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In today’s leading-edge semiconductor technologies, it is increasingly difficult for IC

designers to achieve sufficient improvements of performance, power and area metrics in their

next-generation products. One root cause of this difficulty is the increased margins that are used

in the design process to guardband for (i) variability and aging, as well as (ii) analysis inaccu-

racies. Currently, these margins incur huge costs to design companies, because the benefits of

deploying the next technology node are only approximately 20% in circuit performance, power

and density. To reduce margins, fast and accurate pathfinding of architecture, technology and

constraints choices are essential. A second root cause is the high cost (and, therefore, limited

supply) of electronic design automation tool licenses, accompanied by the lack of any system-

atic methodology to optimize the use of available tools within long-duration, highly iterative

design processes. This constrains designers to perform only limited design-space exploration,

xx



so as to keep within limits on design infrastructure cost and design turnaround time. This thesis

presents new techniques to reduce guardbands in optimization loops in the IC design process by

using fast and accurate learning-based models. These techniques can be grouped into three main

thrusts: (i) design productivity gains through improved design- and implementation-space ex-

ploration; (ii) improved accuracy of electrical modeling and enablement of basic physical design

optimizations; and (iii) optimizations of design power, energy, project management, and cost.

The thrust on design productivity gains through improved design- and implementation-

space exploration presents four applications of learning-based models for accurate prediction

of area, power, timing and routability. To enable area and power estimation of Networks-on-

Chip routers, such that architecture-level (RTL-level) design-space exploration can be efficiently

performed, this thesis presents an open-source tool, ORION3.0.

The thrust on improved accuracy of electrical modeling and enablement of basic phys-

ical design optimizations presents new methodologies to perform high-dimensional learning-

based modeling of delay, transition time and slack in timing paths. A methodology to develop

accurate models of post-routing optimization of signal delays at multiple signoff corners, so as

to enable a new optimization of clock skew variation across corners is also described.

The thrust on optimizations of design power, energy, project management, and cost

presents three distinct works that directly benefit leading-edge SoC design companies. The first

work describes a new analytic three-dimensional placement tool using a new objective function

that achieves significant wirelength and power reduction relative to two-dimensional implemen-

tations. The second work provides two mixed integer-linear programs for optimal multi-project,

multi-resource allocation with task precedence and resource co-constraints for IC design man-

agement and cost reduction. The third work presents a maximum-value, reliability-constrained

overdrive frequencies problem that guarantees prescribed lower bounds on acceptable perfor-

mance and acceptable throughput in multicore systems, without exceeding prescribed lifetime

budget for any core.

xxi



Chapter 1

Introduction

The International Technology Roadmap for Semiconductors (ITRS) [304] has been a

very successful and influential industry-wide roadmapping effort since 1997. In the ITRS, the

microprocessor (MPU) and system-on-chip (SoC) product classes are two system drivers that

drive requirements for design technologies and processes. Density (i.e., layout area per DRAM

bit, SRAM bitcell, or logic gate) is a key metric of technology scaling. Lithography improve-

ments, which reduce the metal pitch (i.e., a wire width plus a wire spacing) and poly pitch,

have been a main driver of density scaling. In a two-dimensional layout, the pitch scales by

0.7× in both horizontal and vertical dimensions at a new technology node, which scales the area

by 0.49×. Thus, there is an “available” doubling of transistor density inherent in the classi-

cal understanding of “Moore’s Law” scaling. Historically, the geometric scaling of 0.7× in each

successive technology node [304] has enabled doubling of transistor count in a constant die area.

However, Figure 1.1 shows that the “realized” density scaling in products has slowed

down to ∼1.6× per node (in contrast to the “available” 2× per node density scaling) since

2007 [121] [126]. Kahng [126] refers to this difference as the “design capability gap”. This

slowdown in density scaling is also well-correlated with data from [334], and indicates that

in advanced technology nodes, a significant gap exists between the “realized” and “available”

benefits of technology scaling. Overall, there is a slowdown of power-performance-area-cost

(PPAC) scaling as realized from underlying process and device scaling.

Figure 1.2, adapted from [118], illustrates a traditional IC design flow. The cuboids in

orange color show the various stages in the flow. At the architecture design stage, decisions on

power requirements, technology, number of IP blocks, communication protocol are made. Once

the architecture is determined, functionalities of and connectivities between various blocks (e.g.,
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Figure 1.1: Gap between “available” density scaling (grey arrow) and “actual density” scaling
(red squares) [126].

CPU, GPU and DSP cores) of the design are defined. In the high-level synthesis stage, the

design is described using a hardware description language, e.g., Verilog, at the register-transfer

level (RTL). In the logic synthesis stage, electronic design automation (EDA) tools are deployed

to convert the HDL to gate-level circuit elements and output a gate-level netlist. The design

flow then transitions to the physical design stages. In the floorplanning stage, locations of macro

blocks (e.g., embedded memories) and primary inputs and outputs (PI/POs) are determined. In

the placement stage, standard cells in the gate-level netlist are assigned spatial locations. In

the clock tree synthesis (CTS) stage, the clock signal is routed to meet prescribed latency and

skew requirements. In the routing stage, wiring connections are established between logically

connected pins in the netlist. In this stage, wires are routed on specific tracks of metal layers, and

various design rules are met, so that the design can be fabricated. Optimization is performed in

each of placement, CTS and routing stages to minimize wirelength, power, resources (e.g., chip

area occupied by buffers) and latency.

The slowdown in density scaling in advanced technology nodes (as discussed above) is

largely attributed to power, performance and area resources being spent to guardband variability,

reliability, complex design rules, and other design considerations that become prominent at the

“nanometer scale”. Guardbands are applied at all stages of the IC design flow, which is why

designers obtain only a part of Moore’s Law [349] scaling benefits. Figure 1.3 [126] illustrates

this lost benefit in design quality due to signoff with increased guardbands. The brown line

shows how design quality (e.g., frequency) scales with nominal or “available” process and device

technology scaling. Due to application of guardbands, design quality reduces substantially in

advanced technology nodes.
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Figure 1.2: Traditional IC design flow [118] and the three thrusts of this thesis.

The work reported in this thesis develops a wide variety of fast, accurate machine

learning-based models that seek to reduce these large design guardbands by enabling (i) early-

stage pathfinding, and (ii) incremental physical design optimizations. Early-stage pathfinding

is difficult because it involves long EDA tool runtimes and is a highly iterative process. The

modeling works in this thesis improve design productivity by enabling identification of design-

and implementation space parameters that help deliver the PPAC scaling required for a healthy

semiconductor industry. Improved modeling leads to better incremental physical design opti-

mizations. The new techniques in this thesis can be grouped into three main thrusts.

• Design productivity gains through improved design- and implementation-space explo-

ration.

• Improved accuracy of electrical modeling and enablement of basic physical design opti-

mizations.

• Optimizations of design power, energy, project management, and cost.
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Figure 1.3: Illustration of lost benefit in design quality due to increased signoff guardbands
[126].

The thrust on design productivity gains through improved design- and implementation-

space exploration presents four applications of learning-based models for accurate prediction

of area, power, timing and routability. To enable area and power estimation of network-on-

chip (NoC) routers, such that architecture-level (RTL-level) design-space exploration can be

efficiently performed, this thesis presents an open-source tool, ORION3.0.

The thrust on improved accuracy of electrical modeling and enablement of basic phys-

ical design optimizations presents new methodologies to perform high-dimensional learning-

based modeling of delay, transition time and slack in timing paths. A methodology to develop

accurate models of post-routing optimization of signal delays at multiple signoff corners, so as

to enable a new optimization of clock skew variation across corners, is also described.

The thrust on optimizations of design power, energy, project management, and cost

presents three distinct works that directly benefit leading-edge SoC design companies. The

first work describes a new analytic three-dimensional placement tool using a new objective

function that achieves significant wirelength and power reduction relative to two-dimensional

implementations. The second work provides two mixed integer-linear programming formu-

lations for optimal multi-project, multi-resource allocation with task precedence and resource

co-constraints, with applications to IC design management and cost reduction. The third work

presents a maximum-value, reliability-constrained overdrive frequencies optimization that guar-
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antees prescribed lower bounds on acceptable performance and acceptable throughput in multi-

core systems, without exceeding the prescribed lifetime budget of any core. Even though Thrust

3 is not related to learning-based modeling, optimization changes the envelope of what is being

modeled or predicted. Thus, better optimization leads to better flows and ground truth, which

leads to more accurate and realistic modeling; the first work exemplifies this. Furthermore, better

modeling enables more accurate prediction of constraints or requirements, which leads to better

optimization; the last two works exemplify this.

Figure 1.2 shows areas in the IC design flow where the three thrusts of this thesis ap-

ply. Categorization of individual works into IC design flow stages is according to the following

reasoning.

• The two works listed above the “architecture design” box in the flow encompass the en-

tire IC design flow. They optimize design cost by optimal scheduling of design projects

and resources, and by optimal scheduling of tasks to guarantee acceptable performance

and balance core wearout over the lifetime of a multi-core system. These works enable

reduction of guardbands in resource allocation through optimal scheduling formulations

and solvers.

• The NoC work enables efficient architecture-level (RTL-level) design-space exploration

of parameters with comprehension of area and power metrics from the routing stage in

physical design. This work reduces design guardband by guiding the appropriate choice

of RTL-level parameters so as to meet area and power requirements after physical design

optimizations have been performed.

• The work on three-dimensional IC (3DIC) placement develops a new analytic placement

tool to achieve wirelength and power benefits over 2DIC implementations. Since this

work is related to placement in the physical design flow, it appears with the P&R flow in

the figure.

• The work on 3D power estimation enables model-guided implementation-space explo-

ration that affects 3DIC floorplanning, placement and optimizations. Since this work en-

ables selection of parameters that affect optimization, we place it after 3DIC placement.

• The works on timing failure and routability prediction appear at the same level as 3D

power estimation since these works affect downstream optimizations.

• The work on clock skew variation minimization appears as the same level as the works
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on placement, since it is applicable to clock trees that are typically co-optimized with

placement.

• The works related to timing signoff appear at the end of the P&R flow since they apply to

performance analysis and verification that occurs after the design has been routed.

The remainder of this thesis is organized as follows.

• Chapter 2 reviews related works pertaining to the thrusts of this thesis. We broadly cat-

egorize and review works related to machine learning in IC design and optimizations in

IC design. We further taxonomize the first category into predictions of (i) design-space

exploration of NoC routers, (ii) prediction of design metrics and quality of results (QoR),

and (iii) timing analysis and correlation. In (ii), we describe prior works that predict clock

network metrics, IC defects at the mask and post-silicon stages, routability and 3DIC met-

rics. In the second category, we review works related to 3DIC flows and placers, project

scheduling under resource constraints and reliability-constrained task scheduling in multi-

core systems.

• Chapter 3 presents four new applications of machine learning-based models for efficient

design- and implementation-space exploration. The first work describes the development

of a comprehensive suite of parametric and non-parametric area and power models for

NoC routers, ORION3.0. We have released ORION3.0 on the web. Over 760 downloads

have been made from industry and academia since availability commenced in February

2013. The second work proposes a modeling methodology to perform early prediction of

timing failures of designs with embedded memories. Our methodology uses only the

netlist, timing constraints and floorplan context (wherein the embedded memories are

placed). The third work describes a learning-based methodology to predict whether a

back-end-of-line stack-aware placement solution is routable. Our modeling does not use

any information from trial or early global routing. We also predict Pareto frontiers of

utilization, number of metal layers and aspect ratio based on very few placements. The

fourth work describes a methodology to estimate 3DIC power benefit based on corre-

sponding golden 2DIC implementation parameters. We describe a novel “stress testing”

method and use cases for model-guided implementations.

• Chapter 4 first presents two new approaches to the signoff timer correlation problem using

“big-data” mindsets. In the first approach, we describe a machine learning-based tool,
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GTX, that is developed using a deep learning methodology. GTX corrects divergence be-

tween timers in flip-flop setup time, cell arc delay, wire delay, stage delay and path slack at

timing endpoints between timers. We demonstrate accuracy of GTX using multiple tech-

nology libraries, real designs from OpenCores [318] and multiple types of correlations

between leading-edge commercial signoff timing and design implementation tools. In our

second approach to the timer correlation problem, we extend GTX to develop predictors

of timing in signal integrity (SI) mode based on timing reports from non-SI mode. We

propose new parameters that span electrical and logic structures and report accurate pre-

dictions of incremental arc delay and slew. In the third work in this chapter, we describe a

methodology to develop accurate models of post-routing optimization of signal delays at

multiple signoff corners, so as to enable a new optimization of clock skew variation across

corners. We demonstrate that our models are significantly more accurate than analytical

models of signal delay and slew.

• Chapter 5 presents three distinct works related to design cost and QoR optimization. The

first work is a new analytic 3DIC placement tool, APlace3D that applies a new “true 3D”

wirelength objective function. In conjunction with a commercial EDA tool, APlace3D

achieves signification wirelength and power reduction compared to 2DIC implementa-

tions of real designs. We demonstrate that our results generalize over a wide range of

designs and multiple technology libraries. The second work provides two mixed integer-

linear programs, along with associated solver implementation, for optimal multi-project,

multi-resource allocation with task precedence and resource co-constraints. Our solver en-

ables decision support to management in IC design companies via “what-if” analyses of

cost and schedule tradeoffs. We describe real-world use cases wherein our solver achieves

significantly better solutions (resource allocations) than the ones adopted by the design

companies. The third work presents a maximum value, reliability-constrained overdrive

frequencies (MVRCOF) problem for task scheduling in multi-core systems. Our solver

guarantees prescribed lower bounds on acceptable performance and throughput, without

exceeding prescribed lifetime budget for any core. We present both optimal and heuristic

solutions that determine the execution times of each core in each combination of simulta-

neously active cores, such that the cores wear out in a balanced manner over chip lifetime.

Our solutions are usable by a scheduler in a multi-core system.



Chapter 2

Review of Related Works

In this chapter, we review related works in three areas: (i) machine learning-based re-

gression and classification models for pathfinding in IC design or EDA, (ii) modeling to perform

timing analysis and correlation, and (iii) optimizations related to design power, cost and reliabil-

ity. These three areas correspond to the three thrusts of this thesis.

Application of machine learning in IC design is challenging because data is “limited”

[254]. Lack of data may hide the complexity of the underlying behavior that the learning al-

gorithms seek to model. Since IC design cycles are time-sensitive, data generation, modeling

and model refinement must all be completed in a short span of time relative to the design cycle,

which is at most ∼80–100 weeks for complex systems-on-chip (SoCs). Certain stages in IC de-

sign naturally benefit from large volumes of data being available for modeling; hence, machine

learning-based modeling has seen applications to analysis of lithography mask patterns [210]

[254] [269], prediction of lithography-induced variation [109] and post-silicon testing [90]. In

other stages of IC design (e.g., architecture design, physical design, etc.), data must be carefully

generated (or, extracted) using appropriate design of experiments that comprehend tool flows,

technology libraries and implemented designs. In this chapter, we review some of these aspects

of applying machine learning to IC design.

2.1 Modeling for Pathfinding in IC Design

We broadly categorize modeling for pathfinding in EDA into architecture-level and

implementation-level efforts. We further categorize architecture-level modeling into (i) template-

based models, (ii) parametric models, and (iii) non-parametric models. And, we categorize mod-

8
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eling at the implementation level as modeling that occurs during (i) synthesis, (ii) floorplanning,

power planning and placement, (iii) clock network synthesis, (iv) routing, and (v) IC testing. We

also briefly highlight works on hardware implementation of machine learning algorithms.

2.1.1 Pathfinding at the Architecture-Level

In this section, we primarily review works related to NoC architecture, since these pro-

vide the context for our NoC area and power estimation work in Section 3.1. Previous works on

NoC architecture-level modeling can be broadly categorized into (i) template-based (e.g., logic

template models for each router component block – crossbar, switch and VC arbiter, and input

and output buffers) models, (ii) parametric models, and (iii) non-parametric models.

Template-Based Models

Patel et al. [198] propose a transistor count-based analytical model for networks-on-chip

(NoCs) power. Large errors can result because router microarchitectural parameters are not con-

sidered. ORION [253] and ORION2.0 [115] use microarchitecture and technology parameters

for the router component blocks.

Parametric Models

Prior works in this category are based on pre-layout (RTL or post-synthesis gate-level)

[189] [33] [80] [150] or post-layout [14] [15] [200] [173] simulations. Chan et al. [33] de-

velop cycle-accurate power models with reported average errors up to 20%. Meloni et al. [173],

and Lee and Bagherzadeh [150] perform parametric regression analysis on post-layout and RTL

simulation results, respectively. Their models cannot be used to explain sensitivity of power dis-

sipation in each router block to change in load, microarchitecture or implementation parameters.

Ye et al. [265] and Penolazzi et al. [200] estimate power dissipation using a bit-level model, and

Penolazzi et al. [200] propose a static bit-based model to estimate Nostrum NoC power.

In Section 3.1 of this thesis, we present new parametric models to estimate area and

power of each component of NoCs. These models are developed using post-synthesis data and

hence are very accurate as compared to template-based models. We also present new models for

flit-level power.
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Non-Parametric Models

Surrogate or non-parametric models or metamodels are gaining popularity for early ex-

ploration and characterization of the solution space for various aspects of IC design. Multivari-

ate Adaptive Regression Splines (MARS) and decision trees are examples of tree-based mod-

els, whereas Kriging (KG) and Radial Basis Function (RBF) are examples of Gaussian-process

models [85]. Support Vector Machines (SVMs) and Artificial Neural Networks (ANNs) are

other popular non-parametric modeling techniques used in EDA. Ipek et al. [96] use ANNs to

predict performance of core and memory of chip-multiprocessors. Lee et al. [148] use KG to

estimate processor power in multiprocessor systems. Dubois et al. [64] use KG to estimate area

of network-on-chip (NoC) routers. Jeong et al. [98] and Kahng et al. [116] use MARS to model

area and power of NoCs. The authors show that parametric regression has large errors and hence

propose the use of non-parametric regression. The authors use MARS with linear splines, and

report ∼60% worst-case and ∼6% average errors for both area and power. SVM regression has

been used to estimate NoC latency in [202].

For analog and mixed signal design automation, Li et al. [153] develop a statistical re-

gression (STAR) technique using non-parametric regression to predict moment values, and use

moment matching to reduce number of variation-related parameters in designing low noise am-

plifiers (LNAs). Compared to traditional methods of reducing dimensionality, STAR is 12×
faster and uses 12× fewer samples to achieve the same modeling accuracy. Crombecq et al.

[59] use adaptive sampling to study accuracy, as well as impacts of high-dimensionality in var-

ious surrogate models for LNA gain estimation. They quantify the root mean square error in

each experiment, and propose to try all models and choose the best one. Goel et al. [76] pro-

pose weighted surrogate modeling instead of using the best estimation model. Liu et al. [160]

use boosting with linear regressors to predict gain, power, slew rate, unity gain frequency and

phase margin of LNAs. The main conclusion of the authors is that fitting each model requires

substantial tuning in the number of stages in boosting.

In the field of computer architecture and compilers, Stephenson et al. [234] use genetic

programming, a non-parametric technique, to learn compiler heuristics such as data prefetching,

register allocation and hyperblock selection, and report up to 73% speedup in compiler opti-

mizations. Hamerly et al. [82] propose to use machine learning (k-means clustering) to iden-

tify repetitive patterns in a program’s execution so as to reduce the runtime of cycle-accurate

architectural simulators. Lee et al. [149] propose to use linear regression and ANN to perform

efficient design-space exploration of microarchitectural parameters; their models predict the per-
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formance of various parallel applications with at most 10.5% error. Ozisikyilmaz et al. [188]

also propose to use linear regression and ANN to perform efficient design-space exploration of

microarchitectural parameters to achieve speedups on SPEC 2006 CPU benchmarks, and report

that their models have 96.5% accuracy in identifying the best set of parameters for each SPEC

2006 benchmark. Liao et al. [156] use multiple parametric and non-parametric modeling tech-

niques to perform data prefetching in datacenters. The authors of [156] demonstrate that their

model-predicted prefetches are highly accurate, with worst-case error of 1%.

In Section 3.1 of this thesis, we explore multiple non-parametric modeling techniques

to develop area and power models for NoCs using post-P&R data. We demonstrate that each

technique achieves a different modeling accuracy depending on the size of the training set, and

are significantly more accurate than template-based NoC models across multiple technologies

and RTL generators.

2.1.2 Pathfinding at the Implementation-Level

Previous works on implementation-level modeling can be broadly categorized into mod-

eling during (i) logic synthesis, (ii) floorplanning, power planning and placement, (iii) clock

network synthesis, (iv) routing, and (v) IC testing. All of the works that we review use non-

parametric models.

Modeling during Logic Synthesis

Rokach et al. [211] propose the use of decision trees along with a greedy approach to

learn functions as part of their Circuit-Decomposition-Engine. Given a library of components

and their sizes, the decision trees learn the function of disjunctive normal form (DNF) boolean

representations and synthesize circuit structures from the libraries. Hutton and Karchmer [94]

propose efficient design-space exploration of metrics such as operating speed, power and area

during synthesis of FPGAs. The authors propose to create models using regression on existing

synthesized designs. Li and Jabri [154] use ANNs to design standard cell libraries. The authors

develop models to predict the number of vias and models to estimate cell layout shape functions

using layout and timing constraints.

Modeling during Floorplanning, Power Planning and Placement

Chang et al. [45] propose a model-guided design flow to create power delivery networks

(PDNs) that satisfy both IR-drop and electromigration constraints. The authors use a learning-
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based model to predict the increase in wirelength for a given PDN configuration. The authors

have explored multiple learning techniques such as Gaussian regression, Bayesian regression,

stepwise regression, ridge linear regression and SVM, and report average errors between 2.8%

to 6.1%. Cheng et al. [47] use MARS to model the worst-case performance under power supply

noise variation. Liu [159] uses KG to predict IR drop of cells using spatial correlation of IR drop

maps and on-chip temperature. The author reports worst-case error of 76%.

Yu [271] explores the application of Hopfield neural nets for standard cell placement.

The author makes a negative recommendation because the complexity of neural nets can be

asymptotically large O(n4), network parameters are difficult to control, and solutions for a small

4× mesh can have 20% worse half-perimeter wirelength (HPWL) as compared to exhaustive

pairwise swap. Ward et al. [257] develop a high-performance placement tool, PADE, using

SVM and ANN models. The authors create models for datapaths in netlists by analyzing netlist

structures and then use SVM and ANN to classify a path as either datapath or non-datapath.

The authors evaluate modeling accuracy using ISPD-2005 benchmarks as well as six industrial

designs, and report 90% accuracy in predicting datapaths and 99.9% accuracy in predicting non-

datapaths, out of 100 datapaths and 10K non-datapaths in their dataset.

Congestion estimation has attracted much attention in the research community. To ad-

dress routability issues prior to the routing stage and to minimize turnaround time, modern plac-

ers are equipped with congestion estimators to guide the placement to achieve router-friendly

placement solutions. Caldwell et al. [29] accurately estimate routed wirelength by compre-

hending floorplan aspect ratios for routability-driven placement. Roy et al. [214] propose a

congestion-driven whitespace allocation algorithm during placement and they apply their algo-

rithm in their placement tool ROOSTER. Westra et al. propose a constructive approach in [261]

for placement. Furthermore, Taghavi et al. [238] propose MILOR to avoid routing infeasibility

due to local congestion at the placement stage. Although the above works do not use machine

learning, they provide essential background on modeling for congestion estimation before the

routing stage.

In the area of three-dimensional ICs (3DICs), previous works have mainly performed

analytical modeling of 3D HPWL using 2D placements. Mak and Chu [168] present a loose

theoretical upper bound on the potential wirelength improvement possible with a 3DIC imple-

mentation of any design as compared to its 2DIC implementation. They report that for realistic

sizes of vertical interconnects (VIs), the benefits will always be negative (-2% on average). Kim

et al. [136] [141] use Rent’s rule to predict wirelength distributions in 3DICs with two or more
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dies as well as by varying the number of VIs. The authors derive analytical models of parasitics

for the VIs and for buffer insertion, then derive models to estimate stage delays across dies. The

authors also derive analytical models to estimate 3D power when heights and widths of VIs,

and the number of buffers inserted into the netlist, are varied. These models do not account for

IC implementation details such as floorplan context, technology libraries, signoff corners and

constraints. Toufexis et al. [244] propose an in-built statistical prediction engine to estimate

area, performance and power, thereby enabling a fast implementation-space exploration flow for

3DICs. The authors represent the chip as a cuboidal mesh, implement a power-ground network

and compute power based on current drawn by standard cells. An interpolation scheme is used

to predict power, with reported maximum modeling error of ∼58%.

In Section 3.2 of this thesis, we propose a novel modeling methodology for floorplan-

ning with embedded memories, so as to minimize the risk of timing failures during multiphysics

signoff. In Section 3.3 of this thesis, we develop fast and accurate models to predict whether a

2D placement is routable by using only information from the placement stage, i.e., no informa-

tion from trial or early global routing. We also predict Pareto frontiers of maximum utilization,

aspect ratio and number of metal layers at iso-performance using our models. In Section 3.4 of

this thesis, we propose a modeling methodology to estimate 3DIC power using 2DIC implemen-

tations. Our models presented in Section 3.4 guide designers to choose appropriate floorplan

contexts (e.g., aspect ratio, utilization, placement of embedded memories) so as to maximize

benefits from 3DIC implementations relative to 2DIC implementations.

Modeling during Clock Network Synthesis

Prediction of clock network metrics is a sparsely explored area in CAD. Kahng et al.

[106] use their METRICS infrastructure to collect design flow information during clock network

synthesis, and perform data mining using CUBIST to estimate clock skew and insertion delays.

They use CTGen, a commercial CTS tool in 2001, to conduct their studies on industrial testcases

and report correlation coefficients of around 0.82 in predicting maximum and minimum insertion

delay, maximum skew, and routing violations. Samanta et al. [218] use SVM regression [248] to

estimate clock skew with an accurate delay model to size buffers and wires in a non-tree clock

network. Ward et al. [258] propose placement of latches and local clock buffers using decision

trees. The authors create models that take as inputs types and sizes of latches and clock buffers,

densities, ratios, skew and delay. The authors develop a new similarity measure of placement

solutions that they use in their flow, and report modeling accuracy of 91.8%, and 30% total power
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savings using their model-guided latch and clock buffer placement.

In Section 4.3 of this thesis, we propose new model-guided optimization methods to

minimize clock skew variation across multiple corners. Our optimization is guided using accu-

rate machine learning models of clock signal delay.

Modeling during Routing

Dong et al. [63] show that only five metal layers are sufficient to route designs with up to

5M gates for signal and clock routing only (i.e., no PDN). Thereafter, the number of layers scales

linearly, e.g., 50M gates require eight layers and 100M gates require 10 layers. The study in [63]

uses analytical models and gate areas from 65nm process. Andreev et al. [9] have patented a

dynamic programming technique that assigns segments of signal nets from M1 through to the top

metal layer, minimizing the amount of metal layer area consumed by vias. The patent assumes

that all layers have the same pitch and guarantees that the design is routable. The patent of

Lin [158] describes a method to choose widths of various metal layers in the stack to minimize

IR drop and RC delay of routed nets. The patent also describes material choices for pads and

dielectric to achieve minimum RC delay.

In the area of congestion prediction, Brenner et al. [27] and Jiang et al. [99] propose

approaches to estimate congestion at the global routing stage for congestion-driven placement.

Wang et al. [255] and Zhong et al. [277] propose approaches to cure hotspots at the global

routing stage. Several works use wire density to avoid congestion [86] [91] [231] [247]. Westra

et al. [260] extract routing patterns (L/Z-shapes) to predict congestion. Kahng and Xu [130]

propose a statistical model for congestion that comprehends effects of blockages and routing

bends. He et al. [87], Liu et al. [163] [162], Pan and Chu [191], and Kim et al. [137] use

global routers to predict congestion. Shojaei et al. [223] [224] propose a congestion-estimation

framework with integer linear programming (ILP) at the global routing stage. Wei et al. [259]

propose Glare for local and global congestion estimation. Qi et al. [201] use MARS to develop

predictors of routing congestion using pin density and congestion maps from global routing.

The authors report 13% reduction in the number of design rule violations when their predictor is

used, as compared to using analytical models of routing congestion. Zhou et al. [278] propose

a learning-based congestion model for detailed routing. The authors use parameters from global

routing and achieve accuracy of ∼80% using multivariate adaptive regression splines.

In the area of photomask preparation and lithography simulation, several works apply

machine learning to detect and classify lithographic “hotspots” [62] [170] [171] [172] [268]
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[270] [273]. Ding et al. [61] develop a hotspot predictor for lithographic layout patterns using

SVM, and use it with a detailed router to estimate layout printability. Yu et al. [272] pro-

pose a topological classifier to determine hotspots in lithographic mask patterns. The authors

use SVM with RBF kernel in their modeling, and obtain their training and test datasets from

an open-source GDSII library. Across six benchmarks from the GDSII library, the authors re-

port classification accuracies that range between 86%–98%. In a much earlier work, Kahng

and Muddu [109] perform response surface modeling of variation of linewidth (i.e., critical di-

mension) caused during lithography by accurately identifying sources of variation. The authors

report coefficient of determination of up to 0.94 and a tight distribution of errors, with ∼70% of

the errors being less than 1nm of linewidth variation.

Modeling during IC Testing

Callegari et al. [30] use classification to develop a feature-based rule learning algorithm

and apply it to analyze silicon test measurement data. They uncover mismatches between design

and silicon even in the presence of random noise. Fagot et al. [69] use the nearest neighbors

algorithm to generate efficient test patterns for use during BIST. Fountain et al. [71] use expec-

tation maximization algorithm to predict yield. The authors use data from die-level parametric

and functional tests, and report modeling accuracy of 96%. Gosavi [79] uses SVM to classify

defects in ICs as either permanent or intermittent. The author uses data from IC testing to train

and test the model. Huang et al. [90] use SVM classification to predict defects in analog chips at

the post-silicon stage. They use LNAs as their test circuit and are able to predict defects within

an error of 2.9%. Robles et al. [210] patent a density-based feature encoding method to detect

hotspots in lithographic mask patterns. The authors propose two-level SVM-based classification

to minimize false positives and false negatives in the prediction.

Hardware Implementation of Learning Algorithms

Afifi et al. [2] propose a fully functional circuit design for accelerating the SVM learn-

ing phase based on sequential minimization optimization algorithm. The authors demonstrate

that fixed-point design on FPGA has similar performance as floating-point algorithm on Mat-

lab. Kuan et al. [147] propose a flexible and parallel implementation of SVM. Ardakini et

al. [10] implement deep neural network using five transfer functions in 65nm foundry technol-

ogy. Chakrabartty and Cauwenberghs [32] implement an analog system-on-chip 24-class SVM

classifier [85] [311] for biometric signature verification by analysis of voice samples. Zhang et
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al. [275] implement the learning vector quantization algorithm, which is a variant of an ANN

classifier, using 16-bit wide datapaths and 75MHz frequency in 180nm.

2.2 Timing Analysis and Correlation

In this section, we review literature pertaining to our works on timing correlation de-

scribed in Chapter 4. Prior works that quantify miscorrelations between signoff STA tools or

propose methodologies to minimize tool divergence are limited. Kahng et al. [125] develop

an internal incremental STA tool by using least-squares regression to model wire delay. They

then use offset-based correlation with a signoff timing tool to minimize divergence in path slack

estimates of their incremental STA tool, relative to the signoff tool. Their models are developed

using the ISPD-2013 [293] gate-sizing contest library, and do not include any models for stage

or cell delays, or for flip-flop setup times.

To model effects of temporal and spatial manufacturing variations on path delay, Gana-

pathy et al. [74] use multivariate regression. They report estimation errors to be within 5% of

SPICE simulations. Tetelbaum [240] uses root-sum-square (RSS) of variations in stage delay

and a weighted function of the worst case sum of variations in stage delay to estimate total path

delay; path delay estimation errors of less than 5% are reported. Sinha et al. [226] propose use

of RSS for delay variation in their announcement of the TAU-2013 contest to speed up timing

analysis by using multicores and parallel computing techniques.

To model crosstalk effects, Sapatnekar [219] propose an analytical model that captures

crosstalk-induced delay. This model lumps coupling capacitance to ground with the value of

Miller coupling factor being 0, 1 or 2 based on the timing window overlap and switching direc-

tions of the signals. The effect of crosstalk on net delay is estimated using an iterative algorithm

with runtime that is polynomial in the number of nets. The results are not verified with results

from other tools or models. Xiao et al. [263] derive an analytical two-pole model for RC inter-

connect noise waveform calculation with coupling capacitance. A Newton-Raphson iteration is

used to obtain the timing information. Correlation with SPICE shows good matching. However,

the Newton-Raphson iteration is computationally expensive and may not be practical for use

with SoC designs. Ilumoka [95] uses RBF to estimate interconnect crosstalk.

In correlating STA tools, Mishra et al. [176] recalculate clock uncertainties based on

miscorrelation between two tools and apply the updated uncertainty values to achieve better

timing correlation between the tools. Rakheja et al. [207] demonstrate that timing reports from

design implementation tools, such as Synopsys IC Compiler [340], and signoff STA tools, such
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as Cadence Encounter Timing System [288], can differ. They propose a manual and iterative

approach to fix paths for which the tools have large divergence in timing estimates. Motassadeq

[67] quantifies differences in output slew between Synopsys HSPICE [339] and PrimeTime [342]

for Nonlinear Delay Model (NLDM) and Composite Current Source (CCS) [289] delay models.

Thiel et al. [241] leverage the ability of PrimeTime (PT) [342] to output a SPICE netlist, and use

SPICE simulation to calibrate the PT timing report. This work does not take crosstalk effects

into consideration. Motassadeq et al. [66] extend this analysis flow by using PrimeTime SI

(PTSI) [342] instead of PT to include crosstalk effects. Mohamed et al. [178] correlate PTSI-

reported delta delay with coupling capacitance and drive strengths of the aggressor and victim.

Venugopal et al. [251] characterize delays calculated by PTSI and correlated with HSPICE [339].

In correlating post-P&R timing in early stages of design, Alpert et al. [6] propose the

adoption of physical synthesis in design flows to have better correlation with post-layout met-

rics such as worst negative slack (WNS), at the post-synthesis stage. Alpert et al. [8] propose

analytical buffered delay models in the presence of blockages and report errors within 1% for

three-pin nets. The authors propose integration of their models within a floorplanner for fast and

accurate estimation of timing. Clarke et al. [52] propose detection of congestion-induced timing

issues during synthesis, and prevention of congestion by avoiding decomposition of complex

cells such as MUX and XOR to NAND and AOI cells during logic synthesis so as to reduce pin

counts. Jones et al. [101] derive wireload models to estimate wire delay due to parasitics at

the placement stage. The authors propose to divide the block into equal-sized regions, perform

Steiner tree routing and use Rent’s rule for fanout distributions in each region. Kim et al. [138]

characterize standard cells and parasitics at different temperatures and propose thermal-aware

delay models at the floorplanning stage. Vujkovic [252] proposes the use of multiple wireload

models during synthesis for better correlation of post-layout wire delay. Yaldiz et al. [264]

develop a closed-form model of SRAM latency that comprehends inter- and intra-die process

variations. The authors demonstrate accuracy of their models in 90nm and report errors ≤15%.

In Section 4.1 of this thesis, we describe a novel methodology to correlate golden tim-

ing signoff tools. We demonstrate that our methodology is highly accurate and can be used to

correlate design implementation and signoff timing tools as well. In Section 4.2 of this thesis,

we present a methodology to map timing reports from non-crosstalk analysis to timing reports

from crosstalk analysis. Both these techniques use layered or deep learning methodologies. The

effectiveness of the proposed techniques is demonstrated across a wide range of technologies

and designs.
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2.3 Optimizations for Design Power, Cost and Reliability

In this section, we review related works pertaining to our optimizations described in

Chapter 5. These are (i) quality of results (QoR) improvements with 3DIC flow and placement,

(ii) design cost reduction through optimal multi-project, multi-resource scheduling, and (iii) task

scheduling in multicore systems subject to lifetime reliability constraints.

2.3.1 3DIC Flow and Placement

While there is no golden EDA flow for 3DIC implementation, a number of researchers

have implemented 3DICs using 2D EDA tools and flows in conjunction with in-house 3D design

tools. Thorolfsson et al. [242] propose a 3D design flow based on a 2D flow to implement a FFT

processor. Kim et al. [140] implement a multi-core processor based on commercial 2D EDA

tools and use in-house tools to place the VIs. The authors verify the result through fabrication

in Tezzaron 3D technology at the 130nm node. Another 3DIC implementation flow addresses

design requirements for sequential 3D [18] technology that permits cell-level 3D integration.

Panth et al. [196] [197] propose a “shrunk2D” (S2D) design flow for sequential 3D based on

commercial EDA and in-house tools, and validate the flow on OpenSPARC T2 and other IPs

[318]. This flow is, we believe, currently the strongest and full-featured in the research literature.

S2D invokes commercial 2D P&R with scaled LEF and then partitions the result onto two tiers.

In the area of 3DIC placement, we broadly classify 3DIC placers as (i) folding- and

partition-driven, or (ii) analytical. We highlight placers that evaluate by routing versus by HPWL

in the discussion below.

Folding- and Partition-Driven 3DIC Placers

Cong et al. [55] propose a technique to fold a partitioned 2D netlist into multiple stacked

dies. Folding reduces the wirelengths of nets that span different partitions, whereas wirelengths

of nets that are not partitioned remain unchanged. Therefore, overall reduction in wirelength

depends on which nets have been partitioned. Panth et al. [197] propose a Fiduccia-Matheyeses

(FM)-based partitioner to partition a routed 2D netlist across two tiers. Their placer intentionally

creates overlaps in a 2D placement by doubling the floorplan site capacity. The overlapped cells

are then partitioned into two tiers to minimize the routing overflow. The authors divide the

2D placement region into multiple grids, then apply their partitioner in each grid to achieve an

area-balanced min-cut bipartitioning within each grid.
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Analytical 3DIC Placers

Previous works such as [13] [56] [57] [92] propose analytical placers for 3D. They ex-

tend the cost function in 2D analytical placers to 3D by adding a z-direction cost. Cong et al. [56]

use the z-direction cost to model the number of VIs between tiers and uses a weight to control

this number. The log-sum-exponent (log-sum-exp) method is used to make the HPWL metric

continuously differentiable, and a conjugate gradient solver minimizes the metric. The authors

implement their placer using multilevel coarsening and evaluate it using IBM-PLACE bench-

marks [298] on four tiers, reporting 7% reduction in HPWL relative to 2D implementations. In

[57], the same authors propose a mixed-size 3D analytical placer that decompose large cells into

multiple smaller cells. The authors report 27% HPWL reduction relative to 2D implementations

on IBM-PLACE benchmarks.

Goplen and Sapatnekar [78] propose an iterative thermal-aware force-directed 3DIC

placer. In each iteration, the authors use finite element analysis to compute temperature, from

which they calculate thermal forces that move cells from regions of high temperature to regions

of low temperature. Kim et al. [135] propose use of a force-directed placer after FM-based par-

titioning. The chicken-and-egg loop between partitioning and placement leaves an opportunity

for QoR improvement. Balabanov et al. [13] and Hsu et al. [92] consider VI sizes and locations

in their density function and propose a novel weighted-average wirelength method instead of the

log-sum-exp method to smooth the wirelength metric. These innovations enable their placer to

achieve 13% less HPWL compared to [56], along with routability using a commercial EDA tool.

Kim et al. [139] study several 3D wirelength objectives based on HPWL to improve estimation

for routed 3D wirelength during VI planning stage that may be used for 3D placement. Recently,

Lu et al. [165] have proposed a new cost function that is analogous to electrical field equations.

They improve the density function to balance the placement among multiple dies, and report

27.5% improvement in HPWL relative to 2D implementations of the IBM-PLACE benchmarks.

In Section 5.1 of this thesis, we describe a new analytic placement tool that implements

a “true 3D” wirelength objective. Our placement solutions are routable, and in conjunction with

a commercial router, we achieve significant wirelength and power reductions as compared to the

S2D flow.

2.3.2 Project Scheduling under Resource Constraints

Resource-constrained project scheduling has been solved in many different settings,

with varying constraints and/or objective functions. A common objective is to minimize the
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makespan [17]. Objective functions studied typically minimize project cost given time-dependent

and/or resource-dependent penalties [146] [239].

Project Scheduling

Several previous works solve the scheduling problem for a single project with multiple

activities [22] [50] [134] [143] [180] [217]. The activities can be either preemptive or nonpre-

emptive [17] [143] [217] [239]. Kolisch et al. [143] [144] formulate the resource-constrained

project scheduling problem (RCPSP) and propose methods to generate RCPSP instances. They

present the PSPLIB and MPSPLIB benchmark suites, along with optimal as well as heuristic

solutions. Further variations involve the scheduling of activities that can execute in multiple

modes [22] [143] [146] [217] [239]. These works consider that the resource usage and the time

taken by an activity can vary across available modes; they provide optimal scheduling solutions

across combinations of modes of activities. Mohring et al. [180] and Christofides et al. [50] pro-

vide branch-and-bound algorithms to solve the resource-constrained multi-activity single project

scheduling problem. The authors of [180] further try to identify special cases that are solvable

in polynomial time. Generally, solution frameworks involve linear or integer linear program-

ming, although stochastic [134] and nonlinear [25] formulations have also been studied. Cyclic

scheduling has been addressed in [11] [25], where sets of activities are executed indefinitely

over time in a periodic fashion. The work of [134] is noteworthy in that its formulation permits

temporary resource expansion, albeit for a penalty which features in the objective function. The

formulation provided in [134] does not include precedence constraints within activities.

Several commercial tools and services exist today [292] [299] [301] [313] [328] that

serve design project management needs. Some of these tools are specific to IC design such as

[292] [299] [313], whereas the other tools can serve project management needs for any industry.

These tools, however, are not based on combinatorial optimization.

Human Resource Scheduling

To optimize human resources at an enterprise scale, Li et al. [152] minimize the

makespan of a single project with multiple activities, subject to upper bounds of human re-

sources. Mohanty and Nayak [179] propose a particle swarm optimization (PSO) algorithm to

optimize the tradeoff between cost and profit when a given number of employees are assigned

to an activity. Their formulation considers employees with different skill competencies for dif-

ferent activities. Qiong et al. [203] propose an ant colony optimization (ACO) algorithm to
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minimize the makespan of a project with multiple activities and precedence constraints between

the activities. The activities are assumed to be non-preemptive, and the algorithm is applicable

to general parallel machine scheduling problems.

Datacenter Job Allocations

In the datacenter literature, several works propose algorithms to handle job scheduling

within a datacenter, e.g., to minimize makespan as well as other penalty functions. With energy

consumption a major concern in modern datacenters, recent formulations by Friese et al. [73]

propose multi-objective optimization of makespan and energy consumption. Furthermore, for-

mulations for datacenters are focused on providing job scheduling solutions either in real-time

or “online” [155], often by using live data from various thermal, network and rack utilization

sensors.

In Section 5.2 of this thesis, we describe two new formulations that minimize overall

schedule makespan and optimally allocate multiple resources across multiple projects subject to

activity precedence and resource co-constraints. Our optimizations are performed “offline”, that

is, we do not monitor status of project executions in real-time during the optimization of our

objective functions. Applications to industrial testcase instances show that our solvers achieve

significantly better solutions than those actually used by management within a large IC design

company.

