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Ultrasonic testing plays a crucial role in the fields of Non-Destructive Evaluation (NDE) 

and Structural Health Monitoring (SHM) by enabling the accurate detection and characterization 

of defects, material properties, and structural integrity without causing damage and, in many 

instances, without requiring disassembly. This dissertation presents recent advances in the science 

of ultrasonic testing for NDE and SHM, specifically in applications of (1) ultrasonic imaging of 

bulk solids and waveguide structures, and (2) identifying the elastic constants in composite panels 

by wave propagation inversion. Under the ultrasonic imaging topic, active modalities in the 

Synthetic Aperture Focusing Technique (SAFT) with Delay-And-Sum (DAS) algorithms are 
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applied to image defects in bulk solids using a linear array mounted on a transducer wedge. Two 

prototype systems have been constructed to demonstrate quasi real-time 3D imaging of internal 

flaws in railroad rails using several enhancements in the SAFT methods for improved imaging 

quality and speed. Additionally, a passive SAFT scheme is proposed utilizing signal deconvolution 

with a Normalized Cross-Power Spectrum (NCPS) analysis in a dual-output system. This method 

enables efficient reconstruction of pure transfer functions (or Green’s functions) between receivers 

and demonstrates ultrafast imaging capabilities. Next, the Coherent White Noise Constraint (C-

WNC) algorithm is introduced for super-resolution ultrasonic imaging in bulk solids using a linear 

array. Unlike traditional MUltiple SIgnal Classification (MUSIC) beamformers, C-WNC avoids 

subspace factorization while offering high dynamic range and precise focus on extended targets 

through its broadband and adaptive beamforming capabilities. The C-WNC algorithm is also 

applied to defect imaging in stiffened composites in aerospace structures with embedded sparse 

transducer array, exploiting the multimodal and dispersive nature of ultrasonic guided waves 

through data-driven match field modeling. Under the property identification topic, the dissertation 

presents a non-contact ultrasonic scanning system for the in-situ elastic constant inversion in 

stiffened composite aerospace panels subjected to impacts. This kind of non-destructive inspection 

that tracks the elastic constants is shown to be quite effective to detect and quantify impact damage 

in these structural components. Using the Semi-Analytical Finite Element (SAFE) method as a 

forward model, the inversion process minimizes the mismatch between experimental and predicted 

dispersion curves of the propagating guided waves via simulated-annealing optimization. A 

method is developed for efficient extraction of the dispersion curves by using only two 

measurement points, i.e. without the need for multiple measurement locations that are instead 

needed in conventional 2D-FFT techniques.  
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Chapter 1 Introduction 
 

Structural Health Monitoring (SHM) is essential for ensuring the safety, reliability, and 

longevity of critical engineering assets in aerospace, ground transportation, and civil infrastructure. 

Without timely detection and appropriate intervention, material defects or structural damage can 

compromise the integrity of these systems, potentially leading to catastrophic failures. Hence, the 

identification and quantitative characterization of such damage, commonly referred to as 

quantitative non-destructive evaluation (NDE) [1], are of paramount importance yet pose 

significant challenges. Through quantitative NDE, when a flaw is detected and its size is 

determined to be beyond acceptable limits, several remediation options are available [2]. These 

include replacing or repairing the affected component, allowing the component to remain in 

service if the risk of failure is considered minimal, altering its operational parameters, or 

conducting more refined measurements of the flaw. Implementing these timely interventions can 

prevent further material degradation, reduce the likelihood of system failure, and ensure the 

reliability, structural integrity, and durability of the asset. Moreover, these measures offer 

substantial economic and societal benefits by enhancing system safety and performance.  

Among the various techniques developed for SHM and NDE, ultrasonic testing is 

particularly well-suited for detecting and sizing flaws embedded within materials or originating 

from inaccessible surfaces [3]. Several factors contribute to its suitability:  

1. Deep Penetration Capability: Ultrasonic bulk waves can propagate through thick, solid 

components, making ultrasonic testing effective for detecting flaws located deep beneath the 

inspection surface, in contrast to methods like Eddy current testing and potential-drop 
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techniques, which are limited to surface-adjacent flaws, or visual and penetrant testing, which 

can only identify surface defects [4].  

2. Wide Area Capacity: Ultrasonic guided waves can propagate over long distances, making 

them highly effective for inspecting large areas of waveguide structures, such as pipelines, 

rails, and aircraft fuselages [5]. This wide-area coverage enables the detection of defects over 

extended regions from a single sensor location, significantly reducing the number of sensors 

required and improving the efficiency of inspections in complex or hard-to-access structures.  

3. Sensitivity to Various Defect Types: Ultrasonic waves are sensitive to a range of flaw types 

such as porosity, cracks and inclusions, allowing not only the detection but also the 

characterization of defect location, size and shape [6]. 

4. Material Versatility: Ultrasonic testing is applicable to a wide range of materials, including 

metals, composites, concrete, and additive-manufactured 3D materials.  

5. Safety: Ultrasonic testing is inherently safe, unlike methods such as radiography, which 

involve radiation and require stringent protective measures.  

6. Availability and Portability: Commercial ultrasonic testing equipment is widely available 

and often portable, making it suitable for on-site inspections [7].  

The interaction between ultrasonic waves and structural defects can significantly affect 

ultrasonic wave propagation through mechanisms such as reflection, scattering, and mode 

conversion. A typical damage identification scheme via ultrasonic waves involves the following:  

1. Activation and reception of ultrasonic waves: The source can be either controlled (e.g. a 

transducer) or uncontrolled (e.g. ambient vibrations). The arrangement of the transducers (an 

array) determines the coverage of inspected medium (single beam, limited or full angular 
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view). Various modalities can be employed depending on the application, e.g. pulse-echo, 

pitch-catch, passive sensing, etc.  

2. Feature extraction from the received signals: e.g. time-of-flight (TOF), amplitude, 

frequency content, etc. Typically, a model of wave propagation should be established at this 

stage, involving the understanding of the propagating wave modes and their interaction with 

the structure defects of interest.  

3. Interpretation of the extracted features and correlation to damage severity. When 

multiple transducers are employed, a fusion of the features should be performed. The 

coherence among features captured by different transducers is exploited to enhance the 

accuracy and reliability of the final decision making.  

4. Analysis of Time Histories of Acquired or Processed Data: In SHM applications, it is 

essential to track the evolution of identified defects to effectively monitor the progression of 

structural damage over time. 

An example of basic ultrasonic testing in solid NDE is explained below [2]. A-scan 

techniques are widely used in metal, welding, and composite inspection. A single transducer emits 

ultrasonic pulses of bulk wave modes (either longitudinal or transverse) into the material, and the 

reflected signals (echoes) are captured and displayed as a function of time. Each echo represents a 

reflection from a boundary, defect, or interface within the material. The size of a defect in solids 

is usually determined by tracking the amplitude of the defect reflection with different positionings 

of the transducer. As schematized in Fig. 1.1, when the transducer probe is located right on the top 

of a horizontal flaw (which is assumed to be perpendicular to the transmitted beam), all transmit 

beam is reflected from the flaw and the probe receives all transmitted beam energy, which is 

recorded in the maximum amplitude. When the transducer probe is moved to the edge of the flaw  



4 

 

Figure 1.1: The 6 dB drop technique in ultrasonic A-scan [2]. (a) The probe is located above a 

flaw where the entire transmitted beam interacts with the horizontal reflector. (b) The probe is 

positioned above the edge of a flaw where half of the transmitted beam interacts with the flaw: 

the beam scattering amplitude should be half (-6 dB) of the total transmitted beam.  

 

as shown in Fig. 1.1(b), half of the transmitted beam will be intersected by the flaw and received 

by the probe. Thus, a “6 dB drop” from the maximum amplitude of the defect reflection 

corresponds to the location of the probe where the broadside (principle axis) overlaps with the 

edge of the lateral flaw. It is important to note that the -6 dB technique assumes the flaw to be 

larger than the transmitted ultrasonic beam. Additionally, the method presumes that all regions of 

the flaw, including sharp edges and extended flat surfaces, exhibit the same scattering behavior.  

Despite the aforementioned simplifications, the greatest limitation of A-scan techniques is 

the inherent subjectivity in interpreting ultrasound signals. The accuracy of flaw detection and 

characterization relies heavily on the operator’s skill and judgment, introducing variability in 

remediation results. The inconsistencies in assessments of flaw size, location, or severity can 

reduce the reliability and repeatability of inspections, particularly in complex or ambiguous cases. 

As a result, the effectiveness of A-scan techniques is constrained by the need for subjective 

interpretation and experience, limiting its efficiency and utility in applications where consistent, 

high-precision evaluation is critical.  
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1.1 Ultrasonic Imaging in NDE and SHM 

In the fields of NDE and SHM, advancements have been made towards identifying 

structural defects using objective and quantitative methods. These approaches are aimed to 

facilitate more straightforward interpretation and even automation of remediation decisions [7]. 

Ultrasonic imaging, for instance, can be achieved by virtually back-propagating ultrasonic waves 

through post-processing or in-situ processing. Analogous to those employed in radar, sonar, and 

medical imaging systems, the ultrasonic imaging in NDE and SHM applications employs an array 

of transducers to probe the medium from various spatial locations, facilitating comprehensive 

scanning and detailed imaging of structural defects [8]. While passive sensing techniques such as 

imaging with coda waves are available [9], the predominant imaging systems utilize active 

methods, including pitch-catch or pulse-echo modes. These active modalities offer enhanced 

control and accuracy in probing the inspected medium, thus relieving the difficulties in the 

detection and characterization of structural defects.  

1.1.1 Measurements of an Active Array 

Various modalities are utilized in active imaging systems, and these modalities vary based 

on the configuration of the transducer array employed, such as linear, curved, volumetric, or sparse 

arrays. Despite the specific advantages of each array type and modality in different applications, a 

fundamental aspect of active array measurements is the impulse response function (IRF) between 

a transmitter element and a receiver element. This function, also referred to as the inter-element 

response, forms the transfer matrix which characterizes the transfer functions between the 

transmitter and receiver arrays within the active imaging system. A notable example of this is the 

synthetic aperture focusing technique (SAFT), a widely used imaging modality in NDE and 

medical imaging that directly measures the transfer matrix by isolating each inter-element response  
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Figure 1.2: Synthetic aperture focusing technique using a linear array [11].  

 

[10]. Such isolation preserves the diversity of ray paths in the captured wave field and consequently 

builds higher resolution images than traditional focused beam modalities. As shown in Fig. 1.2, in 

SAFT context an N-element linear transducer array acts both as transmitters and receivers. In each 

transmission event, only one transmitter element is emitted, and all receiver elements are working 

in parallel. By repeating this single element transmission over the physical aperture (in this case 

all transmitter elements), an N-by-N full matrix capture (FMC) of waveforms can be recorded 

characterizing the responses between each transmitter and receiver. Typically, the signals in FMC 

scheme can be approximated as the inter-element responses for simplicity. In chapters 4 and 5, it 

will be shown that to extract the pure transfer matrix using active system, a deconvolution process  



7 

     

Figure 1.3: Sparse array configuration for in-situ imaging of a waveguide structure (left) and the 

ray path that connects a pixel in a synthetic image with an actuator and a receiver (right) [12].  

 

needs to be carried out to eliminate the addition of phase and spectral power from the active 

transmission. The idea of synthetic aperture has been also applied to in-situ monitoring of plate-

like structures using a sparse array setup [12]. Fig. 1.3 shows the first synthetic aperture imaging 

experiment using virtual time reversal of flexural waves. At the signal processing stage, additional 

care should be taken to account for the dispersive and multi modal nature of guided waves.  

1.1.2 Time Delay Type Beamformers 

Regardless of the differences in array configurations and wave modes highlighted in 

previous examples, the standard SAFT scheme offers dynamic focusing capabilities in both 

transmission and reception by post-processing Full Matrix Capture (FMC) datasets using time-

delay beamformers, such as the delay-and-sum (DAS) algorithm [13]. This approach allows 

acoustic energy to be synthetically focused on any pixel within the region of interest (ROI), 

enabling virtual beam steering, in contrast to the physical beam steering utilized in traditional 

phased array modalities. As a result, SAFT significantly enhances resolution and dynamic range  
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Figure 1.4: Schematic of common active modalities in a linear array: (a) swept B-scan using 

plane waves, (b) swept B-scan using focused waves, (c) sector B-scan using steering plane 

waves, and (d) synthetic focus in SAFT using signal channel transmission and reception [13]. 

 

over a large inspection area as illustrated in Fig. 1.4(d), while also improving the framerate in 

imaging without the need to sweep the transmission over the physical aperture as seen in other 

active modalities in Fig. 1.4 [14]. Wilcox et al. have shown the versatility of the DAS type 

algorithms to obtain the location, size, and orientation of defects in NDE applications [15]-[17]. 

Furthermore, one of the key advantages of SAFT imaging is its ability to effectively image 

individual or combined wave modes, making it particularly well-suited for NDE of bulk solids 

[18]-[20] and waveguide structures [21].  

 



9 

1.2 Strategies to Improve Imaging Performance 

1.2.1 Extensions of DAS Framework 

With the boost of computational power, recent DAS algorithms have been extended to 

different frameworks. Camacho et al. introduced a method that applies phase coherence (PC) 

factors to weigh the coherent sum output of DAS beamformers, effectively suppressing sidelobes 

while enhancing synthetic resolution in SAFT images [22]-[24]. This approach has been widely 

applied in both bulk wave and Lamb wave imaging [25]-[29]. Another weighting technique for 

DAS, adapted from adaptive beamforming methods such as Capon or minimum variance (MV) 

beamformers [30], was initially developed for medical ultrasound imaging [11], [31]-[35] and has 

recently gained broader interest for imaging composite structures [21], [36]-[40]. Unlike passive 

adaptive beamformers implemented in the frequency domain, these MV beamformers in active 

modalities focus on determining adaptive apodization weights from the temporal covariance 

matrix of appropriately delayed signals at different locations in the ROI. In parallel with these 

advancements in weighting techniques, the delay-multiply-and-sum (DMAS) algorithm has been 

developed by coupling more transmitter-receiver pairs compared to the standard DAS algorithm, 

leading to improved resolution and contrast [41]-[46]. Researchers have also explored combining 

PC and MV weights with the DMAS algorithm to achieve optimal imaging performance [35], 

[47]-[48]. In the field of NDE, a key area of focus is the implementation of the SAFT technique in 

multi-layered media [49]. This approach necessitates the accurate identification of refracted ray 

paths through interposed layers. Common applications include the use of wedges to transmit 

angled beams for the optimal detection of internal flaws in bulk solids [7], [20], [48], or systems 

involving non-planar interfaces such as pipelines and composite panels [50]-[52], where the 

complexity of wave propagation must be accounted for to enhance imaging accuracy.  
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1.2.2 Active Modalities: Tradeoff Between Contrast and Framerate 

Despite recent advancements in algorithmic complexity, active sensing modalities remain 

the foundational research focus for achieving high-quality SAFT imaging. Two conflicting factors, 

signal-to-noise ratio (SNR) in active signal acquisition and the refresh rate of the imaging system, 

pose challenges in real-world applications, necessitating trade-offs between image resolution, 

contrast, and overall quality. For instance, in the FMC scheme, where each transducer channel is 

fired sequentially for maximum wavefield complexity, the data acquisition and subsequent 

beamforming are time-intensive processes, limiting the speed of imaging in practical scenarios 

such as cardiac imaging, in-situ SHM, or in-motion NDE. Sparse transmit aperture modalities, 

which reduce the number of transmissions and decrease redundancy in multistatic data, present a 

viable solution for achieving faster SAFT imaging [53]. However, a primary concern with this 

approach is the reduced transmission power from individual elements, which can lead to a 

diminished SNR in the received signals and compromise image quality in challenging 

environments. In NDE applications, this issue becomes particularly pronounced when imaging 

through highly attenuating materials or across an interposed medium, such as a transducer wedge.  

Efforts to improve the poor SNR in sparse SAFT began with medical intravascular 

imaging. O'Donnell and Thomas first proposed using simultaneous excitation of multiple elements 

in a circular array [54]. Ylitalo and Ermert applied this idea to linear arrays with monostatic data 

acquisition [55]. Karaman et al. suggested using time delays to defocus subapertures for wider 

sector coverage, but the acoustic pressure improvement was limited by beam divergence [56]. 

Lockwood et al. introduced the concept of Virtual Element (VE) arrays for multistatic modalities, 

where subapertures are either focused or defocused depending on the virtual element position [57]. 

Since then, numerous variations of VE modalities have found their applications. Focused VE 

subapertures in SAFT are advantageous for deeper imaging in highly attenuating tissues [58]-[59], 
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while defocused beams are useful for nearer regions of interest, such as in echocardiography [60]-

[64] or multi-layered medium NDE [7], [65]. 

The development of active phased array modalities has also been complemented by 

advances in Plane Wave (PW) imaging, particularly in medical imaging for "ultrafast" applications 

[66]. Unlike conventional B-mode line scans, PW imaging uses full-aperture transmissions of 

unfocused plane waves to fully illuminate the ROI [67]. In line with the synthetic aperture 

approach, multiple beam angles were introduced to be coherently compounded in space, enhancing 

image quality by improving angular diversity and resolution [68]-[70]. Recently, PW imaging has 

garnered attention in NDE, with investigations of its use for imaging cracks in steel blocks and 

complex geometry composite components [71]-[74].  

1.2.3 Passive Modalities to Extract Pure Green’s Functions 

In active sensing for ultrasonic imaging, the excitation signal is typically a Gaussian-

windowed tone burst or a square wave, often simplified as a Dirac delta function. However, this 

simplification becomes problematic when the transducer's transfer function is non-negligible, such 

as in the tuning effects observed during the actuation and reception of guided waves [75]. 

Extracting the pure Green’s function of active ray paths has been a longstanding challenge in 

acoustics. For broadband and dispersive ultrasound signals, proper deconvolution between the 

excitation and reception signals significantly enhances sharpness (signal compression) and thus 

improves imaging resolution in post-processing.  

In recent years, "passive" acoustic sensing has gained attention, inspired by Lobkis and 

Weaver's work [76]. They demonstrated that if a system is excited by a diffuse wave field — 

generated either by randomly distributed acoustic sources or a field with energy evenly partitioned 

among all normal modes — the time-averaged cross-correlation between signals at two receiver 
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points, I and J, converges to the system's Green’s function (IRF) between them. Consequently, the 

"passively" reconstructed signal between I and J corresponds to the "active" IRF that would be 

obtained if I acted as a "virtual" source and J as the receiver. 

This concept of passive Green’s function reconstruction has since been applied across 

various fields, including ultrasonic, acoustic, and dynamic characterization. Applications include 

underwater acoustics [77]-[79], seismology [80]-[86], seismic interferometry for civil 

infrastructure identification [87]-[92], and SHM/NDE defect detection [93]-[106]. From a data 

acquisition standpoint, passive modalities are especially appealing as they eliminate the need for 

controlled excitations, thereby reducing transmission channel costs. Passive sensing has also been 

leveraged for beamforming by utilizing multiple “virtual” transmitters created from an array of 

receivers. This passive beamforming capability has been demonstrated for damage detection in 

structures using randomly distributed ultrasonic sources, as well as for SAFT imaging of 

subsurface defects via a few controlled excitations [103]-[106].  

1.2.4 Analogy between Active and Passive Sensing in Match Field Beamformers 

Time-delay type beamformers function as matched filters, correlating a delayed reference 

signal (model) with an unknown signal (measurement) to detect the presence of the reference in 

the measurement signal [107]. Although the matched filter is proven to be the optimal linear filter 

for maximizing SNR in the presence of stochastic noise, beamformer performance can be further 

enhanced using nonlinear techniques. One such method is the temporal minimum variance 

algorithm introduced in section 1.2.1, which optimizes the weight distribution in DAS 

beamforming. Alternatively, beamforming in active systems can be approached through matched 

field beamformers in the frequency domain [2]. These beamformers, akin to matched filters, 

compute the cross-correlation between a model and a measurement, allowing for more complex 
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medium propagation modeling. Enhanced imaging performance can be achieved through the 

decomposition of the transfer matrix or optimization of the replica (or steering) vector.  

Within matched field beamformers for active ultrasonic imaging, transfer matrix 

factorization has garnered significant attention due to its ability to achieve super-resolution 

imaging beyond the Rayleigh diffraction limit. Specifically, the MUltiple SIgnal Classification 

(MUSIC) algorithm is extensively studied, relying on a correct separation between signal and noise 

spaces using singular value decomposition (SVD) of the transfer matrix or the eigen-

decomposition of the time reversal operator (TRO). Prada et al. demonstrated that the eigenvectors 

of the TRO correspond directly to the number of well-resolved point scatterers in the medium 

[108]-[109], enabling subwavelength physical focusing through time reversal [110]-[112]. When 

the Green's function of the medium is known, numerical backpropagation can be used to produce 

super-resolution images (virtual time reversal) without the need for electronic phasing of the 

transmit array [113]. Since then, SVD-based MUSIC beamformers have been widely applied to 

imaging in bulk solids [114]-[120], impact and crack detection in waveguide structures [121]-

[125], shallow water localization [126]-[127], and breast microcalcification detection [128]-[129].  

High-resolution imaging of multistatic data can also be achieved using adaptive 

beamforming techniques, which focus on replica vector optimization. These techniques have been 

extensively explored in passive sensing such as the field of underwater acoustics [130]. Prada and 

Thomas first interpreted the TRO obtained from active FMC as a covariance matrix of a passive 

array [131], showing that TRO constructed from active transmit elements is analogous to taking 

"snapshots" in time, which builds the covariance matrix rank. They further demonstrated that for 

imaging two closely spaced scatterers, the Minimum Variance (MV) beamformer, implemented in 

the match field context, provided similar azimuth resolution as the MUSIC algorithm.  
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One significant advantage of treating active sensing within a “passive” framework is the 

possibility to beamform multitone TRO data coherently across the relevant frequency spectrum, 

using methods developed within the matched field community. Michalopoulou and Porter 

proposed a technique that exploits coherence between frequencies by stacking narrowband data 

into a long “supervector” [132]. Orris et al. introduced a matched-phase algorithm, resolving 

relative phase differences in cross-frequency terms to handle unknown source spectra [133]. 

Debever and Kuperman integrated robust adaptive beamformers, such as the white noise constraint 

(WNC) algorithm [134], into broadband formulations to reduce MV's sensitivity to modeling 

errors [135]. Despite the rank deficiency of the multitone covariance matrix in experimental 

acquisitions, the optimization of replica vectors can be stabilized by imposing a white noise gain 

constraint. Furthermore, WNC positively impacts the SNR output of diagonally loaded MV 

beamformers by adjusting the bias from small, non-physical eigenvalues, which enhances the 

dynamic range of the beamformer [136]. Coherent beamforming is highly attractive in the field of 

SHM and NDE, particularly for imaging complex waveguide structures. This is due to the inherent 

multimodal and dispersive nature of wave propagation in such environments, which makes 

conventional time delay beamformers less effective. Coherent adaptive beamforming techniques 

offer the ability to improve imaging quality by taking advantage of these complexities [137], thus 

enhancing the detection and characterization of defects in waveguide systems.  

 

1.3 Beyond Imaging: Elastic Moduli Inversion in Composites 

In the SHM and NDE of aerospace composite structures, various methods for damage 

detection have been developed, such as the previously introduced DAS and MUSIC imaging 

algorithm. As opposed to merely detecting damage, there has been increasing interest in 
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identifying the elastic moduli of composite components in the field of composite mechanics, 

because the estimation of residual strength is more directly tied to informed decisions regarding 

maintenance and continued operation of in-service structures. 

Ultrasonic guided waves offer a distinct advantage for identifying elastic constants due to 

their insensitivity to the part's boundary conditions, allowing for the implementation of guided 

wave-based SHM/NDE strategies directly on in-service structures [138]-[140]. Guided waves, 

typically propagating in the frequency range of hundreds of kHz, have been widely employed for 

defect detection in composite materials [141]-[143]. However, predicting guided wave 

propagation in laminated composites is challenging due to the multimodal and dispersive nature 

of these waves. As a result, most guided wave testing has focused on damage detection, with 

relatively fewer studies addressing the identification of elastic properties.  

Elastic property identification using guided waves is an inverse problem that involves 

forward modeling the multimodal and dispersive wave propagation behavior in the composite 

waveguide, followed by an optimization process to match the forward model to experimental data. 

Balasubramaniam [144] was among the first to achieve this by using dispersion relations of the 

fundamental axial and flexural mode phase velocities, employing a genetic algorithm for 

optimization and the transfer matrix method for forward modeling. Vishnuvardhan et al. [145] 

used a single transmitter and multiple receivers to sample the spatial guided wave field in 

orthotropic plates, successfully inverting nine elastic constants using the narrowband Christoffel 

equation as the forward model. Glushkov et al. [146] optimized group velocity dispersion curves 

for the elastic identification of unidirectional and cross-ply laminates, utilizing general 

elastodynamic theory and Green's function integrals for layered media.  
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Additionally, other studies have implemented elastic property inversion using ultrasonic 

guided waves with non-contact methods [147], which is particularly attractive in the field of NDE 

due to its versatility and efficiency. More recent work in this area has employed either genetic 

algorithms [148] or convolutional neural networks [149] for dispersion inversion. The pulsed 

ultrasonic polar scan (P-UPS) method represents another successful ultrasonic-based technique for 

inverting the viscoelastic properties of composites, achieving this without prior knowledge of the 

material's symmetry orientation [150].  

 

1.4 Scope of the Dissertation 

This dissertation focuses on recent advances in ultrasonic non-destructive evaluation 

techniques for defect imaging and elastic constant identification.  

Chapter 2 discusses the application of sparse Synthetic Aperture Focusing Techniques 

(SAFT) to bulk wave ultrasonic imaging using a linear array mounted on a transducer wedge. Two 

subaperture emission modalities, i.e. virtual element and plane wave methods, are examined in the 

beamforming algorithms with particular considerations for wave refractions and mode conversions 

occurring at the wedge-medium interface. Techniques of wave mode compounding in SAFT 

images are presented to increase the array gain without augmenting its physical aperture.  

Chapter 3 presents two experimental prototype systems developed for rail flaw imaging 

based on enhanced ultrasonic SAFT methods. The first system is hosted in a portable and battery 

powered carry-on size case. A hand-held probe consists of a linear array mounted on a wedge with 

a position encoder to build 3D point clouds from 2D beamformed images in quasi real-time. 

Validation results from rail section scans with natural transverse defects and artificial end-drilled 

hole defects are presented. The second system demonstrates the use of enhanced SAFT imaging 
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within a roller search unit (RSU), highlighting the high-speed operation of the RSU in generating 

3D images and overcoming the challenges of scanning rail head corners, which were difficult to 

image with a rigid transducer wedge.  

Chapter 4 proposes a “ultrasparse” SAFT method that builds a Full Matrix Capture (FMC) 

set of waveforms from implementation of “passive” ultrasonic sensing and deconvolution between 

array element pairs. The passive acquisition of the active transfer matrix (FMC dataset) is achieved 

through (a) the segment-averaged Normalized Cross-Power Spectrum (NCPS) for robust passive 

reconstruction of transfer function between two receivers, and (b) the use of both causal and 

acausal portions of the reconstructed transfer function. Beamforming images generated using the 

standard delay-and-sum (DAS) algorithm demonstrate the elimination of the near-field blind zone 

and the potential for ultrafast imaging with only a limited number of active sources.  

Chapter 5 proposes an adaptive match field beamformer that requires no subspace 

factorization of the transfer matrix to achieve high resolution imaging of extended targets in bulk 

solids. Analogy is drawn between active and passive sensing within a broadband transfer matrix 

formulation to exploit cross-frequency coherence in ultrasound signals. The Coherent White Noise 

Constraint (C-WNC) algorithm is demonstrated to achieve high focusing ability of extended 

targets. The resolution cell distribution within the eigen structures of the transfer matrix is studied 

for the case of using a linear array to image a horizontal extended target. The C-WNC algorithm 

is shown to effectively track the tips of extended targets, ranging from the size of a wavelength to 

larger than the physical aperture width.  

Chapter 6 extends the use of C-WNC algorithm to the imaging of defects in stringer-skin 

stiffened composite panels. Experimental Green’s functions between an image pixel and a receiver 

element are first collected as replica models using deconvolution implemented in NCPS. 
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Multimodal and dispersive guided wave signals encoded in the replica vectors are then 

beamformed coherently with new measurement data using the broadband adaptive match field 

beamformer to localize impacts and defects. The C-WNC algorithm is shown to provide high-

resolution, high-contrast imaging of impact locations at different parts of the stiffened panel. For 

defect localization, eigen structure decomposition of the covariance matrix is employed to perform 

a null operation, illuminating potential defects acting as secondary sources in active sensing mode.  

Chapter 7 presents an ultrasonic scanning system for the inspection of stiffened composite 

panels based on elastic constant identification. The system utilizes air-coupled ultrasonic 

transducers to rapidly map impact damage in inaccessible areas of stiffened panels. The inversion 

of engineering moduli at each line scan is performed by matching phase velocity dispersion curves 

to Semi-Analytical Finite Element (SAFE) models. An efficient method for extracting 

experimental dispersion curves is introduced, based on the analysis of phase spectra of the 

deconvoluted transfer function in a single-input dual-output configuration.  

Chapter 8 presents the conclusions and outlines potential directions for future research.  
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Chapter 2 Improvements of Synthetic Aperture Focusing 

Techniques for Ultrasound Imaging in Solids 
 

2.1 Introduction 

Synthetic Aperture Focus Techniques (SAFT) for ultrasonic imaging have been established 

since the late 1960s [1], [2]. The method is widely applied for medical uses [3]-[14], as well as for 

defect detection and quantification in solids in Non-destructive Testing (NDT) [15]-[25]. In many 

instances, because of the particular orientation of the reflectors or in cases of test pieces with 

particular geometries [26]-[31], it is customary to utilize a wedge interposed between the 

transducer array and the test medium to appropriately direct the ultrasonic waves so as to maximize 

the target reflections. Some applications of transducer wedges (or, equivalently, inclined 

transducers in fluid-filled wheels) in ultrasonic imaging are found in pipeline inspections and weld 

examinations [21], as well as detection of transverse defects in railroad tracks [32]-[36].  

The conventional time-backpropagation SAFT approach employs a Full Matrix Capture 

(FMC) scheme that requires firing each channel of the array sequentially and recording the signals 

by all channels simultaneously for each of the transmissions [5]. A simple time delay approach 

such as the total focusing method (TFM) beamforms the interelement response to generate a high-

resolution image. The collection and beamforming of FMC data is time-consuming. In several 

cases (such as cardiac imaging for medical applications or in-motion NDT imaging for industrial 

applications), there is a need for high frame rates. Sparse transmit aperture modalities [37], with 

reduced number of transmissions and reduced redundancy in the multistatic data, are a viable 

option for fast SAFT. One concern, in this case, is the limited transmission power of any single 

element that may result in poor SNR signal-to-noise ratio of the receptions. This problem is 
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especially relevant when imaging in highly attenuating materials or through an interposed medium 

such as a transducer wedge [30]-[33].  

Efforts to overcome the problem of poor SNR in sparse SAFT started in medical 

intravascular imaging. O’Donnell and Thomas [38] first introduced the idea of replacing the single 

element emission with simultaneous excitation of a multi-element subaperture in a circular array. 

Ylitalo and Ermert [39] employed the same idea on a linear array with monostatic data acquisition 

and concluded that as few as 7 elements could be used in each subaperture as a compromise 

between SNR and lateral resolution. Karaman et al. [40] suggested applying time delays to the 

subapertures to defocus the transmit beams over a 90⁰ sector in monostatic modalities. However, 

the radiation pattern diverged from circular waves for a 13-element subaperture, which limited the 

improvement in the acoustic pressure of each transmit beam. The idea of constructing a Virtual 

Element (VE) array in multistatic modalities was introduced by Lockwood et al. [41] with intended 

application to 3D imaging. The positioning of the virtual transmitting element can be either in 

front of the subaperture (focused beam), or behind the subaperture (defocused beam), and the time 

delays of each subaperture are simply the times required for the wave to propagate from the virtual 

element source to the physical elements. Using a focused beam VE subaperture in SAFT is 

particularly favorable in medical imaging due to an ability to reach a deeper range in highly 

attenuating tissues in analogy to focused B-modes [13], [14]. The other option is to place the VE 

array behind the physical array when the Region of Interest (ROI) is closer in range, such as in 

medical echocardiography [3]-[9] or in multi-layered medium NDT [31]. Despite these works, the 

use of virtual arrays in SAFT imaging has not been thoroughly investigated in the field of NDT, 

especially in the case of a transducer wedge setup where beam refractions and mode conversions 

at the wedge-medium interface play a critical role in the beamforming process.  
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Hand in hand with the development in the SAFT, Plane Wave (PW) imaging has been 

investigated in the medical imaging field in search for “ultrafast” capabilities. To improve the 

conventional B-mode line scans, the simultaneous transmission of the full aperture emits an 

unfocused plane wave that fully illuminates the ROI. Sandrin et al. [42], [43] experimented the 

plane wave modality to image transient propagation of shear waves in human tissues with a speed 

higher than 5000 frames/s. However, the transmission of a single plane wave lacks the angular 

diversity to characterize the target. The idea of compounding multiple beam angles into a single 

image was first investigated by Jespersen et al. [44] by steering scan lines of B-mode to reduce 

grating lobes. Incoherent spatial compounding with different steered plane waves was introduced 

by Tanter et al. [45] to average the estimations of vector tissue motions. Cheng and Lu [46] 

proposed a coherent spatial compounding of plane waves in a Fourier imaging framework with 

limited diffraction beams. Inspired by the dynamic focusing ability of the SAFT approach, 

Montaldo et al. [10] introduced coherent plane-wave compounding using the synthetic transmit 

focus of a collection of tilted plane waves. The simplicity and efficiency of spatial-coherent time-

delay beamformers have paved the way to apply this ultrafast modality to various clinical 

applications including shear wave elastography, doppler imaging, and functional ultrasound [11]. 

Due to the advantage of high acoustic pressure using the full aperture, plane wave imaging is 

receiving more attention also in the NDT field. Cruza et al. [29] improved the beamforming of 

multiple PW images using a phase coherence weighting. Le Jeune et al. [26] and Merabet et al. 

[27] explored PW methods to image crack-type defects in steel blocks using both TFM and 

wavenumber algorithms in a multi-layered propagation setup. No prior investigation of PW 

imaging in transducer wedge setups appears in the literature.  
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One final recent development in SAFT imaging consists of efforts to increase the 

transducer array gain without increasing its physical aperture by compounding multiple wave 

modes. This opportunity is particularly applicable to NDT imaging of bulk solids that can support 

both longitudinal (L-) wave and shear (S-) wave propagations [24], [32], or imaging of dispersive 

waveguides that can support multiple guided modes (e.g., Lamb modes in plates) [47]. 

This chapter builds on all these recent developments to propose improvements to ultrasonic 

SAFT utilized in the field of NDT of materials and structures that require the use of a transducer 

wedge. The improvements are sought in terms of imaging speed and imaging accuracy. 

Specifically, the study compares sparse firing SAFT subarrays in both Virtual Element and Plane 

Wave modalities as they apply to a transducer wedge setup in the presence of wave refractions and 

mode conversions. It also investigates wave mode compounding in transducer wedges for further 

contrast improvement. Numerical simulations and experimental tests demonstrate successful 

implementations of these techniques to transducer-wedge setups. These improvements are also 

applied to the practical case of imaging transverse defects in rail tracks.  

 

2.2 Sparse Transmit Synthetic Aperture Focus Technique in 

Transducer-Wedge Setup 

This section presents the various steps that are being proposed for high contrast 2D SAFT 

imaging with fast frame rates via sparse transmit events, considering both the Virtual Element 

(VE) method and the Plane Wave (PW) method, for cases that require an interposed coupling 

medium between the transducer array and the test piece. These steps include multi-channel 

transmission modalities, total focusing method with consideration of refraction ray tracing in the 

beamforming algorithm, and wave mode compounding for additional contrast improvement.  
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Figure 2.1: Synthetic transmit focus using VE and PW. (a) Three defocused waves defined by 

the VE subapertures. Beamforming in transmission with synthetic focus at point P(x, y) at on-

axis positions (b), and off-axis positions (c). (d) Three unfocused waves defined by the inclined 

PW full aperture. Synthetic beamforming at on-axis (e) and off-axis (f) positions.  

 

2.2.1 Speed and Contrast Enhancement Methods 

A sparse SAFT scheme uses a select set of transmit elements as the active transmit array 

to increase the frame rate. However, the use of an interposed medium such as an acoustic wedge 

requires multiple elements in each transmit subarray to overcome the SNR losses of the target 

reflections. The subarray can be designed to transmit a focused, unfocused, or defocused beam 

pattern depending on the requirements of the ROI and resulting image quality.  
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The principle of synthetic transmit focus combined with multi-channel transmission is 

illustrated in Fig. 2.1. The VE method transmits a defocused circular wave using a phased 

subaperture in the physical array as shown in Fig. 2.1(a). In each transmit event i, the acoustic field 

of the subaperture elements superimposes to a circular wavefront such that the transmission can 

be modeled as a virtual element (point source) placed behind the physical array, Fig. 2.1(b). Each 

transmit beam is properly time delayed by calculating the ray path connecting the virtual element 

to the focus point P(x, y), so that the transmitted wave fronts are compounded coherently at an on-

axis focus. By adjusting the time delays, the synthetic focus can be achieved at any point in the 

overlapped transmit beam, including an off-axis location as shown in Fig. 2.1(c). For focus 

locations close to the surface of the medium, the ray path may approach the wedge critical angle, 

degrading the beam quality. Hence the choice of angular aperture of the VE is important to ensure 

consistent focusing at multiple locations of the ROI.  

Let us now consider the PW imaging method, shown in Fig. 2.1(d), where plane waves at 

different angles are synthetized by the full array. In each transmit event i, the acoustic field of 

individual elements superimposes to a plane wavefront defined by the incline angle. In analogy to 

SAFT methods for circular waves, the coherent spatial compounding can be achieved by time 

delaying the transmit beam considering the ray path connecting the transmit plane to the focus 

point P(x, y), as shown in Fig. 2.1(e). It is worth emphasizing that the PW method becomes 

inefficient when the plane waves transmitted at different angles do not overlap in the ROI, as 

shown in Fig. 2.1(f) for an off-axis focus. Thus, the working distance, angular range, and angular 

resolution of PW should be carefully examined for a multi-layered medium setup to ensure a 

consistent focusing ability throughout the ROI.  
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2.2.2 Total Focusing Method with Interposed Coupling Medium 

Fig. 2.2(a) shows a sample M-element virtual array located behind the N-element physical 

array using the VE method. The transducer array is attached to a wedge and effectively converts 

only L-waves propagating to and from the wedge. Assume the physical elements set as (xe, 0) in a 

local coordinate system where the x-axis is aligned with the array (e = 1, 2, …, N). The location of 

the virtual element is at (xc, df) and is at the same horizontal location as the center of the active 

subaperture, Fig. 2.2(a). The transmit delays associated with the active subaperture elements are  

𝜏𝑒 =
√(𝑥𝑒 − 𝑥𝑐)

2 + 𝑑𝑓
2

𝑐𝑤
𝐿

(2.1)
 

where df is the defocal depth, and 𝑐𝑤
𝐿  is the speed of the L-wave in the wedge. The angular aperture 

α is the key feature of the subaperture that approximates the angular range within which the 

superimposed acoustic field from individual channels can be coherently compounded as a circular 

wave. The parameter α can be determined by simple geometrical relations 

𝛼 = 2arctan
𝐷𝑎𝑐𝑡

2𝑑𝑓

(2.2) 

where Dact is the subaperture’s size. Typically, for a sector scan where the physical array is directly 

attached to the test piece, the parameter α is set to π/2 to ensure sufficient beam spread [6]. 

However, the angle of view in a transducer wedge setup is restricted by the length of the wedge-

medium interface, as shown for example in Fig. 2.1(b). Thus, the main problem here is to 

determine the angular aperture and the dimension of the subaperture to maximize the image 

quality.  

Fig. 2.2(b) schematizes the VE modality with the transducer wedge. Since there are only 

M subaperture transmission events, the multistatic data acquisition is analogous to an FMC 

between virtual transmitters i = 1, 2, …, M and physical receivers j = 1, 2, …, N. The usual TFM  
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Figure 2.2: (a) The virtual element array defined by the defocal depth zf and the angular aperture 

α. Transducer wedge imaging ray paths: (b) VE method: ray tracing connecting virtual transmit 

element Ti, focal point P(x, y), and receiver element Rj; (c) PW method: ray tracing connecting 

plane wave transmission with incline angle βi, focal point P(x, y), and receiver element Rj.  

 

Delay-and-Sum (DAS) algorithm constructs the intensity value at a focus point P(x, y) by summing 

the amplitudes of received signals that are appropriately backpropagated for each combination of 

transmitter-receiver pairs 

𝐼(𝑥, 𝑦) =  ∑∑𝐴𝑖𝑗(𝜏𝑖𝑗,𝑥𝑦)

𝑁

𝑗=1

𝑀

𝑖=1

(2.3) 

where the Time-of-Flight (TOF) τij,xy is the propagation time of a certain ray path from the 

transmitter Ti(xi, yi) to the pixel P(x, y) and back to the receiver Rj(xj, yj), and Aij(t) is the amplitude 

of the received signal.  

The wave refractions at the wedge-medium interface, shown in Fig. 2.2(b), need to be taken 

into account for proper beamforming. Using Snell’s law, the ray tracing algorithm extends path 

identification to multi-layer mediums following Fermat’s principle. Given a focus point P(x, y) 

and a point source Ti(xi, yi), there exists a unique point of incidence Q(xb, 0) at the wedge-medium 

interface such that Snell’s law is best satisfied 
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𝑐𝑤
𝐿

𝑐𝑚
𝐿,𝑆 =

sin(𝜃𝑤)

sin(𝜃𝑚)
= 𝑟 (2.4) 

where 𝑐𝑚
𝐿,𝑆

 is the L-wave or S-wave velocities in the test medium, θw is the angle of incidence in 

the wedge, θm is the angle of incidence in the medium associated to the wave mode of interest, and 

r is a constant ratio determined by the wave velocities. Since θw and θm are functions of xtrail for a 

given set of P(x, y) and Ti(xi, yi), the position (xtrial, 0) where the ratio of the sines of the two 

incident angles is closest to the constant r represents the optimum point of incidence Q(xb, 0). The 

optimization can be formalized by matching the ratio r as follows 

𝑥𝑏(𝑥, 𝑦, 𝑥𝑖 , 𝑦𝑖) = argmin𝑥𝑡𝑟𝑖𝑎𝑙
|
sin(𝜃𝑤(𝑥𝑡𝑟𝑖𝑎𝑙))

sin(𝜃𝑚(𝑥𝑡𝑟𝑖𝑎𝑙))
− 𝑟| (2.5) 

where the value of xtrial that minimizes the absolute value on the right-hand side of Eq. 2.5 is taken 

as xb. The return ray path connecting a focus point P(x, y) to a point receiver Rj(xj, yj) can be 

calculated in a similar fashion by replacing (xi, yi) by (xj, yj). With the point of incidence for each 

ray path identified, the final TOF in Eq. 2.3 can be finally expressed as 

𝜏𝑖𝑗,𝑥𝑦
𝐿𝑆𝑆𝐿,𝐿𝑆𝐿𝐿,𝐿𝐿𝑆𝐿,𝐿𝐿𝐿𝐿 =

𝑑𝑖,𝑥𝑦
𝐿(1)

𝑐𝑤
𝐿

+
𝑑𝑖,𝑥𝑦

𝐿,𝑆(2)

𝑐𝑚
𝐿,𝑆 +

𝑑𝑗,𝑥𝑦
𝐿,𝑆(3)

𝑐𝑚
𝐿,𝑆 +

𝑑𝑗,𝑥𝑦
𝐿(4)

𝑐𝑤
𝐿

(2.6) 

which describes the inter-element wave propagation from the virtual transmit array to the physical 

receive array. Notice that the selection of wave mode in Eq. 2.6 can result in a total of four wave 

mode combinations. Since different wave modes in the test piece result in different r (and thus 

distinct incident angle pairs), each mode combination will have distinct ray paths connecting the 

same focus point to the array. The calculation of TOFs for the multiple modes in the wedge 

transducer case is discussed in the next section.  
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The case of the PW modality with the transducer wedge setup is schematized in Fig. 2.2(c). 

