigenvalue problem (1.3) into a standard eigenvalue problem in the Rayleigh–Ritz
procedure. Thus Cholesky factorization of the projection STBS becomes unneces-
sary.
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Algorithm 3 Block orthogonalization algorithm proposed by Stathopolous and Wu.

Input:
M is m×m symmetric positive definite metric.
U (in) is m× nu candidate basis.
V is M -orthonormal external basis.
τ > 0 is relative orthogonality tolerance.

Output:
U (out) is m× nu with M -orthonormal columns that are M -orthogonal to V .
span([U (out), V ]) ⊇ span([U (in), V ]).

1: function U (out)=ortho(M,U (in), V, τ)
2: do i = 1, 2, . . .
3: U = U − V (V TMU);
4: do j = 1, 2, . . .
5: U = svqb(M,U);

6: while
‖UTMU−Inu‖
‖MU‖‖U‖ > τ

7: while
‖V TMU‖
‖MV ‖‖U‖ > τ

8: end function

Algorithm 4 Orthonormalization algorithm using SVD proposed by Stathopolous
and Wu.
Input:

M is m×m symmetric positive definite metric.
U (in) is m× nu.
τ > 0 is tolerance.

Output:
U (out) is m× nu with M -orthonormal columns.
span(U (out)) ⊇ span(U (in)).

1: function U (out)=svqb(M,U (in), τ)

2: D =
(
diag

(
UTMU

))−1/2
;

3: Solve
(
DUTMUD

)
Z = ZΘ for Z,Θ.

4: for all θj < τ maxi(|θi|) do
5: θj = τ maxi(|θi|);
6: end for
7: U = UDZΘ−

1
2 ;

8: end function
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1.5 Stability improvements

1.5.1 Basis truncation

Although the HL basis selection algorithm is usually effective, its functionality hinges
on the success of ortho in producing an orthonormal basis S(i).

When source columns for S(i) are ill-conditioned or linearly dependent, the or-
thogonalization procedure proposed by Stathapolous and Wu might not improve the
basis. Depending on the implementation, ortho may fail to terminate because the
orthogonality error threshold might never be satisfied. This is possible even when B
is identity and becomes more vexing when B is ill-conditioned.

Even if ortho terminates after potentially numerous iterations, the returned basis
might be so poorly conditioned that some eigenvalues of STAS are spurious. That
is, they do not represent an approximation to any eigenvalue of A.

The following example illustrates how this problem could occur. Let

A =



3 1
1 3 1

1 3 1
. . . . . . . . .

1 3 1
1 3


, B = K = I, X(0) =

1√
2



1 1
−1 1
0 0
...

...
0 0
0 0


.

Then Θ(0) = diag([2, 4]) and R(0) = AX(0) − X(0)Θ(0) = [−e3, e3]/
√

2. The span
of [X(0), R(0)] is equivalent to span([e1, e2, e3]). However, svqb returns an out-
put S consisting of four linearly dependent vectors in both exact and floating-point
arithmetic.

If we simply neglect the failure of svqb and assume orthonormality of S (i.e.,
STS = I) in the subsequent call to RayleighRitz, then we obtain θ1 = 0 as S is
rank deficient. This is a spurious Ritz value since A is positive definite with smallest
eigenvalue larger than 1. Note that this might appear to violate the Courant-Fischer
min max theorem since the Ritz value is below the minimum eigenvalue of A. In
fact, the corresponding Ritz vector reveals the linear dependency in the basis. That
is, the primitive Ritz vector is the linear combination of basis vectors yielding zero
which underscores the fact that it is spurious. We analyze the connection between
orthogonality error and results of Rayleigh–Ritz in more detail in Section 1.7.

To overcome this difficulty, we modify ortho to truncate basis vectors below
roundoff error threshold. We thank Professor Lin Lin for a useful discussion in
which this idea was proposed [46]. The eigenvalue decomposition in svqb gives the
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form

UTMU =
[
z1 z2 · · · znu

]

θ1

θ2

. . .

θnu



zT1
zT2
...
zTnu


where we have sorted eigenvalues θ1 ≥ θ2 ≥ · · · ≥ θnu . Let k ≤ nu be the number
of leading eigenpairs that are above the drop threshold: θk ≥ τdropθ1 where τdrop is a
small multiple of machine epsilon. The retained basis becomes

U (out) = U
[
z1 · · · zk

] θ
−1/2
1

. . .

θ
−1/2
k

 .
The span of the new basis is a good approximation of the span of the source basis.

∀c1 ∈ Rnu ∃c2 ∈ Rk such that
‖Uc1 − U (out)c2‖2

‖U‖2‖c1‖2

≤ τdrop.

If maintaining a guaranteed minimum basis dimension is necessary, the basis can
be padded with randomly generated B-orthogonalized columns, however randomized
padding has never been necessary or useful in any of our experiments.

These modifications are outlined in Section 1.6, Algorithms 6 and 7. The imple-
mentation we tested still allows one call to svqb without dropping in order to extract
potentially useful information, however subsequent iterations of the inner loop switch
to the modified version to ensure a successful exit.

1.5.2 Detecting convergence

In some of our numerical experiments with the HL implementation of LOBPCG we
observed both unexpectedly high and low iterations required to obtain convergence.
One such example, Andrews, is a standard eigenvalue problem from the University of
Florida Sparse Matrix Collection (UFSMC). Andrews is a 60, 000×60, 000 symmetric
matrix with 760, 154 nonzero elements. We attempted to find the minimum 400
eigenpairs using a block size of 440 columns with a convergence tolerance of 10−4.
This test run was forced to exit without having converged after 1000 iterations.

Another test problem showed the opposite difficulty with convergence. The ma-
trix pencil filter2D, which is also available from UFSMC, has symmetric sparse ma-
trices A and B of dimension 1, 668. A has 10, 750 nonzero elements and B is diagonal.
In this test case we also sought the lowest 400 eigenvalues using 440 columns per
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block and the same convergence tolerance. The algorithm reported convergence im-
mediately after the first iteration. We emphasize that the first iteration is merely
RayleighRitz on a random matrix.

These difficulties result from the relative residual computation that is typically
used to detect convergence. Residual norms are measured relative to the magnitude
of the eigenvalue which requires

‖ri‖2

|θi|‖xi‖2

≤ τ or
‖ri‖2

|θi|‖xi‖B
≤ τ , where ri = Axi − θiBxi, (1.5)

to consider an eigenvalue–eigenvector pair converged. This criterion has two prob-
lems. The first problem is both versions lack scaling invariance. Scaling B does not
change residuals or eigenvectors, but eigenvalues scale

AX =
B

β
X(βΘ) giving

‖ri‖2

|βθi|‖xi‖2

≤ τ or
‖ri‖2

|βθi|‖xi‖B/β
=

‖ri‖2√
β|θi|‖xi‖B

≤ τ

which both depend on the factor β. As a result, convergence detection using such
a measure is somewhat arbitrary. Of course, this could be repaired by forcing a
uniform scaling of B or including ‖B‖ in the denominator.

The second problem with relative residual convergence measures persists even if
B is identity. Section 1.7.2 shows that it may not be possible to compute a residual in
floating point arithmetic that satisfies a criterion of the form (1.5). In the Andrews
example, the smallest eigenvalue is less than 10−14 in magnitude and ‖A‖ ≈ 10. Ill-
conditioning of A does not permit the smallest eigenvalue to be known to 4 digits of
precision. In the filter2D example, ‖B‖ ≈ 10−10 which makes convergence too easy
to achieve.

We employ an alternative convergence criterion that we show to be backwards
stable in Section 1.7.4.

‖ri‖2

(‖A‖2 + |θi|‖B‖2) ‖xi‖2

≤ τ . (1.6)

The 2-norms on A and B can be bound with little computational cost by using
a Gaussian random k ×m projection matrix Ω. The Frobenius norm is bound

‖ΩA‖2
F ≤ ‖Ω‖2

F‖A‖2
2 which allows us to define ‖A‖(Ω)

2 =
‖ΩA‖F
‖Ω‖F

≤ ‖A‖2.

This guarantees our convergence criterion is satisfied if

‖ri‖2

(‖A‖2 + |θi|‖B‖2) ‖xi‖2

≤ ‖ri‖2(
‖A‖(Ω)

2 + |θi|‖B‖(Ω)
2

)
‖xi‖2

≤ τ .

Using this convergence test, Andrews converges after performing 56 iterations. Like-
wise, filter2D converges after performing 10 iterations.
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1.6 Efficiency improvements

The following efficiency improvements can be safely included in LOBPCG without
sacrificing algorithmic stability. Our version and related subroutines are outlined in
Algorithms 5, 6, 7, and 8 at the end of this section.

1.6.1 Implicit product updates

When there is sufficient memory to store S, AS, and BS if B 6= I, HL suggest a
possible improvement to efficiency by employing implicit product updates. Given
block updates X(i+1) = S(i)C

(i+1)
x and P (i+1) = S(i)C

(i+1)
p , matrix products can be

implicitly updated using the same transformations.

AX(i+1) = AS(i)C(i+1)
x AP (i+1) = AS(i)C(i+1)

p

BX(i+1) = BS(i)C(i+1)
x BP (i+1) = BS(i)C(i+1)

p

This is beneficial when direct matrix multiplication is expensive. Direct multipli-
cation requires the number of nonzero elements in the matrix nnz(A) operations per
column while implicit updating requires 3mnx per column. More importantly, dense
matrix multiplication is highly tuned to optimize communication and parallel scala-
bility. However, such updates accumulate roundoff error which can hinder stability
and convergence. This is discussed in Section 1.7.1.

We can extend this tool to reduce direct computation of block inner products in
the projection matrices

S(i)TAS(i) =

 X(i)TAX(i) X(i)TAW (i) X(i)TAP (i)

· · · W (i)TAW (i) W (i)TAP (i)

· · · · · · P (i)TAP (i)


and

S(i)TBS(i) =

 X(i)TBX(i) X(i)TBW (i) X(i)TBP (i)

· · · W (i)TBW (i) W (i)TBP (i)

· · · · · · P (i)TBP (i)

 .

Most implementations we have seen take advantage of some known structure within
each block.

X(i)TAX(i) = Θ(i) and X(i)TBX(i) = I.

Because P (i) is in the orthogonal complement of the previous solution we also have

X(i)TAP (i) = 0, X(i)TBP (i) = 0 and P (i)BP (i) = I.
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Implicit updating can be used to avoid an additional block inner product

P (i)TAP (i) = CT
p

(
S(i−1)TAS(i−1)

)
Cp.

This computation can be improved further by applying the technique described in
Section 1.6.6.

Every W block must be directly computed unless B = I and the preconditioner
is K = I. In that case, W (i) is the block of residuals which must be orthogonal to the
search subspace from which previous Rayleigh-Ritz solutions were formed including
both X(i) and P (i) yielding X(i)TW (i) = 0 and W (i)TP (i) = 0.

Since every block inner product must move O(2mnx) data through processors,
every direct computation avoided significantly improves performance.

1.6.2 Implicit updates and svqb

As we have discussed, generalized eigenvalue problems or matrix pencils require
orthogonalization in a nontrivial metric B performed by ortho and svqb. It is
tempting to incorporate implicit product updates in these functions as well. This
might take on the form

U (1) = U (0) − V
(
[BV ]TU (0)

)
, U (2) = U (1)

(
DZΘ−1/2

)
,

[BU ](1) = [BU ](0) − [BV ]
(
[BV ]TU (0)

)
, and [BU ](2) = [BU ](0)

(
DZΘ−1/2

)
.

This is in general a bad idea. Numerical experiments using such updates show that
when B is not identity, however well-conditioned, the inner loop of ortho often fails
to terminate if the candidate basis U (0) has a condition number in the metric B of 106

or higher. Nearly all randomized tests will fail under this circumstance. Indeed, the
original purpose for using ortho was to handle such ill-conditioned bases that cause
LOBPCG to fail otherwise. The reason why these implicit updates are unstable while
others are safe is explored in Section 1.7.1, but essentially cancellation in extraction
dramatically magnifies accumulated error in this context.

1.6.3 Product purification

Even though other implicit product updates are relatively safe, error accumulation
might still become problematic over many iterations. This is typically only a concern
for high-precision computations of eigenvalues that require numerous iterations to
converge. As such, we did not include the following test in our final algorithm,
however this approach may be of interest for some high-precision applications.
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Randomized projection can be used to efficiently approximate error in product
representations [1, 13]. This follows from the well-known Johnson–Lindenstrauss
lemma [38]. To determine when product arrays need to be recomputed we simply
apply a Gaussian N(0, 1) matrix Ω ∈ Rk×m to obtain the norm approximation

‖AX(i) − [AX](i)‖F ≈
‖[ΩA]X(i) − Ω[AX](i)‖F√

k
.

This computation is reliable and we provide an elementary analysis here. Let E =
AX(i) − [AX](i) be the matrix of errors in the product representation. Since the
Frobenius norm is invariant under orthogonal transformations, as is the distribution
of Ω, we can easily simplify the error approximation by using the singular values
E = UΣV T .

‖ΩE‖2
F = ‖ΩUΣV T‖2

F = ‖Ω̂Σ‖2
F =

k∑
i=1

n∑
j=1

ω̂2
i,jσ

2
j .

The expected Frobenius norm is scaled to match the true norm

E

(∥∥∥∥ΩE√
k

∥∥∥∥2

F

)
=

1

k

k∑
i=1

n∑
j=1

E
(
ω̂2
i,j

)
σ2
j =

n∑
j=1

σ2
j = ‖E‖2

F

and the corresponding variance is bound above using the Cauchy-Schwarz inequality

V

(∥∥∥∥ΩE√
k

∥∥∥∥2

F

)
=

2

k

n∑
j=1

σ4
j ≤

2

k
‖E‖4

F .

We only need the magnitude of ‖E‖F to decide if an update of the product array
is necessary. To obtain an approximation ‖ΩE√

k
‖F ≥ φ‖E‖F , where φ ∈ (0, 1) is a

safe fraction of the true magnitude, requires ‖E‖2
F − ‖ΩE√

k
‖2
F ≤ (1 − φ2)‖E‖2

F . At
nσ-sigma confidence this is bound by

nσ

√√√√V

(∥∥∥∥ΩE√
k

∥∥∥∥2

F

)
≤ nσ

√
2

k
‖E‖2

F ≤ (1−φ2)‖E‖2
F which requires k ≥ 2n2

σ

(1− φ2)2
.

We can achieve 5-sigma confidence that the approximation holds to a fraction φ =
1/8 using k = 52. A sparse compression matrix would likely improve performance
further [60].
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1.6.4 When to use basis orthogonalization

Although constructing an orthonormal basis for S guarantees RayleighRitz will not
fail, the construction process itself can be costly and sometimes unnecessary. The
principal extra cost is contained in the call to ortho used to complete block W .
Even if we assume each step within Algorithm 3 succeeds on the first iteration, the
corresponding basis update computations would be

W (1) = W (0) − [X, P ]([X, P ]TBW (0)) and W (2) = W (1)(DZΘ1/2).

As a result, the memory block containing W must be accessed at least twice.
If ortho is skipped, which forces RayleighRitz to construct and apply Cholesky

factors of STBS, the transformations that would have been performed in ortho

are subsumed by updates to X and P . As a result, iterations that skip ortho

reduce memory movement by more than two full passes over W . Furthermore, svqb
requires solving an nx × nx eigenvalue problem which is more time consuming than
the corresponding Cholesky decomposition.

