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Automated two-dimensional localization of underwater
acoustic transient impulses using vector sensor image
processing (vector sensor localization)

Aaron M. Thode,1,a) Alexander S. Conrad,2 Emma Ozanich,1 Rylan King,3 Simon E. Freeman,3

Lauren A. Freeman,3 Brian Zgliczynski,1 Peter Gerstoft,1,b) and Katherine H. Kim2

1Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093-0238, USA
2Greeneridge Sciences, Inc., 90 Arnold Place, Suite D, Santa Barbara, California 93117, USA
3Naval Undersea Warfare Center, Newport, Rhode Island 02841, USA

ABSTRACT:
Detecting acoustic transients by signal-to-noise ratio (SNR) becomes problematic in nonstationary ambient noise

environments characteristic of coral reefs. An alternate approach presented here uses signal directionality to

automatically detect and localize transient impulsive sounds collected on underwater vector sensors spaced tens of

meters apart. The procedure, which does not require precise time synchronization, first constructs time-frequency

representations of both the squared acoustic pressure (spectrogram) and dominant directionality of the active inten-

sity (azigram) on each sensor. Within each azigram, sets of time-frequency cells associated with transient energy

arriving from a consistent azimuthal sector are identified. Binary image processing techniques then link sets that

share similar duration and bandwidth between different sensors, after which the algorithm triangulates the source

location. Unlike most passive acoustic detectors, the threshold criterion for this algorithm is bandwidth instead of

pressure magnitude. Data collected from shallow coral reef environments demonstrate the algorithm’s ability to

detect SCUBA bubble plumes and consistent spatial distributions of somniferous fish activity. Analytical estimates

and direct evaluations both yield false transient localization rates from 3% to 6% in a coral reef environment. The

SNR distribution of localized pulses off Hawaii has a median of 7.7 dB and interquartile range of 7.1 dB.
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I. INTRODUCTION

Coral reefs are amongst the most biodiverse ecosystems

in the ocean and host the greatest density of marine life in

the photic zone. Coral reef ecosystems are also under direct

threat from both direct human impacts (overfishing, pollu-

tion, tourism, and overuse) (Pandolfi et al., 2005) and indi-

rect human impacts (sea surface temperature warming and

ocean acidification from increased atmospheric carbon diox-

ide) (Glynn 1993; Brown 1997; Kleypas and Yates, 2009).

Scientists using SCUBA or snorkeling equipment have stud-

ied coral reef ecology extensively, typically by means of

direct sampling and experiments (i.e. Preskitt et al., 2004).

In addition to understanding reefs, timely monitoring is an

essential component of coral reef conservation to quantify

impacts and allocate mitigation resources (Pandolfi et al.,
2005). Examining ambient coral reef sounds offers the

opportunity to understand reef characteristics in a non-

invasive fashion and is of particular interest at night when

visual methods are not possible without adding light and

likely altering behavior of native biota. Previous work has

shown linkages between coral reef acoustic signatures and

predominant frequencies and relative reef health (Freeman

and Freeman, 1993; Bertucci et al., 2016), a consistent eve-

ning chorus after sunset found on reefs around the world

(McWilliams et al., 2017; Freeman et al., 2014), and that

reef sound provides a critical cue for pelagic coral (Vermeij

et al., 2010) and fish larvae (Gordon et al., 2019) to settle.

The latter suggests that sound is not just a byproduct of reef

activities, but a critical component of a healthy reef that

results in continued recruitment of juvenile corals and fish

to maintain the density of life expected of such an ecosys-

tem (i.e., Gordon, 2020). As such, understanding the varia-

tion and expected features of coral reef soundscapes,

including the heterogeneity of sound on a single reef, are a

critical component to understand coral reef ecosystems as a

whole. To date, however, the vast majority of acoustic

research into coral reef environments has focused on detec-

tion, and not localization, of ambient sound sources in this

complex ecosystem. Passive acoustic detection of underwa-

ter biologic signals generally relies on applying a threshold

to the acoustic pressure time series measured by a hydro-

phone (Zimmer, 2011). This threshold can be expressed in

the time or frequency domain and defined either in terms of

an absolute pressure or a signal-to-noise ratio (SNR), where

the pressure is normalized relative to an estimate of the

background noise spectrum. In the latter case, the threshold
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does not have to be adjusted in response to variations in

ambient sound levels, a method defined as the “clutter map

constant false alarm rate (CFAR)” processor in the radar lit-

erature (Nitzberg, 1986). All standard commercial bioacous-

tics software use CFAR amplitude thresholding as their

fundamental detection strategy (Gillespie et al., 2008).

Detected sounds are then typically localized by cross-

correlating time series from the same event detected on dif-

ferent hydrophones in order to determine relative time-of-

arrival (RTOA) of a transient signal, which can then be

transformed into a location estimate. Both whales (Wilcock,

2012) and fish (Putland et al., 2018) have been localized by

these approaches.

The CFAR approach works well whenever background

noise levels are statistically stationary, and the number of

transients per unit time is relatively low. However, in cer-

tain environments such as coral reefs, biological transient

signals comprise a significant fraction of the total ambient

sound. In these circumstances, the ambient levels are statis-

tically non-stationary, and establishing a reference back-

ground spectrum becomes difficult. Even when the SNR

threshold can be established, the detector will often reject

numerous low-SNR transients, which comprise a signifi-

cant portion of the total transients available. For example,

Fig. 1, which shows the cumulative density function for

965 manually-identified fish transients on a Hawaiian coral

reef (discussed in Sec. III), illustrates that at least 50% of

valid localizable transients have SNR levels below 7 dB,

and over a quarter have SNR values below 3 dB. A 3 dB

CFAR detector threshold would be overwhelmed with spu-

rious detections.

Coral reefs are also challenging environments for

implementing RTOA localization methods because the low-

frequency sounds characteristic of fish activity experience

significant distortion, absorption, and interference when

propagating through shallow waters over the complex

bathymetry of a coral reef. As a result, the correlation (and

thus RTOA estimate) between signals arising from the same

event is often low, even when detected on sensors separated

by only a few tens of meters. Figure 1(b) illustrates an

example of this situation for the same 965 fish sounds in

Fig. 1(a) by plotting the cumulative probability distribution

of the Pearson’s correlation coefficient between manually-

matched sounds recorded on sensors 19 m apart. Another

(dashed) distribution is also plotted for sound samples ran-

domly correlated between the sensors. The similar distribu-

tions between the random and correct associations indicate

that fish sounds detected on separate sensors are often sig-

nificantly decorrelated to the point where it becomes diffi-

cult to obtain precise RTOA measurements between

conventional hydrophones.