2.3.3 Task Scheduling in Multi-core Systems

We taxonomize prior works on task scheduling for multi-core systems as reliability-

constrained (RC) or non-reliability-constrained (NRC). RC task scheduling policies can be fur-

ther classified as those that make system “lifetime guarantees” (LG) and those that make “no

lifetime guarantees” (NLG). Existing RC-LG policies apply (1) dynamic power management

(DPM), (2) dynamic thermal management (DTM), or (3) dynamic reliability management (DRM).

Such works are “performance-guaranteeing” (PG) if they guarantee lower bounds on “acceptable

performance”.

NRC and RC-NLG Policies

Reiss et al. [208] present analysis of NRC task scheduling policies in Google datacen-

ters. Each core maximizes throughput by operating at its worst-case temperature. The “Bub-

bleWrap” work of Karpuzcu et al. [132] proposes a DVSAM-Perf policy to maximize perfor-
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mance in the presence of delay degradation due to bias temperature instability. DVSAM-Perf is

an example of RC-NLG policy.

RC-LG Policies

Mihic et al. [174] and Rosing et al. [213] perform detailed system modeling to devise

a DPM policy to minimize total system energy subject to all tasks in a task graph completing

execution within the multi-core system’s lifetime. Rong et al. [212] propose a DPM policy to

minimize system energy subject to meeting all task deadlines within the multi-core system’s life-

time. Both these policies adjust voltage/frequency settings of a core to ensure all tasks complete

execution within the system’s lifetime.

Coskun et al. [53] propose five DTM policies to minimize thermal hotspots subject to

completion of all tasks in a task graph while the multi-core system meets its lifetime. In [54],

Coskun et al. devise four DTM task scheduling and migration policies. They propose that tasks

should be scheduled on cores towards the periphery of the chip. The proposed policies in [53]

and [54] do not guarantee any minimum frequency of operation of a core.

Srinivasan et al. [233] develop RAMP, a reliability simulator, and propose a DRM policy

to adjust voltage/frequency settings of cores to maximize the lifetime of the multi-core system.

Karl et al. [131] use a proportion-integral-derivative (PID) control system to determine the

maximum voltage/frequency setting of a core to complete a given task. These policies do not

guarantee any minimum frequency of operation of a core.

In Section 5.3 of this thesis, we describe a formulation that maximizes overdrive fre-

quencies in multi-core systems subject to lifetime reliability constraints and balanced wearout

of cores. We provide counterexamples showing that existing policies are suboptimal, in that

they cannot guarantee lower bounds on acceptable performance and acceptable throughput. Our

solver guarantees acceptable performance and acceptable throughput, and is an improvement

over previous RC-LG policies.



Chapter 3

Design Productivity Gains through

Improved Design- and

Implementation-Space Exploration

This chapter presents four new applications of machine learning-based models for fast,

accurate design- and implementation-space exploration. The first work describes the devel-

opment of parametric as well as non-parametric power and area models for Network-on-Chip

routers. A comprehensive suite of these models has been implemented in ORION3.0, and has

been released on the web for download. ORION3.0 enables efficient architecture-level (RTL-

level) design-space exploration. The second work proposes a learning-based methodology to

perform early prediction of timing failure risk given only the netlist, timing constraints, and

floorplan context (wherein embedded memories are placed). This work can be used to identify

which memories are “at risk”, guide floorplan changes to reduce predicted “risk”, and help re-

fine underlying system-on-chip (SoC) implementation methodologies. The third work describes

a learning-based methodology to predict whether a back-end-of-line (BEOL) stack-aware place-

ment solution is routable without conducting trial or early global routing. The fourth work

describes a learning-based methodology to estimate three-dimensional IC (3DIC) power benefit

based on corresponding golden two-dimensional IC (2DIC) implementation parameters. Our

models recommend a most-promising set of implementation parameters and constraints, and

provide a priori estimates of 3D power benefits from 2DIC implementations only.

23
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3.1 ORION3.0: A Comprehensive NoC Router Estimation Tool

Networks-on-Chip (NoCs) have proven to be highly scalable, low-latency interconnec-

tion fabrics in the era of many-core architectures, as evidenced by commercial chips such as the

Intel 80-core [302], IBM Blue Gene [297] and Tilera TILE-Gx [348] processors. Because of

their growing importance, NoC implementations must be optimized for latency and power [253]

[43] [199] [183]. To facilitate early design-space exploration, accurate NoC power and area

estimators are required.

One widely adopted approach for NoC power and area estimation, as embodied in

ORION2.0 [115], is to develop a logic structure template for each NoC router component,

namely, the input and output buffers, crossbar, and switch and virtual channel (VC) arbiters.

Despite significant enhancements to improve leakage and clock power modeling, ORION2.0

still produces large estimation errors versus actual implementation. This is because there is of-

ten a mismatch between the actual RTL versus the templates assumed. Also, typical design flows

involve sophisticated design steps that have complex interactions among them, making their ef-

fects difficult to characterize. For example, the crossbar is assumed to have a multiplexer tree

structure, and the switch and VC arbiter is assumed to be a set of NOR and INV gates. How-

ever, after logic synthesis and technology mapping, the actual structure can be quite different.

For example, AOI instances may be used instead of NOR and INV gates for the arbiter, and tri-

state buffers may be used to implement the crossbar. Logic synthesis may also add buffers for

performance optimizations. These synthesis and other design flow transformations are hard to

predict.

An alternative approach is to use parametric regression with high-level analytical mod-

els. Although regression analysis is performed using actual physical implementation data, previ-

ous evaluations of this approach [116] show that high-level parametric regression leads to large

estimation errors because important architecture details are often missing in these analytical

models.

To illustrate the degree of inaccuracy, we show in Figure 3.1(a) the power estimation

errors in 65nm for both ORION2.0 and the parametric regression approach based on high-level

analytical models, as a function of the number of virtual channels in the router. The maximum

errors are 185% and 75%, respectively. Similarly, in Figure 3.1(b), we show the power estimation

errors in 90nm when the flit-width is changed.

As reviewed in Section 2.1.1, there is no previous work that comprehensively studies

NoC area and power estimation using parametric and non-parametric modeling techniques. In
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Figure 3.1: Poor estimations by ORION2.0 [115] and the previous parametric regression
approach [116]. Netmaker vs. ORION2.0 vs. regression at (a) 65nm and (b) 90nm.

this work, we propose comprehensive parametric and non-parametric modeling methodologies

that fundamentally differ from approaches such as ORION2.0, in that the estimation models are

derived from actual post place-and-route (P&R) data that correspond to the actual RTL generator

and target cell library. Following this paradigm, we describe two approaches.

The first approach is based on parametric modeling. Our work is a substantial departure

from the ORION2.0 approach because no logic template is assumed for any router component

block. Instead, for each component block in the router RTL, appropriate parametric models are

derived from the post-synthesis netlists by observing how instance counts change with microar-

chitectural, implementation, and operational parameters. We call these models ORION NEW.

We perform least-squares regression (LSQR) with actual post-P&R power and area data to re-

fine these ORION NEW models. The resulting parametric models achieve worst-case errors

significantly better than those of ORION2.0 as well as previous non-parametric regression ap-

proaches [116]. We describe modeling extensions that enable more detailed flit-level power

estimation when integrated with simulation tools such as GARNET [3]. Our parametric model-

ing methodology does not require the architect or developer to understand how the architectural

components are implemented. Rather, the methodology relies on a one-time characterization of

post-synthesis data to derive parametric models of component blocks, and automatic fitting of

these models to post-P&R data using parametric regression.

The second approach is based on non-parametric modeling, which was first described

in [116]. In this approach, estimation models are also derived from actual post P&R layout power

and area data that correspond to the actual RTL generator and target cell library. As described

in [116], the non-parametric modeling approach is powerful in that it can automatically derive

accurate estimation models based on a sample set of post P&R results. In [116], Multivari-

ate Adaptive Regression Splines (MARS) [85] linear splines were used to derive the estimation

models. In this work, we extend the ideas of [116] by incorporating four other metamodeling
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techniques for automatic model generation: Radial Basis Functions (RBF), Kriging (KG), Mul-

tivariate Adaptive Regression Splines with cubic splines, and Support Vector Machines (SVM)

regression [85]. This non-parametric modeling approach does not require the architect or devel-

oper to understand how the architectural components are implemented.

Our main contributions are as follows:

1. We describe a new parametric modeling methodology that derives accurate parametric

models from actual post-synthesis netlists generated from actual router RTLs by observ-

ing how instance counts change with microarchitectural, implementation, and operational

parameters. The post-synthesis netlists accurately capture contributions from both the

control and data paths. The derived models are highly accurate and robust across multiple

router RTLs, and across microarchitecture, implementation, and operational parameters.

2. We demonstrate that parametric regression with accurate models can significantly reduce

the worst-case error compared to previous template-based approaches as well as non-

parametric regression approaches for NoC routers.

3. We demonstrate that popular non-parametric metamodeling techniques, namely, Radial

Basis Functions, Kriging, Multivariate Adaptive Regression Splines, and Support Vector

Machine regression, can be highly accurate (worst-case errors less than 20%) in NoC

power and area estimations.

4. We are the first to propose a detailed, efficient, and fine-grained flit-level power estimation

model that seamlessly integrates with full-system NoC simulators.

3.1.1 ORION3.0 Parametric Modeling Methodology

As shown in Figures 3.1(a) and (b), ORION2.0 [115] and the previous parametric re-

gression techniques [116] have large errors compared to implementation. This is because NoC

architecture template-based models are incomplete. They do not consider the impact of fre-

quency scaling, and do not consider more optimized implementations of blocks such as the

crossbar.

We now describe the ORION NEW modeling of each component in a modern on-chip

network router. We have developed these models by analyzing post-synthesis and post-P&R

netlists of two RTL generators, Netmaker [314] from Cambridge and the Stanford NoC router

[335]. Figure 3.2 shows the component blocks of a router, i.e., crossbar, switch and VC arbiter,

and input and output buffers [199]. We model instances (or gates) in each component block
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because our studies show that accurate estimations of area and power are possible only if the

instance modeling is accurate. The microarchitecture parameters used are #Ports (P), #VCs (V),

#Buffers (B) and Flit-width (F).

 

Figure 3.2: Router architecture [253].

The new model explicitly accounts for control and data resources in the router. The new

modeling elements are

1. tri-state crossbar model;

2. control resources such as FIFO select and decode logic signals in the input and output

buffers;

3. additional input buffer resources for delay-optimized arbiters [199];

4. output buffer model to store only head flits;

5. clock and control logic resources; and

6. clock frequency-based derating of total number of instances in the router.

Crossbar (XBAR) model. The crossbar (XBAR) is responsible for connecting input ports to

output ports so that all flit bits are transferred to output ports [60]. ORION2.0 crossbar mod-

els consider two implementations: matrix [199] and multiplexer tree [115]. The multiplexer

tree is the smaller of these in terms of instance counts and area, and is modeled as P×P×F

multiplexers at each level of the tree.

Modern router RTLs such as Netmaker and Stanford NoC use a simpler and smaller

crossbar implementation where each flit bit is controlled using a tri-state buffer, which can be

modeled as a 2 : 1 MUX. Hence, the total number of such MUXes required is: P×P×F . The
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new model reduces the instance count by a factor of (P−1) when compared to the multiplexer

tree implementation.

Switch and VC arbiter (SWVC) model. The switch and VC arbiter (SWVC) generates control

signals for the crossbar such that a connection is established between input buffers and output

ports [60]. ORION2.0 adds an overhead of 30% to the arbiter by default. Our analysis indicates

that this overhead is not needed with frequencies in the range 400MHz–900MHz for process

nodes 45nm to 130nm. Beyond this range of frequency, a derating factor must be applied. The

ORION NEW model for switch and VC arbiter is: 9(P2V 2 +P2 +PV −P). The constant factor

9 arises because six 2-input NOR gates, two INV gates, and one D flip-flop are used to generate

one grant signal on each path. The new model removes the overhead factor of 30%.

Input buffer (InBUF) model. The input buffer (InBUF) holds the entire incoming payload of

flits at the input stage of the router for decode [60]. ORION2.0 models only the buffer instances

and does not take into account control signals which are needed at this stage for decode; these

include FIFO select, buffer enable control signals, and logic for housekeeping such as the number

of free buffers available per VC, VC identification tag per buffer, etc. As a result, ORION2.0

underestimates the instances at the input stage of the router.

In ORION NEW, we model control signals and housekeeping logic in addition to the ac-

tual FIFO buffers. Modern routers implement the same stage VC and SW allocation to optimize

delay [199], leading to doubling of input buffer resources. Hence, in the new model the number

of FIFO buffers is 2×P×V ×B×F . The control signals for decoding the housekeeping logic

are modeled as: 180×P×V +2×P2×V×B+3×P×V×B+5×P2×B+P2 +F×P+15×P

(as analyzed from the post-synthesis and post-P&R netlists). Each constant factor in the model

denotes the number of instances per path. For example, the 180 factor accounts for instances to

generate FIFO select signals and flags for each buffer in the P×V path. The smaller constant

factors 2, 3 and 5 account for instances that realize local flags in the decode logic. The factor 15

corresponds to the number of buffers in each FIFO select path of an input port.

Output buffer (OutBUF) model. The output buffer (OutBUF) holds the head flits between the

switch and the channel for a switch with output speedup [60]. ORION2.0 models output buffers

in exactly the same way as it models input buffers; this is inaccurate for modern routers that use

hybrid output buffers, and leads to an overestimate of the instance count. The output buffers
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need to store enough flits to match speeds between the switch and the channel. At the output,

these buffers are used to stage the flits between the switch and channel when channel and switch

speeds mismatch. Instead of using P×V ×B×F in ORION2.0, output buffers are proportional

to P×V . There are several control signals per port and VC associated with each buffer, which

makes the overall instance counts grow in the new model as P× (80×V + 25). The constant

factor 80 accounts for the instances used to generate flow control credit signals for each VC,

while the constant factor 25 accounts for buffers and flags.

Clock and control logic (CLKCTRL) model. The clock and control logic (CLKCTRL) mod-

els clock buffers and control logic routing resources as clock frequency scales. ORION2.0 does

not model impact on these resources because of frequency scaling. ORION NEW models these

resources as 2% of the sum of instances in the SWVC, InBUF and OutBUF component blocks.

Frequency derating model. As frequency changes, timing constraints change. To meet setup

time at higher frequencies, buffers are inserted which leads to an overall increase in instance

counts in the design. ORION2.0 scaling is agnostic to implementation parameters such as clock

frequency. This causes large errors in area and instance counts at higher frequencies for com-

ponent blocks such as SWVC, InBUF and OutBUF. We find that the number of instances in the

crossbar does not vary significantly with frequency because there are no critical paths; we thus

ignore the effects of frequency on the crossbar.

To derate for frequency, we find the frequency below which instance counts change

by less than 1%. In 65nm technology, this is 400MHz for both Netmaker and Stanford NoC

routers. We derate instance counts by a multiplier ∆Instance that is based on this frequency

as: ∆Instance = ∆Frequency×ConstantFactor. The constant factor depends on the amount

of control logic versus FIFO for each component block. To account for setup buffers, a fitted

constant factor of 1 is used in SWVC and InBUF, and a fitted constant factor of 0.03 is used in

OutBUF.

Table 3.1 summarizes the ORION NEW modeling of instance counts of each compo-

nent block. Key elements of our modeling methodology (see details in Table 3.2) include the

following.

• Multiple parametrized NoC RTL generators: Netmaker [314] from Cambridge and the

Stanford NoC [335].
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• Range of values of microarchitecture parameters (#Ports (P), #VCs (V), #Buffers (B) and

Flit-width (F)) and implementation parameters (clock frequency and technology node).

• Operational parameters for power calculation: toggle rate1 (TR) and static probability of

1’s in the input (SP).

• Multiple commercial tools: Synopsys Design Compiler vC-2009.09-SP2 (DC) [337] and

Cadence RTL Compiler v6.1 (RC) [285], with options to preserve module hierarchy after

synthesis because we analyze each router component block. We compare instance counts,

area and power reported by each tool to ensure that for a given RTL these results do not

vary by more than 10% across the two synthesis tools.

• Cadence SOC Encounter v10.12 (SOCE) [287] with die utilization of 75% and die aspect

ratio of 1.0 to place and route the synthesized router netlist.

• Synopsys PrimeTime-PX vF-2009.06-SP2 (PT-PX) [342] to run power analysis based on

the post-P&R netlist, SPEF [333] and SDC [21].

• MATLAB vR2012b [311] function lsqnonneg for regression analysis.

Table 3.1: ORION NEW model for Instances.

Component Equation

XBAR P2F

SWVC 9(P2V 2 +P2 +PV −P)

InBUF 180PV +2PV BF +2P2V B+3PV B+5P2B+P2 +PF +15P

OutBUF 25P+80PV

CLKCTRL 0.02× (SWVC + InBUF +OutBUF)

Figure 3.3 shows the flow we use to develop ORION NEW models for each component

block of the router. There are two ways to estimate NoC area and power using the ORION NEW

models, manual and LSQR, as shown in Figure 3.4. The benefits of each are described below.

• Both the approaches achieve minimum estimation error when the router RTLs are modular,

so that the instance count and area numbers per component block can be calculated.

1Toggle rate is defined as the average number of times a signal transitions from high to low (or low to high) per
clock cycle. We assume the toggle rate of the clock signal to be 1.
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Table 3.2: ORION NEW Methodology: Tools and Parameters.

Stage Tool Options

RTL
Netmaker ISLAY config

Stanford NoC default

µarch
Ports; VCs; P = {5, 6, 8, 10}; V = {2, 3, 6, 9}

BUFs; Flit-Width B = {8, 10, 15, 22}; F = {16, 24, 32, 64}

Impl

Clock Freq Freq = {400, 700, 1200, 2000}MHz

Tech Nodes 45nm = OpenPDK45 from NCSU/OSU

{45nm, 65nm} = TSMC GS, GP resp.

{90nm, 130nm} = TSMC G, GHT resp.

Op
Toggle Rate TR = {0.2, 0.4, 0.6, 0.8}

Static Prob of 1’s SP = {0, 0.25, 0.5, 0.75, 1.0}

Syn

Synopsys DC compile ultra -exact map

(vC-2009.06-SP2) -no autoungroup -no boundary optimization

report area -hierarchy; report power -hierarchy

Cadence RC default synthesis flow

(v6.1)

P&R

Cadence SOCE set default switching activity -input activity TR

(v10.12) propagate activity

remaining flow is default

Power

Synopsys PT-PX set power enable analysis true

(v2009.06-SP2) set power analysis mode averaged

set switching activity -toggle count TR

-static probability SP -type inputs

read sdc router.sdc; read parasitics router.spef

Regression MATLAB v2012b lsqnonneg

• The manual approach requires knowledge of process node and finer implementation details

such as (G, LP) × (HVT, NVT, LVT) × (bc, wc) to correctly select a technology library

file. The regression analysis approach, on the other hand, is agnostic of implementation

details and only depends on the set of training data.
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Figure 3.3: High-level flow used to develop the ORION NEW models.

 

Figure 3.4: High-level view of power and area estimation methodology using manual and
regression analysis (LSQR) approaches.

• The manual approach leads to faster estimation since it only involves technology library

lookups and plugging-in of library values into the ORION NEW models. In contrast, the

regression analysis approach requires synthesis and P&R to be performed on the router

RTL to generate data points for the training set. On an Intel Core i3 2.4GHz processor,

the runtime of the manual approach when used with ORION2.0 code is less than 10ms,

whereas the regression analysis approach takes 64 SP&R runs to generate the data points

for training.2

2In our simulations we use 64 data points for training and 192 data points to test the model.
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• It is extremely difficult to capture fine-grained implementation details in ORION NEW

models, e.g., area and power contribution of wires after routing, and change in coupling

capacitance and power after metal fill. These missing details cause large estimation errors

versus actual implementation when the manual approach is used. In order to reduce errors

with respect to implementation, the regression analysis (LSQR) approach with post-P&R

area and power is preferred.

Manual Approach to Estimate NoC Power and Area

This approach uses ORION NEW models along with the technology library file of the

process in which the router is to be fabricated. The key ingredients of this approach are

• microarchitecture parameters {P, V, B and F} and implementation parameters (clock fre-

quency and technology node);

• cell areas, leakage, internal energy and load capacitance; and

• toggle rate.

ORION NEW simplifies the design of a NoC, using only a few standard cells. The instance count

for each component block for a given set of router microarchitecture parameters is calculated

from Table 3.1. Cell area is obtained from technology files. The area calculation, along with

TSMC standard-cell names in parentheses, is shown in Table 3.3.

Table 3.3: Area models using instance count.

Component Logic (TSMC Cell Name) Area

XBAR MUX2 (MUX2D0) AreaMUX ×XBARinsts

SWVC
6 NOR2, 2 INV, 1 DFF

(
6AreaNOR+2AreaINV +AreaDFF

9

)
(NR2D1, INVD1, DFQD1) ×SWVCinsts

InBUF
1 AOI, 1 DFF

(
AreaAOI+AreaDFF

2

)
+ OutBUF (AOI22D1, DFQD1) ×(In+Out)BUFinsts

CLKCTRL
1 INV, 1 AOI

(
AreaAOI+AreaINV

2

)
(INVD1, AOI22D1) ×(CLKCT RL)insts

Power has three components: leakage, internal and switching. Leakage power is static

power when the cell is not transitioning between logic states. It is dependent on current state



34

of the input pins of the cell as well as process corner, voltage, and temperature. Internal and

switching power together constitute dynamic power, which varies with operating voltage, capac-

itive load and frequency of operation. Internal power is the power dissipated inside a cell and

consists of short-circuit power and switching power of internal nodes; switching power is the

power consumed when a load capacitance on a net is charged and discharged.

In ORION NEW, toggle rate (TR) is equal to the average toggle rate of all input signals

in the crossbar, switch and VC arbiter, and control logic in input and output buffers. We assume

that buffer cells toggle at 25% of the input toggle rate, since multiple VCs do not require buffer

contents to change in every cycle.

Leakage power calculation. For leakage power, the model uses the weighted average of

the state-dependent leakage of the cells. Equations (3.1)-(3.4) are used to calculate the leakage

power of each component block.

Pleak XBAR = MUXleak×XBARinsts (3.1)

Pleak SWVC =
(

6NORleak +2INVleak +DFFleak

9

)
×SWVCinsts (3.2)

Pleak BUF =
(

AOIleak +DFFleak

2

)
× (In+Out)BUFinsts (3.3)

Pleak CLKCT RL =
(

AOIleak + INVleak

2

)
× (CLKCT RL)insts (3.4)

Internal power calculation. For internal power, table lookups in technology library files

return the internal energy of a standard cell given its load capacitance3 and input slew value

of ≈ 5×FO4 delay.4 Internal energy is the minimum of the rise and fall energies. Equations

(3.5)-(3.8) are used to calculate internal power of each component block.

Pint XBAR = MUXint ×T R×XBARinsts (3.5)

3Load capacitance of a cell depends on its fanout and the cell(s) it drives. We use a fanout of one. The cells driven
depend on the component of the router as shown in Table 3.3. For example, one DFF drives another DFF and one
AOI in the input and output buffers. So, the load capacitance of the DFF is the sum of input pin capacitances of one
DFF and one AOI.

4The FO4 delay is the delay of a minimum-sized INV driving four identical INV instances and is a standard proxy
for switching speed in a given process technology. The resulting slew time values are 80–100ps for 45nm and 65nm
technologies.
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Pint SWVC = (6NORint +2INVint +DFFint) ×T R×SWVCinsts (3.6)

Pint BUF = (AOIint +0.25DFFint)×T R × (In+Out)BUFinsts (3.7)

Pint CLKCT RL = (AOIint + INVint)×T R× (CLKCT RL)insts (3.8)

Switching power calculation. For switching power, the load capacitance is calculated as the

sum of the input capacitances of pins that are driven by a net and the wire capacitance of the

net. The wire capacitance is approximately calculated as a constant factor times the total pin

capacitances. This constant factor is set to 1.4 in 65nm and is assumed to decrease by 14%

with each successive process node shrink. Equations (3.9)-(3.12) are used to calculate switching

power of each component block.

Psw XBAR = XBARload×T R×XBARinsts (3.9)

Psw SWVC = SWVCload ×T R×SWVCinsts (3.10)

Psw BUF = (In+Out)BUFload×T R × (In+Out)BUFinsts (3.11)

Psw CLKCT RL = (CLKCT RL)load×T R× (CLKCT RL)insts (3.12)

The following steps below describe how total area and power are estimated using the

ORION NEW models and equations above.

1. Choose microarchitecture parameters (P, V, B, F), clock frequency, and average toggle rate

at inputs.

2. Use models in Table 3.1 to calculate the instance count of each component block of the

router.

3. Use models in Table 3.3 to calculate the area of each router component block. Total area

is calculated as the sum of areas of all blocks.
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4. Obtain state-dependent leakage of cells from technology library files. Use Equations

(3.1)–(3.4) to calculate leakage power of each component block. Total router leakage

power is calculated as the sum of leakage power of all component blocks.

5. Obtain internal energy of cells from technology library files. Use Equations (3.5)–(3.8) to

calculate internal power of each component block. Total internal power is calculated as

the sum of internal power of all component blocks.

6. Obtain input pin capacitances of cells from technology library files. Use Equations (3.9)–

(3.12) to calculate switching power of each component block. Total switching power is

calculated as the sum of switching power of all component blocks.

7. The total power dissipated by the router is calculated as the sum of total leakage power,

total internal power and total switching power.

Regression Analysis Approach to Estimate NoC Power and Area

As another approach to estimation of router area and power, we use parametric re-

gression to fit parameters for cell area, leakage, internal energy, and load capacitance into

ORION NEW models. This approach requires instance counts, area, and total leakage, inter-

nal and switching power of each component block of the router from post-P&R results. Options

are set in synthesis tools to preserve module hierarchy and names. Constrained least-squares

regression (LSQR) is used to enforce non-negativity of coefficients (cell area, leakage, internal

energy, load capacitance). We use the MATLAB [311] function lsqnonneg for this purpose, and

tool options as given in Table 3.2.

LSQR is applied to fit a model of post-P&R instance counts for each router component

block. Our training set has 64 data points. Parametric LSQR is set up as

a1 · Instsmod <component> +a0 = Inststool <component> (3.13)

where InstsR
mod <component> is the refined instance count of each component block after LSQR.

The refined instance count is used to fit models of post-P&R area and power as

b1 · InstsR
mod <component> +b0 = Areatool <component>. (3.14)

In Equation (3.14), b1 is the fitting coefficient for cell area, and the coefficient b0 accounts for

the routing overhead.
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We model leakage, internal and switching power as

{c5, d5, e5} · InstsR
mod XBAR + {c4, d4, e4} · InstsR

mod SWVC +

{c3, d3, e3} · InstsR
mod InBUF + {c2, d2, e2} · InstsR

mod OutBUF +

{c1, d1, e1} · Instsmod CLKCT RL = {Pleak, Pint , Psw}tool

(3.15)

where coefficients {c5, · · ·,c1} are used to fit cell leakage power, and similarly {d5, · · ·,d1} and

{e5, · · ·,e1} are respectively used to fit internal energy and load capacitance.

It is possible to skip the instance count refinement step (Equation (3.14)) and directly

perform LSQR for area and leakage, internal, and switching power using the above equations.

We observe that average error can change by 3% in either direction by omitting the instance

count refinement step. Note that it is necessary to perform per-component LSQR: if LSQR is

performed for the entire router’s area or power, large errors result because multiple components

have the same parametric combination of (P, V, B, F). Failing to separate these contributors to

area or power can result in large errors, e.g., in 65nm we have experimentally observed worst-

case errors of 296% for power and 557% for area. Thus, it is important to preserve module

hierarchy during synthesis in the model development flow.5

Extension to Flit-Level Power Modeling

The dynamic power models used in ORION2.0 and ORION NEW do not consider bit

encodings in a flit, which can lead to significant errors in dynamic power estimation. As an

example, consider two encodings with two consecutive 8-bit flits, where every flit has exactly

four bits as 1. In the first encoding, the two consecutive flits are 8b’11110000 and 8b’11110000.

In the second encoding, the two consecutive flits are 8b’11110000 and 8b’00001111. In the first

encoding, there are no toggles per consecutive flits, whereas in the second encoding there are

eight toggles per consecutive flits. Clearly, the second encoding will lead to higher dynamic

power than the first one. To model this effect, we use the flow shown in Figure 3.5. Before

using a testbench, the netlists must pass an equivalence check using tools such as Synopsys For-

mality [338]. We inject different bit encodings in the input during simulation over 10000 cycles

using GARNET [3], and the resultant value change dump (VCD) is validated using a wave-

5Use of hierarchical synthesis in general leads to lower instance counts, standard-cell area, and total power as
compared with flat synthesis results. This comes at the cost of frequency (timing slack), since flat optimization
across module boundaries can sometimes achieve better timing results. For our selection of microarchitecture and
implementation parameters, hierarchical synthesis on average has 35% fewer instances, 48.8% less standard-cell area
and 49.4% less total power compared with flat synthesis. The runtimes for hierarchical and flat synthesis are within
5% of each other.
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form analyzer such as Synopsys DVE [346]. A satisfactory VCD is used as input to Synopsys

PrimeTime-PX [342] to obtain power values. Regression analysis is performed using the tool-

reported power values with the ORION NEW estimates to obtain an enhanced ORION NEW

model for flit-level power estimation. These models may be invoked by NoC full-system simu-

lators such as GARNET to obtain very accurate estimates.

Netlist 

Equivalence Check 
(Formality) 

Testbench 
(w/ bit transition 

vectors) 

Gate-Level 
Simulation 

(VCS/NCVERILOG) 

SP&R 
(DC/RC, SOCE) 

Waveform Analysis 
(DVE) 

Power Analysis 
(PT-PX) 

Power Report 
Regression Analysis 

(LSQR) 

ORION_NEW 
model 

ORION_NEW + 
Flit-level power model GARNET gem5 

Power Estimates 

Router RTL 

VCD Flit-level 
power 

estimates 

Figure 3.5: Methodology to enhance ORION NEW dynamic power models with flit-level
power estimation.

3.1.2 ORION3.0 Non-Parametric Modeling Methodology

Non-parametric regression techniques provide another approach to estimate NoC power

and area [116]. Such techniques can considerably reduce modeling efforts because they require

only the microarchitectural, implementation, and operational parameters as input variables. The

models determine the interactions between these input variables and how they affect the output

(or response). This alleviates the effort needed to model a NoC, as details of architecture-level

implementations are avoided. At the same time, non-parametric regression approaches are scal-

able across multiple router RTLs.

We now give a brief background on four widely used non-parametric regression or meta-

modeling techniques. We have reviewed previous works in Section 2.1.1 that apply these tech-

niques for modeling at the architecture-level. Metamodeling techniques can be broadly classi-

fied [85] into linear regression-based methods, interpolation-based methods, neural network and

kernel-based smoothing methods, and additive tree-based methods. Popular techniques for esti-

mation purposes are Artificial Neural Networks (ANN), k-Nearest Neighbors (kNN), b-Splines,
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Radial Basis Functions (RBF), Kriging (KG), Polynomial Regression (PR), Support Vector Ma-

chine Regression (SVM) and Multivariate Adaptive Regression Splines (MARS) [100] [266].

Recent [267] as well as previous studies [100] show that RBF, KG, and MARS models have

higher estimation accuracy than others. Jin et al. [100] show that RBF excels in accuracy and ro-

bustness for sparse as well as dense training datasets whereas MARS and KG have high accuracy

for dense training datasets.6

We use the metamodeling techniques to estimate NoC area and power by developing

models using training data. We first perform synthesis using Synopsys Design Compiler vC-

2009.06-SP2 [337], followed by place and route using Cadence SOC Encounter v10.12 [287],

of the Netmaker [314] router RTL. Next, we generate area and power reports for these designs

to use as training and test data points. Figure 3.6 shows our synthesis and P&R flow; Table 3.2

lists the architecture, implementation, and operational parameters; and Table 3.4 lists the tool

options used in our experiments. We generate 256 data points for our experiments. We use two

sampling methodologies to generate the training sets – a modified Latin Hypercube Sampling

(LHS) [100], and a restricted sampling methodology which samples only values from the lower

ranges of the parameters (B, V, P, F). Our LHS methodology (for 64 data points of four variables)

is as follows.

1. Generate 64 normalized LHS samples over four parameters using the MATLAB vR2012b

command lhsdesign(64, 4).

2. Maximize the minimum distance between samples by using the MATLAB vR2012b com-

mand bsxfun [311].

3. Map the samples generated in the previous step to our ranges of B, V, P and F parameter

values by selecting the value for each parameter which is closest to the value occurring in

the sample.

4. Adjust the frequency of the values to make the samples uniformly distributed across our

ranges of values for B, V, P and F so that each of them occurs the same number of times

in the training set.

The restricted sampling methodology does not include higher values of the microarchi-

tectural parameters in the training set. More precisely, the resulting training sets omit all values

of {B = 7}, or of {P = 9}, or of {V = 7}, or of {F = 64}.
6We define a training set as sparse if it contains at most 20% of the total data points. We define a training set as

dense if it contains at least 30% of the total data points.
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Unlike previous approaches using MARS [116], we model leakage, internal, and switch-

ing power separately. This results in a more accurate fit of the training data because each of these

components of power does not change in the same fashion with microarchitectural, implementa-

tion, and operational parameters. Figure 3.7 shows the flow of our methodology.

 

Figure 3.6: Implementation flow to generate training and test data points.

 

Figure 3.7: Area and power modeling and prediction flow.

We assess the goodness of fit of RBF, KG, MARS and SVM models using three metrics.

• Magnitude of Mean Error (MME): This is the mean of the magnitude of errors at each

predicted output using the test data points.

• Root Mean Square Error (RMSE): This is the square root of the mean of the sum of

squared error for the predicted outputs using the test data points.

• Maximum Error (MAXE): This is the maximum of the magnitude of errors at each pre-

dicted output using the test data points. We include this metric to give a sense of the

worst-case error, which is of practical concern for hardware designers and computer ar-

chitects.
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Table 3.4: Metamodeling Methodology: Tools and Parameters.

Stage Tool Values

LHS MATLAB {lhsdesign, bsxfun}

KG DACE
Reg model = {Order 1 and 2 Poly}

Corr model = {EXP, GAUSS}, θ = {40}

RBF RBF2

Type = {Ridge Regression}

Func. Type = {GAUSS, MULTIQUADRIC}

2≤ r ≤ 0.5

MARS ARESLAB

Max Basis Funcs = {50}

Max Interactions = {3}

Spline Type = {linear, cubic}

SVM
LIBSVM Type = {nu-SVR}

v3.12 Kernel = {RBF}

3.1.3 Experimental Setup and Results

We set up experiments as described in Table 3.2. We use parameters and tools for our

experiments as listed in Table 3.2. To account for process variation, we perform multi-mode

multi-corner place-and-route by defining two scenarios for setup and hold analyses. The nominal

scenario uses {ss, 0.85V, 125C}7 and {ff, 1.30V, 125C} for setup and hold corners, respectively.

The overdrive scenario uses {ss, 1.10V, 125C} and {ff, 1.30V, 125C} for setup and hold corners,

respectively. We discuss the results in two parts: (i) ORION2.0 versus ORION NEW estimation

of area and power, and (ii) impact of our regression analysis approach versus the approach used

in prior work of [116]. Comparisons are made with respect to post-P&R instance counts, power

and area outcomes, and both router RTL generators, Netmaker [314] and Stanford NoC [335].

ORION2.0 versus ORION NEW Comparisons

Since the instance counts per component are at the core of the ORION NEW model, we

compare ORION2.0 estimates of instance (or gate) counts, as well as the ORION NEW model

estimates, with implementation (post-P&R) for each component block. Figures 3.8(a), 3.9(a),

7We represent process, voltage, temperature (PVT) corners as 3-tuples – (process, voltage, temperature). Our
corners consist of two process conditions {ss, ff}, four voltages {0.85V, 1.05V, 1.10V, 1.30V} and one temperature
{125C}.
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and 3.10(a) show the large errors in ORION2.0 for crossbar, output buffer and input buffer

respectively, and Figures 3.8(b), 3.9(b), and 3.10(b) show the significant reduction in estimation

errors for these components with ORION NEW models. ORION2.0 and ORION NEW are

plotted in different graphs because of the large errors in instance counts for ORION2.0.

 

Figure 3.8: (a) XBAR with #ports: ORION2.0 vs. implementation. (b) XBAR with #ports:
ORION NEW vs. implementation.

ORION2.0 modeling of instance counts for a component does not consider implemen-

tation parameters such as clock frequency. As a result, the instance counts do not scale when

frequency is changed, even though at higher frequencies buffers are typically inserted to meet

tight setup time constraints. Our ORION NEW models apply a frequency derating factor to

the instance models for component blocks, and hence achieve higher accuracy. Figures 3.11(a)

and (b) respectively show results for output and input buffer component blocks; the incorrect

estimates by ORION2.0 contrast sharply with the estimates from ORION NEW, which are very

close to actual implementation.

Table 3.5 summarizes ORION2.0 and ORION NEW estimation errors with respect to

Netmaker and Stanford NoC post-P&R area. Higher error values are highlighted in red. Fig-

ures 3.12(a) and (b) plot the estimation errors for power and area respectively in 45nm and 65nm
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Figure 3.9: (a) Output buffer with #VCs: ORION2.0 vs. implementation. (b) Output buffer
with #VCs: ORION NEW vs. implementation.

Table 3.5: Instance counts and area error comparison of ORION2.0 vs. ORION NEW.

Component
Avg Error: Max Error: Avg Error: Max Error:

#Instances #Instances Total Area Total Area

2.0 NEW 2.0 NEW 2.0 NEW 2.0 NEW

XBAR 86.10% 2.10% 93.10% 3.00% 86.20% 0.90% 93.20% 1.80%

SWVC 12.30% 12.30% 35.40% 35.40% 15.90% 20.80% 39.10% 66.80%

InBUF 270.70% 8.00% 417.30% 19.30% 134.40% 6.50% 199.40% 20.20%

OutBUF 69.00% 13.60% 80.60% 27.80% 74.70% 24.80% 86.40% 60.10%

Overall 109.50% 8.80% 156.60% 21.40% 77.80% 13.30% 104.50% 37.20%

technology nodes after applying the regression fitting approach described in Section 3.1.1. We

see that ORION NEW estimates are very close to actual implementation (average error of 9.3%

in estimating Netmaker power in 45nm) and are robust across multiple microarchitecture, imple-

mentation parameters, and router RTLs.
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Figure 3.10: (a) Input buffer with flit-width: ORION2.0 vs. implementation. (b) Input buffer
with flit-width: ORION NEW vs. implementation.

   

Figure 3.11: (a) Output buffer with clock frequency: ORION2.0 vs. ORION NEW. (b) Input
buffer with clock frequency: ORION2.0 vs. ORION NEW.

Next, we analyze the impact of flit-level power modeling as described in Section 3.1.1.

To capture the effect of running simulations with input vectors having different bit encodings

(shown in Figure 3.5), we use options in Synopsys PrimeTime-PX [342] to vary toggle rates
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Figure 3.12: ORION NEW with regression fit vs. ORION2.0: (a) area estimation error and (b)
power estimation error.
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Figure 3.13: Comparison of dynamic power estimation error using (1) ORION2.0, (2)
ORION NEW, and (3) ORION NEW with flit-level power models.

and bit encodings in the input. We run simulations using four different toggle rates (0.2, 0.4,

0.6, and 0.8) and four different encodings of 1’s in 32-bit input flits. We observe that leakage

power is not dependent on bit encodings (changes by less than 2%). However, dynamic power

varies by up to 30% (on average) depending on bit encodings in each flit. ORION2.0 models are

incomplete because they consider only the flit arrival rates in the dynamic power estimation mod-

els. Figure 3.13 compares dynamic power estimation error of ORION2.0, ORION NEW, and

ORION NEW with flit-level power models. We observe that by using flit-level power models,

average dynamic power estimation error can be within 12%.

Impact of Our Regression Analysis Approach

In Section 3.1.1, we describe our parametric regression analysis approach using the

ORION NEW models. As seen from the above results, the ORION NEW models are accurate
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across microarchitecture, implementation, and operational parameters. This demonstrates that

regression analysis can minimize errors and generate accurate fitting coefficients. The previous

parametric regression approach [116] reports large errors because underlying ORION2.0 models

do not model control path elements. The non-parametric regression approach of [116] using

MARS achieves reduced average power modeling errors of 5.82% in 65nm and 5.65% in 90nm,

and reduced average area errors of 5.41% in 65nm and 5.01% in 90nm. In our work, we use

parametric regression analysis but with accurate ORION NEW models. Our average errors are

slightly higher compared to [116]; however, our maximum error for power (resp. area) is reduced

from 59.41% to 24.42% (resp. from 61.84% to 30.30%) in 65nm. In 90nm the reduction of

maximum power (resp. area) error is from 60.15% to 28.04% (resp. from 60.07% to 19.36%).

The reduction of maximum estimation error is significant because NoC designers and architects

care about worst-case accuracy.

Results of Metamodeling Techniques

We set up experiments for each of the metamodeling techniques using the parameters,

tools, and methodology described in Table 3.4. We generate 256 data points of post-P&R power

and area values using 45nm and 65nm technology libraries. The input variables to all the models

are P, V, B and F and the responses are post-P&R power and area. We use LHS to generate

training sets of three sizes.

• 50 data points – sparse and restricted,

• 64 data points – sparse, and

• 102 data points – dense.

We use the sparse and restricted training set to test the accuracy of models in estimating area

and power for input parameters which are beyond the range of values used for training. In each

experiment, model generation takes around 3s and response estimation takes around 1.88s. We

repeat all experiments 10 times for each training set size, and report the averages of all the error

values across the 10 trials.

We present the results of metamodeling techniques as (i) comparisons among the tech-

niques used, (ii) comparisons against MARS with linear splines [116], and (iii) comparisons

against parametric regression techniques [119].
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(i) Comparisons with metamodeling techniques used. Figures 3.14(a) and (b) show the per-

centage errors observed in estimating standard-cell area in 65nm and 45nm. With a dense train-

ing set, RBF, KG and MARS have similar maximum estimation errors of around 20%. SVM, on

the other hand, has maximum estimation errors of 37.8% in 45nm and 25% in 65nm. The aver-

age estimation errors of all these models are less than 10.7%, with SVM having higher average

estimation error than RBF, KG and MARS. With a sparse training set (64 data points), RBF and

KG have higher accuracies than MARS and SVM in 45nm. RBF always performs better than

KG, MARS, and SVM with a sparse and restricted training set (50 data points). Figure 3.14(b)

shows that with a sparse and restricted training set the maximum estimation error is less than

12.8% for RBF, whereas the maximum estimation errors are more than 32% for KG, MARS,

and SVM. The accuracies of these models in estimating power are similar to their accuracies in

estimating area, as shown in Figures 3.15(a) and (b). With a sparse and restricted training set,

RBF can be three times more accurate than KG, SVM and MARS. RBF and KG have similar

errors for sparse as well as dense training sets. Across all training set sizes used in our exper-

iments, we observe that area and power estimation errors are the smallest for RBF, and are the

highest for SVM.