In order to take advantage of this possible performance improvement without
sacrificing stability, we need to determine when the Cholesky decomposition RTR =
STBS becomes unreliable. As R−1 is applied three times, we simply require the
condition number to be bound µεcond(R)3 < τ .

Knowing this allows us to skip orthogonalization of W initially. When the con-
dition number exceeds the a safe threshold we switch to iterations that apply full
orthogonalization. Note that our method to construct orthogonal P (i) blocks is not
expensive and therefore not worth skipping. After cond(R) passes the safe threshold,
subsequent iterations tend to remain above threshold. As a result, we never attempt
to switch back to iterations that skip ortho.

1.6.5 Early ortho exiting

Just as conditioning of STBS allows us to identify when ortho may be safely skipped,
we can also use the condition number of W TBW within svqb to predict acceptable
orthogonality error.

The update W (2) = W (1)(DZΘ−1/2) produces relative orthogonality error of mag-
nitude µεcond(Θ−1/2), therefore we can avoid computing the resulting orthogonality
error in W (2)TBW (2) when cond(Θ−1/2) is small. Likewise, relative orthogonality er-
ror testing in the outer loop of ortho may be skipped if the svqb transformation was
well-conditioned on the first iteration of the inner loop. This improvement usually
allows us to avoid three block inner products for each call to ortho.
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1.6.6 Alternative orthogonal basis updates

We propose an alternative construction of the aggregate solution component matrix
Cp that enables both X and P to be constructed simultaneously which leads to a
further performance improvement discussed in Section 1.6.7. RayleighRitz always
computes orthonormal primitive eigenvectors Z satisfying

STBS = RTR,
(
R−TSTASR−1

)
Z = ZΘ, and Z = RC

partitioned as

Z =

 Z1 Z1⊥
Z2 Z2⊥
Z3 Z3⊥

 , R =

 R11 R12 R13

0 R22 R23

0 0 R33

 ,

C =

 C1 C1⊥
C2 C2⊥
C3 C3⊥

 , and Θ =

[
Θx 0
0 Θ⊥

]
.

The orthogonal complement to X within the subspace spanned by S corresponds to
primitive components

Z⊥ =

 Z1⊥
Z2⊥
Z3⊥

 which give C⊥ = R−1Z⊥ =

 C1⊥
C2⊥
C3⊥

 .

Z⊥ can be transformed into orthonormal Zp to combine basis updates[
X P

]
= S

[
Cx Cp

]
= S

(
R−1

[
Zx Zp

])
.

The unorthogonalized aggregate update components used by HL have corresponding
primitives

Ĉp =

 0
C2

C3

 and Ẑp =

 Ẑ1

Z2

Z3


where Ẑ1 =

[
R12 R13

] [ R22 R23

0 R33

]−1 [
Z2

Z3

]
.

Ẑp can easily be orthogonalized against Zx by projecting it onto Z⊥, which is al-
ready available. QR factorization of projection components produces the orthogonal
transformation that yields orthonormal Zp.

QpRp = ZT
⊥Ẑp and Zp = Z⊥Qp.

This improves communication efficiency by combining BLAS-3 operations used to
form X and P . We also avoid the second call to ortho needed by HL. Also note how
this simplifies the update to the P inner product P TAP = QT

p Θ⊥Qp.
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1.6.7 Communication efficient matrix multiply-and-update

Previous versions of LOBPCG require us to store X(i+1) and S(i) in separate arrays.
S(i) is needed to construct P (i+1), but X(i+1) is also needed to compute residuals
which determine columns of P (i+1) to be formed. This forces memory stored in S to
be accessed at least three times per update.

X(i+1) = S(i)Cx, P (i+1) = S(i)Cp, and S(i+1)(:, 1 : nx + np) =
[
X(i+1) P (i+1)

]
.

We reduce this expense to a single pass over S. This is done by delaying soft
locking by one iteration. If columns of P are computed for eigenpairs that had not
converged on the previous iteration then both X(i+1) and P (i+1) can be computed
before residual norms are known, which eliminates the need to store results in sepa-
rate arrays. This allows results to be stored in S during the same memory pass used
to compute the product. We do this by partitioning S into row panels which are
multiplied into local temporary arrays that are copied back before moving on to the
next row panel. Partitioning

S(i) =

 S
(i)
1

S
(i)
2
...

 , take T = S
(i)
j

[
C

(i+1)
x C

(i+1)
p

]
then S

(i+1)
j (:, 1 : nx+np) = T .

T is a temporary array owned by the processor handling the given panel. Panel
thickness should be chosen to allow T , S

(i)
j , and [Cx Cp] to reside in cache simulta-

neously. Note that we have moved P to be adjacent to X in the array S which has
a secondary benefit; if trailing columns of W are subsequently dropped by ortho, P
does not need to be moved.
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Algorithm 5 Our LOBPCG algorithm

Input:
X(0) is m× nx initial approximate eigenvectors.
nv ≤ nx is the number of converged eigenvectors requested.
τ is the threshold used to determine eigenpair convergence.

Output:
X is m× nv matrix of approximate eigenvectors.
Λ is nv × nv diagonal matrix of approximate eigenvalues.

1: function [X,Λ]=lobpcgDGSY(X(0), nv, τ)
2: [C(1),Θ(1)] = RayleighRitz(X(0))
3: X(1) = X(0)C(1);
4: R(1) = AX(1) −BX(1)Θ(1);
5: nc = 0; useOrtho = false; P (1) = [];
6: do i = 1, 2, . . .
7: if useOrtho W (i) = orthoDrop(B,R(i), [X(i) P (i)]);
8: else W (i) = R(i);
9: S(i) =

[
X(i) P (i) W (i)

]
;

10: [C(i+1),Θ(i+1)] = RayleighRitzModified(S(i), nx, nc);
11: [X(i+1) P (i+1)] = S(i)[Cx Cp];
12: R(i+1) = AX(i+1) −BX(i+1)Θ(i+1);
13: Determine number of converged eigenpairs nc.
14: while nc < nv
15: Return converged eigenpairs in X and Λ;
16: end function
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Algorithm 6 Modified orthogonalization procedure.

Input:
M is m×m symmetric positive definite metric.
U (in) is m× n(in)

u candidate basis.
V is M -orthonormal external basis.
τ > 0 is relative orthogonality tolerance.

Output:
U (out) is m× n(out)

u . n
(out)
u ≤ n

(in)
u .

span([U (out), V ]) ≈ span([U (in), V ]).
1: function U (out)=orthoDrop(M,U (in), V )
2: do i = 1, 2, 3
3: U = U − V (V TMU);
4: do j = 1, 2, 3
5: if j == 1 then
6: U = svqb(M,U, τreplace);
7: else
8: U = svqbDrop(M,U, τdrop);
9: end if

10: while
‖UTMU−Inu‖
‖MU‖‖U‖ > τrelOrthoErr

11: while
‖V TMU‖
‖MV ‖‖U‖ > τrelOrthoErr

12: end function

Algorithm 7 SVQB with dropping

Input:
M is m×m symmetric positive definite metric.
U (in) is m× nu.
τ > 0 is tolerance.

Output:
U (out) is m× nu. n(out)

u ≤ n
(in)
u .

span(U (out)) ≈ span(U (in)).
1: function U (out)=svqbDrop(M,U (in), τ)

2: D =
(
diag

(
UTMU

))−1/2
;

3: Solve
(
DUTMUD

)
Z = ZΘ for Z,Θ.

4: Determine columns to keep J = {j : θj > τ maxi(|θi|)}.
5: U = UDZ(:, J)Θ(J, J)−1/2;
6: end function
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Algorithm 8 Rayleigh–Ritz with alternative basis update

Input:
S is an m× ns matrix forming a basis for the search subspace.
nx is the number of extreme eigenpair approximations to return.
nc is the number of converged eigenpairs from the previous iteration.

Output:
C is ns × (2nx − nc). First nx columns are Cx followed by nx − nc giving Cp.
Output satisfies CT (STBS)C = I and CT (STAS)C = Θ.

1: function [C,Θ]=RayleighRitzModified(S,nx,nc)
2: if useOrtho then
3: Solve

(
STAS

)
Z = ZΘ.

4: QR factorize

QpRp =
[
ZT

2⊥ ZT
3⊥
] [ Z2(:, nc + 1 : nx)

Z3(:, nc + 1 : nx)

]
.

5: [Cx Cp] = [Zx Z⊥Qp(:, 1 : nx − nc)];
6: else
7: D =

(
diag(STBS)

)−1/2
. Round to integer powers of 2.

8: Cholesky factorize RTR = DSTBSD.
9: if (cond(R) > τR) useOrtho = true; Exit and restart this iteration.
10: Solve

(
R−TDSTASDR−1

)
Z = ZΘ.

11: QR factorize

QpRp =

(
ZT

1⊥
[
R12 R13

] [ R22 R23

0 R33

]−1

+
[
ZT

2⊥ ZT
3⊥
])[ Z2(:, nc + 1 : nx)

Z3(:, nc + 1 : nx)

]
.

12: [Cx Cp] = DR−1[Zx Z⊥Qp(:, 1 : nx − nc)];
13: end if
14: Update Θ to represent partial inner products

Θ =

[
Θx 0
0 Qp(:, 1 : nx − nc)TΘ⊥Qp(:, 1 : nx − nc)

]
.

15: end function
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1.7 Analysis

1.7.1 Implicit update error

Suppose we have arrays representing a basis X and product fl(AX) = AX +
ε1‖AX‖E1 where we chose ε1 > 0 to normalize the representation error matrix
‖E1‖ = 1. All such error matrices below are normalize the same way ‖Ei‖ = 1
by definition of εi > 0. We wish to apply the transformation T . Floating point
arithmetic gives

X̂ = fl(XT ) = XT + ε2‖X‖‖T‖E2,

however we can define the new basis to be exactly represented by the resulting array
X̂. Computing the product directly in floating point arithmetic leaves representation
error

fl(AX̂) = AX̂ + ε3‖A‖‖X̂‖E3.

Alternatively, we could apply the transformation to the stored product fl(AX) to
obtain

fl(fl(AX)T ) = AXT + ε1‖AX‖E1T + ε4‖AX‖‖T‖E4.

We can express this error in the new basis by substitutingAXT = AX̂−ε2‖X‖‖T‖AE2

to write the error as

fl(fl(AX)T ) = AX̂ + ε5‖A‖‖X̂‖E5

where we have defined the composite error

ε5‖A‖‖X̂‖E5 = ε1‖AX‖E1T − ε2‖X‖‖T‖AE2 + ε4‖AX‖‖T‖E4.

We can provide an upper bound for any sub-multiplicative matrix norm using the
triangle inequality with ‖E1T‖ ≤ ‖T‖, ‖AE2‖ ≤ ‖A‖, and ‖AX‖ ≤ ‖A‖‖X‖ giving

ε5 ≤ (ε1 + ε2 + ε4)
‖X‖‖T‖
‖X̂‖

.

The implicit basis updates in our algorithm use orthogonal transformations for T .
Thus we have a very slight increase in representation error of the product, however
using implicit updates in svqb would be disastrous. If X = UΣV T and we take
the transformation T = V Σ−1, then the representation inconsistency bound in the
2-norm is substantially magnified compared to the direct product

ε5 ≤ (ε1 + 2µε)σ1σ
−1
nx = (ε1 + 2µε)cond(X) versus ε3 ≤ µε.
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1.7.2 Residual construction error

When we use our modified convergence test, the convergence tolerance must be set
τ > 2µε. This is due to representation constraints. Let x and θ be an exact eigenpair
so that the residual vanishes, r = Ax − θBx = 0. Take the nearest floating-point
representation to be x̂ = x + εx‖x‖e1 where we choose the scaling factor εx > 0 to
normalize the corresponding vector of roundoff errors ‖ex‖ = 1. When the residual
is computed in floating-point arithmetic, the matrix products are

fl(Ax̂) = Ax̂+ εx‖x̂‖Aex + εA‖A‖‖x̂‖eA and

fl(θBx̂) = θBx̂+ εx‖x̂‖θBex + εB|θ|‖B‖‖x̂‖eB.
Again, scaling factors εA and εB are chosen so that ‖eA‖ = 1 and ‖eB‖ = 1. Since
both product vectors are nearly equal, subtraction is exact

fl(r) = fl(Ax̂)− fl(Bx̂θ) = εx‖x̂‖(A− θB)ex + εA‖A‖‖x̂‖eA − εB|θ|‖B‖‖x‖eB.

This produces an upper bound on the computed residual 2-norm

‖fl(r)‖2 ≤ 2µε (‖A‖2 + |θ|‖B‖2) ‖x̂‖2 and
‖fl(r)‖2

(‖A‖2 + |θ|‖B‖2) ‖x̂‖2

≤ 2µε.

Therefore we see that even the best possible representation x̂ can only be verified to
pass our convergence test if the tolerance is set above 2µε. This computation also
shows that the relative residual corresponding to x̂ would be bound

‖fl(r)‖2

|θ|‖x̂‖2

≤ 2µε

(
‖A‖2

|θ|
+ ‖B‖2

)
.

While it is true that floating point truncation error could be smaller that the
bounds above or even zero in contrived circumstances, truncation error cannot be
guaranteed to produce smaller results. Therefore convergence detection thresholds
must be set above these bounds. Even if B = I, the ratio ‖A‖2|θ| could be quite large
which is the reason why the relative residual is sometimes ill-suited for detecting
convergence.

1.7.3 Rayleigh–Ritz orthogonality error

Suppose we have a basis stored in memory fl(S) that we wish to use in RayleighRitz.
Let us suppose that the Cholesky decomposition exists in exact arithmetic. That is,
assume fl(S) is linearly independent in the metric B.

fl(S)TBfl(S) = RTR and define S∗ = fl(S)R−1.
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This would give the exact result in RayleighRitz since it is now a standard eigen-
value problem.

S∗TAS∗C∗ = S∗TBS∗C∗Θ∗ = C∗Θ∗.

We apply the Relative Weyl Theorem restated here: Let X be a nonsingular
square matrix. Let λi(A) and λi(X

TAX) return the ith eigenvalues of A and XTAX
respectively, having been sorted in ascending order. It follows∣∣λi(XTAX)− λi(A)

∣∣
|λi(A)|

≤ ‖XTX − I‖2∣∣λi (fl(S)TAfl(S)
)
− λi

(
S∗TAS∗

)∣∣
|λi (S∗TAS∗)|

≤ ‖RTR− I‖2

|θi − θ∗i |
|θ∗i |

≤ ‖fl(S)TBfl(S)− I‖2.

If we substitute the approximated Rayleigh quotient into our convergence criterion
with θi = θ∗i (1 + ε) where relative error ε is bound as above then error in the conver-
gence criterion computation would be

εr ≤
‖Bxi‖ |θ∗i ε|

(‖A‖+ |θ∗i | ‖B‖) ‖xi‖
≤ |ε| ≤ ‖fl(S)TBfl(S)− I‖2.

This shows that for the convergence criterion to be possible to satisfy we must ensure
B-orthogonality in fl(S) below the convergence tolerance τ .