This paper presents an alternative approach to acoustic

transient detection and localization that uses signal azimuth,

and not SNR, through the use of vector sensors instead of

hydrophones. Passive underwater acoustic vector sensors

have the ability to estimate both acoustic pressure and vec-

tor particle velocity from a single point (D’Spain et al.,
1991; Nehorai and Paldi, 1994; Deal, 2018). Two-

dimensional (2-D) particle velocity sensors have been incor-

porated inside Directional Low Frequency Analysis and

Recording (DIFAR) sonobuoys for decades (Holler, 2014),

as well as commercial autonomous recording packages such

FIG. 1. Data collected on a Hawaiian coral reef illustrate motivation for an alternative to an SNR-based detector. (a) Cumulative density function of SNR

for 965 manually-identified fish sounds collected over three non-contiguous five-minute intervals on February 29, 2020. (b) Cumulative density function for

Pearson’s correlation coefficient between signals measured on two sensors 19 m apart. The solid line represents correctly-matched signals between sensors;

the dashed line represents correlations between randomly-matched signals that occur within 150 s of each other. Details on the manual analysis are provided

in Sec. III C 3.
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as the Directional Autonomous Seafloor Acoustic Recorder

(DASAR) (Greene et al., 2004). More recent versions of

these sensors exhibit increased monitoring bandwidth

(Shipps and Deng, 2003) and sensitivity along three dimen-

sions. Vector sensors have advantages over conventional

hydrophones in terms of array gain (Cray and Nuttall, 2001;

D’Spain et al., 2006), directional noise suppression (Thode

et al., 2016), geoacoustic inversion (Shi et al., 2019; Dahl

and Dall’Osto, 2020), and resolution of left/right ambiguity

in towed passive acoustic arrays (Thode et al., 2010). They

also have advantages when localizing signals, in that only

three widely spatially-separated sensors are required to suc-

cessfully triangulate signals in a 2-D horizontal plane, and

the sensors do not need to be precisely time-aligned

(Hawkes and Nehorai, 2003). Conventional hydrophones,

by contrast, require precise time-alignment in order to mea-

sure the relative arrival time of a signal between sensors,

and also require at least four sensors to reliably locate a

source in a horizontal plane via hyperbolic localization

methods. The use of triangulation vs cross-correlation for

signal localization also simplifies the automated processing

of acoustic transients (Thode et al., 2012).

Here, we demonstrate how vector sensor processing

can further simplify automated processing and localization

in nonstationary ambient sound environments, whenever

the transients of interest are restricted to impulsive signals

collected on sensors separated from each other by roughly

60 meters or less. For our purposes, we define a transient

as a signal that displays an instantaneous bandwidth equal

to the total signal bandwidth during any point of its recep-

tion. We thus exclude frequency-modulated tones and

sweeps from the current discussion, although extending the

algorithm described here to these signals is conceptually

straightforward.

Section II describes the algorithm in detail, and then

Sec. III displays the results of the algorithm applied to

DASAR data collected in a shallow coral reef environment.

The acoustic ambient sound environment in this biome is

highly non-stationary and dominated by numerous transient

pulses from a variety of natural and artificial sources. Bulk

localization results are presented for SCUBA diving opera-

tions and vocalizing fish, where independent position data is

available for the former. An Appendix analyses the false

alarm rates produced by the method in the presence of a dif-

fuse ambient sound field with a statistically stationary

directionality.

II. METHODS

A. Definitions and linking algorithm

Figure 2 illustrates the geometry between two vector

sensors, labeled A and B. The x and y axes lie parallel to the

ocean bottom, and the angles are azimuths that follow the

compass convention (increasing clockwise from the y axis).

Any vertical dimensions, angular elevations, or vertical par-

ticle velocities are ignored in this paper.

The pressure and two orthogonal particle velocity times

series are designated as pi(t), vi,x(t), and vi,y(t), where the

subscript i represents sensor A or B. Each time series is

divided into N potentially-overlapped partitions, each with

Nfft samples. After applying a fast Fourier transform (FFT)

of length Nfft to the nth time chunk, one obtains a frequency

domain estimate of the pressure Pi(n,m) and particle veloci-

ties Vx,i(n,m) and Vy,i(n,m), where time index n represents a

given time chunk, and m is a frequency index that ranges

from 0 to Nfft/2.

Two matrices can be defined from these measurements:

a spectrogram Si(n,m) ¼ jPi(n,m)j2, which measures the

square magnitude of the measured acoustic pressure versus

time and frequency, and an “azigram” (Thode et al., 2019)

Ai(n,m), which is constructed by defining the “active

intensity” of the acoustic field at sensor I,

Ii;q n;mð Þ ¼ Re Pi n;mð ÞV�q;i n;mð Þ
� �

; (1)

where the index q represents either the x or y direction, and

the symbol “*” indicates complex conjugation. The active

intensity measures the in-phase product of p and vq, which

indicates the portion of the acoustic field that is actively

transporting acoustic energy through the measurement point

along axis q.

The azigram Ai(n,m) at sensor i is then defined as

Ai n;mð Þ ¼ tan�1 Ii;x n;mð Þ=Ii;y n;mð Þ
� �

; (2)

and represents the dominant azimuth from which acoustic

energy at time chunk n and frequency index m is propagat-

ing from along the horizontal plane. The use of the form

tan�1(x/y) produces an azimuth that follows the compass

convention (clockwise azimuth from y axis). Both I and A
can be treated as 2-D images and manipulated by binary

image processing techniques, including thresholding and

segmentation (Gonzalez and Woods, 2002). For example, at

FIG. 2. (Color online) Definition of terms used in localization method. The

vertical axis is aligned with true north.
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sensor i, the azimuthal sector /k is defined by the azimuthal

angular range ½uk � Du=2; uk � Du=2], with D/ defining

the width of the sector. Sectors can be defined to overlap,

i.e., (j/kþ1 � /kj<D/). One can thus construct a binary

image Bi,k(n,m) that indicates which time/frequency cells in

the azigram Ai(n,m) arrive near an azimuth /k via

Bi;k n;mð Þ ¼ I uk � Du=2 < Ai n;mð Þ < uk þ Du=2
� �

;

(3)

where I is the indicator function. The binary image thus rep-

resents all time-frequency cells where energy is propagating

through sensor i from an azimuthal sector centered around

/k. All time-frequency components associated with a tran-

sient signal from a discrete source (as opposed to a distrib-

uted source) would be contained in the same binary image.

Next, we define a “bidirectional mask” Mk,l as the inter-

section of two binary images, evaluated for every time-

frequency cell (n,m),

Mk;l n;mð Þ ¼ BA;k n;mð Þ \ BB;l n;mð Þ: (4)

A given mask Mk,l is activated at time-frequency cell

(n,m) if energy is detected arriving from sector k on sensor

A and arriving from sector l on sensor B. Figure 2 illustrates

the various definitions of these 2-D matrices, and also shows

that each mask represents a hypothesis that a signal is

arriving from a particular 2-D region in the environment.

