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Abstract

Our goal is to develop a cognitive model of how hu-
mans acquire skills on complex, sensorimotor tasks. To
achieve this goal, we collected data from subjects learn-
ing the NRL Navigation task, then used the data to
construct a model that reflects the basic, cognitive ele-
ments required to learn and thereby succeed at this task
(Gordon & Subramanian, 1997). This paper describes a
new experiment with human subjects on the task. Data
from this experiment not only confirms the key cognitive
element of our model, but also helps us better under-
stand individual differences in learning this task. Four
evaluation metrics indicate that we are able to model
important trends in the evolution of action choice.

Introduction

Qur goal is to model how humans acquire skills on com-
plex, cognitive tasks. We are pursuing this goal by de-
signing computational architectures for the NRL Navi-
gation task, which requires competent sensorimotor co-
ordination. To achieve this goal, we first constructed a
model reflecting the basic, cognitive elements required
to learn and thereby succeed at the task. The model
was engineered from human subjects’ data. This model
is reported in Gordon and Subramanian (1997), and is
briefly summarized here. The metric for evaluating the
degree of fit between the subjects and the model is a
learning curve, which captures improvement in success
rate over time. With respect to this metric, the model
is a good match for learning behavior in our subjects.
Two questions from our previous research motivated a
new experiment with human subjects on the task. First,
a key cognitive element is a focus of attention heuristic,
which is used to switch between two subtasks of the Nav-
igation task. Can we confirm this heuristic objectively?
Second, although nearly all subjects use the basic cog-
nitive elements, a deeper analysis of the data suggests
subjects acquire additional cognitive elements that vary
between individuals. Can we better understand these
individual differences in what is learned? Here, we de-
scribe the new experiment, which uses an eyetracker to
monitor subjects’ visual focus of attention. The results
of this experiment not only confirm the focus heuristic,

but they also provide sufficient data for understanding
and modeling individual differences. For our subjects,
acquisition of a new, cognitive element is accompanied
by a shift in perception and action strategy. We do not
model the cognitive elements per se. However, using
a popular machine learning tool, we model significant
shifts in action strategy that are correlated with changes
in eyetracker pattern. The verbal utterances that occur
during these shifts indicate that they are associated with
deep, conceptual shifts which radically alter the subject’s
view of the task. At least one of the conceptual shifts ap-
pears to be motivated by an individual’s dislike of a cer-
tain type of failure. Therefore, to better understand this
and other other subjects’ shifts, the success rate evalua-
tion metric is supplemented with two additional metrics
which reveal the nature of subjects’ failures before and
after learning. We also add a fourth evaluation metric
consisting of perception and action probability distribu-
tions. This is a much stricter performance metric than
learning curves, but because we are now modeling in-
dividuals’ action strategies, it is plausible that we can
obtain a reasonable fit, even using this stricter criterion.

The main novelty of this work is the modeling of shifts
in action strategy that coincide with conceptual and
perceptual shifts, using a suite of revealing evaluation
metrics. The evaluation results suggest that important
learning trends are captured.

This paper begins with a description of the task and a
brief review of the cognitive model in Gordon and Sub-
ramanian (1997). The new, human subjects experiment
is then described, followed by our current modeling of
individuals. The paper concludes with related work and
directions for future research.

The NRL Navigation Task

The NRL navigation and mine avoidance domain, devel-
oped by Alan Schultz at the Naval Research Laboratory
(NRL) and hereafter abbreviated the “Navigation task,”
is a 2-D computer simulation that can be run either by
humans through a graphical interface, or by an auto-
mated agent (Gordon, et al., 1994). The task involves
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a single agent who controls an autonomous, underwater
vehicle (AUV) that has to avoid mines and rendezvous
with a stationary target (goal) before exhausting its fuel.
Time is divided into episodes. An episode begins with
the agent on one side of the mine field, and random tar-
get and mine locations; it ends with one of three possi-
ble outcomes: the agent reaches the goal (success), hits
a mine and explodes (failure), or the simulation times
out because fuel is exhausted (failure). The outcome is
received at the end of each episode.

When human subjects run this task, the sensory input
1s through visual gauges, and the motor output is con-
trolled by a joystick. A sonar gauge for detecting mines
consists of seven squares in a row that provide a 90 de-
gree forward field of view for a short distance. Mines
appear as circles in the squares; the mapping between
mines and circles is often not one-to-one. Circle size in
a square is proportional to mine proximity in that direc-
tion. A range gauge provides the target distance, a bear-
ing gauge in clock notation indicates the target direction
(12 o’clock means target ahead, 6 o’clock behind), and
a time gauge indicates the remaining fuel. The AUV’s
turn and speed are controlled by joystick motions.