Again, using the local physical array coordinates (xe, 0), the transmit delays applied to the full 

aperture elements are 

𝜏𝑒 = (𝑥𝑒 − 𝑥1) sin(𝛽𝑖)/𝑐𝑤
𝐿 (2.7) 

where x1 is the horizontal position of an arbitrary offset element (here chosen as #1) which has 

zero phase in all PW transmissions. Notice that in Fig. 2.2(c) the PW incline angle βi is defined as 

negative such that the rest of the array actually fires ahead of the offset element. It has to be 

emphasized that for each wave mode in the medium the selection of βi has an upper limit beyond 

which the incident angle θw exceeds the critical angle. The range of βi’s define the PW angle of 

view similarly to the parameter α in VE, so they must be considered carefully to maximize the 

image resolution at high frame rates.  

The multistatic data acquisition now is an FMC scheme between plane transmitters i = 1, 

2, …, M and point receivers j = 1, 2, …, N. For a given incline angle βi, the incident angle θw can 

be determined from geometrical relationships. The angle of incidence θm is now as a function of 

βi  

𝜃𝑚(𝛽𝑖) = arcsin(𝑟 sin(𝜃𝑤)) (2.8) 

where r is related to the selected wave mode in the medium as in Eq. 2.4. Thus, for PW the 

optimization of Q(xb, 0) can be accomplished by matching the value of θm as follows 

𝑥𝑏(𝑥, 𝑦, 𝛽𝑖) = argmin𝑥𝑡𝑟𝑖𝑎𝑙
|arctan

𝑥 − 𝑥𝑡𝑟𝑖𝑎𝑙

𝑦
− 𝜃𝑚| . (2.9) 

Finally, the TOF of PW-TFM can be calculated in the same way as in Eq. 2.6 and then 

used in the DAS beamformer of Eq. 2.3. The only difference in calculating the wave distances is 

the term 𝑑𝑖,𝑥𝑦
(1)

 , that requires knowledge of the location of the plane wave at time zero, which can 

be easily found by knowing the location of the offset element. Instead of finding the distance 
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between two points as in VE-TFM, now 𝑑𝑖,𝑥𝑦
(1)

 denotes the distance between the point of incidence 

Q(xb, 0) and the planar wavefront at time zero.  

2.2.3 Compounding of Multiple Wave Modes 

For the transducer wedge setup, the L-wave transmitted in the wedge can be refracted as 

both an L-wave and an S-wave in the test piece. Wave mode conversion can also exist in the 

scattering from discontinuities in the medium, resulting a total of four wave mode combinations 

in the test piece (LSSL, LSLL, LLSL, and LLLL). It is worth stating that since the wedge angle is 

typically designed to refract S-waves in structural materials, the angle of view (angular position of 

the transmitted beam) of the L-wave refraction is limited due to the critical angle. Thus, the SNR 

of the three mode combinations involving L-wave can be expected to be much poorer than the 

dominant SS combination. In addition, since the wavelength of the L-mode is twice as large as that 

of the S-mode, its resolution is also poorer.  

The feasibility of wave mode compounding using VE or PW sparse transmissions is shown 

in Fig. 2.3. For the VE modality, although the angle of view of the L-wave is limited there are still 

sufficient regions of overlap with the refracted S-wave. Coherent spatial compounding is possible 

by considering the appropriate delays for the S-wave and the L-wave at a given focus point. For 

the PW modality, wave mode compounding is less efficient since the unfocused waves have a 

fixed lateral beam spread that does not change with increasing range, as shown in Fig. 2.3(b). Since 

there is no overlap in the illuminated region of the two wave modes, the two transmitted beams 

cannot be coherently compounded.  

Incoherent wave compounding can be achieved as follows 

𝐼𝑇𝑂𝑇(𝑥, 𝑦) = ∑𝐼𝑀𝐶(𝑥, 𝑦)

𝑀𝐶

= ∑∑∑𝐴𝑖𝑗(𝜏𝑖𝑗,𝑥𝑦
𝑀𝐶=𝐿𝑆𝑆𝐿,𝐿𝑆𝐿𝐿,𝐿𝐿𝑆𝐿,𝐿𝐿𝐿𝐿)

𝑁

𝑗=1

𝑀

𝑖=1𝑀𝐶

(2.10) 
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Figure 2.3: Wave mode compounding in transmission using different sparse firing modalities. 

Beam spread overlapping from a single transmission in VE (a) and in PW (b).  

 

where the compounded image ITOT(x, y) is a summation of TFM images beamformed by individual 

wave modes IMC(x, y) obtained using Eq. 2.3 with the corresponding time delays. The 

compounding thus increases the effective array aperture without increasing the array physical size.  

 

2.3 Numerical Analyses 

Numerical studies of the sparse SAFT with a wedge were carried out with the k-wave 

module in MATLAB in a 2-D (plane strain) scenario. The simulation modeled the propagation of 

the transmitted beam in a 110 mm × 120 mm (length by depth) grid, with the upper half as the 

transducer wedge and the lower half as the inspected test piece (assumed to be aluminum). The 

wedge could only propagate L-wave with a speed of 2350 m/s, while the aluminum piece allowed 

both L-wave and S-wave to propagate with a speed of 6300 m/s and 3100 m/s, respectively. The 

spatial grid was subdivided with a 0.1 mm spacing, and the time step was set to 5 ns to enable 

sufficient sampling of all possible wave mode propagations in both media. The ultrasonic array 

consisted of 64 transmitting channels, with an element width of 0.6 mm. As shown in the schematic 
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drawings in Fig. 2.4, the array was positioned at an inclined 54 deg angle from the y-axis and the 

depth of the first element (on the lower left side of the array) was -15 mm. The excitation of each 

element was simulated by applying a unidirectional displacement perpendicular to the array 

(hereon referred as the 0⁰ broadside direction of the array) across the width of the element. The 

applied displacement was a 2.5 MHz tone burst enveloped by a Gaussian window.  

For the different transmit modalities, the acoustic pressure fields Φi(𝑥̂, 𝑦̂, t) were recorded 

for each transmission beam in the ROI. Synthetic focus in transmission was performed by first 

aligning the time delay needed for each transmission to propagate to the focus point P(x, y)  

𝜏̃𝑖,𝑥𝑦
𝑆,𝐿 = 𝜏𝑖,𝑥𝑦

𝑆,𝐿 − min𝑖(𝜏𝑖,𝑥𝑦
𝑆,𝐿) (2.11) 

where 𝜏𝑖,𝑥𝑦
𝑆,𝐿 is the propagation time from the source to the focus point for a given wave mode in 

the medium, and 𝜏̃𝑖,𝑥𝑦
𝑆,𝐿is the offset time delay by subtracting the minimum value of 𝜏𝑖,𝑥𝑦

𝑆,𝐿 in all 

transmission events. Then the acoustic field from each transmission was added synthetically with 

the proper time alignment of individual transmit beams 

𝛷𝑥𝑦
𝑆,𝐿(𝑥̂, 𝑦̂, 𝑡) = ∑𝛷𝑖(𝑥̂, 𝑦̂, 𝑡 + 𝜏̃𝑖,𝑥𝑦

𝑆,𝐿)

𝑀

𝑖=1

(2.12) 

where Φxy(𝑥̂, 𝑦̂, t) is the synthetic transmit pressure field with spatial compounding on P(x, y). 

Note that 𝑥̂ and 𝑦̂ are variables denoting the coordinates of the ROI, to differentiate from the 

specific focus point P(x, y). Finally, the beam pattern of the synthetic transmit field 𝛷𝑏𝑒𝑎𝑚,𝑥𝑦(𝑥̂, 𝑦̂) 

was taken as the maximum amplitude in the time history Φxy(𝑥̂, 𝑦̂, t). A simple compounding of 

the synthetic transmit field of the two wave modes in transmission is a direct sum: 

𝛷𝑏𝑒𝑎𝑚,𝑥𝑦
𝑇𝑂𝑇(𝑥̂, 𝑦̂) = ∑𝛷𝑏𝑒𝑎𝑚,𝑥𝑦

𝑀𝐶=𝑆,𝐿(𝑥̂, 𝑦̂)

𝑀𝐶

. (2.13) 
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Note that there were only two wave modes existing in the transmit field simulation, whereas for a 

pulse-echo signal a total of four wave mode combinations are available for compounding.  

The purpose of simulating the synthetic transmit pressure field was to quantitively evaluate 

the performance of the different SAFT modalities in the designated transducer wedge setup. The 

line spread function (LSF) was estimated from the beam pattern 𝛷𝑏𝑒𝑎𝑚,𝑥𝑦(𝑥̂, 𝑦̂) by extracting the 

intensity values along an arc that denotes the snapshot of the wavefront with the same propagation 

time from the center element of the array when passing through the focus point P(x, y), as 

illustrated in the schematics of Fig. 2.4. The performance metrics of interest included: the dynamic 

range (defined as the mean dB level in the illuminated angular range), the sidelobe level (defined 

as the dB level of the strongest side lobe), and the lateral resolution (defined as the -6 dB full width 

of the LSF main lobe for linear beamformers such as DAS). The lateral resolution, or main lobe 

half width (MLHW), was calculated by multiplying the angular range of the main lobe in the LSF 

with the ray transmission distance. Two focus points were tested to evaluate the synthetic transmit 

beam performance at both an on-axis position (70 mm, 27 mm) and an off-axis position (70 mm, 

5 mm). Notice that the notation “on-axis” corresponds to the broadside of the S-wave refraction in 

the test piece. The broadside transmission in the wedge cannot refract L-wave in the aluminum 

since the transmission angle is beyond the critical angle.  

2.3.1 Configurations of Virtual Element Modality 

The configurations of VE-SAFT can be classified in two levels. The first level is the 

parameters required to define a single subaperture. This includes the angular aperture α and the 

number of elements (dimension) of the subaperture. The angular aperture determines the angle of 

view of each transmission beam, and the subaperture size is critical to improve the SNR of the 

coherent wavefronts of the phased subarray. The second level is the parameters that define the  
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Figure 2.4: Synthetic transmit pressure field for three VE angular apertures. Spatial 

compounding of S-wave at on-axis P(70 mm, 27 mm): (a) synthetic pressure and (b) lateral LSF; 

at off-axis position P(70 mm, 5 mm): (c) and (d). Spatial compounding of L-wave at on-axis: (e) 

and (f); at off-axis: (g) and (h). All images are displayed in 15 dB dynamic range.  

 

synthetic aperture (virtual transmit array). This includes the number of transmissions and the pitch 

of the virtual array. The number of transmissions should be restricted to achieve fast frame rates. 

The pitch of the virtual array is related to the resolution of the synthetic transmit beam.  

The comparison of different angular apertures in the synthetic transmit field in the 

aluminum piece is shown in Fig. 2.4. Three VE transmissions with a virtual pitch of 12 mm and a 

subaperture of 21 elements were simulated. First, the field of S-wave was examined. For the on-

axis focus, Fig. 2.4(a) shows the normalized synthetic pressure field 𝛷𝑏𝑒𝑎𝑚,𝑥𝑦
𝑆(𝑥̂, 𝑦̂) with the 

variation of α, with the corresponding LSFs in Fig. 2.4(b). The LSFs are plotted as a function of 
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angular positions that is measured as the transmit angles from the 0⁰ broadside direction of the 

array. The critical angle at 13.8⁰ in the LSF means that the transmit beam cannot refract S-waves 

beyond that angular position. For the on-axis focus, the 90⁰ aperture results in numerous side lobes 

due to the low SNR. As seen in the LSFs these side lobes are reduced by a smaller angular aperture. 

As α becomes smaller the transmit beam is more focused on the broadside at the cost of lateral 

resolution.  

The steering capability of the synthetic transmit aperture is examined in the case of off-

axis focus in Fig. 2.4(c) and (d). The focusing ability of the 3-transmission synthetic field is poor 

judging from the limited dynamic range. The 10⁰ aperture loses the correct angular direction on 

the focus because of the poor steering ability with a small α. Thus, a small angular aperture should 

be avoided to ensure good beam steering near the critical angle.  

The comparison of different angular apertures in the synthetic transmit field of L-wave is 

shown in Fig. 2.4(e)-(h). The synthetic pressure field 𝛷𝑏𝑒𝑎𝑚,𝑥𝑦
𝐿(𝑥̂, 𝑦̂) was obtained using the same 

3-transmission modality as in Fig. 2.4(a)-(d), but the L-waves were additionally windowed in each 

individual beam Φi(𝑥̂, 𝑦̂, t) to eliminate the disturbance of the S-waves. Fig. 2.4(e) shows the 

normalized synthetic pressure field 𝛷𝑏𝑒𝑎𝑚,𝑥𝑦
𝐿(𝑥̂, 𝑦̂)  with the variation of α and their 

corresponding LSFs in Fig. 2.4(f) when the focus point is on-axis. The uniform white region on 

the upper left in the images is a contamination of the S-wave that is hard to eliminate because the 

two modes are closely spaced in time near the wedge-medium interface. As previously stated, due 

to the inclination of the wedge only a limited angular extent of the beam can refract L-waves in 

the aluminum, resulting in a critical angle of -14.1⁰. As a result, beam steering and coherent 

compounding for L-wave refraction is much more challenging than for the S-wave. For a wide 

beam spread (α = 90⁰), the intensity of the side lobes is unacceptably high due to the low SNR. As 
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the parameter α becomes smaller, the L-wave synthetic transmit aperture cannot capture the correct 

focus direction. The errors in the lateral position of the focused beams are 1.0 mm and 3.8 mm, for 

α = 30⁰ and 10⁰, respectively. For an off-axis focus that is close to the critical angle position, the 

low performance of L-wave is more problematic. As shown in Fig. 2.4(g), none of the angular 

apertures can generate a focused beam at the correct angular position. A smaller α ensures a strong 

main lobe though slightly off the focus.  

To summarize, an optimum α should be smaller than a typical “half-sector” to ensure 

sufficient enhancement in the acoustic power, but the α value should not be too small so that the 

beam steering ability is compromised.  

Fig. 2.5 shows the synthetic pressure field at an on-axis focus P(70 mm, 27 mm) as a 

function of the size of the VE subaperture. The angular aperture was kept at 45⁰ with a varying 

defocal depth to match the dimension of each subaperture. As shown in Fig. 2.5(a), the transmit 

pressure of both S-wave and L-wave increases with the number of elements. The curve of S-wave 

is similar to the case in a single medium setup as predicted in [12]. However, the limited angular 

range of the refracted L-wave beams does not benefit from enlarging the subaperture. Even using 

as many as half of the array (33 elements) can only obtain twice the pressure of a 1 channel 

emission for the L-wave. The resolution of the synthetic transmit beam, quantified by the MLHW 

(main lobe half width, i.e. -6 dB full width of the LSF main peak), decreases with larger 

subapertures, as shown in Fig. 2.5(b). This implies that a small number of elements should be used 

to achieve a resolution similar to the “golden standard” 1 element FMC SAFT. Besides, using a 

large subaperture limits the maximum pitch achievable by the virtual array, which restricts the 

angular diversity of transmission beams. A transmit subaperture of approximately 19~21 elements 

seem like a good tradeoff to obtain a high intensity without sacrificing the resolution.  
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Figure 2.5: Synthetic transmit pressure field of three virtual elements with an angular aperture of 

45⁰ for an increasing number of elements in the subapertures. (a) Normalized maximum 

synthetic pressure and (b) associated resolution.  

 

Fig. 2.6 represents the synthetic transmit pressure field obtained by three different virtual 

array pitches. Eight VE transmissions with an angular aperture of 45⁰ and a subaperture of 21 

elements were simulated. Coherent summation was performed at the same on-axis and off-axis 

positions using the S-wave refraction. In addition to the maximum 3.6 mm pitch achievable for an 

8 × 21 subaperture combination in the 64-element array, a pseudo 5.4 mm pitch was also tested. 

In the 5.4 mm pitch setup, the required subaperture of some of the virtual elements exceeded the 

physical aperture. For example, the center of the first subaperture is at the 1st element with a 

theoretical 21-channel subaperture from element #-9 to #11. However, the available physical 

aperture is #1 to #11 so roughly half of the subaperture can be fired. The reason to expand the 

virtual pitch is to increase the beam resolution as much as possible. As shown in Fig. 2.6(a), the 

lateral resolution increases with the virtual pitch. The main lobe width is seen as 5.0 mm, 2.6 mm, 

and 2.0 mm for the 1.8 mm, 3.6 mm, and 5.4 mm virtual pitches, respectively. Also, the side lobe 

levels are reduced with a larger virtual pitch. The only drawback comparing 5.4 mm and the full 

transmitted 3.6 mm is that the dynamic range of the 5.4 mm version is 2.7 dB smaller due to 

reduced synthetic pressure. The same observations apply to off-axis focus as shown in Fig. 2.6(c). 
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Figure 2.6: Synthetic transmit pressure field of S-wave for three virtual pitches. Spatial 

compounding at on-axis position: (a) synthetic pressure and (b) lateral LSF; at off-axis position: 

(c) synthetic pressure and (d) lateral LSF. All images are displayed in 25 dB dynamic range.  

 

The 5.4 mm pitch shows a 2.3 mm resolution beam, which is 0.4 mm thinner than the 3.6 mm 

pitch. The left-hand side of the main lobe is thinner with the 5.4 mm pitch, giving a more accurate 

angular coverage of the main lobe, as confirmed in Fig. 2.6(d).  

Thus, the widest virtual element array should be used to maximize the resolution and the 

steering ability. Instead of positioning all subapertures within the physical aperture, the constraint 

is instead to position the center of the subapertures within the physical aperture so that each 

transmission has more than half of the elements needed to compose the “ideal” subaperture.  

2.3.2 Comparison between Plane Wave and Virtual Element Modalities 

The configuration of PW transmission is simpler than the VE transmission since only the 

angle of view needs to be determined once the frame rate is fixed. The angle of view is defined by 

the angular range that the tilted angle βi covers α ≈ |βM – β1|. As discussed in the critical angular 

positions of the refracted wave field, the transducer wedge setup considered in this paper can only 

refract S-waves at angles smaller than 13.8⁰ and L-waves at angles smaller than -14.1⁰. It is useless 

to transmit plane waves with βi < -14.1⁰ since the refracted beams are propagating out of the ROI 
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Figure 2.7: Synthetic transmit pressure field using 16 transmissions with different modalities 

focused on-axis and off-axis. (a) 16 PW transmissions beamforming using S-wave. In 

comparison, 16 VE transmissions beamforming using (b) S-wave only and (c) compounded S-

wave and L-wave.  

 

and the lateral coverage is limited. The range of βi is finally set to -13⁰ to 13⁰ to cover the ROI 

using the dominant S-wave.  

To show that PW and VE are similar with sufficient transmissions, the synthetic pressure 

field using the two modalities was simulated using 16 transmissions, as shown in Fig. 2.7. 

Comparing Fig. 2.7(a) and (b), the transmitted S-wave fields exhibit similar beam width and 

dynamic range. However, the VE modality can use the L-wave to “virtually” increase the transmit 
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aperture size through wave mode compounding using Eq. 2.13. As shown in Fig. 2.7(c), the 

compounded wave field shows a dramatic improvement in the dynamic range, especially for an 

on-axis focus. The resolution beams of both focus locations seem unchanged, since the resolution 

of the L-wave is much larger than that of the S-wave.  

Thus, the addition of the L-wave in mode compounding beamforming tends to suppress 

the noise floor in the S-wave image while preserving the main lobe structure.  

Clearly, the overall number of transmissions directly impacts the imaging frame rate. Fig. 

2.8 shows the role of the number of transmissions on the synthetic transmit focus. The PW 

modalities were transmitted in a βi range of -13⁰ to 13⁰, and the VE modalities were transmitted 

with an angular aperture of 45⁰, a subaperture of 21 elements, and a maximum virtual pitch. The 

number of transmissions was varied by increasing the sampling of βi in PW and decreasing the 

virtual pitch for VE. For the PW modalities with S-wave beamforming in Fig. 2.8(a), the 

improvement in dynamic range is most significant above 8 transmissions for both on-axis and off-

axis focus. With a number of transmissions equal or smaller than 8, the shape of the main lobe 

cannot be clearly identified, and noise floors are too high. The transmit focus cannot find the 

correct angular position at 3 transmissions for both on-axis and off-axis focus due to the lack of 

overlapping regions to realize spatial compounding when the mesh of βi is too sparse. On the 

contrary, the VE modalities with S-wave beamforming in Fig. 2.8(b) show a consistent 

improvement with an increasing number of transmissions. Only the off-axis focus of 3-

transmission VE has larger side lobes than the correct lobe response. This can be attributed to the 

truncated transmission of the pseudo 5.4 mm virtual array in an extreme case (31% of the 3 × 21 

subaperture combination was not emitted).  

To compare the PW and VE S-wave fields, the pressure level of the off-axis focus was  
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Figure 2.8: Normalized synthetic pressure field LSF focused on-axis and off-axis compounded 

with 3, 5, 8, 16, and 32 diverging waves using different modalities. (a) PW transmission 

beamformed using S-wave propagation in the test piece. VE transmission beamformed using (b) 

S-wave and (c) L-wave propagation in the test piece.  

 

evaluated at broadside. For 3, 5, 8, 16, and 32 transmissions, the pressure levels are -5.1, -7.0, -

7.3, -17.2, and -26.5 dB for PW and -2.0, -8.8, -12.8, -21.8, and -28.3 dB for VE. The two 

modalities show similar dynamic range at large number of transmissions, but the performance of 

VE is more stable than that of PW at fewer transmissions, i.e. high frame rates. Similar conclusions 

can be made for the two L-wave focuses using the same VE modalities in Fig. 2.8(c). As for the 

L-waves, the side lobes are largely suppressed with 8 transmissions, and focusing is progressively 

improved with increasing number of transmissions.  
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2.4 Experimental Results 

2.4.1 Sparse Transmit Aperture Imaging Performance 

Fig. 2.9 shows the setup of the first set of experimental tests on an aluminum block. The 

transducer was a 64-element linear array (Olympus NDT 2.25L64-A12) with central frequency at 

2.25 MHz, 38.4 mm total active aperture with 10 mm elevation, and 0.6 mm element pitch. The 

array was attached to a 55-degree Rexolite wedge (Olympus NDT SA12-N55S) to generate 

directional S-wave in the target aluminum block. The block had three side drilled holes as targets 

for imaging. The diameter of the drilled holes was 0.5 mm so they can be considered as 

subwavelength scatterers (given the S-wave wavelength of 1.4 mm and the L-wave wavelength of 

2.8 mm in aluminum at 2.25 MHz).  

The image quality was examined by two metrics: the main lobe half width (MLHW) 

(defined previously in Section 3.A). The CNR is computed as [48] 

𝐶𝑁𝑅 =
𝜇𝑠 − 𝜇𝑛

√𝜎𝑠
2 + 𝜎𝑛

2
(2.14) 

where μs and μn are the mean gray levels in the scatterer and the noise floor, and σs and σn are their 

respective standard deviations. The scatterer is distinguished by a -15 dB threshold, and the rest of 

the pixels are treated as noise with a minimum of -60 dB.  

The performance of the different sparse transmit imaging modalities is compared in Fig. 

2.10, considering only the LSSL mode combination. Fig. 2.10(a) shows the PW-TFM image of 

the drilled hole at 12 mm in depth and 68 mm in length. Five PW transmissions were emitted 

covering incident angles from -13⁰ to 13⁰. Each LSF was extracted along the cross-range direction 

shown as a dashed line. Significant side lobes are seen around the scatterer at high frame rate due 

to the lack of overlap region of the transmitted beams. The effect of suppressing the side lobes is 
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Figure 2.9: Experimental setup: the 64-element linear transducer array fixed to a plastic wedge 

scanning the aluminum block with drilled holes as imaging targets.  

 

seen in the comparison of LSF between the faster 5-transmission and the slower 32-transmission 

PW-TFM images, shown in Fig. 2.10(b) with an average of 10 dB increase in dynamic range. 

Besides the improvement in side lobes, the lateral resolution is also higher seen from a shrinking 

of the main lobe width.  

The VE-TFM image of the same hole scatterer is shown in Fig. 2.10(c). Five VE 

transmissions with an angular aperture of 45⁰ and a subaperture of 21 elements were used with the 

maximum virtual pitch. Contrarily to PW, no significant side lobe is observed using the sparse 

transmissions of VE. The comparison of 5-transmission and 32-transmission VE-TFM images in 

Fig. 2.10(d) also shows better image quality at reduced frame rates. The most distinguishable 

improvement in the dynamic range is seen around 70 to 75 mm in length where the side lobes are 

suppressed by -10 dB. This denotes the improved steering ability of the VE beamformer to 

distinguish off-axis targets close to the surface of the aluminum block that is hard to illuminate 

with limited number of transmissions.  
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Figure 2.10: (a) TFM image of a drilled hole using 5-transmission PW modality. (b) LSF 

comparison of PW-TFM images. (c) TFM image using 5-transmission VE modality. (d) LSF 

comparison of VE-TFM images. Comparison of TFM images quantified by (e) MLHW and (f) 

CNR as a function of the number of transmissions.  

 

Fig. 2.10(e) and (f) show the image quality of PW and VE at different numbers of 

transmissions, with 1 element transmission as benchmark in comparison. The CNR starts to 

degrade rapidly at 16-transmisson using only 1 element transmission due to the lack of synthetic 

acoustic power. PW-TRM images have the highest CNR at large number of transmissions, but 
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both CNR and resolution of PW-TFM are poorer when using few transmissions, as predicted in 

the numerical simulations of the previous section. In comparison, the CNR of the VE-TFM images 

is similar for all numbers of transmissions, and the MLHW is only 0.1 mm wider than the sparse 

SAFT at 5, 8, 16, and 32 transmissions. The resolution is interestingly slightly poorer with a larger 

number of transmissions as a result of saturation in the transmit field at high SNR.  

2.4.2 Optimum Configuration of Virtual Element Modality 

Fig. 2.11 discusses the choice of parameters in the VE modality with a transducer wedge. For this 

study, the number of transmissions was set to 8 and only the LSSL mode combination was 

beamformed. Comparing VE-TFM images of different angular apertures in Fig. 2.11(a), the 

smaller 20⁰ VE results in higher image contrast but wider lateral lobes. Shown in Fig. 2.11(b), 

different angular apertures were tested in the range between 10⁰ and 90⁰. It is observed that using 

angular apertures larger than 40⁰ cannot achieve improvements in resolution due to the unique 

geometry in the transducer wedge setup. The wide beam spread is constrained by the limited angle 

of view in the wedge. In addition, angular apertures larger than 13.8⁰ exceed the critical angle of 

S-wave in aluminum as explained earlier. The improvement in CNR is seen with a smaller angular 

aperture as expected, but the smallest angular aperture does not result in the highest CNR since 

the narrow beam spread does not result in a strong spatial coherence. The role of the subaperture 

size is examined in Fig. 2.11(c). The smallest MLHW is seen at 19-element subapertures as a 

tradeoff between transmit power and beam resolution. The improvement in CNR with larger 

subaperture sizes is not obvious, since the SNR is high when imaging strong scatterers. A more 

significant difference is expected when the target is acoustically weaker. Note that although these 

parameters need to be re-evaluated for different wedge angles or sizes, the general trend found in 

this study is still valid.  
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Figure 2.11: (a) VE-TFM images of a drilled hole in an aluminum block using two different 

angular apertures (90⁰ and 20⁰), plotted in 40 dB dynamic range. (b) VE-TRM image quality as a 

function of angular aperture. The number of elements in each subaperture is 21. (c) VE-TRM 

image quality as a function of subaperture size. The angular aperture is 40⁰.  

 

2.4.3 Demonstration of Wave Mode Compounding 

Additional experimental tests were performed to illustrate the improvement in image 

quality using wave mode compounding. For this study, two 0.5-mm-diameter drilled holes in the 

aluminum block were imaged, located at 12.5 mm in the vertical dimension, and 56 mm and 68 
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mm in the horizontal dimension, respectively. The 8-transmission TFM images of the VE and PW 

modalities using different wave modes are shown in Fig. 2.12. Notice that different wave modes 

are displayed in different dynamic ranges to illuminate the focus. Again, due to the lack of modal 

spatial coherence in PW transmission beams, only two wave modes are available to beamform in 

reception. As shown in Fig. 2.12(a), for the PW-TFM image beamformed using the LSLL mode 

combination, a clear focus is seen at the hole closer to the array (on the left). The contrast of the 

LSLL mode combination is poorer than LSSL combination as predicted in the numerical 

simulations. The lobe sizes are also larger than LSSL combination since the L-mode wavelength 

is roughly twice that of the S-wave. The effect of wave mode compounding of the LSSL and LSLL 

mode combinations shows significant improvement in contrast compared to the images of an 

individual combination.  

Similar behaviors are seen in the VE-TFM images shown in Fig. 2.12(b). VE transmissions 

were emitted with the optimum 40⁰, 19-element, maximum virtual pitch setup. For a defocused 

beam, compounding S-waves and L-waves in transmission is possible for VE-SAFT. This results 

in a maximum of four mode combinations, and the three mode combinations that have a good 

focus are displayed in Fig. 2.12(b). For the additional LLLL mode combination, the lobe sizes are 

the largest since both transmitted and received beams involve lower resolution L-waves. The 

compounding of the three wave mode combinations in VE-TFM shows significant contrast gains 

compared with the two-mode compounding of PW-TFM. In addition, all the side lobes are 

suppressed below the -50 dB visible dynamic range.  

The line profiles showing comparison of wave mode compounding are shown in Fig. 

2.12(c) and (d), respectively. Each plot was sampled at 12.5 mm in depth along the dashed line in 

Fig. 2.12(a). The compounded line profiles show that wave mode compounding lowers the noise  
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Figure 2.12: (a) PW-TFM images of two drilled holes beamformed using different wave mode 

combinations: LSSL, LSLL, and compounding two modes. (b) VE-TFM images of the same 

targets: LSSL, LSLL, LLLL, and compounding all three modes. Line profile comparison along 

the same depth at y = 12.5 mm for (c) PW and (d) VE.  

 

floor and narrows the main lobes compared to the SS mode combination alone. Specifically, the 

average improvement in dynamic range is 20 dB for PW-TFM and 40 dB for VE-TFM. Besides, 

the compounded image does not lose focus on the drilled hole on the right. The second main lobe 

is only reduced by 8 dB and 13 dB from the LSSL mode counterparts, for PW-TFM and VE-TFM 

respectively. This suggests that wave mode compounding can be applied to extended targets 

without losing focus on the acoustically weaker targets.  
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2.4.4 Application to Imaging Transverse Defects in Rails 

Transverse defects in the rail head are notorious causes of severe train accidents, if not 

detected early [49]. For this reason rails are routinely inspected by ultrasonic testing and other 

NDT techniques to detect and quantify these defects. Imaging of the flaws, beyond simple 

detection, is a particularly challenging task. Because of the importance to perform the imaging in 

a scanning mode (whether for manual scanning or in-motion scanning), any improvements to the 

speed of imaging technologies for this application (such as the sparse SAFT) is highly desirable. 

This section applies the strategies discussed above to the imaging of transverse defects in the 

railhead which, because of their orientation, require the use of a wedge transducer for manual 

scanning (or a wheel transducer for in-motion scanning). These defects represent extended targets, 

with sizes typically larger than one wavelength.  

The first case examined is an end-drilled hole in a rail test section with an inclined angle 

of 10 degrees (Fig. 2.13) that is often used to simulate transverse rail defects for ultrasonic 

calibration tests. The 55-deg transducer wedge was positioned on the top of the railhead above the 

flaw. Since the SAFT image was generated in the x-y plane, the objective was then to image a 

vertical line in the ROI. The ground truth result is a 10-degree inclined line from y-axis with a 

length of 19 mm (the bottom of the drilled hole), as marked by the bracket in Fig. 2.13(b). Fig. 

2.13(a) shows the VE-TFM image using 8-transmission beamformed using different wave mode 

combinations. The dynamic range of the LSSL combination is set to 30 dB while the other three 

combinations are set to 15 dB in order to highlight the focus region. As expected, the LSSL 

combination has the best imaging result in both defect shape and contrast. The LSLL and LLLL 

combinations can partially “see” the defect with limited contrast due to low SNR. The LLSL 

combination has no energy and the image is simply replicas of the dominant LSSL modes with 

incorrect location (from erroneous TOF).  
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Figure 2.13: Imaging of an end-drilled hole in a rail head using 8-transmission VE method with 

a wedge transducer. (a) Comparison of all wave mode combinations, and (b) compounded image 

using three combinations. The actual size and orientation of the defect is marked in (b).  

 

The compounded image using the LSSL, LSLL and LLLL mode combinations is shown in 

Fig. 2.13(b). Compared with the ground truth, it can be seen that the LSSL combination alone 

provides an accurate estimation of the defect size and orientation. However, due to the limited 

angular range of L-wave propagation in the transducer-wedge setup, the images involving L-

modes have poor SNR and inhomogeneous distribution on the extended target (large defect).  

The final set of experimental tests were conducted on a natural transverse defect in a rail 

section, as shown in Fig. 2.14, provided by MxV Rail of Pueblo, CO (formerly Transportation 

Technology Center, Inc.). Following the ultrasonic testing, the rail section was broken to reveal 

the true shape and size of the defect (ground truth), as shown in Fig. 2.15(a). The ground truth size 

of the defect was thus determined as 4 mm to 30 mm in depth in the scanned x-y plane, as marked 

by the arrow in Fig. 2.14(a). All TFM images are displayed in 30 dB dynamic range.  
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Figure 2.14: Imaging of a natural transverse defect in a rail head with a wedge transducer by 

comparing different modalities. (a) Ground truth picture of the defect. TFM images beamformed 

using (b) 1 element emission LSSL (benchmark), (c) PW LSSL and compounded LSSL + LSLL 

combinations, and (d) VE LSSL and compounded LSSL + LSLL combinations.  

 

The benchmark 1 element emission 8-transmission TFM image, beamformed using the 

LSSL mode combination, is shown in Fig. 2.14(b) with the ground truth marked by the bracket. 

Compared with the drilled hole’s flat reflectors of the previous section, due to its particular surface 

morphology the natural defect has a lower reflectivity resulting in a lower SNR of the sparse SAFT 

images. The main lobe response extends to the bottom of the ROI which leads to an overestimation 

of the defect size. A noticeable ghost image appears on the left of the image resulting from the 

internal reflections of the L-wave reverberating in the wedge.  

The TFM image using the PW modality is shown in Fig. 2.14(c). The image contrast of the 

LSSL combination using PW is slightly improved compared to 1 element emission, and no 

distinguishable side lobe occurs. Additionally, wave mode compounding using the reflected L-
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wave from the defect (LSLL combination) further improves the contrast. However, the depth 

indication of the defect using PW-TFM (10-37 mm) still deviates from the ground truth (3-31 mm). 

This angular shift of the image (in depth) is due to the limited steering ability of the PW 

transmission.  

The best result is seen in the VE-TFM images shown in Fig. 2.14(d), with the highest 

contrast and a reasonable defect size estimation even using a single LSSL mode combination. 

Finally, the compounded image (LSSL and LSLL combination) shows that most of the side lobes 

are suppressed below -30 dB, with the main lobe indicating the correct size of the defect. Most 

interestingly, the elongation of the main lobe around 31-40 mm in depth, seen in the benchmark 1 

element image, is suppressed in this case. This result confirms that the sparse VE method with 

wave mode compounding in wedge-transducer applications can provide satisfactory images of 

weak-reflection targets.  

 

2.5 Discussions and Conclusions 

This article has investigated the implementation of sparse SAFT for high frame rate 

ultrasonic imaging of internal discontinuities in solids when using a transducer wedge setup. This 

case requires particular consideration of the wave refractions and mode conversions at the wedge-

medium interface. In particular, the Virtual Element (VE) method and the Plane Wave (PW) 

method were examined in order to find appropriate combinations of the operational parameters 

that yield fast frame rates with strong image contrast.  

This paper also explored the opportunity to compound the S-wave and the L-wave 

propagating in the test medium through the interposed wedge to further increase the array gain. 

For the VE method, the circular wavefront of the two wave modes from a single transmission can 
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be focused synthetically at any point in the ROI. Since the beam directions of each of the two wave 

modes are distinct, compounding the S-wave and the L-wave is equivalent to doubling the array 

aperture. For the PW method, the incident angle for each transmission beam is fixed, resulting in 

the beam of different wave modes diverging in different directions with no overlap. Moreover, 

since mode conversions also occurs at the target reflectors, a total of four wave mode combinations 

are generally possible with the VE method, while only two mode combinations are available with 

the PW method.  

Proof-of-principle numerical simulations of sparse SAFT transmissions for the transducer 

wedge setup were carried out in a 2-D case. Different configurations of the VE method were 

compared to determine the focusing ability of the array as a function of angular aperture, 

subaperture size, and virtual array pitch. A moderate angular aperture was found appropriate to 

ensure sufficient beam steering capability for the wedge setup while maximizing the SNR of each 

transmission. A formulation to identify appropriate positions of the virtual array was proposed to 

improve lateral resolution and steering ability of the synthetic focus. The PW method was 

compared to the VE method at various frame rates. While possible instability was found for PW 

at ultrafast frame rates, it was also confirmed that both methods can benefit from wave mode 

compounding in transmission.  

Experimental tests were also performed using a 64-element linear ultrasonic array mounted 

on a 55-degree Rexolite wedge probing an aluminum block containing drilled holes as targets. The 

tests confirmed the stability of the VE method with appropriate operational configurations to 

operate at ultrafast frame rates. The performance of PW was found less satisfactory at extremely 

high imaging speeds, although its focusing capability was still found better than the single-channel 

emission when a sufficient number of transmissions were used. The validation of the wave mode 
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compounding, considering refractions and mode conversions due to the wedge, was also carried 

out experimentally on the hole targets, with clearly improved contrast compared to a traditional 

single mode imaging. The last set of experimental tests was performed on an artificial and a natural 

transverse defect in a rail section that typically require a wedge transducer for detection. The 

opportunities for fast and accurate imaging using VE and PW methods and mode compounding 

are also demonstrated in this practical application.  
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Chapter 3 Rail Flaw Imaging Systems Based on Improved 

Ultrasonic Synthetic Aperture Focusing Techniques 
 

3.1 Introduction 

Internal rail flaws are a significant cause of train accidents. According to FRA’s Safety 

Statistics data shown in Fig. 3.1, in the past five years (2018-2022) “Detail Fractures” were 

responsible for as many as 222 derailments and damage cost of $79M (the highest cost of any other 

cause within the category of Track, Roadbed and Structures). “Transverse/Compound Fissures” 

(TF) were responsible for 77 derailments and $21M in damage costs, and “Vertical Split Head” 

(VSH) defects caused 83 derailments and ~$20M in damage cost. These three defects combined 

therefore caused as many as ~80 derailments per year and ~$25M in damage cost per year. The 

detection and quantification of these flaws is clearly of importance to railroad safety and 

efficiency.  

The current manual verification of detected flaws consists of a simple ultrasonic pulse-

echo test conducted using a hand-held ultrasonic transducer with a wedge that is manually moved 

around the flaw in attempt to estimate the flaw size through a -6 dB threshold technique [1]. This 

process yields rail flaw sizing results that are highly subjective to the operator’s judgement. An 

improved flaw verification would allow to generate 3D ultrasound images of the internal flaw for 

an objective determination of flaw size and orientation. Knowledge of the correct flaw size can 

inform the most appropriate remedial actions, which can largely reduce the cost of rail maintenance 

and improve safety.  

Current OEM portable systems exist for manual flaw imaging in structural components 

using ultrasonic techniques. These systems are based on Phased-Array (PA) technology [2]. As 

schematized in Fig. 3.2, in PAs transmission signals are sent to all channels that are appropriately  
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Figure 3.1: (a) FRA safety statistics data for all track, roadbed and structures (2018-2022). 

Examples of (b) Detail Fracture (DF), (c) Transverse Fissure (TF), and (d) Vertical Split Head 

(VSH).  

 

delayed for physical focusing and steering at various depths. This means that (a) the PA hardware 

is fairly complicated because of the multiple D/A output channels required, (b) the PA imaging 

speed is limited by the need to physically focus at different locations in the medium, and (c) the 

classical PA beamforming is only achieved in transmission through focused beams which limits 

the lateral resolution.  
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Figure 3.2: Ultrasound imaging technology: conventional Phased-Arrays (left) vs. Synthetic 

Aperture Focusing (right).  

 

Conversely, Synthetic Aperture Focus Techniques (SAFT) have been considered for defect 

imaging for various benefits over the PA methods [3]. In a traditional SAFT scheme, the 

transmission is sent to a single channel at a time, and the focusing is done in post-processing both 

in transmissions and in receptions (two-way synthetic focusing) [4]. This means that (a) the SAFT 

hardware can be much simpler since only a few D/A output channels are required, (b) the SAFT 

imaging speed can be increased by limiting the output channels, and (c) the SAFT focusing is 

achieved in both transmission and reflection leading to better resolution in a large inspection area.  

The objective of this chapter is to present the capabilities of SAFT methods developed in 

chapter 2 applied to rail flaw imaging with an ultimate goal of automatic defect size estimation. 

The first part of the chapter introduces a field deployable prototype system for 3D imaging of 

internal rail flaws using ultrasonic SAFT techniques in a transducer-wedge setup. The improved 

SAFT beamforming scheme proposed in chapter 2 provides high contrast images in quasi real-
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time [5]. A sophisticated post-processing routine is developed to enable automatic rail flaw 

quantification without the user’s judgement. The prototype’s hardware is packaged in a battery-

powered Pelican case for portability and ruggedness. Validation tests were performed on a number 

of flawed rail sections from the FRA rail defect library managed by MxV Rail. The flaw images 

generated by the imaging prototype showed a good match compared to the ground truth established 

from rail break tests, especially in the case of natural transverse-type defects.  

The second part of the chapter explores the performance of the developed enhanced SAFT 

imaging methods applied to a Roller Search Unit (RSU) setup with a smaller aperture size. A 

substantial improvement can be obtained when the ultrasonic inspection is implemented with a 

rolling wheel using an architecture similar to the RSUs utilized by conventional ultrasonic rail 

inspections. Enhancements to SAFT are implemented to tackle issues with limited signal-to-noise 

ratio (SNR) and to accelerate the imaging frame rate for the RSU setup. The aperture is angled to 

generate both longitudinal and shear wave beams, optimizing reflections from transverse defects 

as well as increasing the effective Region of Interest (ROI). Validation tests were carried out with 

the RSU imaging system on both artificial and natural rail flaws at the UCSD rail defect farm.  

 

3.2 The SAFT Imaging System with a Wedge Transducer 

A portable imaging prototype system was designed, assembled and tested to enable hand-

held ultrasound imaging of rail flaws based on an enhanced SAFT technique [6]. As shown in Fig 

3.3(a), the hardware components of the imaging prototype were a multiplexer, a 12V battery, a 

host computer, and a probe comprised of a transducer array, a wedge and an encoder wheel. All 

the hardware components were screw-fixed inside a carry-on size Pelican case. The multiplexer 

(OEM-PA Mini 64/64 by Advanced OEM Solutions, West Chester, OH, USA) that allowed multi- 
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Figure 3.3: (a) Main components of the portable imaging prototype. (b) Array-wedge probe. (c) 

The prototype during scanning of a rail section in the laboratory.  

