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Adaptive Filtering Revisited

ROBERT F. NAU* and ROBERT M. OLIVERf}

* Operations Research Center and {Department of Industrial Engineering and
Operations Research, University of California, Berkeley

This paper shows that the adaptive filtering and forecasting techniques proposed by Makridakis
and Wheelwright can be viewed as approximations to a more precise filtering method in which
the Kalman filter is applied to a dynamic autoregressive model which is a special case of the
models of Harrison and Stevens. The correct “learning” or “training factors” are shown to be
data-dependent matrices rather than scalar constants.

INTRODUCTION

IN RECENT years there has been a growing interest in adaptive methods for the analysis
and forecasting of time series, characterized by the use of recursive estimation techniques.
These techniques have often been inspired by or directly adopted from the theory of
optimal control. An advantage of adaptive methods over more traditional methods,
such as those of Box—Jenkins!, includes the capability of dealing with time series which
are nonstationary in fundamental ways that cannot be overcome by simple transforma-
tions of the data, for example when the underlying parameters of the process, or its
very structure, may be changing randomly with time. One may also be able to deal
with the “start-up™ stage in forecasting,

A number of formal Bayesian models, incorporating the structure of the Kalman
filter are described in an important paper by Harrison and Stephens.? Separately, Makri-
dakis and Wheelwright®>~ have introduced an heuristic approach to adaptive forecasting
which has received much attention and some criticism. The “adaptive filtering” methods
of Makridakis and Wheelwright {MW) consist of algorithms for revising the coefficients
of linear regression and ARMA models which add to the old parameters a correction
term proportional to the product of the most recent forecast residual and the values
of prior observations. Their models have essentially only two a priori parameters: the
number of autoregressive or moving average terms to be included and an arbitrary
scalar “learning constant” or “training factor.” The authors claim a wide applicability
for these adaptive filtering models and also that, by judicious choice of the above par-
ameters and repeated use of the technique on a given record of historical data, one
can often produce superior results to Box-Jenkins methods with considerably less effort.
Although their suggested procedures are intuitively appealing and appear to yield inter-
esting results in diverse applications, they have been questioned on both theoretical
and empirical grounds. It has not been shown exactly which assumptions and models
formally yield their revision rules, nor was it obvious that the parameter revisions could
be derived from an equation of motion underlying the random process itself.

This paper reviews the important features of the MW model and introduces a rigorous
adaptive forecasting model based on the Kalman filter approach suggested by Harrison
and Stephens. The important similarities and differences in the two approaches are
discussed.

THE MW ADAPTIVE FILTERING MODEL

Let the forecasts of x, made at time ¢ — 1 and of x,,, made at time ¢ be

5\5: = PyXey+ o0 + qb:pxt—p (1a)
Xer1 = PuX+ - -- +¢:‘pxt—p+1

= Prr1a%X+ o APt pXepite (1b)
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(MW* incorrectly include the residual in the forecasting equation.) The suggested MW
procedure for revising the parameters ¢;, 1 <j < p, is either®

¢y = by + 2kex,; (2a)
or
i = ¢y + 2xeF X © (2b)

where k and x are appropriate “learning factors”, and '
g =x—% (2¢)

is the error or one step ahead forecast residual and where ef, xk; are suitabljr
standardized values of e, x,}.
MW* have specifically suggested the standardization
Xe—j . ,
t—j )1/2 1<j<p (32)

P
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i=1
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€

7 172 .
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Jj=1

This standardization has the important effect of making the data and residuals (hence
also the learning factor) dimensionless quantities, and therefore independent of the units
of observation, which eases comparisons between different time series. Besides its simpli-
city the adaptive filtering model in (2), (3) has the advantage that (i) the amount of
change in a given parameter is proportional to both the forecast error and to the
relative amount that parameter contributes to the forecast, and (ii) like a good steepest-
descent algorithm for minimizing the squared residual, revises the parameter vector in

the direction of the gradient
( de? . de? 63,2)
01" 0y Oy,

oe? de,

= 2e
oy ; Lo,

gF =

(3b)

where

= —2eX%, )