Thus, a mask tests whether energy in particular time-

frequency cells in both sensors’ spectrograms represents a

potentially physically localizable source, regardless of the

spectrogram magnitude corresponding to that cell. As one

example distant signals will be present in the mask

Mk;kðn;mÞ, where active azimuthal sectors on the two sen-

sors are identical (k¼ l). For Naz azimuthal sectors, there

exist Naz binary images (B) for each sensor and Naz
2 mask

images (M) for every pairwise combination of sensors.

Once a set of masks Mk;lðn;mÞ has been generated, a

detection function D is derived from each mask using

Dk;lðnÞ ¼ Df
Pm2

m1 Mk;lðn;mÞ, where m1 and m2 are the upper

and lower frequency indices that define a bandwidth of inter-

est, and Df is the spacing between adjacent frequency bins in

Hz. Thus, D is an estimate of the instantaneous bandwidth of a

signal arriving from the 2-D region associated with the mask.

For a given time output n, the Dk,l value is checked to deter-

mine that it represents a local maximum with respect to time

and arrival angle by confirming the following:

Dk;l nð Þ>max Dkþ1;l nð Þ;Dk�1;l nð Þ;Dk;l�1 nð Þ;Dk;lþ1 nð Þ
� �

;

(5a)

and

Dk;l nð Þ > max Dk;l n� 1ð Þ;Dk;l nþ 1ð Þ
� �

: (5b)

The mask associated with the peak value of D is then

selected for subsequent processing of the detected transient.

A simple summation across the frequency band is used

when defining D because acoustic transients can display

“notches” in active intensity resulting from destructive inter-

ference with multipath arrivals, and thus a transient appear-

ing in a bidirectional mask may be divided into several

disconnected regions along the frequency axis. To date,

attempts to use morphological convolution or other image

processing techniques (Gonzalez and Woods, 2002) to both

connect regions and remove isolated small time-frequency

regions seems less robust than a simple summation across

bandwidth. The fact that D is a measure of the instantaneous

bandwidth at a single moment implies that this crude detec-

tor performs best for short-duration, broadband signals, i.e.,

impulsive transients, and not tones or frequency-modulated

signals. Detectors for these latter calls might be created

using more sophisticated image segmentation techniques.

Analogous to pressure-only acoustic detectors (Zimmer,

2011), a threshold Dthresh is defined such that the origin and

duration of a valid transient are flagged when D exceeds Dthresh.

However, in contrast to standard detectors, which set a thresh-

old in terms of the magnitude of acoustic pressure or its SNR,

Dthresh has units of frequency and can be interpreted as the min-

imum required instantaneous bandwidth of potential transient

signal. Both thresholds are intuitively related because as the

SNR of an impulsive signal decreases, its peak instantaneous

bandwidth also tends to shrink, and thus a lower value of

Dthresh becomes required for detection. A lower SNR will also

increase the spread of the azimuthal measurements because the

precision of the active intensity measurements decreases with

decreasing SNR. Thus, increasing the sector width Du and

decreasing Dthresh permits the detection of signals with lower

SNR, but at the cost of increasing the possibility of spurious

matches between random azimuthal values produced by a dif-

fuse, perhaps directional, noise background. The Appendix esti-

mates the false detection rate of the two-sensor scenario as a

function of the degree of directionality of the background ambi-

ent sound for various combinations of sector width and Dthresh.

B. Localization algorithm

The procedure in the previous subsection works for

identifying the presence of a localizable impulse, but the

angular width of the sector D/ is generally so large that a

more precise azimuthal estimate is needed at both sensors in

order to obtain a viable position. To that end, once a time

interval containing a pulse has been identified (from FFT

sample n1 to n2), a time subset of the bidirectional mask can

be combined with the original two azigrams to yield a pre-

cise and robust estimate of each sensor’s azimuth. For

example, for sensor i,

ui ¼ circular median Ai n1 : n2;mð Þ \Mk;l n1 : n2;mð Þ
� �

;

(6)

which can be interpreted as taking the circular median of

azigram time-frequency cells that satisfy the criteria of a

given mask.
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To this point, the discussion has focused on two sen-

sors. In principle, masks could be generated that combine

three or more different azimuthal sectors from three or more

sensors, but the resulting combinatorial complexity is ineffi-

cient. To save computational effort, a mask derived from

two sensors can be directly applied to any additional sensors

in the array, sidestepping the combinatorial issue.

Taking the circular median of the azimuthal estimates

of the azigram time-frequency cells is crucial for making the

localization process robust. For example, Eq. (6) could be

reformulated to use the weighted average of the azigram

samples to generate the final azimuth, where the weight

applied to each time-frequency cell is the dB magnitude of

the active intensity of that cell. However, this approach is

vulnerable to azimuthal outliers when a mask is applied to

additional sensors beyond the two originally used to derive

it because typically several time-frequency cells in a third

azigram will have azimuths that lie outside the target sec-

tors, and these outliers can strongly bias an averaged bearing

estimate.

Once the azimuths associated with the detection have

been refined at each sensor, the 2-D localization is straight-

forward. A maximum-likelihood triangulation method is

provided by Lenth (1981). This method, extensively

described in that reference, permits the uncertainty of the

resulting position to be quantified when three or more sen-

sors are used in the triangulation.

C. Practical implementation issues

A fundamental requirement of this processing approach

is that each transient must be present over the same time

indices (n1:n2) on both sensor azigrams. Thus, the azigrams

must be time-aligned to within an FFT window. Whenever

the ambient sound environment is highly non-stationary,

and has several transient pulses embedded over the course

of a single spectrogram, then a simple spectrogram correla-

tion (Mellinger and Clark, 2000) over a 60 s interval is suffi-

cient to ensure this alignment.

Even with this spectrogram correlation step, a practical

limit on sensor separation remains, in order to ensure that

spectrograms from two sensors will display the same rela-

tive timing (FFT snapshots) between groups of pulses arriv-

ing from multiple directions. For two sensors separated by a

distance L, a transient arriving from the endfire direction on

the more distant sensor will experience a maximum time

delay of þL/c relative to the closer sensor, where c is the

local sound speed. A signal arriving from the opposite direc-

tion will display a �L/c time shift between sensors. If the

sampling rate is Fs samples per second, then the number of

samples in a FFT snapshot, Nfft, needs to be greater than

2 FsL/c, the maximum number of samples a transient arriv-

ing from any direction on the second sensor can shift rela-

tive to the first sensor. The exact amount of overlap between

successive FFT samples is not crucial but should be at least

50% in order to ensure that an impulse will arrive on both

sensors within the same time window. This reasoning yields

an expression for the maximum valid separation between

sensors for a given FFT size,

D � Nfftc

2aFs
¼ DTc

2a
; (7)

where DT is the FFT sampling length in seconds, and a is a

safety factor that represents the number of multiples of the

two-way travel time used to derive the FFT length. For

example, if c¼ 1500 m/s, Fs ¼ 1 kHz, Nfft¼ 256, and a¼ 3,

then D¼ 64 m. Equation (7) provides an upper bound on the

sensor separation required to ensure that the relative arrival

times of all transients on two sensor spectrograms/azimuths

are unaffected by their location. In the data examples that

follow, the sensor separation is at most 40 m, so Eq. (7) is

satisfied.