 

channel data acquisition controlled the pulsed emission and reception to/from the array. A 12V 

battery was used to support the multiplexer for up to 8 hours of autonomous operation. The probe 

was composed of a transducer array, a shear wedge, and an encoder, as shown in Fig. 3.3(b). The 

transducer was a 64-element longitudinal (L-) wave linear array (Olympus NDT 2.25L64-

38.4X10-A12-P-2.5-OM) with a central frequency at 2.25 MHz. The array was attached to a 55-

degree wedge (Olympus NDT SA12-N55S) to generate directional shear (S-) waves in the rail 
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steel. The encoder recorded the transverse position of the probe when scanned on the rail surface, 

with a resolution of 16 counts/mm. The encoder allowed the system to create 3D images from the 

individual 2D scans. The array was coupled to the wedge using conventional ultrasonic gel 

couplant. The couplant was also applied at the wedge/rail interface to compensate for the 

impedance mismatch. A Guided User Interface (GUI) platform was developed on a CUDA enabled 

Alienware R13 Laptop with a NVIDIA GeForce GTX 1070 GPU. All steps of the signal processing 

algorithms were programmed and automated in the GUI platform which enabled flexible 

configuration and result analysis for the user’s convenience. As shown in Fig. 3.3(c), during testing 

the user simply moves the probe on the surface of the rail section, and 3D images of the scanned 

area are displayed in quasi real-time in the GUI. Specific features of the image reconstruction 

algorithms that were developed and implemented in the prototype are discussed in detail in the 

following subsections.  

3.2.1 Time Back-propagation Beamforming with a Transducer Wedge 

The time backpropagation algorithm (also known as Delay-And-Sum or DAS algorithm) 

is widely used in SAFT imaging [7]. Dynamic focus is achieved both in transmission and in 

reception by considering the ray path connecting the transmitting transducer element, the focus 

point, and the receiving transducer element. An image is built by summing the backpropagated 

signals through all transmitter-receiver pairs of the transducer array. Considering transmitters i = 

1, 2, …, M and receivers j = 1, 2, …, N, the DAS beamformed SAFT image is constructed as:  

𝐼(𝑦, 𝑧) =  ∑∑𝐴𝑖𝑗(𝜏𝑖𝑗,𝑦𝑧)

𝑁

𝑗=1

𝑀

𝑖=1

(3.1) 

where the Time-of-Flight (TOF) τij,yz is the propagation time of the ray path from the transmitter 

Ti(yi, zi) to the focus pixel P(y, z) and back to the receiver Rj(yj, zj). Notice that the transmitter i can 
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be a virtual source instead of a physical element if a subarray emission is considered [8]. When a 

wedge is interposed between the transducer array and the test piece (as in the present case of the 

rail flaw imaging prototype), the wave path in the wedge must be taken into account in the 

beamforming algorithm. Referring to Fig. 3.4, following Snell’s law, the new backpropagation 

TOF can be calculated by finding the point of refraction at the wedge-medium interface [9], [10]. 

Considering the fact that, in general, both L-waves and S-waves can propagate in the test medium, 

where only L-waves can be considered in the wedge, there exist in general up to four wave mode 

combinations that can be theoretically utilized for imaging. Accordingly, the backpropagation time 

τij,yz for each of the possible wave mode combinations can be calculated as:  

𝜏𝑖𝑗,𝑦𝑧
𝐿𝐿𝐿𝐿,𝐿𝐿𝑆𝐿,𝐿𝑆𝐿𝐿,𝐿𝑆𝑆𝐿 =

𝑑𝑖,𝑦𝑧
𝐿(1)

𝑐𝑤
𝐿

+
𝑑𝑖,𝑦𝑧

𝐿,𝑆(2)

𝑐𝑚
𝐿,𝑆 +

𝑑𝑗,𝑦𝑧
𝐿,𝑆(3)

𝑐𝑚
𝐿,𝑆 +

𝑑𝑗,𝑦𝑧
𝐿(4)

𝑐𝑤
𝐿

(3.2) 

where: LLLL is <L-wave transmitted in wedge + L-wave refracted in medium + L-wave reflected 

in medium + L-wave received in wedge>, LLSL is <L-wave transmitted in wedge + L-wave 

refracted in medium + S-wave reflected in medium + L-wave received in wedge>, LSLL is <L-

wave transmitted in wedge + S-wave refracted in medium + L-wave reflected in medium + L-

wave received in wedge>, and LSSL is <L-wave transmitted in wedge + S-wave refracted in 

medium + S-wave reflected in medium + L-wave received in wedge>. In addition,  𝑐𝑚
𝐿,𝑆

 is the L-

wave or S-wave velocity in the medium, 𝑐𝑤
𝐿  is the L-wave velocity in the wedge, and 𝑑𝑖,𝑦𝑧

𝐿(1)
, 𝑑𝑖,𝑦𝑧

𝐿,𝑆(2)
, 

𝑑𝑗,𝑦𝑧
𝐿,𝑆(3)

, and 𝑑𝑗,𝑦𝑧
𝐿(4)

 are the corresponding propagation distances of each ray path segment as 

identified in Fig. 3.4. It was previously shown that the compounding of multiple wave modes can 

dramatically increase the array gain [11]. In this paper, only S-waves are considered in the rail 

steel because of the use of the shear wedge that maximizes S-wave refractions.  
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Figure 3.4: Ray tracing scheme connecting one virtual transmit element Ti, the focal point P, 

and one receiver element Rj.  

 

In order to generate the final image, the raw waveforms are analyzed via their Hilbert 

Transform (analytical representation) as customary in SAFT [12]. Specifically, each waveform is 

decomposed into its in-phase and phase-quadrature components, and the final image is built by 

computing the modulus of these two contributions at each pixel P(y, z).  

3.2.2 Sparse SAFT and Subarray Emission 

The general SAFT scheme in Full Matrix Capture (FMC) mode requires emitting from 

each individual elements of the transducer array sequentially (1 channel at a time) with the full 

aperture acting in reception for each transmission. However, utilizing all possible transmissions 

slows down the imaging process and increases computational burden. That is why, particularly so 

in the medical imaging field, "sparse” transmission schemes are being considered to increase 

imaging speed without sacrificing image quality [13]. Since imaging speed is inversely  
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Figure 3.5: Subarray SAFT technique for faster and more accurate images. (a) Three defocused 

waves defined by the virtual elements are emitted independently by subarrays. Beamforming in 

transmission is performed by applying time delays corresponding to a synthetic focus on point P 

either at (b) on-axis positions or (c) off-axis positions.  

 

proportional to the number of transmissions, the sparse SAFT technique utilized in the rail flaw 

imaging prototype employs only a subset of all possible transmission events. In order to 

compensate for the limited energy transmissible by a single element at high frame rates, multiple 

elements (a subarray) are fired at once [8]. As shown in Fig. 3.5(a), for example, an 8-element 

array only transmits 3 defocused circular waves using 3-element subapertures to replace 8 

consecutive firing of each element. In each transmit event i, the acoustic field of the phased 

subaperture elements superimposes a circular wavefront such that the transmission of the 3-

element subaperture can be modeled as a virtual element (point source) placed behind the physical 

array. In the transmit beamforming, a virtual element array substitutes the physical transmit 

subapertures in the consideration of the DAS ray paths. As shown in Fig. 3.5(b), each transmit 

beam can be properly time delayed by calculating the ray path connecting the virtual array element 

and the focus point P, so that the three transmitted wave fronts are compounded coherently at an 

on-axis focus. By adjusting the time delays, the synthetic focus can be achieved at any point in the 

region-of-interest (ROI), such as an off-axis location in Fig. 3.5(c). The ability to dynamically 
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focus the defocused beams at various locations ensures an acceptable resolution of the SAFT 

images throughout the ROI. This is particularly important for the imaging of rail flaws since the 

size of the transverse-type defects can be fairly large compared to the physical aperture of the array 

thus occupying the full height of the ROI. For the 64 element array in the imaging prototype, the 

authors have found that using eight, 17-element subarray with a 9-element-wide pitch between 

virtual elements (the first and last firings have to discard part of the subaperture that is beyond the 

physical array element numbers) is a reasonable compromise between imaging speed and image 

quality (resolution and SNR).  

3.2.3 Quasi Real-time Rail Flaw Image Display in 3D 

The prototype includes a Graphic User Interface (GUI) that has been specifically designed 

for the rail flaw imaging application. After the setup configuration of the multiplexer, the user 

starts the scanning process by moving the probe along the transverse direction of the rail 

(perpendicularly to the imaging y-z plane). The parallel computation capability of GPU in the host 

computer achieves quasi real-time beamforming of the SAFT images with a frame rate of ~25 Hz 

using an 8-transmission modality [14]. The frame rate limit in the system comes from the data 

transmission and conversion hardware. The theoretical frame rate limit is much higher. As shown 

in Fig. 3.6, the quasi real-time 3D point cloud display is created by compounding the beamformed 

2D images at each transverse position tracked by the encoder. The raw 2D SAFT image slices are 

displayed using a -30 dB threshold while the 3D display highlights only the pixels with intensity 

above the -15 dB threshold. To distinguish image slices of different signal strengths in the 

volumetric compounding, each 2D image is normalized by the maximum intensity value in the 

total collection of 3D pixels. Such a normalization process calibrates the decibel levels of “noised” 

image slices to those images with a strong reflection, suppressing any noise-only pixels between  
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Figure 3.6: GUI runtime window displaying both compounded 3D point cloud (left) and raw 2D 

SAFT image (right). The refreshing rate is 25 Hz using the improved SAFT technique.  

 

different image slices. In the 3D display, the algorithm performs this normalization adaptively by 

retaining the maximum intensity value from the previous 2D image and updating it if a larger 

maximum value is obtained. Notice that the temporary display of 3D point cloud is only for an 

initial visualization of any strong reflections, including artifacts that could affect the final size 

estimation. A post-processing algorithm is needed to extract accurate quantitative information 

regarding a possible internal flaw.  

3.2.4 Postprocessing of Volumetric SAFT Images 

Post-processing algorithms have been developed to further analyze the volumetric SAFT 

images in order to extract the final size and shape of the flaw. The flowchart illustrating the steps 

taken in post-processing is shown in Fig. 3.7. Referring to the schematic on the upper right, the 

SAFT image slices are beamformed in the vertical plane, while the final plane of interest is the  



81 

 

Figure 3.7: Volumetric image post-processing flowchart.  

 

transverse plane. To prepare for image processing, the point cloud is first resized to high resolution 

through bilinear interpolation and converted from the decibel level (-40 dB to 0 dB) to an 8-bit 

grayscale, as shown in Fig. 3.7(a) with two sample slices both in the vertical plane and the 

transverse plane. The volumetric image first goes through a coupled dilation-erosion operation, 

where the intensity of each pixel is first increased and then decreased based on the intensity 

distribution of the neighboring pixels in 3D. As shown in Fig. 3.7(b), the coupled morphology 

process blurs the void between the grating lobes that are caused by Rayleigh diffraction limit of 
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the beamformed ultrasonic waves. Following the dilation and erosion operation, the volumetric 

image is flattened to an identified noise level through filtering techniques, as shown in Fig. 3.7(c). 

Each transverse plane slice is low pass filtered and then subtracted from the original slice to flatten 

the noise “phantoms”. From the sample slice in the vertical plane, the smoothing process does not 

change the intensity of the main lobe response. Since the noise floor is identified in each transverse 

plane, the volumetric intensity map can finally be projected onto the transverse plane such that the 

high intensity pixels are coherently added up, while the lower intensity pixels remain at their 

intensity levels. Shown in Fig. 3.7(d), after converting gray scale image to decibel levels, the 

example transverse defect is finally identified with a high contrast.  

At this point of the processing, it is necessary to isolate the flaw from the background 

image. The critical step to highlight the edge of the flaw is to apply a decibel level threshold and 

convert the intensity map into a binary map. Typically, the threshold is chosen as -15 dB for a ~30 

dB dynamic range SAFT image, but the value should be adaptive to various circumstances such 

as defect orientation, reflectivity, SNR, etc. In this paper a dynamic threshold level is determined 

through the following empirical equation  

𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 𝑎 + 𝑏 ∗ cos(𝜃𝑑𝑒𝑓𝑒𝑐𝑡) + 𝑐 ∗ 𝑛𝑜𝑖𝑠𝑒 (3.3) 

where {a, b, c} are empirical constants calibrated from ground truth results from known flaws, 

θdefect is the incident angle of the acoustic beams on the flaw, and noise is the decibel level of the 

background phantom determined in the flattening process. To find the incident angle θdefect, the 

algorithm first approximates the tilted angle φ of the flaw using the initial 3D visualization by 

projecting the 3D cluster on arbitrary inclined transverse planes and finding the angle of the 

tentative plane that results in the maximum area of the defect. The incident angle is then computed 

by considering the geometric relationship between the broadside of the refracted acoustic beams 
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and the defect inclination φ. As an example, consider a 30 dB dynamic range tomography of a 

sample transverse defect with an estimated inclination φ = 20⁰. The resulting incident angle θdefect 

using the 55⁰ shear wedge is 15⁰. A reasonable set of empirical constants is therefore a = 1.5, b = 

-2, and c = 0.5 to obtain a threshold of -15.4 dB. When the incident angle is small, it is appropriate 

to increase the search range in the decibel levels since the defect gives a good reflection to the 

array (higher contrast image), which results in a negative value of b. The additional consideration 

of noise level gives a second chance of energy level adjustment according to the image SNR. 

The final binary defect image is shown in Fig. 3.7(e). Typically, for a single flaw present 

in the scanner area, a good SNR in SAFT imaging results in only one cluster of pixels. However, 

as in the case of Fig. 3.7(e) a less than ideal SNR may result in artifacts that still need to be 

segmented out before the final estimation of the flaw size. For this purpose, the algorithm further 

segments the 3D point cloud using the k-means clustering algorithm by calculating a minimum 

Euclidean distance between pixels to form identified clusters. The minimum Euclidean distance is 

set to 1.4 mm (S-wave resolution in steel) to differentiate between different clusters of pixels, and 

the clusters are arranged in descending order per area. To account for cases of multiple separate 

flaws within the same scanned area, the GUI includes the possibility to investigate each individual 

cluster if the secondary clusters are worthy of attention.  

3.2.5 Experimental Results 

Validation of the rail flaw SAFT imaging prototype was performed on flawed rail sections 

from the FRA Defect Library managed by former TTCI (now MxV Rail). Some of the test sections 

contained natural rail defects, while others contained artificial defects. Following the scanning by 

the prototype at UCSD Experimental Mechanics & NDE Laboratory, each test rail section with 

natural defects was broken by TTCI personnel to establish the “ground truth” from visual  
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Figure 3.8: Validation tests: SAFT images of natural rail flaws and their corresponding ground 

truth pictures. (a) A Transverse Defect in a weld, (b) a void in a weld, and (c) a Transverse 

Defect in the rail head corner.  

 

observation of the flaws. Following the initial validation, some parameters in the SAFT post-

processing algorithms were optimized to better match the ground truth.  

Fig. 3.8 shows the final images obtained by the SAFT imaging prototype for three natural 

defects from three FRA rail sections compared to the corresponding ground truth pictures after the 

rail breaks. Fig. 3.8(a) shows the case of a natural Transverse Defect (TD) in a weld. In this case, 

the size and shape of the defect are perfectly imaged by the SAFT system, with a size error as low 

as -2.3%. This example therefore shows an ideal case of a strong reflector (large SNR of the 

ultrasonic reflections) and located in a region that allowed good contact between the wedge and 

the rail surface during manual scanning. Fig. 3.8(b) shows the case of a void defect in the welded 

region of another rail section. The ground truth picture shows a clear indication of the void with 

the oxidized boundary. However, compared to the first case of the TD, the void defect is a slightly 

weaker reflector of ultrasound. In the raw SAFT images for this case, the noise level is as high as 

-25 dB, and some areas of the reflection from the weld may be mistaken for the defect in the initial 
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3D point cloud display. However, as shown in Fig. 3.8(b), the post-processing routine described 

in the previous section successfully isolate the void reflector with a final defect area estimation 

only differing from the ground truth by 3%, with a similarly good match in defect shape. Fig. 

3.8(c) shows the case of a natural TD located in the upper right corner of the rail head. This case 

highlights the difficulty in scanning defects located under highly curved surfaces such as the head 

corners. In this case, it is impossible to maintain good wedge-rail contact throughout the entire 

scan. As a consequence, the SNR of the SAFT reflections degrades close to the head corners 

making these regions effectively “blind” to the scanning. Due to the contact limitation, the final 

image of Fig. 3.8(c) only detects about half of the defect, resulting in a severe underestimation of 

the defect size.  

The next Fig. 3.9 shows the validation results for four cases of artificial flaws (End Drilled 

Holes -EDHs) in the FRA Defect Library. In these cases, the ground truth is obtained from CAD 

drawings of the holes. Fig. 3.9(a) shows an EDH in the rail head corner. Due to the aforementioned 

difficulty to maintain a good wedge-rail contact, the ROI cannot fully cover the corner defect 

resulting in the expected size underestimation. When the EDH is in the middle of the rail head as 

in Fig 3.9(b), the SAFT imaging results in a good match to the ground truth. In the absence of 

other explanations, the “leakage” of SAFT image at the bottom of the EDH is likely to be a 

secondary crack growing from the corner of the drill bit. Fig. 3.9(c) shows an EDH in a heavily 

worn rail section. In this case, the wedge-rail contact is further compromised by the highly curved 

surface resulting in a severe underestimation of the defect size. Finally, Fig. 3.9(d) shows an EDH 

in a worn section with a sharp corner on the head surface. This is an extremely unideal case, since 

the scanning process has to stop before the probe reaches the corner to avoid complete loss of 

signal. It is comforting to see that even in cases of reduced ROI due to the rail corner curvature, 
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Figure 3.9: Validation tests: SAFT images of artificial rail flaws (End-Drilled Holes) and their 

corresponding ground truth circles: (a) EDH in rail head corner, (b) EDH in middle of rail head, 

(c) and (d) EDH in heavily worn rail head corner.  

 

the portion of the defect that is successfully scanned shows a good match with the corresponding 

portion of the ground truth holes.  

 

3.3 SAFT Imaging Capabilities with a Roller Search Unit 

The prior wedge probe introduced in section 3.2 requires manual scanning with gel 

couplant and has difficulty conforming to curved surfaces such as the railhead corners, for example 

shown in Fig. 3.9. A wheel implementation of the SAFT imaging capability can lead to a more 

practical and accurate test for quantifying rail flaws, with examples shown in Fig. 3.10. Section  
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Figure 3.10: In-motion ultrasonic rail inspections using Rolling Search Units (RSUs).  

 

 

Figure 3.11: The RSU with the mounting frame and positioned on a test rail section in the 

laboratory.  

 

3.3 is therefore aimed at building on this prior experience to develop a laboratory prototype for in-

motion, wheel-based imaging of rail flaws. Once completed, this effort is expected to contribute 

to an innovative and practical solution for accurate quantification of safety-critical rail flaws.  

OEMPA1
Multiplexer

RSU wheel with 
transducer array

Mounting frame

Support wheels

Test rail section
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3.3.1 Laboratory Setup of the RSU Imaging Unit 

The investigated RSU system is a rubber wheel with conventional water-based coupling 

hosting various ultrasonic array transducers that were previously used by MxV Rail in a Phased-

Array imaging configuration [2]. As shown in Fig. 3.11, the RSU wheel was mounted on a test rail 

section in the UCSD Laboratory by designing an aluminum frame that allowed longitudinal 

movement for scanning along the rail. The design of the frame enabled not only to adjust the 

vertical position of the RSU by applying different amount of pressure in the vertical direction, but 

also to rotate the orientation of the transducer in order to create inclined transmission/reception 

directions so as to maximize the reflections from TDs.  

The reason for inclining the orientation of the transducer array inside the RSU is illustrated 

in Fig. 3.12. The RSU setup works in a similar manner as a transducer wedge by adding an 

interposed medium (water inside the wheel) between the transducer array and the rail. Let us focus 

on TDs as the primary targets of the inspection. If the array is positioned horizontally (Fig. 3.12-

left), only the top of the TD will reflect the beams, hence the defect would be greatly 

underestimated. Conversely, by positioning the array at an appropriate inclined angle (Fig. 3.12-

right), the entirety of the defect will reflect the beams allowing for imaging the full defect size. As 

a rule of thumb, an optimum angle for full ultrasonic reflection from a TD is generally considered 

70-degree from the vertical plane (resulting in normal incidence on the TD that is generally 

oriented at 20-degrees from the vertical). Additional discussion on the aspect of transducer 

orientation is provided later in section 3.3.4.  

3.3.2 Rail Profile Recovery Using RSU 

Before applying the SAFT imaging scheme developed in section 3.2, it is important to 

recognize that the relative position of the transducer array and the water/steel interface needs to be  
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Figure 3.12: Horizontal vs. inclined transducer array orientation inside the RSU wheel for 

ultrasonic imaging a Transverse Defect (TD) in the rail.  

 

calibrated each time the RSU is used. This is because the pressure applied to enlarge the contact 

area between the tire and the railhead can change the position of the RSU. In addition, considering 

the 1.5D Matrix Transducer (MT) that was mounted inside the RSU wheel, each row (treated as a 

linear array in this section) has a different height with respect to the railhead surface due to the 

unknown rail profile. Thus, it is essential to establish the precise position of the array (height and 

angle) to allow for accurate TOF estimations as detailed in section 3.2.1. These exact positions can 

be determined by reading the ultrasound reflections from the water/tire or the tire/steel interface.  

Consider a pulse-echo signal collected by an arbitrary element of the transducer array, as 

shown in Fig. 3.13(a). The reflections from the inner side of the tire (water/tire interface) and the 

outer side of the tire (tire/rail interface) are the most significant wave arrivals in this plot. By 

combining these pulse-echo signals across a row of the MT (hereafter simplified as a linear array), 

a B-scan “heat map” can be generated as shown in Fig. 3.13(b). The TOF of these two reflections  
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Figure 3.13: (a) A typical pulse-echo waveform recorded by one element of the transducer array 

in the RSU wheel on a rail. (b) B-scan image combining pulse-echo waveforms from a row of 

elements showing variations of arrival times of the tire reflections across the array.  

 

can be now automatically tracked to recover the height and angle of the linear array with respect 

to the railhead surface. By performing the same estimation for all row components of the MT, the 

rail head profile can be recovered to enable full 3D image reconstruction of any internal flaw with 

high accuracy.  

Fig. 3.14 shows a typical SAFT image obtained by placing the RSU with the transducer 

array in a horizontal orientation probing a rail section with an 8 mm Side Drilled Hole (SDH). 

Since only one row in the MT is considered (25 elements), the generated SAFT image is 2D in the 

x-y plane (x - longitudinal direction of the rail and y - vertical direction). The identified height of 

the array from the tire/rail interface is 16 mm. The estimated positions of the RSU, the array, and 

the rail head surface are shown in Fig. 3.14(b). With this horizontal orientation, the refracted L-

wave is the dominant wave mode in the rail since the incident beam is normal to the interface. 

Thus, it is reasonable to set the region of interest (ROI) to form a SAFT image directly below the 

array. Fig. 3.14(a) shows the 2D SAFT image by performing a conventional 25x25 FMC using L-

wave TOF for back propagation. The most significant response is seen near the tire/rail interface, 

which corresponds to the strong reflections seen in the raw signal of Fig. 3.13(a). There also exist  

(a) (b)

(a) (b)
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Figure 3.14: An example of SAFT imaging of a Side-Drilled Hole in the rail using a horizonal 

transducer orientation. (a) The SAFT image in decibels, and (b) the schematic showing the 

positions of array, wheel, rail and ROI.  

 

multiple other reflections inside the RSU that are incorrectly back propagated in the ROI as “false 

positives.” Only the top surface of the SDH is imaged, since the limited aperture size (20 mm for 

the 25-element linear array) is only able to illuminate a small angle of view. It is therefore clear 

from these results that orienting the transducer horizontally can generate false positives in the ROI. 

This confirms the necessity to incline the transducer for better imaging performance.  

3.3.3 Use of Angled Beams and Analysis of Wave Modes 

As illustrated in section 2.3, the ROI of the SAFT image is constrained by the quality of 

the synthetic ultrasonic transmit beams that can build up a high-resolution focus through 

beamforming. Orienting the transducer array in the RSU in an inclined position can dramatically 

increase the effective ROI in the inspected railhead while maximizing the sensitivity to TDs. A 

comprehensive study of the ROI is important because it determines the highest speed the RSU can 

travel along a rail track without compromising image quality. This section is focused on finding a 

suitable orientation of the transducer array to achieve strong imaging performance.  

(a) (b)

(a) (b)
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Figure 3.15: Angled beam setup for RSU. (a) The RSU holder oriented at an inclined angle of 

18~20-degrees. MATLAB simulations of the wave propagation considering (b) L-waves 

refracted in the rail and (c) S-waves refracted in the rail.  

 

Despite the differences in wave speed for L-wave and S-wave SAFT images, their effective 

ROI can be highly different due to the difference in wave refraction [15]. Fig. 3.15 shows the angle 

beam RSU setup with the array positioned at an 18~20-degree inclination from the horizontal 

direction. Fig. 3.15(a) shows a picture of the RSU oriented for this case in the UCSD laboratory 

setup. Figs. 3.15(b) and (c) present the results of a simulation performed using MATLAB’s k-

wave toolbox. Specifically, the simulation analyzed a TD illuminated by L-waves (Fig. 3.15(b)) 

and S-waves (Fig. 3.15(c)), respectively.  The transducer array is placed in water as the first layer, 

and the second medium is set as steel. The simulated defect is an 8 mm slit oriented at 20-degree 

from vertical as typical of TDs in rails. As shown in the figures, the refracted L-wave in steel is 

beyond the first critical angle, whereas the refracted S-wave propagates at ~40 degrees generating 

strong reflections from the TD. This situation is highly beneficial for imaging purposes, where the 

TD can be therefore best imaged using the refracted S-wave in the rail without confusion with any 

(a) (b) (c)

(a) (b) (c)
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L-wave reflections. The same scenario, in fact, is desired in traditional RSU detection of TDs that 

also rely on the refracted S-waves in the rail steel.  

Although theory and simulations suggest that the refracted S-wave is the best candidate to 

generate high quality SAFT image of TDs in a large ROI, there is a certain angular range where 

L-wave images may work better. Fig. 3.16 shows both L-wave and S-wave images when an SDH 

is placed directly at the bottom of the RSU. The two images are beamformed using the same FMC 

dataset but with different TOF corresponding to each of the wave modes. The CNR of the L-wave 

image is -15 dB while that of the S-wave image is only -10 dB. The lower SNR of the S-wave 

image is caused by the fact that the S-wave “misses” the SDH that is placed directly below the 

RSU. It is also interesting to observe that there is a phantom of S-wave reflection in the L-wave 

image located at -15 ~ -20 mm in length. This is because the S-mode wave speed is slower than 

L-mode in steel but incorrectly beamformed using L-mode wave speed. Therefore, as a rule of 

thumb, we can conclude that when the target flaw is located directly below the RSU, it is 

reasonable to consider the refracted L-wave to build the image.  

Fig. 3.17 shows the same comparison of L-wave and S-wave images, where now the SDH 

is located ahead of the RSU. In this case, the S-wave image shows superior CNR of -25 dB, while 

the L-wave image has much less contrast and poor resolution. Comparing the results in Fig. 3.16 

and Fig. 3.17, for L-wave images there is a consistent side lobe located around 10 ~ 12 mm in 

depth at the upper left corner of the image. Similarly to the findings in Fig. 3.14(a), this side lobe 

is the result of reverberations within the wheel and can be eliminated by performing a baseline 

subtraction.  

From these results it therefore appears that when the target flaw is located ahead of the 

RSU, the S-wave angled beam provides the best images. The L-wave beam can however provide 
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Figure 3.16: Comparison of SAFT images of an SDH using L-waves (left) or S-waves (right). 

The position of the SDH is directly below the RSU.  

 

 

Figure 3.17: Comparison of SAFT images of an SDH using L-waves (left) or S-waves (right). 

The position of the SDH is ahead of the RSU.  
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Figure 3.18: ROI of the RSU imaging for estimating possible test speeds.  

 

additional information when the flaw is located directly below the RSU. This opens an opportunity 

to combine L-waves and S-waves to image different regions of the rail and thus enlarging the ROI.  

3.3.4 Estimates of RSU Moving Speed 

Once the ROI area is set in accordance with the angle beam profile, it is appropriate to 

estimate potential test speeds using the proposed SAFT imaging modalities. As shown in the 

schematic of Fig. 3.18, it is reasonable to consider an ROI with a length of 50 mm. Let us also 

enforce a 50% overlap during the scanning (i.e. the same portion of rail is imaged by at least two 

frames). Considering the current capabilities of the multiplexer hardware available at UCSD 

(OEM-PA1 model from Advanced OEM Solutions, West Chester, OH), using a 50x50 FMC for 

the first two rows in the 5x25 MT and only firing 4 sparse transmissions in one frame, the framerate 

is restricted to 25 Hz due to limited multiplexer/computer communication bandwidth. Thus, the 

speed of the RSU can be as fast as 25 mm × 25 Hz = 625 mm/s = 1.4 mph.  
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Figure 3.19: Field test at UCSD’s Rail Defect Farm. 

 

This initial analysis therefore suggests that with the available hardware capabilities the 3D 

imaging test can only be implemented in a slow scanning mode, perhaps following a traditional 

flaw detection at higher speeds. To further increase imaging speed, the number of transmissions 

needs to further decrease or hardware with faster data communication needs to be procured. These 

and other options to further increase test speed while keeping an acceptable image quality will be 

considered further in the continuation of this study.  

3.3.5 Testing of Imaging System at UCSD Rail Defect Farm 

UCSD’s Rail Defect Farm (Fig. 3.19) is a 250-ft Class I track using 136RE rail constructed 

in 2010 under FRA funding and support of BNSF. It consists of a 125-ft tangent portion and a 125-

ft 8-deg curved portion, both containing a number of artificial and natural rail flaws including 

several TDs. This track enables to test the RSU imaging system under conditions representative of 

the field. The RSU mounted on the aluminum frame was moved along the track by hand. The 

OEM-PA1 multiplexer processed the first 2 rows of the MT transducer array hosted in the RSU 

and positioned over the rail gage side. The host computer displayed the SAFT images in quasi-real 

time using parallel computation capabilities in the GPU [10].  

(a) (b)
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Figure 3.20: Results from two SDHs at UCSD Rail Defect Farm. (a) The RSU positioned above 

the defects. (b) SAFT image using a traditional 1-channel transmission. (c) SAFT image using 

the enhanced 9-channel subaperture transmission showing much better contrast.  

 

The RSU system was first tested on two SDH artificial defects. Shown in Fig. 3.20(a), the 

two SDHs (diameters of 3 mm and 12 mm, respectively) were drilled at the gage side of the 

railhead. The RSU was mounted such that the transducer array was oriented at an 18-degree 

inclination from the horizontal. For these tests the conventional SAFT method was compared with 

the subaperture transmission SAFT. Both modalities were implemented in a full 25 firings (instead 

of sparse firing) to compare the highest imaging quality. Only the S-wave was considered in this 

case. For the 1 channel 25x25 FMC scheme in Fig. 3.20(b), the image CNR is as low as -8 dB, 

which is unimpressive. A 9-element subaperture transmission, Fig. 3.20(c) shows a much better 

performance with greatly improved CNR of -20 dB. Hence it is confirmed that a sufficient number 

of elements is required in SAFT subaperture transmissions to achieve a satisfactory image quality.  

The RSU system was then tested on one of the natural TDs present in the UCSD test track.  

Fig. 3.21(a) shows the RSU positioned on the rail for this case. The TD was first imaged using the 

wedge-based imaging system described in section 3.2 as the “ground-truth.” That system used a 
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Figure 3.21: Results from a natural TD at UCSD Rail Defect Farm. (a) The RSU positioned 

above the defect.  (b) Ground truth of the TD obtained from the wedge-based imaging system. 

(c) SAFT image using the enhanced 9-channel subaperture when the TD is in the center of the 

ROI. (d) same as (c) when the TD is to the right of the ROI. 

 

64-element linear transducer on a plastic wedge that was scanned across the railhead to construct 

3D images from 2D slices. This final “ground truth” result is shown as a point cloud in the 3D 

image of Fig. 3.21(b). From this image, a 2D slice in the vertical plane (orange contour in the 

figure) indicates that the TD is oriented 20-degree from the vertical and initiates from the rail head 

surface up to a depth of ~12 mm. The RSU imaging result using the 9-channel subaperture 

transmission SAFT is shown in Fig. 3.21(c) and (d) for two different RSU positions along the 

track. In the case of Fig. 3.21(c) where the TD is located at the center of the ROI, the SAFT image 

matches well with the ground truth, with the exception of a small underestimation of the defect 

size in the area close to the rail head surface.  This small error is due to the “blind zone” that exists 

very close to the rail surface due to the finite contact interface between the tire and the rail (also 

shown in the figure).  No ultrasonic beam is allowed to propagate in this zone. When the TD is 

located further ahead in the ROI, Fig. 3.21(d), the SAFT image has lower contrast and results in 
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an underestimation of the TD size. This error is again related to the blind zone that is extended for 

targets located ahead of the ROI.  

In the continuation of this study, the problem of the “blind zone” will be addressed in at 

least two ways. First, several images of the same TD for different positions of the RSU could be 

combined and fused to obtain the true size of the flaw. Second, the extent of the blind zone itself 

could be reduced by redesigning the position of the transducer array inside the RSU in order to 

obtain a wider angular range of the ultrasonic beams propagating through the tire/rail interface.  

 

3.4 Discussions and Conclusions 

SAFT techniques are the new front in ultrasonic imaging of internal discontinuities because 

of their potential for accurate and fast imaging. This chapter has presented two prototype systems 

based on improved SAFT techniques applied to the 3D imaging of rail flaws. These tools can 

improve the outcome of the manual verification of rail flaws by resulting in objective flaw size 

and shape that can then inform the most appropriate remedial actions.  

The first field-deployable prototype is hosted in a ruggedized carry-on size case and is 

battery powered for autonomous operation. The sensing probe consists of a linear ultrasonic array 

that is mounted on a wedge and includes a position encoder to build 3D images from 2D SAFT 

slices. The beamforming algorithm tracks the ray paths of the ultrasonic waves through the wedge 

and utilizes sophisticated subarray sparse firing to increase imaging speed. Currently high-contrast 

images can be obtained at a frame rate of 25 Hz, although higher speeds can be obtained (if 

necessary) by further reducing the number of firings at the expense of image quality. Special post-

processing algorithms are utilized to reduce the 3D point cloud into a result that can lead to the 

final size and shape of one (or multiple) flaws present in the scanned Region of Interest.  
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The transducer-wedge based imaging prototype was tested on rail sections containing both 

natural and artificial flaws. The testing allowed the authors to refine control parameters of the 

imaging system to find the best match to the ground truth. Good results, in terms of both flaw size 

and flaw shape, were obtained in the presence of natural TDs and EDHs if the defects were located 

aways from the curved rail head corners. When instead the defects were located underneath the 

head corners (and particularly so in the presence of heavy head wear), the curvature of the surface 

adversely affected the wedge-rail contact effectively reducing the scanned ROI. In these cases, 

therefore, only a portion of the rail flaw could be successfully scanned resulting in an 

underestimation of flaw size.  

The second imaging system utilized a Roller Search Unit (RSU) that hosted various 

ultrasonic transducer arrays. A multiplexer and a computer were interfaced with a subset of the 

arrays for full control of transmissions and receptions at the applicable transducer elements. A 

mounting frame was built to position the RSU above the rail. The ultimate envisaged 

implementation would be a rolling wheel hosting the ultrasonic transducer arrays and operated 

either by a walking operator or by a high-speed rail vehicle. Many elements seen in the first 

imaging system, including ray-tracing beamforming with an interposed path, multi-mode imaging 

with L-waves and S-waves and subaperture sparse transmissions, are being now implemented in 

the current in-motion RSU probe. Promising results have been shown for the imaging of Side-

Drilled Holes as well as natural Transverse Defects in rail sections tested in the laboratory and at 

UCSD’s Rail Defect Farm.  

While the results have demonstrated the potential to obtain good image quality of the flaws 

with the SAFT-RSU implementation, several aspects deserve further attention and will be 

addressed in the continuation of this research. These include: 1) Further investigations of the sparse 
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transmission modality and hardware communication options to increase achievable test speed. 2) 

Further investigations of the multi-mode (L-wave plus S-wave) beamforming to extend the 

effective Region-Of-Interest (ROI) hence increase rail coverage. 3) Further investigations of the 

“blind zone” ahead of the RSU to improve defect sizing in the region close to the rail head surface. 

Finally, additional development work will be needed for a field-deployable system. For example, 

the currently available multiplexer has only allowed access to one or two rows of the 5x25 Matrix 

Transducer Array available in the MxV Rail RSU. If all the 5x25 array channels can be accessed, 

the true performance limits of the system can be assessed.  
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Chapter 4 Ultrasparse Synthetic Aperture Imaging by 

Passive Ultrasonic Sensing 
 

4.1 Introduction 

The ultrasonic Synthetic Aperture Focus Technique (SAFT) has gained increasing interest 

in recent years in multiple applications ranging from medical imaging to industrial Non-

Destructive Testing (NDT). Compared to traditional B-scan imaging modalities (e.g. Phased-

Arrays or PAs) that require simultaneous active excitations by multiple transmitters with 

controlled time delays for physical beam steering and focusing in transmission, SAFT can achieve 

the same or better focus by transmitting with individual elements at a time [1], [2]. The image is 

then obtained by post-processing the data using beamforming algorithms that create a synthetic 

focus in both transmission and reception. The best SAFT image quality is obtained when using the 

full aperture of an N-element array. This is known as Full-Matrix Capture (FMC) or Total Focusing 

Method (TFM) [3], [4]. In FMC, each array element is used as a transmitter at a time, with all 

elements used as receivers for each transmission, resulting in an N×N matrix of collected 

waveforms. Compared to PA imaging, SAFT offers the advantages of simpler hardware (by 

eliminating multiple simultaneous transmissions with controlled time delays) and better image 

contrast (by theoretically achieving perfect focus exploiting the full array aperture in both 

transmission and reception).  

Several improvements have been proposed to increase the performance of SAFT ultrasonic 

imaging, in terms of both image quality and test speed. In terms of image quality, the SAFT results 

can be degraded by the limited energy that is injected into the test medium by each single 

transmitter. This is a larger issue in medical imaging because of the highly attenuating materials, 

or when using a wedge in industrial NDT applications [5]-[8]. The limited transmitted energy can 
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be overcome by the use of transmission subarrays, where multiple elements contribute to a single 

transmission. These subarrays can be shaped to generate planar or circular wavefronts to illuminate 

the region of interest with varying degrees of performance [9]-[18]. In terms of imaging speed, the 

prime need for “fast” or “ultrafast” imaging has been the medical field, in applications requiring 

transient elastography for breast cancer diagnosis, functional imaging of brain activity, imaging 

blood motion or contrast agents, and many other applications, as summarized in [19]. Other studies 

have further improved the performance of high-frame-rate medical imaging via coherent and 

incoherent image processing [20], [21]. In NDT, fast imaging can also benefit applications of in-

motion scanning of solids such as imaging of defects in railroad tracks using moving inspection 

vehicles. Regardless of the application, the most effective way to increase the speed of a SAFT 

method is to decrease the number of transmissions (whether using single-element transmitters or 

multi-element subarray transmitters). This is known as “sparse” array firing. An added advantage 

of sparse firing is the simplification of the multiplexer hardware because of the reduced number 

of high-voltage digital-to-analog output channels. Unfortunately, decreasing the number of 

transmissions generally degrades the quality of the image since the Signal-to-Noise Ratio (SNR) 

of a SAFT image is given by 𝑆𝑁𝑅 = √#transmissions × #receptions.  

One technique proven effective to increase the array gain without increasing its physical 

array aperture when imaging solid materials is the compounding of multiple wave modes. This 

concept exploits the simultaneous existence of various wave modes, whether longitudinal and 

shear waves in bulk 3D solids [8], [9], [22], or multiple guided waves in dispersive waveguides 

[23]. The wave paths from these modes can be compounded either coherently or incoherently to 

significantly improve image focus compared to a single-wave mode image.  
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This chapter demonstrates a technique for “ultrasparse” array imaging that uses as few as 

one, and as many as four individual single-element transmissions for fast SAFT imaging without 

sacrificing image quality. This important result is achieved by implementing revised concepts of 

“passive sensing” to effectively reconstruct a virtual FMC (or TFM) set of waveforms with a 

minimum number of physical transmissions.  

The field of “passive” ultrasonic (or acoustic) sensing has gained increasing interest in 

recent years following the seminal work of Lobkis and Weaver [24]. These authors demonstrated 

that if a closed or open system is excited by a diffuse wave field (e.g. generated by acoustic sources 

randomly distributed in space and time, or a field with equi-partitioned energy among all normal 

modes), the time-averaged cross-correlation of the signals collected at two receiver points I and J 

converges to the Green’s function (or the Impulse Response Function - IRF) of the system between 

the two receivers. Hence the “passively” reconstructed signal between receivers I and J 

corresponds to the “active” IRF that would be collected if I was the source (hence acting as a 

“virtual” source) and J was the receiver. This concept of passive Green’s function reconstruction 

has since been used in several applications of ultrasonic, acoustic or dynamic characterization of 

a test medium where the excitations can be provided by either the natural environment or by a few 

controlled sources. Several useful applications of this “passive” approach have been demonstrated 

in underwater acoustics [25]-[27], seismology [28]-[34], seismic interferometry for dynamic 

identification of civil infrastructure [33], [35]-[40], as well as structural health monitoring and 

NDT defect detection [41]-[53]. Some applications of passive sensing have included beamforming 

imaging by taking advantage of the multiple “virtual” sources that could be created by an array of 

only receivers. This kind of passive beamforming imaging was demonstrated to visualize surface 

waves on the earth’s surface by using ocean-generated ambient excitations [34], map geological 
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features for oil and gas exploration using ambient micro-earthquakes [34], image damage in 

structures using randomly distributed ultrasonic sources [43], [46], and perform SAFT-TFM 

imaging of subsurface defects using conventional ultrasonic arrays to reconstruct the “virtual” 

responses via cross-correlations of delayed reverberating waveforms [54], [55].  

It was in seismic interferometry that Snieder and Şafak [35] highlighted the advantages of 

performing a deconvolution between the two receiver responses, instead of a cross-correlation, for 

passive IRF reconstructions. In that paper, they noted the fact that the cross-correlation is affected 

by the frequency spectrum of the excitation source, that instead is eliminated by the deconvolution 

process. The idea that an output-input deconvolution, rather than a cross-correlation, provides a 

robust estimate of a system’s transfer function (i.e. the frequency-domain version of the IRF) was 

actually first remarked in the 1970’s by Roth [56] in the context of electrical systems. In particular, 

he showed how a specific implementation of the deconvolution operations (i.e. an averaged 

Normalized Cross-Power Spectrum - NCPS) should be performed to eliminate the distortions 

caused by the shape and/or the randomness of the input, with very important consequences for the 

estimation of an accurate transfer function. Another very important factor addressed in that paper 

by Roth is the importance of the segmental averages of the NCPS operation to appropriately 

reconstruct the coherent transfer function and eliminate the incoherent portion of the signal (e.g. 

noise). Accordingly, robust reconstruction of the passive transfer function requires ensemble 

averaging that can be practically achieved by multiple overlapping segments, as also implemented 

in the 1960’s and 1970’s by Carter et al. [57] for the estimation of the magnitude-squared 

coherence function and by Welch [58] and Nuttall [59] for the estimation of power spectra. This 

aspect of segmental averaging is often neglected in many studies of passive IRF reconstruction 
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even when using cross-correlation, where the time average inherent in the cross-correlation 

operation is mistakenly considered equivalent to an ensemble average of multiple segments.  