(ii) Comparison of MARS linear and cubic splines. Prior work in [116] uses MARS with

linear splines to model NoC area and power, and reports maximum estimation errors of around

60% in 65nm. We use MARS with cubic splines in our experiments. Figures 3.16(a) and (b)

compare area and power in 65nm with our metamodeling techniques. In general, our maximum

estimation errors are smaller than those of [116] across all the techniques. In particular, our

estimation errors (maximum, and average) for MARS are smaller than in [116]; this is because

cubic splines are better than linear splines in minimizing estimation errors. Figures 3.17(a) and

(b) show that cubic splines perform better than linear splines across different technologies and

training set sizes. With a sparse training set in 65nm, the maximum area (resp. power) estimation

error is 24.8% (resp. 19.7%) with cubic splines, whereas it is 33.6% (resp. 28.3%) with linear

splines.

(iii) Comparisons with parametric regression. We use a sparse training set of 64 data points

to estimate area and power using the parametric LSQR technique used to fit parametric models

of router component blocks in [119]. Figures 3.18(a) and (b) compare the maximum and average

estimation errors of the metamodeling techniques with estimation errors of parametric models
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Figure 3.14: Area estimation accuracy of metamodeling techniques in (a) 65nm and (b) 45nm.

fitted using LSQR (NEW in the figures). We observe that the maximum area estimation error

for NEW in 45nm is 22.8%, whereas the maximum area estimation error for RBF is 15.3%.

The average area estimation errors for NEW are similar to the average area estimation errors

for SVM and KG in both 65nm and 45nm, but can be up to 2.6% higher than the average area

estimation errors for RBF in 45nm. In 45nm, the maximum power estimation error for NEW is

smaller than the maximum power estimation errors of MARS and SVM. In 65nm, the maximum

power estimation error for NEW is 2.5% higher than the maximum power estimation errors for

RBF and KG. In general, we observe that the estimation errors for NEW and RBF are smaller

than those for SVM. The average estimation error for NEW is less than 8%, and its maximum

estimation error is less than 30%, in both 65nm and 45nm. RBF is more accurate than all other

techniques in estimating NoC area and power in both 45nm and 65nm.

Figures 3.19(a) and (b) compare the maximum and average flit-level power estimation

errors of metamodeling techniques with ORION NEW flit-level power models fitted with post-
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Figure 3.15: Power estimation accuracy of metamodeling techniques in (a) 65nm and (b) 45nm.

P&R dynamic power using parametric regression (NEW in the figures). We use a sparse and

restricted training set of 50 data points for all the modeling techniques in this experiment. We

observe that NEW and RBF are more accurate than the other metamodeling techniques. NEW is

accurate because its fine-grained modeling of the component blocks in a router enables accurate

estimation of dynamic power dissipation in each component block for different bit encodings in

flits. KG, MARS and SVM cannot estimate flit-wise power dissipation of each component block

because they fit the training data points by treating the router as a black box. Therefore, estima-

tion errors are large when fitting data points with different flit-level bit encodings. We observe

that both maximum and average estimation errors for SVM, KG, and MARS are significantly

higher (>60%) than those for NEW (21.6%) and RBF (20.1%). RBF and NEW also achieve

smaller average estimation errors in both 65nm and 45nm as compared to the average estimation

errors of KG, MARS and SVM.
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Figure 3.16: Comparison with estimation errors of “Previous” [116] in 65nm: (a) area and (b)
power.

3.1.4 Conclusions

Accurate modeling for NoC area and power estimation is critical to successful early

design-space exploration in the era of many-core computing. ORION2.0, while very popular,

has large errors versus actual implementation. This is because there is often a mismatch between

the actual router RTL and the assumed templates. Also, typical design flows involve sophisti-

cated optimizations that are difficult to characterize. In this work, we propose comprehensive

parametric and non-parametric modeling techniques to accurately estimate NoC power and area.

Our parametric models, ORION NEW, explicitly account for control and data path resources.

We propose a new methodology that we used to develop the ORION NEW parametric models

from post-synthesis netlists. We further refine these parametric models by performing least-

squares regression analysis (LSQR) on post-P&R data. We demonstrate that accurate parametric
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Figure 3.17: MARS linear vs. cubic splines: (a) power and (b) area.

models and LSQR can reduce the worst-case estimation errors by more than 50% as compared

to previous non-parametric regression models for NoC routers [116]. We are also the first to pro-

pose detailed flit-level power estimation models that can seamlessly integrate with full-system

NoC simulators such as GARNET.

For non-parametric regression (or metamodeling), we use four popular techniques –

RBF, KG, MARS, and SVM. Our results show that these techniques can be low-overhead and

highly accurate in estimating NoC power and area. We describe two methodologies to gen-

erate training sets to test the accuracy and robustness of these techniques. Among these four

techniques, RBF proved to be the most accurate and robust across technologies and training

set sizes. However, these techniques are not accurate for detailed flit-level power modeling be-

cause they cannot model flit-level power dissipation in each component block of the router. The

ORION NEW model fitted with post-P&R dynamic power using parametric regression provides

more accurate estimates of flit-level dynamic power compared to KG, MARS and SVM.
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Figure 3.18: Comparison of estimation errors of non-parametric vs. parametric regression
techniques: (a) area and (b) power.

We validate robustness of our modeling methodologies across multiple router RTLs,

and across microarchitecture, implementation, and operational parameters. We conclude that

our modeling methodologies are highly accurate with average errors≤9.3%. Implementations of

our modeling methodologies are being made available for download in an ORION3.0 distribution

[315]. To date, there have been over 760 downloads of the ORION3.0 distribution.
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Figure 3.19: Comparison of estimation errors in flit-level power modeling in 65nm and 45nm:
(a) maximum and (b) average.
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3.2 Learning-Based Prediction of Embedded Memory Timing Fail-

ures during Initial Floorplan Design

Timing closure in modern SoCs is complex and time-consuming, due to multiple itera-

tions between various analyses and design fixes. Early, accurate prediction of post-layout slack

can potentially deliver dramatic design turnaround time and design cost reductions. However,

to the best of our knowledge, no existing tool can predict slack at an early design stage (in par-

ticular, the post-synthesis, physical floorplanning stage).8 Predicting post-layout slack without

physical synthesis or trial placement information is challenging because wire delay must be es-

timated without spatial embedding information. The prediction problem becomes even more

difficult because of (i) embedded memories, and (ii) “multiphysics” analysis.

Embedded memories (SRAMs) complicate SoC physical implementation on several

fronts [81] [65]. They occupy significant die area [117] and are typically placed in arrays, which

not only makes floorplanning difficult, but also creates placement and routing blockages. Timing

analysis and closure are costly, e.g., with respect to cross-corners in low-power, split-rail de-

signs. Hence, despite long tool runs and complex design subflows, SoCs with multiple SRAMs

can have unpredictable timing at the post-P&R stage, not to mention in silicon.

Verification of timing correctness in advanced nodes increasingly demands analyses that

close the loop across crosstalk, IR and temperature [185] [276], i.e., more than one “physics”.

We use multiphysics analysis to mean performing multiple analyses such as IR, thermal, relia-

bility, crosstalk, etc., and then performing static timing analysis (STA) using reports from these

analyses. Timing assessments can vary widely with the specific analyses performed, e.g., turning

SI mode on can worsen slack by 100ps due to crosstalk [128]. Figure 3.20(a) shows slack values

of five memories in a small block9, according to four different analyses that combine IR analysis

and STA: (i) STA with no IR analysis; (ii) STA with static IR analysis; (iii) STA with dynamic

voltage drop (DVD) IR analysis; and (iv) four iterations of STA with DVD IR analysis, i.e., STA

is performed with back-annotated instance-specific DVD IR drop, going around this loop four

times. Figure 3.20(b) shows that across different implementations of the same netlist (i.e., when

clock period and maximum transition time constraints are varied), the slack difference between

(i) STA with no IR, and (ii) two iterations of STA with DVD IR, can vary by ∼15ps depending

8A long history of RTL signoff and RTL planning tools is best exemplified today by Synopsys SpyGlass [345],
which performs early analysis of designs but uses its own simplified placement, clock tree synthesis and routing
engines that do not necessarily match production back-end tool outcomes.

9We place only one power/ground pad pair at the south edge for this testcase (OpenCore THEIA) to emulate a
severe voltage-drop situation. The signoff clock period for this example is 3.5ns.
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on the implementations. By closing multiphysics analysis loops, design teams achieve more ac-

curate timing results, but the results of such analyses are non-trivial to predict in early stages of

implementation.

We show two examples to illustrate the challenges of predicting post-layout slack. (1)

Sensitivity of slack to spacing between memories. Figure 3.21(a) shows a floorplan with five

embedded SRAMs, blockages, and a rectilinear standard-cell placement region. Figure 3.21(b)

shows variation of worst timing slack (at any timing endpoint in a given SRAM) across these five

SRAMs when the spacing (i.e., channel width) between memories is varied in steps of 10µm.

Due to congestion, buffer placement, etc., the difference in slack can be larger than 300ps at a

spacing of 10µm, and slacks vary in a highly non-obvious and/or noisy manner as the spacing

is changed. (2) Sensitivity of IR drop map to power pad locations. Figures 3.22(a)–(c) show

three IR drop maps when the locations of power pads are varied. When power pads are placed

uniformly on all edges of the die as in Figure 3.22(a), the IR map has very few hotspots. When

the power pads are placed only on the left and right edges of the die as in Figure 3.22(b), or

on the bottom and top edges as in Figure 3.22(c), the IR drop map has multiple hotspots. The

IR drop map, and timing slacks, have similarly challenging sensitivities to SRAM placement

relative to power distribution network stripes (PDN stripes), the availability of buffer placement

locations within or near memory channels, etc.

In this work, we apply machine learning to achieve accurate predictive modeling of

slacks at embedded SRAM timing endpoints. Given only a post-synthesis netlist, constraints and

a floorplan, we predict (i) post-P&R slack, and (ii) slack with multiphysics analysis, of SRAMs.

As reviewed in Section 2.1.2, previous works do not address slack prediction of SRAMs at the

post-routing stage, nor at the multiphysics signoff stage.

Figure 3.23 shows the stages of physical implementation that we must comprehend with

our modeling, as well as the stages from which we can extract available modeling parameters.

We estimate the combined effects of placement, clock network synthesis, routing, extraction and

timing using our modeling function f as shown in the figure. Our work envisages two basic use

scenarios. (1) For products in the early planning stage, our predicted slacks enable floorplans

and constraints – as well as physical implementation methodology – to be adjusted to prevent

post-layout timing failures on SRAMs. (2) For products in the production stage, our model

enables designers to filter out floorplans and constraints that have high risk of post-layout timing

failures under voltage and frequency scaling, or process variation. Our model can prevent costly

iterations of floorplan and constraint adjustments.



56

SRAM #1

S
R

A
M

 S
la

c
k
 (

p
s
)

SRAM #4

13ps

10ps

(a)

Implementation index

S
R

A
M

 s
la

c
k
 (

p
s
)

(b)

Figure 3.20: Multiphysics analysis. (a) SRAM slack with (i) no IR, (ii) static IR, (iii) dynamic
voltage drop (DVD) IR, and (iv) four iterations of DVD IR and STA. (b) Difference in slack

between (i) no IR and (ii) STA + DVD IR with two loops. The indices in the x-axis of (b) refer
to different implementations when clock period and maximum transition time constraints are

varied.

In this work, we also advance application of machine learning for predictive IC design

with a new implementation of the Boosting technique. Previous works such as Kotisantis et al.

[145] create an ensemble of regressors by using Bagging [85], Boosting with SVM without a

kernel, and Random Forests [85]. The authors of [145] then combine outcomes of each regres-

sor using weights that are proportional to the inverse of the error of the outcomes from each

regressor. In their method the weights are calculated based on error in the test set, rather than

on error in the training set. The work of Ogutu et al. [186] compares Random Forests, Boosting

with a linear regressor, and SVM to predict genomic breeding values. The authors of [186] con-

clude that SVM is more accurate than the other two techniques. Our implementation of Boosting

builds on [72] [145] by using SVM with a nonlinear kernel.
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Figure 3.21: Sensitivity of slack to spacing between SRAMs: (a) floorplan and (b) slack
variation.
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Figure 3.22: Sensitivity of IR drop map to power pad placement: (a) on all four edges, (b) left
and right edges only, and (c) bottom and top edges of the layout.
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Figure 3.23: Traditional IC design flow from [118], with dotted horizontal lines bounding the
scope of our model. We comprehend multiple stages of the physical design flow in our model,

which is represented by the function f in the figure.
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The main contributions of this work are summarized as follows.

• To the best of our knowledge, we are the first to propose a modeling methodology that

can effectively predict post-P&R slack values at endpoints on embedded SRAMs, using

information available at the floorplanning stage. Our model applies machine learning

techniques to predict post-P&R slack within a worst-case error of 224ps and average error

of 4.0ps across all designs and floorplans tested in a 28nm foundry FDSOI technology.

• We confirm the robustness of our prediction methodology by predicting slack values after

multiphysics analysis – a very difficult prediction problem – to within a worst-case error of

253ps and average error of 9.0ps. A model that uses information from the post-synthesis

netlist results in multiphysics slack worst-case prediction error of 358ps.10

• We automate using commercial EDA tools the extraction of relevant model parameters,

and prediction of timing failure risks, from given netlist, constraints and floorplan context.

By predicting multiphysics slack for every embedded memory endpoint, our model en-

ables early filtering and improvement of floorplans that would otherwise eventually lead

to timing failures at the post-layout and signoff stages.

• We advance application of machine learning for predictive IC design with a new imple-

mentation of the Boosting technique that uses Support Vector Machines (SVMs) as weak

learners. We also propose a weighting strategy for negative-slack outcomes during our

model construction, to accurately focus our model on avoidance of critical timing failures.

SVM in Boosting reduces worst-case prediction errors by 30ps relative to use of SVM

only.

3.2.1 Methodology

We now describe the key elements of our work: multiphysics analysis flow, model pa-

rameter selection, and machine learning-based modeling methodology. We also note how our

analyses and modeling flows would be reproduced in a new environment.

10We use parameters N1 through N6 from Table 3.6 and use three different modeling techniques – LASSO, linear
SVM and SVM with a Radial Basis Function (RBF) as kernel – to predict multiphysics slack. The worst-case (resp.
average) prediction errors are 565ps (resp. 87ps) for LASSO, 412ps (resp. 55ps) for linear SVM method, and 358ps
(resp. 42ps) for SVM with RBF kernel. The SVM model with RBF kernel has smaller prediction errors as compared
to those of linear SVM and LASSO models. Therefore, we compare our results with those from the SVM model with
RBF kernel.
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Multiphysics STA

Figure 3.24 shows our multiphysics analysis flow. Due to the very large number of

testcase implementations, we focus on an IR-STA multiphysics analysis loop.11 We perform

STA using Synopsys PrimeTime-SI (PTSI) [342]. The inputs to the tool are Liberty timing

libraries characterized at multiple voltage corners, Verilog netlist of the design, SPEF parasitics

[333] with coupling capacitances, and Synopsys Design Constraints (SDC) [21] with timing

constraints as well as back-annotated rail voltages of all instances based on the IR drop map.

Note that STA is always performed with SI enabled in our flows.

Timing 
Analysis (PTSI)

IR Analysis 
(RedHawk)

.sdc, .db, .v, 
.spef

Timing Windows 
per Pin (.timing)

.lib, .def, 
.spef, .tech
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Temp, Reliability, 
Other Physics

Not 
Explored in 
This Work

Figure 3.24: Our multiphysics analysis flow.

IR (voltage drop) analysis is the first dimension of multiphysics analysis that must be

joined with timing analysis. To assess the vulnerability of various floorplans to timing failures

from IR drops, we parameterize the stripe width and pitch of on-chip PDNs, the width of power

rings, the metal layers that are used for the PDN stripes, and the placement of memories relative

to the nearest power pad. To supply power to memories, we generate secondary meshes on a

metal layer that is different from the ones used for PDN stripes. For standard cells, we use M2

metal layers to connect PDN stripes. We connect power meshes and stripes in the lower metal

layers to the upper metal layers (M9 and M10) through via stacks, as in normal SoC method-

ology. We perform vectorless dynamic voltage drop (DVD) analysis using ANSYS RedHawk

[325]; inputs consist of the post-layout design database, technology Layout Exchange Format

(LEF) [307] files, Liberty timing libraries, and the minimum and maximum, rise and fall arrival

timing windows of all signal pins as reported from PrimeTime-SI [342]. Our DVD IR analysis
11This can be extended to more complete multiphysics analyses that include temperature and reliability - e.g.,

using ANSYS Sentinel-TI and RedHawk-SEM. While we have prototyped such analyses, they are cumbersome with
available tools, and we do not report any studies here.
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is vectorless due to lack of representative simulation vectors; to our understanding, this reflects

common industry practice. We place power pads uniformly along the block periphery so that the

IR drop tends to be worst at the block center.

Once we have obtained an IR drop map, we back-annotate individual cell instances with

rail voltage in PrimeTime-SI, and perform STA using timing libraries that have been character-

ized at multiple voltage and temperature corners using Synopsys SiliconSmart [344]. Again, we

view this STA as “multiphysics” in its integration of the IR drop map on a per-instance basis.

The standard practice in industry is to perform the above-described multiphysics analysis once.

But, recall from Figure 3.20(a) above that applying more than one iteration can help remove

pessimism in timing analysis by up to 15ps.

Model Parameter Selection

We use model parameters that span netlist structure, floorplan context and layout con-

straints. The modeling problem is high-dimensional when we consider multiple knobs in com-

mercial tools, as well as multiple netlist and layout context parameters. To make our modeling

methodology practically applicable, we focus on only those parameters that we have so far found

to affect modeling accuracy. We assess the sensitivity of slack to each parameter independently

by varying values of one parameter at a time and keeping the remaining parameters the same. We

also assess the combined impact of various parameters on the slack of memories using variance

inflation factor (VIF) [5]. We choose parameters whose VIF values are less than 0.5 [122] and

let the modeling techniques (described in Section 3.2.1) combine relevant parameters. Some of

our parameters are for the entire layout, whereas the remaining parameters are for each memory

instance so that the modeling can capture variable number of memories in the netlist, variations

of floorplans, and the placement of memories within these floorplans. Table 3.6 lists our mod-

eling parameters. The first column gives the parameter identifier; the second column describes

the parameter; the third column shows whether the parameter is of type netlist, floorplan or con-

straint; and the last column indicates that the parameter is obtained per memory instance when

it is “Yes”. Some of our modeling parameters are based on guidance provided in [6], [52] and

[122].

Modeling Techniques

Recall from Figure 3.23 that we seek to model (i) multiple stages of the physical design

flow such as placement, clock network synthesis, routing, extraction, etc., (ii) inherent noise in
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Table 3.6: Parameters used in our modeling.

Parameter Description Type Per-memory?
N1 Max delay across all timing paths at the post-synthesis stage Netlist Yes

N2
Area of cells in the intersection of startpoint fanout

Netlist Yes
and endpoint fanin cones of max-delay incident path

N3 Number of stages in the max-delay incident path Netlist Yes

N4, N5, N6
Max, min and average product of #transitive fanin

Netlist Yes
and #transitive fanout endpoints

N7 Width and height of memory Netlist Yes
FP1 Aspect ratio of floorplan Floorplan No
FP2 Standard cell utilization Floorplan No
FP3, FP4 PDN stripe width and pitch Floorplan No
FP5 Size of buffer screen around memories Floorplan No
FP6 Area of blockage (%) relative to floorplan area Floorplan No
FP7, FP8 Lower-left placement coordinates of memories Floorplan Yes
FP9, FP10 Width, height of channels for memories Floorplan Yes
FP11 #memory pins per channel Floorplan Yes

C1
Sum of width and spacing of top-three routing Constraint No
layers after applying non-default rules (NDRs)

C2 % cells that are LVT Constraint No
C3, C4 Max fanout of any instance in data and clock paths Constraint No
C5, C6 Max transition time of any instance in data and clock paths Constraint No
C7 Delay of the largest buffer expressed as FO4 delay Constraint No
C8 Clock period used for P&R expressed as FO4 delay Constraint No
C9 Ratio of clock periods used during synthesis and P&R Constraint No

commercial tools, and (iii) a very high-dimensional space of parameters that span across netlists,

floorplan contexts and timing constraints. Interactions between parameters are complex, e.g., an

increase in PDN stripe density can cause a large congestion on upper metal layers and thereby

increase coupling capacitances which will ultimately result in timing failures even when the IR

drop is small. The type of timing analysis can contribute to large difference in slack, e.g., turning

SI mode on can worsen slack by 100ps or more [128].

We use both linear as well as nonlinear machine learning techniques. We use LASSO re-

gression with L1 regularization [192] as a linear technique, and Support Vector Machine (SVM)

regression [85] with a Radial Basis Function (RBF) kernel [85], Artificial Neural Networks

(ANN) [85], and Boosting [72] with a weak SVM learner as the nonlinear techniques. The

Boosting learning technique combines predictions of multiple weak learning techniques to cre-

ate an accurate learning model. Learning techniques such as linear classification and regression

trees are used commonly as weak learners. For a comprehensive discussion on LASSO, SVM,

ANN and Boosting, see [85]. For each technique, we use training and validation data sets that

are 50% and 10% of the total data points, respectively, and we search for values of hyperpa-

rameters using grid search such that the training and validation mean-square errors (MSEs) are

comparable. For SVM with RBF kernel, the hyperparameters are ε along with the cost C that
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control the margin errors of the support vectors, and the width parameter γ of the RBF kernel.

For ANN, we define the architecture as one input and one output layer and two hidden layers.

The hyperparameters are the number of epochs for back propagation and the number of neu-

rons per hidden layer. For LASSO, the hyperparameter is the regularization coefficient λ. For

Boosting with SVM, the hyperparameters are ε, C, γ, and the number of iterations.

For each machine learning technique, we perform five-fold cross-validation so as to

make the models generalizable. We normalize the parameters to within [0,1] before we proceed

with modeling.12 The nonlinear techniques (SVM, ANN and Boosting) help to capture complex

interactions between parameters. Our preliminary studies indicate that SVM with a RBF kernel

method achieves higher accuracy (less than 300ps worst-case error) than linear SVM without a

kernel (more than 335ps worst-case error). Therefore, we use SVM with a kernel method. The

LASSO technique has large modeling error (greater than or equal to 300ps) when the number of

parameters is larger than five. Therefore, we use the linear LASSO technique to make predictions

with a simplified model and use the outcomes of this linear technique as the bias in the final step

in which we combine outcomes of all the techniques using Hybrid Surrogate Modeling (HSM)

[122] to obtain the final predicted slack of each memory instance. Even though the procedure

to combine predictions from various linear and nonlinear techniques is not obvious, the HSM

technique enables us to combine the predictions using appropriate weights and improve overall

prediction accuracy. Figure 4.25 shows our modeling flow. We implement our modeling in

MATLAB vR2013a [311] using default toolboxes for ANN and LASSO, the open-source libsvm

[42] toolbox for SVM, and our own implementation of Boosting.

Figure 3.26 shows our high-level implementation of Boosting.13 We implement Boost-

ing with weak SVM learners as follows.

• Initially, we set the weight W0 of all training data points to be uniform, i.e., W0 = 1/Ntr,

where Ntr is the number of training data points.

• We use SVM as a weak learner by restricting the grid search to only three different values

of each hyperparameter.

• We calculate the error ei for the ith stage using the validation set and Wi values of data

points are set for the subsequent (i + 1)st stage as exp(0.5log(1−ei
ei

)) when the error in

12We have tried normalization using z-scores to within [−1,1] as well. The predicted values change by less than
0.5%. Therefore, we use normalization to within [0,1] in our experiments.

13Of possibly independent interest is that to our knowledge, Boosting with SVM as a weak learner (i.e., regressor)
has not been tried before in the machine learning and VLSI CAD literatures. Our scripts are available at http:
//vlsicad.ucsd.edu/Riskmap/.
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slack prediction is greater than or equal to 50% of the clock period, and are set to 1

otherwise.

• To make our predictions pessimistic on data points for which the actual slack is negative,

we increase Wi by a factor of five when the predicted slack value for such a data point is

positive.

• We terminate when worst-case error in the validation set is less than 20% of the clock

period or when the number of iterations reaches k = 40.14

• We combine outcomes of each iteration using coefficients βi (determined by using least-

squares regression), where i = 1, ...,k, to determine the final outcome of Boosting.

Parameters from 
sequential graph of netlist 

Parameters from floorplan 
context, constraints 

ANN with 1 input, 2 
hidden, 1 output layer 

Slack reports from 
multiphysics STA 

Save model and exit 

SVM with RBF 
kernel 

LASSO with L1 
regularization 

Boosting with SVM 
as weak learner 

Combine using weights 

Ground Truth 

Figure 3.25: Modeling flow with linear and nonlinear regression techniques.

From the above discussion, the reader will note that the proposed methodology will

in practice use post-P&R databases of various projects taped-out in a given (technology node,

library, tool flow) as the basis of netlist structural analyses, floorplan structural analyses, and

multiphysics performance analyses. Designers of new projects in the same technology node

would use our model to filter out floorplans and constraints that can cause timing failures. In a

new technology or design environment, the one-time initial model fitting effort that we describe

above must be performed.

14With values of k > 40 we do not observe significant improvement in error.
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Figure 3.26: Flow with Boosting [72] with weak SVM learners.

3.2.2 Experimental Setup and Results

In this section, we describe our testcases and design of experiments, and present our

modeling results.

Testcases

We have developed a generator to create testcases to vary (i) the number of SRAMs

in the netlist,15 (ii) the floorplan context such as aspect ratio, utilization, buffer screens, PDN

structure, etc., and (iii) the placement of SRAMs in the floorplan. Figure 3.53 illustrates various

parameterizations of floorplans in our testcase generator, using the floorplans shown in Figures

3.29(a) and 3.31(a). We can independently change the width and height of buffer screens around

SRAMs or blockages, the dimensions of each blockage, and the area for standard cell placement.

Our netlists contain both logic and SRAMs. For logic, we use open-source designs

such as THEIA16 and nova from OpenCores [318], our own artificial testcases with an embed-

ded processor, and blocks from OpenCores such as aes cipher top and reed solomon codec.

We perform synthesis using 28nm foundry FDSOI libraries and Synopsys Design Compiler vI-

2013.12-SP3. Table 3.7 summarizes our netlists with post-synthesis metrics.

Figure 3.28 illustrates a PDN structure used in our testcases. We use metal layers M9

and M10 for the power ring around the core; we also use M9 and M10 for the top-level power

15We use single-port SRAMs of two different sizes from the 28nm FDSOI foundry libraries.
16We have used the original OpenCores THEIA design as well as modified versions of the design. In the modified

designs (THEIA v1, ..., THEIA v4), we vary the number of SRAMs. The unmodified design is THEIA v0.
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Table 3.7: Description of our netlists.

Netlist Clock #Std #SRAMs Logic Area SRAM Area
Period (ns) Cells (µm2) (µm2)

THEIA v0 3.0 147274 40 157416 347252
THEIA v1 2.7 146505 5 157068 40027
THEIA v2 3.0 146914 6 157012 48032
THEIA v3 3.0 146243 8 156212 64043
THEIA v4 3.0 146606 10 155991 80054

nova 2.0 66031 5 68970 25117
artificial 2.0 201015 6 213075 14925

mesh. We use M6 to generate secondary meshes to supply power to SRAMs, and M2 to connect

standard cells to the VDD and ground rails. From the post-P&R databases we generate the

routed Design Exchange Format (DEF) [307] file using Synopsys IC Compiler vH-2013.03-SP3

and provide it as an input to ANSYS/Apache RedHawk v10.1.7 along with technology LEF

and Liberty timing libraries. We use Synopsys PrimeTime-SI vH-2013.06-SP2 to obtain timing

windows of all signal pins.

Tier 0 Tier 0 

Tier 1 Tier 1 

Figure 3.27: Parameterized floorplan used to generate testcase instances.

Design of Experiments

Using our generator described in Section 3.2.2 and netlists in Table 3.7, we create var-

ious testcases in which we vary floorplans, PDN structures and constraints. Table 3.8 lists the

parameters we vary in our design of experiments. We vary the standard-cell placement region

to have cross-, L- and T-shapes as shown in Figures 3.29(a)–(c). Each of these region shapes

changes P&R tool outcomes since it changes the degree of nonconvexity (i.e., the number of non-
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(width = 2um) 
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M1, M2, M3, M4, M5, M6, M7, M8: signal routing 
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Power pad 

VDD 

GND 

SRAM 

Figure 3.28: Example of PDN structure in our testcase with SRAMs.

convex corners) in the placement region, as well as the placement of IO pins. For example, the

cross-shaped floorplan has more nonconvex corners and is expected to have higher congestion

near these corners as compared to the L-shaped floorplan.

To emulate real designs, we frame our experiments in the context of a general, “tic-

tac-toe” floorplan. We divide the block with two shiftable gridlines in each axis; each of the

nine resulting gridcells can be fully or partially occupied by essential components of a floorplan,

that is, hard macros, standard cells or blockages. The tic-tac-toe implementation (i) enables

generality and parameterizability, (ii) enables the ability to explore a discrete design space sys-

tematically, and (iii) captures how designers tend to floorplan their blocks. Figure 3.30 shows

an example instance of a tic-tac-toe floorplan. (Note that the tic-tac-toe framework allows us to

explore floorplans either at the die-level or block-level, but not in between.)

We create multiple variations of floorplans for netlists with five, six, eight, 10 and 40

memories. Figures 3.31(a)–(f) show examples of six variations that we generate. All of these

floorplans can be created with the tic-tac-toe implementation. Specifically, we create the floor-

plans with eight, 10 and 40 memories using this implementation. For the tic-tac-toe implemen-

tation, we focus on testcases with more than eight memories. Note that our modeling parameters

listed in Table 3.6 can handle variations of floorplans shown in Figures 3.29 and 3.31 because

we include parameters that are floorplan-specific as well as memory instance-specific. We allow

only buffer instances to be placed within the buffer screens around SRAMs.
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(a) (b) (c)

Figure 3.29: Variations in floorplans in our testcases: (a) cross-shape, (b) L-shape, and (c)
T-shape. The red lines are used to highlight these shapes.

A real industry flow will run Design Compiler in topographical mode with floorplan

constraints and generate a DEF with placement of standard cells. However, this requires a tool

license which is not available to us. We denoise each P&R run by varying the parameters by

±0.5% from its value. We generate a total of 2515 data points for modeling, out of which we

use 1248 (50%) data points for training, 226 (9%) data points for validation, and the remaining

1041 (41%) data points for testing. We challenge our modeling by testing on all data points of

the design nova and values of aspect ratio, utilization, and PDN width and height, which are not

used for training.

We use the multiphysics analysis flow described in Section 3.2.1, and the modeling

methodology described in Section 3.2.1 to derive our model. Each P&R and analysis run re-

quires approximately 10 hours using a single core, and the training time is around three hours

for 2515 data points on an Intel Xeon E5-2640 2.5GHz when using four cores. The testing time

for 1041 data points is less than two minutes.

Memory

Blockage

STD cells

Figure 3.30: Example of a floorplan enumerated with tic-tac-toe implementation.
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SRAM

(a)

SRAM

(b)

SRAM

(c)

SRAM

(d)

SRAM

(e)

SRAM

(f)

Figure 3.31: Examples of memory placements in our testcases: (a) 5×1 vertical stacking, (b)
3×1, 2×1 side-by-side arrays at upper-left, (c) 3×1, 2×1 arrays at upper-left and lower-right,

(d) 3×1, 2×1 arrays at upper-left and upper-right, (e) 4×1, 4×1 side-by-side arrays at
upper-left, and (f) 4×1, 2×1 side-by-side arrays at upper-left and 4×1 at lower-right.

Table 3.8: Our design of experiments.

Parameter Value(s) (* is default)
Aspect ratio {1.2, 1.1, 1.0*, 0.8}

Utilization (std cells) {40%, 50%*, 60%, 70%}
PDN stripe width {0.5, 0.75, 1.0*, 1.5, 2.0, 2.5, 3.5}µm
PDN stripe pitch {7, 15, 20, 30*, 40}µm

SRAM spacing (channel width) {6, 8, 12, 16, 20*, 24}µm
Buffer screen width {10, 12, 14*, 16}µm
Routing metal layers {7, 8*}
Memory placement {Face-to-face*, face-to-back}

Clock period

THEIA {v0, v1, v3, v4} = {3.0, 3.5*, 4.0}ns
THEIA v2 = {3.0*}ns

nova = {3.2*, 3.7, 4.2}ns
artificial = {2.0*}ns

Max transition {200*, 240, 280}ps
Max fanout {8*, 10}

Threshold voltage mixes {{LVT}, {LVT, RVT}*, {RVT}}
Clock buffer sizes {{X32}*, {X32, X24}, {X32, X24, X16}}

NDRs on clock nets {1W1S*, 2W2S, 3W3S, 3W2S, 2W3S}

We conduct three experiments to validate our model. In all of our experiments we use

data points from designs THEIA v0 and nova exclusively for testing, i.e., no data points from

these two designs are used to train the model.



69

• Experiment 1 tests accuracy of our model in predicting post-P&R slack values of SRAMs.

With the training data generated by the design of experiments described above in Table 3.8,

we apply our modeling flow described in Figure 4.25 to predict the post-P&R memory

timing slack values. We also compare the accuracy of various modeling techniques and

present our results in Table 3.9.

• Experiment 2 tests accuracy of our model in predicting slack values with multiphysics

analysis. We use the same design of experiments and modeling flow as in Experiment 1 to

predict SRAM timing slack values after annotating IR drop from the RedHawk reports to

cell instances.

• Experiment 3 tests fidelity of our model in providing floorplan guidance to reduce timing

failures at signoff with multiphysics analysis. We report the confusion matrix of timing

pass or fail predictions, again using the same design of experiments and modeling flow.

For all of our experiments, we separately report modeling errors (i.e., predicted slack −
actual slack) for both training and test datasets. Figures 3.32(a) and (b) show the ground truth

that we predict. Figure 3.33 compares post-synthesis slack of SRAMs with post-P&R slack.

Due to changes in constraints and implementations, post-P&R slack has no apparent correlation

with post-synthesis slack.
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Figure 3.32: Ground truth data. (a) Slack at post-P&R stage without multiphysics analysis and
(b) slack with multiphysics analysis.
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Figure 3.33: Slack at post-synthesis stage vs. post-P&R stage across six of our testcases. There
is no correlation due to constraints and implementations.

Results of Experiment 1

Table 3.9 shows error metrics of our modeling techniques on the test dataset for the

various machine learning techniques. Rows 4 and 5 in the table show that the worst-case error

in slack prediction reduces by 30ps with our implementation of Boosting with SVM regressors,

compared to the SVM-only technique. Figure 3.34(a) shows predicted versus actual slack values

of memories at the post-P&R stage. Our model has worst-case error of 224ps (48%)17 and av-

erage error of 4.0ps (7.2%). Note that most of the predicted slack values (when the actual slack

values are negative) are below the solid black line (i.e., line of perfect correlation) as a result of

negative-slack weighting strategy. Figure 3.34(b) shows a histogram of error in slack prediction

in the test dataset, and Figure 3.34(c) shows the outcome of our negative slack weighting strat-

egy during our model construction, i.e., greater magnitudes of the negative slack values have

pessimistic predictions.

Results of Experiment 2

Figure 3.35(a) shows predicted versus actual slack values of memories with multiphysics

analysis. Our model has worst-case error of 253ps (44%) and average error of 9.0ps (5.9%).

17The worst-case error in Experiment 1 occurs when the actual slack is 466ps, whereas the predicted slack is 242ps.
The error is 242ps−466ps=−224ps; we calculate the magnitude of relative error for this data point (relative to the
actual slack) as 224ps

466ps = 48%. We measure average error as the mean of all absolute errors, and average percentage
error as the mean of magnitudes of relative errors (relative to actual slack values) expressed as a percentage.
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Table 3.9: Error metrics of modeling techniques used in our experiments.

Technique Min Max Mean Standard Mean-Square
Error (ps) Error (ps) Error (ps) Deviation (ps) Error

LASSO -380.5 281.6 -86.7 64.1 11.6
ANN -250.6 272.9 -8.5 60.1 3.7
SVM -243.7 252.9 -9.0 55.2 3.1

Boosting -253.7 200.8 -5.1 55.7 3.1
HSM -223.1 223.7 -4.0 58.9 3.5
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Figure 3.34: Accuracy of our model in predicting post-P&R SRAM slack values with HSM.
(a) Scatter plot of actual and predicted data points in training and testing, (b) error distribution

in the test dataset, and (c) effect of weighting strategy for negative slack values. Note in (c) that
when actual slack values are less than -0.15ns, the error values are negative, i.e., the predicted

slack is always pessimistic as compared to the actual slack.
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Figure 3.35(b) shows a histogram of error in slack prediction in the test dataset. Even though

our worst-case error is large, only a small number of predictions have error greater than 100ps.

Some of these predictions are more pessimistic due to our negative-slack weighting strategy.

Since prediction of slack with multiphysics analysis is more difficult than predicting post-P&R

slack, the errors are larger than those in Experiment 1.
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Figure 3.35: Accuracy of predicted multiphysics SRAM slack values with HSM. (a) Scatter
plot of data points in training and testing and (b) error distribution for the test dataset.

Results of Experiment 3

Figure 3.36 shows the confusion matrix of our predictions on the test set. Our predictive

model of SRAM slack values with multiphysics analysis has few (∼3%) false negatives ( f n), that

is, pessimistic predictions in which we provide guidance to change a floorplan that is actually

not required. Our model also has few false positives ( f p), that is, cases for which our model

incorrectly deems a floorplan to be good. Such wrong predictions have a ∼4% incidence. The

number of true positives (t p), that is, both the predicted and actual slack values are positive, is

584. The number of true negatives (tn), that is, both the predicted and actual slack values are

negative, is 384.

In our model, the precision [85] (i.e., the ratio of t p to the sum of t p and f p) is 93.3%,

and the recall (i.e., the ratio of t p to the sum of t p and f n) is 95.0%. Similarly, the precision

for negative slack data points (referred to as negative predictive value in the machine learning

literature) is 92.5% and the recall for negative slack data points (referred to as specificity in the

machine learning literature) is 90.1%. Based on these large values of precision and recall metrics,

we believe that our model can provide guidance to designers on the risk of SRAM timing failures

with high fidelity.
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Figure 3.36: Confusion matrix of our predictions with HSM. False positives (42) are optimistic
predictions, while false negatives (31) are pessimistic predictions.

3.2.3 Conclusions

Early prediction of post-layout timing failures is important to reduce design cost and

turnaround time. However, this prediction problem is very difficult as it must comprehend tool

flows, noise, and the physics used during timing analysis. We propose a machine learning-

based methodology to predict post-P&R slack of SRAMs at the floorplanning stage, given only a

netlist, constraints and floorplan context. We demonstrate that our methodology can be extended

to predict slack with multiphysics (STA and DVD) analysis. We develop a new implementation

of Boosting with SVM in which we use a negative-slack bias strategy. This strategy guides

model predictions to be less optimistic when the actual slack values are negative. We report

worst-case modeling error of 253ps in predicting slack with multiphysics analysis, and average

error of 9.0ps. The number of predictions with error greater than 100ps are few (∼15) in our test

dataset. Fidelity of our predictions is high as measured by the precision and recall metrics. We

believe that SoC designers can use our methodology to avoid floorplans and constraints that may

cause timing failures at signoff.
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3.3 BEOL Stack-Aware Routability Prediction from Placement

Physical design of digital integrated circuits in advanced technology nodes is very com-

plex due to multiple design rules that must be satisfied before tapeout. Design rule violations are

reported by commercial place-and-route (P&R) tools after the routing stage. However, discov-

ering many design rule violations post-routing is costly: at best, it consumes engineer resources

to fix all the violations and increases design turnaround time. Sometimes, the number of design

rule violations is so large as to be unfixable; this scenario leads to disruptive changes to the

placement, layout contexts and constraints. Early prediction of routability in the physical design

flow is therefore critical to reduce design turnaround time and cost. However, to our best knowl-

edge, no routability models exist today that enable IC physical design engineers to perform fast

and accurate design-space exploration of timing constraints, utilization, aspect ratio and back-

end-of-line (BEOL) stack options. Today, designers use congestion maps from P&R tools at the

placement stage to predict routability. Congestion maps alone may not be sufficient (and, can

be highly misleading) for the prediction of routability as measured by the number of design rule

check (DRC) violations.18 This is because congestion maps do not comprehend design rules and

factors such as pin density or timing criticality, that affect local routability.

Physical design engineers typically use congestion maps from trial routing at the place-

ment stage to determine whether a given placement is likely to be routable. However, this is still

largely an “art”, akin to reading tea leaves, as congestion maps are not straightforward indicators

of design rule violations in detailed routing.

As a motivating illustration, we show two implementations of aes cipher top [318] and

ARM Cortex M0 designs in 28nm FDSOI with eight-track cells and BEOL stack with five metal

layers, obtained using a commercial P&R tool. We implement aes cipher top with aspect ratio

set to 1.0 and Cortex M0 with aspect ratio set to 2.0. Figures 3.37(a) and (b) show layouts and

congestion maps of aes cipher top and Cortex M0, respectively. Regions in red indicate con-

gestion overflow (i.e., the difference in supply and demand of routing resources) that are < −5

and ≥ −7 and regions in white color indicate overflow that are < −7, i.e., white color indi-

cates worse congestion than red color. By looking at these two maps, an experienced physical

design engineer may conclude that the placement for aes cipher top is unroutable due to many

regions of high congestion that can potentially lead to a large number of DRCs, and may con-

clude that the placement for Cortex M0 is routable (or, routable with a manually-fixable number

of DRCs) due to few hotspots in the right-bottom region. However, Figure 3.38(a) shows that

18In the following, we use #DRCs to denote the number of design rule violations (after the routing tool has run).
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post-routing DRC violations are ∼6 for aes cipher top, and that these do not occur in the highly

congested regions. Figure 3.38(b) shows that sufficient post-routing DRC violations occur for

Cortex M0 in the congested region as well as in other non-congested regions, making the place-

ment unroutable. The reasons for these DRC violations are not intuitive from examination of

the congestion maps. We demonstrate below that by using relevant placement-driven parameters

beyond congestion maps information, we can create models that accurately predict routability of

a given BEOL stack-specific placement.19

(a) (b)

Figure 3.37: Congestion maps at placement stage in 28nm FDSOI foundry technology, with 8T
cells, of (a) aes cipher top implementation at 77% utilization, aspect ratio 1.0 and BEOL stack
with five metal layers and (b) ARM Cortex M0 implementation at 77% utilization, aspect ratio

2.0 and BEOL stack with five metal layers. Red and white regions indicate large congestion
with overflow <−5.

We define a placement to be routable when the #DRCs is < threshold after the routing

stage; conversely, a placement is unroutable when the #DRCs is ≥ threshold after the routing

stage.20 In this work, we develop models using data mining or machine learning techniques

to accurately predict routability of a BEOL stack-specific placement. We study and propose

placement-driven parameters that enable us to achieve high prediction accuracy. Applications of

our models include the following use cases.

• Given a netlist, clock period, utilization, aspect ratio and BEOL stack-specific placement,

our models predict whether the placement will be routable.

19We use the term “BEOL stack-specific placement” to acknowledge that the placement tool will output different
placement solutions for the same netlist and site map, according to the specific metal layer stack.

20In this work, we set the threshold to 50, i.e., we assume (rather conservatively) that 50 DRC violations remaining
after detailed routing can be manually fixed.
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(a) (b)

Figure 3.38: DRC violations after routing in 28nm FDSOI foundry technology, with 8T cells,
of (a) aes cipher top implementation at 77% utilization, aspect ratio 1.0 and BEOL stack with
five metal layers and (b) ARM Cortex M0 implementation at 77% utilization, aspect ratio 2.0
and BEOL stack with five metal layers. The white crosses show the DRC violations and the

yellow oval shapes highlights these.