The term on the right is, except for the “learning factor” k or x, identical to the correc-
tion term in {2a), (2b). The model also has a superficial resemblance to the parameter
updating equations of the Kalman filter, in which the magnitude of the revision in
a parameter estimate is equal to the most recent forecast error multiplied by a gain
factor which depends on values of recent observations; and the parameter revision rule
resembles the forecast updating equations for exponential smoothing (EWMA models).
In particular, the AR(1) model in adaptive filtering leads to a revised parameter which
is a linear interpolation between the old parameter value and the ratio, x,/x,_, which
may be regarded as a noisy measurement of the scalar autoregressive parameter. Finally,
in contrast to the exponential smoothing models where the correction or adjustment
term in forecasts is proportional to e, in MW the adjustment of the parameters is
proportional to the product ex,_; and therefore to terms of the form x,x,_; since e,
the forecast residual equals x, minus the forecast. Thus, to the extent that parameter
estimates depend linearly on estimates of autocorrelations (the Yule-Walker equations)
it is probably reasonable to include terms of the form ex,_; for calculating a revised
parameter estimate. However, the precise form that such revisions should take is not
theoretically justified in any of MW’s papers.

826

L4



R. F. Nau and R. M. Oliver—Adaptive Filtering Revisited
The MW model has important weaknesses. First, it is vague as regards a possible
underlying mathematical or physical model and therefore fails to distinguish between
the separate sources of uncertainty that may contribute to forecast error, e.g. uncertainty
in the prior estimates of parameters, possible changes in the actual values of the par-
ameters or noise in the observations. Instead, it is left to the user to incorporate his
experience and subjective feelings about various aspects of the process into a single
scalar “learning constant”. The important questions of the variance and possible bias
of parameter estimates and forecasts are left unresolved.

‘It appears that the use of a constant learning factor may lead to spurious revisions
and unstable forecasts, especially in the standardized model. In a pure AR(p) process,
for example, if p consecutive observations are close to zero, then the next observation
can be expected to represent almost pure noise, thus giving little information regarding
the autoregressive parameters. In the MW adaptive filtering model, however, if p small
observations are followed by a “normal” value, the standardized residual ef can become
arbitrarily large whereas the standardized observations will always remain of the order
of 1/\/ p. Thus for any fixed value of the training constant, , large changes in parameter
estimates can conceivably be generated by situations in which almost no actual learning
occurs. Conversely, a run of exceptionally large values might represent a temporary
improvement in the signal-to-noise ratio and hence an occasion for accelerated learning.
In such cases the effect of the standardization is to decrease the learning.

THE DYNAMIC AUTOREGRESSIVE MODEL AND
KALMAN FILTER

Using a vector notation to formulate a dynamic autoregressive model with ¢, denoting
a p element vector of parameters and H,_; the vector of p prior observations
xt—lﬁxt'—’.l.s (] x:—p:

¢r1 xr—l‘
d)rz x:—z

o= . |, H-i=| | | (4a,b)
qbtp xr—p

The dynamic model is defined by the two concurrent random equations of motion:
x = H_1¢ + & a;, ~ N(0,a7) (5a)

¢ = -1 + by b~ N@©,Q). . (5b)

(5a) is the AR(p) equation of motion, (5b) is the postulated motion of the parameters.
Both a, and b, are independently identically distributed and g, is a stationary (scalar)
Gaussian noise sequence and b, is a stationary (vector) Gaussian noise sequence with
covariance matrix Q. Also g, is assumed independent of all ¢,s and all b’s and b,
of all prior x,’s.

Equation (5b) generates a value of ¢, starting from ¢, ., using the random walk
equation. These values only weight p past observations which, when added to a new
noise term, yield a new observation x, The scalar x, is measured but the vector ¢,
is not. The problem is to use x,_; to filter and make good estimates of what values
of ¢,_, occurred, to estimate future values of ¢, from (5b) and then use (5a) to forecast
future x,’s, repeating, as needed, the cycle of filtering and forecasting.