1.7.4 Backwards stability

Let the eigenpair (x, θ) satisfy our convergence condition. Then perturbation matri-
ces ∆A and ∆B exist for which the eigenpair is exact

(A+ ∆A)x = θ (B + ∆B)x or r = Ax− θBx = (θ∆B −∆A)x.

Minimal 2-norm perturbations can be constructed as rank-1 matrices

∆∗A =
−αrxT

‖x‖2
2

and ∆∗B =
(1− α)rxT

θ‖x‖2
2

satisfying min
∆A,∆B

‖∆A‖2+|θ|‖∆B‖2 =
‖r‖2

‖x‖2

for α ∈ [0, 1]. Substituting this into the convergence condition gives an upper bound
on the relative perturbation magnitude

‖∆∗A‖2 + |θ|‖∆∗B‖2

‖A‖2 + |θ|‖B‖2

≤ τ.
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1.8 Numerical examples

1.8.1 Convergence comparisons

The number of iterations performed by an implementation of LOBPCG will depend
on the method used to detect convergence and the corresponding threshold. This
introduces a difficulty when we attempt to compare our best algorithms against
other algorithms that are available. Because we use the modified convergence crite-
rion Equation 1.6, it is possible that our algorithm benefits from performing fewer
iterations, which obfuscates the meaning of direct time comparisons.

In order to construct meaningful tests we have altered the source code of both
Blopex and Anasazi implementations of LOBPCG to use our convergence condition.
This ensures that when we compare performance, we are doing so for the same ef-
fective workload. However, in order to show that our convergence criterion is a fair
improvement, we first compare each implementation using the original convergence
(–OC) method and our modification. We also test our own Conservative implemen-
tation of the Hetmaniuk-Lehoucq algorithm (CHL). This version does not perform
any implicit updates or employ other performance improvements. All test matrices
are available from the University of Florida Sparse Matric Collection.

Case Matrix Block width Eigenpairs Convergence threshold
1 C60 194 176 1.0× 10−4

2 Si5H12 219 199 1.0× 10−4

3 Andrews 550 500 1.0× 10−4

We seek 1% of the eigenpairs with minimal eigenvalues. Basis blocks are padded
by 10% and the convergence tolerance is set to 10−4. These tests are performed using
24-core shared-memory Intel processors. Timing results are

Matrix AnasaziOC Anasazi BlopexOC Blopex CHLOC CHL
C60 947.40 21.02 failed 14.15 26.63 17.15

Si5H12 53.48 42.49 49.84 29.57 42.66 31.67
Andrews failed 614.10 383.70 318.90 failed 276.01

The BlopexOC fail case generated an unrecoverable error during operation due
to a negative pivot within Cholesky factorization. Both AnasaziOC and CHLOC fail
cases had not converged after running for 4 hours.

Each implementation benefits from the new convergence criterion. In the case
of Andrews, Blopex succeeds where the other algorithms fail because it allows for
soft-locking out of order. As a result, Blopex misses the minimum eigenpair but
succeeds in returning other eigenpairs within the allowed number of iterations. Since
CHLOC and AnasaziOC force convergence in order, iteration cannot terminate as
the minimum eigenvalue is too small to satisfy the relative residual threshold in
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floating point arithmetic.

1.8.2 Fixed core performance

For all remaining comparisons we use the modified convergence condition. During
the course of this research five main algorithm variations were developed and tested.
A5 is our fifth and final version using the stability and performance modifications
discussed. We also test an Aggressive implementation of Hetmaniuk-Lehoucq (AHL)
using the implicit updates they suggest. We seek the minimum of 500 or 1% of
the eigenpairs for each matrix. As before, basis blocks are padded by 10% and
convergence tolerance is set to 10−4.

Case Matrix Block width Eigenpairs Conv. threshold
1 C60 194 176 1.0× 10−4

2 Si5H12 219 199 1.0× 10−4

3 c 65 529 481 1.0× 10−4

4 Andrews 550 500 1.0× 10−4

5 Ga3As3H12 550 500 1.0× 10−4

6 Ga10As10H30 550 500 1.0× 10−4

These tests are performed on both 1 and 24 cores of 24-core shared memory Intel
processors. Wall times are plotted relative to CHL because it is a reliable reference.
The fail cases observed in these experiments are due to Cholesky factorization failure
during orthogonalization.

1-Core results:
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Case Anasazi Blopex CHL AHL A5
1 126.10 59.08 64.58 55.93 39.99
2 282.60 138.40 147.80 126.34 91.01
3 failed failed 4535.37 4184.92 3577.42
4 3230.00 1406.00 1659.73 1456.42 1100.81
5 failed 2752.00 4228.64 3436.80 2938.86
6 failed failed 11430.91 10034.57 8650.59

24-Core results:
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Case Anasazi Blopex CHL AHL A5
1 21.01 14.06 17.10 14.75 5.32
2 42.75 29.22 31.63 26.31 10.26
3 failed failed 751.26 839.59 459.68
4 624.00 312.50 276.69 305.69 84.55
5 failed 569.30 602.70 642.13 304.34
6 failed failed 1715.36 1918.28 930.69

1.8.3 Strong scaling

We compare strong scaling parallel performance using the standard symmetric eigen-
value problem Si5H12. This dimension of this matrix is 19896. We seek 199 eigen-
pairs which is 1% of the spectrum. We pad basis blocks by 10% to give 219 columns
per block. The convergence threshold is set to 10−4.
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Cores Anasazi Blopex CHL AHL A5
1 867.00 416.90 384.20 325.38 254.03
2 418.00 196.90 214.10 179.81 134.31
3 316.30 154.70 161.30 136.14 96.60
4 261.50 133.80 134.52 113.51 77.64
6 232.20 110.40 113.46 104.49 58.16
8 200.80 101.40 96.99 91.54 46.56
10 161.80 90.47 80.32 69.14 41.11
12 202.00 87.77 86.76 86.55 36.43
16 158.00 89.63 71.11 65.94 31.29
20 140.90 86.59 63.11 56.92 28.25
24 136.00 85.23 61.38 53.50 26.25

1.8.4 Scaling number of eigenpairs

We also examine the effect of scaling the number of sought eigenpairs and the cor-
responding block dimension using Andrews because all of the algorithms we test are
successful on this matrix. As before, the block dimension is 10% larger than the
number of eigenpairs sought and convergence tolerance is 10−4.
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Eigenpairs Anasazi Blopex CHL AHL A5
75 52.93 40.47 50.75 41.51 19.48
100 69.92 34.06 52.40 42.95 15.68
150 64.65 55.44 71.05 60.58 18.01
200 87.37 71.02 87.01 74.80 23.00
300 160.10 139.70 143.77 148.98 37.99
400 396.20 218.70 203.77 220.89 59.83
600 841.00 353.20 356.82 408.53 118.32
800 1619.00 678.60 545.03 635.83 197.37
1200 3602.00 1811.00 932.56 1072.21 421.47

1.8.5 Parallel performance fitting

The following model is used to analyze strong scaling performance. Solution time
using n processors is assumed to have the form

t(n) := α
t1
n

+ (1− α)t1 + β(n− 1)t1.

This time can be separated into workload components undertaken by the most
heavy-laden core. The first term is the fraction α ∈ [0, 1] of single-core workload
time t1 that is efficiently divided among all n cores. The second term is remaining
overhead that does not parallelize. The third term is the relative increase in workload
due to communication and coordination with each other processors. β ≥ 0.

Parameters α and β are solved using a nonnegative linear least-squares fit to

experimental results. The optimal number of processors, nopt = min(24,
√

α
β
), and

the optimal wall time t(nopt) are compared.
Anasazi Blopex CHL AHL A5

t1 867.0 416.9 384.2 325.4 254.0
α 92.6% 93.3% 86.6% 85.0% 93.3%
β 0.286% 0.518% 0.000% 0.000% 0.000%
nopt 18 13 24 24 24
topt 151.2 83.6 65.3 60.3 27.0

The meaning of these parameters and corresponding optima is clearly limited by
the applicability of the model which is both problem-dependent and architecture-
dependent. However, they still provide insight into how well each algorithm utilizes
available processing capacity of the given machine.

We can also fit perfomance scaling as the number of eigenvectors sought changes.
That is log (t(nEig)) to log

(nEig
75

)
approximates the order of leading term in time

dependence.
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t(n) := t75

( n
75

)p
Anasazi Blopex CHL AHL A5

t75 48.48 35.89 50.74 42.14 14.59
p 1.58 1.40 1.10 1.25 1.19

We believe the value of p is smallest for CHL because it avoids implicit updates.
Implicit updates require matrix multiplication which scales as n2

Eig. For large block
dimensions, it would be more efficient to use direct updates which scale linearly with
block dimension. However, in this range of problem sizes implicit updating is still
faster.
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Chapter 2

Spectral Target Residual Descent

2.1 Contributions and results

This work introduces a new algorithm, based on LOBPCG, that is designed to com-
pute eigenvectors with eigenvalues near a spectral target in the interior of the spec-
trum of a symmetric matrix. The previous approach using LOBPCG to approximate
such eigenvectors applies the algorithm to a shift-squared matrix. This technique pro-
duces a new matrix in which eigenvectors of interest have smallest eigenvalues which
are suitable for approximation with LOBPCG. Unfortunately, convergence can be
slow unless the target is set at a large gap in the spectrum. Furthermore, the shift-
and-square approach using LOBPCG cannot be used to solve generalized symmetric
eigenvalue problems.

2.1.1 Improving convergence

The purpose of this work is to improve convergence towards interior eigenvalue tar-
gets of large symmetric matrices. Eigenpairs of interest are framed as solutions to
a spectral target objective function which is then minimized through gradient de-
scent. This objective formulation is needed to ensure that eigenpair approximations
do not retreat from the intended spectral target. Convergence is then accelerated by
formulating a second set of objective functions based on the convergence detection
computation. These additional objectives provide gradients that improve subspace
expansion efficiency.
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2.1.2 Generalized spectral targeting

The objective formulations used to derive this method generalize to non-identity
metrics which share solutions with generalized eigenvalue problems. A generalized
method is proposed and possible implementation strategies are discussed.

2.1.3 Results

Numerical experiments on standard symmetric eigenvalue problems show the pro-
posed method typically converges in roughly half of the number of iterations required
by LOBPCG on a shift-squared matrix.

This work will extend to naively parallel implementations of windowed eigenvalue
solvers for large sparse symmetric matrices. Since interior targeting can be efficiently
pursued, multiple processes can be configured to simultaneously and independently
work on different spectral targets with very little synchronization among processes.

2.2 Introduction to interior eigenvalue targeting

The symmetric eigenvalue problem is often encountered in engineering and physics.
Given a large symmetric matrix A ∈ Rm×m, the standard eigenvalue problem is
written

AX = XΛ with unit-length eigenvectors X =
[
x1 · · · xm

]
and eigenvalues Λ = diag([λ1, · · · , λm]). These eigenpairs can be sorted by distance
from a spectral target σ. When the matrix A is very large the full eigenvalue de-
composition becomes impractical and may be unnecessary. For many applications,
only a small window of eigenvalues is needed near a spectral target of interest. These
target-shifted eigenvalues can be written as δi = λi−σ for i = 1, 2, . . . ,m and ordered
so that |δ1| ≤ |δ2| ≤ · · · ≤ |δm|. We explore the task of seeking a small window of
k � m eigenvector-eigenvalue pairs nearest σ in value [53]. These solutions (X∗,∆∗)
satisfy the shifted eigenvalue problem

(A− σI)X∗ = X∗∆∗ where X∗ =
[
x1 · · · xk

]
and ∆∗ =

δ1

. . .

δk


An early attempt to solve interior eigenvalues of sparse symmetric matrices was

submitted by Morgan in 1991.[51] Morgan notes that approximate eigenpair extrac-
tion based on Rayleigh-Ritz analysis fails for interior spectral targets. The alter-
native proposed uses a form of Rayleigh–Ritz analysis with implicit shift-inversion.
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A related approach approximates shift-inversion using block Lanczos iteration [27].
Sleijpen et al. introduced the Jacobi–Davidson method in 1996, which approximates
Rayleigh-Quotient Iteration [62, 63]. This method requires approximating the solu-
tion to a linear system for every eigenpair sought on every iteration.

An obvious approach based on Knyzev’s Locally Optimal Block Preconditioned
Conjugate Gradient (LOBPCG) [41] simply approximates the lowest eigenvalues of
the Shifted-Squared matrix (SSLOBPCG):

(A− σI)2X∗ = X∗∆∗2.

LOBPCG is an iterative method that computes a sequence of approximations

(X(j),∆(j)) for j = 1, 2, . . .

until all sought eigenpairs satisfy a convergence threshold

‖r(j)
i ‖2(

‖(A− σI)‖2 + |δ(j)
i |
)
‖x(j)

i ‖2

≤ τc for i = 1, . . . , k. (2.1)

This method is well-suited to resolving eigenpairs at either extreme of the spec-
trum. This research proposes a modification that attempts to improve convergence
over what can be obtained by SSLOBPCG.

In Section 2.3, analysis and motivation are developed by examining relevant ob-
jective functions to be optimized. Using two residual-minimizing objectives, sub-
space extraction and expansion methods are derived. These methods are then im-
plemented in an algorithm titled Spectral Target Residual Descent (STRD). Sec-
tion 2.4 examines analogous objective functions for a generalized spectral target
(A− σB)X∗ = BX∗∆∗. An algorithm requiring internal iterations of Precondi-
tioned Conjugate Gradient (PCG) is proposed. In Section 2.5, numerical experimen-
tal results comparing STRD with SSLOBPCG are given.

2.3 Spectral targeting analysis

Each iteration of LOBPCG operates in two phases: subspace extraction and subspace
expansion. Iteration j begins with X(j) ∈ Rm×nx representing current approximate
eigenvectors. Convergence may be improved by including padding in the dimension
of approximate eigenvectors over the number of eigenvectors sought so that nx > k.
A basis S(j) is constructed for a subspace that will be searched to obtain better
approximations X(j+1) ∈ span(S(j)). That is,

X(j+1) = extractionFunction(S(j)) where S(j) =
[
X(j) Y (j)

]
.
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Composition and analysis of additional search basis vectors Y (j) are considered in
Section 2.3.4. To maintain both simplicity and numerical stability, columns of S(j)

are always constructed to be orthonormal S(j)TS(j) = I [33]. Typically extraction
is accomplished with the Rayleigh–Ritz procedure, although variations on this tech-
nique have been explored by Hochstenbach and Sleijpen [35]. Solutions have the
form X(j+1) = S(j)Cx

(j+1) and are substituted into the eigenvalue problem which is
projected onto S(j). This produces the reduced symmetric eigenvalue problem(

S(j)TAS(j)
)
Cx

(j+1) = Cx
(j+1)Θ(j+1) solving for Cx

(j+1) and Θ(j+1).

Eigenpairs are then sorted by eigenvalue to obtain nx primitive vectors Cx
(j+1)

from an extreme end of the spectrum. Taking the lowest eigenvalues guarantees that
Rayleigh–Ritz produces monotonicaly non-increasing approximations. This easily
follows from the Courant-Fischer min-max theorem restated here. Let αi be eigen-
values of A sorted in ascending order α1 ≤ α2 ≤ · · · ≤ αm. If U i and V m−i+1 are i
and m− i+ 1 dimensional subspaces of Rm respectively then

αi = min
U i⊂Rm

max
06=z∈U i

zTAz

zT z
= max

Vm−i+1⊂Rm
min

06=z∈Vm−i+1

zTAz

zT z
.