• Our models predict iso-performance Pareto frontiers of utilization, number of metal layers

and aspect ratio based on very few (≤ 20) placements (and, no routing or trial routing) of

a design. Using these Pareto frontiers, a designer can determine the minimum number of

metal layers21 or the maximum achievable utilization of a block.

To the best of our knowledge, the above use cases are not fully and accurately served

in current design methodologies and flows as reviewed in Section 2.1.2. As described above,

physical design engineers estimate routability based on congestion maps from commercial P&R

tools, but these estimates can be quite misleading. Currently, to our knowledge, no tool exists

that predicts the Pareto frontiers of utilization, number of metal layers and aspect ratio based on

very few placements. The key contributions of our work are as follows.

1. We demonstrate that congestion maps from commercial tools are likely insufficient to

predict routability. In fact, sometimes congestion maps can mislead designers to believe

that a placement is routable, when it is actually not. We quantify the classification error to

be 38% in 28nm FDSOI technology by using only congestion maps to predict routability.

2. We describe a methodology based on machine learning to predict whether a placement

is routable, given a netlist, clock period, utilization, aspect ratio and BEOL stack. Our

methodology is applicable to both 2D and 3D ICs.
21In advanced nodes, due to complexity of lithography (e.g., double-patterning, triple-patterning, etc.), each metal

layer is a sizeable percentage of wafer cost.
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3. We describe new parameters that we identify – related to congestion distribution, criti-

cal timing path distribution, and available routing resources [104] [108] – that guide our

learning-based models to accurately predict routability, given a netlist, clock period, uti-

lization, aspect ratio and BEOL stack. Note that we do not use any information from

trial routing or early global routing from P&R tools. The worst-case classification error

in our models is 14.1% in 45nm GS foundry technology. In 28nm FDSOI technology,

classification error of our model is 13%.

4. Our models also enable accurate prediction of iso-performance Pareto frontiers of utiliza-

tion, number of metal layers and aspect ratio based on very few placements.

3.3.1 Methodology

We now describe our modeling parameters, how we have identified them, and our mod-

eling methodology. As noted above, the goal of our modeling is to predict whether a given

BEOL stack-specific placement is routable. In our experimental results, we show applications

of our models to predict Pareto frontiers of utilization, number of metal layers and aspect ratio

based on very few placements. Note that we do not use any trial routing or early global routing

information in making our predictions.

List of Parameters

We divide the placement region into grids whose height and width are multiples of the

P&R tool’s gcell (i.e., global routing cell) height and width [287].22 We extract modeling pa-

rameters from these grids that intuitively affect local routing of net segments on various layers

of metal. We obtain the following parameters from a placement for each grid:

• pin density;

• minimum proximity of any pair of pins;

• number of complex cells, i.e., AOI, OAI, three-input XOR and XNOR, and MUX cells;

• sum of incoming and outgoing hyperedges (signal nets with pins both inside and outside

the grid);

• number of buried nets, that is, the number of nets that have all of their pins within the grid;

22Typical grid size in a commercial P&R tool is 15 tracks × 15 tracks [286], where a track is equal to the metal
M2 pitch value.
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• arithmetic and geometric mean values of placement-based Rent parameter;

• the worst signal transition time of all pins at the worst corner;

• the smallest values of the worst negative slack (WNS) of setup time of any pin within the

grid;

• the percentage of routing resources consumed by the power delivery network (PDN); and

• the density of vertical interconnects (VIs) in each tier of a 3DIC.

Figures 3.39(a) and (b) show correlation of #DRCs (our routability metric) to the sum of

incoming and outgoing hyperedges23 and minimum proximity of pins, respectively. When a grid

has small values of minimum proximity of pins, it indicates that pins of adjacent cells within a

grid are placed very closely and can lead to spacing-related DRC violations at the routing stage.

When a grid has pins with large transition times or small WNS, it indicates that cells can be sized

up and buffers can be inserted that can worsen local routability and increase the number of DRC

violations.

From the above parameters, we compute the coefficient of variation (i.e., the ratio of

standard deviation to mean) of pin density, minimum proximity, number of complex cells, sum

of incoming and outgoing hyperedges, number of buried nets, arithmetic and geometric mean

values of placement-based Rent parameter, worst transition time and worst WNS. We use the

following as our modeling parameters.24

1. Coefficient of variation of pin density, minimum proximity, number of complex cells, sum

of incoming and outgoing edges, number of buried nets, arithmetic and geometric mean

values of Rent parameter, worst transition time and worst WNS.

2. Maximum values (across all grids) of pin density, number of complex cells, sum of in-

coming and outgoing edges, number of buried nets, arithmetic and geometric mean values

of Rent parameter and worst transition time.

3. Minimum values (across all grids) of minimum proximity and worst WNS.

4. Utilization of standard cells.
23We use the term edges below to denote hyperedges.
24We greedily select parameters by incrementally adding each parameter one by one, creating models using our

training dataset and checking accuracy of models using the test dataset. The next parameter to be selected is the one
which improves model accuracy the most. We list the parameters that achieve the highest accuracy in our experiments.
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Figure 3.39: Correlations of #DRCs with (a) sum of incoming and outgoing hyperedges and
(b) minimum proximity of pins within a grid.

5. Clock period of design used for P&R.

6. Aspect ratio of the floorplan.

7. Numbers of horizontal and vertical tracks, which we calculate from the height and width

of the placement region and pitches of all horizontal and vertical layers of the BEOL stack.

For example, if there are three horizontal layers, each with pitch ph, and the core height is

H, then the number of horizontal tracks is 3 ·H/ph.

8. The percentage of routing resources consumed by the power delivery network (PDN).

9. The density of vertical interconnects (VIs) in each tier of a 3DIC.
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The parameters listed in 1–3 above are an indication of the quality of a BEOL stack-

specific placement and how it spreads across multiple grids. If the spread (indicated by coeffi-

cient of variation) is large, it suggests that grids may have local congestion. The timing parame-

ters capture how critical paths and critical pins are distributed and the extent of violation. Large

violations at the placement stage indicate that buffers can be inserted during routing, which can

increase local congestion and violate design rules. The parameters listed in 4–6 above describe

the layout context and timing constraints, and the parameters listed in 7 above capture details

of the BEOL stack and the amount of routing resources available for the design. The parame-

ters listed in 8 and 9 above are used for 3DICs and capturing the amount of routing resources

available for signal and clock routing and the density of VIs that connect signals crossing tiers.

Parameter Value Interpolation and Extrapolation

Given a few (≤ 20) placement solutions of a design that span some values of clock pe-

riod, utilization, aspect ratio and BEOL stack, we need to generate additional values of parameter

to train our models. We propose the following methodology, partially adapted from [190], to in-

terpolate and extrapolate values of parameters (e.g., {maximum, coefficient of variation, . . .}
× {pin density, sum of edges, . . .}) from Section 3.3.1 across multiple values of clock period,

utilization, aspect ratio and BEOL stack. We train models for each parameter as a function of

clock period, utilization, aspect ratio, number of horizontal (#H) and vertical (#V) tracks and

known values of the parameter extracted from the given placements. We train models for each

parameter that achieves a given error bound UBerror as follows.

In procedure genParamModel of Algorithm 1, we assume that we are given a set P of

placements of a design and an error upper bound UBerror. We expect a minimum of four and a

maximum of 20 placements, that is 3 < |P| ≤ 20.25 In Lines 1–4, we choose a subset of three

placements Ptr from P for training and one placement p f for model fitting. In Line 5, we extract

values of the parameter (e.g., max pin density, etc.) as well as other inputs used to fit a model.

These inputs are the ratio of clock periods, utilization, aspect ratio, #H and #V tracks of p f to

those in Ptr, as well as the values of the same parameter from the placements in Ptr. In Line 6,

we obtain the value of the parameter from p f that we use to fit, and in Line 7 we train a model

fm. For example, to train a model for max pin density, we use the max pin density values of

placements in Ptr and the ratio of clock periods, utilization, aspect ratio, #H and #V tracks of p f

25Given placement solutions of a new design, we do not know how each parameter varies with the inputs. We use
at least three data points to capture parameters that can be polynomial (with polynomial degree ≥ 2) with respect to
the input parameters.
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to those in Ptr. In Line 8, we initialize the error e to 2× UBerror. In Lines 9–22, we refine fm

by retraining to achieve e ≤ UBerror. In Lines 9–13, we choose the remaining placements in P

for testing, extract the fitting parameters and the actual value of the parameter. We then use fm

to test the model. In Lines 14–20, we check if the error e > UBerror in the placements used for

testing, we add these placements to our set of placements used for training Ptr, and remove these

from P. The while loop exits when either all the remaining placements in P have been added to

Ptr or when fm achieves e ≤ UBerror.26 Using fm, we can now interpolate or extrapolate values

of the parameter. That is, for any new value of clock period, utilization, aspect ratio and BEOL

stack, we calculate the ratios of clock periods, utilization, aspect ratio, #H and #V tracks, etc.

and use fm to estimate the value of the parameter. We train one model fm for each parameter

described in Section 3.3.1.

Algorithm 1 Interpolation and extrapolation of parameter values.
Procedure genParamModel
Input : P (3 < |P| ≤ 20), UBerror
Output: Model fm for parameter m ∈ {max pin density, max # edges, etc.}.

1: Ptr ← {pi, p j, pk} ∈ P, i, j,k ≤ |P|
2: P← P\{pi, p j, pk} // remove pi, p j, pk from P
3: p f ←{pl} ∈ P, l ≤ |P|
4: P← P\{pl}
5: Xtr ← Ptr ∪{p f } // extract inputs to fm, e.g., ratio of util, clk period, ...
6: ytr ← p f // extract value of parameter m in p f
7: ŷtr ← fm(Xtr) // fm is trained using MARS, SVM, etc.
8: e← 2× UBerror
9: while |P|> 0 && |e|> UBerror do

10: for all p ∈ P do
11: y← p
12: Xtest ← Ptr ∪{p}
13: e← f (Xtest)− y
14: if |e|> UBerror then
15: Ptr ← Ptr ∪{p}
16: P← P\{p}
17: Xtr ← Ptr ∪{p f }
18: ytr ← p f
19: ŷtr ← fm(Xtr) // retrain model
20: end if
21: end for
22: end while

To train each fm, we use multivariate adaptive regression splines (MARS) [85] and Sup-

port Vector Machine (SVM) [85] using a Radial Basis Function (RBF) kernel [85] and combine

their responses using weights determined by least-squares regression, and train a model for each

parameter. Once we have obtained a set of estimated values of parameters using the above

methodology, we will use these as our modeling parameters to predict routability, and predict

Pareto frontiers as described in Section 3.3.2.
26Note that it is possible that we use all the placement solutions to train a model for a parameter, but error is >

UBerror.
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The goal of modeling is to predict whether a BEOL stack-specific placement is routable

(for a given router). We classify an implementation to be unroutable when the number of design

rule violations at the post-route stage (or, the number of DRCs) obtained from commercial place-

and-route (P&R) tools is ≥ 50. When the number of violations is < 50, these violations are

typically fixed by designers manually. Our model for each technology is a binary classifier

developed using the SVM algorithm using a RBF kernel. We use the label “+1” when a design

is routable and the label “-1” when an implementation is unroutable. We use five-fold cross-

validation to generalize our models.

3.3.2 Experimental Setup and Results

We now describe our experimental setup and design of experiments (DoE), and present

our results. We describe our DoE for three foundry technologies and designs that we use to train

our models. To test our models, we use new designs that the training data has not seen. We

describe the DoE of our test dataset and applications our models in the description that follows.

We use the A3D flow (described in Section 5.1) to predict the routability and Pareto frontiers for

3DICs.

Design of Experiments

We conduct our experiments on multiple designs: aes cipher top from OpenCores [318],

aes x2 and aes x3 created by instantiating and stitching two and three aes cipher top designs re-

spectively, ARM Cortex M0 core, leon3mp core and jpeg x5 created by instantiating and stitch-

ing five jpeg encoder designs [318]. We synthesize these designs using Synopsys Design Com-

piler vI-2013.12-SP3 [337]. Table 3.10 shows the DoE used to obtain ground truth for modeling

of designs with 28nm FDSOI eight-track (8T), 28nm LP 12-track (12T) and 45nm GS nine-track

(9T) technology libraries. Table 3.11 shows the DoE used to obtain ground truth for modeling

of designs with 28nm FDSOI 8T and 28nm LP 12T technology libraries. We use these data

points to train our models (one model for each technology). We create custom LEF files with

eight, seven, six, five and four metal layers, all having 1× pitch as the Mx layer. We run P&R

using Cadence Innovus v15.2 [287]. We perform denoising [97] [107] by executing P&R for

each point in our DoE six times, i.e., by perturbing each P&R clock period by {-5, +0, +5}ps

at a fixed utilization value, and by perturbing each utilization value by {-0.05, +0.00, +0.05}%
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at a fixed clock period.27 We classify a placement as unroutable when all the six runs indicate

that the #DRCs is ≥ 50. We then use custom scripts in Tcl to extract the parameters described in

Section 3.3.1 as follows.

• We use grids to divide the entire layout. Note that the number of grids varies with designs

and utilizations.

• To obtain pin density per grid, we count the number of pins in each grid and divide it by

the grid area.

• To obtain the minimum proximity of pins, we calculate half-perimeter wirelength (HPWL)

of all pairs of pins within a grid. We then use the minimum HPWL of these values as

minimum proximity.

• To obtain the number of complex cells, we obtain all cells within the bounding box of a

grid and names of cell masters. We then count the cells who master names are either AOI,

OAI, three-input XOR and XNOR, or MUX.

• To obtain the number of buried nets, we count nets that have all of their pins within a grid.

• To obtain the number of edges, we count the number of incoming incident edges to pins

within a grid and the number of outgoing edges from pins within a grid. We then add the

number of incoming and outgoing edges.

• To obtain the placement-based Rent parameter, we use the RentCon tool [326] with 15

tracks × 15 tracks grid size, and shifting of evaluation windows by 1
4× the size of the

grid. Thus, 16 grids over the layout region are used for evaluation of the placement-based

Rent parameter.

• To obtain the worst signal transition time of all pins within a grid, we obtain all pins over

all critical paths that are within a grid in the worst corner. We then take the worst signal

transition time of all these pins using the get property command.

27On a 2.6GHz Intel Xeon E5-2690 processor, placement takes around 1.5 hours (on average) for aes cipher top,
2.4 hours (on average) for aes x2 and 3.3 hours (on average) for aes x3 with two cores. On average, routing executes
in 2.5, 3.1 and 5 hours, respectively for these designs when the placement is routable, and takes around 3.5, 5.1 and
6.3 hours, respectively when the placement is unroutable. We choose clock periods so that the implementations meet
timing at the post-route stage. Note that out of six runs, one of the runs that uses the utilization and clock period
values from the DoE is duplicated.
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• To obtain the worst setup WNS within a grid, we check all pins within a grid and obtain

WNS of the paths to which these pins belong. We then take the worst (i.e., minimum

value) WNS as our parameter.

• To obtain the number of VIs and their locations, we parse the post-routing DEF files of

each tier.

• We obtain statistical information, i.e., max and min values by considering the maximum

and minimum values of our parameters across all grids. We calculate coefficient of varia-

tion by dividing the standard deviation by the mean value of parameters (across all grids).

We now explain our choice of grid sizes. We use grid sizes of 45 tracks × 45 tracks

because these are multiples of gcell sizes (15 tracks × 15 tracks) used by our P&R tool. We

have tried grid sizes of 15 tracks × 15 tracks, 30 tracks × 30 tracks and 90 tracks × 90 tracks as

well. Small grid sizes hide the correlation between #DRCs and our parameters because multiple

neighboring gcells can together cause DRC violations. Large grid sizes blur the differences

between various utilizations, i.e., do not capture local hotspots. We use 45 tracks × 45 tracks

because these grids show correlation with #DRCs and at the same time does not blur differences

across utilizations. Figures 3.40(a) and (b) show that by using grid sizes of 15 tracks× 15 tracks

the correlation between pin density and #DRCs is not apparent in 28nm FDSOI. By using grid

sizes of 45 tracks × 45 tracks, the correlations between #DRCs and pin density become more

apparent. We compare the coefficient of determination R2 in both figures and observe that Figure

3.40(b) has larger R2 value than Figure 3.40(a). Similarly, Figures 3.41(a) and (b) show that by

using grid sizes of 15 tracks × 15 tracks the correlation between #DRCs and the number of

complex cells is not apparent in 28nm FDSOI. By using grid sizes of 45 tracks × 45 tracks,

the correlation between #DRCs and the number of complex cells becomes more apparent. We

compare the coefficient of determination R2 in both figures and observe that Figure 3.41(b) has

larger R2 value than Figure 3.41(a).28

For 2D modeling, we use 1377 data points for training in 28nm FDSOI, out of which

906 data points are from routable implementations and the remaining 471 are from unroutable

implementations. In 28nm LP, we use a total of 918 data points for training, out of which 861

are from routable and 25 are from unroutable implementations. In 45nm GS, we use a total of

918 data points for training, out of which 618 are from routable and 290 are from unroutable

28Commercial P&R tools use pitch of the M2 layer as track size. In our technology libraries, 28nm FDSOI and LP
technologies have M2 pitch of 0.1µm and 45nm GS technology has M2 pitch of 0.14µm. Therefore, our grid sizes
are 4.5µm × 4.5µm for 28nm FDSOI and LP, and 6.3µm × 6.3µm for 45nm GS.
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Table 3.10: Design of experiments used to obtain ground truth for training our 2DIC model.
aes cipher top aes x2 aes x3

Syn Clk 28FDSOI, 8T 0.6 0.6 0.6

Period 28LP, 12T 0.6 0.6 –

(ns) 45GS, 9T 1.0 1.0 –

#Instances

28FDSOI, 8T 11461 22770 34834

28LP, 12T 11783 24744 –

45GS, 9T 13601 28562 –

#FFs

28FDSOI, 8T 530 1060 1590

28LP, 12T 530 1060 –

45GS, 9T 530 1060 –

P&R Clk 28FDSOI, 8T {0.6, 0.9, 1.1} {0.6, 0.9, 1.1} {0.6, 0.9, 1.1}
Period 28LP, 12T {0.6, 0.9, 1.1} {0.6, 0.9, 1.1} –

(ns) 45GS, 9T {1.0, 1.2, 1.8} {1.0, 1.2, 1.8} –

Util (%)

28FDSOI, 8T {70, . . ., 86} {70, . . ., 86} {70, . . ., 86}
28LP, 12T {70, . . ., 86} {70, . . ., 86} –

45GS, 9T {70, . . ., 86} {70, . . ., 86} –

Aspect
28FDSOI, 8T {1.0, 1.3, 1.8} {1.0, 1.3, 1.8} {1.0, 1.3, 1.8}

Ratio
28LP, 12T {1.0, 1.3, 1.8} {1.0, 1.3, 1.8} –

45GS, 9T {1.0, 1.3, 1.8} {1.0, 1.3, 1.8} –

#Metal
28FDSOI, 8T {6, 5, 4} {6, 5, 4} {6, 5, 4}

Layers
28LP, 12T {6, 5, 4} {6, 5, 4} –

45GS, 9T {6, 5, 4} {6, 5, 4} –

Grid 28FDSOI, 8T 45 × 45 45 × 45 45 × 45

Size 28LP, 12T 45 × 45 45 × 45 –

(#tracks) 45GS, 9T 45 × 45 45 × 45 –

#Routable

28FDSOI, 8T 306 306 294

28LP, 12T 437 424 –

45GS, 9T 317 311 –

#Unroutable

28FDSOI, 8T 153 153 165

28LP, 12T 22 35 –

45GS, 9T 142 148 –



86

Table 3.11: Design of experiments used to obtain ground truth for training our 3DIC model.
aes cipher top aes x2 aes x3 jpeg encoder

Syn Clk 28FDSOI, 8T 0.6 0.6 0.6 0.8

Period (ns) 28LP, 12T 0.8 0.8 0.8 1.0

#Instances
28FDSOI, 8T 11463 22778 34839 111356

28LP, 12T 11778 24767 35363 111502

#FFs
28FDSOI, 8T 530 1060 1590 23560

28LP, 12T 530 1060 1590 4712

P&R Clk 28FDSOI, 8T {0.6, 0.8, 1.1} {0.6, 0.8, 1.1} {0.6, 0.8, 1.1} {0.8, 1.1, 1.3}
Period (ns) 28LP, 12T {0.8, 0.9, 1.1} {0.8, 0.9, 1.1} {0.8, 0.9, 1.1} {1.0, 1.2, 1.4}

Util (%)
28FDSOI, 8T {75, . . ., 86} {75, . . ., 86} {75, . . ., 86} {75, . . ., 86}

28LP, 12T {75, . . ., 86} {75, . . ., 86} {75, . . ., 86} {75, . . ., 86}
Aspect 28FDSOI, 8T {1.0, 1.2, 1.9} {1.0, 1.2, 1.9} {1.0, 1.2, 1.9} {1.0, 1.2, 1.9}
Ratio 28LP, 12T {1.0, 1.2, 1.9} {1.0, 1.2, 1.9} {1.0, 1.2, 1.9} {1.0, 1.2, 1.9}

#Metal Layers 28FDSOI, 8T {(6, 6), (5, 5), {(6, 6), (5, 5), {(6, 6), (5, 5), {(6, 6), (5, 5),

(Tier 0, Tier 1) 28LP, 12T (4, 4), (4, 5), (5, 4)} (4, 4), (4, 5), (5, 4)} (4, 4), (4, 5), (5, 4)} (4, 4), (4, 5), (5, 4)}
Grid Size 28FDSOI, 8T 45 × 45 45 × 45 45 × 45 45 × 45

(#tracks) 28LP, 12T 45 × 45 45 × 45 45 × 45 45 × 45

#Routable
28FDSOI, 8T 432 432 430 468

28LP, 12T 512 512 511 520

#Unroutable
28FDSOI, 8T 108 108 110 72

28LP, 12T 28 28 29 20

implementations. For 3D modeling, we use 2160 data points for training in 28nm FDSOI, out

of which 1762 data points are from routable implementations and the remaining 398 are from

unroutable implementations. In 28nm LP, we use a total of 2160 data points for training, out of

which 2055 are from routable and 105 are from unroutable implementations. Owing to the lack

of a PDN flow for 3DICs, we implement a 2DIC PDN on each tier as shown in Figures 3.42(a)

and (b). We create a top-level global mesh on metal layers M5 and M6, and a local mesh on metal

layer M3. We use around 20% of the routing resources on M3 for PDN. We create our models

using MATLAB vR2013a scripts. We conduct two experiments to demonstrate application of our

models, as follows.

• Experiment 1. To determine whether a placement is routable using our models on unseen

data points from new designs across various technologies.

• Experiment 2. To predict Pareto frontiers of utilization, aspect ratio and number of metal

layers at iso-performance.
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Figure 3.40: Correlations of #DRCs with pin density in 28nm FDSOI. The size of grids is set
to (a) 15 tracks × 15 tracks and (b) 45 tracks × 45 tracks.
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Figure 3.41: Correlations of #DRCs with the number of complex cells in 28nm FDSOI. The
size of grids is set to (a) 15 tracks × 15 tracks and (b) 45 tracks × 45 tracks.
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Figure 3.42: Illustration of 3DIC with two tiers with power delivery network: (a) face-to-back
and (b) face-to-face. The power through-silicon vias (TSVs) connect Vdd and ground signals

across tiers.

Results of Experiment 1

Experiment 1 uses our models to predict whether a placement is routable for a fixed

utilization, aspect ratio, clock period and BEOL stack. We test our models on completely unseen

data points from new designs, for both 2D and 3D ICs. Table 3.12 shows the DoE used to obtain

ground truth for testing our 2DIC models in 28nm FDSOI, 28nm LP and 45nm GS technologies.

We use new designs such as Cortex M0, jpeg x5 and leon3mp, as well as eight- and seven-layer

BEOL stacks that we did not use for training. These make the classification problem more

difficult and help assess whether our models are generalizable and scalable. We eliminate tool

noise in the same manner as described for the training dataset, i.e., we execute six P&R runs for

each point in the DoE by perturbing the clock period (by keeping utilization fixed) and utilization

(by keeping clock period fixed) values. Table 3.13 shows the DoE used to obtain ground truth

for testing our 3DIC models in 28nm FDSOI and 28nm LP technologies.

We use standard classification metrics to assess our training and test classifications such

as accuracy, precision, recall and negative predictive value (NPV). We use confusion matrices

to illustrate classification performed by our models on training and test data points. Accuracy is

defined as the ratio of sum of true positives (TPs) and true negatives (TNs) to the sum of all data

points used for classification (either for training or testing). Precision is defined as the ratio of

TPs to the sum of TPs and false positives (FPs); recall is defined as the ratio of TPs to the sum

of TPs and false negatives (FNs); and NPV is defined as the ratio of TNs to the sum of TNs and

FNs.

Table 3.14 shows the confusion matrices of our predictions for 2DICs in 28nm FDSOI,

28nm LP and 45nm GS by using parameters listed in Section 3.3.1. For each technology, we

use the data points from Table 3.10 for training, and the data points from Table 3.12 for testing.
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Table 3.12: Design of experiments used to obtain ground truth for testing our 2DIC model.
Cortex M0 jpeg x5 leon3mp

Syn Clk 28FDSOI, 8T 0.8 1.0 1.0

Period 28LP, 12T 0.8 1.0 –

(ns) 45GS, 9T 1.2 1.5 –

#Instances

28FDSOI, 8T 9282 111342 442734

28LP, 12T 9380 111463 –

45GS, 9T 13601 168310 –

#FFs

28FDSOI, 8T 840 23560 108817

28LP, 12T 840 23560 –

45GS, 9T 840 23560 –

P&R Clk 28FDSOI, 8T {0.8, 1.0, 1.5, 2.0} {1.3, 1.5} {1.5, 2.0}
Period 28LP, 12T {0.8, 1.0, 1.5, 2.0} {1.3, 1.5} –

(ns) 45GS, 9T {1.5, 2.0, 2.2} {1.5, 2.0} –

Util (%)

28FDSOI, 8T 76, . . ., 90 76, . . ., 90 76, . . ., 90

28LP, 12T 76, . . ., 90 76, . . ., 90 –

45GS, 9T 76, . . ., 90 76, . . ., 90 –

Aspect
28FDSOI, 8T {1.0, 1.8, 2.0, 2.2} {1.0, 1.2, 1.5, 2.1} {1.0, 1.2}

Ratio
28LP, 12T {1.0, 1.5, 1.7} {1.0, 1.1, 1.6} –

45GS, 9T {1.0, 1.5, 1.7} {1.0, 1.3, 2.0} –

#Metal
28FDSOI, 8T {8, . . ., 4} {8, . . ., 4} {8, . . ., 4}

Layers
28LP, 12T {6, 5, 4} {6, 5, 4} –

45GS, 9T {6, 5, 4} {6, 5, 4} –

Grid 28FDSOI, 8T 45 × 45 45 × 45 45 × 45

Size 28LP, 12T 45 × 45 45 × 45 –

(#tracks) 45GS, 9T 45 × 45 45 × 45 –

#Routable

28FDSOI, 8T 900 502 195

28LP, 12T 508 246 –

45GS, 9T 277 195 –

#Unroutable

28FDSOI, 8T 300 98 105

28LP, 12T 32 24 –

45GS, 9T 128 75 –
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Table 3.13: Design of experiments used to obtain ground truth for testing our 3DIC model.
Cortex M0 leon3mp

Syn Clk 28FDSOI, 8T 0.8 3.0

Period (ns) 28LP, 12T 0.9 3.2

#Instances
28FDSOI, 8T 9280 442736

28LP, 12T 9387 442887

#FFs
28FDSOI, 8T 840 108817

28LP, 12T 840 108817

P&R Clk 28FDSOI, 8T {0.8, 1.0, 1.3} {3.0, 3.3, 3.8}
Period (ns) 28LP, 12T {0.9, 0.95, 1.15} {3.2, 3.8, 4.0}

Util (%)
28FDSOI, 8T 80, . . ., 90 80, . . ., 90

28LP, 12T 80, . . ., 90 80, . . ., 90

Aspect 28FDSOI, 8T {1.0, 1.5, 2.0} {1.0, 1.5, 2.0}
Ratio 28LP, 12T {1.0, 1.5, 2.0} {1.0, 1.5, 2.0}

#Metal Layers 28FDSOI, 8T {(6, 6), (5, 5), (4, 4) {(6, 6), (5, 5), (4, 4)

(Tier 0, Tier 1) 28LP, 12T (4, 5), (5, 4)} (4, 5), (5, 4)}
Grid Size 28FDSOI, 8T 45 × 45 45 × 45

(#tracks) 28LP, 12T 45 × 45 45 × 45

#Routable
28FDSOI, 8T 387 450

28LP, 12T 463 438

#Unroutable
28FDSOI, 8T 108 45

28LP, 12T 32 12
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“True” refers to a placement being routable, that is, having a label “+1”, and “False” refers to a

placement being unroutable, that is, having a label “-1”.

Table 3.15 shows error metrics (i.e., accuracy, precision, recall and NPV) for training

and test datasets in 28nm FDSOI, 28nm LP and 45nm GS. We observe that the accuracy values

are ≥ 85.9% in the test dataset, that is, our models are able to classify placements as routable

accurately and generalize to unknown and unseen data points. The accuracy is 90% for 28nm LP

because the prediction problem is less difficult than the other two technologies as the number of

unroutable placements are few. Across all technologies and designs, our precision is ≥ 90% and

recall is ≥ 86% which indicates that our models accurately identify the unroutable placements.

That is, there are few false positives and few false negatives in the classification results of the test

dataset. The modeling problem in 28nm LP is relatively easy because only 7% of the data points

are unroutable, that is, the training data are biased towards the routable label of “+1”. However,

our 28nm LP models do not overfit the routable data points and are able to identify five out of 57

unroutable placements correctly in spite of the bias in the training data. Even though the size of

our test dataset is 1.5× the size of our training dataset, our classification accuracy only degrades

from 97.0% in the training dataset to 85.9% in the test dataset in 45nm GS.29

Tables 3.16 and 3.17 show the confusion matrices and error metrics by using only con-

gestion maps from placements, that are typically used by physical design engineers to predict

routability. NPV is a measure of how accurately a model can predict unroutable placements. In

other words, NPV measures the ratio of placements that are truly unroutable to the placements

that are predicted to be unroutable.30 The overhead of incorrectly classifying a routable place-

ment as unroutable is high, as design turnaround time increases and quality of results worsen. In

Section 3.3, we illustrated the poor correlation of #DRCs with placement congestion maps; now

we quantify the error across technologies and designs. We observe that accuracy for 28nm LP

placements is 73.5% with NPV of 13.7% in the test dataset, whereas by using our new parame-

ters the accuracy is 90.4% and NPV is 41.4% for the same test dataset. This shows that our new

parameters enable accurate modeling.

Table 3.18 shows the confusion matrices of our predictions for 3DICs in 28nm FDSOI

and 28nm LP. Table 3.19 shows error metrics for training and test datasets. We observe that

29To test robustness of our conclusions, we performed modeling by interchanging the training and test datasets.
We trained our models using DoE data points from Table 3.12 and tested the models on data points from Table 3.10.
In the training dataset, the worst-case differences in accuracy is 2.4%, precision is 1.1%, recall is 1.6% and NPV is
4.4%, across all technologies. In the test dataset, the worst-case differences in accuracy is 3.3%, precision is 1.6%,
recall is 2.4% and NPV is 9.7%.

30For example, if every placement is always predicted to be routable, then NPV will be zero.
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Table 3.14: Confusion matrices for 2DIC routability prediction for training and test datasets.

Training Testing

Actual Actual

True False True False

28nm
Pred

True 869 11 True 1436 112

FDSOI False 37 460 False 161 391

28nm
Pred

True 829 1 True 682 5

LP False 32 56 False 72 51

45nm
Pred

True 612 11 True 406 29

GS False 16 279 False 66 174

Table 3.15: Classification error metrics for 2DIC training and test datasets.

Dataset Accuracy Precision Recall NPV

(%) (%) (%) (%)

28nm Training 96.5 98.8 95.9 92.5

FDSOI Testing 87.0 92.7 89.9 70.8

28nm Training 96.4 99.8 96.3 63.6

LP Testing 90.4 99.2 90.4 41.4

45nm Training 97.0 98.2 97.4 94.6

GS Testing 85.9 93.3 86.0 72.5

Table 3.16: Confusion matrices for 2DIC routability prediction by using congestion map only
for training and test datasets.

Training Testing

Actual Actual

True False True False

28nm
Pred

True 833 66 True 1076 283

FDSOI False 73 405 False 521 220

28nm
Pred

True 790 11 True 565 26

LP False 71 46 False 189 30

45nm
Pred

True 586 47 True 334 89

GS False 42 243 False 138 114
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Table 3.17: Classification error metrics by using congestion map only for 2DIC training and
test datasets.

Dataset Accuracy Precision Recall NPV

(%) (%) (%) (%)

28nm Training 89.9 92.6 91.9 84.7

FDSOI Testing 61.7 79.2 67.4 29.7

28nm Training 91.1 98.6 91.7 39.3

LP Testing 73.5 95.6 74.9 13.7

45nm Training 90.3 92.6 93.3 85.3

GS Testing 66.3 78.9 70.8 45.2

Table 3.18: Confusion matrices for 3DIC routability prediction for training and test datasets.

Training Testing

Actual Actual

True False True False

28nm
Pred

True 1702 17 True 677 51

FDSOI False 60 381 False 90 102

28nm
Pred

True 1976 16 True 774 18

LP False 79 89 False 127 26

Table 3.19: Classification error metrics for 3DIC training and test datasets.

Dataset Accuracy Precision Recall NPV

(%) (%) (%) (%)

28nm Training 96.4 96.6 99.0 95.7

FDSOI Testing 84.7 88.3 93.0 66.7

28nm Training 95.6 96.2 99.2 84.8

LP Testing 84.7 85.9 97.7 59.1

the accuracy values are ≥ 84.7% in the test dataset, that is, our models are able to accurately

classify placements as routable and generalize to unknown and unseen data points. Across both

technologies and designs, our precision is ≥ 86% and recall is ≥ 93% which confirms that our

models accurately identify the unroutable placements. That is, there are few false positives and

few false negatives in the classification results of the test dataset.
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Results of Experiment 2

In this experiment, our goal is to determine the iso-performance Pareto frontiers of uti-

lization, aspect ratio and number of metal layers for various designs using our models. We pre-

dict Pareto frontiers for both 2D and 3D ICs. Our models can predict “iso-performance” because

we comprehend clock period and timing-related parameters in our modeling, and our results are

actually different from “performance-oblivious” models. We are given only few placements, so

we must interpolate and extrapolate our modeling parameters from these placements to predict

the Pareto frontiers. This is very challenging because the metrics do not scale in a known man-

ner (e.g., unimodal, linear, etc.) when utilization, aspect ratio and the BEOL stack are changed.

Sometimes the P&R tools stop fixing timing or congestion violations at the placement stage

when the utilization is very tight or the BEOL stack has insufficient number of metal layers. To

overcome these challenges, we devise an interpolation and extrapolation method as described in

Section 3.3.1 using machine learning. In the following, we describe Pareto frontier predictions

first for 2DICs and then for 3DICs.

For Pareto frontier prediction of 2DICs, our testing dataset in each technology contains

around 100–300 implementations of Cortex M0 and jpeg x5 designs that span different utiliza-

tions, aspect ratio values and BEOL stack. We choose 20 of these placements per design that are

implemented with the smallest clock period for these designs from Table 3.12.31 We then exe-

cute our method in Section 3.3.1. Obtaining 20 placements is inexpensive – especially, relative

to the cost of a failed routing job or wasting area or wafer cost – from both CPU and wall time

standpoints. Note that we use designs that are not used for training to create the Pareto frontiers,

and we use only information from the placement, that is, no information from routing.32

We set the error upper bound UBerror for each metric to be 20%. We use cubic splines

for the MARS technique and use grid search to determine the best values of hyperparameters

(e.g., the SVM regularization hyperparameter C, error margin ξ and RBF weight for each radius

γ [85]) for SVM with RBF kernel. We create one model for each parameter, e.g., {max, aver-

age} × {pin density, #complex cells, sum of incoming and outgoing edges}, etc. as described

in Section 3.3.1. Figures 3.43(a) and (b) compare average pin density and average #complex

cells, respectively for the 20 placements of jpeg x5 in 28nm FDSOI when using our models to

interpolate or extrapolate parameter values and actual values obtained from the placements. We

31For example, in 28nm FDSOI we choose utilizations {80, 82, 83, 84, 85}% for both designs; the corresponding
numbers of metal layers for these utilizations are {4, 4, 5, 5, 6}. For Cortex M0, we use aspect ratios {1.0, 1.8, 2.0,
2.2}, and for jpeg x5 we use aspect ratios {1.0, 1.2, 1.5, 2.1}.

32Only the ground truth of the Pareto frontiers is obtained from actual routing information of these placements.
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Figure 3.43: Prediction accuracy of our interpolation and extrapolation method in 28nm
FDSOI for jpeg x5 for average (a) pin density and (b) #complex cells.

then create a test dataset using estimates from the models of each parameter, and use our models

(developed using the DoE for training dataset in Table 3.10) to predict routability.

Figures 3.44(a) and (b) show the predicted Pareto frontiers of #metal layers, utilizations

and aspect ratios for Cortex M0 and jpeg x5, respectively in 28nm FDSOI. Figures 3.45(a) and

(b) show the predicted Pareto frontiers of #metal layers, utilizations and aspect ratios for Cortex

M0 and jpeg x5, respectively in 45nm GS. Figures 3.46(a) and (b) show the ground truth Pareto

frontiers of #metal layers, utilizations and aspect ratios, respectively for Cortex M0 in 28nm

FDSOI and jpeg x5 in 45nm GS.33 From Figures 3.44(a) and 3.46(a), we observe that in 28nm

FDSOI Cortex M0 is routable with five metal layers when aspect ratio is 1.8 and utilization is

79%, but our model predicts that the maximum utilization in 78% (i.e., 79% requires six metal

layers). Similarly, from Figures 3.45(b) and 3.46(b), in 45nm GS jpeg x5 is routable with four

metal layers when aspect ratio is 1.5 and utilization is 77%, but our model predicts that no

placement of jpeg x5 is routable with four metal layers at aspect ratio 1.5. Across three foundry

technologies and two designs (that were not used for training), our predictions of maximum

achievable utilization are within 2% of the maximum achievable utilization value in the ground

33The two designs show limited value from the M5 layer because beyond 82% utilization, both horizontal and
vertical routing tracks are required for routability. Adding only M5 does not cure the routability issues.
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truth.

(a) (b)

Figure 3.44: Pareto frontiers of #Metal Layers (y-axis) versus utilization (x-axis) for multiple
aspect ratios using our models in 28nm FDSOI: (a) Cortex M0 and (b) jpeg x5.

(a) (b)

Figure 3.45: Pareto frontiers of #Metal Layers (y-axis) versus utilization (x-axis) for multiple
aspect ratios in 45nm GS: (a) Cortex M0 and (b) jpeg x5.

For Pareto frontier prediction of 3DICs, we use the A3D flow (described in Section 5.1)

as our 3D flow. Figures 3.47(a) and (b) show the ground truth and predicted Pareto frontiers,

respectively of #metal layers, utilizations and aspect ratios for Cortex M0 in 28nm FDSOI. With

aspect ratio of 2.0 and five metal layers, the ground truth indicates that the maximum achievable

utilization is 89%, while, the model prediction is 88%. Figures 3.48(a) and (b) show the ground

truth and predicted Pareto frontiers, respectively of #metal layers, utilizations and aspect ratios

for Tier 0 of leon3mp in 28nm FDSOI. With aspect ratio of 1.0 and six metal layers, the ground
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(a) (b)

Figure 3.46: Ground truth Pareto frontiers of #Metal Layers (y-axis) versus utilization (x-axis)
for multiple aspect ratios of (a) Cortex M0 in 28nm FDSOI and (b) jpeg x5 in 45nm GS.

(a) (b)

Figure 3.47: Pareto frontiers of #Metal Layers (y-axis) versus utilization (x-axis) for multiple
aspect ratios of Tier 0 of Cortex M0 in 28nm FDSOI: (a) ground truth and (b) model

predictions.

truth indicates that the maximum achievable utilization is 90%, while, the model prediction is

88%. These results show that our model predictions are pessimistic by 2% of the maximum

achievable utilization in the ground truth. Our results for Tier 1 are similar to those of Tier 0,

i.e., our model predictions are pessimistic by 1% of the maximum achievable utilization in the

ground truth.

We have also conducted the same 3DIC experiments as above using the “shrunk2D”

(S2D) flow of [196]. Figures 3.49(a) and (b) show the ground truth and predicted Pareto frontiers,

respectively of #metal layers, utilizations and aspect ratios for aes cipher top in 28nm FDSOI.

With aspect ratio of 1.0 and five metal layers, the ground truth indicates that the maximum
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(a) (b)

Figure 3.48: Pareto frontiers of #Metal Layers (y-axis) versus utilization (x-axis) for multiple
aspect ratios of Tier 0 of leon3mp in 28nm FDSOI: (a) ground truth and (b) model predictions.

Aes-S2D 

(a)

Aes-S2D 

(b)

Figure 3.49: Pareto frontiers of #Metal Layers (y-axis) versus utilization (x-axis) for multiple
aspect ratios of Tier 0 of aes cipher top in 28nm FDSOI with S2D flow of [196]: (a) ground

truth and (b) model predictions.

achievable utilization is 86%, while, the model prediction is 85%. Figures 3.50(a) and (b) show

the ground truth and predicted Pareto frontiers, respectively of #metal layers, utilizations and

aspect ratios for Tier 0 of leon3mp in 28nm FDSOI. With aspect ratio of 1.5 and five metal

layers, the ground truth indicates that the maximum achievable utilization is 85%, while, the

model prediction is 83%. Again, these results show that our model predictions are pessimistic

by 2% of the maximum achievable utilization in the ground truth. Our results for Tier 1 are

similar to those of Tier 0, i.e., our model predictions are pessimistic by 2% of the maximum

achievable utilization in the ground truth.
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Leon3mp-S2D 

(a)

Leon3mp-S2D 

(b)

Figure 3.50: Pareto frontiers of #Metal Layers (y-axis) versus utilization (x-axis) for multiple
aspect ratios of Tier 0 of leon3mp in 28nm FDSOI: (a) ground truth and (b) model predictions.

3.3.3 Conclusions

Efficient exploration of the space of utilization, aspect ratio and BEOL stack at iso-

performance is very important for design turnaround time and to achieve good quality of results.