When the sensor packages are deployed on the sea

floor, their relative spacing needs to be determined to within

a meter, and their azimuths relative to each other need to be

determined to within a few degrees in order to localize accu-

rately out to five times the sensor separation (Lenth, 1981).

The azimuth measurement requirement is generally not

needed for conventional hydrophones.

D. Parameter values

Table I lists the various parameters used in the particu-

lar application of the algorithm presented here. All azigrams

were constructed using a 256 point FFT (0.256 s duration

for a 1 kHz sampling rate) with 90% overlap between sam-

ples (Df ¼ 3.9 Hz). Detections were monitored between 100

and 450 Hz (bandwidth B of 350 Hz), because in shallow

coral reef environments flow noise is often present below

100 Hz.

The key parameters for the algorithm are the azimuthal

sector width D/ and the detection threshold Dthresh. The

detailed analytical analysis in the Appendix finds multiple

combinations of these parameters yield the same estimated

false detection and localization rates, given intrinsic ambient

sound directionalities that can be modeled as a von Mises

(VM) distribution (Mardia and Jupp, 2009) with a concen-

tration parameter j. For example, when j¼ 0.8 (representa-

tive of the noise directionality observed off Hawaii Island),

sector width/threshold combinations of 90�/120 Hz and

TABLE I. Baseline parameter values used for the algorithm in this paper.

For SCUBA air plume detection, a 250 Hz detection threshold was used.

Some analyses also used a sector width of 45� and a detection threshold of

50 Hz.

Parameter Value

FFT size, overlap 256, 90

Sector width D/ (deg) 90

Sector separation (deg) 45

Threshold Dthresh (Hz) 120

Frequency range of interest B (Hz) 100–450

Max Detection Time (s) 2

Min separation between detections (s) 0.06
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45�/50 Hz are predicted to generate relatively low false

detection rates of 2–3 per minute. Table I thus sets the

baseline threshold to 120 Hz and the baseline sector width

to 90�, with sectors overlapping by 50% [(/kþ1 � /k)/D/
¼ 0.5]. For situations where very high SNR signals are to

be detected (e.g., SCUBA plumes in Sec. III B), the thresh-

old was increased to 250 Hz. Detections were limited to 2 s

maximum duration, and subsequent detections needed to

occur at least 60 ms after the end of the previous detection.

III. ILLUSTRATIVE EXAMPLES

A. Equipment and deployment configurations

Experimental data to demonstrate this localization pro-

cedure were collected at a shallow reef environment off the

coast of Kona, Hawaii, between February 22 and March 13,

2020. The data were collected at two locations spaced 233 m

apart, with three DASAR packages deployed at each site.

DASARs are autonomous acoustic recording packages

equipped with an omnidirectional acoustic pressure sensor

(sensitivity of �149 dB re V/ 1 lPa) and two horizontal

directional sensors capable of measuring the north-south

and east-west components of acoustic particle velocity

(Greene et al., 2004). These packages have been used exten-

sively for research on bowhead whale and ambient sound

studies in the arctic (Blackwell et al., 2015; Thode et al.,
2020). A DASAR samples each time series at 1 kHz with a

maximum usable acoustic frequency of 450 Hz due to anti-

aliasing filter roll-off.

The first site, dubbed “Block2020,” was located west of

a shallow ridge at 19.76856 �N, 156.05261 �W between

February 22 and March 1, while the second “Shark2020”

site lay in a sandy “bay” nearly surrounded by coral reef at

19.77016 �N, 156.05222 �W and was deployed between

February 22 and March 13. The Block site deployed three

DASARs along a rough N-S line parallel to the reef ridge at

a depth of 21 m (70 ft), in order to allow the largest triangu-

lation baseline relative to the reef, while the Shark site

arranged the DASARs in a rough triangle at 20 m depth (66

feet), in order to permit localization in all directions (Fig. 3).

The DASARs were placed using SCUBA operations,

and their separations were measured directly underwater.

Their azimuths relative to each other were measured from

each DASAR using a line-of-sight magnetic compass.

Unlike traditional RTOA localization methods, triangula-

tion methods also require the azimuths (with respect to

true north) of all lines connecting the DASARs to be mea-

sured. “Structure from motion” photo-mosaic methods

(Ullman, 1979; Gracias et al., 2003; Lirman et al., 2007;

Edwards et al., 2017) were used to map out the position of

instruments on the ocean floor relative to reference

ceramic plate markers. While the primary purpose of the

plates was to aid in photomosaic reconstruction, divers

also generated SCUBA bubble plumes over one plate in

order to generate test signals at a known location (Fig. 3,

bottom).

The sensor orientations on the ocean floor were deter-

mined by driving a small boat in a 100-m radius circle

FIG. 3. (Color online) Locations of passive acoustic deployments off Kona, Hawaii. Top row shows LIDAR1 bathymetry surrounding Block2020 (top left)

and Shark2020 (top right) deployments. Black arrows show direction of true north, and insets show detailed layouts of sensors at both locations. Bottom:

Photomosaic of ocean floor at Block2020 site, showing DASARs Z, Y, and a ceramic plate (Plate 61) used as a test site for generating acoustic pulses from

SCUBA air plumes.
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around the deployment, as measured from the deployment

center, and logging the global positioning system (GPS)

position every second (Fig. 4). The boat performed three

clockwise circles and three counterclockwise circles and

then used a brute-force optimization to fit the relative bear-

ings to the boat, measured by each sensor from the inte-

grated active intensity between 75 and 250 Hz. The

optimization solved the relative clock offset between the

internal DASAR clock and GPS time, the 2-D sensor posi-

tion on the ocean floor, and sensor orientation. Performing

both clockwise and counterclockwise circles permitted

clock offset and sensor orientation to be distinguished with-

out ambiguity.

B. Demonstration with air release at a controlled
location

At 8:20:28 local time on 24 February 2020, SCUBA

divers generated six controlled air bubble plumes at the

Block2020 site over a ceramic tile (61) placed 8.75 m from

DASAR Y at 21 m (73 feet) depth (Fig. 3, bottom). Figure 5

displays the spectrograms and azigrams for each DASAR

over a seven-second window centered on the resulting bub-

ble plumes. The different colors on each azigram demon-

strate how the bearings to the plumes differ on each

DASAR.