By taking the k minimal eigenvalues from the Rayleigh–Ritz projection, we have

αi ≤ θ
(j+1)
i = min

U i⊂S(j)
max

06=z∈U i

zTAz

zT z
≤ x

(j)T
i Ax

(j)
i

x
(j)T
i x

(j)
i

= θ
(j)
i since x

(j)
i ∈ S(j) ⊂ Rm.

Likewise, taking the maximal eigenvalues would give a non-decreasing sequence of
eigenvalue approximations. This is the extremizing property of iterative Rayleigh–
Ritz on a sequence of subspaces each of which contains previous extrema.

2.3.1 Phantom eigenvalues

In order to target the interior of the spectrum of A, an enticing strategy is to perform
Rayleigh–Ritz and sort by distance from the spectral target σ. Unfortunately, this
technique is unsuccessful.

To understand why interior convergence fails, consider a unit-length linear com-
bination z of two eigenvectors xa and xb such that λa and λb respectively fall below
and above the spectral window of interest:

z = cos(ϕ)xa + sin(ϕ)xb where λa < min
i=1,...,nx

λi and λb > max
i=1,...,nx

λi.
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The corresponding Rayleigh quotient is

θ(z) = zTAz = cos(ϕ)2λa + sin(ϕ)2λb which yields θ(z) ∈ [λa, λb].

This is an example of what might be called a phantom Ritz vector. These are useless
combinations of eigenvectors with both large and small eigenvalues. Although z has
no linear dependence with any eigenvector of interest, it can duplicate any eigenvalue
within the spectral window depending on ϕ. As a result, Rayleigh-Ritz sorted by
distance from σ will dispose of more useful approximations in favor of vectors such
as z simply because the Rayleigh quotient is close to the target.

2.3.2 Spectral targeting objective

Clearly, the spectral target distance from the Rayleigh quotient of an approximate
eigenvector is not an adequate objective to minimize. Suppose we construct a phan-
tom z to have a Rayleigh-quotient that exactly matches the target σ. The residual
would be given by r = (A− σI)z, which would give a residual 2-norm

‖r‖2
2 = zT (A− σI)2 z = cos(ϕ)2(λa−σ)2+sin(ϕ)2(λb−σ)2 ≥ min

(
(λa − σ)2, (λb − σ)2

)
We see that even if the Rayleigh quotient were an exact match, the residual 2-norm
would have shown the vector z to contain components that are far from the spectral
target. This observation leads to the definition of the spectral target residual

t
(j)
i = (A− σI)x

(j)
i . (2.2)

Note that σ is the spectral target and is held constant for all target residual com-
putations rather than using the Rayleigh quotient as is the case for the standard
residual definition.

The sum of squares of target residual 2-norms corresponding to an approximation
X(j) would be

f(X(j)) = trace
(
X(j)T (A− σI)2X(j)

)
. (2.3)

The objective function 2.3—based on spectral target residual minimization—is
equivalent to the LOBPCG objective on the shift-squared matrix. The minimizer of
this objective gives eigenvectors with values nearest σ. To show this, let X∗ = XC∗

where X ∈ Rm×m is the full matrix of unit-eigenvectors and C∗ ∈ Rm×k is the
minimizing orthogonal column matrix so that C∗TC∗ = I. We take corresponding
components H ∈ Rm×k to be arbitrary orthonormal perturbations which are only
constrained to remain orthogonal to the minimizer HTH = I and HTC∗ = 0. This
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gives perturbed candidates of the form X̂ = X(C∗ + εH) where ε ∈ R is a scaling
constant.

The variational principle requires that all derivatives of the objective function,
represented by derivatives with respect to ε, must vanish at the optimizer. That is

∂

∂ε
f(X̂) = 0 or trace

(
HT (Λ− σI)2C∗

)
= 0.

Since H could be any basis within the complement of span(C∗), the only way this
condition can hold is if (Λ − σI)2C∗ = C∗Ĉ or C∗T (Λ − σI)2C∗ = Ĉ for some
component matrix Ĉ. This would give the objective function f(X∗) = trace(Ĉ).
The objective is minimized by sequentially constructing orthonormal columns c∗j in
C∗ that result in the smallest magnitude row scaling (Λ − σI)c∗j . This produces
components corresponding to eigenvalue offsets δ1 = λ1 − σ through δk = λk − σ
sorted by distance from the target σ.

2.3.3 Subspace extraction

A reliable subspace extraction method makes use of the target residual minimization
objective 2.3. We simply seek optimal candidates from within the search subspace
spanS(j). That is, X(j+1) = S(j)Cx

(j+1) where Cx
(j+1) ∈ Rns×nx gives optimal can-

didate components. Following the same analysis from the previous section, these
optimal components correspond to the eigenvectors of S(j)T (A− σI)2 S(j) with min-
imal eigenvalues.

Because this process is equivalent to what would occur if LOBPCG were applied
to the target shift-squared matrix (A− σI)2, it naturally guarantees that subsequent
approximations of eigenvectors within the target window are no worse than previous
approximations by a trivial modification of the proof using the Courant-Fischer min-
max theorem. However unlike LOBPCG, this style of analysis generalizes to interior
targeting of matrix pencils or generalized eigenvalue problems discussed further in
Section 2.4.1.

A second extraction, Rayleigh-Ritz, is then performed using only the nx minimiz-
ers from the first extraction with the shifted—but not squared—matrix (A− σI).
This isolation phase decouples eigenvectors with positive and negative offsets. Al-
though this isolation does not change the search subspace used on subsequent itera-
tions, it is required to compute residuals and detect convergence.
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2.3.4 Subspace expansion

To achieve convergence towards eigenpairs near the target, we need to capture the
local gradient of the objective function 2.3. Let X(j) be our last approximate
orthonormal eigenvectors. As before, we consider an arbitrary perturbation H ∈
Rn×nx under the only restrictions HTH = I and HTX(j) = 0, which are sensible
because we are only interested in dimensions that would expand the search subspace
span(S(j)). Perturbations on the local approximation are then X̂ = X(j) + εH where
ε ∈ R is a scaling constant.

Differentiating the objective function with respect to ε produces

∂

∂ε
f(X̂) = trace

(
HT (A− σI)2X(j)

)
which indicates that the direction of steepest descent is maximized by some linear
combination

Hsd ∈ span
([
X(j) (A− σI)2X(j)

])
that isolates components of (A− σI)2X(j) that are orthogonal to X(j). The residual
matrix corresponding to shift-squared LOBPCG equivalently computes

Rss = (A− σI)2X(j) −X(j)(∆(j))2 giving Hsd ∈ span
([
X(j) Rss

])
.

Notably, each shift-squared residual is a critical direction of the quadratic form

q(x
(j)
i ) = x

(j)T
i

(
(A− σI)2 − δ(j)

i

2
)
x

(j)
i .

However, this quadratic form is not a useful objective since it is already zero when-
ever (δ

(j)
i )2 is the Rayleigh quotient. Although this basis expansion provides descent

towards eigenpairs near the target, it misses a second key measurement in the algo-
rithm: the convergence condition (2.1).

The objectives required to claim that each eigenpair has converged scale with the
ordinary residual 2-norms. We require gradients of these residual norms to speed
satisfaction of the convergence conditions. Residual 2-norm-squared objectives are

g
(j)
i (x) = xT (A− θ(j)

i I)2x where θ
(j)
i =

x
(j)T
i Ax

(j)
i

x
(j)T
i x

(j)
i

.

Each corresponding dimension of steepest descend is then

h
(j)

sd,i
∈ span

([
x

(j)
i (A− θ(j)

i I)2x
(j)
i

])
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which further expands into components h
(j)

sd,i
= αx

(j)
i + βr

(j)
i + γ (A− σI) r

(j)
i . The

two expansion basis blocks below ensure that the gradients of both the ordinary
residual norms and target residual norms are captured in the subsequent search
subspace. LOBPCG applied to a shift-squared matrix only expands the search basis
by nx vectors Rss = (A− σI)2X(j) −X(j)(∆(j))2 rather than 2nx vectors

R(j) = AX(j) −X(j)Θ(j) and V (j) = (A− σI)R(j). (2.4)

As usual, both of these basis expansions need to be orthonormalized before the
next extraction phase. Furthermore, aggregate eigenvector updates P are still re-
tained from prior extraction results as is the case for LOBPCG. STRD is outlined
in Algorithms 9, 10, and 11 for the standard eigenvalue problem.
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Algorithm 9 Spectral Target Residual Descent

Input:
X(0) is an m× k matrix of initial approximate eigenvectors.
k ≤ m is the number of converged eigenvectors requested.
σ is the spectral target. Eigenvectors are sought with eigenvalues nearest σ.

Output:
X∗ is the m× k matrix of approximate eigenvectors.
Λ∗ is the k × k diagonal matrix of approximate eigenvalues.

1: function [X∗,Λ∗]=strd(X(0), k, σ)
2: [C(1),∆(1)] = TargetRayleighRitz(X(0), σ)
3: X(1) = X(0)C(1);
4: P (1) = [ ] ;
5: R(1) = (A− σI)X(1) −X(1)∆(1);
6: V (1) = (A− σI)R(1);
7: nc = 0;
8: do j = 1, 2, . . .
9: Y (j) = orthoDrop

(
I, [R(j) V (j)], [X(j) P (j)]

)
;

10: S(j) =
[
X(j) P (j) Y (j)

]
;

11: [C(j+1),∆(j+1)] = standardTargetExtract(S(j), k, nc);
12: [X(j+1) P (j+1)] = S(j)C(j+1);
13: R(j+1) = (A− σI)X(j+1) −X(j+1)∆(j+1);
14: V (j+1) = (A− σI)R(j+1);
15: Determine number of converged eigenpairs nc.
16: while nc < k
17: Return converged eigenpairs X∗ = X(j+1) and Λ∗ = ∆(j+1) + σI;
18: end function
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Algorithm 10 Initial spectral target Rayleigh–Ritz

Input:
X(0) is m× k matrix basis for the initial search subspace.
σ is the spectral target of A.
Columns must be linearly independent and well-conditioned.

Output:
C(1) is k × k solution components for X(1).
∆(1) is k × k diagonal matrix of Rayleigh quotients for target-shifted matrix.
These satisfy C(1)TX(0)TX(0)C(1) = I and C(1)TX(0)T (A− σI)X(0)C(1) = ∆(1).

1: function [C(1),∆(1)]=TargetRayleighRitz(X(0),σ)

2: D =
(
diag(X(0)TX(0))

)− 1
2 ;

3: Cholesky factorize RTR = DX(0)TX(0)D.
4: Solve

(
R−TDX(0)T (A− σI)X(0)DR−1

)
Z = Z∆(1).

5: C(1) = DR−1Z;
6: end function

Algorithm 11 Standard spectral target extraction and isolation

Input:
S(j) is m× ns matrix forming an orthonormal basis for the search subspace.
nc is the number of previous eigenpairs satisfying the convergence condition.

Output:
C(j+1) is ns × (2nx − nc). First nx columns are Cx

(j+1) followed by Cp
(j+1).

∆(j+1) is nx × nx diagonal matrix giving δ
(j+1)
1 , · · · , δ(j+1)

nx .
Output satisfies C(j+1)TC(j+1) = I and C(j+1)T

(
S(j)T (A− σI)S(j)

)
C(j+1) =

∆(j+1).
1: function [C(j+1),∆(j+1)]=standardTargetExtract(S(j),k,nc)
2: Solve

(
S(j)T (A− σI)2 S(j)

)
Z = ZΘ.

3: QR factorize aggregate update components

QpRp =
[
ZT

2⊥ ZT
3⊥
] [ Z2(:, nc + 1 : k)

Z3(:, nc + 1 : k)

]
.

4: Isolate eigenpairs from non-squared target

ZT
x

(
S(j)T (A− σI)S(j)

)
ZxQx = Qx∆

(j+1).

5: [Cx
(j+1) Cp

(j+1)] = [ZxQx Z⊥Qp(:, 1 : nx − nc)];
6: end function
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2.4 Notes on generalized spectral targeting

2.4.1 Generalized targeting objective

Solving the target-shifted and squared system using LOBPCG is not an option for
generalized eigenvalue problems with a symmetric positive definite metric B such
that

AX = BXΛ where XTBX = I

because the eigenpairs of (A− σB)2 are not equivalent to eigenvectors X having
shift-squared eigenvalues (Λ− σI)2. Observe that

XT (A− σB)2X = ∆XTB2X∆ 6= ∆2.

This would correspond to minimizing 2-norms ‖t(j)i ‖2 of the generalized spectral

target residuals t
(j)
i = (A− σB)x

(j)
i .

We require a generalized objective function that can be optimized to extract
components from a search subspace. However, it must retain the property that the
minimizer produces generalized eigenvectors with eigenvalues nearest the spectral
target σ. The objective function must satisfy

arg min
X

f(X) = X∗ where (A− σB)X∗ = BX∗∆∗ and |δi| ≤ |δj|

for i = 1, . . . , nx and j = nx + 1, . . . ,m. A modification meeting this requirement
minimizes generalized spectral target residuals in the B−1 norm.

f(X) = trace
(
XT (A− σB)B−1 (A− σB)X

)
where XTBX = I (2.5)

Using analysis identical to Section 2.3.2, we find that the minimizer produces
eigenpairs of the matrix ((A− σB)B−1 (A− σB)) which coincide exactly with the
generalized eigenpairs nearest σ:

(X∗)T (A− σB)B−1 (A− σB)X∗ = ∆∗(X∗)TBB−1BX∗∆∗ = ∆∗2.

Note that B = I recovers the standard objective function from the previous section.

2.4.2 Generalized extraction

The analogous extraction method for generalized spectral targeting solves the ob-
jective optimization problem 2.5 restricted to the search subspace span(S(j)). This
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requires solving a standard eigenvalue problem, provided S(j) is orthonormal in the
metric B:(

S(j)T (A− σB)B−1 (A− σB)S(j)
)
C = CΘ where S(j)TBS(j) = I.

The difficulty with this method is in constructing inner products in the metric B−1.
Let Y = (A− σB)S(j). We require Ψ such that BΨ = Y . This gives the inner
product matrix we need as X = Y TΨ. If inverting B were feasible then it would be
easier to simply express this as a standard eigenvalue problem. Since that is not the
case, each generalized extraction iteration will require an internal iteration sequence
to approximate Ψ.

Solving this problem will likely require a strong preconditioner K ≈ B—where
K−1 is computable—combined with a slight variation on Preconditioned Conjugate
Gradient (PCG). A substantial amount of research has gone into efficient computa-
tion of such preconditioners [20, 59]. If we have a complete B-orthonormal basis U
given in blocks then we can construct a solution

Ψ = UC where U =
[
U1 · · · Unu

]
and UTBU = I with C =

 C1
...

Cnu

 .
This would produce the inner product matrix X = CTC. Fortunately, this problem
will become easier to solve near convergence. If approximate eigenvectors have the
form X(j) = X∗ + E where ‖E‖ � ‖X(j)‖, then the inverse needed can be well-
approximated

B−1 (A− σB)X(j) = X∗∆∗ +B−1AE − σE = X(j)∆∗ +B−1AE − EΛ∗ ≈ X(j)∆∗.