Currently, physical design engineers use congestion maps of P&R tools from the placement stage

to predict routability as measured by the #DRCs. However, our experimental results indicate that

these maps can sometimes be misleading and inaccurate in predicting routability. We present

new modeling parameters that enable us to analyze local hotspots in a placement and achieve

accurate predictions of routability. We also present a new method of using only a few placements

to predict (using our models) the Pareto frontiers of utilizations, aspect ratios and BEOL stacks

at iso-performance. We demonstrate that our modeling methodology is applicable to both 2D

and 3D ICs. Our experimental results indicate that our predictions are pessimistic by 2% of

the maximum achievable utilization across 2D and 3D ICs, three different foundry technologies

and two designs (that were not used for training). Overall, our classification accuracies for

2DICs are 87.0% in 28nm FDSOI, 90.4% in 28nm LP and 85.9% in 45nm GS. We achieve

significant improvements as compared to using only congestion maps; classification accuracies

for 2DICs by using only congestion maps are 61.7% in 28nm FDSOI, 73.5% in 28nm LP and

66.3% in 45nm GS. Future work might include (i) prediction of timing and routability using

heterogeneous pitches of metal layers in the BEOL stack, and (ii) confidence intervals of our

routability predictions.
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3.4 3DIC Benefit Estimation and Implementation Guidance From

2DIC Implementation

As the semiconductor industry nears the end of the CMOS roadmap, product-level ben-

efits from successive technology nodes have decreased due to reliability, variability, power and

thermal constraints. It has been noted above that three-dimensional integrated circuits (3DICs)

have emerged as a promising solution to extend both the use of today’s device and process

technologies, as well as the historical Moore’s-Law trajectory of value scaling. Eventual cost

benefits of 3DIC have yet to be quantified in a mature supply chain and high-volume production

context. However, one consensus value proposition for 3DIC has emerged across both industry

and academia, namely, power reduction benefits (with implied reliability, cost, and user experi-

ence benefits) due to shorter connections that are simply unachievable with 2D integration.

Current 3DICs are based on through-silicon vias (TSVs), but integration density is lim-

ited by the pitch of TSVs, with mass production focusing on memory-on-logic designs with

relatively few vertical connections [193]. Two emerging alternatives to TSV-based 3D inte-

gration are (i) sequential face-to-back (F2B) and (ii) fine-grain face-to-face (F2F) integration

technologies. They enable orders of magnitude higher integration density compared to that of

TSV-based technology, due to the extremely small size of inter-tier (vertical) vias. For exam-

ple, CEA-LETI [18] has pursued a sequential 3D integration using a low-temperature bonding

process. Recent 3DIC design literature [196] [103] has explored implications of fine-grain F2F

integration process. Figure 3.51 illustrates sequential F2B and fine-grain F2F 3DIC integration.

Figure 3.51: 3D integration: gate-level (a) F2B and (b) F2F [196].

To perform fast and accurate implementation-space exploration (ISE), sometimes re-

ferred to as pathfinding [175], chip architects and designers require accurate 3D power estima-
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tion tools. This is especially critical with power-centric 3DIC value propositions. Unfortunately,

power estimation of 3D implementations is challenging because (i) 3D benefit varies with netlist

topologies, constraints and implementation styles, and (ii) there are no “golden” 3D implemen-

tation flows. To our knowledge, no tool today can accurately predict the power benefit of 3D

implementation based on netlist, constraints, and whatever information might be available from

2D implementation. The lack of such an estimation tool results in a large number of iterations

(often, not much better than “throwing darts”) to identify the best set of implementation parame-

ters and/or constraints for 3D implementation. Only after making many attempts in this manner

can the designer gain an inkling of potential 3D implementation benefits for a given block. As

reviewed in Section 2.1.2, no tool currently exists that allows fast and accurate ISE for 3DICs.

In this work, we overcome the above challenges by developing an efficient 3D power

estimation methodology, along with an accurate 3D Power Estimation (3DPE) prediction tool.

3DPE predicts benefit, i.e., the “delta” in power (= reduction from 2D implementation) that

will be achieved by a given 3D flow. We experimentally confirm that 3DPE can estimate 3DIC

power reduction with error of ≤10% across a set of testcases implemented in foundry 28nm

FDSOI technology.

Our 3DPE model development includes a novel exploitation of sensitivities of post-

synthesis and post-place-and-route (SP&R) power to wireload model (WLM) and capacitance

scaling; this yields new parameters that increase modeling accuracy.34 We also perform a novel

stress test of 3DPE by verifying that the model cannot produce unreasonable values of estimated

3D power benefit. While practitioners have struggled with a gap between theoretical limits of

3DIC benefit and observed benefits, our model stress test provides some encouragement in the

form of model parameter combinations that suggest potential large 3DIC power benefits. Ad-

ditional experimental studies confirm the usability of 3DPE in model-guided implementation

(MGI), e.g., for a given design and set of constraints, 3DPE can identify wireload model scaling,

floorplan aspect ratio, target utilization, etc. settings in commercial SP&R flows to obtain min-

imum power in the final 3D implementation. We believe that the resulting modeling capability

can be used for both ISE and MGI across architectural and physical implementation levels of

design. We summarize our main contributions as follows.

• To our knowledge, we are the first to develop an estimation tool that focuses on the 3DIC

value proposition of 3D power benefit. Our 3DPE model is achieved with bounded error

34Our models are based on the sensitivities of power to constraints and design parameters (e.g., mix of threshold
voltage types and wirelength) between 2D and 3D implementations of the same designs, and are specific to the flow
from [196]. The models must be rederived if the tool flow or technology changes.
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machine learning techniques; it predicts delta power benefit of 3DIC with average (resp.

maximum) error of≤0.1% (≤10%) based on netlist, design constraints and 2D implemen-

tation metrics.

• We develop novel estimation model parameters based on the sensitivity of synthesis and

P&R outcomes to wireload model and capacitance model scaling. This is a heretofore

unexplored approach to assessing how RTL and gate-level netlists will react to 3D vs. 2D

implementation contexts.

• We propose novel validations of our 3DPE model, including (i) a “stress test” approach to

verify that no unreasonable values of predicted power benefit can occur, and (ii) applica-

tion of 3DPE in model-guided implementation.

3.4.1 Baseline 2D, Shrunk2D and 3D Flows

As mentioned above, the 3DIC implementation flows of [196] [197] are currently pub-

lished in the research literature. To develop our 3D power estimation model, we use the

“shrunk2D” (S2D) and 3D flows from [196] as proxies for golden 3DIC implementation. Through

extensive interactions with the flow developer [194], we have transplanted the entire flow enable-

ment (including EDA tool versions and PDK versions) and successfully replicated published re-

sults. We have subsequently made several automation-centered flow enhancements: automated

floorplan adjustment to handle multiple block aspect ratios (ARs); AR- and perimeter-aware

pitch selection and placement for pins; instantiation of memories specifically generated from

foundry 28nm FDSOI technology enablement, with relative placements that scale with block

AR; and unified flow and configuration files to enable automation across multiple small and

large testcases. Furthermore, we automate parameter sweeps: clock period, capacitance scaling

factor, Vt types, transparent use of F2F/F2B configuration, aspect ratio, target utilizations, and

design rule constraints (maximum cap load, maximum transition time, etc.)

As described in Section 5.1, we have developed an analytic placement tool, APlace3D,

based on the source code of APlace2D [113] [114], which implements a new “true 3D” objective.

We show below that an APlace3D (A3D) flow can also be used to develop a 3D power estimation

model.
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Table 3.20: Testcases and their post-synthesis results.
Testcase Design Number of Clock % #Buffers/ % #FFs/

Type Name Instances Period (ns) #cells #cells

GPU THEIA 212K 1.6 20 8

CPU OST2 spc (1-core) 347K 1.6 16 22

Modem viterbi 98K 1.0 26 27

Multimedia dct 12K 1.0 33 6

Peripheral aes 10K 0.9 22 5

Engine (PE) (crypto)

3.4.2 Experimental Setup and Results

The open-source designs used in our experiments are described in Section 3.4.2. We

describe our approaches to identify parameters with greatest influence on 3D power benefit in

Section 3.4.2.

Floorplan and Implementation of Testcases

We use a wide range of IPs as our testcases that include building blocks for a modern

mobile SoC. The building blocks could be classified into CPU, GPU, modem, multimedia, and

peripheral engines. For each class among , we use IPs from OpenCores [318] in which the

number of instances in these designs range from 10K to 347K.35 Table 3.20 summarizes the

synthesis results for these testcases. The percentage of buffers from all the cells ranges from

15% to 33% and the percentage of flip-flops ranges from 5% to 27%.

As CPUs and GPUs are two key components in mobile SoCs, we use CPU- and GPU-

like designs with various memory sizes, shapes, we implement the OpenSPARC T2 (OST2) core

[317] spc and THEIA GPU [318] testcases in foundry 28nm FDSOI technology. We overcome

the lack of customized memory sizes and number of read/write ports by choosing memories

with closest word sizes and word numbers, from foundry 28nm memory libraries that cover

the required word sizes and word numbers. To emulate the effects of lower capacitance and

wirelength in 3D, we “engineer” wireload models (WLMs) along with other design parameters

to assess the sensitivity of 3DPE models to WLMs and these parameters.

To assess the sensitivity of 3DPE models to floorplan aspect ratios (AR), we implement

testcases with AR ranging from 0.8 to 1.2. Given a fixed die area, our memory placement

methodology is able to automatically place memory blocks with any floorplan AR in this range as

35The P&R runtime of each 2D or 3D run is 16 hours for spc, five hours for THEIA and dec viterbi (viterbi), and
two hours for aes cipher top (aes) and dct when using two threads on a Xeon E5-2640 server with 128GB memory.
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described in Algorithm 2. Initially, we generate a floorplan with AR = 1.0 and cluster memories

into four groups.36 We then place these groups at four corners of the die area (Line 1). When

the AR changes, we calculate the coordinates of the four corners of the modified die area, and

adjust the placement of each memory group accordingly (Lines 6–10). When there are overlaps

between groups due to AR being too large (or too small), we re-cluster the memories so as to

remove the overlaps (Lines 11–13).

The clustering honors certain basic constraints, e.g., memories are placed face-to-face

with respect to each other and each pair has routing channels in between them. We insert at

least 5µm routing channels in between memories, and apply placement halos to these channels

to avoid routing congestion. In 3D, we use the flow in [196] to place memories based on the

corresponding 2D floorplan. Figures 3.53(a) and (b) respectively show the floorplans of spc and

THEIA in both 2D and 3D.

Algorithm 2 Floorplan scaling with memories
Procedure genFloorPlan
Inputs : AR list, areasram, areapostsyn, util
Outputs : Coordinates of memories for different placement AR

1: Place memories with AR = 1.0, such that four memory clusters (ClusterBL, ClusterBR, ClusterT L, ClusterT R) are at four corners
(BL, BR, TL, TR) of the die

2: area = (areapostsyn/util +areasram)
3: xorig =

√
area

4: yorig =
√

area
5: for each AR ∈ AR list do
6: x =

√
area×AR

7: y =
√

area/AR)
8: Move ClusterBR by (x− xorig, 0)
9: Move ClusterT L by (0, y− yorig)

10: Move ClusterT R by (x− xorig, y− yorig)
11: if There are overlapped memories then
12: Re-cluster memories to remove overlaps
13: end if
14: end for

Parameter Identification

We use the S2D [196] and A3D flows to sweep parameter values shown in Table 4.6

and generate the training and testing datasets. Since S2D is a proxy for 3D, the difference in

power between S2D and 3D is shown to be <5% in [196]. We confirm that this observation

is still true after our modifications described in Section 3.4.1. Figure 3.54, which shows eight

implementations of the dec viterbi decoder across four categories I–IV in Table 3.22, confirms
36The memory clusters ClusterBL, ClusterBR, ClusterT L and ClusterT R are respectively {memories in IFU, FGU},

{memories in MMU}, {non-array part of memories in LSU}, and {array part of memories in LSU, memories in
EXU0, EXU1 and TLU} for OST2; and are respectively {memories in CORE0}, {memories in CORE3}, {memories
in CORE1}, and {memories in CORE2} for THEIA.
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that we can use S2D as a proxy for 3D implementations in our studies. We execute our design

of experiments (DoE) for each testcase using the parameter values shown in Table 4.6. We run

2D, S2D and A3D implementations using these parameter values for each testcase and extract

outcomes of various metrics such as the number of buffers, power, wirelength, cell area, etc. to

generate training data points.

3 
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Figure 3.52: Our overall synthesis and implementation flow is based on the A3D and S2D
flows of [41] and [196], respectively. We generate multiple “engineered” WLMs by scaling

capacitance. Our learning-based models can identify 3D benefits by comprehending the change
in WL with the change in capacitance between 2D and 3D implementations.

Tier 0 Tier 0 

Tier 1 Tier 1 

Figure 3.53: Floorplans of (a) spc and (b) THEIA (GPU) with AR = 1.0. The red-shadowed
memories are partitioned to Tier 0.

Table 4.6 shows the key parameters that influence 3D implementation and can provide

guidance in estimating the percentage delta power from a corresponding 2D implementation.

Figure 3.55 illustrates the impact on 2D and 3D power for three of these parameters – utilization

(UTIL), AR and max fanout (maxFO) – expressed in the figure in units of pF. Certain parameters

such as maxCap do not have significant impact on 3D power, so we do not use these parame-

ters in our modeling. To limit the number of dimensions in our models, we identify the top-10
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Figure 3.54: Comparison of power between S2D and 3D across eight implementations.

parameters based on how significantly these parameters affect percentage delta power. We sum-

marize the percentage change in power with the minimum and maximum parameter values in

Table 3.23. We explore sensitivities of power to capacitance scaling in our DoE by (i) running

a 2D implementation with 0.7× capacitance scaling for all interconnects, and (ii) varying post-

synthesis netlists by changing capacitance using wireload models. We correlate the change in

metrics with and without capacitance scaling from both 2D P&R and logic synthesis as part of

our model derivations.

The modeling problem of predicting percentage delta power in 3D by only observing

metrics from a 2D implementation is nontrivial. Figure 3.55 as well as our experimental results

indicate that 3DIC power is nonunimodal as well as nonmonotonic with different parameters. For

example, a large change (i.e., ∼10×) in the number of buffers in 2D between scaled and non-

scaled capacitances can lead to a relatively small (i.e., <10%) change in 3D power. Based on our

experimental results, the parameters that affect delta power in 3D include WLM scaling, clock

period, mix of Vt types, AR, UTIL, maxTran, maxFO, maxCKskew, maxCKlat and maxCKtran.Top-10 Influences 
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Figure 3.55: Illustration of implementation parameter impact on 2D (blue lines) and 3D power
(red lines).
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Table 3.21: Key parameters used by 3DPE models.
Design metric Symbol Description

Vt types Vt Mix of threshold voltage libraries =

{RVT, RVT & LVT}

Aspect Ratio AR {1.0, 1.2, 1.5}

Utilization (%) UTIL {50%, 60%}

Max transition maxTran {50%, 70%} of max tran in library

Max capacitance maxCap {50%, 100%} of max cap in library

Max fanout maxFO {5, 10}

Max clock skew maxCKskew {0ps, 50ps}

Max clock latency maxCKlat {500ps, 2500ps}

Max clock transition maxCKtran {20%, 30%} of clock period

Corners CORNER PVT = {TT, 0.92V, 25oC}

Analysis = {setup}

WLM scaling WLMSC Capacitance scaling = {1.0, 0.7, 0.33}

Table 3.22: Implementations used in S2D vs. 3D comparisons.
Category Clock Period Util AR Max Cap Max Tran Max FO

I 1.0ns 65% {1.8, 1.0} 450pF 260ps 10

II 1.5ns 65% 1.0 450pF {260, 112}ps 10

III {1.5, 1.0}ns 65% 1.0 450pF 112ps 10

IV 1.0ns {65%, 55%} 1.0 450pF 260ps 10

Table 3.23: The percentage difference in power with the extreme points.

UTIL AR maxCap maxTran maxFO

2D 2.2% 4.4% 3.0% 0.4% 4.0%

S2D 1.5% 3.4% 0.0% 0.6% 2.3%

Machine Learning Methodology

We develop a model to predict percentage delta power between 2D and 3D implementa-

tions of a given testcase. From the post-synthesis and post-P&R results of the testcase, we obtain

the following parameters. (i) Post-synthesis – number of standard cells, number of buffers and

inverters, area of standard cells, internal and leakage power of buffers37 and non-buffer cells,

and net switching power with capacitance in wireload models set to multiple values, and (ii)

Post-P&R – number of standard cells, number of buffers and inverters, area of standard cells,
37In the following, we generically refer to buffers and inverters as “buffers”.
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internal and leakage power of buffers and non-buffer cells, net switching power with capacitance

factor set to 1.0× and 0.7×, and wirelength.

The total power in 2D (resp. 3D (S2D and A3D)) implementations is the sum of internal,

leakage and net switching power values. For each testcase, we calculate the total power in mW.

The S2D implementations are used as a proxy for 3D implementation in our modeling. Table

3.24 shows the “ground truth” data for deltas in wirelength, number of buffers, and power for

S2D versus 2D implementation according to our DoE and testcases (Sections 3.4.2 and 3.4.2).

Table 4.6 shows examples of the range of values of our metrics. We create a total of three datasets

for modeling – training, validation and testing. Out of all the data points we generate using 2D,

S2D and A3D P&R flows, we use ∼40% for training, ∼20% for validation, and the remaining

∼40% for testing and reporting errors.

We use Artificial Neural Networks (ANN) as our modeling technique, via the in-built

MATLAB vR2013a toolbox. We use nonlinear modeling because the percentage delta power is

non-monotone with respect to the parameters. The complex interactions between parameters are

determined automatically by the ANN technique using hidden layers and weights. The hyperpa-

rameters [85] we tune are the number of epochs and the number of neurons per hidden layer. We

use two hidden layers – one for input and one for output. We vary the number of epochs from

1000 to 5000 in steps of 500 and the number of neurons per hidden layer from one to twice the

number of modeling parameters k. We increase accuracy of our models by choosing appropriate

hyperparameters such that the range of errors is within a bound. To achieve bounded errors, we

search for the number of epochs and the number of neurons that satisfy the following two crite-

ria: (i) the ratio of mean square errors (MSEs) in the training and the validation sets is ≤5, and

(ii) add a large multiplicative penalty to suppress outliers (we use 1000×) whenever the range of

errors is greater than the bound (we use ∼10% as our error bound and call these data points as

outliers). We also perform five-fold cross-validation when training the model. Applying these

criteria enables us to develop models that are not overfitted and can generalize to parameter val-

ues that are not present in the training dataset. Figure 3.56 illustrates our modeling flow, which

is executed five times due to five-fold cross-validation.38

We now present our experimental studies. We discuss (i) accuracy results of our 3DPE

tool , (ii) robustness and scalability of the 3DPE models, and (iii) model-guided implementation

results.
38The runtime to train our models is four hours on an Intel Xeon E5-2640 2.5GHz server, using eight threads. This

is a one-time cost.
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Figure 3.56: Illustration of our modeling flow.

Table 3.24: Experimental results of delta outcomes between 2D and S2D.

2D - S2D (2D - S2D) / 2D × 100%

Min Max Mean Min Max Mean

∆WL (m) 0.03 5.65 1.37 1.95% 35.99% 29.71%

∆(#buf + #inv) 0.01K 25K 3.6K 0.40% 10.41% 5.05%

∆Total power (mW) -1.40 9.10 2.29 -1.39% 12.72% 3.71%

Bounded-Error Models

We create three separate models to predict percentage delta (3D (S2D and A3D), relative

to 2D) for each power component – internal, switching and leakage. We use the predicted

values from these models to predict total power in 3DPE. To predict percentage delta internal

power, we use seven parameters: (i) internal power from 2D; (ii) ratio of the number of buffers

to the total cell count; (iii) delta internal power in 2D with and without capacitance scaling

of 0.7× in the technology capacitance tables; (iv) delta internal power in the post-synthesis

netlist with and without capacitance scaling by using wireload models (WLMs); (v) the ratio

of utilization to cell area; (vi) ratio of memory area to total cell area; and (vii) AR. To predict

percentage delta switching power, we use six parameters: (i) switching power from 2D; (ii) the

ratio of total wirelength (WL) in 2D to utilization; (iii) delta WL; (iv) delta switching power

in 2D with and without capacitance scaling of 0.7× in the technology capacitance tables; (v)

delta switching power in the post-synthesis netlist with and without capacitance scaling by using

wireload models (WLMs); and (vi) AR. To predict percentage delta leakage power, we use three

parameters: (i) leakage power from 2D; (ii) the ratio of low-Vt cell area to total cell area; and

(iii) the ratio of memory area to total cell area.
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Figure 3.57 shows our prediction for percentage delta power across our testcases using

the S2D flow. The solid black line in the middle indicates the line when there is perfect corre-

lation between actual percentage delta power and predicted percentage delta power. The upper

and the lower solid lines define the maximum and minimum errors, respectively. Across our

testcases, the worst-case error of our estimations is ∼4.8%. Figure 3.58 shows our prediction of

percentage delta power across our testcases using the A3D flow. The upper and lower solid lines

respectively indicate the maximum and minimum errors. Across our testcases, the worst-case

error of our estimations is ∼5.04%. The histogram of error distribution in Figure 3.59 shows

that only a few outliers are responsible for the maximum and minimum errors. The average

error from our total power model is ∼-0.1%.39

4.80% -4.71% 

Figure 3.57: Predicted % delta power vs. actual % delta power between 2D and S2D.

Testing of Model Implications

As the time to generate each data point using 2D and 3D flows can be very large (e.g.,

up to 16 hours for one data point of spc), it is practically impossible to train models with a large

range of parameter values. Our models should be scalable and generalizable due to use of cross-

validation [85] in our methodology. However, we go a step further with a novel “stress test of

our 3DPE models. That is, we explicitly test whether the models are capable of returning an

39The average (resp. maximum) of absolute errors in our internal, switching and leakage power models are respec-
tively -0.42% (resp. 10.9%), -0.07% (resp. 5.6%) and -0.61% (resp. 2.9%). The testing time is ∼one second per
every 500 data points.
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Figure 3.59: Model error distribution of % delta power.

unlikely or unreasonable prediction. (E.g., if it is possible for our models to predict 90% power

benefit from 3DIC, this would cast doubt on the models.)40 We perform stress testing on our

total power model using the following methodology. We vary the following 10 parameters in

our models: (i) internal, switching and leakage power values in 2D (K = 1, K = 2, and K = 3);

(ii) total WL in 2D (K = 4); (iii) utilization (K = 5); (iv) number of cells (K = 6); (v) total cell

area (K = 7); (vi) number of buffers (K = 8); (vii) ratio of memory area to cell area (K = 9);

and (viii) maximum transition (K = 10). Table 3.25 shows the distribution of these parameters

extracted from our training dataset. We execute the following steps.

40Our sanity-check approach can be a useful addition to the metamodeling works that have become very popular
in the recent IC CAD literature.
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• For each parameter i, where i = 1,2, ...,10, we obtain the mean (µi) and standard deviation

(σi) from the training dataset.

• We construct a test dataset by assuming that each parameter follows a Gaussian distribu-

tion with mean and standard deviation respectively indexed into values from the sets µ′i
and σ′i, where

µ′i = {µi,2µi, ...,10µi}, and σ′i = {σi,2σi, ...,10σi}.

• We index each of these values from sets µ′i and σ′i as s = {1,2, ..., |µ′i|}, and generate a

value for each parameter xi = µ′i(s)+ j×σ′i(s), with j varying from -3 to +3 in steps of

0.2.

We generate a total of 434 test data points for the 10 tuples of parameters. Figure 3.60(a)

shows a histogram of percentage predicted delta power. The minimum value is 0.08% (the cor-

responding bin is 2.17%) and the maximum value is ∼125% (the corresponding bin is 123.3%).

The weighted mean of the predicted percentage delta power values is 9.5%. For 14 test data

points, our models predict over 100% percentage delta power. These data points have the fol-

lowing attributes which are not practically realizable: (i) the ratio of cell area to the number of

cells is larger than the area of the largest cell in the technology library,41 that is, the number of

cells, utilization and the cell area are mismatched; (ii) the ratio of wirelength to the number of

cells is less than 50µm, that is, the wirelength and the number of cells are mismatched; and (iii)

the maximum transition and/or the maximum fanouts are more than 10× the maximum value in

the technology libraries, that is, constraints are mismatched. Figure 3.60(b) shows a histogram of

percentage delta power benefits for data points that are realizable for practical netlists and do not

violate constraints with respect to the technology libraries. The maximum possible percentage

delta power for these data points is ∼39%, which indicates that our model predictions are close

to the values of 3DIC power improvements reported in [136]. Recently published studies by

Chan et al. [38] report the maximum possible percentage 3D power benefit to be 36% using an

“infinite” dimension methodology. This is another possible confirmation that 3DPE predictions

are not unreasonable.

Model-Guided Implementation

An “ultimate” goal of our 3DPE modeling work is to enable fast and accurate design-

and implementation-space exploration without actually having to implement a testcase either in
41In our 28nm FDSOI libraries, the size of the largest cell is 4.4µm2. The inter-buffer distance is ∼120–150µm

[35]. The max transition is 375ps and the max fanout is 20.
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Table 3.25: Distributions of parameters for stress testing.
K = 1 K = 2 K = 3 K = 4 K = 5 K = 6 K = 7 K = 8 K = 9 K = 10

(mW) (mW) (mW) (m) (%) (×103) (mm2) (×103) (ps)

µ 71.45 34.97 0.33 4.49 0.56 134.51 0.18 186.48 0.16 200

σ 67.90 30.89 0.45 5.88 0.13 141.77 0.20 286.65 0.22 56
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Figure 3.60: Percentage predicted delta power distributions (a) when practically unrealizable
data points are included and (b) when only practically realizable data points are included.

2D or 3D. Toward this end, we explore whether our models can provide guidance to designers

as to which classes of testcases are amenable to what kinds of 3D benefits. We conduct two

experiments to demonstrate how 3DPE (developed using the S2D flow) can provide guidance to

designers.42

• MGI-I – To predict the wireload model (WLM) scaling at synthesis that can lead to the

smallest post-P&R power in 3D for a testcase.

• MGI-II – To use a low-utilization (small tool runtime) trial 2D implementation to predict

the % delta power of a high-utilization (large tool runtime) 3D implementation.

Experiment MGI-I. The goal of this experiment is to create a “properly 3D-aware” netlist by

scaling WLM capacitances that can deliver the smallest power in 3D. We create eight WLMs

with capacitances {1.0, 0.85, 0.70, 0.60, 0.50, 0.45, 0.40, 0.33, 0.3}pF. We use the aes testcase,

set clock periods to {0.8, 0.9, 1.0}ns, run synthesis and S2D flow with netlists synthesized with

42Note that although we use one testcase to demonstrate MGI-I and MGI-II, the conclusions drawn are not limited
to a specific testcase.
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the scaled WLMs, and then obtain 27 data training data points. As part of our model training

described in Section 3.4.2, we comprehend WLM capacitance as a parameter. We now create

a test dataset in which WLM capacitances are varied in steps of 0.05pF and choose the WLM

Wbest,model that achieves the largest delta power from our models. We run synthesis and S2D

flow with WLM Wbest,model and quantify the cost of misprediction with the WLM Wbest,actual that

delivers the minimum 3D power after implementation using the S2D flow. Figure 3.61 shows

how 3D power changes (albeit not too significantly) with WLM capacitance for the aes testcase.

S2D always uses 1.0pF, but the minimum power is achieved with WLM capacitance of 0.45pF,

and the model predicts 0.75pF. The difference in S2D vs. our models is ∼1mW or ∼5%. We

see that WLM scaling can achieve smaller 3D power, and that 3DPE models can guide the

implementation to achieve within ∼1.62% of the minimum power.
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Figure 3.61: Percentage delta power benefits between actual, model and S2D implementations.

Experiment MGI-II. The goal of this experiment is to predict 3DIC power benefits (relative

to 2DIC implementation) when the standard cell utilization is higher than the utilizations used

in training the models. High utilizations in large designs such as THEIA incur large runtimes of

around eight hours per data point. On the other hand, low-utilization runs can be fast but have

smaller 3D benefit. Table 3.26 shows 3DPE modeling accuracy for different combinations of

aspect ratios, clock periods and utilizations. The actual % delta power ranges from 1.82% to

2.88%. We implement the testcase with these parameters to quantify the modeling error. 3DPE

can very accurately guide high-utilization design-space exploration because it is trained with

small testcases (e.g., aes and dct) at high utilization and is able to generalize to larger testcases.
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Table 3.26: Predicted vs. Actual 3D power with high utilization.

Clock Period AR UTIL Predicted % Actual %

(ns) (%) Delta Power (mW) Delta Power (mW)

1.60 1.2 40 2.07 1.82

1.60 1.0 42 1.97 2.14

1.80 1.2 45 2.15 2.46

1.80 1.0 48 2.18 2.88

3.4.3 Conclusions

It is difficult to quantify the benefits of 3DIC over a corresponding 2DIC implementa-

tion for arbitrary designs because no golden 3DIC flow currently exists. Yet, estimating 3DIC

benefits, particularly for the power reduction value proposition, is a critical open issue. We de-

velop a new prediction tool, 3DPE, to predict percentage delta power benefits of 3DIC relative

to 2DIC implementation. Such a tool is useful for designers because it filters out design blocks

that can achieve large power benefits in 3D and performs fast design-space exploration to deter-

mine various 3DIC implementation parameters. 3DPE consists of internal, switching, leakage

and total power models. We have developed each of these models using two separate academic

3D flows – the S2D flow of [196] and the A3D flow (described in Section 5.1), applying a novel

modeling technique that includes WLM scaling, influential parameter identification and bounded

errors. The generated models are accurate, with worst-case errors within 5%. We furthermore

present novel applications/validations that include “stress test” and “model-guided implementa-

tion” (MGI). We demonstrate how 3DPE can be used in MGI to predict power benefits of blocks

that have high utilization and long runtimes, in a fast and accurate manner.
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Chapter 4

Improved Accuracy of Electrical

Modeling and Enablement of Basic

Physical Design Optimizations

This chapter first presents two new “big data” approaches to the timer correlation prob-

lem. In the first approach, we develop a machine learning-based tool, Golden Timer eXtension

(GTX), to correct divergence between timers in flip-flop setup time, cell arc delay, wire delay,

stage delay, and path slack at timing endpoints. We propose a methodology that allows us to

apply GTX to two commercial timers. We then evaluate scalability of GTX across multiple de-

signs and foundry technologies / libraries, both with and without signal integrity analysis. In

our second approach to the timer correlation problem, we extend GTX to develop predictors of

timing in signal integrity (SI) mode based on timing reports from non-SI mode. Timing analysis

in non-SI mode is faster and the license costs can be several times less than those of SI mode.

We propose electrical and logic structure parameters that affect the incremental arc delay/slew

and path delay (i.e., the difference in arrival times at the clock pin of the launch flip-flop and the

D pin of the capture flip-flop) in SI mode, and develop models that can predict these SI-aware

delays. The third work in this chapter describes a methodology to develop accurate models of

post-routing optimization of signal delays at multiple signoff corners, so as to enable a new

optimization of clock skew variation across corners.

117
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4.1 A Deep Learning Methodology to Proliferate Golden Signoff

Timing

Accurate timing closure is a critical step in signoff flows of all semiconductor compa-

nies [176] and can consume up to 60% of design time [77]. Multiple static timing analysis (STA)

tools exist today and different companies adopt different tools as “golden” or the best-in-class

STA tool depending on their requirements and product quality standards. According to the an-

alyst firm Gary Smith EDA [228], EDA vendors such as Synopsys [342], Cadence [288], CLK

Design Automation [290], Incentia Design Systems [300] and Mentor Graphics [312] provide

STA and signal integrity analysis tools for use in IC design. These tools typically have high

license fees and long runtimes, and they invariably diverge in their timing reports – even though

each is well-calibrated to the latest commercial circuit simulators and “qualified” for signoff at

leading foundries. Owing to cost and budget constraints, design teams may have limited or no

access to a particular “golden” timing tool, but may be interested in comparing the divergence in

timing reports between the timing tool they use and that golden tool. The ability to correlate with

another (golden) timing tool helps design teams understand if they have overdesign or underde-

sign, i.e., when their timing tool’s reports are respectively pessimistic or optimistic compared to

the golden tool’s reports. Another use model may be to estimate, based on the timing reports of

design implementation tools, how far the implementation is from signoff after each optimization

loop (timing-driven placement, congestion-aware routing, leakage reduction, etc.).

We use “gt1-gt2” (that is, “golden tool 1 to golden tool 2”) to refer to the problem of

correlating two signoff timing tools. We estimate the timing reports of one tool based on the

reports of another tool. The correlation problem is extremely complex because:

• tools can suffer from the complexity of millions of lines of black-box code;

• tools can diverge from published user documentation [125], and maintain implementation

“errors” for legacy reasons;

• discrepancies between tools change with releases [222] (typically 2× per year for mature

tools from major EDA providers);

• tool licenses explicitly prohibit benchmarking and reverse-engineering of internal algo-

rithms; and

• the correlation problem is seemingly “unbounded”, as the space of possible timing paths,
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slew times, multiple-input switching events, coupling effects on delay, etc. is essentially

infinite.

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

-0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1

T 2
 P

at
h

 S
la

ck
 (

n
s)

 

T1 Path Slack (ns) 

110ps 

Ideal Slope = Perfect Correlation 

(a) T1–T2.

-0.15

-0.13

-0.11

-0.09

-0.07

-0.05

-0.03

-0.01

-0.15 -0.13 -0.11 -0.09 -0.07 -0.05 -0.03 -0.01

T 2
 P

at
h

 S
la

ck
 (

n
s)

 

T1 Path Slack (ns) 

100ps 

(b) T1–D1.

Figure 4.1: Path slack discrepancies.

As reviewed in Section 2.2, no existing tool or methodologies correlate two signoff tim-

ing tools. The cost of leaving the gt1-gt2 problem unsolved grows as embedded processor cores

reach 3GHz frequencies in 20nm and 16/14nm designs: miscorrelations of >100ps in timing

slack correspond to discrepancies of multiple (3 – 4) logic stages at these advanced technol-

ogy nodes and can strongly impact power and/or area tradeoffs [16] [34] [77]. Figures 4.1(a)

and 4.1(b) respectively show examples of 110ps and 100ps timing miscorrelations between two
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leading commercial signoff timing tools T1 and T2, as well as between T1 and a commercial de-

sign implementation tool D1. According to industry experts, reasons for miscorrelation include

the use of multiple engines within tools for optimal accuracy and runtime as well as the effects

of net length and long waveform tail [68] [181] [232]. Our premise is that the gt1-gt2 prob-

lem, while extremely complex, is still treatable as a finite problem that is amenable to big-data

mindsets as has been recently seen in highly challenging applications such as natural language

processing [295] [331]. Specifically, we identify appropriate modeling parameters and develop

a tool, GTX (Golden Timer eXtension), using well-known machine learning techniques43 to cor-

rect44 setup time, cell delay, wire delay, stage delay, and path slack divergence between tools.

Our methodology is properly considered to be deep learning-based because the models in GTX

are hierarchical, e.g., the output of the cell and wire delay models are input to the stage delay

model [216]. Our modeling goals for each model are to (1) minimize the sum of squared errors,

and (2) minimize the maximum range of errors. We achieve:

• Correlation of path slack at timing endpoints45 between two tools within a range of <30ps

for designs implemented in 28nm FDSOI and 45nm GS foundry libraries using NLDM

delay tables;

• Strong correlation results independent of whether signal integrity (SI) and on-chip varia-

tion (OCV) are enabled or disabled (non-SI, non-OCV); and

• Scalability and portability of GTX to design projects in new foundry libraries.

Our main contributions in this section are summarized as follows.

• We develop GTX by identifying appropriate modeling parameters, and by exploiting big-

data mindsets and machine learning techniques to correct timing divergence between tools.

To the best of our knowledge, our work is the first to attempt timing correlation with a big-

data approach.

• Our models to correlate path slack between timing tools are accurate across multiple tech-

nology nodes and designs. In non-SI mode, our models reduce the range of divergence in

path slack between tools from 32.5ps to 5.9ps (i.e., 5.5× reduction) in 28nm FDSOI. In SI

mode, our models reduce the range from 139.3ps to 21.1ps (i.e., 6.6× reduction) in 45nm

43Detailed descriptions of the machine learning techniques used in this work can be found in [85].
44GTX uses the timing reports of T1 to generate timing values that reduce divergence from T2. Of course, GTX

can also perform the reverse, i.e., use timing reports of T2 to reduce divergence from T1.
45We refer to path slacks at timing endpoints as, simply, path slacks.
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GS. We demonstrate that our method applies to small as well as relatively large (leon3mp)

designs.

• We demonstrate that GTX can reduce the number of outliers (from 407 to 26, i.e., 16×
reduction, in the example we study) by incrementally modifying models when new designs

are added.

• GTX can be applied to multiple designs, implementation flows, and technology nodes. We

demonstrate the generality of GTX with two use cases – correlating two signoff tools, and

correlating one signoff tool with a design implementation tool.

4.1.1 Methodology

We now describe our methodology to develop flip-flop setup time, cell, wire, and stage

delay and path slack models for GTX. We describe parameters used in the models, and then the

machine learning methodology used to develop these models.

Parameter Selection

Signoff timing tools typically differ in path slack due to discrepancies in cell, wire and

stage delays. Further, tools differ in their calculations of rise/fall delays across each input-to-

output pin arc of cells. Figures 4.2 – 4.5 illustrate these discrepancies between two leading

commercial signoff timing tools T1 and T2. Figure 4.5 in particular highlights the discrepancies

between tools across a single MUX21 cell.

Path slack is calculated from the required setup time at the capture flip-flop of the path

and from stage delays; these in turn are calculated from cell and wire delays in each stage. Fig-

ures 4.2 and 4.3 show that one tool (T1) can be optimistic in cell delay reports and pessimistic

in wire delay reports as compared to the other tool (T2). There is a “canceling” effect for stage

delays [125]. However, the “canceling” effect does not eliminate stage delay discrepancies be-

tween tools, as illustrated in Figure 4.4.

Table 4.1 lists all parameters used in our models. Note that cell and wire delays include

incremental values for SI mode analysis.

Modeling Flow for GTX Models

To minimize divergence and achieve close correlation between signoff timing tools, we

use a big-data approach and machine learning models. We do not reverse-engineer tools as li-
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150ps 

Figure 4.2: Cell delay discrepancy.

 

170ps 

Figure 4.3: Wire delay discrepancy.

censes prohibit us from doing so; reverse-engineering can also become intractable because each

tool implements millions of lines of legacy and black-box code. Instead, we develop machine

learning-based models for GTX to correct the divergence in setup time, cell, wire, and stage

delays and apply these models to fit path slack between two STA tools. In the following, we

use the latest versions of two widely used commercial signoff tools, and show how reports from

a tool T2 can be used to develop models that estimate a tool T1’s reports. Our methodology is

applicable to any pair of signoff or design implementation tools that can perform STA.
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Figure 4.5: Pin arc, rise/fall discrepancy.

In non-SI mode, divergence between tools is typically smaller for wire delays than for

cell delays, so we develop only a cell delay model.46 In SI mode, however, wire delay divergence

between tools can be significant due to differences in handling of crosstalk effects, so we model

both cell and wire delays. Therefore, in both non-SI and SI modes we develop three (path slack,

setup, and cell delay) models; additionally, in SI mode, we develop wire and stage delay models.

46Our experimental results indicate that by introducing wire delay models in non-SI mode, GTX results do not
change significantly.
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Table 4.1: Parameters reported by each tool in both SI and non-SI modes.

Parameter Meaning Mode

Ce f f Effective load capacitance SI, non-SI

Ccoup Total coupling capacitances SI

Cw Wire ground capacitance SI, non-SI

Rw Wire resistance SI, non-SI

dtr,c,i Cell input slew SI, non-SI

dtr,c,o Cell output slew SI, non-SI

dc Cell delay SI, non-SI

dw Wire delay SI, non-SI

dstg Total stage delay SI, non-SI

dsu,ff Flip-flop setup time SI, non-SI

dslk,p Path slack SI, non-SI

Figure 4.6 shows the hierarchy of the five models in GTX and why we refer to our methodology

as “deep”. We use hierarchical rather than flat modeling for improved correlation and decreased

range of divergence. Combining individual models of cell delay, wire delay, and setup time in an

additive manner to estimate path slack can result in errors being added up as well. For example,

Kahng et al. [125] use additive wire delay models that result in large divergence in path slack.

Therefore, they invoke the golden timer at regular intervals to correct the path slack. Hierarchi-

cal modeling prevents errors being added linearly by applying an additional layer of modeling

that provides a better fit to timing estimates. In the following discussion, T1(·) and T2(·) refer to

values of parameter (·) respectively reported by T1 and T2.

Setup time. Our experiments in 28nm FDSOI indicate that flip-flop setup time reports be-

tween timing tools can diverge by up to 17.5ps. To reduce the divergence between tools, we

model setup time as

T̂1(dsu,ff) = f (T2(dsu,ff,dtr,c,i)) (4.1)

where T̂1(dsu,ff) is the predicted T1 setup time, T2(dtr,c,i) refer to the T2-reported input slews at the

D and clock pins of the capture flip-flop, and f (·) is the modeling function. These parameters

correspond to those used to index the NLDM setup time tables in foundry libraries.
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Figure 4.6: Hierarchical GTX models. The models within the dotted lines are used only in SI
mode.

Cell delay. Our 28nm FDSOI studies also indicate that tools can differ in reported cell delays by

>300ps (under extreme load and slew conditions).47 Furthermore, the delay divergence between

tools can vary across different input-to-output pin arcs, especially in complex cells such as AOI

and MUX. In addition, tool reporting for rise and fall delays can diverge significantly. Figure 4.5

illustrates these divergences for rise and fall delays of D0, D1 and S0 pins of a 2:1 MUX. With

these considerations, we develop rise and fall delay models of each input-to-output pin arc of

each cell in the design as

T̂1(dc) = f (T2(dc),LUT(dc)) (4.2)

where T̂1(dc) is the predicted T1 cell delay, and LUT(dc) is the cell delay determined using

linear interpolation of NLDM delay lookup tables (LUTs) of a given cell [125]. The inputs

for LUT interpolation are T2(Ce f f ) and T2(dtr,c,i) + ∆Slew, where ∆Slew is the upstream slew

correction between the tools. We use dtr,c,i and Ce f f because these are the indices of the NLDM

delay and slew lookup tables in the foundry timing libraries. We use ∆Slew to correct upstream

slew differences between the tools because our experiments indicate that certain tools always

propagate the worst slew in path-based analysis mode. We model ∆Slew as

∆Slew = (α(LUT (dtr,c,o)+β)−T2(dtr,c,o) (4.3)

where LUT (dtr,c,o) is the output slew of the upstream cell calculated using linear interpolation

47Simulations with HSPICE [339] indicate that T1 is accurate to within 0.02ps of HSPICE results, whereas T2
diverges more substantially from HSPICE.
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between the library LUTs based on the T2-reported dtr,c,i and Ce f f . α and β are regression coef-

ficients determined by fitting T2(dtr,c,o) of the upstream cell to T1(dtr,c,o).

Wire delay. We model wire delay, using a similar set of parameters as in [125], as

T̂1(dw) = f (T2(dw,dtr,c,o),Rw · {Cw,Ce f f ,Ccoup}) (4.4)

where T̂1(dw) is the predicted T1 wire delay and the parameters Rw · {Cw,Ce f f ,Ccoup} represent

delay due to different capacitances.

Stage delay. We model stage delay, using a similar set of parameters as in [226] and [240], as

T̂1(dstg) = f
(

T2(dstg), T̂1(dw,dc)
)

(4.5)

where T̂1(dstg) is the predicted T1 stage delay.

Path slack. We develop two path slack models for non-SI and SI modes. The models are differ-

ent because in SI mode, wire and stage delay models are required to correct large discrepancies

in path slack as described above. Our path slack model in non-SI mode is

T̂1(dslk,p)S̃I = f
(

T2(dslk,p,
σ

µ
(dw)),

σ

µ
(T̂1(dc,dsu,ff))

)
(4.6)

where T̂1(dslk,p)S̃I is the predicted T1 path slack in non-SI mode and σ

µ (·) is the coefficient of

variation of the parameter (·). Our path slack model in SI mode is

T̂1(dslk,p)SI = f
(

T2(dslk,p),
σ

µ
(T̂1(dw,dc,dstg,dsu,ff))

)
(4.7)

where T̂1(dslk,p)SI is the predicted T1 path slack in SI mode.