A Cognitive Model

Our goal is to build the simplest model that accounts
for human subject data in learning performance. Ini-
tial experiments were run in 1994 with five human sub-
Jects, using a task configuration of no sensor noise and
25 mines. A cognitive model was constructed from the
verbal protocol data alone, and is reported in (Gordon
& Subramanian, 1996; 1997).

The verbal protocol data from the 1994 experiments
reveals that the most salient aspect of learning and rea-
soning on this task is a decomposition of the task into
two subtasks: avoid mines and navigate to the target.
The subtask on which the subject is focused determines
his/her action choice.

Our cognitive model Mj,cus, Which inputs numeric
sensor values and outputs numeric actions, reflects the
basic, cognitive elements in its architectural structure.
The key element 1s the model’s focus of attention heuris-
tic for selecting actions, which is the following. When the
sonar values are below an empirically determined thresh-
old (indicating mines nearby), use sonar predictions to
select the best action to take; otherwise use bearing pre-
dictions to select the best action. The learning curves
generated by My,.,, match those gathered from our hu-
man subjects (Gordon & Subramanian, 1997). It is quite
interesting that although verbal protocols can in gen-
eral be quite unreliable, in this case they provided useful
guidance for model engineering.
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Experiment
Experimental and Task Configuration

Five subjects ran the task with a task configuration of
60 mines and no sensor noise." An Applied Systems
Laboratories (ASL) Model 4000 eyetracker was placed
on the head of each subject. The gauge sizes and the
visual distances between gauges were sufficiently large
to enable the eyetracker to distinguish subjects’ focus in
almost all cases.?

The joystick, custom-made by Thrustmaster, Incorpo-
rated, was used to input the turn and speed of the AUV.
Joystick conversion routines, written by James Ballas at
NRL, convert the joystick position to one of 17 discrete
turn values and one of 9 discrete speed values, which
are forwarded to the simulation. Turn ranges from -32
(sharp right) to 32 (sharp left), and speed from 0 to 40.

Data Collection Procedure

Subjects ran consecutive episodes during the hour. The
number of episodes per hour varied from around 60 to
160. Each episode varied from a few to 200 time steps
(action decisions).

Data was collected on three different media: (1) execu-
tion traces of sequential snapshots of every set of gauge
readings and actions taken, along with success/failure
feedback at the end of each episode, (2) fixation files
of every visual fixation, and (3) videotapes recording
the pictorial gauges seen by the subjects on the com-
puter screen, along with a white square denoting the
eyetracker’s recording of the subject’s visual focus of at-
tention, and all verbal utterances of the subject.

All subjects ran for five one-hour daily sessions. At
the beginning of the first session, they were told they
had to navigate through a minefield to get to a target
location and were instructed on how to operate the joy-
stick. Subjects only saw the gauges view of the task.
Between episodes, the experimenter occasionally asked
them to verbalize what they were thinking and learning.

Data Analysis and Results

One of the most striking results from the eyetracker
data is confirmation of the focus heuristic. Novice sub-
jects distribute their focus of attention rather randomly
among the gauges. The three subjects who developed
expertise at the task eventually converged upon an eye-
tracker pattern restricted to only the sonar and bearing
gauges. When the sonar squares are empty, focus is on
the bearing; otherwise, focus is on the sonar. This is

'Five undergraduates at San Diego State University par-
ticipated in this experiment and received $10 per hour as
compensation.

?To control the brightness in the room, a photographic
light meter was used, and the readings were consistently be-
tween 9.4 and 9.8 exposure values. Sometimes the eyetracker
had to be recalibrated once or twice mid-session, incurring a
loss of about 5-10 minutes for each recalibration.



Figure 1: S5’s eyetracker pre-shift.
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Figure 3: S5’s speed differences.
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Figure 5: S5’s turn differences.
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Figure 7: S5’s bearing differences.
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Figure 9: S5’s performance differences.
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Figure 2: S5’s eyetracker post-shift.
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Figure 4: S5 model’s speed differences.
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Figure 6: S5 model’s turn differences.
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Figure 8: S5 model’s bearing differences.
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Figure 10: S5 model’s performance differences.



precisely the focus of attention heuristic for switching
between subtasks embedded in Mygcu;-

A more detailed analysis reveals striking individual
differences. The next section summarizes our analysis
and modeling of individuals.