Since X(j) ⊂ S(j) and S(j) is already B-orthonormal, taking the first basis as U1 =
S(j) should provide a useful initial approximate solution. However, stopping at this
approximate solution would simply square the matrix used in Rayleigh–Ritz analysis
and reproduce phantom eigenpairs that prevent convergence to an internal spectral
target. Several iterations of PCG will likely be needed to obtain a strong enough
approximation of X. Another benefit of using PCG follows in Section 2.4.3.

Alternatively, the problem could be considered in terms of selected inversion.
[47] Taking the compact QR decomposition Y = QYRY so that QY ∈ Rm×ns has
orthonormal columns, we simply require components of B−1 corresponding to X =
RT
Y

(
QT
YB
−1QY

)
RY .

As in the standard eigenvalue case, the first extraction would be followed by a
second extraction using ordinary Rayleigh-Ritz with the nx minimizers from the first
extraction.
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2.4.3 Generalized expansion

The subspace expansion employed in the general case must include gradients for both
the targeted residual objective and the ordinary residual objective used to detect
convergence. Analysis analogous to the standard targeting case produces directions
of steepest descent for targeted residuals:

Hsd ∈ span
([
X(j) (A− σB)B−1 (A− σB)X(j)

])
.

It may be possible to incorporate results from generalized extraction if PCG had
been used to approximate Ψ̂ ≈ Ψ = B−1 (A− σB)S(j−1). Then the expansion basis
could be approximated as

Ĥsd ∈ span
([
X(j) U (j)

])
with U (j) = (A− σB) Ψ̂S(j−1)Cx

(j).

Fortunately, the generalized gradients corresponding to the convergence condition
objective 2.1 are easier to compute. Generalized residual objective functions are

g
(j)
i (x) = xT (A− θ(j)

i B)2x where θ
(j)
i =

x
(j)T
i Ax

(j)
i

x
(j)T
i Bx

(j)
i

.

Each dimension of steepest descend is h
(j)

sd,i
∈ span([x

(j)
i (A−θ(j)

i B)2x
(j)
i ]), which can

be expressed using the bases V (j) where

R(j) = AX(j) −BX(j)Θ(j) and V (j) = AR(j) −BR(j)Θ(j) (2.6)

Including both U (j) and V (j) in expansion blocks would be sufficient to capture the
gradients of each objective.

These ideas are combined in a proposed outline for generalized STRD in Algo-
rithms 12, 13, and 14.
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Algorithm 12 Generalized Spectral Target Residual Descent

Input:
X(0) is an m× k matrix of initial approximate eigenvectors.
k ≤ m is the number of converged eigenvectors requested.
σ is the spectral target. Eigenvectors are sought with eigenvalues nearest σ.

Output:
X∗ is the m× k matrix of approximate eigenvectors.
Λ∗ is the k × k diagonal matrix of approximate eigenvalues.

1: function [X∗,Λ∗]=strd(X(0), k, σ)
2: [C(1),∆(1)] = GeneralTargetRayleighRitz(X(0), σ)
3: X(1) = X(0)C(1);
4: P (1) = [ ] ;
5: U (1) = [ ] ;
6: R(1) = (A− σB)X(1) −BX(1)∆(1);
7: V (1) = (A− σB)R(1);
8: W (1) = BR(1);
9: nc = 0;
10: do j = 1, 2, . . .
11: Y (j) = orthoDrop

(
I, [U (j) V (j)], [X(j) P (j)]

)
;

12: S(j) =
[
X(j) P (j) Y (j)

]
;

13: [C(j+1),∆(j+1), U (j+1)] = GeneralTargetExtract(S(j), k, nc);
14: [X(j+1) P (j+1)] = S(j)C(j+1);
15: R(j+1) = (A− σB)X(j+1) −BX(j+1)∆(j+1);
16: V (j+1) = (A− σB)R(j+1) −BR(j+1)∆(j+1);
17: Determine number of converged eigenpairs nc.
18: while nc < k
19: Return converged eigenpairs X∗ = X(j+1) and Λ∗ = ∆(j+1) + σI;
20: end function
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Algorithm 13 General Spectral Target Rayleigh–Ritz procedure

Input:
X(0) is m× k matrix basis for the initial search subspace.
σ is the spectral target of A.
Columns must be linearly independent and well-conditioned.

Output:
C(1) is k × k solution components for X(1).
∆(1) is k × k diagonal matrix of Rayleigh quotients for target-shifted matrix.
These satisfy C(1)TX(0)TBX(0)C(1) = I and C(1)TX(0)T (A− σB)X(0)C(1) =
∆(1).

1: function [C(1),∆(1)]=GeneralTargetRayleighRitz(X(0),σ)

2: D =
(
diag(X(0)TBX(0))

)− 1
2 ;

3: Cholesky factorize RTR = DX(0)TBX(0)D.
4: Solve

(
R−TDX(0)T (A− σB)X(0)DR−1

)
Z = Z∆(1).

5: C(1) = DR−1Z;
6: end function
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Algorithm 14 General spectral target extraction

Input:
S(j) is m× ns matrix forming an orthonormal basis for the search subspace.
nc is the number of previous eigenpairs satisfying the convergence condition.

Output:
C(j+1) is ns × (2k − nc). First k columns are Cx

(j+1) followed by Cp
(j+1).

∆(j+1) is k × k diagonal matrix giving δ
(j+1)
1 , · · · , δ(j+1)

k .
1: U (j+1) is prepared basis for next expansion phase.

Output satisfies C(j+1)TC(j+1) = I and C(j+1)T
(
S(j)T (A− σB)S(j)

)
C(j+1) =

∆(j+1).
2: function [C(j+1),∆(j+1), U (j+1)]=GeneralTargetExtract(S(j),k,nc)
3: Use PCG to obtain Ψ̂ ≈ B−1 (A− σB)S(j).

4: Solve
(
S(j)T (A− σB) Ψ̂

)
Z = ZΘ.

5: QR factorize aggregate update components

QpRp =
[
ZT

2⊥ ZT
3⊥
] [ Z2(:, nc + 1 : k)

Z3(:, nc + 1 : k)

]
.

6: Isolate eigenpairs from non-squared target ZT
x

(
S(j)T (A− σB)S(j)

)
ZxQx =

Qx∆
(j+1).

7: [Cx
(j+1) Cp

(j+1)] = [ZxQx Z⊥Qp(:, 1 : nx − nc)];
8: U (j+1) = (A− σB) Ψ̂Cx

(j+1).
9: end function
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2.5 Numerical experiments

The first three tests are performed on the matrix Si5H12 available on UFSMC. These
tests set the spectral targets at σ = 2.5, σ = 2.8, and σ = 3.1, demonstrating how
a naively parallel solution might be employed on multiple nodes of a distributed-
memory machine. The number of iterations of STRD required to achieve convergence
are compared with Shift-Squared LOBPCG.

STRD tests use an individual block basis size nx = 60. Since STRD uses 4 basis
blocks in each subspace extraction whereas SSLOPBCG uses only 3, a fair point of
contention would be that STRD benefits from simply having a larger extraction sub-
space on each iteration. In order to provide counterbalance and make an abundantly
fair comparison, SSLOBPCG is tested with a larger block-size giving subspaces of
equivalent dimension 3 × 80 = 4 × 60 for each method. Both methods only iterate
until k = 50 eigenpairs have converged to τc = 10−4.

In the interest of producing comparisons that are as clear as possible, LOBPCG
is modified to perform an additional isolation extraction restricted to approximate
eigenvectors X(j) as

X(j)T (A− σI)X(j)TCx = Cx∆.

These results are used to show approximate eigenvalues and to compute the conver-
gence measures in Equation 2.1. Results are shown in Figures 2.1, 2.2, and 2.3.

The last test uses a larger matrix CO, which is also available on UFSMC. As
before, SSLOBPCG uses 3×80 basis columns while STRD uses 4×60 and both seek
k = 50 eigenpairs at a convergence threshold τc = 10−4. Since iterations were quite
time consuming for this test case, SSLOBPCG was halted after the same number
of iterations as STRD. It is clear from the graph that no eigenpairs in SSLOBPCG
were near the convergence threshold at that time. Results are shown in Figure 2.4.
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Figure 2.1: Si5H12 σ = 2.5, and τc = 10−4
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Figure 2.2: Si5H12 σ = 2.8, and τc = 10−4
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Figure 2.3: Si5H12 σ = 3.1, and τc = 10−4



CHAPTER 2. SPECTRAL TARGET RESIDUAL DESCENT 52

Figure 2.4: CO σ = 3.0, and τc = 10−4
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Chapter 3

True BLAS-3 Performance QRCP
using Random Sampling

3.1 Contributions and results

For large matrices, QR with Column Pivoting requires an order of magnitude longer
to process than blocked QR without column pivoting. This is due to a communica-
tion bottleneck in processing pivoting decisions that cannot be avoided using previous
approaches, although this bottleneck can be significantly reduced in parallel imple-
mentations [15]. By using randomized sampling to process pivoting decisions with
a much smaller matrix, the leading-order term of communication complexity can be
eliminated entirely.

3.1.1 Random sampling and update formulas

This work explores variations of QRCP using randomized sampling to process blocks
of pivots. Magnitudes of trailing column norms are detected using Gaussian ran-
dom compression matrices to produce smaller sample matrices. We analyze the
probability distributions of sample column norms to justify the internal updating
computation used to select blocks of column pivots.

This work also proposes two sample update computations that reduce BLAS-
3 communication required to process full matrices by one third of what would be
required by sample-based QRCP using a new sample compression for every block of
column pivots.
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3.1.2 Low-rank approximations

We extend this method of factorization to produce truncated low-rank approxima-
tions. We propose an implementation using random-sample pivots that avoids the
trailing update computation on the full matrix. This further reduces BLAS-3 commu-
nication to nearly half of the truncated version employing a trailing matrix update.

The Truncated Randomized QR with Column Pivoting algorithm immediately
extends to approximate the truncated Singular Value Decomposition using a varia-
tion on Stewart’s QLP algorithm [66].

3.1.3 Results

We are able to achieve matrix factorizations of similar quality to standard QRCP
while retaining communication complexity of unpivoted QR. Algorithms have been
implemented and tested in Fortran 90 with OpenMP on shared-memory 24-core
systems. Our performance experiments compare these algorithms against LAPACK
subroutines complied using the Intel Math Kernel Library and verify computation
time nearly as short as unpivoted QR (dgeqrf) and substantially shorter than QRCP
(dgeqp3).

We also examine performance and quality of low-rank truncated approximations.
The truncated algorithms proposed operate in the same time domain as an implemen-
tation of truncated QR, which provides an experimental lower bound on processing
time. Truncated Randomized QRCP gives nearly the same approximation error as
Truncated QRCP. Similarly, the approximate truncated singular value decomposition
proposed (TUXV) yields error nearly as small as truncated SVD.

These algorithms have the potential to dramatically reduce factorization times
in a wide variety of applications in numerical linear algebra. By eliminating the
leading-order communication complexity term in QRCP, problems that have been
too large to process with QRCP-dependent subroutines will now become feasible.
This has the potential to increase the usefulness of computational modeling in a
wide variety of fields of research in science and engineering.

3.2 Introduction to QRCP

The QR decomposition is one of the most well known and useful tools in numerical
linear algebra. An input matrix A is expressed as the product of an orthogonal
matrix Q and a right-triangular factor R,

A = QR.
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QR is particularly stable in that the decomposition always exists regardless of the
conditioning of the input matrix. Furthermore, it has finely tuned implementations
that operate at the BLAS-3 level of performance. Unfortunately, the standard QR
algorithm is not suitable for purposes requiring rank detection or low-rank approx-
imations. These objectives require a column permutation scheme to process more
representative columns earlier in the decomposition [8].

QR with Column Pivoting (QRCP) is a standard solution that is usually adequate
for such purposes with a few rare exceptions such as the Kahan matrix [25]. A
permutation matrix P is introduced to rearrange columns into a more beneficial
ordering which is then decomposed as before,

AP = QR.

QRCP is an effective alternative to the much more costly Singular Value De-
composition (SVD) and it has a number of applications including least-squares ap-
proximations which are discussed in detail by Chan et al. [9]. Furthermore, some
applications for which unpivoted QR is usually sufficient occasionally encounter ill-
conditioned matrices. If QRCP can be implemented at a level of performance similar
to QR, stability safeguards can be included to safely handle problematic cases with-
out burdening performance.

3.2.1 QRCP performance

Early BLAS-2 implementations of QR and QRCP gave very similar performance re-
sults until reflector blocking was employed in QR [6]. For large matrices, blocking
improves performance by reducing memory passes over matrix data. Instead, House-
holder reflectors are constructed in groups using the compact WY formulation. These
groups can be applied to remaining columns in a single pass over matrix memory
rather than repeating communication for each column processed. This reduces the
leading order of communication complexity by a factor of the block size.

The primary obstacle to high-performance QRCP is the additional communica-
tion that is required to make column pivoting decisions. In order to understand how
our algorithms improve performance, we first review the reasons why additional com-
munication could not be avoided with previous approaches. An outline of BLAS-2
QRCP is provided in Algorithm 15.

QRCP can be understood as a greedy procedure intended to maximize the mag-
nitude of the determinant of the upper left block at every iteration. At the end of
iteration j we can represent the matrix A as a partial factorization using the pivots
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Algorithm 15 Householder QR with Column Pivoting (QRCP).

Input:
A is m× n.

Output:
Q is m×m orthogonal matrix.
R is m× n right triangular matrix with diagonals in order of descending magni-
tude.
P is n× n permutation matrix such that AP = QR.

1: function [Q,R, P ]=qrcp(A)
2: Compute initial column 2-norms which will become trailing column norms.
3: do j = 1, 2, . . .min(m,n)
4: Swap column j with a subsequent column having max trailing norm.
5: Update composite permutation with last swap Sj, P

(j) = P (j−1)Sj.
6: Form Householder reflection Hj from the new column j.
7: Apply reflection A(j) = HjA

(j−1)Sj.
8: Update trailing column norms by removing the contribution of row j.
9: end do
10: Q = H1H2 . . . Hmin(m,n) is the product of all reflections.
11: R = A(min(m,n))

12: end function

P (j) and transformations Q(j) = H1 · · ·Hj as

AP (j) = Q(j)

[
R

(j)
11 R

(j)
12

0 Â(j)

]
.

On the next iteration the trailing column norm selected will become the magni-
tude of the next diagonal element in R

(j+1)
1,1 . This gives the new determinant magni-

tude
| detR

(j+1)
11 | = | detR

(j)
11 |‖Â(j)(:, pj+1)‖2.

Provided prior pivot decisions are considered immutable, this scheme maximizes
the determinant magnitude at every iteration. Note that true determinant max-
imization would require exchanging prior columns and adjusting the factorization
accordingly [28].

In order to produce a correct pivot decision on iteration (j + 1), trailing col-
umn norms must be updated to remove the contribution of row j, labeled ρj below,
which depends on the transformation Hj = I − yjτjy

T
j . The full update requires

two BLAS-2 operations on the whole trailing matrix on every iteration. The first



CHAPTER 3. TRUE BLAS-3 PERFORMANCE QRCP USING RANDOM
SAMPLING 57

BLAS-2 operation computes the scaled inner products wTj = τjy
T
j A

(j−1). The second
operation is the outer product yjw

T
j subtracted from the trailing matrix:[

rjj ρj
0 A(j)

]
= (I − yjτjyTj )A(j−1)

These BLAS-2 operations are the performance bottleneck of QRCP.