The objective of this chapter is to demonstrate the robust and accurate implementation of 

“passive” ultrasonic sensing to achieve “ultrasparse” SAFT array imaging requiring a minimum 

number of single-element physical transmissions (one to four elements) to generate an entire FMC 

set of waveforms. Compared to a traditional “active” FMC capture, the extreme sparsity of the 

“passive” array brings unique advantages of speed (less physical transmissions) and simplicity of 

hardware (less high voltage digital-to-analog channels). Despite the extreme sparsity of 

transmissions, the proposed method can obtain images of good quality without requiring long time 

windows. This result is obtained by implementing several key analysis steps including: (a) the use 

of carefully designed segment-averaged normalized cross-power spectrum for passive IRF 

reconstruction, (b) the use of both the causal and acausal portions of the reconstructed IRF, and 

(c) the compounding of multiple wave modes. After presenting theoretical considerations of 

passive ultrasonic sensing at two receivers, experimental results are shown for ultrasparse SAFT 

imaging of drilled holes in an aluminum block.  

 

4.2 Passive Reconstruction of Impulse Response Function Between 

Two Receivers 

4.2.1 Dual-Output Model 

Consider a linear dynamical system (test medium) as shown in Fig. 4.1(a). It is easier to 

work in the frequency domain. Assume the medium subjected to an excitation spectrum E(f) and 

whose response is measured at two receiver points I and J using transducers whose frequency 

responses are Ri(f) and Rj(f), respectively. Let us also consider the presence of noise in the  
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Figure 4.1: Reconstruction of a structural system’s transfer function between two receivers I and 

J. (a) Physical system. (b) Schematic system. The figure shows the key components contributing 

to the two outputs.  

 

receptions, Ni(f) and Nj(f), assumed zero-DC and uncorrelated with itself and with the excitation. 

These noise terms generally represent incoherent arrivals or system nonlinearities. Using the 

convolution theorem, and considering the schematic system in Fig. 4.1(b), the two receiver outputs 

Oi(f) and Oj(f) can be written as:  

𝑂𝑖(𝑓) = 𝐸(𝑓) 𝐸𝐼(𝑓) 𝑅𝑖(𝑓) + 𝑁𝑖(𝑓) 𝑅𝑖(𝑓) , 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟 𝐼, (4.1) 

𝑂𝑗(𝑓) = 𝐸(𝑓) 𝐸𝐼(𝑓) 𝐻𝑖𝑗(𝑓) 𝑅𝑗(𝑓) + 𝑁𝑗(𝑓) 𝑅𝑗(𝑓) , 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟 𝐽, (4.2) 

where EI(f) is the transfer function of the medium from the excitation to receiver I and Hij(f) is 

the transfer function of the medium between receiver I and receiver J (the quantity of interest 

here). Similarly to what remarked by Roth [56] in a single-input/single-output case, the dual-

output schematic system of Fig. 4.1(b) only defines a general linear dependence between the two 

outputs even in cases where the transfer function is not a physical transmission path. Therefore, 

the specific position of the excitation relative to the receivers in this discussion does not matter 

as long as there is sufficient energy reaching the two receivers and a linear dependence between 
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the two responses exists. The objective of this analysis is to compute the transfer function Hij(f).  

The time-domain Impulse Response Function IRFij(t) can be then simply obtained by the inverse 

Fourier-Transform of Hij(f):  

𝐼𝑅𝐹𝑖𝑗(𝑡) =
1

2𝜋
∫ 𝐻𝑖𝑗(𝑓)𝑒𝑖2𝜋𝑓𝑑𝑓

+∞

−∞

. (4.3) 

4.2.2 Cross-Correlation versus Deconvolution (as Normalized Cross-Power Spectrum)  

For this comparison let us neglect the noise terms in eqs. (1) and (2). The cross-correlation 

operation between the two responses Oi and Oj can be computed in the frequency domain by the 

following cross-power spectrum:  

𝑋𝑐𝑜𝑟𝑟𝑖𝑗(𝑓) = 𝑂𝑖
∗(𝑓) 𝑂𝑗(𝑓) = 𝐸∗(𝑓) 𝐸𝐼∗(𝑓) 𝑅𝑖

∗(𝑓) 𝐸(𝑓) 𝐸𝐼(𝑓) 𝐻𝑖𝑗(𝑓) 𝑅𝑗(𝑓)

= |𝐸(𝑓)|2 |𝐸𝐼(𝑓)|2 𝑅𝑖
∗ (𝑓) 𝑅𝑗(𝑓) 𝐻𝑖𝑗(𝑓) (4.4)

 

where * means conjugate (i.e. time-reversed) and | |2 are auto-correlations, which physically 

correspond to the energy spectra of the functions. If the two receiving transducers have the same 

frequency response, R(f) = Ri(f) = Rj(f), Eq. 4.4 simplifies to: 

𝑋𝑐𝑜𝑟𝑟𝑖𝑗(𝑓) = |𝐸(𝑓)|2  |𝐸𝐼(𝑓)|2 |𝑅(𝑓)|2𝐻𝑖𝑗(𝑓). (4.5) 

Therefore, the cross-correlation operation computes the desired transfer function Hij(f) but 

colored by (a) the energy spectrum of the excitation |E(f)|2, (b) the energy spectrum of the transfer 

function from the excitation to receiver I, |EI(f)|2 and (c) the energy spectrum of the transducer 

response |R(f)|2. When moving to the time domain, therefore, the cross-correlation retrieves the 

IRFij(t) convolved, or distorted, by the autocorrelations of the excitation, of the excitation-to-

receiver-I transfer function, and of the transducer response:  

𝑋𝑐𝑜𝑟𝑟𝑖𝑗(𝑡) = 𝑂𝑖(𝑡) ⊗ 𝑂𝑗(𝑡) = ∫ 𝑂𝑖(𝜏) 𝑂𝑗(𝜏 + 𝑡) 𝑑𝜏
+∞

−∞

= 𝐴𝑐𝑜𝑟𝑟(𝐸(𝑡)) ⊛  𝐴𝑐𝑜𝑟𝑟(𝐸𝐼(𝑡)) ⊛ 𝐴𝑐𝑜𝑟𝑟(𝑅(𝑡)) ⊛ 𝐼𝑅𝐹𝑖𝑗(𝑡) (4.6)
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where the symbol “⊗” means cross-correlation and the symbol “⊛” means convolution. These 

convolutions would simply result in a harmless scale factor if the autocorrelation functions were a 

Dirac delta (i.e. the energy spectra |E(f)|2, |EI(f)|2 and |R(f)|2 were constants), which can only come 

from white Gaussian content. In general, however, and specifically in ultrasonic testing, |E(f)|2, 

|EI(f)|2 and |R(f)|2 are not constants but always band-limited signals. Therefore, the distortions 

introduced in the retrieval of the system’s transfer function Hij(f) in Eq. 4.5, or its time-domain 

IRFij(t) in Eq. 4.6, are quite relevant and constitute a deterministic error.  

Many researchers have attempted to improve the performance of the cross-correlation by 

computing the so called “normalized” cross-correlation where the normalization is done by the 

square root of the product of the two autocorrelations at time zero, i.e.  

𝑁𝑜𝑟𝑚𝑋𝑐𝑜𝑟𝑟𝑖𝑗 (𝑡) =
𝑂𝑖(𝑡) ⊗ 𝑂𝑗(𝑡)

√𝐴𝑐𝑜𝑟𝑟𝑖(0)𝐴𝑐𝑜𝑟𝑟𝑗(0) 
=

𝑂𝑖(𝑡) ⊗ 𝑂𝑗(𝑡)

√∑ 𝑂𝑖
2(𝑡)𝑡 ∑ 𝑂𝑗

2(𝑡)𝑡  

(4.7)
 

Therefore, in this case the cross-correlation is normalized by the mean value of the signal energy 

at I and J (a constant scale factor, not dependent on frequency or shape of the signals).  This metric 

simply scales the cross-correlation to bound it to the interval [-1,1]. It only makes quantitative 

sense at ±1 (full correlation between Oi and Oj) and 0 (no correlation). Besides these values, the 

normalized cross-correlation of Eq. 4.7 does not provide a more quantitative comparison of the 

signals than the traditional cross-correlation of Eqs. 4.7 or 4.6 and therefore leads to the same 

distortions of the pure IRFij(t) that is being reconstructed.  

A better reconstruction of the pure Hij(f) (and therefore IRFij(t)) can be obtained by using 

a deconvolution operation, implemented as the cross-power spectrum of the two responses at I and 

J, normalized by the auto-power spectrum of the response at I (Normalized Cross-Power Spectrum 

or NCPS): 
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𝐷𝑒𝑐𝑜𝑛𝑣𝑖𝑗(𝑓) =
𝑂𝑗(𝑓)

𝑂𝑖(𝑓)
= 𝑁𝐶𝑃𝑆𝑖𝑗(𝑓) =

 𝑂𝑖
∗(𝑓)𝑂𝑗(𝑓)

 𝑂𝑖
∗(𝑓)𝑂𝑖(𝑓)

(4.8) 

By using eqs. (1) and (2), again neglecting the noise terms and assuming the same frequency 

response for the two receivers, R(f), this metric becomes:  

𝑁𝐶𝑃𝑆𝑖𝑗(𝑓) =
 𝑂𝑖

∗(𝑓)𝑂𝑗(𝑓)

 𝑂𝑖
∗(𝑓)𝑂𝑖(𝑓)

=
|𝐸(𝑓)|2  |𝐸𝐼(𝑓)|2 |𝑅(𝑓)|2 𝐻𝑖𝑗(𝑓)  

|𝐸(𝑓)|2|𝐸𝐼(𝑓)|2|𝑅(𝑓)|2
= 𝐻𝑖𝑗(𝑓). (4.9) 

Hence in an ideal case (no noise) the normalized cross-power spectrum NCPS results in the 

reconstruction of the system’s pure transfer function without any distortions.  

4.2.3 Noise Mitigation  

Only the coherent and linear portion of the signals recorded at receivers I and J is of interest to 

reconstruct Hij(f) and IRFij(t). The “noise” terms Ni(f) and Nj(f) in eqs. (1) and (2), containing incoherent 

arrivals or system nonlinearities, should therefore be minimized or eliminated. For this purpose, 

ensemble averages of the numerator and the denominator of the NCPS metric must be taken to exploit 

the fact that the expectation of the cross-power spectrum of two uncorrelated, zero-DC signals S1 and 

S2 is zero, or: 

〈𝑆1
∗(𝑓) 𝑆2(𝑓)〉 = 0. (4.10) 

Considering the general output expressions in eqs. (1) and (2), and assuming the two receivers 

having the same frequency response R(f) = Ri(f) = Rj(f), the ensemble averaged Numerator and 

Denominator of the NCPS from Eq. 4.9 in the presence of noise become: 

𝑁𝑢𝑚 = 〈𝑂𝑖
∗(𝑓) 𝑂𝑗(𝑓)〉 = 〈|𝐸(𝑓)|2 |𝐸𝐼(𝑓)|2 |𝑅(𝑓)|2 𝐻𝑖𝑗(𝑓)〉 + 〈𝐸∗(𝑓) 𝐸𝐼∗(𝑓) |𝑅(𝑓)|2 𝑁𝑗(𝑓)〉

+〈𝐸(𝑓) 𝐸𝐼(𝑓) |𝑅(𝑓)|2 𝐻𝑖𝑗(𝑓) 𝑁𝑖
∗(𝑓)〉 + 〈𝑁𝑖

∗(𝑓) 𝑁𝑗(𝑓) |𝑅(𝑓)|2〉

= |𝐸(𝑓)|2 |𝐸𝐼(𝑓)|2 |𝑅(𝑓)|2 𝐻𝑖𝑗(𝑓), (4.11)

 

𝐷𝑒𝑛 = 〈𝑂𝑖
∗(𝑓) 𝑂𝑖(𝑓)〉 = 〈|𝐸(𝑓)|2 |𝐸𝐼(𝑓)|2 |𝑅(𝑓)|2〉 + 〈𝐸∗(𝑓) 𝐸𝐼∗(𝑓) |𝑅(𝑓)|2 𝑁𝑖(𝑓)〉

+〈𝐸(𝑓) 𝐸𝐼(𝑓) |𝑅(𝑓)|2 𝑁𝑖
∗(𝑓)〉 + 〈|𝑁𝑖(𝑓)|2 |𝑅(𝑓)|2〉

=   |𝐸(𝑓)|2 |𝐸𝐼(𝑓)|2 |𝑅(𝑓)|2 + |𝑁𝑖(𝑓)|2 |𝑅(𝑓)|2 (4.12)
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In the above expressions, the terms <E*(f) EI*(f) |R(f)|2Nj(f)>, <E(f) EI(f) |R(f)|2 Hij(f) Ni
*(f)>, 

<E*(f) EI*(f) |R(f)|2Ni(f)>, and <E(f) EI(f) |R(f)|2 Ni
*(f)> vanish since the noise terms Ni(f) and Nj(f) are 

uncorrelated with E(f), EI(f) or Hij(f), and the term 〈𝑁𝑖
∗(𝑓) 𝑁𝑗(𝑓) |𝑅(𝑓)|2〉 vanishes since Ni(f) and 

Nj(f) are uncorrelated with one another. Also, the | |2 terms in eqs. (11)-(12) now represent power 

spectra, rather than energy spectra, because averaged.  These simplifications result in the following 

ensemble averaged NCPS: 

𝑁𝐶𝑃𝑆𝑖𝑗(𝑓) =
〈 𝑂𝑖

∗(𝑓)𝑂𝑗(𝑓)〉

〈 𝑂𝑖
∗(𝑓)𝑂𝑖(𝑓)〉

=
𝑁𝑢𝑚

𝐷𝑒𝑛
=

|𝐸(𝑓)|2 |𝐸𝐼(𝑓)|2 𝐻𝑖𝑗(𝑓)

|𝐸(𝑓)|2 |𝐸𝐼(𝑓)|2 + |𝑁𝑖(𝑓)|2
. (4.13) 

This result shows that, in the most general case that includes uncorrelated noise at the two receivers, 

even the ensemble averaged NCPS cannot exactly isolate the pure transfer function Hij(f) because of 

the presence of the power spectrum of the noise at receiver I, |Ni(f)|2. If this noise is negligible, then 

NCPSij(f) = Hij(f) and the pure transfer function is retrieved. If instead this noise is not negligible but 

rather white Gaussian, then |Ni(f)|2 is a constant (and equal to the noise variance). Interestingly, in this 

case this constant term helps to stabilize the NCPS metric by avoiding extremely small values in the 

autocorrelation term at the denominator. This stabilization is in fact purposely added in many 

applications of the NCPS for passive transfer function extraction, particularly in the seismic 

interferometry field (e.g. [35]-[37] and many others). In these works, the transfer function is in fact 

computed using an operator similar to a Wiener filter:  

𝐻𝑖𝑗(𝑓) =
〈 𝑂𝑖

∗(𝑓)𝑂𝑗(𝑓)〉

〈 𝑂𝑖
∗(𝑓)𝑂𝑖(𝑓)〉 + 𝛼〈 𝑂𝑖

∗(𝑓)𝑂𝑖(𝑓)〉
(4.14) 

where the “regularization term” α is artificially introduced as a small percentage (e.g. 0.5%) of the 

averaged power spectrum at receiver I to “stabilize the deconvolution”, analogously to what 

recommended as early as the 1970’s for the deconvolution analysis of seismic waves [60]. The 

interesting result of Eq. 4.13 is that the incoherent noise at receiver I can serve naturally as such 
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regularization parameter to stabilize the NCPS transfer function extraction. Following the Hij(f) 

computation, the time-domain IRFij(t) can then be computed from the inverse Fourier Transform of 

Eq. 4.3.  

4.2.4 Segmental Averages versus Long Time Averages  

In much literature on the passive extraction of a system’s transfer function (whether using 

cross-correlations of diffuse ultrasonic fields or deconvolutions of seismic interferometry waves) the 

averaging is performed by simply relying on an integral over a long recording time windows. On the 

contrary, the necessity to perform segmental averaging using windowed overlapping segments to 

properly minimize incoherent noise has been established since the 1960s for FFT-based spectral 

estimations [57]-[59]. This procedure, schematized in Fig. 4.2, involves (a) dividing the entire time 

recording window into multiple overlapping time segments, (b) zero-padding and windowing each 

time segment, (c) computing the Fast-Fourier Transforms (FFTs) for each segment, and finally (d) 

averaging the FFTs for the Numerator and the Denominator of the NCPS metric per Eq. 4.13. Fig. 4.3 

demonstrates the importance of the segmental averages on synthetically produced “passive” signals 

affected by noise. Fig. 4.3(a) simulates the arrivals of a 1 MHz, 5-cycle Hanning-windowed toneburst 

at two receivers I and J separated by an 8 μs delay. White Gaussian noise at a level of 10% of the 

tonebursts’ Root Mean Square has been artificially added to the signals. Fig. 4.3(b) compares the 

reconstructed IRFij(t), computed as the inverse Fourier Transform of the NCPSij(f), when using 

segmental averages (50 μs-wide Hamming-windowed segments with 50% overlap) according to Eq. 

4.13, or when using no averages according to Eq. 4.9. The coherent IRFij(t) arrival is clearly seen at 

the 8 μs delay, but the incoherent noise following the arrival is only suppressed when using the 

segmental averaging. In an imaging application, the later signal contamination may of course result in 

an increased noise floor for the image and even artifacts. A similar result for the same synthetic  
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Figure 4.2: Segmental averaging for the computation of the normalized cross-power spectrum 

for passive transfer function reconstruction in a manner that is robust against incoherent noise 

and nonlinearities. The final transfer function expression is shown at the bottom as the averaged 

sum of each segment.  

 

tone burst signals is obtained in Fig. 4.3(c) when comparing the reconstructed IRFij(t) from the 

segmental averaged NCPSij(f) of Eq. 4.13 to the result from the Normalized Cross-Correlation 

NormXcorrij(t) of Eq. 4.7 that only relies on the cross-correlation integral over the entire signal 

duration. Noise suppression is again best achieved with the segmental averaged NCPSij(f).  

The control parameters in the ensemble segmental averaging process are (1) the width of each 

time segment (TS in Fig. 4.2), (2) the segment overlap and (3) the length of the total recording time 

window (TL in Fig. 4.2). Regarding parameter (1) (segment width), decreasing TS results in increased 

averages, theoretically leading to better transfer function estimations (since the SNR is related to 

√#𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑠). However, the segment width must be large enough to include the same coherent 

arrivals at both of the receivers I and J for both causal and acausal times, an important aspect that  
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Figure 4.3: (a) Synthetic tone burst arrivals at receivers I and J with an 8 μs delay and noise 

added. (b) Reconstructed IRFij(t) from NCPSij(f) using segmental averages (Eq. 4.13) and no 

averages (Eq. 4.9). (c) Reconstructed IRFij(t) from segment-averaged NCPSij(f) (Eq. 4.13) and 

from NormXcorrij(t) (Eq. 4.7).  

 

applies solely to the present dual-output reconstruction. Since there is no guarantee that a given 

segment will actually fall in a perfect time window that simultaneously includes the two coherent 

arrivals, and also given the window function is applied to the segment, it seems reasonable to set the 

segment width TS equal to 3 to 5 times the largest expected arrival time difference at the two receivers.  

For the subject ultrasonic imaging application, this time difference can be estimated, for example, by 

the time of flight of the backwall reflection expected at receiver J when receiver I acts as the virtual 

source. Regarding parameter (2) (segment overlap), Carter et al. [57] showed that the improvement in 

Magnitude-Squared Coherence (MSC) estimation stabilizes after a certain amount of overlap, with a 

62.5% overlap reaching the limit of improvement that is already mostly achieved with a 50% overlap. 

Hence a 50% segment overlap seems like a practical choice. Regarding parameter (3) (total recording 

time length), it has been long known in passive transfer function reconstruction that a longer recording 

window improves the estimation. In underwater acoustic applications (e.g. [26]), the SNR of the 
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passively reconstructed Green’s function from cross-correlations of diffuse fields was found 

proportional to √𝑇𝐿. A similar relationship has been established in IRF reconstruction from NCPS of 

reverberating waves in seismic interferometry for buildings (e.g. [33]). Clearly, in the application at 

hand of sparse-transmission ultrasonic imaging with a goal for high-speed performance, the recording 

time must be kept reasonably small. As the results that follow will show, if the segmental averaging 

process described above is applied appropriately, the total recording time window can be kept 

surprisingly small for a satisfactory reconstruction of the virtual FMC set of IRFs.  

4.2.5 Causal versus Acausal Impulse Response Function Reconstruction  

Whether using cross-correlations or normalized cross-power power spectrum for dual-output 

passive IRF reconstruction, it is possible to extract both the causal signal (equivalent to a virtual 

excitation at I and reception at J) found in the positive times of IRFij, and the acausal signal (equivalent 

to a virtual excitation at J and reception at I) found in the negative times of IRFij:  

𝐼𝑅𝐹𝑖𝑗(𝑡) + 𝐼𝑅𝐹𝑖𝑗(−𝑡) = 𝑐𝑎𝑢𝑠𝑎𝑙 + 𝑎𝑐𝑎𝑢𝑠𝑎𝑙 = 𝐼𝑅𝐹𝑖𝑗(𝑡) + 𝐼𝑅𝐹𝑗𝑖(𝑡). (4.15) 

For reciprocity, in the absence of nonlinearities, the causal and acausal signals should be the 

same, hence IRFij(t) = IRFji(t). This theoretical equality has been employed in the past for various 

purposes, whether to determine the convergence of the passively reconstructed transfer function in 

seismic interferometry [35], [52], or to eliminate half of the FMC matrix in ultrasonic imaging with 

diffuse fields [54], [55].  

While the causal-acausal equality holds for the theoretical “pure” IRF, in a practical 

measurement scenario, however, the passively reconstructed causal IRFij and acausal IRFji are 

generally different for various reasons. One reason is the incoherent noise content that can affect 

differently the I → J wave path and the J → I wave path. Another reason, that was also noticed in 

underwater acoustics [61], SHM [53] and seismology [34], is the non-isotropic or directional excitation 
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sources that cause an “imbalance” between IRFij and IRFji because of the preferred wave propagation 

direction. Reference [61], for example, dealing with cross-correlation passive reconstructions of 

underwater acoustic responses using linear arrays, conclude that only the “on-axis” sources (“within 

±20º of the array endfire direction”) contribute to the long-time averaged IRF while the “off-axis” 

sources create only the incoherent fluctuations in the reconstruction. A third reason why the 

reconstructed causal and acausal responses in a practical dual-output measurement may be different 

are the different frequency responses of the two receiving transducers. In fact, using the framework of 

Fig. 4.1, and assuming receiver responses Ri(f) ≠ Rj(f) and no noise, the IRF calculated for I → J will 

be different from that calculated for J → I because of the different normalization at the denominator 

of the NCPS: 

𝐼𝑅𝐹𝑖𝑗(𝑡) = 𝐹−1(𝑁𝐶𝑃𝑆𝑖𝑗(𝑓)) = 𝐹−1 (
 𝑂𝑖

∗(𝑓)𝑂𝑗(𝑓)

 𝑂𝑖
∗(𝑓)𝑂𝑖(𝑓)

) = 𝐹−1(𝐻𝑖𝑗(𝑓)
𝑅𝑗(𝑓)

𝑅𝑖(𝑓)
), 𝐼 → 𝐽, (4.16) 

𝐼𝑅𝐹𝑗𝑖(𝑡) = 𝐹−1(𝑁𝐶𝑃𝑆𝑗𝑖(𝑓)) = 𝐹−1 (
 𝑂𝑗

∗(𝑓)𝑂𝑖(𝑓)

 𝑂𝑗
∗(𝑓)𝑂𝑗(𝑓)

) = 𝐹−1(𝐻𝑗𝑖(𝑓)
𝑅𝑖(𝑓)

𝑅𝑗(𝑓)
), 𝐽 → 𝐼, (4.17) 

where F-1 means inverse Fourier Transform. Hence the “pure” Hij(t) is convolved with 

Rj(f)/Ri(f), whereas the “pure” Hji(t) is convolved with Ri(f)/Rj(f). These ratios are not just constant scale 

factors, but filters on the IRFs that are a function of frequency. Hence the causal (positive times) portion 

of IRFij(t) will not be equal to the acausal portion of IRFji(t) (negative times), and vice versa.  

In summary, all of these considerations lead to the following conclusion that applies in general 

to passive reconstruction of IRF’s, and especially when the sources are anisotropic or directional 

(which happens in almost all realistic cases where the wavefield is not perfectly “diffuse”): each of the 

four reconstructions, i.e. positive and negative times of IRFij(t) from Eq. 4.16, and positive and negative 

times of IRFji(t) from Eq. 4.17, are different “colored” versions of the “pure” IRF between I and J.  
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Figure 4.4: Effect of directional excitation in passive IRF reconstruction at two receiver 

elements (i , j) of a transducer array. (a) Physical excitation at right-edge of the array causes 

predominantly causal IRFij response. (b) Physical excitation at left-edge of the array causes 

predominantly acausal IRFij response.  

 

In the ultrasonic imaging application at hand, the excitation from any single element of the 

transducer array will be necessarily highly anisotropic or directional for some (or most) of the receiving 

element pairs (see Fig. 4.4). It is therefore wise to average in postprocessing all four of these IRFs so 

as to maximize image quality while keeping a minimum number of excitations. This means, for each 

transducer element pair (i , j) considered as the two receivers, computing independently NCPSij and 

NCPSji, each NCPS being normalized by a different auto-power spectrum (of the i response and of the 

j response). By combining all four signals, we are sure to include in the beamforming process the 

stronger of the IRF that can be reconstructed from all (i , j) element pairs, regardless of the relative 

strength of the transducer frequency responses and regardless of the preferred direction of the coherent 

waves generated by the individual excitations.  
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4.3 Application of Passive IRF Reconstruction to Ultrasparse SAFT 

Imaging 

4.3.1 Experimental Procedure and Beamforming Algorithm  

This section will apply the considerations made in section II to demonstrate ultrasparse 

ultrasonic SAFT with FMC image quality performance. For this study, a 5 MHz linear 64-element 

transducer array (Olympus model #NDT 5L64-A12, 0.6 mm interelement spacing) was utilized to 

image in 2D artificial reflectors in two 56 mm thick aluminum blocks. An OEM-PA Mini 64×64 

by Advanced OEM Solutions (West Chester, OH, USA) was used as the signal multiplexer. The 

reflectors were, respectively: (a) a single 2 mm-diameter hole at a depth of 12.5 mm from the first 

block’s surface, (b) another single 2 mm-diameter hole at a depth of 20 mm from the second 

block’s surface, and (c) two closely spaced 2 mm-diameter holes spaced at a lateral distance of 6 

mm at a depth of 11 mm from the first block’s surface.  

The beamforming algorithm utilized was the classical time back-propagation method 

implemented in the FMC mode. Crucially, the “virtual” FMC was here obtained by employing a 

minimum number of physical transmitters (as few as a single element and as many as four 

elements, hence “ultra-sparse” transmit modality), and exploiting the passively-reconstructed IRFij 

from each of the possible (i, j) combinations of elements used solely as receivers. More 

specifically, according to the discussion in Section II-E, for each receiver pair (i, j) the IRFij(t) for 

i → j and the IRFji(t) for j → i were computed separately, i.e. with different auto-power spectra in 

the denominator of the segment-averaged NCPS of Eq. 4.13. A traditional Hanning window was 

used as an apodization weight on the reception array.  

After averaging for each physical transmission, k, the image was then formed as the 

following 64×64 “virtual” full matrix:  



121 

𝐼(𝑥, 𝑦) = ∑∑ ∑ 𝑤𝑖𝑗𝐼𝑅𝐹𝑖𝑗,𝑘(𝜏𝑖𝑗,𝑥𝑦)

1,2,3 𝑜𝑟 4

𝑘=1

64

𝑗=1

64

𝑖=1

↑      ↑         ↑                
  𝑟𝑒𝑐.  𝑟𝑒𝑐.   𝑡𝑟𝑎𝑛𝑠.            

. (4.18) 

In the above equation, wij are the apodization weights and τij,xy are the backpropagation times, i.e. 

the travel times of the wave from the “virtual” transmitter i positioned at (xi , yi) to the focus point 

positioned at (x , y) and back to the receiver j positioned at (xj , yj). These travel times can be 

written as: 

𝜏𝑖𝑗,𝑥𝑦 =
√(𝑥𝑖 − 𝑥)2 + (𝑦𝑖 − 𝑦)2

𝑣𝐿,𝑆
+

√(𝑥𝑗 − 𝑥)
2
+ (𝑦𝑗 − 𝑦)

2

𝑣𝐿,𝑆
. (4.19)

 

Each beamformed image was computed from the analytical signal representation of the 

IRFij(t) waveforms. Hence each reconstructed waveform was Hilbert transformed to compute its 

in-phase (I) and quadrature-phase (Q) components, and the final image envelope was constructed 

as the modulus √𝐼2 + 𝑄2.  

In Eq. 4.19 the velocity of the longitudinal wave mode (vL) and that of the shear wave mode 

(vS) have been explicitly separated to consider images created from multiple wave mode 

combinations. As discussed in Section I, wave mode compounding has been recently proposed 

when imaging solid media to significantly increase dynamic range without increasing the array’s 

physical aperture. In general, up to four wave mode combinations can be compounded: (1) L-wave 

transmitted and L-wave reflected (LL combination), (2) L-wave transmitted and S-wave reflected 

from mode conversion (LS combination), (3) S-wave transmitted and L-wave reflected from mode 

conversion (SL combination), and (4) S-wave transmitted and S-wave reflected (SS combination). 

Mode compounding was here implemented by incoherent addition of each of the individual images 

according to:  



122 

𝐼𝑐𝑜𝑚𝑝(𝑥, 𝑦) = ∑ 𝐼𝑀𝐶(𝑥, 𝑦)

𝑀𝐶=𝐿𝐿,𝐿𝑆,𝑆𝐿,𝑆𝑆

(4.20) 

where IMC(x,y) (dB normalized by the respective maxima) are the individual mode combination 

images. As it will be shown in the next sections, mode compounding is particularly beneficial when 

attempting “ultrasparse” transmissions. Among other advantages, for example, since a point source 

excitation (similarly to a single element of the transducer array) will generate L-waves preferentially 

on-axis and S-waves preferentially off-axis, combining both wave modes provides a better coverage 

of the entire field of view. 

4.3.2 Active IRF vs. Passive Cross-correlation IRF vs. Passive NCPS IRF  

Fig. 4.5 compares the IRFs obtained when probing the 12.5 mm deep single hole reflector in 

the aluminum block using two transducer array elements i = #28 and j = #37 located symmetrically 

with respect to the center of the 64-element array, in the cases of (a) conventional “active” excitation, 

(b) passive reconstruction using the cross-correlation Xcorrij(t) of Eq. 4.6, and (c) passive 

reconstruction using the inverse Fourier Transform of the normalized cross-power spectrum with 

segmental averages NCPSij(f) of Eq. 4.13. For the last two cases of passive reconstruction, the 

physical excitation was provided by either a transmitter element in the center of the array (k = #32) 

or a transmitter element at the right edge of the array (k = #1). Also, for the passive reconstructions 

the total recording window was of length TL = 400 μs with a start time of 2 μs after firing to limit the 

initial electronic crosstalk. The segment window width for the averaging of the NCPS was TS = 60 

μs which was selected between 3 and 4 times the arrival time of the first L-wave backwall reflection 

expected at ~18 μs for source (active or virtual) at element #28 and receiver at element #37. The 

segment overlap was 50%.  
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Figure 4.5: Impulse Response Functions for the drilled block obtained using two transducer 

array elements i = #28 and j = #37 for (a) conventional “active” excitation (#28 fires), (b) passive 

reconstruction using the cross-correlation (#32 fires), (c) passive reconstruction using the 

segment-averaged NCPS (#32 fires), and (d) same as (c) but with #1 fire.  

 

The active 28 → 37 IRF waveform is shown in Fig. 4.5(a) for only the available causal 

domain (positive times). The active signal shows the hole reflection at the expected ~4 μs but merged 

with a significant early surface-wave arrival and following the initial crosstalk. The backwall 

reflection is also seen at ~18 μs. The passive waveform computed from the cross-correlation 

Xcorr28→37(t) using the central element #32 as the excitation is shown in Fig. 4.5(b) in both causal 

and acausal domains. The cross-correlation reconstruction does not show clearly either the hole 

reflection or the backwall reflection, in part due to the limited recording time window of 400 μs that 

was purposely kept rather short with fast imaging performance in mind. The passive IRF28→37(t) 
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computed from the segment-averaged NCPS28→37(f) for the same element #32 excitation is shown in 

Fig. 4.5(c). In this case, the hole reflection at ~4 μs is clearly visible, the initial crosstalk is 

suppressed, and the spurious early surface wave is eliminated. This result is quite remarkable 

considering that a single excitation was utilized. The elimination of the surface wave has to do with 

the fact that this wave does not reverberate as much as the hole reflection, hence losing the benefits 

of the ensemble averaging process that instead reinforces the hole signature. A comparison of the 

causal and acausal signals in Fig. 4.5(c) shows that both portions contain both hole and backwall 

reflections, although the two contributions are not exactly the same. The causal-acausal differences 

indicate that the field is not perfectly diffuse (given the single transmitter and the observation time 

window kept short). Fig. 4.5(d) shows the passive IRF28→37(t), again computed from the segment-

averaged NCPS28→37(f), but using the end element #1 as the physical excitation. Also, in this case 

the hole and backwall reflections are quite visible, highlighting the remarkable fact that valuable 

reconstruction results can be obtained with a single transmission regardless of the position of the 

physical transmitter. As expected, the reconstruction for the element #1 excitation shows more 

unbalance between the causal and acausal signals, with the hole for example mostly visible only in 

the causal portion. This unbalance is the result of the preferential “right-to-left” wave propagation 

direction induced by the end element excitation as presented in Fig. 4.4. Hence the necessity 

discussed earlier in Section II-E to average the causal and acausal portions of the reconstructed IRFs, 

regardless of the excitation position, so as to utilize the relevant information present in either of the 

two portions to form the final image.  
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4.3.3 Active FMC (all firings) vs. Passive Cross-correlation FMC (single firing) vs. Passive 

NCPS FMC (single firing)  

Fig. 4.6 shows the images of the block with the 12.5 mm deep single hole using (a) the 

conventional active FMC where all elements are in turn physically transmitting, and (b)-(e) the 

passive reconstructions using a single element as the physical transmission (total recording window 

length TL = 400 μs with a start time of 20 μs after firing). Each image is normalized in dB to the 

louder reflector. Zoomed-in versions of the images around the target hole are shown below each of 

the full images. For this comparison, the single L-wave mode was used for beamforming (no mode 

compounding). The conventional active FMC capture, using all 64 transmissions and 64 receptions 

(64×64 waveforms) is shown in Fig. 4.6(a). The hole and the backwall are clearly visible here. 

However, there is also a blind zone in the near-field at the top of the image extending for ~9 mm 

caused by the inter-element crosstalk and spurious surface wave arrivals as seen in the individual 

waveform analysis of the previous Fig. 4.5(a). In addition, the zoomed-in image of the active FMC 

shows a hole position that is slightly off from the ground truth, due to the difficulty in establishing 

the correct time zero for the actively emitted signals. Fig. 4.6(b) and (c) show the “passive” images 

resulting, respectively, from the cross-correlation Xcorrij(t) of Eq. 4.6, and from the normalized 

cross-power spectrum with segmental averages NCPSij(f) of Eq. 4.13, both obtained using the center 

array element as the physical transmitter (k = #32). In the segmental averages, the segment window 

was TS = 60 μs with the usual 50% overlap. The “virtual” FMCs were therefore obtained by 

extracting the passive IRFs for all possible element combinations (i , j) under the single-element 

physical transmission according to Eq. 4.18. The causal and acausal passive reconstructions for each 

of the element pairs were averaged. Compared to the “active” image of Fig. 4.6(a), the two passive 

images of Fig. 4.6(b) and (c) show a significant reduction in the near-field blind zone at the top 

because of the suppression of the initial crosstalk and the surface waves. In addition, the zoomed-in  
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Figure 4.6: Full Matrix Capture images of the drilled block in (a) conventional active FMC (all 

elements fire in turn), (b) virtual FMC with cross-correlation passive reconstruction (#32 only 

fires), (c) virtual FMC with segment-averaged normalized cross-power spectrum (#32 only 

fires), (d) same as (b) but with #1 only fire, and (e) same as (c) but with #1 only fire.  

 

passive images show the correct position of the hole reflection. The Xcorr image of Fig. 4.6(b) does 

show several artifacts and a higher noise floor compared to the NCPS image of Fig. 4.6(c). The 

zoomed-in images of the hole confirm the superior performance of the NCPS compared to the Xcorr, 

with a ~3 dB stronger contrast and a more extended coverage of the hole’s curved top surface. The 

reduction of the blind zone and the accurate image of the hole in the “passive” NCPS approach is 

surprisingly remarkable considering that this was obtained with a single-element transmission. 

Interestingly, a similar performance of the passive image is obtained when changing the transmitting 

element to the right-edge of the array (k = #1), as shown in Fig. 4.6(d) and (e). The NCPS does a 

better job than the Xcorr with increased contrast and more extended coverage of the hole’s surface.  
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Figure 4.7: (a) NCPS reconstructed causal IRF30→35(t) and acausal IRF35→30(-t) with element 

#10 firing. (b) Ratio IRF30→35(t) / IRF35→30(–t). (c) Passive FMC image of drilled block using 

only causal IRFij(t). (d) Passive FMC image combining causal and acausal portions of IRFij(t) 

and IRFji(t).  

 

4.3.4 Averaging Causal and Acausal Portions of NCPS Passively Reconstructed IRFs 

Fig. 4.7 demonstrates the opportunity to add causal and acausal information for best image 

quality from the passive NCPS reconstructions. A single excitation from element #10 was used with 

a short recording time length TL = 120 μs for this figure. Fig. 4.7(a), for the two receivers i = #30 

and j = #35, compares the causal IRFij(t) from Eq. 4.16 with the acausal IRFji(–t) from Eq. 4.17 

showing appreciable differences, particularly in the near field at < 3 μs. These differences are better 

highlighted by the ratios IRFij(t) / IRFji(–t) plotted in Fig. 4.7(b). It was discussed in Section II-E 

how the difference is the result of the anisotropic or directional excitation (the case for an imperfectly 
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diffuse field) and the different frequency responses of the receiving elements. Hence in a sparse 

transmission array it is important to consider all four “passive” contributions when beamforming the 

image with a short recording time length. Fig. 4.7(c) shows the image of the hole reflector when 

using the virtual FMC using only the causal part of i → j, hence IRFij(t). Fig. 4.7(d) shows the same 

image when averaging IRFij(t) + IRFij(–t) + IRFji(t) + IRFji(–t). The averaging further reduces the 

near-field blind zone, improves image contrast and focusing on the hole.  

4.3.5 Passive FMC with Multiple Firings  

This section considers multiple firing elements for the creation of the passive FMC from the 

segmental-averaged NCPS of Eq. 4.13. In this case, the final image is created by averaging all 

“virtual” FMC IRFs obtained for each transmission per Eq. 4.18. For these results, the recording 

window length was TL = 120 μs and the segment width TS = 60 μs with 50% overlap, with averaging 

of the causal and acausal responses. We first examine the position of the transmitters, comparing 

two transmitters located asymmetrically at the right end of the array (k = #1 and #2) shown in Fig. 

4.8(a), with two transmitters located symmetrically at the two ends of the array (k = #1 and #64) 

shown in Fig. 4.8(b). The images show that both sets of transmitters provide a good image of the 

hole and the backwall, indicating again the robustness of the proposed passive method against 

changes in the physical transmitter positions. At the same time, the symmetric firings of Fig. 4.8(b) 

provide a slight improvement compared to the asymmetric firings of Fig. 4.8(a) in terms of increased 

contrast and decreased spatial resolution, as best seen in the vertical line profiles shown in Fig. 4.8(c) 

drawn across the middle of the images.  

The next analysis examines the effect of increasing the number of transmitters beyond only 

two. For this study we used the Contrast-to-Noise Ratio (CNR) metric computed as [62]:  
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Figure 4.8: Passive imaging with multiple firings. (a) Passive FMC image of drilled block using 

NCPS and two transmitters located asymmetrically. (b) Same as (a) but using two symmetrically 

located transmitters. (c) Vertical line profiles in (a) and (b). (d) CNR of passive Xcorr images 

and passive NCPS images as a function of the number of physical firings.  

 

𝐶𝑁𝑅 =
𝜇𝑆 − 𝜇𝑁

√𝜎𝑆
2 + 𝜎𝑁

2
, (4.21) 

where μS and μN are the mean image magnitude in the hole scatterer and the noise floor, respectively, 

and σS and σN their respective standard deviations. Given that the noise floor is -20 to -30 dB below 

the hole reflection in our beamformed images, the pixels below -15 dB between 0 and 40 mm in 

depth are regarded as noise floor, to isolate the CNR computation of the drilled hole. Fig. 4.8(d) 

plots the CNR for the passive FMC images obtained from the Xcorr of Eq. 4.6 and the NCPS of Eq. 

4.13. In both cases, the performance clearly improves when increasing the number of firings. 

However, the NCPS has a consistently higher performance, and especially for small number of 
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firings. For example, as few as 4 transmissions (ultrafast imaging capability) with NCPS offer a CNR 

comparable to as many as 64 transmissions (the entire array) with Xcorr.  

4.3.6 NCPS Segment Width, Recording Time Delay and Recording Time Length 

The role of segment width TS and recording time length TL in passively reconstructed IRF’s 

from segment-averaged NCPS’s was discussed theoretically Section II-D. It was proposed then to 

use a TS = 3 to 5 times the expected IRF arrival of the target reflection as a reasonable compromise 

between a large number of averages and the need to include the coherent arrivals at the two receivers 

within each segment. Fig. 4.9 compares the passive FMC images of the drilled block using the 

averaged NCPS with segment widths TS = 30 μs, 60 μs and 120 μs. The images were obtained by 

averaging three firings from elements # 1, #32 and #64 and using a total recording window TL = 120 

μs. When TS = 120 μs, therefore, a single segment was used (i.e. no segmental averaging). 

Considering solely the L-mode for this comparison, the hole reflection is expected at ~4 μs and the 

backwall reflection at ~18 μs. Hence, according to our rule of thumb TS = 3 to 5 times the expected 

arrival, TS = 30 μs is appropriate for the hole but too short for the backwall. Accordingly, the backwall 

reflection is found to be weak in the image of Fig. 4.9(a). Increasing the segment width to TS = 60 

μs improves the backwall contrast as seen in the image of Fig. 4.9(b). A further increase to TS =120 

μs, however, increases the noise floor and creates artifact line reflections (e.g. at a depth of ~45 mm) 

as seen in Fig. 4.9(c). The vertical line profiles of the three images are plotted in Fig. 4.9(d), which 

confirm that the shorter TS = 30 μs increases the contrast for the hole but decreases the contrast for 

the backwall. Vice versa, the longer TS = 60 μs increases the contrast for the backwall at the expense 

of a slightly smaller contrast for the hole because of the reduced averages. TS = 120 μs is too large, 

increasing noise because of the absence of averages. In summary, the results of Fig. 4.9 confirm the 

rule of thumb proposed in Section II-D for a reasonable segment width.  
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Figure 4.9: Role of segment width TS in passive imaging using segment-averaged NCPS. 

Passive FMC images of the drilled block obtained with three firings for (a) TS = 30 μs, (b) TS = 

60 μs, and (c) TS = 120 μs. (d) Vertical line profiles across the middle of the images in (a), (b), 

and (c).  