Besides coefficient of variation, we also try two other normalization techniques, stan-

dard score [85] and variance-to-mean ratio [85]. We experimentally observe that coefficient of

variation and standard score give similar results because they determine the contribution of each

wire, cell, or stage delay to the overall delay of all wires, cells, or stages in a path. Variance-to-

mean ratio, on the other hand, cannot determine the contribution of an individual (wire, cell, or

stage) delay to the corresponding total delay in a given path; hence, it is less accurate.
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Incremental modeling. Large product organizations often tape out multiple designs in the

same technology. A new design can, conceivably, use cells and/or wiring configurations that are

“out of scope” for the current fitted models. Such “new” cells/wires can introduce divergence

in timing reports.48 To mitigate these divergences, we propose an incremental modeling flow as

follows.

• Step 1. Add any observations that result in divergence in timing of more than a threshold

value (e.g., 10ps) to the existing training sets of each of the GTX models.

• Step 2. Re-train GTX models with the training sets from Step 1.

• Step 3. Test the updated models on all data points from the new design.

4.1.2 Experimental Setup and Results

We now present validation of GTX and results of our experiments. First, we describe our

design of experiments, including descriptions of designs used and our flow to collect training,

validation and testing data for modeling. Second, we conduct four experiments to assess and

measure performance of GTX. We use two leading (foundry-qualified) signoff timing tools T1

and T2, and a leading design implementation tool D1, in our experiments. All tool versions are

2013 releases.

• Experiment 1. Correlate tools T1 and T2 in non-SI mode.

• Experiment 2. Correlate tools T1 and T2 in SI mode.

• Experiment 3. Correlate tools T1 and D1 in SI mode.

• Experiment 4. Validate the incremental modeling flow on a new design with many out-

liers.

Design of Experiments

We use real-world designs as well as artificial circuits in our experiments. Real-world

designs include the leon3mp multi-core processor from Aeroflex Gaisler AB [306], and

aes cipher top, wb dma top and jpeg encoder from OpenCores [318]. We generate artificial

training circuits to finely control various aspects of a timing path to verify robustness of our

48If new cells are not introduced in a design, incremental modeling is not required for GTX.
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methodology.49 We synthesize all designs with 45nm bulk triple-Vt and 28nm FDSOI dual-Vt

foundry libraries. We perform hierarchical synthesis in 45nm GS and flat synthesis in 28nm

FDSOI to demonstrate the scalability of GTX across different flows and foundry technologies.

We generate Verilog netlists, Synopsys Design Constraints (SDC) [21], and Standard Parasitic

Exchange Format (SPEF) [333] files as inputs to timing tools.

Real-world designs. Table 4.2 shows the post-layout number of standard-cell instances for each

design implemented in 45nm GS and 28nm FDSOI foundry libraries. In 45nm GS, we use less

strict constraints on timing, maximum fanouts, and transition, and we restrict tools from using

cell sizes X0, X1, and ≥ X20.50 However, in 28nm FDSOI we allow the tools to use all cells

from the library, and apply tight timing constraints but relaxed maximum fanout and transition

constraints.51

Table 4.2: Number of instances in real-world design.

# Instances (clock period in ns)

Testcase 45nm GS 28nm FDSOI

aes cipher top 18818 (1.0) 16688 (0.8)

wb dma top 3641 (0.5) 2349 (0.5)

jpeg encoder 46702 (1.25) 53641 (0.67)

leon3mp – 750854 (1.2)

Artificial training circuits. We develop generators using custom Tcl scripts to finely control

various aspects of a timing path as listed below.

• Path – #stages and #fanouts.

• Cell – input slews, types, sizes, and Vt flavors.

• Wire – parasitics (Rw, Cw, Cc), #segments, and aggressors.

49We observe that synthesis and implementation tools tend to construct designs that occupy the middle region of
delay tables. We create artificial training circuits to define the extreme ranges of timing discrepancies so as to create
robust and scalable models.

50We observe that these cell sizes are known for being problematic in designs; some designers commonly use
similar restrictions.

51In 45nm GS, the maximum fanout constraint is set to 20 and the maximum transition time is set to one-sixth of
the clock period. In 28nm FDSOI, these values are respectively 40 and one-eighth of the clock period.
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CPU time needed to generate the Verilog netlist, SDC, and SPEF files is ∼6s (indepen-

dent of the number of fanouts and stages) on an Intel Xeon E5-2640 2.5GHz server. The size of

each of these files is ∼4KB for a circuit with one stage and a fanout of one. The size of SPEF

files can potentially be large (e.g., 232KB for a circuit with 60 stages and four fanouts in each

stage) because we do not implement name mapping.

Each training circuit consists of a chain of driver and driven cells and flip-flops at the

beginning (launch) and the end (capture) to create a constrained path. Optionally, cells can be

added to achieve multiple fanouts from each driver. Pins that are not on the constrained path are

connected to dummy flip-flops and/or ports to ensure that there are no floating pins. An example

of a circuit with two stages without SI aggressors is shown in Figure 4.7. The constrained path

is from f1/Q to f2/D, through instances u1 and u2. To generate a training circuit with multiple

stages, the “repeated unit” in Figure 4.7 is replicated between the launch and the capture flip-

flops52. Figure 4.8 illustrates a circuit with one SI aggressor and coupling capacitances.

f1

f2
u1

u2

fo2

Repeated Unit

df1

Dummy port

Input port

Dummy port

Output port

Constrained path

Dummy port

Figure 4.7: Example of a non-SI training circuit.

Figure 4.8: Example of an SI training circuit.
52The ”repeated unit” contains a dummy flip-flop which is inserted to ensure valid operation of gates, and is not

part of the constrained path.
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Data Collection for Modeling

We generate training, validation, and test datasets in the following way. First, we ob-

tain Verilog netlists, SDC, and SPEF files with coupling capacitances for our designs. Second,

we use 2013-released versions of two commercial signoff timing tools, commonly adopted as

golden tools by design teams, to perform path-based timing analysis of the top 10K worst paths

in both SI and non-SI modes.53 For Experiment 3, we use a commercial design implementation

tool D1. Last, to compare tools in a fair manner, we ensure that options and global flags for both

tools are set to produce similar reports as follows:

• Timing reports. Each tool reports all parameters from Table 4.1.

• Path timing calculation. Each tool performs path-based analysis, i.e., slews are propagated

only along “paths-of-interest”.

• SI and OCV analyses. SI- and OCV-aware analysis modes are enabled, and glitch analysis

is disabled.54

• Parasitic information. In SI mode, each tool uses coupling parasitic information for timing

analysis.

Detailed cell characterization for the cell delay model. We perform a one-time detailed char-

acterization of each input-to-output pin arc of each cell in a design because our experiments

indicate that cell delay requires very detailed modeling to minimize the range of errors.55 We

create a single-stage artificial training circuit for the cell, annotate multiple input slews and ca-

pacitances that span values seen in the entire set of NLDM delay tables in the foundry libraries

used by the design, and obtain rise and fall delays for each combination of slews and capacitances

as well as all rise and fall input transitions. Similar characterization is performed for flip-flops

as well. Table 4.3 shows sample resource utilization for cell characterization for a design imple-

mented with 28nm foundry libraries. File size refers to the file with training, validation and test

datasets for each cell.
53We use custom Tcl scripts to ensure that the same 10K paths are analyzed by respective tools as we generate our

training sets.
54Our experiments indicate that in both OCV and non-OCV modes the divergence in clock-to-Q delay and setup

times vary by less than 5ps, and delays for other cells vary by less than 1ps. Therefore, in the following we report
results in OCV mode only.

55When signoff involves multiple corners, cell delays need to be characterized for each corner, and the corner-
specific timing model must be used.
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Table 4.3: Resource utilization for cell characterization in 28nm FDSOI.

Cell #arcs #data points Time (min) File size (KB)

INV 1 140 20 20

NAND2 2 280 55 36

MUX21 3 560 95 68

AOI13 4 560 95 68

We characterize a total of 397 cells in 28nm FDSOI and 305 cells in 45nm GS libraries;

these contain a total of 1870 input-to-output pin arcs56. The characterization time for these cells

is 116 hours per core (a one-time overhead of just under 5 days) on an eight-core Intel Xeon

E5-1410 2.8GHz server. Table 4.3 shows resource utilization for cell characterization in 28nm

FDSOI. MUX21 and AOI13 cells have the same runtime and number of training data points be-

cause NLDM table sizes vary between these cells, and we use more values of input slews and

capacitances from the NLDM tables of MUX21 than of AOI13.

Modeling Techniques

To develop models, we use training data points from artificial circuits and validation data points

from real-world designs. To test the models, we use a separate set of data points from our

real-world designs. Table 4.4 shows the sizes of the training, validation and test sets for each

experiment. Extremely large sizes of our training and test sets reflect our “big-data” approach

whereby models are derived using≥200K data points for cell, wire, and stage delays. Thereafter,

we may apply our incremental modeling flow for new designs in the same technology/library.

We apply both linear and nonlinear machine learning techniques (least-square regression

(LSQR), Artificial Neural Networks (ANN) [85], Support Vector Machines regression (SVM)

[42] with radial basis function kernel, and Random Forests (RF) [85]) to all GTX models. For

each model, we choose the technique that best minimizes both mean squared error (MSE) and

the range of errors, i.e., the difference between maximum and minimum errors. We observe

that LSQR and ANN are not as effective as RF and SVM in minimizing the range of errors.

ANN is effective in modeling setup time and cell delays, SVM is effective in modeling wire and

stage delays, and RF is effective in modeling path slack. We use the built-in MATLAB vR2013a

[311] toolbox for ANN, LIBSVM implementation of SVM in MATLAB [42], and an open-source

56We characterize only those cells used in our designs. If necessary, an entire library can be characterized.
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MATLAB implementation of RF [323].57 Once models are developed, the time to test a model

depends on the size of the test dataset. In our experiments, runtime is ∼3.23s for 30K path slack

data points in the test set. Figure 4.9 shows our complete modeling flow for GTX. Note that, by

default, model development is a one-time effort. New designs may require incremental modeling

to reduce the number of outliers.

Artificial 
Circuits 

Train Validate Test 

New 
Designs 

MODELS 
(Path slack, setup time, 
stage, cell, wire delays) 

If  
error > 

threshold 

Outliers  
(data points) 

ONE-TIME 

INCREMENTAL 

Real 
Designs 

Figure 4.9: Our modeling flow.

We validate GTX with the four experiments described in Section 4.1.2.58 All experi-

ments are performed on an Intel Xeon E5-2640 2.5GHz server and all reported runtimes are for

this platform.

Results of Experiment 1

We correlate timing between T1 and T2 in non-SI mode. Figures 4.10(a) and 4.10(b)

show the timing divergence between tools before and after fitting. The total runtime is 38 min-

utes.59 For ANN, we use up to five hidden layers to model cell delay and two hidden layers

to model setup time. We constrain RF to 200 trees and 5000 observations per leaf node. Our

57ANN uses hidden layers as a modeling parameter. We sweep the number of hidden layers from one to 10 and
choose the value that achieves minimum MSE and range of errors. RF uses multiple classification trees and applies
different models to a set of observations at a leaf node of each tree [85]. We sweep the number of trees from 50 to
500 in steps of 50, and the number of observations per leaf node ranging from 1000 to 10000 in steps of 1000. For
each experiment, we report the number of trees and the number of observations per leaf node that minimizes MSE
and the range of errors.

58We ensure that identical input files (Liberty, netlist, SDC and SPEF) are provided to both tools, such that slack
miscorrelation is due to delay and timing calculation only. Thus, in Experiment 3 we do not use, e.g., Cadence
Ostrich [319] to perform parasitic correlation with golden SPEF from Synopsys StarRC [343], in which case the
design implementation tool’s (D1) parasitic estimation may be another source of miscorrelation.

59The reported runtimes for experiments do not include cell characterization time, which is separately discussed in
Section 4.1.2.
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Table 4.4: Training, validation and test dataset sizes.

Experiment # Module Training Validation Testing

1

Path slack 22680 6480 33240

Setup time 21798 6228 33114

Cell delay 354320 15520 326760

2

Path slack 17270 7664 34066

Setup time 28830 8236 34120

Cell delay 323804 9875 315776

Wire delay 304108 39788 143941

Stage delay 323880 39872 184560

3

Path slack 21770 1440 35790

Setup time 21540 1120 35340

Cell delay 320118 11346 332613

Wire delay 215506 9980 156774

Stage delay 211736 10553 139327

4

Path slack 17554 5166 32616

Setup time 28840 8237 34989

Cell delay 341042 29972 100387

Wire delay 344086 29900 100520

Stage delay 341708 29926 98895

models reduce the range of divergence in path slack from 32.5ps to 5.9ps (i.e., 5.5× reduction)

in 28nm FDSOI, and from 18.8ps to 7.1ps (i.e., 2.6× reduction) in 45nm GS.

Results of Experiment 2

We correlate timing between T1 and T2 in SI mode. Figures 4.11(a) and 4.11(b) show the

divergence between tools before and after fitting. The total runtime is 116 minutes. For ANN,

we use up to seven hidden layers to model cell delays and two hidden layers for setup time. We

constrain RF to 400 trees and 2000 observations per leaf node as we observe that this selection

minimizes the range of errors. Our models reduce the range of divergence in path slack from

89.2ps to 22.3ps (i.e., 4× reduction) in 28nm FDSOI and from 139.3ps to 89.2ps (i.e., 6.6×
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Figure 4.10: Experiment 1 results in (a) 45nm GS and (b) 28nm FDSOI.
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Figure 4.11: Experiment 2 results in (a) 45nm GS and (b) 28nm FDSOI.

reduction) in 45nm GS. The stage delay model in GTX improves accuracy even when path slack

diverges by >130ps.

To confirm the robustness of our approach, we also conduct the inverse experiment,

i.e., where we use timing reports of T1 to estimate timing reports of T2. The error metrics are

comparable to those shown in Figures 4.11(a) and 4.11(b). Figures 4.12(a) and 4.12(b) depict
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five stages from a 28-stage path (Path #2197) from jpeg encoder, with cell delays, wire delays

and path slack reported by T1 and T2, and their respective fitted values T̂1 and T̂2 from GTX.

The fitted values are within 8ps of the tool-reported values. Furthermore, we have conducted

analogous experiments in a 7nm foundry technology. Specifically, we have trained GTX models

using data points from aes cipher top and ARM Cortex M0 designs and tested these models

using data points from the leon3mp design. Figure 4.13(a) shows the path slack values from

timing reports of T1 and T2, and the divergence is up to 72ps. Figure 4.13(b) shows the predicted

path slack values of T2 using our GTX models based on the timing reports of T1. We observe

that GTX reduces divergence from 72ps to 17ps.

Instance (Cell) Dir Delay(T1) Delay(T2) Delay(𝑻𝟏 ) 

FE_CN_C274/A1 (NAND2X7) IN 0.0447 0.0452 0.0062 

FE_CN_C274/ZN (NAND2X7) OUT 0.0565 0.0545 0.1076 

FE_CN_C277/A (BUFFX8) IN 0.0110 0.0082 0.0044 

FE_CN_C277/Z (BUFFX8) OUT 0.0272 0.0266 0.0664 

FE_CN_C294/A1 (OAI22X4) IN 0.0825 0.0837 0.0225 

…
 

…
 

slack (VIOLATED) -0.339 -0.342 -0.588 

…
 

r 

f 

r 
r 

r 

FE_CN_C281/A (INVX8) IN 0.0057 0.0051 0.0023 

FE_CN_C281/ZN (INVX8) OUT 0.0215 0.0213 0.0264 

f 
r 

FE_CN_C286/A2 (XOR2X4) IN 0.0070 0.0072 0.0066 

FE_CN_C286/Z (XOR2X4) OUT 0.0332 0.0352 0.0581 

f 
f 

…
 
…

 

FE_CN_C294/ZN (OAI22X4) OUT 0.0677 0.0598 0.0781 f 

(a) T2 fitted to T1

Instance (Cell) Dir Delay(T1) Delay(𝑻𝟐 ) Delay(T2) 

FE_CN_C274/A1 (NAND2X7) IN 0.0447 0.0062 0.0065 

FE_CN_C274/ZN (NAND2X7) OUT 0.0565 0.1076 0.1063 

FE_CN_C277/A (BUFFX8) IN 0.0110 0.0044 0.0050 

FE_CN_C277/Z (BUFFX8) OUT 0.0272 0.0664 0.0631 

FE_CN_C294/A1 (OAI22X4) IN 0.0825 0.0225 0.0231 

…
 

…
 

slack (VIOLATED) -0.339 -0.588 -0.582 

…
 

r 

f 

r 
r 

r 

FE_CN_C281/A (INVX8) IN 0.0057 0.0023 0.0026 

FE_CN_C281/ZN (INVX8) OUT 0.0215 0.0264 0.0260 

f 
r 

FE_CN_C286/A2 (XOR2X4) IN 0.0070 0.0066 0.0057 

FE_CN_C286/Z (XOR2X4) OUT 0.0332 0.0581 0.0588 

f 
f 

…
 
…

 

FE_CN_C294/ZN (OAI22X4) OUT 0.0677 0.0781 0.0794 f 

(b) T1 fitted to T2

Figure 4.12: Five sample stages from a 28-stage path in jpeg encoder in 28nm showing cell
delay (OUT), wire delay (IN) and path slack reported by T1 and T2. The respective fitted values
after using GTX are (a) Delay(T̂1) and (b) Delay(T̂2) when T1 or T2 is the respective fitted tool.

All values are in ns.
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Figure 4.13: Path slack values in 7nm technology: (a) T2 vs. T1 and (b) T̂2 (using timing reports
of T1) vs. T2. GTX reduces slack divergence from 72ps to 17ps.

Results of Experiment 3

We correlate timing between T1 and a leading design implementation tool D1 in SI mode

in 28nm FDSOI. Figure 4.14 shows the divergence between tools before and after fitting. The

total runtime is 104 minutes. For ANN, we use up to seven hidden layers to model cell delay

and five hidden layers for setup time. We constrain RF to 450 trees and 4000 observations per

leaf node. Our models reduce the range of divergence in path slack from 162.8ps to 23.1ps (i.e.,

7× reduction).

Results of Experiment 4

We incrementally refine our models for a new design with many outliers while correlat-

ing timing parameters. A new design, 5× jpeg encoder, is derived from the original jpeg encoder

design [318]. We create a new top module that instantiates the original jpeg encoder module five

times to obtain 5× jpeg encoder. The new design is implemented in 28nm and has ∼300K cell

instances in the post-layout netlist. We use a tighter timing constraint for this design than with

jpeg encoder, which results in different cells and timing paths being used. Change in top-level

routing across each jpeg encoder block also changes wire delay due to crosstalk effects. There-

fore, 5× jpeg encoder requires modification of the models derived for jpeg encoder. Figure 4.15

shows the divergence between tools before and after incremental fitting for path slack, cell, wire

and stage delays. The total runtime is 87 minutes. For ANN, we use up to seven hidden layers

to model cell and stage delays and two hidden layers for setup time. We constrain RF to 400

trees and 2000 observations per leaf node. We do not report setup time because the divergence



137

is <3ps. The total runtime is 177 minutes. In the context of a new chip design project, this

overhead of several hours is negligible. Our models reduce the range of divergence in path slack

from 89.2ps to 36ps (2.5×), and the number of outliers from 407 to 26 (i.e., 16× reduction).Expt 3 
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Figure 4.14: Experiment 3 results in 28nm FDSOI.
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Figure 4.15: Experiment 4 results in 28nm FDSOI.
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4.1.3 Conclusions

Improvements to timing signoff methodologies can significantly reduce the number of

iterations in the IC design flow. Design teams often want to correlate one signoff tool’s timing

reports with those of another tool to reduce pessimism and/or optimism. We describe a new

tool, GTX, that embodies a big-data approach for the correlation problem using a hierarchy of

models. We apply machine learning to develop models for path slack, setup time, stage, cell, and

wire delays and can “correct” endpoint path slack divergence between two signoff timers from

89.2ps to 22.3ps (i.e., 4× reduction) in 28nm FDSOI, and from 139.3ps to 21.1ps (i.e., 6.6×
reduction) in 45nm GS with SI and OCV analysis enabled. In 7nm, GTX reduces path slack

divergence from 72ps to 17ps (i.e., 4.2× reduction) with SI and OCV analysis enabled. GTX

can also be applied to improve timing correlation between an implementation and a signoff tool;

our experiments show 7× reduction of path slack divergence from 162.8ps to 23.1ps in 28nm

FDSOI. We show that GTX scales to multiple foundry nodes and libraries, and that incremental

modeling in GTX provides the capability to adapt to new designs in a given technology.

4.2 SI for Free: Machine Learning of Interconnect Coupling Delay

and Transition Effects

Accurate signoff timing analysis must be conducted using signal integrity (SI) mode in

signoff timing tools. According to recent reports of the analyst firm Gary Smith EDA [229],

EDA vendors such as Cadence [288], CLK Design Automation [290], Incentia Design Systems

[300], Mentor Graphics [312] and Synopsys [342], provide STA (Static Timing Analysis) and SI

analysis tools for use in IC design. The cost of one license of a timing tool with SI mode analysis

enabled is typically several times the cost of a default (with no SI analysis capability) license. In

addition, the runtimes of SI-aware timing analysis are significantly larger than those of non-SI

analysis. Our own studies indicate the runtime for SI-aware timing analysis on the top-10K paths

can be up to 3× longer than the runtime of non-SI analysis on designs with ∼110K instances

and ∼110K nets.

As would be expected, commercial signoff timing tools show significant differences

between SI and non-SI modes when estimating arc delay of a stage as well as the accumulated

arc delays in a path. We have studied SI and non-SI analyses with the same commercial timer,

netlists, 28nm FDSOI libraries, and SPEF. For the non-SI analysis, we add twice the coupling

capacitance to the ground capacitance to model worst-case Miller coupling [219]. Figure 4.16
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shows that the path slack can differ by up to 81ps between SI and non-SI analyses. As reviewed

in Section 2.2, no existing tool or methodology correlates non-SI timing reports to SI timing

reports.
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Figure 4.16: Path slack divergence in SI and non-SI analyses with clock period 1.0ns, as
reported by a commercial timer in 28nm FDSOI technology.
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Figure 4.17: Actual incremental delay in SI mode versus predictions with clock period of
1.0ns, using models of [84].

In this work, we use machine learning techniques to estimate the incremental transition

time, incremental delay due to SI, and SI-aware path delay from reports of a signoff timer that

performs only non-SI analysis. Table 4.5 introduces the terminologies and notations we use in
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our work. The GTX modeling work [84] described in Section 4.1 provides methodologies to

calibrate non-SI to non-SI, or SI to SI, but does not attempt our present mapping of non-SI to

SI. This is the gap that the present work seeks to fill. Figure 4.17 shows that the prediction of

incremental delay in SI mode can be inaccurate by up to 60ps when using the wire delay model

in [84] (Section 4.1) and timing reports from non-SI analysis.

Table 4.5: Terminologies and notations used in modeling to map non-SI to SI.
Term Definition

SI mode Timing analysis performed by enabling signal integrity

Non-SI mode Timing analysis performed by disabling signal integrity

Cc Coupling capacitance of an arc

Cg Ground capacitance of an arc

Ctot Total capacitance of an arc

rCc,Ctot Ratio of coupling to total capacitance of an arc

Rw Resistance of an arc

∆Tsi Delta transition (DTran) time of an arc due to coupling reported in STA in SI mode

Tsi′ Transition time of an arc without coupling reported in STA in non-SI mode

∆Dsi Incremental SI delay (SI Incr Delay) of an arc due to coupling reported in STA in SI mode

∆Dsi′ Incremental non-SI delay (Non-SI Incr Delay) of an arc without coupling reported in STA in non-SI mode

Path delay Difference in arrival times at the clock pin of the launch flip-flop and D pin of the capture flip-flop

Psi SI path delay across all timing arcs reported in STA in SI mode

Psi′ Non-SI path delay across all timing arcs reported in STA in non-SI mode

∆Psi Difference between Psi′ and Psi

fCc,red Miller coupling factor in non-SI mode, i.e., Cc× fCc,red is added to Cg

fCc Coupling capacitance factor in SI mode, i.e., Cc is changed to Cc× fCc

fCg Ground capacitance factor in SI or non-SI mode, i.e., Cg is changed to Cg× fCg

fRw Resistance factor in SI or non-SI mode, i.e., Rw is changed to Rw× fRw

S Stage in which the arc appears

Nstg Number of stages in the path in which arc appears

rS,Nstg Ratio of arc-stage to total #stages in path

clkp Clock period

Naggr Number of aggressors for a victim net

Ar Toggle rate of a net

arr(min,max),(r, f ),(a,v) Minimum (resp. maximum) rise (resp. fall) arrival time of an aggressor (resp. a victim)

LE Logical effort of the driver of a net

Multiple parameters ranging from electrical to logic structure such as coupling capaci-

tance, the ratio of ground and coupling capacitance of an arc, clock period, the fanin cone stage

of the arc, etc. all affect the divergence of transition times and delays between SI and non-SI

analyses. Complex interactions among these parameters, along with black-box code in commer-

cial signoff timers, only make the modeling problem more difficult. For example, change in the
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clock period changes toggle rates of aggressor and victim nets by different amounts that can lead

to change in aggressor and victim timing window alignment. Two phenomena are particularly

challenging for analytical SI delay models.

Challenge 1. Path slack variation with clock period. Figure 4.18 shows the maximum delta

of slack in a path with 32 stages between SI and non-SI analyses for an OpenCores [318] design

dec viterbi that is signed off at 1.0ns. The delta is 81ps when the clock period varies between

0.87ns and 1.3ns. However, when the clock period decreases below 0.87ns, the maximum delta

in path slack increases non-monotonically and becomes 143ps at a clock period of 0.8ns. Fig-

ure 4.19 shows timing parameters related to SI and non-SI analyses for several nets and cells.

As defined in Table 4.5, “DTran” is the delta transition due to coupling, “SI Incr Delay” is the

incremental delay due to coupling, “Non-SI Incr Delay” is the incremental delay without cou-

pling, “SI Path Delay” is the accumulated path delay with coupling and “Non-SI Path Delay”

is the accumulated path delay without coupling. The nets in green color do not contribute to

“DTran” and “SI Incr Delay”, whereas the nets in brown color cause non-zero “DTran” and “SI

Incr Delay”. The values in green are for the same path but analyzed at a clock period of 1.0ns

The nets n33458 and n33452 shown in brown are responsible for large delta transition times and

incremental delays in SI mode. We highlight these deltas and the impact to path slack using the

blue box. The same path has a delta slack of 49ps when the clock period is 1.0ns, as shown

in Figure 4.20. The path that has the maximum delta slack of 81ps at a clock period of 1.0ns

continues to have the same value of delta slack at a clock period of 0.8ns, as shown in Figure

4.21.

Challenge 2. Arc delay and incremental transition time variation with ground and coupling

capacitances. We illustrate non-intuitive impacts of varying ground and coupling capacitances

of the victim net n33452 on arc delay and incremental transition time respectively in Figures

4.22(a) and (b). When the ground capacitance is changed from 0.006pF to 0.0132pF, the incre-

mental delay in non-SI mode increases from 4ps to 6ps, whereas the incremental delay due to

coupling changes from 115ps to 100ps while delta transition time changes from 133ps to 147ps.

The incremental delay and delta transition time in SI mode are affected in non-intuitive ways by

changing the ratio of ground-to-coupling capacitance.
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Figure 4.18: Maximum path slack delta between SI and non-SI modes over the top-1000
setup-critical paths in a design signed off at 1.0ns. The delta increases from 81ps to 143ps as

the clock period is reduced below 0.87ns.

Path Delta – 143ps 

Cell / net name    DTran  SI Incr  Non-SI Incr SI Path Non-SI Path 
    (ns) Delay (ns) Delay (ns) Delay (ns) Delay (ns) 
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 
inst_ram_ctrl_write_ram_fsm_reg_0_/Q  0.000 0.000 0.069 0.269 0.269 
inst_ram_ctrl_write_ram_fsm_0_ (net) 
…. 
FE_OCP_RBC23542_n28670/Z   0.000 0.000 0.027 0.428 0.428 
FE_OCP_RBN23542_n28670 (net) 
FE_OCP_RBC23543_n28670/A   0.004 0.004 0.013 0.445 0.441 
…. 
U143152/Z    0.000 0.000 0.034 0.809 0.800 
n33458 (net) 
U92231/C    0.003 0.002 0.000 0.811 0.801 
… 
U99631/Z    0.000 0.000 0.065 0.769 0.762 
n33477 (net) 
U145471/C    0.035 0.022 0.002 0.793 0.764 
…    
U121581/Z    0.000 0.000 0.104 0.967 0.935 
n33452 (net) 
U121579/B    0.133 (0.024) 0.115 (0.021) 0.004 1.082 (0.988) 0.939 
U121579/Z    0.000 0.000 0.057 1.139 (1.045) 0.996 
n79492 (net) 
inst_ram_ctrl_inst_generic_sp_ram_0_q_reg_21_/D  0.000 0.000 0.000 1.139 (1.045) 0.996 

Figure 4.19: Timing divergence in a path with the maximum delta slack of 143ps at a clock
period of 0.8ns.

Our contributions in this section are summarized as follows.

1. We analyze multiple sources that cause timing divergence between SI and non-SI modes

and provide new insights on electrical and logic structure parameters that affect incre-

mental transition time, incremental delay and path delay in SI mode. Unlike [84], we

demonstrate that several new parameters affect SI Incr Delay ∆Dsi (as defined in Table

4.5) of an arc in a timing path.

2. We develop new machine learning-based models for incremental transition time and delay

due to SI, and compose these models to derive a new model for path delay that is different

from [84].
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Cell / net name    DTran  SI Incr  Non-SI Incr SI Path Non-SI Path 
    (ns) Delay (ns) Delay (ns) Delay (ns) Delay (ns) 
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 
inst_ram_ctrl_write_ram_fsm_reg_0_/Q  0.000 0.000 0.069 0.269 0.269 
inst_ram_ctrl_write_ram_fsm_0_ (net) 
…. 
FE_OCP_RBC23542_n28670/Z   0.000 0.000 0.027 0.428 0.428 
FE_OCP_RBN23542_n28670 (net) 
FE_OCP_RBC23543_n28670/A   0.004 0.004 0.013 0.445 0.441 
…. 
U143152/Z    0.000 0.000 0.034 0.809 0.800 
n33458 (net) 
U92231/C    0.003 0.002 0.000 0.811 0.801 
… 
U99631/Z    0.000 0.000 0.065 0.769 0.762 
n33477 (net) 
U145471/C    0.035 0.022 0.002 0.793 0.764 
…    
U121581/Z    0.000 0.000 0.104 0.963 0.935 
n33452 (net) 
U121579/B    0.024 0.021 0.004 0.988 0.939 
U121579/Z    0.000 0.000 0.057 1.045 0.996 
n79492 (net) 
inst_ram_ctrl_inst_generic_sp_ram_0_q_reg_21_/D  0.000 0.000 0.000 1.045 0.996 

Figure 4.20: The path with delta slack of 143ps at clock period of 0.8ns has delta slack of 49ps
at clock period of 1.0ns.
Path Delta – 81ps 

Cell / net name    DTran  SI Incr  Non-SI Incr SI Path Non-SI Path 
    (ns) Delay (ns) Delay (ns) Delay (ns) Delay (ns) 
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 
inst_ram_ctrl_write_ram_ptr_reg_0_/Q  0.000 0.000 0.087 0.285 0.285 
inst_ram_ctrl_write_ram_ptr_0_ (net) 
…. 
FE_RC_3395_0/Z    0.000 0.000 0.015 0.424 0.424 
FE_OCP_RBN22308_n20174(net) 
FE_OCP_RBN22308_n20174/A   0.014 0.009 0.019 0.452 0.443 
…. 
U98160/Z    0.000 0.000 0.029 0.541 0.532 
n22678 (net) 
FE_OFC16-76_n22678/C   0.003 0.002 0.000 0.543 0.532 
… 
U99420/Z    0.000 0.000 0.053 0.742 0.731 
n25563 (net) 
U145193/C    0.016 0.012 0.000 0.754 0.731 
U145193/Z    0.000 0.000 0.114 0.868 0.845 
n25556 (net) 
U89670/B    0.089 0.058 0.006 0.932 0.851 
… 
U121246/Z    0.000 0.000 0.021 1.063 0.982 
n70246 (net) 
inst_ram_ctrl_inst_generic_sp_ram_1_q_reg_18_/D  0.000 0.000 0.000 1.063 0.982 

Figure 4.21: Timing divergence in a path with delta slack of 81ps at clock periods of both 1.0ns
and 0.8ns.

3. The worst-case absolute errors in our modeling predictions of incremental transition time,

incremental delay due to SI and SI-aware path delay are 7.0ps, 5.2ps and 8.2ps, respec-

tively. We have developed and tested our models using timing reports of block implemen-

tations in 28nm FDSOI foundry libraries. Compared to the recent work of [84], we reduce

worst-case error in prediction of incremental delay due to SI changes from 60ps to 5.2ps.

4.2.1 Methodology for Timing Correlation in SI Mode

Our modeling methodology includes (i) selection of parameters that affect incremental

delay in SI mode, and (ii) application of nonlinear modeling techniques to capture the complex

interactions of parameters so as to accurately predict the incremental delay in SI mode.
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Figure 4.22: Timing of the victim net that has the maximum divergence at a clock period of
0.8ns when only (a) ground capacitance and (b) coupling capacitance of the victim net is

varied. The figure shows delta transition due to coupling as “DTran” in brown rectangles, arc
delay due to coupling as “SI Incr Delay” in green triangles and arc delay without coupling as

“Non-SI Incr Delay” in blue diamonds.

Selection of Parameters

We have studied multiple electrical and circuit parameters that can affect incremental

delay in SI mode and have drawn from the list of parameters used to model wire delay in SI

mode in [84]. Our analyses indicate that the transition time at the output pin of a net’s driver, the

product of wire resistance and capacitances, are not sufficient to predict the incremental delay

in SI mode. Figures 4.23(a) and (b) show that the incremental delay in SI mode vary in the

same way for two of the parameters used in [84]. In addition, signoff timing tools use complex
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algorithms to determine timing windows for less pessimistic delay analyses in SI mode. This

is difficult to model because timing windows change with operating conditions. We introduce

new electrical parameters to approximate the effect of timing windows for the aggressor with the

largest coupling capacitance. Figures 4.24(a)–(d) show two new electrical and two new structural

parameters that affect the incremental delay in SI mode.

We use the following 12 parameters in our modeling: (i) incremental delay in non-SI

mode; (ii) transition time in non-SI mode; (iii) clock period; (iv) resistance; (v) coupling capac-

itance; (vi) ratio of coupling-to-total capacitance; (vii) toggle rate; (viii) number of aggressors;

(ix) ratio of the stage in which the arc of the victim net appears to the total number of stages in

the path; (x) logical effort of the net’s driver; and (xi), (xii) the differences in max (respectively,

min) arrival times60 of the signal at the driver’s output pin for the victim and its strongest aggres-

sor.61 We choose our parameters based on sensitivity of the parameter to incremental transition

time or incremental delay due to SI, or SI-aware path delay. Our experimental results indicate

that dropping any of the parameters can reduce the modeling accuracy by at least 5%. Therefore,

we use all the parameters indicated in Equations (4.8), (4.9) and (4.10) to develop our models.

We do not use any layout parameters since layout is reflected in parameters such as coupling

capacitance, total capacitance and wire resistance.

We model the incremental transition time due to SI as

∆Tsi = f (Tsi′ ,Rw,Cc,rCc,Ctot ,clkp,LE). (4.8)

We further model the incremental delay due to SI as

∆Dsi = f (∆Dsi′ ,∆Tsi,Rw,Cc,rCc,Ctot ,rS,Nstg ,clkp, (4.9)

∆arrmin,(r, f ),∆arrmax,(r, f ),Ar,LE)

and the SI-aware path delay as

∆Psi = f (Psi′ ,∑
Nstg
i=1 ∆Dsi,Nstg) (4.10)

where ∆Dsi is the predicted incremental delay due to SI per arc, obtained from the model devel-

oped using Equation (4.9).

60We use rise and fall arrival times based on the signal’s transition at the output pin of the net’s driver, from timing
reports in non-SI mode.

61We consider the net with largest coupling capacitance to the victim as the strongest aggressor.
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Figure 4.23: Incremental delay due to SI varies in the same way as (a) Rw×Cc and (b)
Rw×Ctot .

Nonlinear Modeling Technique

If the coupling capacitance is zero, we set the incremental delay due to SI as zero;

otherwise, we proceed with modeling. We use nonlinear modeling techniques to model the

incremental transition time, incremental delay due to SI, and SI-aware path delay, given the

complex interactions between modeling parameters described above. For example, reducing the

clock period can increase the toggle rates of both the victim and aggressor nets, and can change
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Figure 4.24: Incremental delay due to SI varies with (a) the logical effort of the net’s driver, (b)
the difference in max arrival times of victim and the strongest aggressor, (c) the stage in which

the arc appears, and (d) the number of effective aggressors of the victim net.

the timing windows. As a result, the number of aggressors on the victim can increase. These

interactions are non-obvious and cannot be captured by linear modeling techniques. We therefore

use Artificial Neural Networks (ANN) and Support Vector Machines regression (SVM) [85] for

our modeling.

We use Hybrid Surrogate Modeling (HSM) [122] to combine the predicted values from

the ANN and SVM models. HSM is a variant of [76], which obtains improved estimates by

finding weighted combinations of estimates from individual surrogate models. In this technique

the response is estimated by adding weights to the estimated response from each of the surrogate

models. We express this formally as

ŷ(~x) = w1 · ŷ(~x)ANN +w2 · ŷ(~x)SV M (4.11)
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Figure 4.25: Modeling flow to map non-SI to SI using nonlinear modeling techniques.

where y(~x)ANN is the estimated response of ANN, ŷ(~x)SV M is the estimated response of SVM,

and w1 and w2 are the weights of estimated responses of ANN and SVM respectively. We use

least-squares regression to fit the hybrid model to 75% of the training data points which are

randomly selected [85]. We perform cross-validation on the remaining 25% of the training data

points to estimate the cross-validation error. The fitting is repeated 10 times. The weights that

give the minimum cross-validation error out of these 10 tries are used to generate the hybrid

surrogate model.

In ANN, we use one input, one output and two hidden layers. In each hidden layer, we

use up to twice the number of neurons as the number of input parameters. We search for the

minimum number of neurons per hidden layer that can achieve the smallest mean-squared error

on the training set. In SVM, we use the Radial Basis Function (RBF) kernel with a gamma value

of the inverse of the number of the parameters. To generalize our models and avoid overfitting,

we use five-fold cross validation and use a separate validation set to reduce overfitting while

training our models. For each technique (ANN, SVM and HSM), we create one model for Nstg ≤
20 and another model for Nstg > 20, as our separate studies indicate that modeling accuracy

improves with this approach.
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4.2.2 Experimental Setup and Results

We now describe our design of experiments, i.e., our testcases, methodology to generate

“ground truth”, and tool settings. We then describe our modeling results.

Design of Experiments

In our experiments, we use six real designs (aes cipher top, dec viterbi, jpeg encoder

and THEIA from OpenCores [318]; FIFO from Synopsys Designware [337]; and single core

of OpenSPARC T2 spc [317]) as well as artificial testcases developed in-house based on [84].

An illustration of our artificial testcase is shown in Figure 4.26. We use 28nm FDSOI foundry

technology libraries for all our experiments. We vary parasitics, i.e., Rw, Cc, Cg, size of the

driver, type of the driver cell, the number of fanouts, clock period, etc. We use default values of

1Ω for Rw, 1fF for Cc and Cg and use scaling factors fRw , fCc and fCg to respectively scale Rw, Cc

and Cg in both real designs and artificial testcases.

We use one implementation of the aes cipher top design signed off at 1.0ns (∼13K

standard cells at post-synthesis), one implementation of the dec viterbi design signed off at 1.0ns

(∼97K standard cells at post-synthesis), one implementation of the jpeg encoder design signed

off at 0.8ns (∼62K standard cells at post-synthesis), one implementation of the FIFO design

signed off at 0.75ns (∼6.5K standard cells at post-synthesis), one implementation of the THEIA

design signed off at 2.0ns (∼125K standard cells at post-synthesis) and one implementation of

the spc design signed off at 2.2ns (∼350K standard cells at post-synthesis). Table 4.6 lists the

ranges of various parameters that we sweep in our experiments.

Figure 4.26: Illustration of an artificial testcase instance.

To generate “ground truth” data, we perform path-based setup timing analyses in both SI
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Table 4.6: Key parameters swept in our experiments.
Parameter Range Design/Testcase

clkp

1.0ns + {-0.2, 0.2}ns aes cipher top

1.0ns + {-0.2, -0.1, 0.0, 0.1, 0.2}ns dec viterbi, artificial

0.8ns + {-0.2, -0.1, 0.0, 0.1}ns jpeg encoder

0.75ns + {-0.15, 0.15}ns FIFO

2.0ns + {-0.2, 0.2}ns THEIA

2.2ns + {-0.2, 0.2}ns spc

Nstg {15, 20, 25, 30} artificial

fCc,red {0.0, 1.0, 2.0} all

fRw {0.5, 1.0, 2.0} all

fCc {0.5, 1.0, 1.5, 2.0} all

fCg {0.5, 1.0, 2.0} all

Driver size {X6, X16, X24, X32} artificial

and non-SI modes and report the top-1000 critical paths. In non-SI mode, we use fCc,red values

of 0.0, 1.0 and 2.0 to capture the following effects of victim and aggressor nets switching: (i) a

value of 0.0 when the victim and aggressor switch in the same direction; (ii) a value of 1.0 when

the victim does not switch but the aggressor switches; and (iii) a value of 2.0 when the victim

and aggressor switch in the opposite directions. In SI mode, we use recommended tool settings

for the most accurate (least pessimistic) analysis, which include (i) disabling of critical path

reselection so that all aggressors are selected for analysis at all times for all victims; (ii) enabling

the clock network for analysis so as to include coupling effects of clock nets on victim signal

nets; and (iii) performing analysis in edge-alignment mode so as to consider all possible edge

arrivals from the upstream logic, using minimum-delay (respectively, maximum-delay) edges

for the minimum (respectively, maximum) incremental delay calculations.

Following are steps used for timing analysis in SI and non-SI mode. We specifically

highlight the differences in SI versus non-SI mode, if any, in each of the steps.

• Step 1. Read databases of timing libraries.

• Step 2. Read and link the design; the post-layout netlist is in .v format.

• Step 3. Read the constraints specified in the SDC.

• Step 4. Read the parasitics specified in the SPEF. In SI mode, read the coupling capaci-

tances, whereas in non-SI mode convert coupling capacitances to ground capacitances by

using Miller coupling factor fCc,red .
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• Step 5. (SI mode only) Set flag to reselect critical paths for SI analysis to false.

• Step 6. (SI mode only) Set flag to reselect clock nets for SI analysis to true.

• Step 7. (SI mode only) Set flag for delay analysis mode to be edge-aligned.

• Step 8. Perform path-based timing analysis of specified top-1000 paths of the signed off

design.