3.2.2 Attempts to achieve BLAS-3 QRCP

Quintana-Orti et al. were able to halve these BLAS-2 operations with the insight
that the trailing norm update only requires the scaled inner products on each itera-
tion [57]. That is, only ρj is needed at the end of iteration j. Likewise, once the next
swap is selected, prior transformations are applied only to that column which then
forms the basis for the next reflector. Thus reflectors can be gathered and applied
in blocks similar to BLAS-3 QR.

Unfortunately, the remaining 50% of BLAS-2 operations still dominates commu-
nication complexity for large matrices. Including only the leading term in reflector
inner product computations gives complexity of BLAS-2 operations 1

2
min(m,n)mn

to complete the factorization. This is why even the most efficient implementations
of this style of reflection blocking still run substantially slower than unpivoted QR
on both sequential and parallel architectures.

3.2.3 Communication Avoiding Rank-Revealing QR

Several mechanisms have been put forward to avoid repeating full BLAS-2 operations
over the trailing matrix for every iteration. Bischof proposed pivoting restricted to
local blocks [7] and Demmel et al. propose a strong parallel process called Commu-
nication Avoiding Rank-Revealing QR (CARRQR) [15, 16]. CARRQR proceeds by
partitioning the trailing matrix into column sets that are processed independently.
Groups of b candidate pivots are selected by using QRCP within each partition of
columns. Groups are combined into 2b candidates which are refined again by repeat-
ing QRCP to return b candidates. This refinement process repeats until only one
group of b pivots remains which is then processed and applied to the trailing matrix
with BLAS-3 operations.

Both of these mechanisms perform at least as many BLAS-2 operations over each
column, however performance is improved by restricting these BLAS-2 operations to
local blocks of memory. With enough parallel processors, these blocks of memory
can be small enough to fit in cache and thus be regarded as BLAS-3 operations.
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3.2.4 Randomized sampling

We are able to entirely eliminate these BLAS-2 passes over the matrix by using
random sampling to make pivot decisions. As a result, we are able to achieve per-
formance in the class of BLAS-3 QR. We sacrifice knowing exact trailing norms
when pivot decisions are made and settle for approximations that have extremely
high probability of detecting magnitudes needed to reveal rank or construct reliable
low-rank approximations.

We emphasize that the pivots obtained from QRCP are not intrinsically superior
to those we obtain with randomized sampling for the purpose of low-rank approxima-
tion. On the contrary, our experiments show that the Frobenius norm of truncation
error is often lower using our approach.

3.3 Sample QRCP

Randomized sampling is a computational tool that has recently gained traction in a
number of applications in numerical linear algebra [48, 68, 50, 45]. Random sampling
reduces communication complexity via dimensional reduction while simultaneously
maintaining high probability of safe error bounds on the approximations that follow.
This is the result of the well-known Johnson-Lindenstrauss Lemma [39].

Let 0 < τ < 1/2 be a relative error threshold and aj ∈ Rm represent columns of A
for j = 1, . . . n. Using a randomized compression matrix Ω ∈ R`×m with unit-variance
Gaussian Independent Identially Distributed (GIID) elements, the probability of
successfully detecting column norms is bound by

Pr

(∣∣∣∣‖Ω(`)aj‖2
2

`‖aj‖2
2

− 1

∣∣∣∣ ≤ τ

)
≥ 1− 2e

−`τ2
4

(1−τ).

We use the sample matrix B = ΩA to select the column with largest approximate
norm. Subsequent columns are selected by continuing QRCP on the sample as seen
in the single-sample version, Algorithm 16. We show in Section 3.3.1 that the trailing
columns computed during sample QRCP correspond to randomized compressions of
corresponding trailing columns in the full matrix factorization. Thus sample column
norms remain suitable for continued column selection.

The leading order BLAS-2 complexity required to process a block of pivots be-
comes k`n versus kmn in Quintana-Orti’s version of QRCP. However, if the ` × n
sample matrix dimension is calibrated to the cache size of the machine, the sam-
ple communication is effectively BLAS-3. Algorithm 16 was first implemented as
class project at UC Berkeley in April 2014 and it is the simplest example of this
approach [18]. P.G. Martinsson independently developed similar work [49].
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This formulation is acceptable for very-low-rank approximations in which the
required sample size is small enough to maintain communication efficiency. For
larger approximations we will resort to a more comprehensive algorithm including a
sample update formulation that subsumes this version. However the single-sample
algorithm illuminates the performance advantage gained from this approach, so we
examine it first.

Algorithm 16 Single-sample randomized QRCP.

Input:
A is m× n.
k the desired approximation rank. k � min(m,n).

Output:
Q is m× k orthogonal column matrix in the form of k reflectors.
R is k × n truncated upper trapezoidal matrix.
P is n× n permutation matrix such that AP ≈ QR.

1: function [Q,R, P ]=ssrqrcp(A, k)
2: Compute required number of sample rows l = k + p to obtain acceptable

sample error.
3: Generate random l ×m GIID compression matrix Ω.
4: Form the sample B = ΩA.
5: Get k column pivots from sample, [Qb, Rb, P ] = qrcp(B).
6: Apply permutation A(1) = A(0)P .
7: Construct k reflectors from new leading columns, [Q,R1,1] = qr(A(1)(:, 1 : k)).

8: Finish k rows of R in remaining columns, R1,2 = Q(:, 1 : k)T Â(:, k + 1 : n).
9: end function

Although a GIID matrix Ω is more computationally expensive than some alter-
natives, it only contributes a small fraction to the total time. For example, random-
ization comprises 7% of processing time on a 12000 by 12000 matrix with k = 32
and ` = 40 on a 24-core test machine. Furthermore, this fractional contribution
becomes even smaller in algorithms that follow. Therefore we believe optimization
of Ω is premature at this stage. It is also a robust choice because it is both dense
and invariant in distribution under independent orthogonal transformations. These
characteristics support our analysis.

Permutation ordering is determined all at once by applying QRCP to the much
smaller sample matrix B instead of A. CARRQR could be applied to B to further
improve performance, however this has not been necessary up to this point since our
experiments show it is not a performance bottleneck.
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After the permutation is known, A is rearranged once and the leading columns
processed contiguously without referencing the rest of the matrix just as is done in
BLAS-3 QR. Resulting reflectors are then applied to the trailing matrix with BLAS-3
matrix multiplies.

3.3.1 Sample norm distribution updates during QRCP

Initially sample columns are proportional to columns of A with a constant of pro-
portionality following the Chi-squared distribution. To see this we examine a sample
column b = Ωa. Because GIID sample matrices are invariant in distribution under
independent orthogonal transformations, we represent Ω and a as

Ω =
[
w1 W2

] [ qTa
QT
⊥a

]
and a = qa‖a‖2 giving b = w1‖a‖2

where qa is the unit vector formed from a and Q⊥a is an m×m−1 complement giving
a full orthogonal basis. The components of w1 remain GIID giving a 2-norm-squared
following the Chi-squared distribution with ` degrees of freedom. That is,

‖b‖2
2 = x‖a‖2

2 where ρ`(x) =

(
x
2

) `
2 e−

x
2

xΓ( `
2
)

giving E(x) = ` and V(x) = 2`.

As a result, we can expect the initial sample to approximately resolve column norms
with a relative error that scales as 1√

`
.

Because the QR factorization always exists, at iteration j we can represent A and
B as partial factorizations

AP (j) = Q

[
R

(j)
11 R

(j)
12

0 R
(j)
22

]
and BP (j) = Qb

[
S

(j)
11 S

(j)
12

0 S
(j)
22

]
where

R
(j)
11 and S

(j)
11 are both upper triangular. This allows us to represent Ω as a partition

of components W of the orthogonal bases Qb and Q.

Ω = Qb

[
W

(j)
11 W

(j)
12

W
(j)
21 W

(j)
22

]
QT which gives

[
S

(j)
11 S

(j)
12

0 S
(j)
22

]
=

[
W

(j)
11 R

(j)
11 W

(j)
11 R

(j)
12 +W

(j)
12 R

(j)
22

W
(j)
21 R

(j)
11 W

(j)
21 R

(j)
12 +W

(j)
22 R

(j)
22

]
.
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As long as j linearly independent columns of A exist, Johnson-Lindenstrauss provides
virtual certainty that j linearly independent columns of B also exist. Then S

(j)
11 is

non-singular upper-triangular. It immediately follows that both W
(j)
11 and R

(j)
11 are

also non-singular upper-triangular which also implies W
(j)
21 = 0. In other words, we

have implicitly formed a QR factorization of ΩQ using the same orthogonal matrix
Qb that corresponds to BP . As such, the trailing column norms of B in the remaining
lower right partition are S

(j)
22 = W

(j)
22 R

(j)
22 , which is a sample of the trailing matrix in

the corresponding partial factorization of AP .

3.3.2 Sample bias

If the sample had not been used to make pivot decisions then W
(j)
22 would be equiva-

lent in distribution to a new GIID matrix. That is because Q would be formed from
columns of A independent of Ω. Similarly, Qb would be formed from the leading
columns of ΩQ, which would be independent of remaining columns. As such, the
trailing column norms in B would remain unbiased predictors for the trailing column
norms in A. Unfortunately, using the sample to make pivot decisions, which is indeed
the entire purpose of random sampling, results in two forms of sampling bias.

The first is selection bias. This is similar to publication bias of experimental
results. Statistical anomalies are more likely to be noticed, reported, and then pub-
lished than less interesting but more common outcomes. We use the sample to esti-
mate true norms in order to permute the largest column to the front. The selected
sample column will be more likely to exhibit an unusually large norm—larger than
we would expect from an unbiased sample—due to the fact that it was specifically
selected as the maximum. This bias would be present even if a new compression
matrix were used for every column selection.

This bias is most pronounced when many columns are nearly tied for having
the largest norm. In such situations, sample noise out-weighs the true distinctions
between columns. As a result, the 2-norm of the selected sample column will over-
represent the true 2-norm and the ordinary Chi-squared expectation value will fail
to hold.

Fortunately, when several columns are nearly tied for having the largest 2-norm,
the particular choice is not critical to the quality of the final factorization. Conversely,
if one column has a substantially greater norm than all other columns, statistical
anomalies are less likely to dictate the outcome of the selection. In other words,
selection bias is unlikely to obscure important distinctions.

The following numerical experiment computes the expected 2-norm of a column
selected by this method. The matrix A is constructed to have orthogonal columns
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with scaled 2-norms according to a decaying exponential so that column j has 2-norm

‖aj‖2 = φj−1 where φ ∈ [0, 1].

Figure 3.1: Expectation values of selected columns using sample QRCP.

When the damping factor φ is close to 1 we see that sub-optimal choices are more
likely, but they do little damage. When column norms are damped more dramatically
damaging choices are highly suppressed. As expected, higher rank samples do a
better job of detecting optimal choices.

3.3.3 Norm distribution truncation

The second form of bias arises after partial factorization. Because prior column
selections depended on the sample, the remaining low-right partition of the sample
factorization is no longer equivalent in distribution to a GIID compression. Suppose
we have a partial factorization of the sample matrix after j rows and columns are
complete:

Q
(j)T
b BP (j) =




s1,1 · · · s1,j s1,j+1 · · · s1,n

0
. . .

...
...

0 sj,j sj,j+1 · · · sj,n
0 · · · 0 b̂j+1 · · · b̂n

.

QRCP produces right-triangular matrices with the descending norm property:

s2
i,j′ + s2

i+1,j′ + · · · s2
j,j′ +‖b̂j′‖2

2 ≤ s2
i,i for all i = 1, · · · , j and j′ = j+ 1, · · · , n.
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Again we can write the sample norm as a factor of the true norm ‖b̂j′‖2
2 = xj′‖âj′‖2

2

which gives the equivalent expression

xj′ ≤ τj′ where τj′ =
1

‖âj′‖2
2

j

min
i=1

(
s2
i,i − (s2

i,j′ + s2
i+1,j′ + · · · s2

j,j′)
)

.

Theorem: Given a partial factorization as above, the trailing 2-norm-squared
for column j′ of the sample corresponds to a truncated Chi-squared distribution with
`−j degrees of freedom. The normalization factor γ() is the lower-incomplete gamma
function corresponding to the cutoff threshold and the remaining degrees of freedom.

ρ`−j,τj′ (xj′) =


(xj′

2

) `−j
2
e−

xj′
2

xj′γ( `−j
2
, τ
2

)
xj′ ≤ τj′

0 xj′ > τj′

.

Proof: Given a particular permutation P ∗, the conditional probability density
function for xj′ satisfies Bayes’ theorem in the form

ρ(xj′ |P ∗)Pr(P ∗) = Pr(P ∗|xj′)ρ(xj′)

where we have a discrete probability functions in the variable P ∗ and continuous
distributions in the variable xj′ .

If the descending norm property is not satisfied then QRCP would not have pro-
duced the permutation P ∗. It follows that Pr(P ∗|xj′) = 0 for xj′ > τj′ . Conversely,
as long as xj′ < τj′ the particular value of xj does not affect any branch decisions in
QRCP thus far. Within this region Pr(P ∗|xj′) is a constant independent of xj′ . It
follows

ρ(xj′|P ∗) ∝

{
ρ(xj′) xj′ < τj′

0 xj′ > τj′
.

Solving for unit-normalization gives the stated result.
Two interesting effects follow from this computation. The sample column 2-

norm-squared expectation value drops as the cutoff threshold drops. If prior sample
columns are relatively large in comparison to remaining columns, which occurs at
gaps in the spectrum, then the cutoff thresholds are also relatively large. Thus sample
QRCP behaves more like an unbiased sample on remaining columns at spectral gaps.

Secondly, columns that have large magnitudes of components that are linearly
dependent with previously selected columns have lower cutoffs. In other words, when
multiple columns have roughly similar true 2-norms, sample QRCP is biased towards
the column that originally had a larger linearly independent fraction. In contrast,
standard QRCP is only concerned with the magnitude of the remaining linearly
independent component, regardless of the magnitude of prior dependence.
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3.3.4 Proposals to further reduce bias

Bias effects could be reduced by increasing the sample rank and by over-pivoting
additional columns beyond those needed for the desired approximation rank. These
extra columns could be permuted to the front of the matrix and standard QRCP
would be locally applied to extract the optimal subset. Similarly, one could apply
determinant maximizing column swaps within the set of over-pivoted columns [28].

3.4 Sample updates

The original sample matrix B = ΩA is constructed with rank ` = k + p where p is
additional padding required to ensure the sample error remains below an acceptable
threshold. Accordingly, we can only safely select k pivots from the initial sample. If
a decomposition of rank greater than k is required then we need a new sample of the
trailing columns of A to continue the factorization. Martinsson’s approach continues
by multiplying trailing columns by a new compression matrix. We propose a sample
update formulation that does not require accessing trailing columns of A. Instead
we use a less expensive transformation on the previous sample to obtain a new rank
` compression. As a result, the proposed update reduces BLAS-3 communication
in the overall factorization by at least one third of Martinsson’s approach. The
remaining BLAS-3 communication corresponds to blocked reflector inner products
and trailing updates.