The initial linking algorithm was performed between

DASAR Y and Z. Figure 6 displays two example binary

images B, the resulting bi-directional mask M, and the

detection function D for two angular sectors. A 90� sec-

tor width with 50% overlap generated eight binary

FIG. 5. (Color online) Six controlled SCUBA bubble plumes released at the Block2020 test site. Each row represents a different DASAR, with the left col-

umn showing conventional spectrograms (color scale in units of dB re 1 uPa2/Hz) and the right column showing corresponding azigrams, with the HSV scale

displaying degrees from true north). The black bounding boxes are the detector outputs using the parameters in Table I, but with Dthresh¼ 200 Hz. Detection

masks M were obtained by comparing DASARs Y and Z (top and middle rows).

FIG. 4. (Color online) Results of DASAR orientation calibration using boat

tracks over 15 min at Block site, 22 February 2020. Top: Interpolated GPS

azimuth of boat relative to DASAR Y (red) overlain with derived acoustic

azimuth from DASAR after calibration (black). Bottom: Difference

between acoustic and GPS azimuth vs time. Azimuths are measured with

respect to true north (0�).
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images per DASAR, resulting in 64 different masks.

These masks were then applied to DASAR X to generate

a third bearing estimate, and the three bearings were

then used to triangulate both a position and the 90%

confidence ellipse.

Figure 7 displays the localization results for the six air

pulses, along with the actual position indicated by the photo

mosaic. The acoustically localized positions are within

1–2 m of the true position, but the positional uncertainty

spans from roughly 10 cm to several meters, depending on

how well the bearings intersect.

C. Fish activity

The algorithm was applied to the complete data sets at

both the Block and Shark sites in order to detect low-

frequency pulses characteristic of coral reef fish (Tricas and

Boyle, 2014), using different pairs of sensors to generate the

initial masks. Both the 90�/120 Hz and 45�/50 Hz parameter

combinations were tested, with the former being the default.

1. Raw counts

Table II summarizes the number of raw linkages and

successful localizations of the various combinations, when

measured over 24 h from midnight 28 February through

midnight 29 February. The table also lists the number of

“close” localizations occurring within 50 m from the array

center, as well as the number of these close localizations

that had a 90% confidence ellipse smaller than 5 meters.

2. Spatial distributions

Figure 8 shows 2-D distributions of pulse locations for

several configurations at the Block site, while Fig. 9 shows

the associated runs at the Shark site. Both figures use a

50� 50 meter grid with a 5 m grid cell size. Acoustic activity

at the Block site was concentrated at one location at the

southern end of the reef, while the Shark site had a more

complex spatial distribution. Figures 10 and 11 show direct

comparisons between the spatial distributions produced by

the two parameter combinations, along with the percentage

change in pulse detections that occurs when only high-

precision positions are retained. These figures show how the

fraction of high-precision localizations in a grid cell decreases

with increasing distance from the DASAR array center.

3. False localization evaluation

The false localization rate of the system at the Block

site was directly evaluated for the ZYX 90�/120 Hz

FIG. 6. (Color online) Example of binary images B, mask M, and detection function D generated from the azigrams in Fig. 5 for DASARs Z and Y. (a)

Binary image BZ,225�; (b) binary image BY,270�; (c) bidirectional mask M225� ,270�; (d) detection function D225� ,270� summed over each column of (c).

Horizontal line indicates a 200 Hz threshold, and each color indicates a different transient flagged by the detector.
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parameter combination across three different 5-min intervals

on February 29, which yielded 1452 successful localiza-

tions. The first interval (370 samples) began at local mid-

night, the second interval (581 samples) began at 12:02

local time (a time of minimal transient production at the

reef), and the third interval (501 samples) began at 19:30

local time (a time of peak transient production at the reef).

The second interval had the highest number of localized

samples due to the close presence of a singing humpback

whale to the north of the deployment. Humpback whale

song mostly consists of frequency-modulated signals, but

the SNR of the signals were so strong that the instanta-

neous bandwidth of the signals often exceeded the detec-

tion threshold of 120 Hz.

To evaluate each localization, the pressure and parti-

cle velocity time series from each sensor was first

extracted, all centered at the time where the peak value of

D occurred at that sensor. The length of the time series

was the duration of the detection, buffered by an addi-

tional 25 ms of data before and after the detection window.

All time series were bandpass filtered over the bandwidth

B listed in Sec. II D. In order to enhance the SNR of

FIG. 7. (Color online) Acoustic localizations of six SCUBA bubble plumes (filled squares), along with the location determined by photomosaic (open dia-

mond). Ellipses indicate 90% confidence interval of localizations. Triangles represent DASAR locations. Right plot is expanded version of left figure.

TABLE II. Raw transient counts over 24 h on 29 February 2020 at Block Site, for various detector configurations. All configurations use a default sector

width of 90 degrees and 120 Hz threshold, unless otherwise noted. The first two DASARs listed in a given combination produce the azimuthal masks that

are then applied to all DASARs.

DASAR combination Raw linkages Successful localizations

Close localizations

(<50 m range from array center)

Close localizations

with <5 m uncertainty

Block

ZY 147 369 107 518 (73%) 69 736 (65%) NA

ZY (45�, 50 Hz) 322 101 207 608 (64%) 123 609 (60%) NA

XY 153 984 114 571 (74%) 53 663 (47%) NA

ZXY 113 473 113 473 60 348 (53%) 32 842 (54%)

ZYX 108 501 108 501 55 732 (51%) 29 131 (52%)

ZYX (45�, 50 Hz) 212 138 212 138 95 549 (45%) 40 879 (43%)

Shark

CA 170 745 114 820 (67%) 47 970 (42%) NA

CB 160 366 98 386 (61%) 54 932 (56%) NA

CAB 115 131 115 131 46 268 (40%) 14 557 (31%)

CAB (45�,50 Hz) 247 780 247 780 119 701 (48%) 31 767 (26%)

BAC 103 765 103 765 44 876 (43%) 14 169 (32%)
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signals arriving from the measured azimuth /i [Eq. (6)],

the time series at sensor i were combined using additive

beamforming,

xi;beam ¼ pi tð Þ þ Z0 vi;x tð Þsin _ui þ vi;y tð Þcos _ui

� �
; (8)

where _ui is the angle from Eq. (6) after rotating from the

geographic coordinate axes to the sensor reference axes.

The three beamformed time series (one for each sensor)

were then visualized through a high-resolution continuous

wavelet transform (Torrence and Compo, 1998) that

employed the analytic Morse wavelet (Lilly and Olhede,

2012), along with an azigram derived from the same wavelet

decomposition. A manual inspection of these images deter-

mined whether the signals detected across the three sensors

arose from a similar source.

When analyzed at these high time resolutions, the origi-

nal FFT outputs of the directional detector were often

resolved into multiple pulses. All such pulses arriving from

the same direction (as determined from the azigram) were

counted as one signal sample. The same signal had to be

present on all three sensors to be classified as a valid

detection.