 

Regarding the recording time length TL, it is quite customary in passive reconstruction of 

IRFs in underwater acoustics, structural monitoring (e.g. [53]) and even ultrasonic imaging [54], 

[55] to apply a significant initial time delay, Ti to the recordings in order to eliminate the initial strong 

arrivals. This delay is imposed in an effort to avoid the initial strong arrivals disproportionately 

affecting the passively reconstructed IRF at the expense of finding the diffuse field in the “coda” of 

the signals, as schematized in Fig. 4.10(a). This effort may be worthwhile when long recording times 

are allowed by the application and/or when the active transmissions are remote from the reflectors 
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Figure 4.10: Role of initial time delay Ti and recording time length TL in passive imaging. (a) 

Initial arrivals and coda waves. Passive FMC images of drilled block from averaged NCPS for 

(b) Ti = 2 μs, (c) Ti = 20 μs, and (d) Ti = 300 μs. (e) CNR of Xcorr images and NCPS images as a 

function of initial time delay. (f) Same as (e) but as a function of recording time length.  

 

of interest. In the present effort, however, the requirement for “diffuse” fields is greatly relaxed 

because all that is needed for imaging is a few coherent arrivals between the two receivers i and j 

that have interacted with the target reflectors. This requirement for passive fields is further relaxed 

by the averaging of the causal and acausal portions of the reconstructed signals, as discussed above. 
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Our results therefore do not require monitoring a long coda of the waveforms (it was discussed how 

keeping a short TL is of interest for fast imaging). Actually, in our case cutting out the initial strong 

arrivals is detrimental because it eliminates useful coherent information, as demonstrated in the 

results of Fig. 4.10. In this figure we compare three images obtained with increasing initial time 

delays, for the segmental averaged NCPS reconstruction of the virtual FMC for the single hole drilled 

block. Specifically, the following delays are examined: Ti = 2 μs (i.e. suppressing some of the initial 

crosstalk but including the first hole reflection) in Fig. 4.10(b), Ti = 20 μs (i.e. eliminating the first 

hole reflection) in Fig. 4.10(c), and Ti = 300 μs (i.e. considering solely the wave coda) in Fig. 4.10(d). 

For all cases, the total recording time following the delay was TL = 120 μs, the segment width was 

TS = 60 μs with 50% overlap, and the physical excitation was again provided by firing elements #1, 

#32 and #64. The images show that the shortest Ti = 2 μs produces the highest contrast and focus for 

both the hole and the backwall, while also suppressing the near field blind zone. The intermediate 

delay Ti = 20 μs significantly raises the noise floor of the image and does not suppress the near-field 

blind zone as well. The longest delay Ti = 300 μs results in the worst performance, with significant 

noise added to the image. Hence for the passive imaging configuration proposed, where the few 

physical transmitters are elements of the same receiving transducer array, the best results are 

obtained by retaining the initial reflections with a minimum initial delay.  

An additional analysis is presented in Fig. 4.10(e) where the CNR of the images is plotted as 

a function of the initial time delay for both the Xcorr reconstruction and the averaged NCPS 

reconstruction. As expected, the latter operation yields overall improved results regardless of Ti. The 

plots also show that field stabilization occurs after Ti ~120 μs for both methods. However, the best 

CNR performance is obtained with the shortest Ti that includes the first hole reflection hence without 

requiring field stabilization. Fig. 4.10(f) examines the role of the total recording time length, TL, on 
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Figure 4.11: Effect of the depth of a single drilled hole on image quality. Tested holes drilled at 

(a) Y = 20 mm, (b) Y = 36 mm, (c), Y = 43.5 mm. (d) Vertical line profiles by normalizing with 

respect to maximum intensity of the hole reflections in (a), (b), and (c).  

 

the CNR. The plots compare the Xcorr and averaged NCPS reconstructions with Ti = 2 μs (including 

first arrivals) and Ti = 300 μs (coda waves only). When using coda waves only, the performance 

improves with increasing total recording time, but the improvement saturates for the Xcorr because 

the time averaging is not as effective as the segmental averaging of the NCPS to suppress the 

incoherent information. The CNR for the short Ti = 2 μs has always the best performance 

independently of the total recording time, and even for recording times as short as 60 μs. Hence the 

potential, again, for fast imaging by keeping a short recording window.  
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Fig. 4.11 shows the passive FMC images when the hole reflector is located at different 

depths. Specifically, the image in Fig. 4.11(a) for the hole depth of 20 mm was obtained from the 

second aluminum block, that was then flipped to obtain the image in Fig. 4.11(b) for the hole depth 

of 36 mm. The image in Fig. 4.11(c) for the hole depth of 43.5 mm was obtained by flipping the first 

block with the 12.5 mm deep hole. The NCPS parameters were the same as in Fig. 4.10(c) with Ti = 

20 μs, TL = 120 μs, TS = 60 μs with 50% overlap, and physical excitation provided by three firing 

elements #1, #32 and #64. The image quality in Fig. 4.11 is fundamentally similar regardless of the 

depth of the drilled hole. Note that the magnitude of each image is normalized by the maximum 

intensity in the region of interest. To better evaluate the signal-to-noise, Fig. 4.11(d) shows a vertical 

line profile cut through the holes where the values are normalized to the hole reflection maxima. The 

comparison shows similar signal-to-noise levels for all hole depths. As expected, the intensity of the 

backwall decreases for the deeper holes because of the hole shadow effect that is also visible in the 

images of Fig. 4.11 (b) and (c).  

4.3.7 Wave Mode Compounding  

It was discussed in Section III-A that there exist up to four wave mode combinations that can 

be exploited for ultrasonic imaging of solids, here referred to as XY combinations, where X is the 

transmitted mode (either L or S wave) and Y is the target-reflected mode (either L or S wave). In the 

subject case of passive imaging, the “transmission” from element i is of course “virtual”. The images 

for each of the individual mode combinations are created by using the appropriate wave velocities 

in the time backpropagation algorithm of Eqs. (18) and (19). Fig. 4.12 demonstrates the significant 

improvements that can be obtained by compounding multiple wave modes in the passive NCPS FMC 

imaging of the drilled hole in the aluminum block. For these images, the segment width was TS = 60 

μs (50% overlap) with firing elements #1, #21, #42 and #64. The passive images are shown for: the  



136 

 

Figure 4.12: Wave mode compounding in passive NCPS imaging of the single drilled hole in the 

aluminum block. (a) LL mode combination. (b) LS mode combination. (c) SL mode combination. 

(d) SS mode combination. (e) LL+LS+SL mode compounding. Vertical (f) and horizontal (g) line 

profiles through the hole for the LL image and for the LL+LS+SL image.  

 

LL combination in Fig. 4.12(a), the LS combination in Fig. 4.12(b), the SL combination in Fig. 

4.12(c), and the SS combination in Fig. 4.12(d). Since the L-wave is dominant in this case both in 

transmission and in reflection, LL provides the best image of the hole in Fig. 4.12(a). However, the 

S-wave also provides valuable information on the hole through the LS and SL combinations. Since 

the S-wave transmission is predominantly at 45º from the direction of a point-wise excitation (and 

similarly the S-wave mode-converted reflection is predominantly at 45º from the direction of an 

incoming L-wave on a point-wise reflector), the SS combination in Fig. 4.12(d) is not very effective 

in imaging the central hole providing a response mostly on the sides of the image. When 

compounding the images LL+LS+SL according to Eq. 4.20, shown in Fig. 4.12(e), a significant 

improvement is obtained in both contrast and focus (notice that Fig. 4.12(e) is plotted with a larger 

60 dB dynamic range to show the noise floor). The compounded image also eliminates the near-field 

blind zone that is instead still present (although not severely) in the LL image. A more quantitative 
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comparison of the compounded LL+LS+SL image versus the single LL image is provided by the line 

profiles cut through the hole vertically and horizontally shown in Fig. 4.12(f) and (g), respectively. 

Consider that the ideal profiles (ground truths) will have a main lobe of zero width for the vertical 

line profile of Fig. 4.12(f) (the sharp top surface of the hole), and a main lobe of width equal to 2 

mm for the horizontal profile of Fig. 4.12(g) (the hole diameter). The results clearly show that that 

the compounded LL+LS+SL image produces a contrast improvement of ~40 dB and a spatial 

resolution improvement of ~two-fold for the hole compared to the single LL image.  

4.3.8 Two Closely-Spaced Holes  

The last set of experiments was performed to image two, 2 mm-diameter holes spaced at a 

distance of 6 mm and at a depth of 11 mm from the aluminum block’s surface. Fig. 4.13 shows the 

IRFij waveforms passively reconstructed between array elements i = #28 and j = # 37, with the 

physical excitation located either at the center of the array (k = #32) in Fig. 4.13(a) and (b), or at the 

right end of the array (k = #1) in Fig. 4.13(c) and (d). The reconstructions are compared using the 

Xcorr28→37(t) from Eq. 4.6 or the segmental averaged NCPS28→37(f) from Eq. 4.13. For these results, 

Ti = 2 μs, TS = 60 μs with 50% overlap, and TL = 400 μs. Using the central element firing, the Xcorr 

result in Fig. 4.13(a) shows initial low frequency large fluctuations in both the causal and acausal 

portions, likely from cross-talks and surface waves, that results in a significant blind zone with no 

indication of the two-hole reflectors. The NCPS result in Fig. 4.13(b), instead, greatly compresses 

the initial blind zone to < 1 μs and shows an appreciable detection of the hole reflectors in both the 

causal and acausal portions. This result reaffirms the fact that the NCPS does not need the large 

initial delay that may otherwise be needed using Xcorr to focus on coda arrivals. Similar comparative 

performances are obtained using the end element firing. In this case, the Xcorr in Fig. 4.13(c) is still 

contaminated by the large low frequency fluctuations mostly affecting the causal times, with little 
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Figure 4.13: Passive Impulse Response Functions for the two, closely-spaced drilled holes in the 

aluminum block obtained using two transducer array elements i = #28 and j = #37 for (a) cross-

correlation (#32 fires), (b) segment-averaged normalized cross-power spectrum (#32 fires), (c) 

same as (a) but with #1 fire, and (d) same as (b) but with #1 fire.  

 

chance to see the holes. The NCPS of Fig. 4.13(d) suppresses the large fluctuations and shows the 

hole reflections.  

Finally, Fig. 4.14 presents the imaging results for the two holes comparing (a) the 

conventional active FMC where all elements are in turn physically transmitting (LL mode 

combination), (b) the passive reconstruction using Xcorr (LL mode combination), (c) the passive 

reconstruction using segmental-averaged NCPS (LL mode combination), and (d) same as (c) but with 

LL+LS+SL mode compounding. For the passive reconstructions, again Ti = 2 μs, TS = 60 μs with 

50% overlap, TL = 400 μs, and physical transmissions provided by elements #1, #21, #42 and #64.  
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Figure 4.14: Full Matrix Capture images of the two closely spaced holes in the aluminum block 

from (a) conventional active FMC (LL combination only), passively reconstructed virtual FMC 

with (b) Xcorr (LL combination only), (c) segment-averaged NCPS (LL combination only), and 

(d) same as (c) but compounding the LL+LS+SL combinations.  

 

As seen previously in the single-hole images of Fig. 4.6, the active FMC image of Fig. 

4.14(a) presents a large blind zone extending for ~10mm in depth. It also shows the two holes at 

offset positions from the true locations (as seen in the zoomed-in image) due to the complicated 

initial signal affecting the time zero calculations. The Xcorr image of Fig. 4.14(b) misses the hole 

on the right. The NCPS image of Fig. 4.14(c) provides an excellent detection of the two holes, with 

their correct positions and clear separation. It also practically eliminates the near-field blind zone. 

Finally, the compounded NCPS image adding LL+LS+SL modes in Fig. 4.14(d) further improves 

the contrast and focusing on the two holes. In summary, the results obtained for the two holes confirm 

the conclusions reached earlier for the single hole. 
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4.4 Discussions and Conclusions 

This paper proposes an “ultrasparse” SAFT imaging technique that uses passive 

reconstruction of the ultrasonic Impulse Response Functions (IRFs) between two receivers. A 

virtual Full Matrix Capture (FMC) matrix is constructed by interrogating all elements of a 

transducer array used primarily as receivers. The physical excitation is provided by an extremely 

small number of elements (from one to four) used as transmitters. This kind of ultrasparse 

transmission has the potential for high imaging speeds and simplified multiplexer hardware due to 

the reduction in the number of high-voltage digital-to-analog channels required, compared to a 

conventional “active” FMC scheme where all transducer elements are in turn used as transmitters. 

In order to keep a high image quality, the sparse transmissions are compensated by a robust 

algorithm to ensure the most accurate passive reconstructions. An added advantage of the proposed 

approach is the elimination of the blind zone in the near-field of the transducer array that 

potentially enables near-field imaging.  

In particular, it is demonstrated theoretically and experimentally how an overlapped 

segment-averaged Normalized Cross-Power Spectrum (NCPS) is the best algorithm to estimate 

the IRF between two receivers with large Signal-to-Noise Ratios. The cross-correlation operation 

is often used in passive ultrasonic sensing, conversely, distorts the IRF by convolving it with the 

autocorrelations of the excitation, of the excitation-to-receiver transfer function, and of the receiver 

response function.  

The paper demonstrates how time averaging does not equate to ensemble segmental 

averaging for noise suppression (where “noise” includes incoherent arrivals and/or nonlinear 

responses). Interestingly, the segment-averaged NCPS does not completely eliminate the noise at 

the first receiver, but in the case of white Gaussian noise this term helps to stabilize the metric by 
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avoiding close-to-zero values at the denominator. Care must be taken to choose the width of the 

segments in the ensemble averaging process, in order to strike a good compromise between 

obtaining a large number of averages and ensuring that the same coherent event at both receivers 

is included in the same segment for both causal and acausal times. It is therefore proposed to use 

a segment width equal to 3 to 5 times the expected difference in arrivals of a target reflection at 

the two receivers, that can be estimated by considering one of the receivers as the “virtual” source. 

The paper also shows how, in the imaging application at hand, it is appropriate (and actually 

desired) to consider the initial large arrivals at the receivers, rather than eliminating them by 

applying a significant initial time delay to focus on the “coda” portion of the waves, as instead 

done in many other applications of passive ultrasonic sensing. In fact, the application at hand does 

not require fully diffused fields (which are anyways very difficult to obtain in practice, and 

especially so when few physical transmissions are used).  

In the quest for ultrasparse transmission performance, where the few transmitters create 

excitation fields that are generally anisotropic or directional, it is also important to average both 

causal and acausal portions of the passively reconstructed IRFi→j and IRFj→i for the generation 

of the virtual FMC. This step also helps to ensure that the quality of the final image is rather 

independent of the location of the few physical transmitters. Since this approach is not based on 

monitoring coda waves during long recording times, it allows to create passive images by keeping 

the total recording time rather short, which again is important for fast imaging performance.  

One final step that significantly aids in the generation of high-quality images is 

implementing wave mode compounding in the construction of the passive FMC from the 

ultrasparse transmit array. This step exploits the simultaneous existence of the L-wave and S-wave 

modes when imaging solid media. Combining images beamformed with different mode 
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combinations (up to four) ultimately improves contrast and focus without increasing the array’s 

physical aperture. The fact that S-waves (both in excitation and in reflection) tend to propagate at 

oblique directions (e.g. 45º) with respect to the predominant L-wave also improves the overall 

coverage of the region of interest when compounding the images. 

These conclusions are demonstrated for the imaging of hole reflectors in an aluminum 

block probed by a linear transducer array. For the case of different reflections, for example defects 

of arbitrary orientations and/or located at arbitrary positions, the quality of the images should 

follow general rules of SAFT beamforming. A worthwhile extension of this study would be the 

imaging of targets located off-axis at the edges of the region of interest, where the role of the S-

wave mode would probably be more significant.  The results of the paper were obtained with a 

simple static Hanning apodization window applied to the array. This window was sufficient for 

the parametric and comparative analyses that were carried out. The overall quality of the images 

could be likely further improved if using more sophisticated windows such as wave structure 

weights [22]-[23], Minimum-Variance Distortionless Response (MVDR) adaptive weights [22], 

[23], [63]-[68], or weights based on amplitude decays and wave scattering patterns [67]-[70].  

Clearly, the computation of the segmental averages adds complexity to the data processing. 

Specific metrics for computational and acquisition times will depend on the specific software and 

hardware employed. In this study, the imaging algorithms were implemented on a CUDA enabled 

host computer with a NVIDIA GeForce GTX 3060 GPU running MATLAB. Under these 

conditions, the reconstruction of a 64 by 64 FMC dataset from a single firing using a 60 msec 

segmented NCPS of 120 msec time signals sampled at 25 MHz took ~ 45 seconds. Faster 

performances will require changing the processing software to a more efficient language (e.g. C 

or C++) and utilizing optimized hardware and signal acquisition architectures.  
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The recommendations given in the paper for the design of a robust segment-averaged 

NCPS, including the choice of the segment width, total recording time, and causal/acausal 

reconstructions, can be helpful to other applications of passive sensing besides ultrasonic imaging, 

for example seismic interferometry for health monitoring of civil infrastructure.  
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Chapter 5 High Resolution Ultrasonic Imaging of 

Extended Targets in Solids via Combined Match Field 

and Time Delay Beamforming 
 

5.1 Introduction 

Ultrasound imaging using active sensing modalities has received wide interest in medical 

imaging, nondestructive evaluation (NDE), and underwater acoustics. Regardless of its steering or 

focusing capabilities, the ultrasound transmitter-receiver array system can be characterized in the 

frequency domain by the transfer matrix that contains the interelement responses between each 

transmitter and receiver [1]. Practically the transfer matrix can be approximated by sequentially 

isolating the emission of each transmitter element and recording with the full receiver array in 

parallel, termed full matrix capture (FMC), to construct the multistatic dataset.  

Robust beamforming algorithms have been developed in the time domain to achieve fast 

imaging of the broadband transfer matrix of the FMC dataset. The synthetic aperture focus 

technique has been proven as the benchmark method to beamform the FMC dataset. The delay-

and-sum (DAS) algorithm has been applied in numerous modalities including single element 

transmission [2]-[6], plane wave transmission [7]-[8], and subaperture transmission [9]-[12]. With 

the boost of computational power, recent DAS frameworks have been extended to the delay-

multiply-and-sum (DMAS) algorithm by coupling each transmitter-receiver pair to obtain higher 

resolution and contrast [13]-[16]. However, the linear time-delay type beamformers cannot achieve 

resolution beyond the Rayleigh diffraction limit.  

In parallel with time-delay type beamformers, numerous methods have been developed in 

the frequency domain to obtain high resolution images from the transfer matrix, with particular 

interest in super-resolution imaging capabilities beyond the Rayliegh diffraction limit. A popular 
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algorithm is the multiple signal classification (MUSIC) based on the Singular Value 

Decomposition (SVD) or eigen decomposition to achieve subwavelength resolution in the cross-

range (azimuth) direction. Prada et al. found that the eigenvectors of the time reversal operator 

(TRO, that is an outer product of the transfer matrix) have a one-to-one correspondence with the 

number of well-resolved point scatterers in the interrogated medium [17]-[18], which allowed 

physical focusing with subwavelength resolution [19]-[21]. When the Green’s function of the test 

medium is available, the backpropagation can be computed numerically to form a super resolution 

image without the need of electronically phasing the transmit array [22]. Since then, the SVD 

based MUSIC type beamformers have seen numerous applications in imaging defects in bulk 

solids [23]-[29], cracks in waveguide structures [30]-[34], localization in shallow water [35]-[36], 

and detecting breast microcalcifications [37]-[38].  

In most medical diagnostics or industrial NDT applications, the size of the target is usually 

larger than the wavelength at the central frequency of a transducer array [39]. The imaging of these 

extended targets using MUSIC type beamformers is challenging in several aspects. First, the one-

to-one correspondence in SVD based factorization is not available when the scatterers are finite 

sized or not well resolved in the transfer matrix. Chambers and Gautesen found that there could be 

up to four eigenfunctions associated to one small sphere due to compressibility and density contrast 

[40]. To resolve multiple scatterers, the Foldy-Lax model was used for better estimation of target 

scattering strengths [41]-[42]. Robert and Fink pointed out that the eigenvectors of the TRO for an 

extended target are prolate spheroidal wave functions instead of superposition of point scatterers 

[43]. Second, the dimension of the signal subspace can be larger than the dimension of the transfer 

matrix when either there are too many scatterers, or the size of the scatterer is too large. To avoid 

saturation of the signal subspace, Labyed and Huang achieved high resolution imaging of many 
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glass spheres in tissue-mimicking phantom by dividing the imaging plane into subregions and 

applied MUSIC on the time-windowed multistatic data corresponding to these subregions [37]. 

Another drawback of MUSIC is that standard algorithms are formulated as narrowband 

beamformers that expand to broadband only by incoherently averaging the ambiguity surfaces of 

each narrowband output [23]. Another way, termed phase-coherent MUSIC, is to retain phase 

information of the MUSIC magnitude squared output by multiplying transpose instead of 

Hermitian transpose of the transfer matrix [27] [28] [38] [44] [45]. The phase coherent approach 

greatly increases the axial resolution of MUSIC in case of low signal-to-noise ratio (SNR), but 

neither the azimuth focus nor the dynamic range is improved. Moreover, these methods neglect 

the fact that the eigenfunctions can vary significantly across the spectrum of interest, which 

inevitably reduces the coherence in wideband signals. Finally, the high-resolution characteristic of 

MUSIC comes from separating the eigen space into signal and noise subspaces. Pierri and 

Soldovieri worked out the theoretical signal space dimension of a planar aperture in Fresnel zone 

as a function of aperture width, target lateral size, target axial range, and wavelength [46]. 

However, the use of this theoretical subspace dimension requires prior knowledge of the extended 

target. Hou et al. approximated the signal space dimension by comparing the variation in the 

singular value structure [47]. Up to now, most work on MUSIC finds the threshold based on trial 

and error testing of the experimental data.  

Another way to achieve high resolution imaging of multistatic data is by using adaptive 

beamforming techniques that have been extensively studied in passive sensing. Prada and Thomas 

first interpreted the TRO acquired using active FMC as a covariance matrix of a passive array [48]. 

They showed that the TRO constructed from the active transmit elements is analogous to taking 

“snapshots” in time to build the rank of the covariance matrix in match field processing. They 
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reported that for the case of imaging two closely separated point-like scatterers, the minimum 

variance distortionless response (MVDR) beamformer performed similarly as MUSIC in azimuth 

resolution. With the tools developed in match field community, it is possible to beamform 

multitone TRO coherently. Michalopoulou and Porter demonstrated a way to exploit the coherence 

between each frequency in the magnitude squared inner products by stacking each narrowband 

data vector to a long “supervector” [49]. Orris et al. developed a matched-phase algorithm by 

searching for the relative phase differences in cross-frequency terms to deal with unknown source 

spectrum [50]. Debever and Kuperman cooperated robust adaptive beamformers (the white noise 

constraint algorithm, or WNC) into broadband formulation to reduce the sensitivity of MVDR 

algorithms to modeling mismatch [51]. They found that although the multitone covariance matrix 

is naturally rank deficient in experimental acquisition, the optimization of replica vectors can be 

stabilized by constraining the maximum possible white noise gain. Another advantage of the WNC 

algorithm is that it influences the SNR output of the diagonally loaded MVDR by altering the 

variation of small non-physical eigenvalues that results in a beneficial bias in the dynamic range 

of the beamformer output [52].  

This chapter proposes a high-performance ultrasonic imaging scheme by combining 

coherent adaptive match field beamforming with robust time-delay type beamforming. The goal 

is to achieve high resolution and high contrast imaging of extended targets placed parallel to a 

linear array in both azimuth and axial range directions. This objective was previously shown 

possible in imaging point scatterers by exploiting the invariance of an active array system using a 

similar combined match field and time-delay beamforming scheme [53]. Specifically, the coherent 

broadband match field formulation developed in [49] is analogously applied to active FMC scheme 

to form a multitone TRO. The adaptive WNC algorithm is used to beamform the multitone TRO 
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with high azimuth resolution. The WNC algorithm also takes advantage of the rank deficiency in 

the multitone TRO to obtain high contrast indication of resolution cells due to the dynamic range 

bias. The coherent WNC algorithm is compared with the MUSIC algorithm to demonstrate its 

advantage in imaging extended targets. The DMAS beamformer is added to provide stable imaging 

of the continuous surfaces of the extended targets with high axial resolution. Both simulation and 

experiments show the superior performance of the proposed combined imaging scheme when 

targeting extended scatterer in sizes ranging from a wavelength to the physical aperture of the 

ultrasonic array.  

 

5.2 High Lateral Resolution Imaging via Match Field Beamformers 

5.2.1 Formulation of Transfer Matrix and Analogy to Passive Sensing  

Consider and array of M transmitters and N receivers as shown in Fig. 5.1(a). Assuming 

linearity and time invariance, the received signal on the nth element rn(t) can be described as the 

convolution between the emitted signal em(t) on the mth element and the interelement response 

knm(t), summed over all transmissions:  

𝑟𝑛(𝑡) = ∑ 𝑘𝑛𝑚(𝑡) ⊛ 𝑒𝑚(𝑡)

𝑀

𝑚=1

+ 𝑏𝑛(𝑡) (5.1) 

where ⊛ denotes convolution, and bn(t) is the noise at the nth receiver. The interelement response 

is typically measured by transmitting with each element individually in the Full Matrix Capture 

(FMC) scheme such that it knm(t) can be estimated from the received signal knm(t) ≈ rn(t). As shown 

in Fig. 5.1(a), such an active sensing modality can detect a scatterer by measuring the reflections 

from a point P in the transmitter-receiver ray path. However, assuming a delta function for the 

emitted signal em(t) inevitably leads to undesired phase lag in knm(t) for ultrasonic applications.  
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Figure 5.1: (a) Schematic of the active sensing mode of an array. (b) Coherent wave path from 

the scatterer to a receiver element by only considering passive reception and averaging the 

transmissions. (c) Modeling longitudinal wave reception by considering the angle between 

particle displacement and the normal direction to the transducer.  

 

Deconvolution of ultrasonic signals is not a trivial task because rn(t) is colored by the 

spectrum response of the transducers in both transmission and reception. The authors have 

developed a dual-output strategy to eliminate the contamination of the source spectrum in the 

reconstruction of interelement transfer function knm(t) using normalized cross power spectrum [54] 

of the form:  

𝐾𝑛𝑚(𝜔) =
𝑅𝑛(𝜔)𝐸𝑚

∗(𝜔)

|𝐸𝑚(𝜔)|2 + 𝛼𝜎2
(5.2) 

where Knm(ω), Rn(ω), and Em(ω) are the Fourier transforms of knm(t), rn(t), and em(t), respectively, 

α is regularization parameter, and σ2 is the noise variance estimated from the root mean square of 

r(t) for simplicity. It is worth stating that this band-limited frequency domain operation cannot 

perfectly capture the transient features in the time domain.  

To start the discussions on match field beamformers, it is helpful to rewrite Eq. 5.1 in the 

frequency domain and in its vector form:  

𝑅̂(𝜔) = 𝐾̂(𝜔)𝐸̂(𝜔) + 𝐵̂(𝜔) (5.3) 
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where the dimension of 𝑅̂(𝜔)  and 𝐵̂(𝜔)  are N×1, 𝐸̂(𝜔)   is M×1, and 𝐾̂(𝜔)  is N×M. Much 

research has been devoted to exploiting the singular value decomposition (SVD) of the multistatic 

response matrix 𝐾̂(𝜔)  that characterizes the interelement responses between the transmission 

array to the reception array. For example, the widely used MUSIC algorithm is based on separating 

the signal and noise space in the SVD of the transfer matrix 𝐾̂(𝜔):  

𝐾̂(𝜔) = 𝑈̂(𝜔)𝛴̂(𝜔)𝑉̂H(𝜔) = [𝑈̂S(𝜔) 𝑈̂N(𝜔)] [
𝛴Ŝ(𝜔) 0

0 𝛴N̂(𝜔)
] [

𝑉Ŝ
H
(𝜔)

𝑉N̂
H
(𝜔)

] (5.4) 

where 𝑈̂(𝜔) and 𝑉̂(𝜔) are matrices whose columns are the left and right singular vectors, and 

𝛴̂(𝜔) is a diagonal matrix containing singular values. These singular vectors contain the phase 

information across the reception or transmission array to focus on the scatterers, if there is any. 

The subscript H denotes Hermitian conjugate, and the subscripts S and N represent the signal and 

noise subspace, respectively. The SVD operation provides an opportunity to focus solely on the 

existing scatterers using the signal subspace while discarding the noise subspace. Theoretically, 

the singular values in 𝛴Ŝ(𝜔) are significantly larger than those in 𝛴N̂(𝜔) so that the separation 

between the signal and noise can be determined from the variation in the energy levels. However, 

as shown later in this paper, such a threshold can be hard to determine for near field imaging of 

extended targets because the SVD structure is highly dependent on the sampled frequency and the 

size and location of the target.  

Another interpretation of the response matrix 𝐾̂(𝜔)  is to consider the active sensing 

modality as passive source detection, so that various beamformers developed in the match field 

community can be applied to the multistatic data. As shown in Fig. 5.1(b), if only the reception 

array is considered, the ray paths from different transmit elements is coherent from the focus point 

P to a receive element n. Analytically, one can rewrite the transfer matrix 𝐾̂(𝜔) into a collection 
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of columns, where each column is a data vector 𝐷̂𝑚(𝜔) that characterizes the signal across the 

reception array under transmission by element m  

𝐾̂(𝜔) = [𝐷̂1(𝜔), 𝐷̂2(𝜔),… , 𝐷̂𝑚(𝜔),… , 𝐷̂𝑀(𝜔)] (5.5) 

𝐷̂𝑚(𝜔)  = [𝐾1𝑚(𝜔), 𝐾2𝑚(𝜔),… , 𝐾𝑛𝑚(𝜔), … , 𝐾𝑁𝑚(𝜔)]T. (5.6) 

It is natural to find the covariance matrix that characterizes the cross-power spectrum 

between the elements in the reception array. Prada et al. showed that the outer product of the 

multistatic matrix (equivalent to the time reversal operator matrix, or monotone TRO) is analogous 

to the covariance matrix 𝐶̂(𝜔) in a match field processing context [48], hence  

𝐶̂(𝜔) = 𝐾̂(𝜔)𝐾̂H(𝜔) = ∑ 𝐷̂𝑚(𝜔)𝐷̂𝑚
H
(𝜔)

𝑀

𝑚=1
(5.7) 

which shows that the covariance matrix is an average of the transmission ray path and coherently 

sums the reception ray path connecting a scatterer and a receiver element.  

5.2.2 Considerations on Modeling Replica Vectors  

The match field beamformers require accurate modeling of the expected wave field. Thus, 

it is important to properly model the reception ray path that forms a replica of the column vector 

𝐷̂𝑚(𝜔) as in Eq. 5.6, that is  

𝑤̂(𝑥, 𝑦, 𝜔) = [𝑤(𝑥, 𝑦, 𝑥1, 𝑦1, 𝜔), 𝑤(𝑥, 𝑦, 𝑥2, 𝑦2, 𝜔), … ,𝑤(𝑥, 𝑦, 𝑥𝑁, 𝑦𝑁, 𝜔)]T (5.8) 

where the location of a focus pixel P is at (x, y) and the location of a receiver n is at (xn, yn). An 

option is to use a free field Green’s function that captures the phase difference of a spherical wave 

across the reception array, as seen in numerous literature [27].  

To achieve a better focus, a spatial window across the array can be added based on the 

amplitude distribution of the received wave mode [6]. This concept uses the fact that typical 

ultrasonic transducers are sensitive to normal (out-of-plate) displacements. As seen in Fig. 5.1(c), 
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considering longitudinal mode propagation, the particle motions in the test medium un,xy (shown in 

yellow) are in line with the ray path. The measured amplitude distribution, shown in green, is 

simply a cosine function determined by the angle of incidence θn,xy between the longitudinal mode 

particle motion and the surface normal direction. Also considering geometrical spreading effect, 

the weighted Green’s function can now be rewritten as  

𝑤(𝑥, 𝑦, 𝑥𝑛, 𝑦𝑛, 𝜔) =
1

𝑑
∙
|𝑦𝑛 − 𝑦|

𝑑
∙
𝑖

4
H0

1(𝑘𝑑) (5.9) 

where the first term shows the geometrical spreading of a sphere, and the second term is the cosine 

window from the wave mode structure in reception, H0
1 is the Hankle function of the first kind, k 

is the wavenumber, and d is the distance between the focus pixel P and the receiver.  

With the construction of the replica vector, a linear Bartlett beamformer can be formulated 

as [55]  

𝐼BAR(𝑥, 𝑦, 𝜔) = 𝑤̂H(𝑥, 𝑦, 𝜔)𝐶̂(𝜔)𝑤̂(𝑥, 𝑦, 𝜔) (5.10) 

where the replica vectors 𝑤̂(𝑥, 𝑦, 𝜔) is normalized to unity norm for all results in this paper. For a 

collection of frequencies Ω = {ω1, ω2, …, ωL}, the broadband match field beamformer output can 

be an incoherent (IC) averaging of the narrowband ambiguity surfaces [56] 

𝐼IC−BAR(𝑥, 𝑦, 𝛺) = ∑ 𝐼BAR(𝑥, 𝑦, 𝜔𝑙)
𝐿

𝑙=1
. (5.11) 

5.2.3 SVD Based Multiple Signal Classification (MUSIC) Algorithm  

The MUSIC algorithms utilize the orthogonality in the SVD of the transfer matrix 𝐾̂(𝜔) 

as seen in Eq. 5.4 or, equivalently, the eigen decomposition of monotone TRO 𝐶̂(𝜔). Consider a 

pitch-catch mode as in Fig. 5.1(a) where the transmission and reception array share the same 

physical aperture. In this case the left and right singular vectors are identical due to reciprocity. 
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Using the left singular vectors in the signal space, the incoherent broadband MUSIC algorithm is 

given by an averaging of narrowband outputs over the spectrum of interest Ω  

𝐼MUSIC(𝑥, 𝑦, 𝛺) =
1

1 −
1
𝐿

∑ 𝐴S(𝑥, 𝑦, 𝜔𝑙)𝑙

(5.12) 

where for each frequency ωl,  

𝐴S(𝑥, 𝑦, 𝜔) = 𝑤̂H(𝑥, 𝑦, 𝜔)𝑈̂S(𝜔)𝑈Ŝ
H
(𝜔)𝑤̂(𝑥, 𝑦, 𝜔). (5.13) 

The term AS(x, y, ω) can be interpreted as a narrowband Bartlett beamformer where the covariance 

matrix is the outer product of the signal subspace of the left singular matrix 𝑈̂S(𝜔)𝑈Ŝ
𝐻
(𝜔). The 

MUSIC beamformers are beneficial to image extended targets because they discard the magnitude 

of the singular values in the subspaces when composing the “covariance matrix”. Thus, all 

resolution cells in the signal space can be illuminated, giving a higher weight to those weaker 

singular modes that are invisible to linear beamformers.  

The high-resolution characteristic of the MUSIC algorithm comes from the nonlinear 

subspace “cut” in the SVD of the transfer matrix 𝐾̂(𝜔). For the imaging of extended targets, the 

threshold in the singular values is hard to determine since the nonzero components can occupy the 

entire 𝛴̂(𝜔), as seen in numerous examples [28] [31].  

Besides the difficulty of experimentally finding the subspace dimension for MUSIC 

beamformers, it was found that the theoretical dimension of the signal subspace for a linear array 

is related to the lateral size and range of the target [43] [46]. The number of nonzero singular values 

Ns is proportional to the following:  

𝑁s ∝ 𝐷𝑊/(𝜆𝑌) (5.14) 

where D is the full width of the array, W and Y are the lateral width and range of the extended 

target, and λ is the wavelength. This shows that the subspace dimension Ns can change dramatically 
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across the broad frequency band Ω if the extended target is wide (large W) and located in the near 

field (small Y). The problem is most severe when the dimension Ns is comparable to the dimension 

of the reception array N where the MUSIC algorithms fail to work due to the inseparable 

subspaces. 

5.2.4 Broadband Formulation of Transfer Matrix and Adaptive Beamforming  

Another strategy to improve the resolution of imaging the matrix 𝐾̂(𝜔) is to use adaptive 

beamformers that increase focusing abilities through varying the replica vectors according to the 

measured data vectors. The ability to exploit coherence across frequencies is often desired due to 

the broadband nature of ultrasonic signals. In this respect, coherent, rather than incoherent 

broadband beamformers can provide additional array gains. These can be created by stacking the 

narrowband data vectors into broadband “supervectors” as demonstrated in underwater acoustics 

[49]. This arrangement exploits the cross-frequency coherence across the array for increased gains.  

5.2.4.1 Using supervector formulation in active sensing  

Inspired by the idea of broadband “supervector”, a broadband formulation of the transfer 

matrix for active sensing is introduced as follows. Eq. 5.3 is rewritten by stacking the L narrowband 

components:  

𝑅̃(𝛺) = [𝑅̂(𝜔1)
T, 𝑅̂(𝜔2)

T, … , 𝑅̂(𝜔𝐿)
T]

T

= [𝑅1(𝜔1), 𝑅2(𝜔1), … , 𝑅𝑁(𝜔1), 𝑅1(𝜔2), … , 𝑅𝑁(𝜔𝐿)]
T (5.15)

 

𝐸̃(𝛺) = [𝐸̂(𝜔1)
T, 𝐸̂(𝜔2)

T, … , 𝐸̂(𝜔𝐿)
T]

T

= [𝐸1(𝜔1), 𝐸2(𝜔1), … , 𝐸𝑀(𝜔1), 𝐸1(𝜔2), … , 𝐸𝑀(𝜔𝐿)]
T (5.16)

 

where 𝑅̃(𝛺) and 𝐸̃(𝛺) are N∙L×1 and M∙L×1, respectively. From these supervectors, the multi-

tone transfer matrix of size N∙L×M∙L can be constructed as  

𝑅̃(𝛺) = 𝐾̃(𝛺)𝐸̃(𝛺) + 𝐵̃(𝛺) (5.17) 
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Figure 5.2: Formulation of broadband transfer matrix for coherent multi-frequency processing of 

active sensing. Each column is analogous to the “supervector” formulation in passive sensing.  

 

where 𝐵̃(𝛺)  is the supervector form of noise. The multitone transfer matrix 𝐾̃(𝛺)  is the 

interelement responses between multi-tone receiver array and multitone transmitter array. As 

shown in Fig. 5.2, each entry in 𝐾̃(𝛺) defines the transfer function between a transmitter at one 

frequency and a receiver at one or another frequency. The diagonal monotone blocks (colored in 

gray) are the same as 𝐾̂(𝜔) in Eq. 5.3. The off diagonal cross frequency terms track the cross-

frequency coherence. Similarly to the decomposition as in Eq. 5.5, the multitone transfer matrix 

can be interpreted as a combination of column “supervectors”, as pointed out in Fig. 5.2,  

𝐾̃(𝛺) = [𝐷11̃(𝛺), 𝐷21̃(𝛺), … , 𝐷𝑀1̃(𝛺), 𝐷12̃(𝛺), … , 𝐷𝑚𝑢̃(𝛺), … , 𝐷𝑀𝐿̃(𝛺) ] (5.18) 

where the subscripts of 𝐷𝑚𝑢̃(𝛺) denotes the index of transmit element for m and the index of 

sampled transmitting frequency for u respectively. Then each of the supervector 𝐷𝑚𝑢̃(𝛺)  is 

analogous to those seen in passive sensing as a stack of monotone data vectors received at different 

frequencies ωv.  



162 

The analogy between the TRO in active time reversal and the covariance matrix in passive 

sensing is still valid in the “supervector” formulation. This analogy can be easily found by using 

the column decomposition in Eq. 5.18:  

𝐶̃(𝛺) = 𝐾̃(𝛺)𝐾̃H(𝛺) = ∑ ∑ 𝐷𝑚𝑢̃(𝛺)𝐷𝑚𝑢̃
H
(𝛺)

𝐿

𝑢=1

𝑀

𝑚=1

(5.19) 

which shows that the multitone TRO in “supermatrix” form is a summation of the covariance 

matrices of the reception supervectors over all transmit elements and at all sampled frequencies. 

The dimension of the multitone TRO 𝐶̃(𝛺) is now N∙L×N∙L that only accounts for the correlation 

between broadband-augmented reception array.  

Experimentally, the elements of 𝐾̃(𝛺) can be measured by a modification of Eq. 5.3 into 

cross-frequency:  

𝐾𝑝𝑞̃ =
𝑅𝑛(𝜔𝑢)𝐸𝑚

∗(𝜔𝑣)

|𝐸𝑚(𝜔𝑣)|
2 + 𝛼𝜎2

(5.20) 

where p = (u-1)∙N+n and q = (v-1)∙M+m are the row and column number in 𝐾̃(𝛺), respectively. 

Note that although the rank of the monotone TRO illustrated in Eq. 5.7 is built by the “snapshots” 

taken in the different locations (and thus arrival times) of the transmit elements, for multitone TRO 

the matrix is likely to be rank deficient since the sampling in multiple frequencies in transmission 

does not provide additional information to the 𝐶̃(𝛺) supermatrix. Considering for example a Dirac 

delta as an ideal emitted signal E(ω) = constant, there would be repetitive columns at the same 

transmit element in 𝐾̃(𝛺). This means that the rank of 𝐶̃(𝛺) as seen in Eq. 5.19 is still governed 

by the number of transmit elements M instead of being augmented by the number of sampled 

frequencies L.  
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5.2.4.2 White noise constraint beamformer to resolve rank deficiency in adaptive 

beamforming  

The maximum likelihood method (MVDR algorithm) for high resolution imaging in active 

sensing [48] requires the covariance matrix to be full rank, which cannot be satisfied in broadband 

TRO formulation. The white noise constraint (WNC) algorithm is a modified version of the 

MVDR processor that utilizes an inequality constraint on the gain against the spatial white noise 

in the covariance matrix [57].  