The inner product of prior observations is the scalar quantity

T — 2 2
H_He_y=x_1+...+ X,
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and the symmetric matrix outer product of prior observations is

2 e
Xr-1 Xp—1%—2 Xe—1%e—p
2 PN
Xe—2X4--1 X1—2 Xi-2%X—p
T o . . .
H, H_, =
. 2
Xe—pXr—1 Xi-p

Define the conditional expectations of ¢, prior and posterior, respectively, to the
observation x, as

& = E[¢| #5211 = E[Py] Xo— 1, Xi=2,--.] (6a)
¢ = E[$] #] = ELd,] %y Xy q, - ]- (6b)

In terms of {6a) the conditional one-step-ahead forecast of x, is given by:

X, = E[x,|#21=HL [¢,| #2,] = H 1, O

where 24 is the entire history of real observations of the x-process up to and
including time ¢ Note that the time at which the forecast is made is t7% X, is a
forecast 'made at time ¢ — 1 for period t. The covariance matrices for the parameter
distributions are defined by

P, = Cov ¢, ¢ | #8211 = EL(: — $J($: — @71 2] (8a)
P, = Cov [y, ¢7 | #{°1 = EL[(p: — b)(¢: — ¢)7 | #1]. (8b)

The model in (5a), (5b) yields an explicit formula for P, which, surprisingly, is indepen-
dent of the most recent observation, x,. Thus if follows that the one-step-ahead variance
of x, at time origin t — 1 is obtained from (5a) and (8a) as

o, = Var [x,| # %]
=H{_ | Cov[¢, ¢/ |#P'JH,_; + o, 9)
=H{_,PH, + ol

The quadratic form in (9) is a scalar which measures the variance contribution in the
uncertainty of the parameters. Covariance terms are missing because noise in the AR
equation is assumed independent of noise in the random walk of the parameters: If
%, in (5a) is the measurement equation for a Kalman filter with (5b) as the underlying
equation of motion, then the actual observation, x, is used to update the prior expec-
tations and covariances ¢,, P, to obtain the posteriors ¢,, P,. The latter are then used
to calculate the prior forecasts for the next time period. i.e. ¢4, Pyrq and X, .
From (5b) the expectations and covariances of next period’s parameters are

$ie1 = E[¢res | 48] = E[$] #] = &, (10a)
P = Cov[disy, ‘153;1 I ff‘:x)]

= Cov [, d7 | #F] + Cov[b,y1, bl | 4] (10b)

=P +0.

If the a priori distribution of ¢, is Gaussian, e.g.
¢,|9f5x_)1 ~ N(‘xzzapt)a
then it follows from (5a) and Bayes’ Theorem that the a posteriori distribution is

| # ~ N(b,, P)
828
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with
¢t+1 - ¢": Qbr PHr 1€ (lla)
where
n 1 ) -1
= (P:ﬁl + ?Hr—LHaT—l) (11b)
and
G =X — X=X - HT—-IEI- (Llc)

Equation (11a) shows that the revised parameter contains a correction term proportional
to the product of the forecast residual and recent observations.

-Notice that if H,_; = 0 then the right-hand product terms in (11a) are zero and no
corrections are made to &, to obtain §,. In general if H, # 0 then HT has a pseudo-inverse

H,

HI) ' = :
H)™ = gty

COMPARISON QF MODELS
To help compare the Kalman filter and the MW model, deﬁne the matrix

L= P H._ Hl,; v (12a)

aml'_‘

it follows from (11b) that an equivalent expression is
L=PBPl —Ply=1- PPt . (12b)

Since the information matrix of a parameter estimate is approximately equal to the
inverse of its covariance matrix, L, represents the relative information gain due to the
observation x,. Note that it is obtained by multiplying P, — P! by the inverse of
P!, The factor premultiplying the forecast residual in (11a) can now be written as

LH -y

— (12c)
HL L H,-,

- 1 . -
PH,_, = F P:H:—1(H3-—1H3‘—11) =
a

1 . . . . \ .
(where the term o P,H,_, is often called the Kalman gain) which, when substituted in

a

the parameter updating equation of (11a), yields

_ ” -~ L.H,.
¢z+1=¢:=¢t+ﬁ—;‘rﬁ£——le!

(13)
Once again, e, is the forecast residual at ¢t and H, | is the vector of p past observations
ending with the observation at ¢ — 1. Only e, directly through x,, depends on the most
recent observation x,. The vector H,_,, and the normalization HT_H,_, only depends
on historical observations up to and including x,_ ;.