Figure 12 provides three examples of manual evalua-

tions of these often low-SNR signals, with two valid local-

izations shown in the first four columns, and an example of

a false result shown in the last two columns. The manual

evaluation was not straightforward; the propagation of these

low-frequency (<200 Hz) signals in shallow water over a

complex bathymetry created complex multipath interference

effects that often modified the structure of a signal at a par-

ticular sensor. For example, the left two columns of Fig. 12

show how the peak frequency of the same single-pulse tran-

sient can vary by up to 100 Hz between two sensors. Despite

these frequency variations, the presence of the same signal

(true detection) could often be identified by the relative tim-

ings and durations of multiple pulses comprising the

detected signal. For example, the middle two columns show

an example of how four irregularly-timed pulses could be

flagged between the sensors, despite the presence of other

extraneous pulses on some sensors. Finally, the last two col-

umns on the right show a false localization where three sig-

nals are arriving roughly from the same direction but share

no temporal or spectral features in common between the

sensors.

This manual review procedure, when applied to all

1452 localizations, found false localization rates of 6.4, 3.2,

and 5.2% for the midnight, noon, and evening samples,

respectively. The Pearson correlation coefficient was also

computed between the time series, to determine whether

false detections between sensors could be predicted by a

low correlation coefficient. All false localizations had

FIG. 8. (Color online) 2-D distributions of biological pulses around Block2020 site during 29 February 2020, using the default parameters for different com-

binations of DASARs to link and localize. Each grid cell covers 5� 5 m. Distributions are shown for (a) Z and Y only; (b) Z and X used to generate the

mask, which is applied to Y for additional bearing; (c) Z and Y used to generate a mask, applied to X; (d) X and Y only. Subplots (e) and (f) display scenar-

ios (b) and (c), using only localizations with 90% confidence intervals that are less than 5 m.
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coefficients less than 0.5; however, 50%–70% of all valid

localizations also had correlation coefficients less than 0.5

[e.g., middle columns of Fig. 12; Fig. 1(b)], presumably due

to the propagation effects mentioned above.

Figure 13 displays distributions of the detection dura-

tion and the root-mean-square (rms) SNR for the manually-

analyzed samples, with noise estimated using the rms value

of data in the time series buffer. False localizations tend to

have shorter durations: 58% of false detections had dura-

tions less than 25.6 ms (one spectrogram time bin), while

only 24% of true localizations were that short in duration.

The median SNR for true localizations is only 3 dB larger

than that for the false localizations, and the mode SNR is

9.5 and 6 dB, respectively. However, SNR values for true

localizations exist below 0 dB. One reason that these small

SNR values exist is that extraneous transients appear in the

buffer, but the manual review does reveal that the method

does successfully flag many low-SNR signals.

IV. DISCUSSION

The tabulation of impulsive sounds localized by various

iterations of the algorithm in Table II shows that over a

given day over 100 000 localizable sounds are measured at

each site, which translates into a little over one per second.

At both sites from roughly 2/3 to 3/4 of the sounds that pass

the detector are localizable, a number dubbed the “localized

fraction” from this point on.

Both the analytical analysis in the Appendix and the

manual evaluations of Sec. III C 3 yield similar low false

alarm rates for localizable signals at the Block site. For

example, the analytical analysis of the 90�/120 Hz parameter

combination predicts three false localizations per minute, or

4320 per day, if the coral reef background noise directional-

ity is characterized by a VM distribution with a j¼ 0.8.

Table II shows that the ZYX run for that same parameter

combination produced 108 501 successful localizations,

which suggests that only 4.0% of the total are spurious

detections. The direct evaluations of the false rate found

similar values between 3% and 6%. The lower bound was

from a time period with many humpback whale sounds,

which were easy to detect and localize; the false rate during

times when only fish activity exists was between 5% and

6%. The manual review also found that no simple metric

exists for flagging spurious localizations: the Pearson corre-

lation coefficient, duration, and SNR distributions substan-

tially overlap between true and false locations. We

hypothesize that the complex propagation environment

often reduces the correlation of a low-frequency transient

between sensors.

The Block site also shows that the particular order

in which DASARs are used to generate the masks has

only a mild effect on both the total detections and the

localized fraction: the ZY, XY, ZXY, and ZYX combi-

nations produce similar results. The addition of a third

FIG. 9. (Color online) 2-D distributions of biological pulses around Shark2020 site during 29 February 2020 using different combinations of DASARs to

link and localize. Each grid cell covers 5� 5 m. Figure follows the same organization as Fig. 8.
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FIG. 10. (Color online) Comparison between two threshold levels at Block site on 29 February 2020, “ZYX” arrangement. The top row shows 2-D pulse dis-

tribution arising from applying a sector width of 90� and detection threshold of 120 Hz. The bottom row shows the results from applying 45� and 50 Hz. The

left column shows all locations, the middle column shows locations with a 90% confidence interval (CI) less than 5 m, and the right column is the percentage

difference between the two, with the opacity of a grid cell proportional to the call count within the cell.

FIG. 11. (Color online) Same as Fig. 10, except applied to the Shark2020 site, “CAB” arrangement.
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DASAR at the Block site also seems to have little

impact on the pulse count, localization fraction, or spa-

tial distribution, but the third sensor does permit the

uncertainty of the positions to be estimated: roughly half

of the sounds localized within 50 m have sufficient pre-

cision to be localized within the 5 m� 5 m grid blocks

shown in the spatial distributions.

The spatial distributions of the pulses shown in Fig. 8

are also unaffected by the sensor order. A little under half of

the localizable pulses lie within 50 m of the array site, and

thus are presumably within the range resolution of the trian-

gulating array. The vast majority of the localized pulses are

concentrated in a 20� 20 m region on the south side of the

ridge, which happens to be the side of the reef facing the

incoming current. There is some anecdotal evidence among

fishermen that pelagic reef fish prefer to forage on the por-

tion of the reef facing the current (Johannes, 1981; Lieske

and Myers, 2002).

In comparison with the Block Site, only 1/3 of the

Shark site localizations within 50 m range achieve a

5 m� 5 m precision, and Fig. 9 suggests that the choice of

DASAR used for the detector can change the relative bal-

ance of sounds localized to the east and west of the site. For

example, when DASAR B is used in the detector, Fig. 9(c)

shows a higher percentage of sounds localized to the east.

Based on boat calibration measurements (shared in the sup-

plemental material), we hypothesize that DASAR B was

placed close to a vertical reef wall, resulting in interfering

reflections that biased the azimuthal estimates and reduced

the localization quality.2

Table II displays that using a lower threshold of 50 Hz

and a narrower angular sector nearly doubles the number of

pulses detected at both sites, while shifting the localization

fraction by only around 5% and decreasing the fraction of

high-precision localizations by only 5 or 10% points, depend-

ing upon the site. Figures 10 and 11 show how the resulting

spatial distributions for both parameter sets are similar, sug-

gesting that both parameter sets have similar low false alarm

rates, as predicted by the analysis in the Appendix.