The WNC replica supervector 𝑤WN𝐶̃(𝑥, 𝑦, 𝛺) is found using an optimization approach by 

finding the minima of the function 𝐹(𝑥, 𝑦, 𝛺) using a Lagrange multiplier γ:  

𝐹 = 𝑤WNC̃
H(𝑥, 𝑦, 𝛺)(𝐶̃(𝛺) + 𝜀(𝑥, 𝑦)𝐼)𝑤WNC̃(𝑥, 𝑦, 𝛺)

+𝛾(𝑤WNC̃
H(𝑥, 𝑦, 𝛺)𝑤BAR̃(𝑥, 𝑦, 𝛺) − 1) (5.21)

 

where ε(x, y) is the amount of spatial white noise added to enable the inversion of 𝐶̃(𝛺). The 

solution to Eq. 5.21 can be found by first determining the white noise gain GW in dB that constrains 

the norm of the WNC replica:  

𝑤WNC̃
H(𝑥, 𝑦, 𝛺)𝑤WNC̃(𝑥, 𝑦, 𝛺) ≤ 𝐺W

−1 = 𝑆 (5.22) 

where S denotes the sensitivity to errors. When the constraint GW is 0 dB, which means 

𝑤WNC̃(𝑥, 𝑦, 𝛺) is the same as Bartlett with unity norm, the algorithm puts large diagonal loading 

ε(x, y) everywhere that makes 𝐶̃(𝛺) similar to the identity matrix I. When the constraint GW is 

small (e.g. -5 dB) or equivalently with high sensitivity S, the output approaches an ideal MVDR 

beamformer. The solution to Eq. 5.21 involves equalizing its derivatives to zero that leads to 

𝑤WNC̃(𝑥, 𝑦, 𝛺, 𝐺W) =
(𝐶̃(𝛺) + 𝜀(𝑥, 𝑦)𝐼)−1𝑤BAR̃(𝑥, 𝑦, 𝛺)

𝑤BAR̃
H(𝑥, 𝑦, 𝛺)(𝐶̃(𝛺) + 𝜀(𝑥, 𝑦)𝐼)−1𝑤BAR̃(𝑥, 𝑦, 𝛺)

(5.23) 

In practice, for a given constraint GW, the diagonal loading ε(x, y) at each pixel (x, y) in the 

image is found by computing 𝑤WNC̃(𝑥, 𝑦, 𝛺) from Eq. 5.23 and varying the values of ε(x, y) until 
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Eq. 5.22 is satisfied. Finally, the broadband coherent WNC (C-WNC) beamformer is written as 

the magnitude squared output:  

𝐼C−WNC(𝑥, 𝑦, 𝛺, 𝐺W) = 𝑤WNC̃
H(𝑥, 𝑦, 𝛺, 𝐺W)𝐶̃(𝛺)𝑤WNC̃(𝑥, 𝑦, 𝛺, 𝐺W). (5.24) 

 

5.3 High Axial Resolution Imaging via Time Delay Beamformers 

Although the match field beamformers can provide high resolution images in the lateral 

direction (cross-range), these beamformers are less sensitive to axial resolution since the transient 

features of the ultrasonic signals cannot be captured in the frequency domain. The time-

backpropagation algorithm (delay-and-sum or DAS) is widely used for fast and robust imaging in 

the time domain. The DAS type algorithms achieve high resolution in axial range by extracting 

the properly delayed amplitude in each interelement response knm(t). The delay-multiply-and-sum 

(DMAS) algorithm extends the array gain of DAS by exploiting the correlation between different 

transmitter-receiver pairs [13]. An image is built by combinatorial multiplication of the 

backpropagated signals extracted through the interelement responses, that is  

𝐼DMAS(𝑥, 𝑦) = ∑ ∑ sign(𝑘𝑢(𝜏𝑢,𝑥𝑦)𝑘𝑣(𝜏𝑣,𝑥𝑦))√|𝑘𝑢(𝜏𝑢,𝑥𝑦)𝑘𝑣(𝜏𝑣,𝑥𝑦)|

𝑆

𝑣=𝑢+1

𝑆−1

𝑢=1

(5.25) 

where each uth combination, or similarly vth, is formed by a unique transmitter-receiver pair (m, 

n), and the total number of interelement response is S = M ∙ N. The “sign” operator preserves the 

sign of the correlation between the uth and vth extracted amplitudes before feeding them to the 

square root. The multiplication of all possible signal pair combinations exploits the correlation 

between recorded signals belonging to not only the same transmit element but also different 

element firings, thus increasing the overall array gain compared to a traditional DAS beamforming. 
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Referring to Fig. 5.1(a), the time of flight (TOF) τmn,xy for each transmitter-receiver pair (m, n) can 

be easily found as 

𝜏𝑚𝑛,𝑥𝑦(𝑥, 𝑦) = (√(𝑥𝑚 − 𝑥)2 + (𝑦𝑚 − 𝑦)2 + √(𝑥𝑛 − 𝑥)2 + (𝑦𝑛 − 𝑦)2)/𝑐 (5.26) 

where c is the longitudinal mode wave speed considered in this work. 

Recall that the inverse Fourier transform of the operation in Eq. 5.2 cannot capture a clean 

transient feature of the interelement response knm(t). In this work, the time domain knm(t) first goes 

through data compression processing using wavelet decomposition to cleanse the undesired 

ringing in the waveforms as in [58]. The time domain DMAS imaging is then computed from the 

analytical signal representation utilizing known Hilbert transform considerations [6] [16].  

The complete flowchart of the proposed beamforming strategy is schematized in Fig. 5.3. 

The DMAS beamformer provides robust and stable images with high resolution in the axial range. 

For narrowband beamformers, the MUSIC obtains high resolution by performing SVD on the 

transfer matrix 𝐾̂(𝜔) . If the transfer matrix is interpreted as a passive modality where all 

transmissions are summed in the outer product as 𝐶̂(𝜔) , incoherent beamforming can be 

performed either linearly (IC-BAR) or adaptively (IC-WNC). It is worth stating that though the 

WNC algorithm can be used in narrowband to provide high azimuth resolution as in [57], there is 

no dynamic range bias in the beamformer output because the covariance matrix 𝐶̂(𝜔) is full rank. 

The three narrowband beamformers (in blue boxes) are expanded to broadband by incoherent 

averaging of each narrowband output. For broadband beamformers, both the covariance matrix 

and the replica vector are assembled in the “supervector” formation to take advantage of the signal 

coherence in cross-frequency terms. Using the WNC optimization, a significant dynamic range 

bias is expected because the supermatrix 𝐶̃(𝛺) is rank deficient [51]. The final image can be a 

conditional summation of the DMAS image and the C-WNC image that features high resolution  
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Figure 5.3: The beamforming strategy discussed in this paper. Green, blue, and yellow boxes 

correspond to time domain, narrowband, and broadband variables, respectively. Examples of 

match field beamformers are given in Fig. 5.12 by experimentally scanning two side-drilled 

holes in an aluminum block.  

 

in both axial and azimuth range as the proposed imaging strategy in this chapter. The details of 

this summation scheme are to be introduced in section 5.4.2.2.  

 

5.4 Simulation Results 

The performance of the various imaging algorithms discussed above was first validated 

using numerical simulations from MATLAB k-wave toolbox in a 2D (plane strain) scenario [59]. 

The simulation modeled a 30 mm wide × 40 mm deep aluminum square with a simulated ultrasonic 

array consisting of 32 elements with a 0.6 mm pitch. The excitation em(t) was a 5 MHz tone burst 

signal with 2 cycles and a Gaussian envelope. The transducer transmission/reception was modeled 
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as vertical displacement perpendicular to the array-medium interface. The size of a grid was set to 

0.05 mm that is sufficiently smaller than the L-mode wavelength λ = 1.2 mm calculated from the 

center frequency. The scatterers/reflectors were modeled as hard inclusions with a sound speed 

and density that were 20 times larger than the propagation medium. The time step was carefully 

selected as 0.2 ns to satisfy the desired bandwidth.  

The replica vectors used in the model were free field Green’s function. The improvement 

of scaling the amplitude in the replica vectors to match the 3D measurements will be shown in the 

experimental results in section 5.5.  

5.4.1 Simulation of Matched Field Beamforming  

5.4.1.1 Point spread function and closely-spaced point scatterers  

Before looking at the performance of matched field beamformers on extended targets, it is 

beneficial to check their Point Spread Functions (PSFs) to compare the resolution. Fig. 5.4 shows 

the comparison of MUSIC and proposed C-WNC algorithm when the imaged scatterers are point-

like. The size of the model point scatter is 0.05 mm (one pixel in the simulation grid), which is 

considerably smaller than the wavelength λ of 1.2 mm. For both beamformers the transfer function 

is sampled at 4, 5.25, and 6.5 MHz. For MUSIC the beamformer is an average of narrowband 

outputs as in Eq. 5.12 with an estimated dimension of subspace Ns = 2, while for C-WNC the 

beamformer involves a supervector formulation as in Eq. 5.24. Fig. 5.4(a) shows the comparison 

of the PSFs when the scatterer is at a range of 15 mm (12.5 λ). Both algorithms form a single 

resolution cell, but the dynamic range bias of C-WNC suppresses the noise floor to -160 dB making 

the image high contrast. The cause of the output power bias for rank deficient covariance matrix 

has been thoroughly discussed in [52].  
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Figure 5.4: Comparison of MUSIC and C-WNC in imaging and differentiating point scatterers. 

Images and lateral line profiles of (a) a point scatterer, (b) two point scatterers separated by 0.8 

mm, and (c) two point scatterers separated by 1.0 mm.  

 

For the case of two point scatterers separated by 0.8 mm, Fig. 5.4(b) shows that neither of 

the two beamformers can clearly separate the reflectors. MUSIC shows two resolution cells from 

its high frequency components, but the lateral focus is not accurate as illustrated in the LSF. C-

WNC averages the multitone components from previous discussions, and the image shows an 

overlap of two resolution cells with no separation. A better separation is seen in Fig. 5.4(c) when 

the points are further separated by a distance of 1.0 mm separating the reflectors. In this case 

MUSIC has four resolution cells due to high resolution in the 6.5 MHz TRO and possibly from the 

complexity of multiple scattering. C-WNC is less sensitive to the inter reflector interaction and 
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only two resolution cells accurately focus on each of the reflectors, with a gap of -20 dB between 

the cells from the benefit of the dynamic range bias. To summarize, MUSIC has smaller resolution 

cells by nonlinearly thresholding the singular/eigen subspace, but it does not necessarily guarantee 

the correct localization of scatterers. Alternatively, C-WNC is an averaged output due to the cross-

spectrum coherence of the supervector formulation and thus results in more accurate scatterer 

locations.  

5.4.1.2 Eigen structure of extended targets and mechanism of C-WNC  

To have a better understanding of the match field imaging, the resolution cell structures in 

the TRO of extended targets are illustrated in Fig. 5.5. As shown in Fig. 5.5(a), from one transmit 

element there are two sources of scattering for longitudinal waves, one being the continuous slit 

boundary and the other being the slit edge tips. The matched field beamformer tends to look for 

point sources. Thus, the reflection from the flat surface is taken as a point source in the transfer 

matrix by mirroring the transmit element to twice axial range. A typical distribution of 

corresponding resolution cells is shown in Fig. 5.5(b). Besides the resolution cells from the tips, 

there are also resolution cells from the transmit array superimposed in the signal space. Moreover, 

there is a passing region where the algorithms find it to be possible locations (azimuth angles) of 

scattering sources if no optimization/constraint is present. Notice that the strength of each 

resolution cell (or eigen mode) can change depending on the array aperture and the extended target 

dimensions.  

An example of resolution cell distribution using the proposed adaptive C-WNC algorithm 

is shown in Fig. 5.5(c)-(e). The extended target is a 12 λ slit located at a 10 λ distance in range. To 

simplify the eigen structure, the 32 by 32 FMC dataset is reduced to a 4 by 32 sparse matrix capture 

(SMC) by only using a 4-element transmission array and the full 32-element reception array. The  
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Figure 5.5: Eigen structure of imaging an extended slit target. (a) Reflections from a single 

transmit element. (b) Distribution of resolution cells. Example of using a sparse 4-element 

transmit array SMC dataset: (c) the norm of C-WNC replica vectors after optimization using a 

GW = -2.5 dB, (d) corresponding C-WNC image, and (e) its lateral line profile.  

 

multitone transfer matrix 𝐾̃(𝛺) is reduced to (32×3) by (4×3) considering a broadband sampling 

at 4, 5.25, and 6.5 MHz. The rank of the corresponding covariance matrix 𝐶̃(𝛺) is expected to be 

M = 4 considering only the transmit array contributions. Using a GW of -2.5 dB, the norm of the 

replica vectors in Fig. 5.5(c) shows the result of optimization highlighting the four transmit 

elements as the “most likelihood” with the largest norm in the C-WNC replicas (that is close to 

the maximum allowed white noise gain of 2.5 dB). The resolution cells at the two tips of the slit 

are weaker in this setup (but still 1.6 dB larger than “no likelihood”). The beamformed C-WNC 



171 

image shown in Fig. 5.5(d) displays a weak spatial focus including all four resolution cells from 

the mirrored transmit array, the passing region, and two cells at the tips. This is because the -2.5 

dB constraint is so loose that it allows most eigen modes to come through as “signal” after the 

optimization. Regardless of the loose constraint, the lateral line profile at the ground truth range 

of the slit in Fig. 5.5(e) shows that the C-WNC image accurately captures the tip of the slit with a 

significant drop to the biased noise floor.  

It is worth stating that there is a blind zone in the near field of C-WNC images, shown in 

Fig. 5.5(c) and (d) around 0 ~ 7 mm in range in the near field where the results are distorted by a 

“spatial comb”. This is a result of spatial aliasing of the supervector formulation of matched field 

beamformers, and the pattern is dependent on the choice of sampled frequencies of the augmented 

broadband array.  

The cause of dynamic range bias in the C-WNC beamformer as well as its high-resolution 

characteristic are illustrated in Fig. 5.6. As revealed by Song et al. [52], the amount of bias to be 

expected is related to the minimum diagonal loading γ to the CSDM 𝐶̃(𝛺) to make the matrix 

invertible. Note that the quantity γ is an location independent variable which limits the minimum 

value allowed in the optimization of ε(x, y). Fig. 5.6(a) shows the eigenvalues of a typical multitone 

TRO 𝐶̃(𝛺) of an example slit that is 5 λ wide and 10 λ in range. The dimension of 𝐶̃(𝛺) is 3×32 = 

96 due to the formulation of broadband supervector, and the rank of 𝐶̃(𝛺) is M = 32 expected from 

the orthogonality of single element transmissions. The eigen modes indexed larger than 32 are 

non-physical modes. Inversion of the multitone TRO is by nature an ill-imposed problem because 

augmenting the beamformer to supervectors does not add to the rank in the covariance matrix. 

Song et al. pointed out that when the minimum allowed loading γ is much smaller than the smallest 

physical eigenvalue λn, a power bias 2×γ/λn is present at the source locations in the output of WNC  
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Figure 5.6: Cause of high-contrast and high-resolution features in C-WNC images. (a) Variation 

of multi-tone TRO eigenvalues with a loading of γ/λn = -50 dB. (b) Variation of C-WNC noise 

floor by setting different γ. (c) Effect of γ on the output bias. (d) The effect of GW in 

optimization: C-WNC images with GW set to -1 dB, -4 dB and -7 dB.  

 

beamforming of a rank deficient covariance matrix. This output bias is not available in traditional 

MVDR beamformers because the load γ is static that results in the same elevation at all locations. 

As revealed in [51], the expected peak-to-background ratio of C-WNC is calculated as [–SNR – 

array gain – white noise constraint + 2 × γ/λn]. For example, when γ/λn = -50 dB as in Fig. 5.6(a), 

the SNR (signal amplitude over the waveform’s root mean square) is approximately 25 dB in the 

simulation, the array gain is [10 log(3×32)] = 19.8 dB, and the white noise gain GW is set as -3.5 

dB. The theoretical peak-to-background ratio is -25-19.8-(-3.5)+2×(-50) = -141.3 dB, which is 
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consistent to the minimum reading of -140 dB in the blue line profile as in Fig. 5.6(b). By repeating 

the experiment as in Fig. 5.6(b) using different static loading γ in the optimization of ε(x, y) with 

increments of 2 dB, Fig. 5.6(c) shows that the noise floor of C-WNC beamformer decreases with 

the loading γ by a slope of 2 as found in previous literatures. The minimum value of γ that reaches 

the machine precision for matrix inversion is found to be γ/λn = -60 dB where no further bias is 

observed with a smaller γ.  

For the goal of imaging extended targets using a linear array, it is critical to ensure that a 

moderate control parameter GW is applied to the optimization to include the eigen modes focusing 

on the tips of the extended targets. The effect of tightening GW on C-WNC imaging results is 

shown in Fig. 5.6(d) using a 32×32 FMC dataset. The example slit is 8 λ wide and 10 λ in range. 

A loose constraint (GW = -1 dB) makes the beamformer to be “Bartlett like” which allows all eigen 

structure components discussed in Fig. 5.5(b) to come in as “target”. The good news is that the 

passing region still indicates the lateral width of the slit with high dynamic range. A medium 

constraint (GW = -4 dB) starts to reject the passing region and part of the mirrored transmit array. 

Finally, a tight constraint (GW = -7 dB) rejects most of the passing region and only preserves the 

resolution cells at the tips of the slit. The elevated noise floor in this tight constraint arises from 

the fact that the added white noise ε(x, y) is fairly small at the focus (main lobes) which reaches 

the machine precision limit for matrix inversion of 𝐶̃(𝛺). Since the resolution cells at the tip of the 

slit is the most significant in the eigen structure of 𝐶̃(𝛺) for this example, the C-WNC images 

always guarantee a dramatic drop of intensity along the azimuth direction regardless of the 

constraint used. However, for algorithm robustness, it is always desired to leave enough room to 

allow more resolution cells to come through in the optimization. For the remaining results in this 

paper, a constraint of GW = -3.5 dB seemed reasonable to use as recommended in [51].  
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5.4.1.3 Imaging results of simulated slits of different sizes and ranges  

A comparison between MUSIC and C-WNC on imaging extended targets in the near field 

(10 λ in range) is made in Fig. 5.7. Again, the noise space threshold of MUSIC is set by Eq. 5.14 

with a known lateral size of the target as an input. The constraint GW is set to -3.5 dB. Fig. 5.7(a) 

shows the images of a 5 λ wide slit. Both matched field beamformers present good lateral focus on 

the entire slit since the tip scattering and the passing region is dominant for a small lateral target. 

The maximum intensity occurs at the resolution cells on the tip of the slit for both algorithms. The 

advantage of the dynamic range bias is significant for C-WNC to determine the cut-off intensity 

threshold for lateral size estimation. Fig. 5.7(b) shows the images of a wider 10 λ slit. The eigen 

structure tends to emphasize part of the mirrored transmit array due to the longer continuous 

surface reflections. Since the MUSIC image shows the maximum intensity around 20 mm in range, 

a bias (red line) is added to the lateral line profile at the ground truth axial range to normalize the 

maximum to 0 dB for comparisons. The C-WNC image still gives a satisfactory result since the 

moderate GW allows most eigen modes to come in as “signal”. The most difficult task is to image 

a 15 λ wide slit that is comparable to the 16 λ physical aperture of the array, as shown in Fig. 5.7(c). 

The MUSIC image shows the maximum at the center of the mirrored transmit array, and even the 

biased lateral line profile shows low intensity at the tip of the slit. This means that even though the 

MUSIC beamformer uses an equal weight for all subspace eigenvectors, it cannot erase the 

unevenness in focusing power between eigen modes. The C-WNC image also suffers from the 

same issue, but the robust GW allows the resolution cells at the tips to pass through as “signal” that 

guarantees a high contrast resolution cell. The peak intensity at the tips is -30 dB (normalized to 

the maximum at the mirrored transmit array). However, the gap between the resolution cells at the 

tips and the passing region is still problematic.  
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Figure 5.7: Comparison of MUSIC and C-WNC for imaging extended targets in the near field 

(10 λ in range). Images and lateral line profiles of slits with sizes of (a) 5 λ, (b) 10 λ, and (c) 15 λ. 

(d) Sizing error of MUSIC and C-WNC images using different thresholding criteria.  

 

Fig. 5.7(d) compares the lateral size estimation of the matched field beamformers using the 

lateral line profiles at the ground truth axial range. Since the dynamic range is large for C-WNC, 

the threshold is set to -50 dB. The size is determined by the largest distance between intersections 

of the line profile and the threshold intensity to avoid underestimation due to the separation of 

resolution cells as seen in Fig. 5.7(c). For MUSIC two criteria are used. First is to fix the threshold 

at -10 dB, and second is to set a dynamic threshold equal to 70% of the contrast (maximum over 

minimum intensity). For either option, the line profile of MUSIC is biased since in most cases the 
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maximum in the image does not locate the correct axial range. It is shown that for both 

beamformers the lateral size is overestimated when it is close to the wavelength (0.5 ~ 2 λ). This 

is because the scattering at the tip of the slit is dominant in the TRO. The center locations of these 

resolution cells fall exactly on the tips, which leads to an overestimation of one lateral width of the 

cell. As the size of the slit increases, both C-WNC and MUSIC (-10 dB criteria) shows an accurate 

lateral sizing, until MUSIC (-10 dB criteria) first fails around 12 λ. The second option of MUSIC 

(70% contrast criteria) is more stable for all sizes tested with an overestimation of ~1 λ. However, 

the accurate trace of thresholding in MUSIC is the result of trial and error. In contrast, the C-WNC 

beamformer is more robust with the variation of the lateral target size. The only limitation in the 

C-WNC performance is that it tends to overestimate the size by ~1 λ when the slit is comparable 

to the array physical aperture (>14 λ). The reason is revealed in the example shown in Fig. 5.7(c) 

where the PSFs at off-axis locations are distorted and tilted due to the azimuth coverage of a 

physical aperture, resulting in increasing overestimation as the slit grows wider.  

Fig. 5.8 shows the comparison of MUSIC and C-WNC when the slit is at 20 λ and 30 λ in 

range. The 10 λ wide examples in Fig. 5.8(a) and (b) show that the imaging performance is similar 

for each beamformer regardless of the axial location. For the MUSIC images, the focus is shifted 

to a deeper range due to the mirroring effect from the surface, while the resolution cells at the tips 

are ~10 dB weaker than the maximum in the biased line profiles. For the C-WNC images, only the 

resolution cells at the tips are accepted and other eigen modes are rejected in the optimization. This 

still guarantees a high contrast focus at the boundary of a slit. Fig. 5.8(c) shows the sizing error of 

each beamformer at different ranges as a function of lateral size. The MUSIC beamformer shows 

that the error decreases with increasing slit size. Also, the size estimation of MUSIC at Y = 30 λ is 

always ~1 λ larger than the one at Y = 20 λ. This is because the dynamic range of MUSIC images  
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Figure 5.8: Comparison of MUSIC and C-WNC for imaging extended targets at farther ranges. 

Images and lateral line profiles of slits with sizes of 10 λ at (a) Y = 20 λ and (b) Y = 30 λ. (c) 

Sizing error of MUSIC and C-WNC images. The threshold for MUSIC is 70% of biased 

dynamic range, and the threshold for C-WNC is -50 dB.  

 

can vary greatly depending on the lateral size and axial range of an extended target. In contrast, 

the C-WNC images show a consistent lateral size regardless of the axial range of the slit at 20 λ, 

with an overestimation of 1 λ due to the finite size of PSFs. For the 30 λ case, there is slight 

overestimation present when the slit is either too small (e.g. a point scatterer) or too large (e.g. 

close to the size of the array physical aperture). Regardless, at both tested axial ranges the C-WNC 

beamformer controls the error within 1 λ when the slit size is smaller than the physical aperture.  
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5.4.2 Simulation of Time Delay Beamforming  

5.4.2.1 Imaging results using Delay-Multiply-and-Sum beamformer  

Since the C-WNC beamformer only guarantees the resolution cells at the discontinuous 

scattering tips of a slit, it is important to look at time-delay type beamformers to highlight the 

continuous scattering part of an extended target. Fig. 5.9 shows the DMAS imaging results of a 6 

mm (5 λ) slit using the k-wave simulation of the same 32-element array as in section 5.4.1. The 

result in Fig. 5.9(a) uses rnm(t) to approximate the interelement response knm(t), while in Fig. 5.9(b) 

a NCPS is performed in the frequency domain using Eq. 5.2 to deconvolve the known transmission 

signal (5 MHz tone burst with 2 cycles). The comparison of the DMAS images in Fig. 5.9(a) and 

(b) shows that the NCPS deconvolution scheme corrects the axial range position of the slit at the 

expense of image contrast. The advantage of the deconvolved transfer function is more eminent in 

the axial line profile shown in Fig. 5.9(c). Not only does the deconvolved result focus on the ground 

truth range distance, but the axial main lobe width is also compressed. In the lateral line profile 

comparison in Fig. 5.9(d), the intensity of DMAS main lobe is more uniform with the deconvolved 

waveforms with an increase of 4 dB in the main lobe center. Considering that the 5 λ lateral slit is 

relatively small compared to the 16 λ array, this represents an additional advantage of performing 

deconvolution for time domain beamformers. An estimation of the slit lateral size can be 

performed by assigning a threshold between -30 dB to -15 dB, but the result is highly dependent 

on the SNR. Moreover, the time delay beamformers usually overestimate lateral size due to the 

finite sized PSF constrained by the Rayleigh diffraction limit. These considerations suggest the 

combination of matched field beamformers for optimum resolution and contrast of extended target.  
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Figure 5.9: Effect of deconvolution in time-delay type beamformers. (a) DMAS image of an 

extended target with a lateral size of 5λ by beamforming knm(t) ≈ rnm(t) directly. (b) DMAS 

image by beamforming knm(t) using cleansed IFFT results after NCPS deconvolution. Line 

profile comparison in (c) axial direction and (d) lateral direction.  

 

5.4.2.2 Combining time reversal algorithms  

Since the matched field beamformers are more sensitive to direction-of-arrival (cross-

range), it is valuable to consider the superposition of time-delay beamformers and matched field 

beamformers to obtain high resolution in both range and azimuth directions as in [53]. A basic 

combination can be a conditional summation of normalized power outputs from the beamformers 

in decibels: 

𝐼Combined(𝑥, 𝑦) = {
𝐼DMAS(𝑥, 𝑦), if 𝐼DMAS(𝑥, 𝑦) in dB ≥ 𝜅

𝐼DMAS(𝑥, 𝑦) + 𝐼C−WNC(𝑥, 𝑦), if 𝐼DMAS(𝑥, 𝑦) in dB < 𝜅
(5.27) 

where the combined image only takes the value of the DMAS beamformer when the value of the 

decibel scale DMAS image is larger than a threshold κ to preserve the continuous part of the 

extended target, and the combined image takes advantage of the dynamic range bias and resolution 
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Figure 5.10: Combined DMAS and C-WNC image of a 10 λ lateral slit at 10 λ range, displayed 

with (a) 200 dB, (b) 20 dB dynamic range, and (c) lateral line profile. Combined DMAS and C-

WNC image of a 10 λ lateral slit at 20 λ range, displayed with (d) 200 dB, (e) 20 dB dynamic 

range, and (f) lateral line profile.  

 

cells from C-WNC image to highlight the discontinuity of the target for regions below the 

threshold κ. The value of κ should be chosen small enough to include the unevenness in the main 

lobe of the DMAS beamformer, but large enough to reject the side lobe of the DMAS beamformer 

to avoid overestimation.  

Fig. 5.10 shows the combined images in both near field and far field simulations of a 10 λ 

slit with κ set to -20 dB. For the near field case, the C-WNC beamformer highlights mostly the 

passing region with GW = -3.5 dB, resulting in intensity levels around -70 dB in the passing region 

of Fig. 5.10(a). A satisfactory image can be displayed by setting the minimum intensity to -40 dB 

as in Fig. 5.10(b). With the help of the dynamic range bias from C-WNC, the combination of 

beamformers shows significant contrast improvement in the lateral line profile of Fig. 5.10(c). For 
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the far field case as in Fig. 5.10(d), the C-WNC beamformer only highlights the resolution cells at 

the tips. The conditional summation scheme proposed in Eq. 5.27 ensures the main lobe of DMAS 

is preserved when there is no passing region in C-WNC, so a similar image is obtained by plotting 

in 40 dB dynamic range as in Fig. 5.10(e). Again, the improvement in contrast is impressive, with 

an overestimation of lateral size of ~1 λ due to the finite size of C-WNC point spread function at 

the tip locations, as revealed in the line profile in Fig. 5.10(f). For both examples, the resolution in 

range is provided by the DMAS beamformer, and the high contrast azimuth focus is provided by 

the C-WNC beamformer.  

 

5.5 Experimental Results 

Experimental tests with the various beamformers were conducted to image drilled holes 

and slots in an aluminum block. The transducer was a 64-element linear array (Olympus NDT 

5L64-A12) with central frequency at 5 MHz, 38.4 mm total active aperture, and 0.6 mm element 

pitch. The excitation em(t) was a 5 MHz square wave with one cycle. As schematized in Fig. 5.11, 

the imaging targets were: two side drilled holes (SDHs) of 0.5 mm in diameter, and two slits of 6 

mm and 30 mm in length (both 1.2mm in height). All targets were drilled to a depth of 5 mm from 

the surface of the block per safety protocols, so the 2D plane-strain assumption does not perfectly 

apply to the experimental data. Also, due to the finite size of the drill bits, the two ends of the slots 

were round, hence different from ideal “sharp” tips of the simulations.  

5.5.1 Improved Replica Vectors Using Wave Mode Reception Structure  

First, the improvement in replica vectors for better match with experimental data is shown 

in Fig. 5.12 when imaging the two SDHs. The results using free field Green’s function (only the 

Hankel function in Eq. 5.9) are compared with the results using weighted Green’s function with  
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Figure 5.11: Experimental test on reflectors in an aluminum block: two 0.5 mm diameter SDHs 

at Y = 12.5 mm, a 6 mm wide slot at Y = 24 mm, and a 30 mm wide slot at Y = 18 mm. The slots 

were drilled by 1.2 mm diameter drill bits.  

 

3D geometrical spreading and wave mode structure weights (full expression in Eq. 5.9). The 

broadband sampling frequencies are at 4, 5.25, and 6.5 MHz for all experimental results. These 

SDHs are not point scatterers because their diameter (0.5 mm) is close to half of the wavelength 

(1.2 mm) at the center band. All five match field beamformers listed in Fig. 5.3 are used for this 

comparison. Fig. 5.12(a) shows the incoherent MUSIC image using a signal space dimension Ns 

= 2. Though the two SDHs have sizes comparable to the sampled wavelengths that may result in 

an Ns larger than 2, the current result shows two distinguishable main lobes with high resolution 

in both azimuth and axial ranges. Compared to the free field case, the weighted Green’s function 

suppresses the noise floor in the MUSIC image by 5dB except around the off-axis SDH at x = 5 

mm. Fig. 5.12(b) shows the incoherent Bartlett image that is an average of the monotone linear 

beamformer ambiguity surfaces as in Eq. 5.11. Since this is the most standard option (no SVD or 

adaptive beamforming), the focus is weak at the two SDHs. The improvement in dynamic range 

using the weighted Green’s function is roughly 4 dB seen from the lateral line profile. Fig. 5.12(c) 
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Figure 5.12: Comparison of replica vectors using free field Green’s function versus modified 

Green’s function considering geometrical spreading and wave mode reception structure. Imaging 

results on two SDHs using (a) incoherent MUSIC, (b) incoherent Bartlett, (c) incoherent white 

noise constraint, (d) coherent Bartlett, and (e) coherent white noise constraint.  
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shows the incoherent average of the narrowband WNC images by adaptively beamforming the 

monotone TRO 𝐶̂(𝜔) at the three sampled frequencies. The optimization of narrowband replica 

vectors gives high resolution characteristics, but there is no dynamic range bias since 𝐶̂(𝜔) is full 

rank as discussed in Eq. 5.7. For the free field case, the image has higher resolution by showing 

two closely located resolution cells at each SDH. The weighted Green’s function image shows a 

single resolution cell for each SDH, but the noise floor is suppressed by ~6 dB. Fig. 5.12(d) shows 

the linear beamforming output of coherent supervector formulation of multitone TRO 𝐶̃(𝛺) . 

Though a theoretical [10 log(3)] = 4.7 dB additional array gain is expected with the supervector 

formulation, modeling mismatch in the broadband frequencies unfavorably makes the linear 

beamforming of multitone TRO similar to its monotone counterpart as in Fig. 5.12(b). In addition, 

the near field blind zone is enlarged compared to the 32-element array simulation because the 

azimuth coverage of spatial aliasing comb is proportional to the physical aperture width. 

Regardless of these drawbacks, the weighted Green’s function in C-BAR still shows suppression 

of ~4 dB like IC-BAR. The last option is to use the proposed coherent white noise constraint 

processor (C-WNC) as in Fig. 5.12(e). The dynamic range bias results in high contrast that makes 

the output binary like. The dynamic range improvement of the weighted case is still around 5 dB, 

but the change of noise floor is not comparable to the significant power output bias produced by 

the WNC algorithm. To summarize, all four beamformers confirm that the weighted Green’s 

function improves the azimuth focus at the expense of the axial range focus. The rest of the 

experimental results use the weighted Green’s function to maximize the lateral/azimuth focusing 

ability of the match field beamformers.  
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5.5.2 A 6 mm Lateral Slot at 24 mm Range  

The first tested slot was drilled 6 mm in length and 24 mm deep from the top surface of the 

block, and the beamforming results are shown in Fig. 5.13. The extended target is expected to be 

clearly seen by the array because the lateral size is small compared to the physical aperture, and 

the location is not too shallow in range. To illustrate, the eigen structure of monotone TRO 𝐶̂(𝜔) 

is plotted by sampling at a dense number of frequencies across the transducer bandwidth in Fig. 

5.13(a). A clear gap between the signal space and noise space is observed, with more eigen modes 

joining the signal space as the frequency increases. In addition, the theoretical signal space 

dimension Ns plotted in bolded black line aligns with the energy gap in eigen structure. The 

incoherent broadband MUSIC image is shown in Fig. 5.13(b). The collection of resolution cells 

aligns well with the ground truth in azimuth, but again the exact size indication depends on 

thresholding the intensity around -25 ~ -15 dB. For the C-WNC image in Fig. 5.13(c), the result 

shows a passing region as well as two resolution cells on the tips with high contrast. Finally, the 

DMAS image in Fig. 5.13(d) is combined with the C-WNC image by setting the threshold κ to -

25 dB. The combined image is plotted both in full dynamic range (250 dB) in Fig. 5.13(e) and a 

smaller dynamic range (50 dB) in Fig. 5.13(f). Note that similar results can be obtained using an 

arbitrary κ within -30 ~ 0 dB that corresponds to the DMAS main lobe fluctuation along the ground 

truth slot. This shows high robustness to obtain a good quality image with focus in both azimuth 

and range directions as in Fig. 5.13(f). The accuracy of the combined image is illustrated in the 

line profiles shown in Fig. 5.13(g) and (h). In the lateral (azimuth) direction, the highest intensity 

is found at the transition of the slot where the flat surface turns to a round corner due to the finite 

size of the 1.2 mm drill bit. These two transition points are marked by blue lines in Fig. 5.13(g) 

and their 6 mm separation exactly correspond to the traveling distance of the center of drill bit.  
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Figure 5.13: Experimental results on a 6 mm lateral slot at 24 mm in range. (a) Variation of 

eigenvalues. Match field beamforming result using (b) MUSIC and (c) C-WNC. (d) Time-delay 

beamforming result using DMAS. Combined DMAS and C-WNC image displayed using (e) 250 

dB and (f) 50 dB dynamic range. (g) Lateral and (h) axial line profiles.  

 

The boundary of C-WNC resolution cells tend to match the high contrast lateral line profile with 

the maximum width of the slot (7.2 mm). However, this is a coincidence because the linear array 

cannot see the side of a curve due to the limited angle of view, and the match is due to the same 

size of the drill bit as the PSF (1.2 mm resolution) of C-WNC at the 24 mm range. The focus in 

the axial range direction is provided by the DMAS beamformer, as shown in the axial line profile 

by cutting along x = 0 in Fig. 5.13(h). The improvement by combining C-WNC is limited because 
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of the lack of focus in the axial range for match field beamformers. The maximum of the axial line 

profile is not 0 dB because scattering on the tips is stronger than flat line reflections at the center 

of the slot. As a benefit from deconvolution, the axial focus matches the front boundary of the slot 

that is at [24-1.2/2] = 23.4 mm in range considering the finite thickness of the slot.  

5.5.3 A 30 mm Lateral Slot at 18 mm Range  

The second slot was drilled 30 mm in length at a depth of 18 mm from the top surface of 

the block. This is a more challenging case because the 25 λ lateral size is comparable to the 32 λ 

physical aperture of the transducer array. In addition, the 15 λ axial range makes the extended 

target take up more azimuth coverage in the illuminated region. This complicates the direction-of-

arrival beamforming because the discontinuity at the tips can be too weak to be detected. The eigen 

structure shown in Fig. 5.14(a) contains both signal and noise subspaces with no clear indication 

of energy gap. The theoretical subspace dimension criteria plotted in bolded black line suggests 

that the signal space varies dramatically with frequency, and the subspace methods fails over 6.3 

MHz since the signal space is saturated. The MUSIC image is shown in Fig. 5.14(b) using the 

known extended target size and location as inputs to determine NS as in Eq. 5.14. The MUSIC 

image seems to capture the lateral width at the ground truth range with low contrast, while the 

maximum intensity is seen at the “mirrored” transmitter array due to the large flat line reflections. 

In contrast, the C-WNC image of Fig. 5.14(c) preserves the resolution cells at the tips with high 

contrast (-20 dB focus compared to the -150 dB noise floor) when normalized to the largest 

response seen at the mirrored transmit array. The resolution cells at the tips are extended to the 

blind zone, and their sizes are different due to the tiny asymmetry of the transducer array 

positioning. The combined image with full dynamic range in Fig. 5.14(e) shows that the proposed 

conditional acceptance scheme preserves the main lobe response of DMAS beamformer for the 
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Figure 5.14: Experimental results on a 30 mm lateral slot at 18 mm in range. (a) Variation of 

eigenvalues. Match field beamforming result using (b) MUSIC and (c) C-WNC. (d) Time-delay 

beamforming result using DMAS. Combined image displayed using (e) 210 dB and (f) 50 dB 

dynamic range. (g) Lateral and (h) axial line profiles.  

 

flat surface, and the resolution cells from C-WNC define the end of the lateral width. Although the 

50 dB plot in Fig. 5.14(f) still gives a decent high contrast image, the choice of threshold κ is 

delicate due to the larger variation of the DMAS main lobe for a wide target. Thanks to the noise 

suppression by exploiting cross term correlations in DMAS, there is still room to determine κ while 

not dramatically changing the imaging result. The 30 mm slot example uses the same κ = -25 dB 

as the 6 mm slot. Different from the observations for the 6 mm slot in Fig. 5.13(g), the lateral line 
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profile of the 30 mm slot in Fig. 5.14(g) coincides with the 30 mm width of the flat surface. 

However, as seen in Fig. 5.14(c) the C-WNC image underestimates the flat surface with the 

resolution cells focusing inside the slot. The shift in azimuth is due to the focusing limitations of 

match field beamformers at off-axis locations. For the axial line profile of Fig. 5.14(h), the 

maximum is again at the front boundary of the slot (y = [18-1.2/2] = 17.4 mm) and the high contrast 

focus is the result of preserving the DMAS main lobe using conditional thresholding.  

 

5.6 Discussions and Conclusions 

This chapter proposes a method for ultrasonic imaging of extended targets with high 

resolution and contrast in both azimuth and axial range. The proposed method combines concepts 

of adaptive match field beamformers and time-delay type beamformers. Specifically, the 

broadband coherent white noise constraint (C-WNC) beamformer is formulated to obtain high 

contrast image of scattering coming from the target’s sharp tips, whereas the delay-multiply-and-

sum (DMAS) beamformer is employed to obtain focused image of scattering coming from the 

target’s extended surface. The C-WNC beamformer provides azimuth resolution and the DMAS 

beamformer provides axial range resolution. Compared to the SVD based match field beamformers 

such as MUSIC, the C-WNC requires no knowledge of the signal subspace dimension in the 

transfer matrix decomposition. By formulating the transfer matrix into cross-band for active 

sensing, an added improvement in dynamic range is given to the C-WNC image resulting from the 

rank deficiency of multitone covariance supermatrix.  

The transfer function of conventional active FMC scheme is estimated through a 

deconvolution operation by calculating normalized cross power spectrum with known 

transmission signals. The deconvolution operation calibrates the arrival time for axial range 
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estimations in time-delay type beamforming and improves match field beamforming by 

eliminating the source spectrum.  

The popular “super resolution” imaging method aimed at resolving the Rayleigh diffraction 

limit is to use a SVD analysis of the transfer matrix, as done in MUSIC type algorithms discussed 

in this paper. However, MUSIC type beamformers face several drawbacks when imaging an 

extended target in the near field. The theoretical signal space dimension changes dramatically with 

wavelength, which complicates the task of separating subspaces when sampling at multiple 

frequencies across the band of interest. It is shown in simulation and experiments that when the 

size of the extended target is comparable to the physical aperture of the array, the mirroring effect 

of the continuous surface scattering dominates the signal space, making the subspace 

decomposition threshold hard to determine. Even though the MUSIC type beamformers discard 

the relative intensity (i.e. singular values) of the singular modes, the resolution cells at the ends of 

extended targets are not distinguishable due to the reduced sensitivity at off-axis azimuth locations. 

Furthermore, the MUSIC beamformer output is highly dependent on the SNR of the eigen 

structure, which makes it difficult to establish a universal criterion to trace the lateral size.  

This chapter approaches high resolution imaging through adaptive beamforming 

techniques that require no subspace decomposition of the transfer matrix. Since the multitone 

covariance matrix is found rank deficient and thus needs diagonal loading to allow inversion, the 

proposed C-WNC algorithm imposes a constraint on the white noise gain to the replica 

optimization so that the beamformer output at the source locations are controlled by the maximum 

assigned sensitivity. It is interesting to observe that at these locations of source resolution cells, 

the C-WNC algorithm puts minimum diagonal loading to inverse the covariance matrix resulting 

in a significant dynamic range bias over the rejected noise floor. This gives great potential for 
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correctly identifying the lateral size of an extended target from the pixel intensity map. It is worth 

stating that the large dynamic range does not guarantee a better detectivity of the C-WNC 

algorithm under low SNR, as discussed in [51]. Another advantage of C-WNC is that the resolution 

cells at the ends of extended targets are always available after optimization, whether the target is 

in the near field or the far field. This is because the adaptive beamformers tend to find point sources 

such as tip scattering, while rejecting the reflections from a continuous flat surface. If the white 

noise gain constraint increases, the C-WNC algorithm first rejects the passing region that is 

extended from the “mirrored” transmit array. Thus, a moderate WNC parameter assures robustness 

to locate the discontinuous ends of the extended target with extremely high contrast. The C-WNC 

beamformer was tested on simulated slits with sizes ranging from 1 to 20 λ and axial ranges of 10, 

20, and 30 λ from a 5 MHz 32-element array with half λ pitch (a 16 λ aperture width). The proposed 

C-WNC algorithm was found to outperform MUSIC in all cases, especially when the slit is the 

near field and is large compared to the array aperture.  

The chapter also borrows the concept of wave mode amplitude windowing previously 

developed for time-delay beamforming to generate improved replica vectors for the match field 

beamforming. In particular, the amplitude distribution across the reception array is adjusted 

according to the ray path connecting a candidate focus point and each element. Both the geometric 

spreading factor and the angle of incidence denoting the sensitivity of transducer elements to the 

longitudinal wave particle displacements are considered to increase modeling accuracy. 

Experimental results on drilled holes show that the use of such weighted replica vectors results in 

a 5 dB gain compared to using free field Green’s functions as the model.  

Finally, the chapter shows examples in both simulations and experiments where the DMAS 

and C-WNC intensity maps are combined through a conditional addition scheme. The high 
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intensity values in robust DMAS images are preserved when C-WNC images fail to highlight the 

continuous surface reflections from the extended target. For simulation results using a 32-element 

array, the combined images show superior focus on the extended targets with high resolution and 

high contrast in both azimuth and axial range, with target sizes ranging from λ to 16 λ (the array 

physical aperture). For the experimental results using a 64-element array, the combined images 

still display high focusing ability on the two tested extended targets even though ideal sharp tips 

could not be created due to the finite size of drill bits.  

Although the proposed method has pushed the limit to what a limited view aperture (in our 

case a linear array) can physically beamform, there are still fundamental limitations to perfect 

accuracy. These limitations include inaccurate azimuth focus at off-axis locations, and undesired 

aliasing that blinds the view of an extended target in the near field of a wide aperture array.  

The results of this paper solely utilized longitudinal wave modes. Future studies will be 

performed to add shear wave modes to these algorithms for enhanced match field beamforming, 

as done in other imaging approaches [4] [11] [54]. Other future applications could include 

extension to dispersive guided waves in prismatic geometries.  
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Chapter 6 Application of Coherent White Noise 

Constraint Beamformer to Imaging in Composite Panels 
 

6.1 Introduction 

Plate-like structures are widely used in aviation, maritime, and civil applications. In 

Structural Health Monitoring (SHM), effective inspection techniques have been developed to 

identify the occurrence and accumulation of structural damage in these parts. Among various tools 

available, ultrasonic guided waves are commonly recognized as an efficient and promising tool 

due to their ability to propagate for long distances and provide sensitivity to various types of 

damages [1]. In a typical in-situ SHM configuration for imaging waveguide structures, a sparse 

array of piezoelectric transducers is used for transmission and reception of the ultrasonic signals 

[2]-[4]. 