• Step 9. Report capacitance, incremental delay, transition time, accumulated stage delay of

all cells and nets in the top-1000 paths. In SI mode, report incremental delay and transition

time due to coupling.

We generate a total of 188K data points of nets that have non-zero value of incremental

SI delay, out of which we use 60% for training, 10% for validation and the remaining 30% for

testing. The training time of our models is 10.6 hours for ANN, 23.9 hours for SVM and 12

minutes for HSM on an Intel Xeon E5-2640 2.5GHz server with eight threads. This is a one-

time overhead. After the models are trained, the time to test is ∼10 minutes for every 10K data

points.

We conduct three experiments to demonstrate accuracy and robustness of our models.

• Experiment 1. (Accuracy) Predict incremental transition time, incremental delay and

path delay due to SI using a model derived from non-SI timing reports of a signoff timing

tool.

• Experiment 2. (Robustness) Predict incremental delay due to SI on “unseen” data points

from a new implementation of jpeg encoder. The new implementation of jpeg encoder

uses different signoff and layout constraints as compared to the implementation (cf. Table

4.6) used to train the models.

• Experiment 3. (Accuracy) Compare the predictions of incremental delay and path delay

due to SI of our models versus those of [84].

In our results, we compare path delay instead of path slack because the delta in slack

arises due to differences in path delay. The required arrival times calculated in both SI and non-

SI modes are the same because elements such as clock uncertainty, clock skew, and setup time

of the capture flip-flop do not vary with coupling. Only the arrival times vary due to incremental

delay in SI and non-SI modes. Therefore, the errors in correlating path slack will be the same

as the errors observed in correlating path delay. We report predicted values of transition time
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and incremental delay due to SI and SI-aware path delay only on the test dataset, that is, we do

not include the training and validation datasets in reporting results in Experiments 1 and 2. We

calculate percentage error in predicting incremental delay and transition time due to SI in an arc

and SI-aware path delay as follows.

Errorarc = (Predicted – Actual) ∆Tsi or ∆Dsi
Actual ∆Tsi or ∆Dsi

(4.12)

Errorpath = (Predicted – Actual) ∆Psi
Actual ∆Psi

(4.13)

Results of Experiment 1

The goal of this experiment is to validate our modeling accuracy in predicting incre-

mental transition time, incremental delay due to SI and SI-aware path delay. Our models are

developed by using timing reports in non-SI mode. We test the accuracy of our models by us-

ing ∼17K data points for incremental transition time and incremental delay and ∼320 paths for

SI-aware path delay, across real designs and artificial testcases.

Figure 4.27 shows actual versus predicted incremental transition times due to SI. Our

modeling predictions have a worst-case absolute error of 7.0ps (8.8%)62 and have a range of

errors of 11.3ps. Our average absolute error in predicting incremental transition time is 0.7ps

(0.6%). Figure 4.28 shows actual versus predicted incremental delays due to SI. Our modeling

predictions have a worst-case absolute error of 5.2ps (15.7%) and have a range of errors of 9.8ps.

Our average absolute error in predicting incremental delay is 1.2ps (1.1%).

Figure 4.29 shows actual versus predicted SI-aware path delays. Our modeling predic-

tions have a worst-case absolute error of 8.2ps (6.9%),63 i.e., our worst-case absolute error in

predicting path slack is also 8.2ps. The average absolute error in predicting path delay is 1.7ps

(1.4%). Figure 4.30 shows the actual and predicted values of incremental delay and path delay

in SI mode of the same path as shown in Figure 4.19. The path slack divergence between SI and

non-SI modes of 143ps is reduced to 5ps by our models.

62In non-SI and SI modes the transition times are 34.6ps and 114.6ps, respectively. The actual incremental tran-
sition time due to SI is 114.6− 34.6 = 80ps, whereas our model for incremental transition time predicts 73ps. The
difference is 7.0ps. Therefore, per Equation (4.12), the percentage error is 7.0/80 = 8.8%.

63In non-SI and SI modes the path delays are 1055.2ps and 935.5ps, respectively. The actual difference in SI-aware
path delay is 1055.2−935.5 = 119.7ps, whereas our model for SI-aware path delay predicts 109.6ps. The difference
is 8.2ps. Therefore, per Equation (4.13), the percentage error is 8.2/119.7 = 6.9%.
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Figure 4.27: Actual versus predicted incremental transition times due to SI.
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Figure 4.28: Actual versus predicted incremental delays due to SI.

Results of Experiment 2

The goal of this experiment is to validate the robustness of our models and stress-test

our models on “unseen” data points. We train our models using data points from our design
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Figure 4.29: Actual versus predicted SI-aware path delays.

Path Delta (Post‐Fitting) – 143ps

Cell / net name (Actual) SI Incr (Model) SI Incr (Actual) SI Path (Model) SI Path
Delay (ns) Delay (ns) Delay (ns) Delay (ns)

‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐
inst_ram_ctrl_write_ram_fsm_reg_0_/Q 0.000 0.000 0.269 0.269
inst_ram_ctrl_write_ram_fsm_0_ (net)
….
FE_OCP_RBC23542_n28670/Z 0.000 0.000 0.428 0.428
FE_OCP_RBN23542_n28670 (net)
FE_OCP_RBC23543_n28670/A 0.004 0.004 0.445 0.445
….
U143152/Z 0.000 0.000 0.809 0.809
n33458 (net)
U92231/C 0.002 0.002 0.811 0.811
…
U99631/Z 0.000 0.000 0.769 0.769
n33477 (net)
U145471/C 0.022 0.023 0.793 0.794
…
U121581/Z 0.000 0.000 0.967 0.968
n33452 (net)
U121579/B 0.115 0.118 1.082 1.086
U121579/Z 0.000 0.000 1.139 1.140
n79492 (net)
inst_ram_ctrl_inst_generic_sp_ram_0_q_reg_21_/D 0.000 0.000 1.139 1.144

Figure 4.30: Actual and predicted values of “SI Incr Delay” and “SI Path Delay” (defined in
Table 4.5) of the same path shown in Figure 4.19. Our models reduce the path delay (as well as

path slack) divergence from 143ps to 5ps. The predicted values that differ from the actual
values are highlighted in red.

of experiments described above, and test the models using unseen data points from a new im-

plementation of jpeg encoder signed off with clock period 1.0ns, tighter maximum transition

constraint of 150ps and utilization of 55%. The implementation used for testing is signed off at

different clock period, has different mixes of cell types, number of stages per path, net parasitics,

etc. as compared to the implementation (cf. Table 4.6) used to train our models. However, as we

include important parameters that affect incremental transition time, incremental delay due to
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SI, and SI-aware path delay, we expect that our models can be generalized to unseen data points

in the same 28nm FDSOI foundry technology. Figure 4.31(a) shows actual and predicted values

of incremental delay in SI mode for 2.5K unseen data points. The worst-case absolute error in

prediction is 7.9ps (12.3%), however, the average absolute error is 1.6ps (2.6%). Figure 4.31(b)

shows the distribution of errors across all test data points.

We have conducted additional experiments in a 7nm foundry technology to stress-test

our models on unseen data points. We train our models on data points from aes cipher top and

ARM Cortex M0 designs and test on data points from the leon3mp design. Figure 4.32(a) shows

that the divergence in path slack values between non-SI and SI is up to 97ps. Figure 4.32(b)

shows that by using only non-SI timing reports and applying our models, we are able to reduce

the divergence in path slack from 97ps to 12ps.

Actual SI Incr Delay (ps)

Pr
ed

ic
te
d 
SI
 In

cr
D
el
ay
 (p

s)

7.9ps

(a)

#I
n

st
an

ce
s 

Error in Predicted SI Incr Delay (ps) 

(b)

Figure 4.31: Robustness of our models in predicting incremental delays due to SI. (a) Actual
versus predicted and (b) distribution of modeling errors.
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Figure 4.32: Robustness of our models in predicting path slack values in SI mode in a 7nm
technology. (a) SI mode versus non-SI mode, and (b) predicted versus actual path slack values

in SI mode.

Results of Experiment 3

In this experiment we compare the accuracy of our models, versus that of the wire and

path delay models in [84] that predict SI-aware path delay. We develop these models for wire

and path delay using timing reports in non-SI mode. Recall that Figure 4.17 in Section 4.2 shows

that the worst-case error in predicting incremental arc delay due to SI using the model in [84] can

be as large as 60ps. Figure 4.33 shows that the worst-case error in path delay can be 87.3ps using

the model in [84]. From results of Experiment 1 above, our models have worst-case errors of

5.2ps and 8.2ps in predicting incremental delay due to SI, and SI-aware path delay, respectively.

The models of [84] have large prediction errors in spite of using a layered modeling
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approach. We attribute this to underfitting, with the parameters used in [84] being insufficient to

capture fully the variations in incremental delay due to SI, and SI-aware path delay.
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Figure 4.33: Actual SI-aware path delays versus predicted path delays using models of [84].

4.2.3 Conclusions

In this work, we analyze electrical and logic structure parameters that cause timing in

non-SI mode to diverge from that in SI mode. We provide a machine learning-based methodol-

ogy that can accurately model incremental delay due to SI, and SI-aware path delay. Our models

for a 28nm FDSOI production technology and cell library have worst-case errors of 7.0ps, 5.2ps

and 8.2ps, respectively in predicting incremental transition time, incremental delay due to SI,

and SI-aware path delay. Our models for a 7nm foundry technology and cell library have a

worst-case error of 12ps in predicting path slack values. We demonstrate that our models are

more accurate than previous work [84]. Future works may include (i) predicting timing reports

in path-based analysis using reports from graph-based analysis, and (ii) integrating our models

with an academic timer [351].
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4.3 An Optimization Framework for MMMC Clock Skew Varia-

tion Reduction

Modern systems-on-chip (SoCs) typically exploit complex operating scenarios to max-

imize performance and reduce power consumption. For instance, techniques such as dynamic

voltage and frequency scaling (DVFS), split rail power supply, etc. are widely applied in SoC

designs to meet performance and power targets. However, these techniques increase the number

of modes and corners used for timing closure, which will in turn lead to increased datapath delay

variation and clock skew variation across corners. Such large timing variations increase area and

power overheads, as well as design turnaround time (TAT) due to a “ping-pong” effect whereby

fixing timing issues at one corner leads to violations at other corners. To solve this issue, we

can minimize either datapath delay variation or clock skew variation across corners. Given that

datapath optimization is a local optimization and is usually applied after the clock network opti-

mization, what datapath delay variation minimization can accomplish is limited. In other words,

datapath optimizations are practically less impactful than minimizing clock skew variations in

most cases. This is why clock network optimization is a key first step during the physical imple-

mentation flow for timing closure. Further, clock skew variation can be achieved via both global

and local optimizations of the clock network. Therefore, minimizing clock skew variation across

corners is more effective for multi-corner timing closure. In this work, we minimize clock skew

variation.

Moreover, timing violations due to clock skew variation across corners are typically

reduced by (hold and/or setup) buffer insertion, Vt-swapping and gate sizing on datapaths at

later design stages. Thus, clock skew variation between each pair of sequentially adjacent sinks

can lead to potential costs of area, power and design TAT. We therefore minimize the sum of

skew variations between all sink pairs to minimize the overall physical implementation costs

(e.g., in area, power, TAT).

Several previous works optimize skew at one or more (process, voltage, temperature)

(PVT) corners, but do not address skew variation across corners. Cao et al. [31] minimize the

worst skew in a clock tree by partitioning the tree into different skew groups. The authors then

greedily minimize the worst skew in each skew group to minimize overall local skew. Cho

et al. [48] perform clock tree optimization that is temperature-aware. The authors modify the

deferred merge embedding (DME) algorithm to include merging diamonds for consideration

of temperature variations to guide clock skew and wirelength minimization. Lung et al. [166]

perform MMMC clock skew optimization by minimizing the worst skew across all corners. They
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propose a methodology to determine the delay correlation factor for clock buffers in 130nm,

90nm and 65nm, and conclude that the correlation across corners is linear. However, such an

assumption might not be valid in 28nm and below. Lung et al. [167] perform chip-level as well

as module-level clock skew optimizations with multiple voltage modes. The authors use power-

mode-aware buffers for chip-level clock tree optimization. For the module-level optimization,

they only consider the worst voltage corner.

Relatively fewer works exist that optimize skew variation across multiple PVT corners.

Restle et al. [209] propose a two-dimensional nontree structure. They divide the nontree struc-

ture into two levels – leaf level (close to clock sinks) and top level (close to clock source). The

top level is the same as the traditional clock tree structure, but the leaf level is a mesh structure

such that each sink is connected to the nearest point on the mesh. Although this is a very ef-

fective way to minimize skew variation across corners, the mesh structure consumes enormous

wire resources and power. Su and Sapatnekar [236] use mesh structures for the top-level tree

which consumes less wire resource and power as compared to [209]. However, this consumes

59%–168% more wire resource than a tree structure. Further, the authors do not optimize skew

variation which still exists in the bottom-level subtrees. Rajaram et al. [205] [206] propose a

nontree construction method to insert crosslinks64 in a clock tree by estimating subtree delays

using the Elmore delay model. The authors verify their method with SPICE-based Monte Carlo

simulations and report skew variability reduction. However, the approach consumes excess ad-

ditional wire and power due to crosslink insertions. Hu et al. [93] propose to insert crosslinks

in a tree, and achieve up to 9% clock skew and 25% clock skew variation reductions. Mittal and

Koh [177] propose a greedy method to insert crosslinks to reduce skew variation.

Although many commercial EDA tools are capable of multi-mode multi-corner clock

network synthesis [237] [340], our optimization framework can be applied as an incremental

optimization for further reduction of skew variations in light of our robust interface to commer-

cial P&R and STA tools. Moreover, experimental results show that our proposed optimization is

able to achieve significant skew variation reduction on clock networks that have been synthesized

with a leading commercial tool.

The main contributions of this section are as follows.

1. We are the first in the literature to study the problem of minimizing the sum of clock skew

variations across multiple PVT corners.

64A crosslink is an additional wire between any two nodes of a given clock tree. When inserted into a clock tree,
it creates a loop and hence a nontree topology.
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2. We propose a novel global-local framework for clock network optimizations to minimize

the sum, over all pairs of PVT corners, of skew variation between all sequentially adjacent

pairs.

3. We demonstrate that machine learning-based predictors of latency change can provide

accurate guidance on the best moves to test during local optimization for minimization of

skew variation across corners.

4. Our optimization framework has a robust interface to leading commercial P&R and STA

tools and production PDKs/libraries, and can be generalized to other clock network opti-

mization problems.

5. We achieve up to 22% reduction in the sum of skew variations of clock trees in testcases

that reflect high-speed application processor and memory controller blocks.

4.3.1 Problem Formulation and Optimization Framework

The notations we use in this work are given in Table 4.7.

Table 4.7: Description of notations used in our work on clock skew variation minimization.

Term Meaning

ck Operating corner, (0≤ k ≤ K; c0 is the nominal corner)

αk Normalization factor of corner ck with respect to c0

fi Sink (e.g., flip-flop) in clock tree, (1≤ i≤ N)

Pi Clock path from clock source to fi

skewck
i,i′ Clock skew between sink pair ( fi, fi′) at corner ck

s j Arc (i.e., tree segment without branching) in clock tree, (1≤ j ≤M)

Dck
j Original arc delay at corner ck

∆
ck
j Delay change of arc s j at corner ck from optimization

Dck
max Maximum latency of a clock path at corner ck

vck,ck′
i,i′ Normalized skew variation across corner pair (ck, ck′) between ( fi, fi′)

Vi,i′ Worst normalized skew variation across all corner pairs between ( fi, fi′)
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For a corner pair (ck, ck′), we define the normalized skew variation between sink pair ( fi,

fi′) as

vck,ck′
i,i′ = |αk · skewck

i,i′−αk′ · skewck′
i,i′ | (4.14)

where skew (skewck
i,i′) is defined as the latency difference between capture and launch clock paths

at ck. We emphasize that our optimization is local skew-aware, so that we only optimize skews

between launch-capture sink pairs that have valid datapaths in between them (i.e., we avoid the

pessimism that would result from use of global skew in the formulation). αk is the normalization

factor at corner ck with respect to the nominal corner. Note that αk is an input parameter and can

be determined by technology information (e.g., ratio between buffer delays at ck and c0), clock

tree properties (e.g., Vt and sizes of buffers in the tree), etc. Further, one can define specific αk

values for each sink pair. In our work, we define αk as the average skew ratio between c0 and ck

over all sink pairs.

We further define the maximum skew variation across corners, for each sink pair ( fi, fi′),

as

Vi,i′ = max
∀(ck,ck′ )

vck,ck′
i,i′ . (4.15)

Based on the above, we address the following problem formulation:

Skew variation reduction problem. Given a routed clock tree, minimize the sum over all sink

pairs of the maximum normalized skew variation across all corners.

Minimize ∑
∀( fi, fi′ )

Vi,i′ (4.16)

Figure 4.34 illustrates our optimization framework. We perform global and local opti-

mizations to reduce skew variations. Global optimization constructs a linear program (LP) and

uses it to guide buffer insertion, buffer removal, and routing detours. Local optimization is based

on a machine learning-based predictor of latency changes and is the focus of this discussion. It it-

eratively minimizes skew variation via tree surgery (i.e., driver reassignment), buffer sizing, and

buffer displacement. The iterative optimization continues until there is no further improvement

or another stopping condition is reached.

Global Optimization

We construct a linear program (LP) to reduce the sum of skew variations between all

sink pairs in a clock tree. Based on the LP solution, we determine the desired delay changes
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Figure 4.34: Overview of our clock skew variation optimization framework.

of arcs at all corners and perform buffer insertion and removal, as well as routing detour, to

accomplish the desired delay changes. We determine number of buffers, buffer size and length

of routing detour based on lookup tables. However, the achievable delay values are discrete due

to the limited number of buffer sizes. Further, placement legalization and routing congestion

also lead to discrepancy between desired delay and actual delay after ECOs in the P&R tool.

Therefore, to minimize the sum of skew variations as well as to increase the likelihood that

the solution is practically implementable, we formulate the LP such that it minimizes the total

amount of delay changes with respect to an upper bound on sum of skew variations. As a result,

we implicitly minimize the number of ECO changes. We then sweep this upper bound to search

for the achievable solution with minimum sum of skew variations. The objective function is:

Minimize ∑
1≤ j≤M, 0≤k≤K

|∆ck
j | (4.17)
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where ∆
ck
j is the latency change on arc s j at corner ck.65 The upper bound U on the sum of skew

variations is specified as

∑
( fi, fi′ )

Vi,i′ ≤U (4.18)

where Vi,i′ is the maximum normalized skew variation for the sink pair ( fi, fi′) over all corner

pairs (ck, ck′), and is calculated based on the following constraint.

Vi,i′ ≥αk · ( ∑
s j′∈Pi′

(Dck
j′ +∆

ck
j′ )− ∑

s j∈Pi

(Dck
j +∆

ck
j )

−αk′ · ( ∑
s j′∈Pi′

(Dck′
j′ +∆

ck′
j′ )− ∑

s j∈Pi

(Dck′
j +∆

ck′
j ))

Vi,i′ ≥αk′ · ( ∑
s j′∈Pi′

(Dck′
j′ +∆

ck′
j′ )− ∑

s j∈Pi

(Dck′
j +∆

ck′
j ))

−αk · ( ∑
s j′∈Pi′

(Dck
j′ +∆

ck
j′ )− ∑

s j∈Pi

(Dck
j +∆

ck
j )) (4.19)

We further constrain the optimization such that the solution returned does not degrade

(i) local skew at any corner, nor (ii) the skew variation between corner pairs (ck,c0), for all arcs

on clock paths at all non-nominal corners ck.

∑
s j′∈Pi′

(Dck
j′ +∆

ck
j′ )− ∑

s j∈Pi

(Dck
j +∆

ck
j )≤ | ∑

s j′∈Pi′

Dck
j′ − ∑

s j∈Pi

Dck
j |

∑
s j∈Pi

(Dck
j +∆

ck
j )− ∑

s j′∈Pi′

(Dck
j′ +∆

ck
j′ )≤ | ∑

s j′∈Pi′

Dck
j′ − ∑

s j∈Pi

Dck
j | (4.20)

65We formulate ∆
ck
j as positive and negative components to handle the absolute values in our formulation.
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αk·( ∑
s j′∈Pi′

(Dck
j′ +∆

ck
j′ )− ∑

s j∈Pi

(Dck
j +∆

ck
j ))

− ∑
s j′∈Pi′

(Dc0
j′ +∆

c0
j′ )− ∑

s j∈Pi

(Dc0
j +∆

c0
j )

≤|αk · ( ∑
s j′∈Pi′

Dck
j′ − ∑

s j∈Pi

Dck
j )− ( ∑

s j′∈Pi′

Dc0
j′ − ∑

s j∈Pi

Dc0
j )|

∑
s j′∈Pi′

(Dc0
j′ +∆

c0
j′ )− ∑

s j∈Pi

(Dc0
j +∆

c0
j )

−αk · ( ∑
s j′∈Pi′

(Dck
j′ +∆

ck
j′ )− ∑

s j∈Pi

(Dck
j +∆

ck
j ))

≤|αk · ( ∑
s j′∈Pi′

Dck
j′ − ∑

s j∈Pi

Dck
j )− ( ∑

s j′∈Pi′

Dc0
j′ − ∑

s j∈Pi

Dc0
j )| (4.21)

We also bound the maximum latency for each clock path as follows.

∑
s j∈Pi

(Dck
j +∆

ck
j )≤ Dmax (4.22)

For each arc, we specify the upper and lower bounds on the latency change. The lower bound

Dck
min j is determined by the delay with optimal buffer insertion, without any routing detour. The

upper bound of delay change is defined as β times of the original arc delay, in which β can be

selected empirically (we assume β = 1.2 in this work).

Dck
min j ≤ Dck

j +∆
ck
j ≤ β ·Dck

j (4.23)

Complexity analysis. The LP formulation has O(M ·K) variables to indicate delay change on

each arc at each corner (∆ck
j ); there are also O(N2) (i.e., the number of sink pairs) variables to

indicate the maximum normalized skew variation across all corner pairs between each sink pair

(Vi,i′). There are C(K,2) constraints to force Vi,i′ to be no less than the maximum normalized skew

variation between each sink pair (Constraint (4.19)); (4 ·K) constraints to prevent local skew and

skew variation degradations (Constraints (4.20)-(4.21)); N constraints to specify the maximum

latency (Constraint (4.22)); (2 ·M) constraints to bound arc delay changes (Constraint (4.23));

and C(K,2) constraints to enhance ECO feasibility (Constraint (4.24)).

W ck,ck′
min ≤

Dck
j +∆

ck
j

Dck′
j +∆

ck′
j
≤W ck,ck′

max (4.24)

Further details of the lookup table characterization, and of the LP-guided ECO flow that
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implements solutions from the global optimization in a commercial CTS tool, are beyond the

scope of this thesis. Interested readers may find these details in [83].

Local Optimization

We apply local iterative optimization to further minimize the sum of skew variations

across corners. More specifically, we consider three types of local moves, which are illustrated

in Figure 4.35(b)–(d) – (I) buffer sizing and/or buffer displacement, (II) displacement of a buffer

and gate sizing on one of its child buffers, and (III) tree surgery (i.e., reassignment of a (child)

node to a different (parent) driver). However, performance of such iterative optimization is

usually limited by its large turnaround time. For instance, each local move requires placement

legalization, ECO routing, parasitic extraction, and timing analysis in the golden timer.66 Given

such large turnaround time, it is practically impossible to explore all possible local moves for

a given design. Therefore, a fast and accurate model to predict the impact of local moves is

necessary. Previous work [84] has demonstrated that machine learning-based models are quite

accurate for delay and slew estimation. In our work, we apply a two-stage machine learning-

based model for prediction of arc delay changes with local moves. The overarching goal is to be

able to accurately predict delta-latency, i.e., the change in post-ECO routing source-sink delays

that results from a given buffer’s resizing and/or placement perturbation.

Machine learning-based model. To predict the impact of a local move, we first estimate

new routing pattern (if the move contains displacement or tree surgery) by constructing two

types of trees – FLUTE [51] tree and single-trunk Steiner tree. We approximate wire delays

correspondingly using Elmore delay and D2M [7] models. We then update the delay and output

slew of the driver based on the estimated wire capacitance and update pin capacitance (if the

move sizes the child node) by performing interpolation in the Liberty table. Last, we perform

slew propagation using PERI [133] and update gate delays one and two stages downstream based

on Liberty tables.67 However, as observed in [84], the interpolated delay values do not always

match those from the golden timer’s analysis. Further, the estimated routing pattern, as well as its

wire delay can have discrepancies with respect to the commercial router’s actual ECO solution.

We therefore construct machine learning-based models to minimize such discrepancies.

66In our experiments, the runtime for each local move on a testcase with 1.79M instances and 270K flip-flops,
using one thread per analysis corner on a 2.5GHz Intel Xeon server, is around 70 minutes (i.e., 30 minutes for ECO
and parasitic extraction, and 40 minutes for timing analysis).

67Our analyses show that the delay and slew change of buffers beyond two stages is <1ps, so we do not update
timings of buffers beyond two stages downstream.
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Figure 4.35: Local optimization moves used in our flow. (a) Initial subtree, (b) sizing and/or
displacement, (c) displacement and sizing of child node, and (d) tree surgery, i.e., driver

reassignment.

Our machine learning models use Artificial Neural Networks (ANN) [85], Support Vec-

tor Machines (SVM) with a Radial Basis Function (RBF) kernel [85], and Hybrid Surrogate

Modeling (HSM) [122].68 In addition to the estimated delays based on {FLUTE tree, single-

trunk Steiner tree} × {Elmore delay, D2M}, the input parameters to the machine learning-based

model also include the number of fanout cells, as well as the area and aspect ratio of the bounding

box which contains driving pin and fanout cells. To generate training data, we construct artificial

testcases (i.e., clock trees) that resemble real designs with fanout ranging from 1-5 (20-40 for

last-stage buffers) and bounding box area and aspect ratio of the driven pins respectively rang-

ing from 1000µm2 to 8000µm2 and from 0.5 to 1. We then place fanout cells or sinks randomly

within the bounding box. We generate 150 artificial testcases and perform 450 moves on average

with each testcase (the runtime for one testcase is ∼1 hour). Note that we only construct one

model for each corner, and that this model is applied to all designs.

We create one delta-latency model for each corner used in our experiments. Figure

4.36(a) shows the predicted vs. actual latencies that we compute from the predicted delta laten-

cies by our model at corner c3 in Table 4.9. Figure 4.36(b) shows the corresponding histogram of

68Further details of the applied machine-learning techniques that we use may be found in [85] and [122].
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Figure 4.36: Examples of (a) predicted vs. actual latencies and (b) percentage error histograms
from our model for c3 corner in Table 4.9.

percentage errors. Across all the corners, our modeling error is 2.8% on average. The absolute

maximum and minimum errors are 21.98% and 16.21% respectively. The modeling for each cor-

ner using the artificial testcases is a one-time effort. On a 2.5GHz Intel Xeon server, the time to

train a model for each corner is around 5 hours with four threads. Models for each corner can be

trained in parallel, e.g., on a server with 24 threads, we can train six models in 5 hours. Our mod-

els generalize to different testcases because (i) our training dataset generated from the artificial

testcases span ranges of parameters that are typically seen in clock trees in SoC application pro-

cessors and memory controllers, and (ii) we prevent overfitting by performing cross-validation.

Our experimental results indicate that our models are generalizable and accurate when applied to

“unseen” testcases during the model training phase. Figure 4.3.1 shows the accuracy comparison

between our learning-based model and analytical models. We observe that with fewer attempts,

our learning-based model is able to identify the best move for more buffers.

Iterative optimization flow. Based on our model, we perform iterative local optimization

flow illustrated in Algorithm 3. We first enumerate all candidate local moves and generate the

input data to our model (Line 1). The moves we consider in this work are shown in Table 4.8.

We predict the delta-latency resulting from each move based on our model (Line 2). We then

estimate the skew variation reductions based on the predicted latency changes. Our experimental

results show that we are able to evaluate the impacts of more than 160K moves at three corners

in 17 minutes on a 2.5GHz Intel Xeon server with 15 threads. We sort the candidate moves in
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Figure 4.37: Accuracy comparison between our learning-based model and analytical models.
An attempt is an ECO. There are 114 buffers, and each buffer has 45 candidate moves. In one
attempt, the learning-based model (resp. analytical models) can identify best moves for 40%

(resp. up to 20%) of the buffers.

decreasing order of their predicted skew variation reductions, and pick the top R (i.e., R = 5

in this work) moves to implement in R individual threads (Line 3). Last, we perform timing

analysis using the golden timer to assess the actual skew variation changes (Line 4). If there

is skew variation reduction, we update the database with the minimum skew variation solution.

Otherwise, we implement the next R moves (Lines 5–9). The iteration terminates when there is

no move showing skew variation reduction according to our predictor.

Algorithm 3 Iterative optimization flow.

1: Enumerate all candidate moves and generate input data to model
2: Predict delta-latency and skew variation reductions
3: Implement R moves with maximum predicted skew variation reductions using R threads
4: Assess actual skew variation reductions with the golden timer
5: if there is skew variation reduction then
6: Update database with the minimum skew variation solution
7: else
8: Implement the next R moves and go to Line 4
9: end if

4.3.2 Experimental Setup and Results

Our experiments are implemented in foundry 28nm LP technology. We construct the

original clock tree and perform ECO optimizations using Synopsys IC Compiler [340]. We use

Synopsys PrimeTime [342] and Synopsys PT-PX for timing and power analyses, respectively.
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Table 4.8: Candidate moves in our optimization.

Type Candidate moves

I displace {N, S, E, W, NE, NW, SE, SW} by 10µm × one-step up/down sizing

II
displace {N, S, E, W, NE, NW, SE, SW} by 10µm × one-step up/down sizing

on one child node

III
reassign to a new driver (i) at the same level as current driver, and (ii) within

bounding box of 50µm × 50µm

We construct the machine learning-based model using MATLAB [311]. The optimization flow is

implemented using C++ and Tcl scripts.

Testcase Description

We have developed two classes of testcase generators to validate our proposed opti-

mization framework. Class CLS1 corresponds to clock networks typically observed in high-

speed application processors and graphics processors. Class CLS2 corresponds to clock net-

works in memory controllers, which are typically used in SoCs to interface SoC components

with DRAM/eDRAM. We implement our testcases in 28nm LP technology. The corners used in

our experiments are shown in Table 4.9. We use the testcase generation methodology described

in [35], and the top-level structures of the testcases T1 and T2 in [35]. We modify the floorplan

and clock tree synthesis flow to develop two variants of CLS1, CLS1v1 and CLS1v2. Each of

CLS1v1 and CLS1v2 contains four identical 650µm × 650µm interface logic modules (ILMs) to

resemble four cores of an application processor. These are floorplanned in a rectangular block

such that the utilization of standard cells is ∼60% before placement.69 Figure 4.38(a) shows the

floorplan of CLS1v1. We implement the CLS1 class testcases at corners c0, c1 and c3 as shown

in Table 4.10. Corners c0 and c1 are setup-critical, and c3 is hold-critical. Table 4.10 summarizes

various post-synthesis metrics of these testcases.

We also study a testcase CLS2v1 of class memory controller, which is new as compared

to [35]. Table 4.10 summarizes the post-synthesis metrics of this testcase, and Figure 4.38(b)

shows its floorplan. We use the methodology described in [35] to generate random logic and

connect this logic to FFs; this includes datapaths across different clock groups. The memory

69We understand from our industry collaborators that best-practices flows for high-speed and memory controller
blocks start with 50%–60% utilization before placement [330].
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Figure 4.38: Floorplans of (a) CLS1v1 and (b) CLS2v1. In yellow are routed clock nets.

Table 4.9: Description of corners.

Corner Process Voltage Temperature Back-end-of-line

c0 ss 0.90V -25◦C Cmax

c1 ss 0.75V -25◦C Cmax

c2 ff 1.10V 125◦C Cmin

c3 ff 1.32V 125◦C Cmin

Table 4.10: Summary of testcases.

Testcase #Cells #Flip-flops Area Util Corners

CLS1v1 0.4M 36K 3.3mm2 62% c0,c1,c3

CLS1v2 0.4M 35K 3.4mm2 60% c0,c1,c3

CLS2v1 1.79M 270K 4.5mm2 58% c0,c1,c2

controller is floorplanned in an L-shaped block with the controller at the center and the interface

logic in each of the top and bottom arms of the L-shape. The interface logic has data and control

signals across memory, processor and other blocks. The control signals are generated within the

controller, and the FFs in the interface logic and controller are separated by large distances (e.g.,

∼1mm). The large distance between sequentially adjacent sinks leads to large clock skew, which

the commercial tool tries to balance by inserting buffers. However, these clock buffers lead to
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skew variations across corners. We implement the CLS2v1 testcase at corners c0, c1 and c2 as

shown in Table 4.10, where c0 and c1 are setup-critical and c2 is hold-critical.

For implementations of all our testcases, we follow a production methodology [330].

We set the skew target as 0ps in the CTS tools, as our studies (with skew targets ranging from

0ps to 250ps, in steps of 50ps) indicate that a target skew of 0ps steers the tool to deliver the

smallest skew at each corner. We perform clock tree optimizations with both multi-mode multi-

corner (MMMC) scenario as well as multi-corner single-mode (MCSM) scenario at each mode.

We then select the optimized clock tree solution with minimum skew variation as the input to

our optimization.

Results

Table 4.11 shows the experimental results,70 where variation, skew, #cells, power and

area are respectively the sum of normalized skew variations over union of top 10K critical sink

pairs (in terms of setup and hold timing slacks) at each corner,71 local skew at each corner, total

number of clock cells, clock tree power and total area of clock cells. In the experiments, we

apply three optimization flows to each of the testcases: (i) global is the global optimization flow,

(ii) local is the local iterative optimization flow, and (iii) global-local performs global and local

optimizations in sequence. The global (local) optimization alone achieves up to 16% (5%) re-

duction on the sum of skew variations. Since local moves affect only a subset of sink pairs, they

have smaller impact than that of the global optimization. We observe that the local iterative opti-

mization reduces skew variations more when applied after the global optimization, as compared

to a standalone local skew optimization (e.g., for CLS1v1, local optimization achieves 13ns more

reduction with a prior global optimization, as compared to the standalone local optimization).

By combining the two optimizations, we reduce the sum of skew variations by up to 22% with

negligible area and power overhead. The results also show no degradation of local skews.

Figure 4.39 shows the skew variation reduction during the local iterative optimization.

We observe that tree surgeries (type-I moves) are more effective than sizing and displacement

moves (type-II and type-III moves), and are applied by our model in the early iterations. For

CLS1v1, we also show the results with 10 random moves (dots in black), where the gap between

random movement and our optimization is 15ns. This supports a conclusion that benefits are

due to our delta-latency model. The runtimes per iteration (with 15 threads) are 60 minutes, 80

minutes and 200 minutes for testcases CLS1v1, CLS1v2 and CLS2v1, respectively.

70Our optimization does not create any maximum transition or maximum capacitance violations.
71The number of optimized sink pairs for CLS1v1, CLS1v2 and CLS2v2 are respectively 15012, 14671 and 15142.



172

Table 4.11: Experimental results of MMMC clock skew variation minimization.

Testcase Flow
Variation [norm] Skew (ps)

#Cells
Power Area

(ns) c0 c1 c2,3 (mW) (µm2)

CLS1v1

orig 512 [1.00] 214 530 226 2515 0.355 3615

global 431 [0.84] 179 395 188 2553 0.356 3705

local 493 [0.96] 214 529 223 2515 0.355 3621

global-local 399 [0.78] 175 387 188 2553 0.356 3706

CLS1v2

orig 585 [1.00] 272 594 259 2762 0.369 3968

global 518 [0.89] 269 575 235 2762 0.369 3975

local 557 [0.95] 258 545 259 2762 0.369 3970

global-local 510 [0.87] 265 564 235 2762 0.369 3975

CLS2v1

orig 972 [1.00] 179 192 282 5568 0.865 8556

global 888 [0.91] 175 192 232 5574 0.866 8577

local 926 [0.95] 180 190 282 5568 0.865 8556

global-local 841 [0.87] 176 192 232 5574 0.866 8557

Figure 4.39: Sum of skew variations reduces during the local iterative optimization. In blue
are type-I moves, in red are type-II moves, and in green are type-III moves.

Figure 4.40 shows the distributions of skew ratios between corner pairs (c1, c0) and (c3,

c0), over sink pairs, of the initial clock tree and the optimized clock tree. We observe that our

optimization significantly reduces the variation and range of skew ratios between corner pairs.
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Figure 4.40: Distribution of skew ratios between (c1, c0) and (c3, c0) of (i) original clock tree
and (ii) optimized clock tree for CLS1v1.

4.3.3 Conclusions

In this work, we propose the first framework to minimize the sum of skew variations over

all sequentially adjacent sink pairs, using both global and local optimizations. Our experimental

results show that the proposed flow achieves up to 22% reduction of the sum of skew variations

for testcases implemented in foundry 28nm LP technology, as compared to a leading commer-

cial tool. In the global optimization, our LP formulation comprehends the ECO feasibility based

on characterized lookup tables of stage delays. In the local optimization, we demonstrate that

machine learning-based predictors of latency changes can provide accurate estimation of local

move impacts. Future works may include: (i) development of models to predict a buffer location

for minimum skew over a continuous range of possible buffer locations; (ii) explorations, moti-

vated by our current results, of new library cells whose delay and slew are less sensitive to corner

variation so as to enable fine-grained ECOs based on our LP solutions; and (iii) investigation of

whether a worse initial start point (clock network with large skew variations) can enable us to

achieve smaller skew variation across corners using our optimization flow.
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Chapter 5

Optimizations of Design Power,

Energy, Project Management, and Cost

This chapter presents three distinct works that directly benefit leading-edge SoC design

companies. While the works in this chapter are not based on learning-based modeling, their

respective optimizations change the envelope of what is being modeled. The first work describes

a new analytic three-dimensional IC (3DIC) placement tool, APlace3D (A3D) that applies a

new “true 3D” wirelength objective function. We describe a flow that uses A3D with com-

mercial EDA tools, and demonstrate that our placement solutions achieve significant wirelength

and power reduction relative to two-dimensional IC (2DIC) implementations. This work enables

generation of a stronger 3DIC implementation “ground truth” and thus improves the modeling of

3D power benefit and routability prediction. The second work provides two mixed integer-linear

programs, along with an associated solver implementation, for optimal multi-project, multi-

resource allocation with task precedence and resource co-constraints. This solver enables deci-

sion support to management in IC design companies via “what if” analyses of cost and schedule

tradeoffs. Accurate modeling would interact with this capability by providing improved con-

straints and requirements, leading to better optimization of schedule and resource allocations.

The third work presents a maximum-value, reliability-constrained overdrive frequencies (MVR-

COF) problem that guarantees prescribed lower bounds on acceptable performance and accept-

able throughput in multi-core systems, without exceeding prescribed lifetime budget for any

core. We develop a solver for the MVRCOF problem and present optimal and heuristic solutions

that determine the execution times of each core in each combination of simultaneously active

cores, such that cores wear out in a balanced manner over the chip lifetime. Accurate modeling

175
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would affect evaluation of constraints such as temperature, and thus lead to better optimization

of the objective function.

5.1 Analytic 3DIC Placement using a New “True 3D” Objective

Three-dimensional integrated circuits (3DICs) are well-understood to offer substantial

scaling possibilities for the semiconductor industry [215]. In the past, 3DIC has been used to

refer to packaging-driven techniques, e.g., flip-chip, package-on-package, and more recently,

through-silicon via (TSV)-based 3D. Recently 3D VLSI (3DV) has received attention as an al-

ternative to packaging-driven 3D integration technologies. 3DV is a foundry-driven, wafer-level

3D integration process that can further be categorized into sequential face-to-back (F2B) and par-

allel F2B/face-to-face (F2F) integration technologies. The abundance of vertical interconnects

(VIs) in 3DV enables designers to rethink existing block and SoC implementations, and enables

significant power and performance improvements through shorter interconnects and fewer in-

terconnect buffers. Notably, 3DV calls for new, “true 3D” physical implementation flows that

properly comprehend the potential of this implementation technology.

As reviewed in Section 2.3.1, existing 3DIC physical implementation flows have primar-

ily focused on packaging-driven 3DICs; such works typically address core- or block-level 3D

implementations where all the IPs are 2D, and are only floorplanned in a 3D space. The recent

“shrunk2D” (S2D) flow of Panth et al. [196] performs block-level 3D implementation using 2D

EDA tools and is, to our understanding, the strongest available 3D implementation flow.

In this section, we describe a new analytic placer APlace3D (A3D) that, in conjunction

with commercial P&R, achieves superior routed wirelength and power outcomes. The main con-

tributions of this section are as follows.

• We implement a new analytical placer, A3D, for 3DICs that is built on APlace2D source

code [114]. We propose a novel wirelength objective – a weighted sum of half-perimeter

wirelengths (HPWLs) of subnets in each tier and the HPWL of a given net across tiers.

We further apply the Gordian-L net model [113] [225] in 3D, and we propose a new net

weighting method based on the ratio of a given net’s Steiner minimum tree cost to its

HPWL. We also study an objective that near-exactly evaluates “true” 3D wirelength. We

demonstrate that A3D produces placements that are fully routable and that can be signed

off for timing and power using commercial EDA tools. As reviewed in Section 2.3.1,
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previous works on analytical 3DIC placers do not optimize a “true 3D” wirelength, and do

not guarantee that the placement solutions are routable in a commercial EDA tool.

• Compared to S2D solutions, our solutions reduce routed wirelength by up to 24% and

total power by up to 12% in 28nm FDSOI. We study available benefit in 3DICs using

a methodology described in [38], and show that our improvements over S2D comprise

a significant advancement relative to an upper bound on available 3D benefit. This may

imply that, e.g., wirelength benefits of future 3DIC placement works will not substantially

improve on those achieved by A3D.

• We demonstrate that our 3D implementation improvements relative to 2D implementations

are general across two foundry technologies – 28nm FDSOI and 28nm LP – and two sets of

available channel lengths. We achieve up to 31% reduction in routed WL and up to 20.2%

reduction in total power at iso-performance on real designs relative to 2D implementations.

5.1.1 APlace3D Implementation and Flow Description

We start with an implementation of APlace2D (obtained from authors of [112] [113]

[114]) that performs global placement by posing it as a constrained nonlinear optimization prob-

lem. Given modules to be placed, APlace2D divides the placement area into uniformly-sized

grids and minimizes HPWL subject to the constraint that total module area in each grid must be

balanced. Formally, the problem can be expressed as [113] [114]

minimize: HPWL(x,y)

subject to: Dg(x,y) = D, for each grid g (5.1)

where (x,y) denotes the vector of coordinates of the centers of placeable modules, HPWL(x,y)

denotes the total HPWL of the placement solution, Dg(x,y) denotes the density function to bal-

ance the total module area for each grid g, and D is a constant which is the average area of

modules over all grids. To apply nonlinear optimization techniques, both HPWL and the density

function must be continuously differentiable so as to minimize them. Therefore, these functions

must be made “smooth”.
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Smoothed wirelength function in APlace2D. APlace2D uses a log-sum-exp method to trans-

form the linear HPWL so that it can be continuously differentiated and effectively minimized

[184]. For a hyperedge (net) e with pin coordinates {(x1,y1), (x2,y2), ... (xn,yn)}, the wirelength

using log-sum-exp is expressed as [113] [114] [184]:

WL(e) = α ·

(
log

(
n

∑
i=1

exi/α

)
+ log

(
n

∑
i=1

e−xi/α

))
+

α ·

(
log

(
n

∑
i=1

eyi/α

)
+ log

(
n

∑
i=1

e−yi/α

))
(5.2)

where α is a smoothing parameter [184] and WL(e) is differentiable. Naylor et al. [184] propose

α so that WL(e) converges to HPWL(e) as α converges to 0. α guides the placer to choose nets

whose length minimization must be prioritized over other nets. For example, given a two-pin net

e′ with pin coordinates {(x1,y1), (x2,y2)}, the partial derivative of the log-sum-exp wirelength

method for x1 is

∂WL(e’)
∂x1

=
1

1+ e(x1−x2)/α
+

1
1+ e(x2−x1)/α

(5.3)

Nets whose lengths are long relative to α will be preferentially chosen for minimization over nets

whose lengths are small relative to α (because the exponentiated term will become 0 and e0 =

1). APlace2D uses this characteristic of α during multi-level clustering. APlace2D adaptively

adjusts α based on the grid size. When the value of α is made comparable to the grid size, only

long nets are preferentially chosen for minimization over short nets.