Modeling Individuals’ Conceptual Shifts

Recall that we have four evaluation metrics: success rate,
two failure rate metrics, and the probability distributions
over actions and perceptions. In particular, the two fail-
ure rate metrics are the explosion rate and the timeout
(fuel exhaustion) rate.

With this suite of metrics, we turn to the modeling.
Mjocus is not able to capture individuals well enough to
satisfy our more exacting evaluation metrics. For these
metrics, function fitters (e.g., decision trees and neural
networks) seem most appropriate. To select one func-
tion fitting method, we ran a comparison of the fit to
the execution trace (sensorimotor data) of one of our
subjects. C4.5 (Quinlan, 1986) performs well and pro-
vides the most understandable strategies of all the sys-
tems tested; therefore it is selected for further model-
ing of individuals. From the subject’s execution traces,
C4.5 learns a decision tree model of the subject’s ac-
tion strategy, which can be summarized by two func-
tions: sensors — turn and sensors — speed. It does
not model internal, cognitive elements such as the focus
of attention heuristic; future work will address adding
the cognitive elements. But first we need to understand
what conceptual shifts may motivate the development of
these elements, and what are their associated sensorimo-
tor shifts.

We begin by examining the trends in the data to
be modeled. When using the timeout, explosion, and
success rate measures, we notice that individual sub-
Jjects go through periods of relatively stable performance,
punctuated by substantial improvements in performance
along at least one of these three dimensions. Further ex-
amination of the data reveals that the performance leaps
are associated with radical shifts in conceptualization of
the task coupled with shifts in perception then action
strategies. The remainder of this section focuses on a
study and initial modeling of two of these conceptual
shifts, one for Subject 4 and another for Subject 5 (two
of the subjects who became experts). Both of these sub-
Jects show suggestive evidence for their shifts well before
they verbalize them conclusively.

Shifts in both subjects occur gradually and unevenly,
but once cemented they correspond to a leap in per-
formance. Let us examine Subject 5’s shift first. Dur-
ing session 2, around episode 45, Subject 5 first ver-
balizes the shift as a hypothesis by stating “only the
middle sonar can kill me.” By this, the subject means
that she can safely ignore all sonar squares other than
the middle one, i.e., only a circle in the middle square
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(which senses mines straight ahead) determines whether
the AUV will hit a mine. At this point, the eyetracker
pattern shifts from attention on all gauges to attention
on only the bearing and sonar gauges. When looking at
the sonar, attention is more closely clustered near the
middle square, as seen in 50-episode fixation and tran-
sition summaries in Figures 1 and 2.® In these figures,
the row of adjacent squares near the middle of the figure
is the sonar gauge. The bearing gauge is in the square
Jjust above the middle sonar. Other gauges and regions
of interest are denoted with rectangles.

By episode 67, the subject states that her hypothe-
sis is confirmed, and a change in action strategy occurs.
In particular, Subject 5’s pre-shift strategy is forward
motion and more random turn decisions. The post-shift
strategy consists of slowing down when the circles get
larger, “sweeping” the AUV left and right in an attempt
to see the direction with least obstruction, then proceed-
ing in that direction. She keeps the bearing straighter
toward the target (12 o'clock) post-shift. Figures 3 and
5 show how Subject 5’s action probability distributions
changed. All figures are obtained by subtracting the
post-shift minus the pre-shift distribution. Positive num-
bers imply an increase in frequency from pre- to post-
shift. Figure 7 shows the change in bearing distribution
resulting from her change in action strategy, and Fig-
ure 9 shows her accompanying substantial performance
improvement.? It is very interesting to note that the per-
formance improvement is exclusively along the dimension
of reduced explosions. This is consistent with Subject
5’s stated philosophy that “Timeouts are less bad than
explosions.”

C4.5 learns a separate pair of functions to model Sub-
ject 5 before and after the shift. The results are in Fig-
ures 4, 6, 8, and 10. Note that although the magnitudes
produced by the model only coarsely approximate those
produced by the subject, most trends are captured. For
example, both model and subject increase the number
of full stops, go straight slightly less often, increase the
number of timeouts, reduce the number of explosions,
and keep the success rate nearly constant after the con-
ceptual shift. Only the bearing trend is not correctly
modeled. When running the simulation with the model’s
action strategy, one can see that post-shift the model
mimics the subject’s strategy: slow down when seeing a
mine, sweep, then move toward a “hole.”