The array processing schemes used for the SHM of the waveguide usually require the 

isolation of the transfer matrix between the transmitter array and the receiver array [5], or the 

covariance matrix of the receiver array [6] depending on whether active or passive sensing modes are 

used. Based on the orthogonality of signal and noise subspaces in the transfer (covariance) matrix, 

the MUltiple SIgnal Classification (MUSIC) type algorithms have been employed for their high-

resolution characteristics in the imaging of the multistatic dataset. Engholm and Stepinski [7] first 

demonstrated the use of the MUSIC algorithm for passive sensing of an aluminum plate using 

circular arrays. Yuan et al. presented variations of the MUSIC algorithms for both passive mode 

impact localization [8] and active mode defect localization [9] [10]. One of the main difficulties 

in employing MUSIC type algorithms for the imaging of plate-like structures is the dispersion 

effect of guided waves, especially when a broad frequency band is considered [11]. Zuo et al. [12] 

presented a model-based MUSIC algorithm by exploiting the cross-correlation between the guided 
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wave model and the measured signals. Bao et al. [13] proposed an anisotropy compensated MUSIC 

algorithm to account for the phase errors in modeling waveguide propagations in reinforced 

composite panels. Another significant challenge is the nature of low Signal-to-Noise Ratio (SNR) 

due to the relatively small sources inspected over a large structure using a small number of array 

elements. Efforts have been made to increase the SNR of the multistatic data by beamforming the 

transmit aperture to synthetically focus the diagnostic signals on aluminum plates [9] [14] and 

stiffened composite structures [10].  

In addition to what summarized above, the most critical deficiency of using MUSIC type 

beamformers remains the determination of the threshold that separates the signal and noise 

subspaces [15], which is a critical parameter rarely discussed in the existing literatures of 

composite SHM. It has been shown that for a simple linear array setup, the one-to-one 

correspondence in singular mode factorization does not apply when sources are finitely sized or 

not well resolved in the transfer matrix [16]. For a sparse array setup on complexed waveguide 

structures, analyzing the singular mode (or eigenmode) composition can be challenging depending 

on factors such as multiple wave modes, dispersion effects, multiple scattering from boundaries 

and stiffeners, and specific arrangement of the array [17]. Thus, it is essential to develop an 

imaging scheme that achieves high resolution for source localization in structural waveguides 

without requiring singular value decomposition.  

Matched Field Processing (MFP) is a family of array processing framework initially 

developed in underwater acoustics to estimate target locations and medium properties in complex 

propagation environments such as the ocean waveguide [18]. Similarly to MUSIC type 

beamformers, MFP algorithms have the potential to exploit the best match between the measured 

data and the replica of the data (back propagators, or steering vectors) by directly using 
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experimental measurements as the replica [19]. Such data-driven capability greatly eases the 

burden of accurately modeling the propagation environments, for example the multimodal and 

dispersive characteristics in plate-like structures [20]. With the tools developed in the MFP 

community, it is possible to adaptively beamform waveguide signals sampled across the spectrum 

of interest coherently. A “supervector” formulation was developed to take advantage of the 

coherence between each sampled frequency in the magnitude squared inner products by stacking 

each narrowband data vector [21]. Robust adaptive beamformers such as the White Noise 

Constraint (WNC) algorithm in the supervector formulation have demonstrated superior image 

resolution and contrast in low SNR environments, without any knowledge of the singular value 

structure in the covariance matrix [22]. In structural acoustics, the authors have established the 

analogy between passive MFP beamformers and active sensing modalities in the nondestructive 

evaluation of solids using bulk waves [23] [24]. The coherent MFP beamformers are expected to 

perform even better in imaging plate-like structures considering the opportunity to achieve 

enhanced signal compression by exploiting the multimode and dispersive wave properties.  

This chapter presents a data-driven MFP based framework to image impacts and defects in 

stiffened composite panels using adaptive coherent beamformers. This framework is decomposed 

into two steps: recording experimental Green’s function and imaging using recorded data. 

Specifically, the measurements of the structural Green’s functions are first performed through a 

deconvolution operation between recorded signals in a sparse receiver array and a controlled 

excitations by a hammer impact. These Green’s functions directly compose the replica vectors that 

are therefore established experimentally, given the challenges of accurate numerical modeling of 

such a complex structure. In the second step, the coherent WNC algorithm is shown to yield high 

resolution and high contrast when tracking the location of impacts in the panel. To highlight the 
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weak scattering from the defect that serves as a secondary source in the recorded wavefield, the 

dominance of the active source is relieved by performing a null operation via eigen structure 

decomposition of the covariance matrix [25]. Experiments show that the eigen mode associated 

with the simulated defect as a secondary wave scatterer can be built up in the eigen structure after 

the null operation with a larger variety of excitations. This eigen mode can finally be focused using 

adaptive MFP beamformers to generate high quality image of the defect.  

 

6.2 Data-driven Matched Field Processing 

6.2.1 Benefits of Using Experimental Data When Imaging Complex Media  

Despite the discrepancy of interpreting the transfer matrix between MUSIC type algorithms 

and conventional matched field processors, these frequency domain beamformers all build their 

ambiguity surfaces by exploiting the similarity or “match” between a model (known as replica) 

and experimental measurements (the data). Identified as match-field type beamformers, the best 

imaging performance are obtained when the replica represents the realistic wave propagation 

environment [24]. The benefits of using experimental measurements as replica in the imaging of 

complex waveguide structures are illustrated in Fig. 6.1. Highlighted by the blue box in Fig. 6.1(c), 

the target experimental signal to match is a typical realistic ultrasonic guided wave time history in 

a stiffened composite panel. This signal was excited by a hammer impact and recorded by a 

piezoelectric transducer bonded to the panel (detailed explanation in Fig. 6.3). The dispersive and 

multi-modal nature of guided wave can be easily observed in the target signal. Three different 

signals are used as replica for comparison, shown in the first column in Fig. 6.1. Their 

corresponding cross-correlation outputs with the target signal are shown in the second column in  
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Figure 6.1: Benefits of using an accurate replica in cross-correlation. The target experimental 

guided wave signal to match is in the blue box of (c). Examples of replica signal using (a) Dirac 

Delta, (b) chirp, and (c) the same signal as the matched signal.  

 

Fig. 6.1. The envelope of these cross-correlations (shown in red) can be seen as a match-field time-

domain beamformer output intensity, without considering coherent array gain.  

Fig. 6.1(a) shows the cross-correlation results using a Dirac Delta function shifted by the 

estimated time of flight of the dominant wave packet. This is similar to using the delay-and-sum 

type algorithms [24] [31] and considering only the group velocity in guided wave signals as 

backpropagation time [2]. In this case, the beamforming output is simply a phase shift of the target 

signal. Since the complex wave propagation information is not included in the replica, high 

intensity side lobes appear in the cross-correlation, leading to reduced focus and potential false 

positives in the image.  



203 

Fig. 6.1(b) shows the results using a model considering the dispersion in a single wave 

packet. The replica signal is generated using a chirp signal covering the frequency band of the 

experimental measurements and Hanning windowed by the same group velocity consideration as 

in Fig. 6.1(a). This is similar to the results shown in most guided wave imaging literatures by 

compensating the dispersion effects in plate-like structures [4] [13]. Though an improvement in 

the cross-correlation beamformer output is seen compared to using a Dirac Delta replica, 

significant side lobes are still obtained due to various factors missed in the replica model such as 

reflections from stiffeners and boundaries, multiple wave modes, etc. Besides, the higher 

frequency components are missing in the simple chirp model, which further degrades the 

resolution of cross-correlation beamformers.  

Finally, Fig. 6.1(c) shows the results using the experimental measurement itself to do the 

“autocorrelation”. When the replica is copied directly from experimental data, all complexities of 

the propagation environment are encoded in the model (i.e. dispersion, multiple modes, multiple 

reflections, etc.). As seen in the cross-correlation beamformer output, the side lobes are greatly 

suppressed and focus in greatly improved with significant signal compression. The side lobe level 

at locations close to time zero is still approximately half of the intensity normalized to the main 

lobe since the experimental signal is neither transient nor very wide band. Clearly, adding signal 

complexities generally increases compression of the autocorrelation.  

6.2.2 Extraction of Green’s Function 

The key to achieve matched field imaging in waveguide structures is to extract the 

structural Green’s function (or equivalently the impulse response function) that encodes the 

complex wave propagation information. One method to experimentally measure this quantity in 

using a single-input-single-output scheme with an active excitation and a reception. Consider the 
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transmitted signal by the active source as E(ω) and the received signal as R(ω), the Green’s 

function can be written as the normalized cross power spectrum  

𝐺(𝜔) =
〈𝐸∗(𝜔)𝑅(𝜔)〉

〈𝐸∗(𝜔)𝐸(𝜔)〉
(6.1) 

where the numerator is the cross correlation of the two signals and the denominator is the 

autocorrelation of the transmitted signal. The autocorrelation eliminates the power bias in the 

power spectrum of the cross correlation colored by the spectral density of the active source E(ω) 

[26]. Eq. 6.1 is therefore conceptually a form of deconvolution. In practice, the expectations of the 

power spectra can be estimated using overlapping time segments to calculate ensemble averages 

[27]. It should be noted that the length of each segment should be 3~4 times larger than the wave 

arrival of interest since the coherence in these averages is only captured within the supporting time 

length of each windowed segment [29].  

6.2.3 Coherent Adaptive Matched Field Processing  

In MFP beamforming both the measured data and the replica are assembled in column 

vectors with each entry corresponding to an element in the array [19]. The data vector is multiplied 

by its outer product to form the covariance matrix C(ω). An example of a linear MFP output is  

𝐼𝐼𝐶−𝐵𝐴𝑅(𝑥, 𝑦, 𝛺) = ∑𝑤H(𝑥, 𝑦, 𝜔)𝐶(𝜔)𝑤(𝑥, 𝑦, 𝜔)

𝜔

(6.2) 

where w(x, y, ω) is the replica vector denoting the Green’s functions between the pixel location (x, 

y) and the reception array, and H is the Hermitian operator. Note that although the final 

“broadband” image averages the ambiguity surfaces of narrowband MFP outputs at each sampled 

frequency ω, this processor is incoherent across the spectrum of interest Ω.  

Due to the dispersive nature of guided wave propagation, it is beneficial to beamform in a 

coherent manner such that the cross-frequency terms can contribute to the array gain. The authors 
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have shown that the White Noise Constraint (WNC) beamformer can be used together with the 

supervector formulated coherent MFP to both achieve high resolution and high contrast in the 

output image [24]. The coherence between frequencies is exploited by stacking the column vectors 

from each sampled frequency to a long “supervector” [22]. In this supervector formulation, the 

WNC replica vector is found adaptively at each pixel (x, y) by first determining the white noise 

gain GW that constrains the norm of the optimized WNC replica vector  

𝑤WNC
H(𝑥, 𝑦, 𝛺)𝑤WNC(𝑥, 𝑦, 𝛺) ≤ 𝐺W

−1 (6.3) 

The solution to the WNC problem can be found by minimizing the magnitude squared 

output at all candidate pixels except at the true source location [24]. Using the method of Lagrange 

multiplier, the WNC replica is found as  

𝑤WNC(𝑥, 𝑦, 𝛺, 𝐺W) =
(𝐶(𝛺) + 𝜀(𝑥, 𝑦)𝐼)−1𝑤BAR(𝑥, 𝑦, 𝛺)

𝑤BAR
H(𝑥, 𝑦, 𝛺)(𝐶(𝛺) + 𝜀(𝑥, 𝑦)𝐼)−1𝑤BAR(𝑥, 𝑦, 𝛺)

(6.4) 

where ε(x, y) is the diagonal loading applied to the covariance matrix to enable matrix inversion 

such that the white noise gain constraint in (3) is satisfied. It has been demonstrated previously 

that in a typical coherent MFP problem, the broadband covariance matrix C(Ω) is rank deficient 

and the WNC beamformer outputs the intensity of the source location (focus) with a power bias 

that leads to a large dynamic range between the main lobe and the noise floor [28]. Such 

characteristic helps to generate high contrast images in finding sources in composite panels given 

the poor SNR and the limited dimension of sparse transducer arrays.  

One of the most problematic aspects in active sensing is that the presence of the “loud” 

active source (e.g. hammer impact in the present application) can mask the “weak” secondary 

source from the damage scatterer. The authors recently worked on a method to eliminate the 

existence of the active source by considering the passive normalized cross power spectrum of two 

receivers to reconstruct active impulse response as if one of the receivers was an active source 
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[29]. Another way to eliminate the active sources that was developed in underwater acoustics and 

seismology uses an eigenmode decomposition of the covariance matrix [25]. If the active source 

and the secondary source (defect) are decoupled, the dominant eigenvector should be related to the 

active source and can be eliminated from the beamforming. The active source can be removed 

from the covariance matrix by projecting out the dominant eigenvectors Um(Ω) as follows 

𝐶𝑝(𝛺) = (𝐼 − 𝑈𝑚(𝛺)𝑈𝑚
H(𝛺))𝐶(𝛺) (6.5) 

where Um(Ω) are the collection of column eigenvectors to be removed from the covariance matrix 

C(Ω). Typically, only the first eigenvector associated with the largest eigenvalue is required to be 

removed in each excitation dataset. Experimentally, the secondary source should be illuminated 

by excitations from different locations. The final covariance matrix can be the summation of 

individual projected covariance matrix Cp(Ω) so that these snapshots build up the eigen mode 

associated with the defect scatterer after each null operation of the active source.  

 

6.3 Experimental Results 

The experimental setup is shown in Fig. 6.2. An array of piezoelectric (PZT) transducers 

with a diameter of 8 mm was glued to the surface of a skin-stringer stiffened composite panel 

representative of modern aircraft construction. Eight PZTs were attached to the skin-only part of 

the panel (outside of the stringer flange) and four PZTs were attached to the stringer heel. Fig. 

6.1(a) shows the pristine case with no damage present. The experimental Green’s functions were 

collected by hitting each 1 cm in the ROI grid using an instrumented impulse hammer. Fig. 6.1(b) 

shows the simulated damage case by sticking an added mass to the surface of the stringer flange 

using a thin layer of adhesive clay. The effective contact area was a circle with a diameter of 2 cm.  
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Figure 6.2: Experimental setup of the stiffened composite panel. A 12-element sparse PZT array 

was attached to the stringer side of the panel. (a) Pristine case for the acquisition of Green’s 

function. The ROI is highlighted in red. (b) An added mass is attached to the stringer flange to 

simulate a defect.  
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6.3.1 Experimental Green’s Function as Replica Model 

Fig. 6.3 shows the results of Green’s function extraction. Fig. 6.3(a) shows a typical 

waveform recorded in the hammer by hitting on one of the pixels in the grid on the stringer flange. 

Multiple sub-hits were present due to the secondary hits. Fig. 6.3(b) shows two typical waveforms 

recorded by element #3 and #7. The multimodal and dispersive nature of the excited guided waves 

is seen in both receptions. Since element #3 was located on the stringer heel, there were multiple 

wave packet arrivals caused by the complex wave paths in the stiffened panel. For element #7 

located close to the excitation on the skin part outside the stiffener, most of the energy is seen in 

the first arrival packet. Fig. 6.3(c) shows the deconvolution result using the normalized cross power 

spectrum in (1). The deconvolution operation in the frequency domain takes care of the multiple 

hits seen in the hammer excitation since only coherent phase lag between the two signals contribute 

to the cross spectrum. The segmental averaging approach was used to constrain most of the energy 

within 0~1 ms in causal time. This time length is long enough for any receiver to record the first 

arrival from the excitation at any location within the ROI shown in Fig. 6.2(a). The effect of signal 

compression is seen in both signals due to the elimination of excitation spectrum. Comparing the 

two Green’s functions, the response on the stiffener is more complex with multiple arrivals in the 

wave packet while the response on the skin is more transient with an earlier time of arrival.  

6.3.2 Imaging Impacts In-situ 

This section shows the ability to find impacts passively at various locations of the stiffened 

composite panel in-situ using the proposed MFP imaging algorithms with the sparse PZT array. 

As shown in Fig. 6.4, the receiver array records the hammer impacts as the data vector and creates 

the covariance matrix. For now, each entry in the data vector is deconvolved with its excitation 

signals, similarly to the extraction of Green’s function seen in the previous section. Twenty  
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Figure 6.3: Acquisition of the experimental Green’s function. (a) Transmitted signal using the 

instrumented hammer. (b) Raw recorded signals at sensor #3 on the stringer heel and sensor #7 

on the skin-only region. (c) Deconvolution results corresponding to the receptions in (b) showing 

the reconstructed Green’s functions in the time domain.  

 

snapshots are used to construct the ensemble averaged covariance matrix. Fig. 6.4(a) shows the 

incoherent averaging of the narrowband linear (Bartlett) beamformer by sampling every 1 kHz in 

the 35~60 kHz range (IC-BAR). The maximum intensity denotes the highest likelihood between 

the replica (candidate source location) and the data in the covariance matrix. In this case, the 

beamformer focuses on the only active source (the hammer impact) with a contrast of 15 dB. Fig. 

6.4(b) shows the image of the broadband “supervector” linear beamformer (C-BAR). By taking 

advantage of the cross-frequency coherence in the supervector, additional array gain is seen in the 

larger dynamic range of the linear MFP output. Besides, the high intensity side lobes in the stringer 

flange region in IC-BAR are suppressed in C-BAR. The most impressive result is obtained using  
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Figure 6.4: Proof-of-principle imaging results by matching the recorded Green’s functions with 

a hammer excitation on the stringer flange. Matched field imaging using (a) incoherent averaging 

of narrowband Bartlett beamformer, (b) coherent Bartlett beamformer, (c) coherent white noise 

constraint beamformer, and (d) same as (c) but plotted in a larger dynamic range.  

 

adaptive beamforming, as shown in Fig. 6.4(c). Through the optimization of the replica vector in 

the WNC algorithm, only the true source location is visible, while the other false positive are 

suppressed, including the high intensity side lobes in Fig. 6.4(b). The actual contrast of the image 

is shown in Fig. 6.4(d) by enlarging the displayable dynamic range to 140 dB. As stated in [22], 

the dynamic range of ~120 dB in C-WNC images seen in this work is due to the power output bias 

resulting from the diagonal loadings that shift the eigenvalues in the rank deficient covariance 

matrix. Regardless of the cause of the bias, the C-WNC image provides excellent focus on the 

primary source of the wave field with both high resolution and high contrast.  
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Figure 6.5: Same as Fig. 6.4 except that the hammer excitation is on the stringer cap.  

 

Fig. 6.5 shows another example of imaging the impact by hitting on the stringer cap of the 

panel and performing deconvolution. This is a more challenging location to detect because the 

curved surface of the stringer complicates the guided wave propagation. As seen in Fig. 6.5(a), the 

IC-BAR image fails to focus on the correct impact location. The maximum response is seen at a 

similar horizontal x location but on the stringer heel. In contrast, the C-BAR image successfully 

focuses on the correct location with minimum side lobes present. Again, with adaptive 

beamforming, the C-WNC image in Fig. 6.5(c) further suppresses the side lobes and only 

maintains the maximum at the correct impact location. A complete study of the achievable spatial 

resolution should be carried out using interpolation techniques to create a denser mesh of the data-

driven Green’s function library. It is also interesting to observe in Fig. 6.5(d) that the noise floor  
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Figure 6.6: Same as Fig. 6.4 except that the hammer excitation is on the stringer heel. 

 

of the biased C-WNC image is elevated compared to the result in Fig. 6.4(d), which confirms the 

theory of numerical power bias of rank-deficient WNC processors described in [22] [24] [28].  

The same experiment was performed by hitting the hammer on the stringer heel. All 

parameters remain the same to generate Fig. 6.6. The incoherent Bartlett image in Fig. 6.6(a) shows 

better SNR compared to the impact on the stringer flange in Fig. 6.6(a). For C-BAR in Fig. 6.6(b), 

the coherent beamformer again results in a better focus in the x-direction as a result of the improved 

phase match and signal compression. Finally, the C-WNC image in Fig. 6.6(c) and (d) shows a 

high dynamic range focus, with similar bias as the case in Fig. 6.4 seen at the -120 dB noise floor.  

Let us now consider a more general case where the excitation signal from the hammer is 

not available (no deconvolution possible in the data vector). This means that the covariance matrix  
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Figure 6.7: Same as Fig. 6.6 except that in this figure the results are generated by the covariance 

matrix directly composed by the receiver array without deconvolution with the excitation signal.  

 

can be contaminated by the uncontrolled active source in both magnitude and phase. Fig. 6.7 shows 

the same hammer excitation on the stringer heel but without deconvolving the excitation signal. 

Surprisingly, the IC-BAR image in Fig. 6.7(a) is still similar to the deconvolved version in Fig. 

6.7(a). This is due to the lack of coherence in the narrowband Bartlett (a linear sum of the sampled 

frequencies) that makes the beamformer insensitive to the excitation spectrum. The C-BAR image 

in Fig. 6.7(b) shows a significant degradation compared to its deconvolved counterpart in Fig. 

6.7(b). Additional side lobes at locations to the right of the correct impact location even have larger 

intensities. The good news is that when the adaptive beamformer is used as in Fig. 6.7(c), the C-

WNC image still outputs the correct impact localization. This result confirms the superior 
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performance of adaptive matched field beamformers to focus on the correct wavefield source 

through their optimization scheme. If the C-WNC image is plotted in a 140 dB dynamic range in 

Fig. 6.7(d), it is obvious that the bias available is less than the examples with deconvolution in Fig. 

6.6(d) due to the decreased SNR in the covariance matrix.  

6.3.3 Imaging Defects as Secondary Scatterers 

Localizing defects is often the primary objective of an SHM system. Fig. 6.8 demonstrates 

the ability of the primary source null operation to find the secondary source (i.e. a defect scatterer) 

for the same stiffened composite panel. As mentioned above, the defect is here simulated by an 

added mass. Since the scattering of from the defect is much weaker than the active impact source, 

it is impossible to image using incoherent linear processors. Fig. 6.8 shows the results of coherent 

MFP algorithms by changing the number of excitations (and thus snapshots) in the projected 

covariance matrix. The sampled frequencies are the same as in the previous section, so the 

dimension of the super covariance matrix is 26*12 = 312. Fig. 6.8(a) shows the images by only 

using 20 snapshots (repetitions) of one hammer excitation located on the stringer flange. By 

removing the first eigenvector associated to the dominant source, the rank of the covariance matrix 

is 19. Although this is a rank deficient problem in WNC similar to most cases seen in this work, 

the C-WNC image does not focus on the defect nor give the expected dynamic range bias. This is 

because there is no “secondary source” after the null operation since the SNR of the added mass 

is too weak to show in the eigen structure. As seen in the C-BAR image, after removing the first 

eigenvector, the image still focuses close to the location of the active source. To build up the eigen 

mode associated with the added mass, four excitations at different locations on the stringer flange 

were used to construct the ensembled covariance matrix, as shown in Fig. 6.8(b). The null 

operation was performed for each excitation before the final summation. Considering 20 snapshots  
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Figure 6.8: Defect imaging using coherent matched field beamformers and dominant source null 

operation. The defect was simulated by an added mass on the stringer flange. Imaging results 

using C-BAR and C-WNC beamformers with (a) one excitation on stringer flange, (b) four 

excitations at different axial locations, and (c) six excitations on stringer flange and heel.  

 

for each excitation, the rank of the covariance matrix is thus 4*(20-1) = 76. It can be seen from the 

linear C-BAR image that the maximum intensity is focused to the right boundary of the added 

mass. Besides, large side lobes are observed close to each excitation location. This means that 
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although the null operation tries to project out the dominant source, the eigen modes associated 

with the active sources still exist in the remainder of the covariance matrix. Fig. 6.8(c) shows the 

results by considering six excitations with two additional impacts on the stringer heel. Since the 

excitations on the stringer heel contribute less to the SNR than those on the stringer flange, the 

response outside the top stringer flange (y > 3 cm) grows even larger in C-BAR due to the 

introduced sensitivity in the eigen structure compared to Fig. 6.8(b). For the C-WNC image, the 

adaptive beamformer focuses on both outer boundaries of the added mass. Only one pixel located 

close to the excitation at x = 24 cm remains as the “false positive”, due to the incompleteness of 

null operation as mentioned earlier. The comparison in Fig. 6.8 shows that the more distributed 

excitations locations, the easier it is to image the secondary wave scatterer. It is worth mentioning 

that the current case of simulated defect is difficult to be imaged using MFP algorithms because 

the effective contact area of the added mass is comparable to the smallest wavelength considered. 

In contrast. the MFP beamformers tend to find point sources instead of extended targets (larger 

areas). Therefore, it is expected that smaller defects such as cracks or drilled holes should show 

higher SNR than the added mass considered in the current work.  

 

6.4 Conclusions 

This chapter presents an MFP framework to image damage in a stiffened composite panel 

using experimental data as replica model. A 12-element sparse PZT array was employed as the 

receiver, and a hammer was used as the active source. First, the Green’s function was extracted by 

performing deconvolution using normalized cross power spectrum between the received signal 

and the excitation signal. The library of replica vectors was then built by the assembly of the 

experimentally acquired Green’s functions that encoded the complex multimodal and dispersive 
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wave propagation in the stiffened panel at the various points of an imaging grid. In the imaging 

stage, the coherent supervector formulation of WNC beamformer generated high resolution and 

high contrast image of the primary impact source in the wavefield. The dispersive wavefield in the 

composite waveguide could be beamformed coherently by exploiting cross frequency terms, and 

the rank deficiency of the super covariance matrix caused the expected dynamic range bias that 

significantly suppressed the noise floor. The results show that the null operation through eigen 

space decomposition can effectively remove the dominant active source so that the defect can be 

imaged as the secondary source. The randomization of the excitation locations was beneficial to 

image the damage. Future work could involve placing the simulated damage at different locations 

of the stiffener such as the stringer heel and the stringer cap. Real structural damage such as 

debonding and cracks should be investigated to further explore the effectiveness of the presented 

methodology [30]. The authors are also working on employing the passive Green’s function 

extraction framework to reconstruction the active transfer matrix [29] as an alternative approach 

to ease the complexity of handling the primary source in active sensing modalities.  
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Chapter 7 Elastic Constant Identification via Inversion of 

Guided Wave Dispersion Curves for the in-situ Inspection 

of Composite Stiffened Panels 
 

7.1 Introduction 

The non-destructive inspection of aerospace composite structures is of paramount 

important to ensure safety and proper operation. The most common objective of such inspections 

is to detect structural damage or structural degradation. Identifying the elastic constants of a 

composite part can be an invaluable tool for not only detecting damage but also estimating residual 

strength. It is also desirable that such capability be available without the necessity to disassemble 

the part, i.e. available for an in-situ test on a given structure in service.  

A common testing technique utilized to identify the elastic constants of composite panels 

is vibrational modal analysis, as recently reviewed by Tam et al. [1]. The majority of these efforts 

have focused on finding the four in-plane elastic properties (longitudinal and transverse in-plane 

Young’s moduli, in-plane shear modulus and in-plane Poisson’s ratio) [2-4], with additional 

investigations expanding to the out-of-plane moduli (out-of-plane shear modulus, out-of-plane 

Poisson’s ratio, engineering bending stiffness, etc.) [5-7]. Most of these studies were based on 

minimizing the discrepancy between the experimental modal behavior and the predicted behavior 

obtained from a given set of trial elastic constants [7, 8]. The largest drawback in the application 

of vibrational techniques is the requirement of free boundary conditions of the test part, which 

makes it quite challenging to apply as an in-situ test on a structure in-service.  

The use of ultrasonic guided waves is an alternative approach for the non-destructive 

identification of composite constants. The advantage of this method is the insensitivity to the part’s 

boundary conditions that enables an implementation in-situ [9-11]. Ultrasonic guided waves 
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propagating in the 100’s kHz frequency range have been commonly used for defect detection in 

composite parts [12-14]. However, predicting guided wave propagation can be challenging in 

laminated composites owing to the wave multimode and dispersive characteristics. Due to these 

complexities, the majority of guided wave testing has aimed at defect detection, with much fewer 

studies on elastic property identification. Similarly to the modal vibrational techniques, property 

identification using guided waves involves modeling the multimode and dispersive wave 

propagation behavior in the composite waveguide, and then utilizing an optimization scheme to 

match the model to experimental responses. Balasubramaniam [15] first accomplished this task 

using the dispersion relations of the fundamental axial and flexural mode phase velocity using 

Genetic Algorithm as the optimization and the transfer matrix method as the forward model. 

Vishnuvardhan et al. [16] used a single transmitter and multiple receivers to sample the spatial 

guided wave field in orthotropic plates. Nine elastic constants were inverted using the narrowband 

Christoffel equation as the forward model. Glushkov et al. [17] explored the group velocity 

dispersion curve optimization for the elastic identification of unidirectional and cross-ply 

laminates. The forward model was the general elasto-dynamic theory involving Green’s function 

integral for layered media. Another study [18] implemented elastic property inversion using guided 

waves in non-contact transduction modes. More recent works on ultrasonic guided waves for 

property identification in composites have used either genetic algorithms [19, 20] or convolutional 

neural networks [21] for the dispersion inversion routine. The pulsed ultrasonic polar scan (P-UPS) 

method is another successful ultrasonic-based technique able to invert the viscoelastic properties 

of composites without prior knowledge of the material symmetry orientation [22]. The property 

inversion is based on a forward model followed by an optimization routine. The P-UPS method is 

a local technique that identifies properties at a specific point of the test piece.  



223 

The typical guided wave propagation models in previous studies involve close-form 

solutions that can be computationally intensive in the case of multilayered waveguide. As an 

alternative to the theoretical forward methods, the Semi-Analytical Finite Element (SAFE) 

technique has gained favor in modeling the complex multimode and dispersive guided wave 

solutions with limited computational efforts [23-26]. The SAFE technique only requires the finite 

element discretization of the cross-section of the waveguide and assumes harmonic solutions in 

the wave propagation direction. The SAFE technique was utilized by Marzani et al. [9] to identify 

lamina constants in unidirectional and cross-ply laminates by inverting group velocity curves. 

Specifically, this study estimated constants along with two directions for the unidirectional 

laminate and four directions for the cross-ply laminate utilizing pseudo-experimental data.  

In practice, inverting phase velocity dispersion curves requires the experimental 

measurement of these curves on the test part. This is typically accomplished utilizing a 2D Fast 

Fourier Transform (2D-FFT) method [27] that requires a series of wave measurement points 

sampled over several spatial locations along the wave propagation direction. For an application 

requiring scanning the part to map several zones, the requirement for multiple sensing points at 

each scanning position would be both cumbersome and slow. In this case, a better approach would 

involve measuring the wave at only one detection point and extracting the experimental dispersion 

curves from the one measurement. This can be accomplished by analyzing the phase spectrum of 

the measured signals as originally discussed by Sachse and Pao [28]. That paper also discusses the 

importance of unwrapping the phase data to resolve the +/-  uncertainties arising from the arctan 

function. However, the extraction of dispersion curves using a single transmitter and a single 

receiver (“single-input single-output”-SISO- scheme) requires knowledge of the excitation signal 

to appropriately deconvolve that from the output [29]. The excitation signal is difficult to 
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determine given the unknown effects of the transmitter frequency response and the transmitter-to-

structure coupling. Consequently, a more robust way to extract wave information from the test 

piece is to utilize two receivers (“single-input dual-output” -SIDO- scheme) [30]. The “dual-

output” modality enables the isolation of the true structural transfer function (or Green’s function) 

by eliminating the effect of the excitation and of the receiver-to-structure coupling. This approach 

was utilized by Allen et al. [31] to measure phase velocity dispersion curves in metals for the 

purpose of determining residual stresses. More recently, Capriotti and Lanza di Scalea [32] utilized 

the SIDO approach in an ultrasonic scanning prototype system that employed an impact as the 

wave generation and two non-contact air-coupled transducers for the wave detection. In that paper, 

the scanning system was applied to the detection of impact damage in a built-up composite 

aerospace panel by tracking changes in the panel’s wave transfer function.  

The present paper combines elements of the SIDO scanning approach for damage detection 

by Capriotti and Lanza di Scalea [32], the elastic constant estimation by inversion of phase velocity 

curves by Cui and Lanza di Scalea [10, 11] and the phase-spectrum method to measure dispersion 

curves from a single excitation by Sachse and Pao [28] to present a new technique demonstrating 

the estimation of elastic constants in aerospace stiffened composite panels by inversion of phase 

velocity curves extracted in a SIDO approach from an ultrasonic scanning prototype. As discussed 

above, the typical use of ultrasonic scanning systems is to track changes in the wave scattering 

behavior (i.e. tracking wave amplitude or arrival times) to detect structural damage. An ability to 

also relate wave information to the elastic constants of the composite along the wave propagation 

path adds to the performance of the scanning process because of the direct link between damage 

and elastic constants. This link, which is well established for some structural materials such as 

concrete [33, 34] and is also expected for composites [35], although dependent on the specific 
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material and manufacturing process, can be further exploited to not only detect and quantify 

structural damage (resulting in a degradation of the elastic constants), but also to potentially 

estimate the remaining strength of the part. Proof-of-principle experiments were first conducted 

on skin-only isotropic and anisotropic plates to show the accuracy of the elastic constant inversion 

using the proposed method. Validation experiments were then performed on stiffened skin-to-

stringer Carbon-Fiber-Reinforced Polymer (CFRP) panels with impact-type damage. The 

estimation of the elastic constants by the inversion of the flexural guided wave mode shows an 

excellent correlation with the severity of the damage.  

 

7.2 Elastic Constant Identification Algorithm 

7.2.1 Semi-analytical Finite Element (SAFE) as the forward model 

The inversion of the composite elastic constants using optimization requires a forward 

model with low computational effort. The SAFE method of the type presented in [23, 24] is a good 

candidate for this purpose. As schematized in Fig. 7.1, SAFE only requires the finite element 

discretization of the laminate in the cross-sectional plane (y, z) and assumes harmonic motion 

along the wave propagation direction, x. The displacement field for each mono-directional element 

is expressed as  

𝒖(𝑒)(𝑥, 𝑦, 𝑧, 𝑡) =

[
 
 
 
 
 
 
 
 ∑𝑁𝑗(𝑦, 𝑧)𝑈𝑥𝑗

𝑛

𝑗=1

∑𝑁𝑗(𝑦, 𝑧)𝑈𝑦𝑗

𝑛

𝑗=1

∑𝑁𝑗(𝑦, 𝑧)𝑈𝑧𝑗

𝑛

𝑗=1 ]
 
 
 
 
 
 
 
 
(𝑒)

𝑒𝑖(𝜉𝑥−𝜔𝑡) = 𝑵(𝑦, 𝑧)𝒒(𝑒)𝑒𝑖(𝜉𝑥−𝜔𝑡) (7.1) 
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Figure 7.1: SAFE model of wave propagation in laminated composites. 

 

where 𝑛 is the number of nodes per element, 𝑁𝑗(𝑦, 𝑧) are the shape functions, 𝑈  is the nodal 

displacement, 𝜉 is the wavenumber, 𝜔 is the frequency. 

In the case of a multilayered laminate, the lamina stiffness matrix 𝑪 can be rotated from 

the local (1,2,3) onto the global (𝑥, 𝑦, 𝑧) coordinate system using the following transformation  

𝑪𝜃 = 𝑹𝑟𝑜𝑡1𝑪𝑹𝑟𝑜𝑡2
−1 (7.2) 

and the global stiffness matrix 𝑪𝜃 is then assembled in the mono-directional FE discretization to 

characterize the entire laminate.  Following standard FE assembling procedures, an M-degree of 

freedom system that can be formulated as [23] 

[𝑯 − 𝜉𝑳]2𝑀𝑸 = 0 (7.3) 

where 𝑯  and 𝑳  are real symmetric matrices containing stiffness terms, mass terms, and 𝑸 =

[𝑼 𝜉𝑼]𝑇 is the displacement vector. The eigensystem is solved by finding the 2M wavenumbers 

𝜉  for each frequency 𝜔 , and the corresponding eigenvectors representing the cross-sectional 

displacement mode shapes. The phase velocity can be then calculated by 

𝑐𝑝 = 𝜔/𝜉𝑅𝑒 (7.4) 

For a given composite layup, SAFE can directly calculate the phase velocity dispersion 

curves from a set of trial lamina constants (𝐸11, 𝐸22, 𝜐12, 𝐺12, 𝜐23). For the evaluation of overall 
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strength reduction of a panel, it is of more interest to obtain the “effective” or engineering laminate 

moduli (𝐸𝑥, 𝐸𝑦, 𝜐𝑥𝑦, 𝐺𝑥𝑦, K𝑥, K𝑦, K𝑥𝑦)  that characterize the average elastic behavior. Classical 

Lamination Theory (CLT) can be used to estimate the seven laminate’s engineering elastic 

properties from the inversion output of the five lamina constants [10, 11]: 

[𝜺
0

𝜿
] = [𝑨

−1 0
0 𝑫−1] [

𝑵
𝑴

] (7.5) 

where 𝜺0 is the mid-plate in-plane strain, 𝜿 is the out-of-plane curvature, 𝑨 and 𝑫 are the laminate 

stiffness matrices calculated from lamina stiffness matrices in the global reference system, and 𝑵 

and 𝑴 are the external force and moment loadings. The seven effective moduli of the laminate can 

be calculated by properly setting the boundary conditions in Eq. 7.5, including four in-plane 

properties ( axial stiffness 𝐸𝑥, axial stiffness 𝐸𝑦, in-plane Poisson’s ratio 𝜐𝑥𝑦, and in-plane shear 

stiffness 𝐺𝑥𝑦 ) and three out-of-plane properties (flexural rigidity K𝑥 , flexural rigidity K𝑦 , and 

torsional rigidity K𝑥𝑦).  

7.2.2 Simulated Annealing Algorithm as the optimization scheme 

The goal of the inversion procedure is to find a set of lamina constants 

(𝐸11, 𝐸22, 𝜐12, 𝐺12, 𝜐23) whose corresponding phase velocity spectrum best matches the measured 

spectrum. With the primary application being the inspection of stiffened composite panels, the 

focus of the inversion algorithm is not necessarily on estimating the “true” elastic moduli, but 

rather on tracking any reduction in constants in a damaged zone relative to a pristine zone of the 

panel. The optimization process requires to minimize the objective function defined as the 

following:  

𝑑 =
1

𝑁
√∑(

𝑐𝑝,𝑝𝑟𝑒𝑑(𝜔𝑖) − 𝑐𝑝,𝑒𝑥𝑝(𝜔𝑖)

𝑐𝑝,𝑒𝑥𝑝(𝜔𝑖)
)

2𝑁

𝑖=1

(7.6) 
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where 𝑑 is the discrepancy metric, 𝑐𝑝,𝑝𝑟𝑒𝑑(𝜔𝑖) is the phase velocity spectrum from SAFE analysis, 

𝑐𝑝,𝑒𝑥𝑝(𝜔𝑖) is the phase velocity spectrum from experimental measurements, and 𝑁 is the number 

of samples in the spectrum. Simulated annealing (SA), as schematized in Fig. 7.2, is a global Monte 

Carlo method developed to find the global minimum of multi-variable functions with many local 

minima [36]. Each iteration j involves a random perturbation of each parameter in 𝑍𝑗 followed by 

a forward model (SAFE in this case) and mismatch calculation. If the calculated mismatch is 

smaller than the previously accepted model stored in 𝑍𝑖, the new model may be accepted if  

𝑟 < 𝑃 = 𝑒−∆𝑑/𝑇 (7.7) 

where r is a random number from 0 to 1, ∆𝑑 is the mismatch difference between the current trial 

model 𝑑(𝑍𝑗) and the previously accepted model 𝑑(𝑍𝑖), and 𝑇 is the current temperature that is 

decreased with the number of accepted model updates 𝑖 according to the cooling schedule  

𝑇 = 𝑇0𝛼
𝑖 (7.8) 

where 𝑇0 is the initial temperature, and 𝛼 is the cooling parameter.  

After each model updating, each parameter in accepted model 𝑍𝑖 is perturbed to obtain a 

new test value 𝑍𝑗 = 𝑍𝑖 + ∆𝑍𝑖 according to  

∆𝑍𝑖 = ∆𝑍0 (
𝑇

𝑇0
) (𝜂1tan (

𝜂2𝜋

2
)) (7.9) 

where ∆𝑍0 is the predefined initial perturbation, and 𝜂1 and 𝜂2 are two uniformly random numbers 

from -1 to 1. All parameters in 𝑍𝑗 are perturbed at once after each trial 𝑗, which speeds up the 

convergence for correlated parameters in composite elasticity. In this paper, the SA algorithm is 

run 1000 iterations to ensure full coverage of the search domain based on the Cauchy distribution 

and the specific choices of 𝑇0 and 𝛼.  
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Figure 7.2: Flowchart of the simulated annealing algorithm to optimize lamina constants using 

SAFE as a forward model.  

 

The seven engineering constants (𝐸𝑥, 𝐸𝑦, 𝜐𝑥𝑦, 𝐺𝑥𝑦, 𝐾𝑥, 𝐾𝑦, 𝐾𝑥𝑦) can be finally calculated 

from the five lamina constants using CLT. The resulting effective elastic constants include four 

in-plane (compressional and shear) and three out-of-plane (flexural and torsional) properties.  
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7.3 Experimental Extraction of Phase Velocity Dispersion Curves 

from Dual-Output Systems 

According to the SIDO scheme, in the scanning system presented in this work the phase 

velocity curve is extracted at each scan line using a single (impact) excitation and tracking the 

difference in phase spectra measured by two receiver points (air-coupled transducers) (Fig. 7.3).  

At each scanning position, the two receivers 𝑅1 and 𝑅2 are positioned across the interest zone, i.e. 

the structurally critical zone where integrity needs to be assessed (the stringer-stiffened area of the 

test panel in our case).  

The deconvolution between the two received signals, 𝑅1(𝜔) and 𝑅2(𝜔), leads to [30] 

𝑅2(𝜔)

𝑅1(𝜔)
= 𝐺(𝜔) ∙

𝑆2(𝜔)

𝑆1(𝜔)
≅ 𝐺(𝜔) (7.10) 

where 𝐺(𝜔) is the structure Green’s function between point 1 and point 2 and assuming the 

transfer functions of the two sensors, 𝑆1(𝜔)  and 𝑆2(𝜔) , are equal. Hence the deconvolution 

operation between the two receivers successfully isolates the Green’s function 𝐺(𝜔) without the 

influence of the excitation 𝐸(𝜔), which can be highly variable in the subject case of an impactor.  

Even if the response of the two receivers is different, the deconvolution in Eq. 7.10 is still effective 

for the structural inspection objective since any discrepancy in 𝑆1(𝜔) and 𝑆2(𝜔) only leads to a 

phase factor that is consistent throughout the scan, i.e. still able to discriminate structure-related 

changes such as damage.  

The final phase spectrum of the wave propagating in the structure is simply the phase of 

𝐺(𝜔) in Eq. 7.10  

𝜙𝐺(𝜔) = 𝜙𝑅2
(𝜔) − 𝜙𝑅1

(𝜔) (7.11) 
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Figure 7.3: The basic idea of the Single-Input-Dual-Output (SIDO) scheme for structural 

inspection.  

 

where 𝜙𝑅1
(𝜔) and 𝜙𝑅2

(𝜔) are the unwrapped phases from the Fast Fourier Transforms (FFTs) of 

the measurements from 𝑅1(𝜔) and 𝑅2(𝜔) , respectively.  

Traditional time-of-flight measurements cannot evaluate the phase velocities for a 

dispersive, broadband transient wave. Therefore, the phase spectrum method by Sachse and Pao 

[28] is here adapted to the dual-output system. The phase spectrum of the Green’s function in Eq. 