3.4.1 First update formula

The original update formula we derive is an extension of the implicit update mech-
anism described in the prior section. After performing QRCP on the sample matrix
B, the array is left in the transformed state (3.1). Note that Algorithms 17 and 18
that follow will proceed in blocks of pivots. The bracket superscripts denote results
of a computation that occurred on the indicated block iteration. For example, the
first block iteration uses the sample B[1] = Ω[1]A[0] where A[0] represents the matrix
before any block iterations have been performed.

At the end of block iteration J the sample has been transformed into the partial
upper-trapezoidal matrix:

S[J ] =
(
Q

[J ]T
b Ω[J ]Q[J ]

) (
Q[J ]TA[J−1]P [J ]

)[
S

[J ]
11 S

[J ]
12

0 S
[J ]
22

]
=

[
W

[J ]
11 W

[J ]
12

0 W
[J ]
22

][
R

[J ]
11 R

[J ]
12

0 A[J ]

]
.

(3.1)
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We require a rank ` compression of the trailing matrix A[J ] to continue the next
iteration. This can be implicitly constructed from W [J ]. Take the new compression
matrix Ω[J+1] to be:

Ω[J+1] =

[
W

[J ]
12

W
[J ]
22

]
and B[J+1] = Ω[J+1]A[J ] =

[
S

[J ]
12 −W

[J ]
11 R

[J ]
12

S
[J ]
22

]
.

We only need to remove the contribution of W
[J ]
11 R

[J ]
12 from result of the last

iteration. Both R
[J ]
11 and R

[J ]
12 will be computed in blocked BLAS-3 operations using

the previous k pivots of A. Since W
[J ]
11 can be recovered from S

[J ]
11 , we can avoid any

direct computations on Ω. This gives the sample update formula[
B

[J+1]
1

B
[J+1]
2

]
=

[
S

[J ]
12 − S

[J ]
11 R

[J ]−1
11 R

[J ]
12

S
[J ]
22

]
. (3.2)

3.4.2 Alternative update

A second approach avoids absorbing Q into the compression matrix to form W .
Instead we can formulate an update that simply removes the contribution of the
leading k columns from the previous compression matrix. Note that we still absorb
the orthogonal transformation QT

b —which does not alter column norms—into the
subsequent compression matrix. The leading k columns to be removed are labeled
Ψ[J+1] and remaining columns give the next compression matrix Ω[J+1]. We desire
B[J+1] = Ω[J+1]A[J ] where[

Ψ[J+1] Ω[J+1]
]

= Q
[J ]T
b

[
Ω

[J ]
1 Ω

[J ]
2

]
and A[J−1]P [J ] = Q[J ]

[
R

[J ]
11 R

[J ]
12

0 A[J ]

]
.

The orthogonal transformation is implemented using a block reflection in the
compact WY formulation Q[J ] = (I − Y [J ]T [J ]Y [J ]T ) which allows us to express the
new sample as

B[J+1] =
[

Ψ[J+1] Ω[J+1]
] [ R[J ]

12

A[J ]

]
−Ψ[J+1]R

[J ]
12

= Q
[J ]T
b Ω[J ](I − Y [J ]T [J ]TY [J ]T )A[J−1]P

[J ]
2 −Ψ[J+1]R

[J ]
12 .

We compute and store the matrix of reflector inner products on all remaining columns
W [J ]T = T [J ]TY [J ]TA[J−1]P

[J ]
2 in the course of computing R

[J ]
12 . This gives the alter-

native update formula:

B[J+1] = S
[J ]
2 −

(
Q

[J ]T
b Ω[J ]Y [J ]

)
W [J ]T −Ψ[J+1]R

[J ]
12 . (3.3)
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Note that this update formula requires retaining Ω and applying the orthogonal
transformations from sample QRCP in order to compute the second and third terms.

3.4.3 Subtle bias

The original update formula absorbs Q—which depends on the columns selected—
into subsequent compression matrices. This clearly creates an interdependence be-
tween previously selected columns and subsequent samples and may be a cause for
concern regarding sample bias. In contrast, the alternative update formula uses
a sequence of compression matrices that exist—modulo benign left-hand orthogo-
nal transformations—before any columns of A are known or selected. One may be
tempted to conclude that the alternative update formula must produce independent
random samples of the trailing matrix at each iteration. Unfortunately, that is not
true. The fact remains that pivot outcomes subtly constrain subsequent samples.

A simple way to understand this is to consider the possibility of observing ex-
tremely large sample norms at intermediate stages. If the compression matrix were
newly generated there would be nonzero probability of observing an arbitrarily large
sample norm for any particular remaining column, but that would be inconsistent
with prior pivot selections. If a component of Ω producing an extremely large obser-
vation had been present in prior stages it would have altered a prior pivot decision.
That means remaining sample column norms must be bound by previous pivoting de-
cisions in a similar fashion to the distribution truncation discussed in Section 3.3.3.
However, we do not undertake such a computation at this time. Our numerical
experiments have shown both update formulas to be reliable.

3.5 Full randomized QRCP

Full Randomized QR with Column Pivoting (RQRCP) can be structured as a mod-
ification to BLAS-3 QR. The algorithm must simply interleave processing blocks of
reflectors with permutations obtained from sample QRCP. This is described in detail
in Algorithm 17 which uses the second update formulation (3.3).

When QRCP is applied to the sample matrix B, only a partial decomposition is
necessary. This second argument b in the subroutine call qrcp(B[J ], b) indicates that
only b column permutations are required. Although the additional cost of processing
all ` columns is very small, halting the computation early is a trivial modification.

After sample pivots have been applied to the array containing both A and R, we
perform QR factorization on the new leading b columns of the trailing matrix Â

[J ]
1 .

The result is expressed in compact WY notation. Reflectors are then applied to the
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trailing matrix and used to form the sample update B[J+1] in preparation for the
next iteration.

3.5.1 Truncated RQRCP with trailing update

Algorithm 17 can be trivially modified to produce a low-rank truncated approxima-
tion of the original matrix. Simply include approximation rank k as a user-defined
argument instead of setting k = min(m,n). The rest of the algorithm remains iden-
tical. This modification is acceptable if, after processing k columns, the user requires
the trailing matrix A(k) in the partial factorization

AP = Q

[
R11 R12

0 A(k)

]
.

However, if the trailing matrix A(k) is not needed, the simple modification suggested
does not take advantage of a performance improvement that potentially halves fac-
torization time.

3.5.2 Truncated RQRCP without trailing update

The trailing matrix is usually not needed for low-rank approximations and the algo-
rithm can be reformulated to run roughly twice as fast on large matrices, provided
k � min(m,n). This is accomplished by avoiding the trailing update which reduces
BLAS-3 passes over the trailing matrix by half.

The technique is analogous to the method Quintana-Ort et al. used to halve
BLAS-2 operations in QRCP. In their version of QRCP, all reflector inner products
are computed, but rows and columns are only updated as needed. In order to com-
pute correct reflector inner products without having updated the trailing matrix, we
review block reflector composition. Block reflections are combined as

(I − Y1T1Y
T

1 )(I − Y2T2Y
T

2 ) = I − Y TY T where

Y =
[
Y1 Y2

]
and T =

[
T1 −T1Y

T
1 Y2T2

0 T2

]
.

Corresponding reflector inner products W T = T TY TA are partitioned

W T =

[
W T

1

W T
2

]
with W T

1 = T T1 Y
T

1 A and W T
2 = T T2 Y

T
2 A− T T2 Y T

2 Y1T
T
1 Y

T
1 A

which simplifies to W T
2 = T T2

(
Y T

2 A− (Y T
2 Y1)W T

1

)
.
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Thus the trailing update that is needed in Algorithm 17 can be avoided if all
reflector inner products are stored. This allows columns that are selected by sample
pivots to be constructed as needed. Likewise, the resulting rows of R are constructed
as needed by the sample update formula.

Since the trailing update is avoided, we also avoid overwriting A. That is because
the partial factorization would leave the lower right submatrix somewhat meaning-
less. Therefore we store both Y and R in new arrays. As usual, Y can be stored in
the strictly lower triangle, however this leaves the upper triangle available to store
T which saves additional computation in the future when the orthogonal matrix is
applied. This also leaves the array of reflector coefficients τ already stored on the
diagonal of the array that stores Y instead of being carried in a separate array.

Truncated Randomized QRCP (TRQRCP) is outlined without the trailing update
in Algorithm 18 and employs the first update formula (3.2).
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Algorithm 17 Randomized QRCP

Input:
A is m× n.

Output:
Y is m×min(m,n) lower trapezoidal reflector matrix.
τ min(m,n) array of reflector coefficients used to form T .
R is m× n upper trapezoidal matrix.
P is n× n permutation matrix.
AP = (I − Y TY T )R.

1: function [Y, τ, R, P ]=rqrcp(A)
2: Determine optimal block dimension k and sample padding p.
3: Set sample dimension ` = k + p.
4: Set maximum factorization rank r = min(m,n).
5: Generate `×m GIID matrix Ω[1].
6: Sample B[1] = Ω[1]A[0].
7: Set composite permutation P [0] = I.
8: Set completed column counter c = 0.
9: do J=1,2,. . .
10: [Q

[J ]
b , S

[J ], P
[J ]
b ] = qrcp(B[J ], k).

11: Permute R(1 : c, c+ 1 : n) = R(1 : c, c+ 1 : n)P
[J ]
b .

12: Permute trailing matrix Â[J ] = A[J−1]P
[J ]
b .

13: Update composite permutation P [J ] = P [J−1]P
[J ]
b .

14: Get new reflectors [Y [J ], T [J ], R
[J ]
11 ] = qr(Â

[J ]
1 ).

15: Store reflector coefficients τ [J ] = diag(T [J ]).

16: BLAS-3 reflector inner products W [J ]T = T [J ]TY [J ]T Â
[J ]
2 .

17: BLAS-3 trailing update [R
[J ]
12 ;A[J ]] = Â

[J ]
2 − Y [J ]W [J ]T .

18: if (c+ k = r) then exit
19: Update sample with original or alternative formula.
20: Increment completed column counter c = c+ k.
21: end do
22: end function
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Algorithm 18 Truncated Randomized QRCP without trailing update

Input:
A is m× n.
r approximation rank. r � min(m,n).

Output:
Y is m× r reflector matrix.
τ r array of reflector coefficients used to form T .
R is r × n upper trapezoidal matrix.
P is n× n permutation matrix.
AP ≈ (I − Y TY T )R.

1: function [Y, τ, R, P ]=trqrcp(A, k)
2: Determine optimal block dimension k and sample padding p.
3: Set sample dimension ` = k + p.
4: Generate `×m GIID matrix Ω[1].
5: Sample B[1] = Ω[1]A[0].
6: Set composite permutation P [0] = I.
7: Set completed column counter c = 0.
8: do J=1,2,. . .
9: [Q

[J ]
b , S

[J ], P
[J ]
b ] = qrcp(B[J ], b).

10: Apply Pb to columns c+ 1 : n of A, R, and W T .
11: Update composite permutation P [J ] = P [J−1]P

[J ]
b .

12: Form selected columns Â(c+ 1 : m, c+ 1 : c+ k) from prior reflections.
13: Factorize selected columns [Y [J ], T [J ], R(c+1 : c+k, c+1 : c+k)] = qr(Â).
14: Merge new reflector inner products in W T .
15: Complete R(c+ 1 : c+ k, c+ k + 1 : n) from all reflections.
16: if (c+ k = r) then exit
17: Update sample with original or alternative update formula.
18: Increment completed column counter c = c+ k.
19: end do
20: end function
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3.6 Parallel implementation notes

3.6.1 Memory affinity

The primary concern in designing an efficient parallel algorithm is minimizing slow
memory movement. Memory movement is handled automatically in OpenMP. When
a thread directs a processor to perform a computation, relevant memory is loaded
into that processor’s cache hierarchy. If we wish to minimize slow memory movement,
threads must be written to avoid computations that pick up distant memory. This
leads us to a notion of soft ownership.

We consider matrices to be partitioned into blocks that are owned by the last
processor to perform a computation using that block. Code is written to restrict
computations to particular blocks that are already owned based on thread identity
which corresponds to a physical processor identity. Avoiding ownership changes re-
duces communication. Since a processor can only effectively own the limited amount
of memory that fits in cache, we can understand efficiency improvements of parallel
processing as resulting from increased ownership efficiency. Engaging more proces-
sors allows more relevant data to already reside near a processor before computation.
This is most effective if a sequence of computations can be structured to maximize
continuous ownership of the relevant matrix partitions.

3.6.2 Load balancing

An alternative approach that we briefly tested is dynamic scheduling. Dynamic
scheduling distributes portions of each computation to available processors in an ef-
fort to keep all processors busy. We find that this is not as efficient as ownership
balancing for our purposes. Dynamic scheduling requires additional synchroniza-
tion points between processors which can be very costly at run time. Furthermore,
dynamic scheduling necessarily results in dynamic ownership.

Because we know what data must be handled at each stage of the algorithm, as
well as computational complexity, we can predetermine an efficient ownership balance
and write code accordingly. As a result, balance is achieved without unnecessary
synchronization points and changes in ownership. Dynamic scheduling is a better
solution when workloads are difficult to predict and balance at design time.

3.6.3 Ownership layout

When choosing a memory affinity layout, it is useful to consider the effect on the most
expensive computational stages of the algorithm. In each of the blocked algorithms
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we discussed these are the block reflector inner products W T = T T (Y TA) and trail-
ing matrix updates A := A − YW T . These matrix multiplies dominate processing
time because the entire trailing matrix A must filter through the set of processors.
Fortunately, both of these computations can be performed on blocks of columns in-
dependently of other blocks. If Ip represents a column index set corresponding to
processor p then a block reflection of the form

W T (:, Ip) = T T
(
Y TA[J ](:, Ip)

)
and A[J+1](:, Ip) = A[J ](:, Ip)− YW T (:, Ip)

can be completed without any intermediate communication or synchronization points
between processors. Only Y and T need to be distributed to all processors before
hand. We found this simple form of column-based ownership affinity to be quite
successful at achieving desirable performance in parallel scaling.

When the trailing update is required, the column index set Ip is further par-
titioned into panels based on available cache size. Each panel inner product and
update is finished before proceeding to the next panel. Ideally, this allows a single
load and store operation per panel rather than a load/store pair for the inner product
followed by a second load/store pair for the update. Otherwise if the trailing update
can be avoided, which is the case for low-rank approximations, this additional layer
of panelling is unnecessary.

We tested two 1D column-based affinity structures. The first version uses a
contiguous division layout. At every stage, all remaining columns are equally divided
into contiguous regions for each processor. For example, if we have P processors and
3 subpanels per processor block then the affinity structure would be[

completed columns I1,1 I1,2 I1,3 I2,1 I2,2 I2,3 · · · IP,1 IP,2 IP,3
]

.

The first subscript denotes the processor used to operate on the given partition. The
second subscript indicates sub-panelling structure for the trailing update computa-
tion.

The second style we tested uses a fixed 1D block-cyclic layout, which was sug-
gested by Professor Laura Grigori [26]. An example of this affinity structure might
be [

I1,1 I2,1 · · · IP,1 I1,2 I2,2 · · · IP,2 · · · IP−1,3 IP,3
]

.