Figures 10 and 11 also show that the spatial distribu-

tions at both sites change relatively little when samples are

limited to only high-precision results (second column).

However, the third column of both figures show that the rel-

ative fraction of high-precision localizations in a grid cell

decreases with increasing distance from the array center, a

situation to be expected from an array with a fixed baseline.

These results, along with the percentages shown in the final

column of Table II, provide a conclusion similar to that

from the SCUBA bubble plume result with only six sam-

ples: while around half of the localizations have low preci-

sion, most of the localizations have low bias.

V. CONCLUSION

An automated method has been derived for detecting

impulsive sounds on vector sensors that exploits only the

direction, and not the amplitude, of transient sounds,

FIG. 12. (Color online) Examples of manual review of three outputs of the directional detector. Each row represents a different DASAR. Columns 1, 3, and

5 are continuous wavelet transforms (CWT) of the detected signal, centered on the peak detection time, with the Pearson’s correlation “xcorr” displayed rel-

ative to the top sensor. Columns 2, 4, and 6 are corresponding azigrams computed from wavelet transforms of the particle velocity channels, with the opacity

of a pixel proportional to the value of the CWT. Columns 1 and 2 display a valid single-pulse localization, columns 3 and 4 display a valid irregular four-

pulse localization, and columns 5 and 6 display a false localization.
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making the method a subset of the “localize before detect”

paradigm. An analytical analysis of the method (Appendix)

shows that it should work even if the baseline diffuse ambient

field is moderately directional, provided that appropriate sec-

tor widths and bandwidth thresholds are chosen. The present

formulation of the algorithm requires that the sensors be

placed close enough together to satisfy the conditions of Eq.

(7), and that the signals should be impulsive (have a large

instantaneous bandwidth). The requirement for a large instan-

taneous bandwidth is essential for reducing the false detec-

tion rate in directional noise backgrounds, but it may be

possible that frequency-modulated sweeps and other signals

with sufficiently high time-bandwidth product could be

tracked with a modified procedure.

Data collected from both SCUBA operations and bioacous-

tic activity on a coral reef demonstrate that the algorithm works,

and that the resulting 2-D spatial distributions of bioacoustic

activity are robust to the choice of sensors, parameters used, and

resolution criteria. The results indicate that although half of the

localizations have high uncertainty, the biases of most estimates

are small, and direct manual evaluations of the resulting local-

izations found only a 3%–6% false localization rate, even when

the background sound field was intrinsically directional.

This work may have a variety of bioacoustic applica-

tions, including mapping diel and seasonal cycles in

bioacoustic activity, identifying the sources and purposes of

bioacoustic impulses, and even underwater navigation.
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APPENDIX

1. Analytical expressions for false detection and
localization rates created by diffuse directional
background sound field

Transient acoustic pulses are generally embedded within a

more diffuse ambient sound field. If this field has an intrinsic

directionality of its own, then the algorithm in Sec. II could

generate false positions by triangulating on random bearings

FIG. 13. (Color online) Statistics from manual evaluation of transient detections for ZYX configuration, 90�/120 Hz parameter set, for all three time intervals

combined. The top row displays true localization distributions for (a) detection duration in ms, and (b) SNR (rms), while the bottom row shows the false

localization distributions for (c) duration and (d) SNR.
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generated from noise samples that coincidently yield intersect-

ing azimuths. This Appendix derives false detection and locali-

zation rates for the algorithm described in Sec. II, for two

sensors with noise samples drawn from two (potentially differ-

ent) directional distributions. For most practical cases sensors

tens of meters apart would be expected to have identical back-

ground noise distributions.

Figure 1 illustrates the notation for this analysis, using

the compass convention for defining angles (increasing

clockwise from the vertical y axis toward the horizontal x
axis). The time-frequency ambient sound directionality is

modeled as a set of VM distributions, with noise samples in

adjacent frequency bins assumed statistically independent.

The VM probability density function, an analytic continuous

distribution around a circle that is analogous to the Gaussian

distribution, is defined as (Mardia and Jupp, 2009)

pi ukjlA; jAð Þ ¼ ejA cos uk�lAð Þ

2pI0 jAð Þ
; (A1)

where uk is the azimuth measured at sensor A, lA is the loca-

tion parameter, jA is the concentration parameter, and Io(j) is

the modified Bessel function of order 0. For large jA, the vari-

ance becomes r2 ¼ 1=jA. Whenever jA is zero the angular

distribution is uniform. In the examples that follow, l is set to

90�, so that the noise directionality peaks broadside of the sen-

sor array (along the positive x axis in Fig. 1). The sector widths

and boundaries are defined such that the peak directionality is

centered in the middle of a sector, which places an upper

bound on the false detection rate.

The probability that a given time-frequency cell of an

azigram for sensor A yields an azimuth from sector k
(bounded by angles uk;1 and uk;2) is given by the cumulative

density distribution for Eq. (A1):

U uk;1;uk;2; lA; jAð Þ ¼ UAk ¼
ðuk;2

uk;1

p ujlA; jAð Þdu:

(A2)

Thus, the joint probability pAB(k,l) that a single time-frequency

bin has a dominant direction from sector k on sensor A and

from sector l on sensor B becomes pAB(k,l)¼UAkUBl.

Assuming that simultaneous measurements of the

noise field at different frequency bins are statistically

independent, the probability that at least NB (Dthresh/Df)
out of NF (B/Df) total frequency bins will satisfy the

detection criterion is provided by the cumulative binomial

distribution,

pAB falsedetectjk; lð Þ¼
XNF

n¼NB

NF!

n! NF�nð Þ!pAB k; lð Þn

�ð1�pAB k; lð ÞÞNF�n: (A3)

Equation (A3) thus represents the probability of a false

detection on two directional sensors monitoring sectors k
and l. The mean number of false detections per minute is

pAB false detectjk; lð Þð60FsÞ=Nfft 1� ovlapð Þ, with ovlap

being the fractional overlap between FFT samples. As the

number of false detections per unit time increases, adjacent

detections are more likely to be merged into a single event,

thereby also increasing the average false detection duration.