7.11 is linearly related to the propagation path by:  

𝜙𝐺(𝜔) = 𝜉𝑅𝑒𝐿 (7.12) 

where 𝜉𝑅𝑒 is the real part of the wavenumber and 𝐿 is the wave travel distance. Accordingly, the 

dispersion relation of the test part can be extracted by the phase spectrum difference of a 

propagating wave at the two receiving points  

𝑐𝑝 =
𝜔

𝜉𝑅𝑒
=

−𝜔𝐿

𝜙𝑅2
(𝜔) − 𝜙𝑅1

(𝜔) ± 2𝑚𝜋
(7.13) 

Phase unwrapping is needed to resolve the ±𝜋 phase ambiguity resulting from the arctan 

function. The unwrapping step is particularly critical for ultrasonic signals which lack DC 

component and hence have low signal-to-noise ratio at low frequencies. The problem of tracking 

the accurate phase spectrum of these signals can be best addressed by using an additional time 
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marker 𝑇𝑖  for each received signal that is placed just before the arrival of the wave packet of 

interest, as originally discussed in Ref. [31]. In this case, the phase spectrum in each signal 𝑅𝑖 can 

be defined as  

𝜙𝑅𝑖
(𝜔) = 𝜙𝑅𝑖𝑤𝑖𝑛(𝜔) + 𝜙𝑑𝑖

= 𝜙𝑅𝑖𝑤𝑖𝑛(𝜔) − 𝜔𝑇𝑖 (7.14) 

where 𝜙𝑅𝑖𝑤𝑖𝑛(𝜔) is the “fine” phase component unwrapped from the windowed signal spectrum 

after the time marker, and 𝜙𝑑𝑖
 is the “coarse” delay that absorbs most of the large phase angle 

before the arrival of the wave packet. If placed correctly, the “fine” phase is constrained in the 

range of ±𝜋 at low frequencies where phase unwrapping is the most problematic. Using this 

approach, the phase velocity of the test part can be finally expressed as  

𝑐𝑝 =
−𝜔𝐿

𝜙𝑅2𝑤𝑖𝑛(𝜔) − 𝜙𝑅1𝑤𝑖𝑛(𝜔) − 𝜔(𝑇2 − 𝑇1)
(7.15) 

where the phase ambiguity 2𝑚𝜋 from Eq (13) is now resolved.  

 

7.4 Proof-of-Principle Experiments: Elastic Constant Identification 

in Composite Laminate 

7.4.1 Experimental methodology 

Proof-of-principle experiments for elastic constant identification were conducted on an 

isotropic (Aluminum) plate and on a CFRP composite laminate representative of the skin of the 

aerospace panel. The SIDO configuration is shown in Fig. 7.4(a) and the scanning prototype is 

shown in Fig. 7.4(b). The excitation (E) was provided by an impactor that was custom-built by 

using a CFRP laminated strip with an aluminum tip to provide wave energy at frequencies up to ~ 

250 kHz. The two receivers 𝑅1 and 𝑅2 were broadband, micro-machined capacitive air-coupled 

transducers (BAT-1, Microacoustics Corporation) with a frequency response of 20 kHz to 2MHz.  



233 

 

Figure 7.4: (a) Phase spectrum extraction from skin-only panels. (b) The SIDO scanning vehicle 

on the skin side of a stiffened composite panel. Comparison of experimental dispersion curves of 

(c) aluminum and (d) CFRP using 2D FFT and phase spectrum technique.  

 

Following Snell’s law of refraction, the transducers were oriented at an angle that maximized the 

detection of the fundamental flexural mode of the plate in a significant frequency range.  

At each scanning position, the excitation was performed manually by bending the CFRP 

impactor and letting the aluminum tip hit the plate’s surface. The responses at each position were 

averaged for ten impacts before converting to the frequency domain.  Since the phase spectrum 

difference technique is independent of the excitation signal, there was no need to instrument the 

impactor with a piezoelectric sensor. All components were mounted on a wheeled cart with an 

encoder to track the scanning position along the “scan” direction shown in Fig. 7.4(b). For the 

proof-of-principle experiments, the cart was fixed and only one line scan data was used. First, the 

phase spectrum method of extracting phase velocity dispersion curves was compared to the 

traditional 2D-FFT method. Since the latter method requires acqusitions at several points along 
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the wave propagation direction, several impacts were performed while receiver R2 was moved by 

1 mm each time for a total of 130 detection positions. The comparison is shown in Figs. 4(c) and 

4(d) for the aliminum plate and the CFRP laminate, respectively.  The reasonable match is 

expected since both approaches are viable techniques for phase velocity extraction as discussed 

above.  

7.4.2 Isotropic plate 

The first test specimen was an isotropic (Aluminum) plate with a thickness of 3.175 mm, 

Young’s modulus 𝐸 = 73.1 GPa, Poisson’s ratio 𝜐 = 0.33 and density 𝜌 = 2700 kg/m3 . The 

objective was to evaluate the two independent elastic constants 𝐸  and 𝜐  using the proposed 

inversion strategy. The waveforms received by the two receivers in the SIDO system are shown in 

Fig. 7.5(a) and (b). The impactor excited the structure with high SNR to generate clear arrival 

wave packets. A Hanning window was applied to each received signal to regularize the waveforms. 

The waveforms in Fig. 7.5(a) and (b) clearly show the typical shape of the flexural dispersive 

Lamb mode (A0).  

The experimental A0 phase velocity dispersion curve was extracted using the proposed 

phase spectrum difference discussed in section 3. Accurate phase spectrum unwrapping was 

accomplished by tracing the arrival of each wave packet using the time marker, as shown in Fig. 

7.5(a) and (b) using a cross marking the start of the “fine” phase time window. Fig. 7.5(d) compares 

the experimentally extracted curve to the curve predicted by the SAFE forward model at the end 

of the SA optimization routine (minimum of the objective function in Eq. 7.6). The good match 

between measurements and predictions suggests an expected accurate estimation of the plate’s 

elastic constants.  
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Figure 7.5: Proof-of-principle experimental results on the aluminum plate. Raw and windowed 

waveforms recorded by the air-coupled ultrasonic sensors R1 (a) and R2 (b). (c) Inversion of 

Young’s modulus and Poisson’s ratio. (d) Experimental phase velocity dispersion curve versus 

SAFE prediction at the end of the optimization routine.  

 

The elastic moduli inversion analysis was conducted using the FSA optimization algorithm 

with the SAFE model as a forward solver as discussed in section 2. The trial dispersion curves 

were calculated by SAFE using the tentative model 𝑍𝑗 containing the two independent variables 𝐸 

and 𝜐 for the isotropic case. The 2D property inversion convergence results are shown in Fig. 

7.5(c), with the horizontal axis representing the error between the identified constants and the 

ground truth values, and the vertical axis representing the discrepancy metric 𝑑 as calculated in 

Eq. 7.6. The final identification results at the end of the FSA optimization procedure (minima 

points) are marked by a star with a pointing arrow in each plot. The closer the star is to the middle 

of the plot, the more accurate the particular elastic constant inversion outcome. The plots in Fig. 

7.5(c) only show the ranges for 𝑑 that correspond to a zoom-in view around the minimum of the 

objective function to better evaluate the convergence performance of different elastic constants. 

The convergence plot of Young’s modulus 𝐸 in Fig. 7.5(c) shows high sensitivity of the flexural 
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mode to the elastic stiffness. The final estimation for 𝐸 is within a 5% error of the ground truth. 

However, the identification of the Poisson’s ratio 𝜐 in Fig. 7.5(c) is more challenging since this 

property refers to the transverse behavior relative to the longitudinal motion of the wave 

propagation. The general difficulty in identifying Poisson’s ratio from a single wave propagation 

direction was also previously identified by Cui and Lanza di Scalea [10, 11].  

7.4.3 Composite laminate 

The second specimen for the proof-of-principle tests was a 10-layer, Hexcel 282PW CFRP 

laminate with a layup of [0/45/0/−45/0]𝑠, plate thickness of 2.175 mm, and density of 1380 

kg/m3. The ground truth constants for each woven ply (plain weave balanced) were given as 

E11 = 58 GPa, E22 = 58 GPa, υ12 = 0.3, G12 = 5 GPa, υ23 = 0.35 . The typical waveforms 

recorded by the two receivers in this case are shown in Fig. 7.6(a) and (b). Compared to the 

measurements on the isotropic plate in Fig. 7.5, the wave packets contain lower frequency 

components due to the increased material attenuation. The convergence plots are visualized in Fig. 

7.6(c) in terms of the laminate engineering properties calculated using CLT following each 

accepted model 𝑍𝑗 . Again, the plots are zoomed-in to the final convergence regions with the 

smallest discrepancy values.  The comparison between the experimental phase velocity dispersion 

curve and the SAFE predicted curve at the end of the optimization routine, Fig. 7.6(d), shows again 

a good match suggesting an accurate identification of the relevant constants.  This is also confirmed 

in the final value of the discrepancy metric 𝑑 that is much closer to 0 than the isotropic plate for 

all constants in Fig. 7.6(c). The fact that the property identification by inversion of dispersion data 

from a single wave propagation direction can actually more accurate in an anisotropic laminate 

compared to isotropic plates was already noticed by Cui and Lanza di Scalea [10, 11]. As amply 

discussed in those previous works, the reason for this is the normal-shear coupling and the in- 
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Figure 7.6: Proof-of-principle experimental results on the CFRP laminate. Raw and windowed 

waveforms recorded by the air-coupled ultrasonic sensors R1 (a) and R2 (b). (c) Inversion of 

four in-plane and three out-of-plane elastic constants. (d) Experimental phase velocity dispersion 

curve versus SAFE prediction at the end of the optimization routine.  

 

plane/out-of-plane coupling that affects the wave mechanics in the anisotropic laminate and 

enhances the sensitivity of the wave propagating in one direction to elastic constants in transverse 

directions. The final property identification results of Fig. 7.6(c) indicate, as expected, best results 

for constants affecting the wave propagation direction, i.e. Ex and Kx that are estimated within a 

5% error from the ground truth values. The in-plane stiffness in the transverse direction, Ey is 

estimated within an error as small as ~ 15% error which is still a remarkable result considering 

that the property is in a direction orthogonal to the wave propagation. The identification of the 

shear stiffness Gxy is also surprisingly accurate with only ~ 10% error, owing again to the stress-

strain couplings previously discussed in Refs. [10, 11]. The tortional rigidity Kxy also benefits 

from the normal-shear couplings with a final estimation within a ~ 20% error. As expected, the 

identification of the Poisson’s ratio remains the most challenging with an error of ~ 30%. Overall, 

the results in Fig. 7.6(c) indicate the possibility to estimate, with a good level of accuracy, several 
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key elastic constants of the laminate using a single wave propagation direction and a single 

excitation.  

 

7.5 Scanning System Applied to Damage Quantification in Stringer 

Stiffened Composite Panels via Elastic Constants Identification 

Two stringer-stiffened composite panels (herein referred to as panel A and panel B) were 

used for the validation of the damage detection and quantification capabilities of the proposed 

scanning prototype based on the elastic constant identification. These skin-to-stringer assemblies 

are typically found in modern commercial composite aircraft construction (e.g. B787) [37]. These 

panels were previously scanned by a SIDO scanning system tracking changes in the part’s transfer 

function to detect damage [32]. The schematic drawings of the two test panels are shown in Fig. 

7.7(a) and (b), respectively.  Both panels consisted of a CFRP skin with a length of 1.10 m along 

the “location” axis, and co-cured hat-shape CFRP stringers. Both the skin material and the stringers 

were 16-ply CFRP laminates with a thickness of 2.62 mm, density of 1550 kg/m3, and a quasi-

isotropic layup [45/−45/0/45/90/−45/0/90]𝑠. The lamina constants from the manufacturer 

were given as E11 = 160.08 GPa, E22 = 8.97 GPa, υ12 = 0.28, G12 = 6.21 GPa, υ23 = 0.36. The 

stringers were co-cured on the skin along the skin surface ply’s fiber direction, with an additional 

90⁰ ply at the bonding interface.  

The goal of the experiments was to validate the ability of identifying the reduction in elastic 

constants of the panels using the SIDO scanning prototype with access only to the skin side (Fig. 

7.7(c)). The setup was to mimic a practical inspection at an airport depot where access to the 

interior aircraft structure is generally not allowed.  The objective was to detect structural damage 

present not only in the skin but, more importantly, in the underlying stringer. Accordingly, the  
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Figure 7.7: (a) The CFRP stiffened panel A with a flange impact damage. (b) The CFRP 

stiffened panel B with three cap impact damages. (c) The SIDO scanning cart on the test panel 

(d) The wave skin mode and stringer mode from different wave paths separated in R2 recording.  

 

receivers R1 and R2 were positioned across the stringer (Fig. 7.7 (c)). It was also important that the 

wave energy generated by the impact excitation 𝐸  in the skin be able to “penetrate” into the 

stringer. Referring to the schematic in Fig. 7.7(c), in addition to the direct flexural guided-wave 

mode propagating within the skin (the “skin wave mode”), it therefore existed a second wave path 

through the stringer (the “stringer wave mode”). The analysis of the “stringer mode” is the key to 

detect damage in the stringer. As shown by a typical waveform recorded by receiver R2 in Fig. 

7.7(d), the arrivals of both the “skin mode” and the “stringer mode” can be identified. Similarly to 
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the previous findings on the same test specimens [32], only lower frequency components were 

able to penetrate through the stringer, making the shape of the “stringer mode” wave packet easily 

distinguishable from the earlier “skin mode” arrival.  

The two panels contained two kinds of defects that were of interest to this study. Shown in 

Fig. 7.7(a), panel A contained an 80 J impact damage located on the top surface of the skin side 

on the stringer flange (“flange impact”). Shown in Fig. 7.7(b), panel B contained three impact 

damage sites on the center of the stringer cap (“cap impacts”), with energies of 30 J, 50 J, and 70 

J, respectively. Extensive inspections of the damage on the two panels were conducted by Ellison 

[38] using ultrasonic C-scan and Computed Tomography (CT) techniques. These scans revealed 

extensive damage that was expected to significantly degrade the elastic stiffness constants.  

7.5.1 Panel with stringer flange impact damage 

Typical waveforms recorded by the SIDO cart on panel A are shown in Fig. 7.8(a) and (b) 

for each of the two receivers, R1 and R2 respectively.  These waveforms are normalized to the 

maximum amplitude of R1 for easy comparison with the case of the skin-only laminate in Fig. 7.6. 

Comparing the R2 waveforms in the stiffened panel of Fig. 7.8(b) to that of the skin-only laminate 

in Fig. 7.6(b), the flexural skin mode wave packet is attenuated nearly 10 times due to wave leakage 

and scattering added by the co-cured stringer. The time marker for fine phase tracing is carefully 

placed at the start of the skin mode wave packet, as shown by the cross mark in Fig. 7.8(b). The 

choice of the arrival time of the wave packet is dictated by the phase velocity estimation from 

SAFE using the manufacturer’s constants and the observation of wave shapes. The center of the 

Hanning window is placed at the point of maximum amplitude for a certain arrival time region. 

The length of the window is 80 microsec for the skin mode and 100 microsec for the stringer mode.  

A comparison of the windowed flexural skin modes between a pristine region and the flange  
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Figure 7.8: Effect of the stringer flange impact damage on wave dispersion in the test stiffened 

panel A. Typical raw waveform and windowed wave packet from R1 and (b) R2. (c) Phase delay 

of the skin mode from a line scan of the flange impact damage. (d) Drop of phase velocity 

dispersion curve of the impact flange damage relative to a pristine region.  

 

impact region is shown in Fig. 7.8(c). The phase of the waveform recorded at the damaged location 

is significantly delayed (nearly half a period) compared to the pristine phase. The phase velocity 

dispersion curves in Fig. 7.8(d) further confirm this observation, showing a drop of phase velocity 

across the entire frequency spectrum of interest.  

The inversion of seven effective elastic constants from one scan on panel A is shown in 

Fig. 7.9. The SIDO cart was scanned along the horizontal direction in the schematic, and the wave 

propagation direction was along the vertical direction (across the stringer). Each data point denotes 

the location of a line scan. The ground truth region of the flange impact damage from the ultrasonic 

and CT scans is shown and marked as shaded area in all plots. All engineering constants, with the 

exception of the Poisson’s ratio, show a marked reduction corresponding to the damaged region. 

The constants Ex and Ey are numerically equal due to the quasi-isotropic layup. The drop of elastic 

constants as a parabola shape at the damage region is due to the extended area of matrix cracking 
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Figure 7.9: Effective elastic constants identified at several locations of the scan through the 

stringer flange impact in panel A. Inversion results of (a) axial stiffness 𝑬𝒙, (b) transverse 

stiffness 𝑬𝒚, (c) shear stiffness 𝑮𝒙𝒚, (d) Poisson’s ratio 𝝊𝒙𝒚, (e) flexural rigidity 𝑲𝒙, (f) flexural 

rigidity 𝑲𝒚, and (g) torsional rigidity 𝑲𝒙𝒚.  
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and delamination produced by the impact, that was also shown in the independent ultrasonic C-

scans of Ref. [38]. It is also interesting to observe the additional reduction in constants at the center 

of the damaged region (location 24 cm and 25 cm). The range of this further reduction coincides 

with the diameter of the impact hammer that created the damage (2 cm). Overall, the elastic 

constants inversion from the phase velocity dispersion curves shows a reasonable match with the 

known damage location.  Interestingly, a smaller drop in most of the constants is also seen at a 

location of 46 cm. This could be an unknown damage or a manufacturing inhomogeneity.  

7.5.2 Panel with stringer cap impact damage 

Typical waveforms recorded by the system on panel B are shown in Fig. 7.10(a) and (b). 

The positioning of the “stringer mode” Hanning window at receiver R2 overlaps one cycle with 

the earlier “skin mode” arrival, as confirmed by the time marker in Fig. 7.10(b). A flexural mode 

reception recorded by R2 at a pristine location is compared to that recorded at a damaged location 

in Fig. 7.10(c). Contrarily to what was observed for stringer flange damage of panel A in Fig. 

7.8(c), the guided wave packet at the stringer cap damage location has smaller phase lag compared 

to the pristine locations. The phase velocity dispersion curves in Fig. 7.10(d), measured at a pristine 

location and at a damaged location, also confirm this observation since the drop of velocity is only 

seen in a limited bandwidth.  

For this case, the objective function of the optimization scheme was weighted/biased to put 

more emphasis on the lower frequency spectrum by using a logarithmically spaced sampling in 

the dispersion plot. The inversion of seven effective elastic constants, identified using the stringer 

wave mode from one scan on panel B, is shown in Fig. 7.11. As for panel A, the SIDO cart was 

scanned along the horizontal direction in the schematic, and the wave propagation was in the 

vertical direction (across the stringer). Unfortunately, additional measurement points between the 
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Figure 7.10: Effect of the stringer cap impact damage on the wave dispersion in the test 

stiffened panel B. Typical raw waveform and windowed wave packet from (a) R1 and (b) R2. (c) 

Phase delay of the stringer mode from a line scan of the cap impact damage. (d) Drop of phase 

velocity dispersion curve of the impact cap damage relative to a pristine region.  

 

damaged locations, beyond the ones already shown, were not available. Shear ties installed 

transversely to the stringer between the damage sites, whose positions are marked by the white 

dashed lines in the top row of Fig. 7.11, prevented the cart from scanning these regions. Despite 

the limited drop in phase velocity dispersion curves discussed in the previous Fig. 7.10(d), all 

engineering constants in Fig. 7.11, with the usual exception of the Poisson’s ratio, show a 

remarkable sensitivity to all damage sites, with the expected drop in values as a result of the 

structural degradation. The profile of the scan confirms the parabolic shape noted in panel A. The 

additional reduction in constants at the center of the impact is also observed for the 50 J impact at 

50-51 cm and the 30 J impact at 81-82 cm. For the 70 J impact, the highest reduction is seen 

slightly off the center of the impact. Another notable observation is that the reduction of the 

constants increases with the level of impact energy, with the smallest reduction seen for the 30 J 

impact and the largest reduction seen for the 70 J impact. This correlation shows the potential to 
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Figure 7.11: Effective elastic constants identified at several locations of the scan through the 

three stringer cap impacts in panel B using the stringer wave mode. Inversion results of (a) axial 

stiffness 𝑬𝒙, (b) transverse stiffness 𝑬𝒚, (c) shear stiffness 𝑮𝒙𝒚, and (d) Poisson’s ratio 𝝊𝒙𝒚, (e) 

flexural rigidity 𝑲𝒙, (f) flexural rigidity 𝑲𝒚, and (g) torsional rigidity 𝑲𝒙𝒚.  
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Figure 7.12: Effective elastic constants identified at several locations of the scan through the 

three stringer cap impacts in panel B using the skin wave mode. Inversion results of (a) axial 

stiffness 𝑬𝒙, (b) transverse stiffness 𝑬𝒚, (c) shear stiffness 𝑮𝒙𝒚, and (d) Poisson’s ratio 𝝊𝒙𝒚, (e) 

flexural rigidity 𝑲𝒙, (f) flexural rigidity 𝑲𝒚, and (g) torsional rigidity 𝑲𝒙𝒚.  
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not only detect internal damage in the stringer from a skin-only access, but also to quantify the 

level of this damage and hence also to potentially determine residual strength.  

A final analysis was carried out by utilizing the “skin wave mode” to identify the elastic 

constants in panel B. In this case the recorded waveforms were windowed to isolate the earlier 

arrival of the skin mode at receiver R2. This was possible by visual inspection of the recorded 

waveforms that showed clear time separation between the two arrivals. The property identification 

results along a scan are shown in Fig. 7.12. Remarkably, a significant reduction in constants is 

again seen for all of the impact damage regions. As expected, this reduction is generally smaller 

than that seen in the previous Fig. 7.11 by tracking the “stringer wave mode” that propagates 

directly through the cap impact damage. The reason for the sensitivity of the skin mode to damage 

deep into the stringer cap is the changing boundary conditions at the stringer-to-skin connection. 

As also expected, the largest reduction in properties is seen for the strongest 70 J impact where 

damage directly extends to the stringer flange. In addition, the effect of increasing the window to 

extract wave modes may result in leakage into other modes.  

 

7.6 Discussions and Conclusions 

This chapter has presented a “single-input dual-output” (SIDO) ultrasonic scanning system 

for damage detection of stiffened composite panels based on the estimation of the elastic constants 

obtained by inverting phase velocity dispersion curves. The scanning system utilizes a light 

impactor as the wave generator and two air-coupled transducers as the non-contact wave detectors. 

The setup was designed to generate ultrasonic guided wave in a broad frequency range (DC-120 

kHz) to increase the accuracy of the elastic constant identification and also to probe internal 

components of the panels. In order to enable constant identification in a scanning mode, the system 



248 

utilizes a phase-spectrum technique with a “coarse phase” vs. “fine phase” windowing that allows 

to experimentally measure the phase velocity dispersion curve of the dominant flexural mode from 

a single impact. The property identification algorithm utilizes a SAFE analysis as the forward 

model and Simulated Annealing as the optimization algorithm.  

The technique was first tested on an aluminum plate and on a composite laminate. It was 

then applied to the inspection of stiffened skin-to-stringer composite panels with impact damage 

in the stringer flange and in the stringer cap. The results show a significant reduction in stiffness 

elastic constants in the damaged regions compared to the pristine regions of the test panel. More 

importantly, the drop in stiffness constants was monotonically correlated with the severity of 

damage, indicating the potential for damage quantification beyond damage detection. Beyond the 

identified trend, attempting to define a quantitative correlation between constants and damage 

severity would require additional work that would likely have to include the establishment of a 

ground truth for the impact damage such as from an ultrasonic C-scan analysis.  

The results show the possibility to inspect built-up panels by only accessing the skin side. 

With proper time gating, the ultrasonic guided waves are not sensitive to the global boundary 

conditions of the part, and hence can be used for an in-situ inspection on a part in service. The 

technique is even more effective for anisotropic composite parts, where the propagating guided 

waves create normal/shear and in-plane/out-of-plane coupling phenomena. Clearly, the dispersion 

behavior of the wave in the anisotropic parts depends on the wave propagation direction. This 

coupling allows a reasonable identification of multiple elastic constants in various directions using 

a single wave propagation direction as restricted by the line scan configuration. The ability to 

identify elastic constants during an ultrasonic scan shown in this chapter brings additional 

information that opens the possibility to estimate residual strength.  
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The technique averages the wave propagation behavior between the two receivers. The 

elastic constant inversions are line average values for this distance. Consequently, it is not possible 

to resolve the precise position of damage along the ray path between the two receivers.  

The SAFE forward model used in these results assumes the same properties for each lamina 

comprising the laminates (homogeneous laminate). Hence the optimization problem only involved 

five independent lamina constants (transversely isotropic). This model makes it impossible to 

discriminate damage within the cross-section of the waveguide. Discriminating damage in 

individual laminae would be possible by iterating the properties of each lamina in SAFE, which 

would increase the dimension of the optimization problem with additional computational burden.  

In addition, the SAFE model assumes uniform cross-section along the wave propagation 

direction. The predicted dispersion curves for the stiffened composite panel presented in section 5 

were modeled considering a flat laminate equal to the skin panel. Therefore there is an 

approximation in this case for the determination of the predicted dispersion curves. A more precise 

analysis would have to account for the stiffener discontinuity via, for example, a sophisticated 

Global-Local model [39]. While the absolute values of the phase velocities may be affected by this 

approximation, the reduction in velocities corresponding to the damaged sites (and therefore the 

corresponding reduction in elastic constants) was still clearly measurable.  At the same time, since 

the detected modes in the stiffened panel were clearly separated as a “skin” mode and a “stinger” 

mode, the SAFE prediction considering an unstiffened panel should lead to a reasonable phase 

velocity curve for each of these modes tracked separately. Another generalization could be made 

to extend the inverse problem to visco-elastic property identification using complex stiffness 

coefficients in the SAFE formulation [24]. Such generalization could yield information on wave 

attenuation behavior that could provide an additional metric for damage quantification.  
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The flexural modes of guided waves were selected in this work due to their easy 

identification in the time domain. Other suitable wave receivers could be used to detect additional 

wave modes with higher SNR. For example, it was shown in [11] that combining the dispersion 

curves of the axial and flexural mode in a “joint” optimization scheme can sometime better identify 

the elastic properties in transverse directions.  

The results presented here were limited to damage in the stringer component of the 

stiffened panel. Detecting damage in deeper components (e.g. the shear ties) would likely require 

a lower frequency transduction setup for deeper wave penetration from the skin side. Future work 

should be dedicated to establishing the sensitivity limit of the technique (using lower impact levels) 

and the overall statistical confidence of the property identification and damage detection. 

Additional studies should be also performed to directly relate the estimated engineering constants 

to the residual strength of the test panels. This step will likely require a series of load tests to failure 

for various degrees of damage.  

 

Acknowledgements 

This work was funded in part by the Federal Aviation Administration Joint Center of 

Excellence for Advanced Materials (FAA Cooperative Agreement 12-C-AM-UCSD) and by the 

Federal Railroad Administration (contract # 693JJ619C000008). The authors want to thank Prof. 

Hyonny Kim and his students at UCSD for providing invaluable technical information, designing, 

and constructing the composite stiffened panels and creating the impact damage in these panels. 

Thanks are also extended to Dr. Benjamin Katko for designing and constructing the high frequency 

CFRP impactor and collecting the 2D-FFT data in section 4, and to Dr. Margherita Capriotti for 

designing and constructing the frame of the scanning cart. 



251 

Chapter 7, in full, is a reprint of the material as it appears in C. Huang and F. Lanza di 

Scalea, “An Ultrasonic Scanning System for the Inspection of Composite Stiffened Panels from 

Elastic Constant Identification via Inversion of Guided Waves,” Composite Structures, vol. 322, 

p. 117373, 2023. The dissertation author was the primary investigator and author of this paper.  

 

References 

[1] J. H. Tam, Z. C. Ong, Z. Ismail, B. C. Ang, and S. Y. Khoo, “Identification of material properties 

of composite materials using nondestructive vibrational evaluation approaches: A review,” Mech. 

Adv. Mater. Struct., vol. 24, no. 12, pp. 971–986, Sep. 2017.  

[2] E. O. Ayorinde and R. F. Gibson, “Elastic constants of orthotropic composite materials using plate 

resonance frequencies, classical lamination theory and an optimized three-mode rayleigh 

formulation,” Compos. Eng., vol. 3, no. 5, pp. 395–407, Jan. 1993.  

[3] J. De Visscher, H. Sol, W. P. De Wilde, and J. Vantomme, “Identification of the Damping 

Properties of Orthotropic Composite Materials Using a Mixed Numerical Experimental Method,” 

Appl. Compos. Mater., vol. 4, no. 1, pp. 13–33, Jan. 1997.  

[4] R. F. Gibson, “Modal vibration response measurements for characterization of composite materials 

and structures,” Compos. Sci. Tech., vol. 60, no. 15, pp. 2769–2780, Nov. 2000.  

[5] F. Daghia, S. de Miranda, F. Ubertini, and E. Viola, “Estimation of elastic constants of thick 

laminated plates within a Bayesian framework,” Compos. Struct., vol. 80, no. 3, pp. 461–473, Oct. 

2007.  

[6] J. Cugnoni, T. Gmür, and A. Schorderet, “Inverse method based on modal analysis for 

characterizing the constitutive properties of thick composite plates,” Comput. Struct., vol. 85, no. 

17, pp. 1310–1320, Sep. 2007.  

[7] S.-F. Hwang, J.-C. Wu, and R.-S. He, “Identification of effective elastic constants of composite 

plates based on a hybrid genetic algorithm,” Compos. Struct., vol. 90, no. 2, pp. 217–224, Sep. 

2009.  

[8] J. Cunha, S. Cogan, and C. Berthod, “Application of genetic algorithms for the identification of 

elastic constants of composite materials from dynamic tests,” Int. J. Numer. Meth. Eng., vol. 45, 

no. 7, pp. 891–900, 1999.  

[9] A. Marzani and L. De Marchi, “Characterization of the elastic moduli in composite plates via 

dispersive guided waves data and genetic algorithms,” J. Intell. Mater. Syst. Struct., vol. 24, no. 

17, pp. 2135–2147, Nov. 2013, doi: 10.1177/1045389X12462645.  

https://doi.org/10.1177/1045389X12462645


252 

[10] R. Cui and F. Lanza di Scalea, “On the identification of the elastic properties of composites by 

ultrasonic guided waves and optimization algorithm,” Compos. Struct., vol. 223, p. 110969, Sep. 

2019.  

[11] R. Cui and F. Lanza di Scalea, “Identification of Elastic Properties of Composites by Inversion 

of Ultrasonic Guided Wave Data,” Exp. Mech., vol. 61, no. 5, pp. 803–816, Jun. 2021.  

[12] W. Staszewski, C. Boller, and G. R. Tomlinson, Health Monitoring of Aerospace Structures: 

Smart Sensor Technologies and Signal Processing. John Wiley & Sons, 2004.  

[13] J. L. Rose, Ultrasonic Guided Waves in Solid Media. Cambridge University Press, 2014.  

[14] V. Giurgiutiu, “17 - Structural health monitoring (SHM) of aerospace composites,” in Polymer 

Composites in the Aerospace Industry (Second Edition), P. Irving and C. Soutis, Eds., in 

Woodhead Publishing Series in Composites Science and Engineering., Woodhead Publishing, 

2020, pp. 491–558.  

[15] K. Balasubramaniam, “Inversion of the Ply Lay-up Sequence for Multi-Layered Fiber 

Reinforced Composite Plates Using Genetic Algorithm,” Nondestruct. Test. Eval., vol. 15, no. 5, 

pp. 311–331, Nov. 1998.  

[16] J. Vishnuvardhan, C. V. Krishnamurthy, and K. Balasubramaniam, “Genetic algorithm based 

reconstruction of the elastic moduli of orthotropic plates using an ultrasonic guided wave single-

transmitter-multiple-receiver SHM array,” Smart Mater. Struct., vol. 16, no. 5, p. 1639, Aug. 2007, 

doi: 10.1088/0964-1726/16/5/017.  

[17] E. V. Glushkov, N. V. Glushkova, and A. A. Eremin, “Guided wave based nondestructive 

testing and evaluation of effective elastic moduli of layered composite materials,” Mater. Phys. 

Mech., vol. 40, no. 1, pp. 56–60, 2015.  

[18] B. Hosten, M. Castaings, H. Tretout, and H. Voillaume, “Identification of composite materials 

elastic moduli from Lamb wave velocities measured with single sided, contactless ultrasonic 

method,” AIP Conference Proceedings, vol. 557, no. 1, pp. 1023–1030, Apr. 2001.  

[19] P. Kudela, M. Radzienski, P. Fiborek, and T. Wandowski, “Elastic constants identification of 

woven fabric reinforced composites by using guided wave dispersion curves and genetic 

algorithm,” Compos. Struct., vol. 249, p. 112569, Oct. 2020.  

[20] P. Kudela, M. Radzienski, P. Fiborek, and T. Wandowski, “Elastic constants identification of 

fibre-reinforced composites by using guided wave dispersion curves and genetic algorithm for 

improved simulations,” Compos. Struct., vol. 272, p. 114178, Sep. 2021.  

[21] M. Rautela, A. Huber, J. Senthilnath, and S. Gopalakrishnan, “Inverse characterization of 

composites using guided waves and convolutional neural networks with dual-branch feature 

fusion,” Mech. Adv. Mater. Struct., vol. 29, no. 27, pp. 6595–6611, Dec. 2022.   

https://doi.org/10.1088/0964-1726/16/5/017


253 

[22] A. Martens, M. Kersemans, J. Daemen, E. Verboven, W. Van Paepegem, S. Delrue, and 

K. Van Den Abeele, “Characterization of the orthotropic viscoelastic tensor of composites 

using the Ultrasonic Polar Scan,” Compos. Struct., vol. 230, p. 111499, Dec. 2019.  

[23] T. Hayashi, W.-J. Song, and J. L. Rose, “Guided wave dispersion curves for a bar with an 

arbitrary cross-section, a rod and rail example,” Ultrasonics, vol. 41, no. 3, pp. 175–183, May 

2003.   

[24] I. Bartoli, A. Marzani, F. Lanza di Scalea, and E. Viola, “Modeling wave propagation in 

damped waveguides of arbitrary cross-section,” J. Sound Vib., vol. 295, no. 3, pp. 685–707, Aug. 

2006.  

[25] A. Marzani, “Time–transient response for ultrasonic guided waves propagating in damped 

cylinders,” Int. J. Solids Struct., vol. 45, no. 25, pp. 6347–6368, Dec. 2008.  

[26] P. W. Loveday, “Simulation of piezoelectric excitation of guided waves using waveguide finite 

elements,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 55, no. 9, pp. 2038–2045, Sep. 

2008.  

[27] D. Alleyne and P. Cawley, “A two-dimensional Fourier transform method for the measurement 

of propagating multimode signals,” J. Acoust. Soc. Am., vol. 89, no. 3, pp. 1159–1168, Mar. 1991.   

[28] W. Sachse and Y. Pao, “On the determination of phase and group velocities of dispersive 

waves in solids,” J. Appl. Phys., vol. 49, no. 8, pp. 4320–4327, Aug. 1978.  

[29] P. R. Roth, “Effective measurements using digital signal analysis,” IEEE Spectr., vol. 8, no. 4, 

pp. 62–70, Apr. 1971.  

[30] F. Lanza di Scalea, S. Sternini, and A. Y. Liang, “Robust passive reconstruction of dynamic 

transfer function in dual-output systems,” J. Acoust. Soc. Am., vol. 143, no. 2, pp. 1019–1028, Feb. 

2018.  

[31] D. R. Allen and W. H. B. Cooper, “A Fourier transform technique that measures phase delays 

between ultrasonic impulses with sufficient accuracy to determine residual stresses in metals,” 

NDT Int., vol. 16, no. 4, pp. 205–217, Aug. 1983.  

[32] M. Capriotti and F. Lanza di Scalea, “Robust non-destructive inspection of composite 

aerospace structures by extraction of ultrasonic guided-wave transfer function in single-input dual-

output scanning systems,” J. Intell. Mater. Syst. Struct., vol. 31, no. 5, pp. 651–664, Mar. 2020.  

[33] P. Code, Eurocode 2: Design of concrete structures - Part 1-1: General rules and rules for 

buildings, British Standard Institution, London; 2005.  

[34] ACI Committee. Building Code Requirements for Structural Concrete and Commentary (ACI 

318-05). America Concrete Institute, 2005.  

[35] C. E. Okafor, C. C. Ihueze, C. E. Okafor, and C. C. Ihueze, “Strength Analysis and Variation 

of Elastic Properties in Plantain Fiber/Polyester Composites for Structural Applications,” in 



254 

Composite and Nanocomposite Materials - From Knowledge to Industrial Applications, 

IntechOpen, 2020.   

[36] N. Ryden and C. B. Park, “Fast simulated annealing inversion of surface waves on pavement 

using phase-velocity spectra,” Geophysics, vol. 71, no. 4, pp. R49–R58, Jul. 2006.  

[37] M. Capriotti, H. E. Kim, F. L. di Scalea, and H. Kim, “Non-Destructive Inspection of Impact 

Damage in Composite Aircraft Panels by Ultrasonic Guided Waves and Statistical Processing,” 

Materials, vol. 10, no. 6, Art. no. 6, Jun. 2017.  

[38] A. C. Ellison, “Segmentation of X-Ray CT and Ultrasonic Scans of Impacted Composite 

Structures for Damage State Interpretation and Model Generation,” Ph.D., University of 

California, San Diego, United States -- California, 2020. Accessed: Sep. 12, 2024.  

[39] A. Spada, M. Capriotti, and F. Lanza di Scalea, “Global-Local model for guided wave 

scattering problems with application to defect characterization in built-up composite structures,” 

Int. J. Solids Struct., vol. 182–183, pp. 267–280, Jan. 2020.  

 

  



255 

Chapter 8 Conclusions and Opportunities for Future 

Research 
 

This dissertation explores recent advancements in ultrasonic testing for nondestructive 

evaluation (NDE) and structural health monitoring (SHM) applications. The primary focus is on 

ultrasonic imaging techniques in bulk solids and waveguide structures, as well as the inversion of 

elastic constants in composite panels. Active SAFT modalities are investigated for defect imaging 

in bulk solids using a transducer wedge setup, and their implementation for quasi real-time rail 

flaw imaging is demonstrated through the development of two prototype systems. A passive SAFT 

modality is introduced, utilizing a deconvolution scheme in a dual-output system with normalized 

cross-power spectrum (NCPS) analysis. The results indicate robust and efficient passive 

reconstruction of transfer functions between receivers, applicable to active beamforming with a 

linear array. Additionally, a coherent and robust broadband adaptive matched field beamformer is 

proposed for achieving super-resolution imaging with a linear array. Unlike traditional MUSIC-

type beamformers, the proposed coherent white noise constraint (C-WNC) algorithm does not 

require transfer matrix factorization. The results demonstrate high-quality focusing on the tips of 

horizontally extended targets, with a large dynamic range achieved through the adaptive 

beamformer's power output bias. The C-WNC image is further combined with delay-multiply-and-

sum (DMAS) imaging to enhance resolution in both azimuth and range directions. The C-WNC 

algorithm is also applied to the imaging of impacts and defects in stiffened composite structures. 

A data-driven matched field beamforming approach is implemented to exploit the coherence of 

multimodal and dispersive ultrasonic guided waves. Imaging results demonstrate excellent target 

tracking using a sparse array, even under low signal-to-noise ratio (SNR) conditions. Finally, the 

dissertation introduces a scanning system for elastic constant inversion using non-contact 
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ultrasonic inspection of stiffened composite panels. The Semi-Analytical Finite Element (SAFE) 

model is employed as the forward model, and the inverse process is performed by minimizing the 

discrepancy between experimental dispersion curves and SAFE predictions using the simulated 

annealing optimization algorithm. An efficient method for measuring ultrasonic guided wave 

dispersion curves is demonstrated through phase difference spectrum analysis in a single-input 

dual-output system with uncontrolled sources.  

Among the signal processing strategies explored in this dissertation, the search for coherent 

signals is critical to the success of ultrasonic testing in NDE and SHM applications. In basic SAFT 

imaging within an FMC framework, spatial coherence between inter-element response functions 

(transfer functions) allows for the generation of high-resolution, high-contrast images through a 

direct summation of all transmitter-receiver pairs in a standard DAS algorithm. The DMAS 

algorithm discussed in Chapter 5 further exploits this coherence while introducing increased 

algorithmic complexity. Besides spatial coherence, Chapter 2 demonstrates that temporal 

coherence in subaperture transmissions, such as virtual element or plane wave methods, enhances 

the physical signal-to-noise ratio (SNR) in each transmission event. These subaperture 

transmissions can be modeled similarly to standard synthetic aperture imaging techniques while 

maintaining algorithmic simplicity. Additionally, Chapter 2 highlights the benefits of accounting 

for multiple arrivals of ultrasonic wave modes. Even when the SAFT images from individual wave 

modes are incoherently summed, the spatial coherence of the scatterer ensures that the main lobe 

contributions are reinforced. In essence, the synthetic aperture in Chapter 2 comprises three 

elements: (1) physical synthesis of the wavefront through subaperture transmission, (2) synthetic 

summation of subapertures swept across the physical aperture, and (3) synthetic summation of 

wave modes as individual apertures, effectively augmenting the angular coverage of a limited-
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view linear aperture without changing its physical size. The author is currently working on utilizing 

these coherence factors to improve 3D ultrasonic imaging using RSUs for rail flaw inspection.  

The reconstruction of the pure structural transfer functions (or IRFs) in Chapter 4 also relies 

on the coherence of scattered signals received by passive listeners. It is widely accepted that the 

SNR of the reconstructed IRF is improved through extended passive recordings of these coherent 

arrivals over time, i.e. coda waves. Chapter 4 demonstrates that such coherence can be further 

enhanced by employing segmental averaging of the passive recordings in the estimation of the 

cross-power spectrum. Considering the potential application of passive SAFT for ultrafast 

imaging, the requirement for high framerate limits the duration of passive recordings available for 

IRF reconstruction. To address this, the coherence of identical ray paths in both causal and acausal 

times is leveraged to mitigate the challenges posed by limited recording times. The passive SAFT 

introduced in Chapter 4 can also be beneficial to the extraction of IRFs in waveguide structures, 

where the signal recordings are interfered with the transfer function of piezoelectric transducers. 

The signal deconvolution scheme using NCPS has high potential to overcome the frequency tuning 

effects commonly seen in these applications.  

Chapter 5 introduces an adaptive matched field beamformer that exploits frequency 

coherence. The coherent white noise constraint (C-WNC) algorithm, originally designed for 

passive beamforming in underwater acoustics, is adapted for active imaging using the FMC dataset 

for defect detection in solids. By utilizing cross-frequency coherence in the supervector 

formulation, C-WNC overcomes several limitations of traditional MUSIC-type algorithms, such 

as difficulties in separating signal and noise subspaces, poor performance in low SNR conditions, 

and challenges in tracking off-axis targets with limited-view linear apertures. The advantages of 

C-WNC are further highlighted in Chapter 6, where it is applied to waveguide environment 
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exhibiting multimodal and dispersive characteristics. In data-driven matched field beamforming 

where experimental measurements encode complex wave propagation information into the replica 

vectors, the coherent summation of phase across frequency bands results in enhanced imaging 

when there is a precise match between the replica and the data. By fully exploiting these coherent 

factors, C-WNC demonstrates superior ability in tracking point-like scatterers within stiffened 

composite panels, even under conditions of low SNR and array gain.  

Chapter 7 introduces an efficient method for extracting experimental phase velocity 

dispersion curves by utilizing phase coherence in a single-input dual-output system, as opposed to 

traditional 2D-FFT methods that require heavy spatial sampling. In the inspection of composite 

parts, active modalities with controlled acoustic sources are often unavailable. Similar to the 

passive IRF reconstruction in Chapter 4, this chapter employs a dual-output non-contact ultrasonic 

receiver system to extract the phase of the structural IRF. The phase velocity is estimated by 

calculating the phase spectrum difference between the two receivers, which can be transformed 

into phase velocity as a function of frequency, assuming both receivers embody the same IRFs and 

no 2π error present in phase unwrapping process. While this chapter primarily examines the 

reduction in average stiffness due to impact damage, the same methodology can be extended to 

various aspects of composite panel monitoring in-situ. These include estimating elastic properties 

in specific plies (e.g., surface ply in additive manufacturing), tracking stiffness changes during 

curing processes, and detecting common defects of automated fiber placement (AFP) processes 

such as poor consolidation, inter-laminar porosity, fiber angle deviations, gaps, overlaps, and 

wrinkles. The author is actively pursuing these extensions in ongoing work.  

 

 