Next, consider Subject 4’s conceptual shift. During
session 3, Subject 4 shows the seeds of the shift as early
as episode 85, with a seemingly purposeful scan across
the sonar. At episode 122, Subject 4 shows signs that

3Since each sonar square is only 0.6 inch, it is hard to stay
focused in exactly the middle square. Also, we hypothesize
the eyetracker calibration was off slightly, causing the focus
to be slightly left shifted.

*Based on empirical data, episodes 48-66 are selected for
pre-shift, and episodes 67-82 for post-shift.
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Figure 11: S4’s eyetracker pre-shift.
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Figure 13: S4’s speed differences.
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Figure 15: S4's turn differences.
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Post-shift 40 _ success 40
Minus Pre-shift 20 — |:20
lod
Probability 0 et [
Distributions -20 —| k -20
A% -40 : -40
timeout

Figure 19: S4's performance differences.
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Figure 12: S4’s eyetracker post-shift.
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Figure 14: S4 model’s speed differences.
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Figure 16: S4 model’s turn differences.
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Figure 18: S4 model’s bearing differences.

explode
Post-shift 40 - 40
Minus Pre-shift 20:| 20
Probability 0 —{oe 0
Distributions -20 :l - -20
A% -40 L -40
timeout

Figure 20: S4 model’s performance differences.



a shift has taken place by a change in eyetracker pat-
tern. Before the shift, he checks other gauges periodi-
cally. Post-shift, his attention seems tightly focused be-
tween sonar and bearing only (see Figures 11 and 12).
At this time, the subject tentatively admits to a con-
ceptual shift. Subject 4 states that he can perform the
task more easily by visualizing the mines as “stones.”
By this, he means that he clusters multiple circles in
consecutive sonar squares together into a single “stone,”
with smaller circles on the ends represent the receding
sides of the stone. This perceptual clustering correlates
with a change in action strategy. After the conceptual
shift, Subject 4 goes faster, goes straight more often, and
keeps the bearing to target straighter. The result is an
improvement in the success rate, accompanied by a sub-
stantial reduction in timeouts. Figures 13, 15, 17, and 19
show his post- minus pre-shift performance differences.®
Subject 4 does not verbalize the conceptual shift conclu-
sively until episode 136.

C4.5’s model of Subject 4 is shown in Figures 14, 16,
18, and 20. Again, the trends, but not the magnitudes,
are closely modeled. Like Subject 4, post-shift the model
tends to go faster and straighter, and increases the fre-
quency that the bearing is at 12 o’clock. Success rate is
increased, timeouts decreased, and explosions increased.
Only with timeouts is the magnitude close.

Although most trends are nicely captured, the action
distributions generated by C4.5 are statistically (using a
chi-squared test) significantly different at the 99% level
from those of the subject. It appears that modeling of
internal state is crucial to meet this most stringent fit
criterion. Therefore, we are currently exploring stochas-
tic finite state automata (SFSAs, also known as hidden
Markov models), which so far seem to provide a much
better fit to action probability distributions. Since SF-
SAs model internal states, they facilitate integrating the
internal, cognitive elements of My,cys. Additionally, we
can include the cognitive elements learned during the
shifts just described. The cognitive element acquired by
Subject 5 is a refinement of the focus of attention heuris-
tic, with attention more toward the middle sonar square.
Subject 4’s cognitive element will be more challenging to
characterize and model. We surmise it may be a mental
model of mines.

Discussion and Related Work

Sun and Peterson (1997) use their CLARION architec-
ture to model learning on the NRL Navigation task.
Comparisons between our model Myocys and theirs on
this task are in progress. Gray and Kirschenbaum (1997)
also study strategy selection on a complex task. The re-
search of John and Lallemont (1997) is closely related
to ours because they also (1) model learning on a com-

*Based on empirical data, episodes 106-122 are selected
for pre-shift, and episodes 123-142 for post-shift.
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plex task, (2) study individual differences, and (3) study
shifts in strategy choice. Nevertheless, the novelty of
our work is that we study the action strategy shifts that
coincide with conceptual and perceptual shifts, and we
identify a suite of performance measures for which indi-
viduals reach differing levels of expertise in unique ways.
Finally, literature on insights is related - these are what
appear to prompt the conceptual shifts. Our findings
confirm Metcalfe’s (1986) experimental results, for ex-
ample, which show that on insight types of problems
her subjects demonstrate lack of confidence at problem
solving until the moment of insight, at which point con-
fidence jumps to a high level. Both Subjects 4 and 5
expressed frustration and low confidence prior to their
conceptual shifts.

Future work will focus on developing and fusing the
cognitive elements of Mj.cys With the function fitting
approach, using SFSAs.
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