The Kidlman filter in (13) takes advantage of the f{act that relevant information about
the entire historical data, given the assumed state and measurement equations of (3a),
(5b), is contained in the covariance matrix P,. Thus, truly adaptive behaviour is achieved
and the tedious and redundant application of linear regression to reestimate parameters

‘with the occurrence of each new observation is avoided. Perhaps the most useful infor-

mation is not only the observation-dependent parameter estimates and forecasts, but
also the observation-dependent covariance matrix of parameter estimates and the fore-
cast variances obtained at each step.
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L, the relative information gain obtained with each new observation is in the AR(1)
case a scalar between O and 1, since the posterior information cannot be less than
the prior information and both must be positive (they are reciprocals of scalar variances).
Ini the more general AR(p) case, L, is a pxp matrlx of rank one satisfying the inequali-
ties,

0 = HTOH, < HTL,, H, < HTIH, = HTH,

In those extreme cases where H, is approximately equal to zero, P, is approximately
equal to P, and hence L,, the relative information gain, is also approximately equal to
zero. As a result, the instability problem of the standardized MW model is avoided and
the prior estimates of the parameters are just equal to the most recent posterior esti-
mate, i.¢. the correction term is small or negligible. At the other extreme, HT L, = HT,
represents maximal information gain (zero prior information) for the elements of qb,
corresponding to nonzero elements of H,_,. The limiting case P, = 0 with H,_, uni-
formly nonzero implies L, = I, a rank p matrix. This case is unattainable, since the
existence of the finite data history in H,_; is inconsistent with the assumption of a
complete lack of prior information.

The asymptotic properties of P, P and L, may be worthwhile discussing in order
to assess the validity of scalar approximations to these quantities. In the constant par-
ameter case (Q = 0}, information continually enters the system but never leaves it s0
that P, will decrease monotonically. L, will, on average, decrease with each observation
and both will eventually approach zero. If the parameter undergoes a random walk
(Q # 0) a sort of equilibrium is reached in which the average information entering
per unit time equals the average information leaving per unit time. If ¢ is sufficiently
small then the matrix P,/62 may well be approximated by a constant. However, L,
being given by (12a) will continue to depend significantly on the recent history of the
observations regardless of the constancy of P,/ It therefore appears that it might
be better to approximate P,/o? by a constant than to approximate L, by a constant.
If this is true it suggests that the unstandardized MW formula may be superior in
certain instances to the standardized version. .

To recast the MW equations in (1a), (Ib) using vector notation, define:

rdu o
ba| b

A e A (14)
qbtp' qb;p

.T-he'supersc':ript (MW) is a reminder that these vectors are merely prior and posterior
coefficients used by MW in their forecasting equation (they do not represent conditional
expectations of random parameters). In terms of these quantities and H, (2a) becomes:

GOV = MW 4 2kH, e, (15a)
Since HL H;_; = x>y + x{—3 + --+ +.x7_, the standardized equation (2b) is:

Hr—le:

_— (i5b
AL H,_, )

B = G 4 2
Both €quations show close resemblance to the updating equations of the Kalman filter,
" except that 2k in (15a) replaces (P,/o?) in (11a), and 2« in (15b) replaces L, in (13).
Since P,fo? rather than L, might be approximated by a scalar constant the unstar-
dardized MW formula would be superior to the standardized one. However il this

830



y. ¥

%4

R. F. Ngu and R. M. Oliuer—Adaptivé Filtering Revisited

approximation is made, much important information on the correlation of parameter
estimates and the transient response of the Kalman filter is lost. If the motivation
behind standardization of data and residuals is to reduce them to dimensionless quanti-
ties of the order of unity it might be preferable to divide by an estimate of a2 rather
than by the squared norm of the recent data. With such a normalization the learning
constant would have the useful interpretation as a scalar estimate of P,, the posterior
uncertainty in parameters.

SUMMARY AND CONCLUSIONS

It appears that the general form of the MW formulas which have been proposed in
the literature as “adaptive filtering” methods can be rigorously derived from an AR(p)
moedel in which the parameters undergo a random walk with independent increments,
The application of Kalman filtering to this model results in parameter estimates that
are updated by correction terms which, as a rough approximation, are proportional
to the product of the most recent forecast residual and prior observations of the time
series itself. The Kalman filter appears superior to the MW formulas because the learning
factors are observation-dependent rather than constant over all time. In contrast to
the adaptive filtering models proposed by MW, it is possible in the Kalman filter to
distinguish the various sources of uncertainty from the terms Q, ¢Z and P,. Any arbitrari-
ness which may be involved in assigning a priori values to quantities such as Q is
far outweighed by the benefits of taking proper account of parameter-estimate correla-
tions and weighting recently acquired data so as to produce forecasts with calculable
variances and confidence intervals.
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