If a broadband false match takes place between sectors

k and l, what is the probability that the resulting azimuths

will generate a successful localization? Although the locali-

zation algorithm provided by Lenth (1981) is a complex

maximum-likelihood procedure, the fundamental technique

can be approximated by triangulation. Assume sensor B has

detected an event at azimuth ul. As can be inferred from

Fig. 1, the spread of overlapping azimuths on sensor A that

would produce a valid triangulation lie betwee u0kl;1 and

u0kl;2, where

u0kl;1 ¼ max uk;1;ulð Þ
u0kl;2 ¼ max uk;2;ulð Þ

; (A4)

when sin(ul) > 0 and

u0kl;1 ¼ min uk;1;ulð Þ
u0kl;2 ¼ min uk;2;ulð Þ;

(A5)

when sin(ul) < 0. Equations (A4) and (A5) state that a valid

triangulation requires that if a ray is launched along azimuth

ul from sensor B, and is increasing along the x axis (travel-

ing “east”), then uk must be greater than ul. Conversely, uk

must be less than ul whenever the launched ray is decreas-

ing along the x axis (traveling “west”). The values uk;1 and

uk;2 are the bounds for the portion of sector k on sensor A
that produce a legitimate triangulation.

FIG. 14. (Color online) Short-term azimuthal distribution of ambient noise

percentiles at DASAR X, Block2020 site, using 2343 samples accumulated

over 10 min from single 4 Hz FFT frequency bin (150–154 Hz). For each

percentile the direction of maximum directionality has been normalized to

one, and the compass convention is used for plotting angles.
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The conditional probability pA false locjk; l; ulð Þ that

sensor A will generate a localizable result within sector k

given an azimuth ul on sensor B is U u0kl;1;u
0
kl;2; lA; jA

� �
=

U uk;1;uk;2; lA; jAð Þ. Likewise, the conditional probability

pB uljlB; jB; lð Þ of measuring azimuth ul on sensor B,

given that it is within sector l, becomes pB uljlB; jBð Þ=
U ul;1;ul;2; lB; jBð Þ. Thus, the conditional probability

pAB false locjk; lð Þ of generating a localization, given random

azimuths from sectors k and l becomes

pAB falselocjk;lð Þ¼
ðul;2

u
l;1

pA locjk;l;ulð ÞpB uljlB;jB;lð Þdul

¼ 1

pAB k;lð Þ

ðul;2

u
l;1

U u0kl;1;u
0
kl;2;lA;jA

� 	
pB

� uljlB;jBð Þdul:

(A6)

The total probability pAB false loc; k; lð Þ of localizing a false

detection at sectors k and l can be determined from Eqs.

(A3) and (A6),

pAB falselocjk;lð Þ¼pAB falselocjk;lð ÞpAB falsedetectjk;lð Þ:
(A7)

The expected false localizations per minute from all sector

combinations becomes

60Fs

Nfft 1� ovlapð Þ
X

l;k

pAB k; lð ÞpAB false locjk; lð Þ

¼ 60Fs

Nfft 1� ovlapð Þ
X

l;k

pAB false detectjk; lð Þ

�
ðul;2

u
l;1

U u0kl;1;u
0
kl;2; lA; jA

� 	
pB uljlB; jBð Þdul :

(A8)

FIG. 15. (Color online) False localization rate analysis of a von Mises ambient noise distribution: lA ¼ lB¼ 90�, sector width Du¼ 90�, and sector bound-

aries at 45� and 135�. Each curve represents a different detection threshold Dthresh. (a) Probability of a broadband joint detection p(false detectj k,l) [Eq.

(A3)], versus concentration parameter j¼ jA ¼ jB, with NF¼103 frequency bins. (b) Mean number of false triangulations per minute [Eq. (A8)] versus j.

Vertical dashed line marks j¼ 0.8, which is the estimated fit to the median percentile azimuthal distribution in Fig. 13. Subplots (c) and (d) show similar for-

mats, but for Du¼ 45� and sector boundaries at 67.5� and 112.5�.
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The use of a third sensor should reduce the false localization

rate even further, but the maximum likelihood algorithm

used by the study makes estimating this contribution analyti-

cally difficult, because the third azimuth does not need to

intersect the other two in order to yield a solution. Note that

Eq. (A8) is only the false alarm probability for a single col-

umn of an azigram; computing the probability of a longer-

duration false detection and localization would require an

additional binomial factor.

Establishing a representative value of j for the coral

reef background noise is not straightforward, because the

noise distribution is nonstationary except on short time-

scales (�1 s) because transient pulses are a dominant com-

ponent of the Hawaiian coral reef noise. Figure 14 shows

the directionality of the ambient noise background for dif-

ferent percentiles (sorted by pressure amplitude), accumu-

lated over 10 min and between 150 and 154 Hz (roughly one

FFT frequency bin).

In general, the higher the noise percentile, the more

directional the field becomes, since high-SNR transient sig-

nals dominate the higher percentiles. At the 50th percentile,

which is generally not sampling transient signals, a noise

sample is five times more likely to arrive from the southeast

than from the northwest (0.2 relative likelihood for a detec-

tion to the northwest, relative to the maximum likelihood to

the southeast). Equation (A1) shows that the ratio between

minimum and maximum probability reaches 0.2 when j
reaches 0.8. The directionality of the 50th percentile seems

centered at l¼ 130�.
Figures 15(a) and 15(b) show the output of the false

broadband detection rate [Eq. (A3)] and localization rate

[Eq. (A8)] per minute of operation as a function of jA ¼ jB,

a sector width of 90�, and monitoring bandwidth B equal to

that in Table I. The sector boundaries are defined so that the

peak of the VM distribution at l¼ 90� is centered within a

sector (and thus one sector boundary starts at 45�, another at

135�, etc.) The figure also assumes lA ¼ lB, so the ambient

sound directionality for both sensors peaks in the direction

of the positive x axis, or broadside of the two sensors. For

reference, a VM j value of 0.8 is marked by a dotted line.

Figures 15(c) and 15(d) show the same quantities, but using

a sector width of 45�, with corresponding sector boundary

adjustments in order to keep the sector centered around the

VM peak. While not shown here, the false detection and

localization rates increase by roughly a factor of 2 if the

peak of the VM arrives from endfire, lA ¼ lB ¼ 0�.
Both cases show that the false localization rate is domi-

nated by the false detection rate, Eq. (A3). Once two azi-

muthal regions have been linked by the algorithm, it is

relatively likely to be localized on two sensors. As the angu-

lar distribution of the noise gets more concentrated around a

particular azimuth, the false detection rate increases, and

either the bandwidth threshold Dthresh must increase or the

sector width Du must decrease in order to reduce the rate.

The j value of 0.8, which is representative of the coral reef

data, estimates three false localizations per minute (4320 per

day) with a 120 Hz threshold when the sector width is 90�; a

similar rate is maintained when the sector width is halved to

45� and the detection threshold decreased to 50 Hz. Given

that roughly 100 000 detections a day are logged in Hawaii

(Table II), this analysis suggests that the parameters in

Table I should limit false localizations to 5% or less of the

dataset.

This narrower sector width should also permit adequate

performance in more directional noise fields. For example,

Fig. 15(d) shows that when j¼ 2.4, the original threshold of

120 Hz is sufficient to restrict false localizations to about

1 per minute.
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