As columns are completed the affinity structure does not change. Processing loads
remain nearly balanced while limiting changes in column ownership to only those that
must be permuted. We believe this block-cyclic layout will be superior on very large
distributed memory systems. However, on the shared memory system we tested,
this layout ran somewhat slower. This is likely a consequence of reduced memory
prefetching efficiency.
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Since a processor’s collection of panels is too large to reside in cache, additional
boundary communication is subsumed by cache transfers that could not be avoided
in either layout. The contiguous layout allows hardware to correctly predict memory
that will be needed since addresses are requested in consecutive sequence. However
the block cyclic layout interleaves large sections of consecutive access with very large
jumps thus causing hardware predictions to fail periodically.

A distributed memory implementation could be designed to enjoy the communi-
cation advantage of the fixed block-cyclic structure while also retaining prefetching
efficiency. Each node would simply store panels from the fixed block-cyclic layout in
consecutive blocks of a single local array. Within a shared-memory node, processors
would still utilize contiguous divisions.

3.6.4 Tall-skinny matrix operations

Performance can be improved further by optimizing ownership in tall-skinny matrix
operations such as reflector construction. Row-based affinity structures improve
parallel efficiency in these cases because the resulting partitions have better matrix
dimension to computational dimension ratios than would be the case for column-
based affinity. That is, the computational density of corresponding matrix operations
is higher [2]. Again, we find the contiguous division layout produces the best results.

3.7 Truncated approximate Singular Value

Decomposition

TRQRCP naturally extends to a truncated approximation of the Singular Value
Decomposition (SVD). This follows the QLP method proposed by Stewart [66]. The
QLP decomposition proceeds by first applying QRCP to obtain AP0 = Q0R. Then
the right triangular matrix R is factored again using an LQ factorization P1R =
LQ1 where row-pivoting is an optional safeguard (otherwise P1 = I). This gives
the factored form A = (Q0P

T
1 )L(Q1P

T
0 ). The diagonal elements of L give a very

good approximation of the singular values of A. Analysis is done by Huckaby and
Chan [36].

The truncated approximate SVD proposed here simply applies low-rank versions
of the steps in QLP. The rank-k approximation that results is exactly the same as
the truncated approximation that would be obtained if QLP had been processed to
completion using RQRCP—without secondary row-pivoting—and then truncated to
a rank-k approximation.
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We begin by using TRQRCP to produce k left reflectors to obtain the initial left
orthogonal matrix U (0). Results are simultaneously compared to what would have
been obtained by full RQRCP-QLP:

A
[
P

(0)
1 P

(0)
2

]
≈
[
U

(0)
1 U

(0)
2

] [
R

(0)
11 R

(0)
12

0 0

]
.

Continuing the full factorization would produce additional pivoting to factorize the
rest of the matrix:

A
[
P

(0)
1 P

(0∗)
2

]
=
[
U

(0)
1 U

(0∗)
2

] [R(0)
11 R

(0∗)
12

0 R
(0∗)
22

]
.

Clearly the first k pivots in P (0) and corresponding reflectors in U (0) are the same.
The corresponding rows in R(0) are also the same modulo additional column permu-
tations. We can reverse these permutations to obtain R(1) = R(0)P (0)T :

A ≈
[
U

(0)
1 U

(0)
2

] [
R

(1)
11 R

(1)
12

0 0

]
versus A =

[
U

(0)
1 U

(0∗)
2

] [R(1)
11 R

(1)
12

R
(1∗)
21 R

(1∗)
22

]
.

Taking the LQ factorization L(1)V (1)T = R(1) instead of from R(0) simply absorbs
the permutation P (0)T into the definition of V (1)T . That gives

A ≈
[
U

(0)
1 U

(0)
2

] [
L

(1)
11 0
0 0

][
V

(1)T
1

V
(1)T

2

]
.

Again, continuing the full factorization would produce

A =
[
U

(0)
1 U

(0∗)
2

] [L(1)
11 0

L
(1∗)
21 L

(1∗)
22

][
V

(1)T
1

V
(1∗)T

2

]
.

For consistency with the form that follows, we could label X(0) = L
(1)
11 . The leading

k reflectors in V (1) and V (1∗) are identical because they are only based on the leading
k rows of R(1) as long as no secondary row-pivoting is considered.

At this point, the rank-k approximation of RQRCP-QLP would require L
(1∗)
21 ,

which is unknown. Fortunately, the leading k columns of (U (0∗)L(1∗)) can be recon-
structed with one BLAS-3 matrix multiply:

AV
(1)

1 =: Z =
[
U

(0)
1 U

(0∗)
2

] [L(1)
11

L
(1∗)
21

]
in both cases.
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The resulting m× k matrix is QR-factorized as Z = U (1)X(1) to produce the rank-k
approximation desired:

A ≈ U (1)

[
X(1) 0

0 0

]
V (1)T . (3.4)

Further iterations could be computed to produce X(2), X(3), etc. which would
oscillate between upper triangular and lower triangular k × k matrices. One would
simply multiply the leading rows of UT or columns of V on the left and right of A
respectively until the norm of X converged. This type of iterative scheme is outlined
in Algorithm 19, however as Stewart observed, only one QR-LQ iteration is needed
to produce a strong approximation of the SVD.
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Algorithm 19 Truncated Approximate SVD (TUXV)

Input:
A is m× n matrix to approximate.
k approximation rank. k � min(m,n).
0 < τ < 1 is tolerance of consecutive norm ratios.
imax is maximum number of LQ-QR iterations. Usually imax = 1.

Output:
U is orthogonal matrix represented by m× k compact YU and TU .
V is orthogonal matrix represented by n× k compact YV and TV .
X is k × k upper or lower triangular matrix.
A ≈ U(:, 1 : k)XV (:, 1 : k)T .

1: function [U,X, V ]=tuxv(A, k, τ, imax)
2: [YU , TU , Z, p] = rqrcp(A, k)
3: Revert permutation A(:, p) = A.
4: Compute norm of leading upper triangle n0 = ‖Z(:, 1 : k)‖.
5: Revert permutation Z(:, p) = Z.
6: LQ-Factorize [YV , TV , X

T ] = qr(ZT ).
7: Compute norm of leading lower triangle n1 = ‖X‖.
8: Initialize LQ-QR iteration count i = 0.
9: do while n0

n1
< τ and i < imax

10: Z = A(1 : m, 1 : k)− AYV TV YV (1 : k, 1 : k)T

11: QR-Factorize [YU , TU , X] = qr(Z).
12: Update norm sequence n0 = n1 and upper triangle norm n1 = ‖X‖.
13: i=i+1;
14: if n0

n1
≥ τ or i = imax then exit

15: Z = A(1 : k, 1 : n)− YU(1 : k, 1 : k)T TU Y
T
U A

16: LQ-Factorize [YV , TV , X
T ] = qr(ZT ).

17: Update norm sequence n0 = n1 and lower triangle norm n1 = ‖X‖.
18: i=i+1;
19: end do
20: end function
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3.8 Experimental performance

The first set of experiments test scaling of decomposition time versus various prob-
lem dimensions for several full matrix decompositions. These experiments were run
on a single node of the NERSC machine Edison. Each node has two 12-core Intel
processors. Subroutines were compiled using Intel’s Math Kernel Library. Unless
stated otherwise, all tests were performed using 24 cores. Each matrix used is ran-
domly generated 12000×12000 unless indicated otherwise. The same random matrix
is submitted to each algorithm. These tests show that the full RQRCP decomposi-
tion can be computed an order of magnitude faster than QRCP as implemented in
dgeqp3.

The pivots resulting from RQRCP are not identical to QRCP, however we show
that at every stage of the partial factorization the resulting basis is indistinguishably
well-suited to represent the matrix thus far. In the second set of experiments we
compare the Frobenius norm of the partial factorization of rank-k, Rk, resulting
from QR, QRCP, and RQRCP to the corresponding rank-k truncated SVD, Σk.
Since the Frobenius norms are often nearly equivalent we plot the relative deficiency
in log-scale:

log

(
‖Σk‖F − ‖Rk‖F
‖Σk‖F

)
.

In these quality tests we examine three structured matrices (images) and one ran-
dom matrix. These tests demonstrate that both QRCP and RQRCP result in a
much stronger basis for representing the matrix than unpivoted QR. Pivot quality
is also visually demonstrated in the truncated decomposition image reconstruction
experiments that follow.

The third set of tests compare truncated approximations using a default rank
k = 1200 unless stated otherwise. We include an implementation of Truncated
QR (TQR) that avoids the trailing matrix update. This version uses the same
subroutines as TRQRCP, but without sample-based pivoting. In practice, TQR is
worthless because it produces very poor approximations, however we include it to
provide an experimental lower bound on decomposition performance. In effect, TQR
reveals the overhead in TRQRCP due to sample computations and column pivoting.

Truncated timing results also include TRQRCP-TU, which is the version that
computes the Trailing Update. This is the simple modification of RQRCP discussed
in Section 3.5.1. Algorithm 17 is simply halted after k columns have been processed.
These experiments verify that avoiding the trailing update reduces computation time
by half, provided the truncation rank is small enough.

The version of TUXV tested only applies a single LQ-QR iteration (imax = 1),
which returns X as an upper triangular matrix. No threshold testing for convergence
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is attempted. As a result, TUXV performs just one additional BLAS-3 matrix mul-
tiply with a reflector block of dimension n× k over what is performed by TRQRCP.

A fourth set of tests are intended to compare truncated decomposition approxi-
mation quality on structured matrices. Three grayscale images are decomposed and
reconstructed at 10% of the original rank. Image reconstruction error is measured
in the Frobenius norm relative to the original image norm. These tests show that
RQRCP gives comparable results to QRCP. Unfavorable columns are easily rejected
early on in favor of a column basis that provides a good low rank approximation of
the matrix. TQR is included to verify that it produces poor approximations, however
quickly. The truncated SVD is also included in image reconstructions in order to
compare against the theoretically optimal low-rank approximation.

These test demonstrate the dramatic performance improvement these randomized
methods are capable of achieving for large matrices. These image reconstruction
experiments show that just one additional pass over the matrix in TUXV significantly
improves low-rank approximations for these structured matrices.
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3.8.1 Full decomposition row scaling

Figure 3.2: Processing time versus rows

m 3000 4000 6000 8000 12000 16000 Exponent

dgeqr2 85.73 146.04 314.06 531.42 1077.07 1627.80 1.78
dgesvd 14.91 27.96 55.81 159.37 252.94 381.55 1.99
dgeqp3 7.09 11.52 22.99 38.92 76.87 116.85 1.69
rqrcp 0.86 1.43 2.85 4.74 9.10 15.78 1.72
dgeqrf 0.50 0.86 1.78 3.09 5.92 9.52 1.76
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3.8.2 Full decomposition column scaling

Figure 3.3: Processing time versus columns

n 3000 4000 6000 8000 12000 16000 Exponent

dgeqr2 94.05 162.83 343.23 567.02 1077.07 1553.57 1.69
dgesvd 15.73 28.79 56.47 135.46 250.66 417.47 1.98
dgeqp3 7.07 12.07 25.01 40.64 75.66 109.08 1.65
rqrcp 1.03 1.63 3.17 5.00 9.08 12.98 1.53
dgeqrf 1.35 1.79 2.57 3.61 5.94 8.26 1.09
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3.8.3 Full decomposition order scaling

Figure 3.4: Processing time versus order

m,n 3000 4000 6000 8000 12000 16000 Exponent

dgeqr2 12.75 34.08 124.74 304.59 1075.03 2562.74 3.16
dgesvd 6.15 12.65 36.22 81.97 253.18 581.31 2.72
dgeqp3 0.89 2.42 9.32 23.11 76.91 179.13 3.16
rqrcp 0.25 0.48 1.37 2.99 9.28 24.44 2.73
dgeqrf 0.13 0.28 0.85 2.02 5.97 13.54 2.78
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3.8.4 Full decomposition parallel core scaling

Figure 3.5: Processing time versus cores

cores 1 3 6 12 24 Exponent

dgeqr2 832.78 840.28 834.17 835.64 1069.37 0.06
dgesvd 1939.46 757.27 482.63 369.38 252.87 -0.63
dgeqp3 394.85 159.96 113.68 103.27 76.78 -0.49
rqrcp 141.80 51.54 29.26 16.56 9.24 -0.85
dgeqrf 110.64 40.56 21.82 11.24 5.92 -0.92
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3.8.5 Partial decomposition norm comparisons

Figure 3.6: Truncated norm comparison, Differential Gear
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Figure 3.7: Truncated norm comparison, Lion
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Figure 3.8: Truncated norm comparison, Broadway Tower
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Figure 3.9: Truncated norm comparison, random matrix
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3.8.6 Truncated decomposition row scaling

Figure 3.10: Processing time versus rows

m 3000 4000 6000 8000 12000 16000 Exponent

tqrcp 5.61 7.52 11.48 15.74 24.11 32.42 1.05
trqrcp-tu 0.53 0.72 1.16 2.23 2.81 5.43 1.36

tuxv 1.40 1.66 2.14 2.65 3.67 4.65 0.72
trqrcp 0.56 0.68 0.90 1.14 1.59 2.06 0.78

tqr 0.44 0.54 0.75 0.97 1.40 1.83 0.86
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3.8.7 Truncated decomposition column scaling

Figure 3.11: Processing time versus columns

n 3000 4000 6000 8000 12000 16000 Exponent

tqrcp 14.25 15.31 17.48 19.66 24.10 28.51 0.41
tuxv 1.96 2.15 2.52 2.93 3.68 4.46 0.49

trqrcp-tu 0.68 0.90 1.36 1.83 2.82 3.77 1.03
trqrcp 0.60 0.71 0.92 1.13 1.58 2.04 0.73

tqr 0.49 0.59 0.79 0.98 1.40 1.81 0.78
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3.8.8 Truncation rank scaling

Figure 3.12: Processing time versus truncated rank

k 300 400 600 800 1200 1600 Exponent

tqrcp 3.81 5.38 9.06 13.44 24.08 37.05 1.36
tuxv 0.85 1.11 1.68 2.31 3.70 5.49 1.11

trqrcp-tu 0.84 1.07 1.52 1.98 2.80 3.55 0.87
trqrcp 0.41 0.53 0.77 1.02 1.59 2.19 1.00

tqr 0.31 0.42 0.64 0.87 1.40 1.95 1.10
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3.8.9 Truncated decomposition parallel core scaling

Figure 3.13: Processing time versus cores

cores 1 3 6 12 24 Exponent

tqrcp 113.06 49.70 37.88 35.56 24.65 -0.45
tuxv 48.05 17.61 9.86 5.56 3.69 -0.82

trqrcp-tu 38.48 13.73 7.94 5.53 2.84 -0.80
trqrcp 25.41 9.22 5.12 2.81 1.60 -0.87

tqr 23.91 8.63 4.74 2.56 1.41 -0.89
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3.8.10 Approximation quality

Relative truncation error of images in Frobenius norm:

Image Diff Gear Lion Tower

tqr 63.91% 52.46% 26.08%
tqrcp 4.34% 18.82% 15.41%
trqrcp 4.34% 18.56% 15.40%
tuxv 2.59% 15.46% 11.16%
tsvd 2.20% 13.87% 10.08%
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