APlace2D also implements another smoothening method, first proposed with Gordian-

L [225], to minimize a linear wirelength objective using iterated quadratic minimizations. The

x-direction wirelength of a two-pin net e with pin coordinates {(x1,y1), (x2,y2)} is expressed as

[114] [225]

WL(e) = ∑
x1,x2

(x1− x2)2/γx1,x2 (5.4)

where γx1,x2 = max{r0, |x1− x2|}, and is updated as x1 and x2 change; r0 sets a minimum value

for γxi,x j so as to prevent overflow. Kahng et al. [114] propose to set r0 to ∼10% of the width of

grid g to obtain the best wirelength reduction, based on empirical observations.
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Smoothed density function in APlace2D. The density function Dg in Equation (5.1) is smoothed

to make it continuously differentiable via [113] [114]

Dg(x,y) = ∑
v

Px(g,v) ·Py(g,v) (5.5)

where v denotes a module (e.g., a standard cell), and Px(g,v) and Py(g,v) are functions to rep-

resent the overlap between grid g and module v along x- and y-directions, respectively. Naylor

et al. [184] smoothe these functions using corresponding “bell-shaped” functions px(g,v) and

py(g,v). Kahng et al. [113] improve the handling of large block-sized modules (instead of

modules being limited to standard cells only), via the density function

Dg(x,y) = ∑
v

Cv · px(g,v) · py(g,v) (5.6)

where Cv is a normalization factor chosen such that ∑
g

Cv · px(g,v) · py(g,v) is equal to the total

module area.

Congestion-Directed Placement in APlace2D. APlace2D uses the congestion estimation

method proposed by Kahng and Xu in [130]. The method accounts for the impact of the number

of bends in a routing path, and the impact of neighboring nets on a path’s occurence probability.

When a grid is estimated to be congested, its density function Dg is decreased. When a grid is

estimated to be uncongested, its Dg is increased such that the sum of Dg over all grids remains

constant, and is equal to the total area of standard cells. Formally, Dg is modified as follows

[113]:

Dg ∝ 1+ γ ·
(

1−2
Congestion(g)

maxgCongestion(g)

)
(5.7)

where γ is a factor used to adjust congestion (γ = 0.6 is used in our reported experiments), and

Congestion(g) is the congestion in grid g estimated using the method in [130].
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Penalty Function in APlace2D. Using the smoothed wirelength and density functions, APlace2D

solves the optimization problem in Equation (5.1) by solving a sequence of unconstrained mini-

mization problems with a quadratic penalty:

minimize: WL(x,y)+
1
2µ ∑

g
(Dg(x,y)−D)2 (5.8)

for a sequence of values of µ. The authors of APlace2D [112] [113] [114] decide µ0, the initial

value of µ, using values of wirelength and density (i.e., Equation (5.6)) gradients as follows:

µ0 =
1
2
·
∑
xi,y j

∑
g
|Dg−D| ·

(∣∣∣∣∂Dg

∂xi

∣∣∣∣+ ∣∣∣∣∂Dg

∂y j

∣∣∣∣)
∑
xi,y j

(∣∣∣∣∂WL
∂xi

∣∣∣∣+ ∣∣∣∣∂WL
∂y j

∣∣∣∣) . (5.9)

We extend APlace2D to A3D using a modified density function and three wirelength calculation

methods.

Density Function in A3D. We change the original APlace2D density function to comprehend

overlap in the z-direction. Thus, we add changes to compute density gradient in the z-direction.

With 3D support, the density function from Equation (5.6) becomes

Dg(x,y,z) = ∑
v

Cv · px(g,v) · py(g,v) · pz(g,v) (5.10)

where pz(g,v) is the function to represent overlap of module v along the z-direction, and is

calculated in the same manner as functions px(g,v) and py(g,v) [113]. Figure 5.1(a) illustrates

the rectangle-shaped 0/1 density function pz(g,v), where wg denotes the grid width, zv denotes

the location of module v along the z-direction, and zg denotes the grid center. When the z-

direction between grid g and module v is |zv − zg| < wg/2, py(g,v) is 1 and otherwise is 0.

Figure 5.1(b) illustrates the smoothened density function based on techniques described in [113]

[184].

Wirelength in A3D. We have implemented three new wirelength calculation methods in A3D.

In Section 5.1.2 we demonstrate results with each of the three different methods.

(i) Gordian-L in 3D (A3D-GL3D). The first method is a straightforward extension of log-

sum-exp and Gordian-L methods to 3D by adding a cost in the z-direction. We also compute
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Figure 5.1: Illustration of density function pz(g,v): (a) rectangle-shaped 0/1 density function
and (b) bell-shaped smoothened density function [113] [184].

the wirelength gradient in the z-direction. With 3D support, the log-sum-exp wirelength from

Equation (5.2) for a net e with pin coordinates {(x1,y1,z1), (x2,y2,z2), ... (xn,yn,zn)} is

WL(e) = α ·

(
log

(
n

∑
i=1

exi/α

)
+ log

(
n

∑
i=1

e−xi/α

))
+

α ·

(
log

(
n

∑
i=1

eyi/α

)
+ log

(
n

∑
i=1

e−yi/α

))
+

α ·

(
log

(
n

∑
i=1

ezi/α

)
+ log

(
n

∑
i=1

e−zi/α

))
(5.11)

The Gordian-L wirelength [225] in the z-direction of a two-pin net e with pin coordinates

{(x1,y1,z1), (x2,y2,z2)} is expressed as:72

WL(e) = ∑
z1,z2

(z1− z2)2/γz1,z2 (5.12)

where γz1,z2 = max{r0, |z1− z2|}, and is updated as z1 and z2 change; r0 is the minimum value of

γzi,z j used to prevent overflow.

(ii) Weighted-wirelength (A3D-WWL). The second method is a new net weighting method

that uses the ratio of Steiner wirelength and the net’s HPWL. For each net, we calculate the

Steiner wirelength using FLUTE [51] and the HPWL using the union of pin locations over all

tiers. When the Steiner wirelength of a net is larger than the HPWL, the weight is large and

guides the optimization to minimize wirelength for this net.

72APlace2D uses the log-sum-exp net model only for unclustered hypergraphs, and the Gordian-L net model for
clustered hypergraphs. In A3D-GL3D we retain this same code flow used in APlace2D.
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(iii) True 3D wirelength (A3D-T3D). The third method is a new wirelength metric that we

refer to as true 3D (T3D). Given pin placement on two tiers, the T3D wirelength metric is cal-

culated as follows.

T3D = W1 ·HPWL0 +W2 ·HPWL1 +W3 ·HPWLov (5.13)

where W1,2,3 are user-specified weights and HPWLov denotes the HPWL across two tiers, i.e.,

when the two tiers are vertically overlapped. The assumption here is that no signal net crosses

between tiers more than once, i.e., a net uses at most one vertical interconnect (VI). Minimizing

the T3D objective function enables the optimization to minimize HPWL of subnets on each tier

as well as the HPWL of nets across tiers, for each net. Figure 5.2 illustrates objective T3D for a

4-pin net with pins A and B placed on Tier 0, and pins C and D placed on Tier 1. We calculate

HPWL0 and HPWL1 from the respective bounding boxes in green color in Tiers 0 and 1. The

figure shows the projections of pins C and D onto Tier 0 and the resulting bounding box of all

the four pins in brown color. We calculate HPWLov from this (brown color) bounding box. T3D

wirelength is equal to the 3D Steiner wirelength for 2-pin nets. However, for multi-pin nets, T3D

overestimates the 3D Steiner wirelength because HPWLov may double-count the HPWL on each

tier. Assuming one VI per signal net that crosses tiers, Figures 5.3(a) and (b) respectively show

examples where T3D overestimates wirelength for a 4-pin net and a 3-pin net. In Figure 5.3(a),

the wirelength is overestimated by either HPWL0 or HPWL1. In Figure 5.3(b), the wirelength is

overestimated by HPWL0, i.e., T3D computes the wirelength as 40 (HPWL0 is 20, HWPLov is

20, so T3D is 40), instead of 20. Figure 5.3(b) shows that in the worst case, T3D wirelength is 2×
the 3D wirelength. To implement a “truer true 3D” Steiner wirelength, HPWLov in T3D can be

modified to be the minimum Manhattan distance between any pin on Tier 0 and any pin on Tier

1, when the subnet bounding boxes on each tier do not overlap, and zero otherwise (i.e., when

the subnet bounding boxes on each tier overlap). We use T3D′ to denote T3D with HPWLov

modified in this way. Our experimental results in Section 5.1.2 indicate that the differences in

routed wirelengths between T3D and T3D’ are not significant (∼0.02% in wirelength and 0.1%

in power).
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Figure 5.2: Illustration of wirelength objective T3D using a 4-pin net, whose pins A and B are
placed on Tier 0 and pins C and D are placed on Tier 1. The bounding box in brown color is the
overlapped bounding box of the union of pins of net over both tiers. We calculate HPWLov from

this bounding box.

Using 3D-aware WL73 and density function (i.e., Equation (5.10)), the sequence of un-

constrained minimization problems with a quadratic penalty changes as follows.

minimize: WL(x,y,z)+
1
2µ ∑

g
(Dg(x,y,z)−D)2 (5.14)

where the initial value of µ, µ0 is calculated as follows.

µ0 =
1
2
·

∑
xi,y j,zk

∑
g
|Dg−D| ·

(∣∣∣∣∂Dg

∂xi

∣∣∣∣+ ∣∣∣∣∂Dg

∂y j

∣∣∣∣+ ∣∣∣∣∂Dg

∂zk

∣∣∣∣)
∑
xi,y j

(∣∣∣∣∂WL
∂xi

∣∣∣∣+ ∣∣∣∣∂WL
∂y j

∣∣∣∣+ ∣∣∣∣∂WL
∂zk

∣∣∣∣) (5.15)

A3D flow description. Figure 5.4 shows our flow using A3D. Given a post-synthesis netlist, we

perform placement of PI/POs and flip-flops. To perform clock tree synthesis (CTS), we evaluate

two choices: (i) split at source (i.e., at the clock roots), and (ii) split at sinks. Our experimental

results shown in Table 5.1, with two open-source designs, indicate that splitting at sinks achieves

∼18%–20% less clock power, #buffers and skew than splitting at the source. These results are

consistent with those presented in [197].74 We therefore perform CTS using the splitting at sinks

73Note that we implement each of A3D-GL3D, A3D-WWL and A3D-T3D separately. We have also applied A3D-
WWL using HPWL of each tier and combined with A3D-T3D. The results are similar to (i.e., within 0.12% for all
testcases studied) the A3D-T3D method.

74Note that for each design reported in Table 5.1, we have performed CTS using both split at source and split at
sink methodologies using identical values of maximum latency, target skew and maximum #levels.
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Figure 5.3: Examples where T3D overestimates wirelength in 3D. Overestimated by value of:
(a) HPWL0 or HPWL1, and (b) HPWL0. The assumption is that only one VI is used per signal

net that crosses tiers.

methodology with low-Vt BFX-type cells from the technology library. In this methodology, all

clock buffers are placed on Tier 0, but flip-flops can be placed either on Tier 0 or Tier 1. We

invoke A3D and obtain a global placement of all standard cells across each tier. (Note that PI/POs

from the original design and clock buffers are fixed on Tier 0.) We then use Cadence Innovus

v15.2 [286] to legalize and refine the A3D placement. After that, we insert VIs as dummy cells,

and invoke A3D again to obtain a placement of VIs (standard cell placements are fixed in the

input to A3D). After obtaining locations of VIs, we change these VI dummy cells to PI/POs on

each tier, and use Cadence Innovus to perform tier-by-tier legalization, routing and optimization.

To perform signoff timing and power analysis, we use Synopsys PrimeTime (PT)-SI and PTPX

[342].
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Table 5.1: Comparison of CTS methodologies for 3D in 28nm FDSOI.

Split at aes cipher top jpeg encoder

#Clk Skew Clk #Clk Skew Clk

Bufs (ps) Power (mW) Bufs (ps) Power (mW)

source 15 22 1.1 134 52 9.81

sink 12 17 0.9 111 42 8.25APlace3D Flow 

Place Flip-flops, macros and PI/POs; CTS;  

Fix CTS Buffers, PI/POs on Tier 0 
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Figure 5.4: 3D P&R flow using two tiers with A3D.

5.1.2 Experimental Setup and Results

We now describe our design of experiments, and present results using our A3D placer.

Design of Experiments

We have implemented all three wirelength (WL) methods (A3D-GL3D, A3D-WWL

and A3D-T3D) in A3D in C++, compiled with g++ v4.4.7, and verified on Intel Xeon E5-2690

2.6GHz server with CentOS v6.8. In our experiments we use open-source designs aes cipher top,

jpeg encoder, ldpc decoder and dec viterbi from OpenCores [318], netcard and leon3mp from

the ISPD-12 benchmark suite [187], and OST2 spc core [317]. Table 5.2 shows details of the

post-synthesis netlists in 28nm FDSOI. We perform synthesis using Synopsys Design Compiler

vI-2013.12-SP3 [337], P&R using Cadence Innovus v15.2 [286] and signoff timing and power

analyses using Synopsys PrimeTime-SI and PrimeTime-PX vJ-2014.12 [342], respectively. We

use two 12-track foundry technology libraries, 28nm FDSOI and 28nm LP; in 28nm FDSOI we
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conduct experiments using four channel lengths (24nm, 27.6nm, 33nm and 38.4nm) as well as

one channel length (24nm). In all of our experiments we use six metal layers for routing (M1–

M6 pitches are 0.136µm, 0.1µm, 0.1µm, 0.1µm, 0.1µm, and 0.1µm) and perform 3D P&R using

two tiers.

We perform the following three experiments.

• Experiment 1. The goal of this experiment is to quantify WL and power benefits of

using the three WL calculation methods in A3D and the A3D flow over a best 2D imple-

mentation [38] of our designs at iso-performance and iso-area. We compare QoR using

28nm FDSOI and 28nm LP technologies. For 28nm FDSOI, we use two different sets of

channel lengths for our comparisons.

• Experiment 2. The goal of this experiment is to calibrate our results with respect to

an “upper bound” on power benefit in 3D. We apply an “infinite dimension” analysis

methodology described in [38].

• Experiment 3. The goal of this experiment is to compare the A3D flow QoR using the

three variants of WL calculation methods with the S2D flow QoR at iso-performance and

iso-area. We study both face-to-face (F2F) as well as face-to-back (F2B) [193] configura-

tions.

Table 5.2: Netlist details at the post-synthesis stage in 28nm FDSOI.

Design #Instances #Flip-flops #Memories Cell Area (µm2)

aes cipher top (aes) 7933 530 0 8386

jpeg encoder (jpeg) 18362 4307 0 32310

ldpc 43515 2048 0 48713

dec viterbi (viterbi) 54048 26081 0 116736

netcard 344605 87197 0 398228

leon3mp 435019 108817 0 659413

spc 234881 44623 135 1527247

Results of Experiment 1

In this experiment we quantify WL and power benefits of using the three WL calculation

methods in A3D and the A3D flow over a best 2D implementation [38] of our designs at iso-

performance and iso-area. For the best 2D flow, we determine a P&R clock period for each
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design such that the worst-negative slack (WNS) at signoff is between -50ps and -70ps. Using

this clock period, we sweep the synthesis clock period by factors of {0.83, 0.91, 1.0, 1.11} times

the P&R clock period and choose the netlist that delivers minimum power and zero total negative

slack (TNS) at post-synthesis. We then determine the maximum utilization with six metal layers

for each design by sweeping the target utilization from 75% to 90% in steps of 1%. We denoise

each run by varying the utilization by {-0.05, 0, 0.05}%, and choose the maximum utilization

across the three denoised runs that has the number of design rule violations (DRCs) ≤ 50 in

at least one of the denoised implementations. The tuples <design, clock period, maximum

utilization> are <aes, 0.65ns, 86%>, <jpeg, 0.85ns, 85%>, <ldpc, 0.85ns, 75%>, <viterbi,

1.15ns, 80%>, <netcard, 1.4ns, 73%>, <leon3mp, 3.1ns, 73%>, <spc, 4.0ns, 72%>.75 Our

setup and hold corners are {ss, 0.9V, 25C} and {ff, 0.9V, 25C}, respectively.

Tables 5.3–5.9 compare 2D (using results from the best 2D flow) QoR versus A3D-

GL3D, A3D-WWL and A3D-T3D QoR for multiple metrics for seven designs, across 28nm

FDSOI and LP foundry technologies. For 28nm FDSOI, we also present results with four chan-

nel lengths and one channel length. All our A3D implementations are routable with #DRCs

≤ 50, and we can perform signoff timing and power analyses. For WL, we achieve 31% re-

duction using A3D-WWL and A3D-T3D for both aes (see Table 5.3) and ldpc (see Table 5.5)

relative to their corresponding 2D implementations. Our achieved reduction in WL is compa-

rable to those reported in [1] for ldpc, albeit at a different technology. For power, we achieve

20.28% reduction for ldpc (see Table 5.5) and 16.72% reduction for aes (see Table 5.3) rela-

tive to their 2D implementations. Across all designs, we achieve at least 18% reduction in WL

and 2.5% reduction in power. Table 5.11 compares QoR of A3D-T3D and A3D-T3D′ flows for

aes and ldpc in 28nm FDSOI technology with four channel lengths. The differences in routed

wirelength and power between A3D-T3D and A3D-T3D′ flows are ≤ 0.1%, i.e., insignificant.

Hence, in what follows we use the A3D-T3D flow for comparisons with other flows.

We have conducted additional experiments with A3D-GL3D to observe how #VIs change

as we vary cost in the z-direction. Figure 5.5 shows for the jpeg design that when z-cost is zero,

almost all nets in the design are cut across tiers. When the z-cost is 1, the #VIs is the value (i.e.,

7766) reported in Table 5.4 for A3D-GL3D and jpeg. When we set the z-cost to a large value

(100), the #VIs reduces to 5582. Reduction of #VIs from from 100 is not significant because to

maintain area balance across tiers, a subset of nets must be cut.
75We conducted experiments for spc only in 28nm FDSOI because we did not have the required memory macros

in 28nm LP.
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Table 5.3: Comparison of aes cipher top metrics from 2D vs. A3D flows using F2F integration
in 28nm FDSOI and LP technologies.

Four Channel Lengths / One Channel Length / LP

2D A3D-GL3D A3D-WWL A3D-T3D

#Cells 8552 / 8558 / 11545 8393 / 8352 / 10916 8362 / 8620 / 11039 8362 / 8500 / 11036

#Buffers 1077 / 1097 / 1465 856 / 917 / 1137 859 / 905 / 1144 859 / 976 / 1146

#Clk Buffers 14 / 14 / 16 13 / 13 / 15 13 / 13 / 15 13 / 13 / 15

Cell Area (µm2) 10954 / 10899 / 6572 10323 / 10290 / 5937 10053 / 10214 / 5911 10048 / 10279 / 5779

#VIs – 4789 / 4782 / 4312 4258 / 4260 / 4240 3266 / 3269 / 3310

WL (µm) 116.7K / 116.3K / 98.20K 89.36K / 89.19K / 87.41K 80.49K / 80.48K / 80.13K 80.67K / 80.29K / 80.13K

%∆WL wrt 2D – -23.4 / -23.3 / -11.0 -31.0 / -30.8 / -18.4 -30.9 / -31.0 / -18.4

WNS (ps) -34 / -9 / -31 0 / 0 / -12 0 / 0 / -4 0 / 0 / -4

TNS (ns) -0.8 / -0.07 / -12.3 0 / 0 / -8.7 0 / 0 / -3.2 0 / 0 / -3.2

Power (mW) 12.26 / 12.39 / 4.66 10.83 / 10.97 / 4.49 10.21 / 10.72 / 4.45 10.23 / 10.66 / 4.45

%∆Power wrt 2D – -11.7 / -11.5 / -3.7 -16.7 / -13.5 / -4.5 -16.6 / -14.0 / -4.5

Table 5.4: Comparison of jpeg encoder metrics from 2D vs. A3D flows using F2F integration
in 28nm FDSOI and LP technologies.

Four Channel Lengths / One Channel Length / LP

2D A3D-GL3D A3D-WWL A3D-T3D

#Cells 19744 / 19712 / 25770 19596 / 19540 / 25163 20976 / 20442 / 26961 20957 / 20743 / 27130

#Buffers 2028 / 2045 / 2636 1711 / 1740 / 2139 2218 / 1897 / 2751 2184 / 2184 / 2790

#Clk Buffers 111 / 111 / 117 99 / 99 / 103 99 / 99 / 103 99 / 99 / 103

Cell Area (µm2) 36099 / 36032 / 21298 33436 / 34561 / 20061 34252 / 34922 / 20060 34266 / 34890 / 20131

#VIs – 7766 / 7724 / 7623 7654 / 7648 / 7582 6397 / 6388 / 6480

WL (µm) 259.1K / 259.1K / 248.9K 202.7K / 202.8K / 205.1K 195.8K / 195.8K / 200.2K 194.3K / 194.3K / 199.5K

%∆WL wrt 2D – -21.2 / -21.2 / -17.6 -24.4 / -24.4 / -19.6 -25.0 / -25.0 / -19.8

WNS (ps) -209 / -138 / -77 -12 / -9 / 0 0 / -2 / 0 -1 / -4 / 0

TNS (ns) -76.3 / -112.2 / -124.9 -1.2 / -1.0 / 0 0 / -1.0 / 0 -0.04 / -0.9 / 0

Power (mW) 45.65 / 46.25 / 20.67 42.35 / 42.89 / 19.55 42.24 / 42.67 / 19.45 42.23 / 42.65 / 19.47

%∆Power wrt 2D – -7.2 / -7.3 / -5.4 -7.5 / -7.7 / -5.9 -7.5 / -7.8 / -5.8

Results of Experiment 2

In this experiment we calibrate our results with respect to an “upper bound” on power

benefit in 3D. We apply an “infinite dimension” analysis methodology described in [38]. This

analysis uses synthesis with zero wireload model as a surrogate for implementation in “infinite”

dimensions. According to [38], the power benefit of “infinite” dimensions is in some sense an

upper bound on power benefit of 3D. Figure 5.6 compares power using the infinite-dimension,

best 2D and the A3D flows using the three variants of WL calculation methods. We observe

that A3D-WWL and A3D-T3D are able to capture a significant portion of the available benefit
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Table 5.5: Comparison of ldpc metrics from 2D vs. A3D flows using F2F integration in 28nm
FDSOI and LP technologies.

Four Channel Lengths / One Channel Length / LP

2D A3D-GL3D A3D-WWL A3D-T3D

#Cells 47610 / 47622 / 62845 43094 / 43109 / 55573 42982 / 42980 / 55570 42990 / 43002 / 55544

#Buffers 7989 / 7916 / 10226 4670 / 4732 / 5944 4674 / 4701 / 5943 4580 / 4587 / 5974

#Clk Buffers 61 / 64 / 71 55 / 56 / 58 55 / 56 / 58 55 / 56 / 58

Cell Area (µm2) 62141 / 62156 / 42256 49172 / 49169 / 35976 49312 / 49333 / 35938 49300 / 49312 / 36051

#VIs – 12866 / 12872 / 12846 14967 / 14984 / 15014 11866 / 11835 / 11826

WL (µm) 1473K / 1473K / 1208K 1021K / 1021K / 862.0K 1014K / 1014K / 859.4K 1014K / 1014K / 859.4K

%∆WL wrt 2D – -30.7 / -30.7 / -28.6 -31.2 / -31.2 / -28.8 -31.2 / -31.2 / -28.8

WNS (ps) -28 / -7 / -35 0 / 0 / -11 0 / 0 / -9 0 / -2 / -3

TNS (ns) -7.9 / -0.9 / -20.2 0 / 0 / -56.2 0 / 0 / -20.1 0 / -0.04 / -0.2

Power (mW) 168.6 / 171.2 / 55.2 134.5 / 136.9 / 45.8 134.4 / 136.7 / 45.7 134.4 / 136.7 / 45.7

%∆Power wrt 2D – -20.2 / -20.1 / -17.1 -20.3 / -20.2 / -17.2 -20.3 / -20.2 / -17.2

Table 5.6: Comparison of dec viterbi metrics from 2D vs. A3D flows using F2F integration in
28nm FDSOI and LP technologies.

Four Channel Lengths / One Channel Length / LP

2D A3D-GL3D A3D-WWL A3D-T3D

#Cells 58709 / 58712 / 78083 58211 / 58214 / 75068 58183 / 58296 / 76219 58184 / 58182 / 75079

#Buffers 8029 / 8033 / 10759 6512 / 6513 / 8393 7415 / 7481 / 9416 7406 / 7384 / 9493

#Clk Buffers 617 / 618 / 688 481 / 483 / 556 481 / 483 / 556 481 / 483 / 556

Cell Area (µm2) 122833 / 122841 / 73700 121078 / 121076 / 72882 120375 / 121151 / 72707 120268 / 121474 / 72797

#VIs – 33407 / 33406 / 32856 33412 / 33421 / 32906 28097 / 28097 / 28004

WL (µm) 1276K / 1276K / 1148K 1047K / 1047K / 980K 1046K / 1046K / 975K 1046K / 1046K / 974K

%∆WL wrt 2D – -18.0 / -18.0 / -14.7 -18.0 / -18.0 / -15.1 -18.0 / -18.0 / -15.2

WNS (ps) -20 / 0 / -67 0 / 0 / -13 -2 / -1 / -15 0 / 0 / -12

TNS (ns) -0.7 / 0 / -123.5 0 / 0 / -56.2 -0.1 / -0.01 / -34.6 0 / 0 / -45.2

Power (mW) 123.3 / 125.1 / 49.2 114.1 / 115.8 / 45.8 114.1 / 115.8 / 45.7 114.1 / 115.8 / 45.7

%∆Power wrt 2D – -7.5 / -7.4 / -6.7 -7.5 / -7.4 / -6.8 -7.5 / -7.5 / -6.8

from 3D. For aes and ldpc, out of the available 20.3% and 8.9% benefit, respectively, A3D-T3D

captures 20% and 8.1% benefit, respectively. For designs that contain ≥ 15% of the cells as flip-

flops or memory macros such as viterbi, netcard, leon3mp and spc, A3D captures 8.1%, 5.6%,

10.6% and 2.6% of the available 16.1%, 16.7%, 19.7% and 6.0% benefit, respectively. Even

though absolute power benefit from A3D may look small in Tables 5.3–5.9, it is quite significant

compared to the “upper bound” on available benefit from 3D. For example, we believe it is

unlikely that future 3DIC P&R flows achieve more than 10% power reduction from our present

results.
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Table 5.7: Comparison of netcard metrics from 2D vs. A3D flows using F2F integration in
28nm FDSOI and LP technologies.

Four Channel Lengths / One Channel Length / LP

2D A3D-GL3D A3D-WWL A3D-T3D

#Cells 375138 / 375142 / 487679 366803 / 366776 / 478620 367506 / 367513 / 479608 367625 / 367649 / 480018

#Buffers 39698 / 39723 / 49226 32575 / 32532 / 42680 33421 / 33357 / 42948 33466 / 33476 / 42770

#Clk Buffers 2227 / 2226 / 2242 1982 / 1982 / 1988 1982 / 1982 / 1988 1982 / 1982 / 1988

Cell Area (µm2) 438288 / 438292 / 276121 423352 / 423370 / 257055 423350 / 423377 / 256408 422908 / 422875 / 256325

#VIs – 200134 / 199978 / 200046 200224 / 200230 / 198034 197654 / 197680 / 197558

WL (µm) 9473K / 9473K / 8052K 7202K / 7202K / 6263K 7190K / 7190K / 6261K 7144K / 7144K / 6259K

%∆WL wrt 2D – -24.0 / -24.0 / -22.2 -24.1 / -24.1 / -22.2 -24.6 / -24.6 / -22.3

WNS (ps) -39 / -12 / -79 -77 / -15 / -18 -64 / -12 / -8 -45 / -13 / 0

TNS (ns) -6.1 / -1.2 / -321.5 -356.7 / -102.3 / -73.7 -231.4 / -56.1 / -44.6 -209.2 / -20.3 / 0

Power (mW) 403.8 / 413.4 / 121.9 382.5 / 393.3 / 116.9 382.5 / 393.1 / 116.9 382.3 / 393.2 / 116.9

%∆Power wrt 2D – -5.3 / -4.9 / -4.1 -5.3 / -4.9 / -4.1 -5.3 / -4.9 / -4.1

Table 5.8: Comparison of leon3mp metrics from 2D vs. A3D flows using F2F integration in
28nm FDSOI and LP technologies.

Four Channel Lengths / One Channel Length / LP

2D A3D-GL3D A3D-WWL A3D-T3D

#Cells 449462 / 449453 / 575311 431509 / 431514 / 556693 432607 / 432641 / 562388 434123 / 434124 / 562162

#Buffers 47208 / 47222 / 62786 43500 / 43516 / 55061 43838 / 43843 / 54854 44700 / 44690 / 55015

#Clk Buffers 2794 / 2796 / 2812 1966 / 1967 / 1972 1966 / 1967 / 1972 1966 / 1967 / 1972

Cell Area (µm2) 643324 / 643308 / 392428 607332 / 607343 / 367384 605547 / 605552 / 367323 604689 / 605545 / 366990

#VIs – 130684 / 130692 / 129886 130792 / 130712 / 130016 128824 / 128816 / 128898

WL (µm) 7641K / 7641K / 6266K 5958K / 5958K / 5009K 5931K / 5931K / 5007K 5930K / 5930K / 5007K

%∆WL wrt 2D – -22.0 / -22.0 / -20.1 -22.4 / -22.4 / -20.1 -22.4 / -22.4 / -20.1

WNS (ps) -27 / 0 / -45 -57 / 0 / -20 0 / 0 / -20 0 / 0 / -16

TNS (ns) -1.6 / 0 / -324.7 -133.0 / 0 / -180.6 0 / 0 / -111.2 0 / 0 / -92.3

Power (mW) 222.2 / 230.4 / 73.24 200.8 / 208.9 / 69.83 200.8 / 208.9 / 69.82 200.8 / 280.9 / 69.82

%∆Power wrt 2D – -9.6 / -9.3 / -4.7 -9.6 / -9.3 / -4.7 -9.6 / -9.3 / -4.7

Results of Experiment 3

In this experiment we assess QoR of the A3D flow using the three variants of WL cal-

culation methods, versus the current S2D flow, at iso-performance and iso-area. We use the

post-synthesis netlists, clock periods and maximum utilization of six designs obtained using the

best 2D flow in Section 5.1.2 and execute the S2D flow in 28nm FDSOI.76 Table 5.10 shows

metrics from the S2D flow. Figures 5.7(a) and (b) compare WL between S2D and A3D variants,

76We did not conduct Experiment 3 using 28nm LP owing to non-availability of shrunk LEFs and LEFs required
for VI insertion. We omit spc as we did not have shrunk LEFs for memory macros.
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Table 5.9: Comparison of spc metrics from 2D vs. A3D flows using F2F integration in 28nm
FDSOI and LP technologies.

Four Channel Lengths / One Channel Length / LP

2D A3D-GL3D A3D-WWL A3D-T3D

#Cells 242012 / 242113 / – 237777 / 237791 / – 237662 / 237679 / – 238025 / 238019 / –

#Buffers 9780 / 9811 / – 8674 / 8683 / – 8617 / 8609 / – 8559 / 8582 / –

#Clk Buffers 1864 / 1866 / – 1871 / 1875 / – 1871 / 1875 / – 1871 / 1875 / –

Cell Area (µm2) 306684 / 306697 / – 303485 / 303487 / – 303504 / 303520 / – 303471 / 303447 / –

#VIs – 136779 / 137007 / – 138234 / 138212 / – 134125 / 134132 / –

WL (µm) 8211K / 8211K / – 6323K / 6323K / – 6302K / 6302K / – 6302K / 6302K / –

%∆WL wrt 2D – -23.0 / -23.0 / – -23.3 / -23.3 / – -23.3 / -23.3 / –

WNS (ps) -7 / 0 / – -8 / 0 / – -9 / -2 / – -9 / -2 / –

TNS (ns) -23.2 / 0 / – -16.7 / 0 / – -12.9 / -11.0 / – -12.7 / -7.7 / –

Power (mW) 307.03 / 302.2 / – 299.4 / 294.6 / – 299.2 / 294.3 / – 299.2 / 294.4 / –

%∆Power wrt 2D – -2.5 / -2.5 / – -2.6 / -2.6 / – -2.6 / -2.6 / –

Table 5.10: Metrics from the S2D flow using F2F integration in 28nm FDSOI technology.
Designs (Four Channel Lengths / One Channel Length)

Metrics aes jpeg ldpc viterbi netcard leon3mp

#Cells 8478 / 8399 20210 / 20164 45308 / 45305 58497 / 58495 368041 / 368040 448447 / 448433

#Buffers 1029 / 1107 2205 / 2233 6213 / 6210 7846 / 7870 33083 / 33094 46020 / 46031

#Clk Buffers 14 / 14 110 / 111 60 / 62 610 / 614 2222 / 2220 2792 / 2795

Cell Area (µm2) 10770 / 10692 35569 / 35546 58445 / 58446 121593 / 121594 425874 / 425820 639254 / 639225

#VIs 3374 / 3373 6598 / 6602 15434 / 15446 29474 / 29487 198481 / 198469 129739 / 129782

WL (µm) 105.9K / 105.7K 239.4K / 239.3K 1180.6K / 1080.6K 1064.9K / 1064.9K 7316.9K / 7316.9K 6512.6K / 6512.6K

WNS (ps) -94 / -9 -113 / -102 -99 / -35 -108 / -65 -149 / -34 -143 / -45

TNS (ns) -7.7 / -0.07 -13.4 / -34.2 -135.8 / -61.2 -83.6 / -9.2 -544.8 / -44.4 -106.9 / -5.4

Power (mW) 11.68 / 11.78 44.99 / 45.57 150.5 / 152.8 119.6 / 121.3 385.3 / 395.9 215.1 / 223.2
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Figure 5.5: Impact on #VIs by only varying the z-direction cost for jpeg.
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Table 5.11: Comparison of metrics from A3D-T3D vs. A3D-T3D′ flows using F2F integration
in 28nm FDSOI technology with four channel lengths.

aes cipher top ldpc

A3D-T3D A3D-T3D′ A3D-T3D A3D-T3D′

#Cells 8362 8359 42990 42986

#Buffers 859 857 4580 4578

#Clk Buffers 13 12 55 54

Cell Area (µm2) 10048 10047 49300 49298

#VIs 3266 3264 11866 11865

WL (µm) 80.67K 80.65K 1014K 1014K

%∆WL wrt A3D-T3D – -0.02 – -0.005

WNS (ps) 0 0 0 0

TNS (ns) 0 0 0 0

Power (mW) 10.23 10.22 134.4 134.37

%∆Power wrt A3D-T3D – -0.10 – -0.02
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Figure 5.6: Comparison of power using “infinite-dimension” [38], 2D and A3D variants.

and show that A3D-WWL and A3D-T3D achieve up to 24% reduction in WL.77 Figures 5.8(a)

and (b) compare power between S2D and A3D variants, and show that A3D-WWL and A3D-

T3D achieve up to 12% reduction in power. Figures 5.9(a) and (b) compare WL and power,

respectively between S2D and A3D variants using F2B integration. We observe similar reduc-

tions in WL and power by A3D relative to S2D. Across all designs and integration styles, A3D

achieves 1.7%–19% reduction in WL, and 0.7%–10.6% reduction in power, relative to S2D in

28nm FDSOI.
77We have obtained confirmation from the authors of the S2D flow [44] [157] [195] to report metrics from the S2D

flow in this work.
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Figure 5.7: ∆(S2D - A3D)% WL using F2F configuration: (a) four channel lengths and (b) one
channel length.

5.1.3 Conclusions

3DV calls for “true 3D” implementation flows to comprehend the potential of this im-

plementation technology. We propose a 3D analytic placer, A3D, that implements a new “true

3D” wirelength objective and achieves significant routed wirelength and power benefits relative

to 2D implementations of real designs. In addition, we apply the Gordian-L net model in 3D,

and we propose a new net weighting method based on the ratio of Steiner minimum tree cost and

the HPWL of a given net. We implement our three wirelength calculation methods in A3D and

propose a 3DIC implementation flow using commercial EDA tools. We demonstrate that our

placement solutions are routable in a commercial EDA tool. Compared to 2D implementations,

we achieve up to 31% reduction in routed wirelength and 20.2% reduction in power. Compared

to the S2D flow, we achieve up to 24% reduction in routed wirelength and 12% reduction in

power. We apply a recent “infinite dimension” methodology proposed in [38] to demonstrate

that A3D improvements over 2D and S2D are significant relative to the available benefit from
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Figure 5.8: ∆(S2D - A3D)% Power using F2F configuration: (a) four channel lengths and (b)
one channel length.

3D. Future works can include (i) using multi-bit flip-flops and physical synthesis to further close

the gap with available benefit from 3D, and (ii) flow improvements by adding power delivery

networks and enabling signoff IR drop analysis.
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5.2 Optimal Scheduling and Allocation for IC Design Management

and Cost Reduction

Since 2001 the International Technology Roadmap for Semiconductors [304] chapter

on Design Technology has presented a Design Cost model calibrated to mobile system-on-chip

(SOC) products (e.g., Qualcomm Snapdragon [322], Samsung Exynos [329], etc. that are the

main processing cores of tablets and smartphones) and their associated development costs [36]

[110] [230]. For well over a decade, the Design Cost model has documented design costs of tens

of millions of dollars for a single SOC product. Major contributors to design cost include en-

gineering headcount, compute infrastructure (servers, filers, datacenters), and electronic design

automation (EDA) tool licenses. The large investment requirement for new product development

stifles semiconductor startup activity and innovation, and has arguably contributed to consolida-

tion and a slowdown of growth for the industry.

Today, a large semiconductor product company will spend hundreds of millions of dol-

lars annually on design infrastructure (datacenters, EDA tools, design teams, etc.) to meet tape-

out schedules for multiple concurrent projects. Resources (servers, licenses, engineers, etc.) are

limited and must be shared across projects. Not only are schedule slips extremely costly but,

as highlighted in recent years (e.g., the “How Green is My Silicon Valley” plenary panel at the

2009 Design Automation Conference (DAC) [294]), there is now tremendous concern to reduce

the energy footprint of semiconductor integrated circuit (IC) design. In contrast to traditional

scheduling optimizations seen in the operations research and industrial engineering literature,

IC design flows often exhibit co-constraints between resource types (e.g., one license needed

per every two cores used in a multi-threaded tool run78). Common design center practices, such

as the setting up of dedicated vs. shareable resource pools as permitted by LSF-type gridware

[320], also make scheduling and allocation hard. Further, design managers, while increasingly

able to track and diagnose design activity [70] [327], have no decision support tools to help de-

termine the resource investments (e.g., “Is it better to add 500 more servers or 50 more timing

analysis tool licenses?”) that enable schedule requirements to be met with minimum cost. Thus,

a company may leave millions of dollars and gigawatt-hours per year – as well as weeks of

schedule time – on the table. In a competitive and cost-driven industry, there is an urgent need

to recover such wasted resources.
78Maintaining design schedules with constant engineering headcount, even as SOC complexities continue to scale,

increasingly relies on multi-threading (e.g., detailed routing, static timing analysis, physical verification) and/or mas-
sively distributed tool runs (e.g., to perform functional verification).
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In the field of operations research, Kolisch et al. [142] [143] [144] give an integer-linear

programming (ILP) formulation to solve the resource-constrained project scheduling problem

(RCPSP). The formulation optimally allocates renewable, non-renewable and doubly-constrained

resources across multiple activities (with precedence constraints) in a project. The objective

of the formulation is to minimize makespan of a project with multiple activities. We extend

this formulation in the context of IC design cost optimization in various ways. Specifically,

we describe two mixed integer-linear programming (MILP) formulations that efficiently and

optimally perform multi-project multi-resource allocation with complex task precedence and

resource co-constraints. The first is the Schedule Cost Minimization (SCM) formulation, and

the second is the Resource Cost Minimization (RCM) formulation. We solve these two general

resource-constrained project scheduling problems that arise in a multi-tenanted, heterogeneous,

high-throughput computing (HTC) environment. A problem instance consists of projects that

can be scheduled in parallel, each involving multiple activities, where each activity must con-

sume prescribed amounts of resources to reach completion. The goal is to schedule the projects

either with minimum total loss according to given penalty functions, or with minimum number

of resources consumed per time unit.79

As reviewed in Section 2.3.2, several previous works besides Kolisch et al. [142] [143]

[144] address project scheduling problem formulations. Table 5.12 places our work in the con-

text of the works reviewed in Section 2.3.2. While a number of previous works address opti-

mizations related to resource-constrained project scheduling, they cannot address important use

cases that arise for large SoC product companies. Our formulations address real-world use cases

that incorporate: (i) resource co-constraints, (ii) tethering to forecast resource allocations, and

(iii) simultaneous allocation of three different categories of resources (Fully-shared, Segregated,

and Conditionally-shared). Our formulations also handle stability constraints so that allocation

of resources (in particular, engineers) are shuffled as infrequently as possible across projects;

this induces a tradeoff between schedule cost and frequency of task switching. Overall, we

enable management to identify the minimum cost (in terms of any penalty functions deemed

appropriate for the situation) of project completion within a set period of time, capturing many

constraint types that arise in the industry. Our solver can also help analyze how varying resource

allocation affects cost and schedule of product tapeout. We demonstrate a use case of handling

late-breaking bugs in one project without major disruptions in allocations of other projects.

79A typical real-world HTC environment has multiple concurrent projects – each working on a specific schedule
that is largely non-negotiable, and each having different workload characteristics in terms of infrastructure require-
ments.
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Table 5.12: Representative previous works on project scheduling.

Reference Formulation Objective Modes Preemptive
Resource Conditionally-Shared

Co-constraints Resources
[11] ILP throughput 7 7 7 7

[17] LP makespan 7 7 7 7

[22] LP cost 3 3 7 7

[25] CP throughput 7 3 7 7

[50] ILP, LP cost 7 3 7 7

[134] Stochastic ILP cost 7 7 7 7

[144], [143] ILP makespan 3 7 7 7

[146] MILP, LP cost 3 3 7 7

[152] MILP makespan 7 3 7 7

[179] PSO cost 7 3 7 7

[203] ACO makespan 7 7 7 7

[217] ILP cost 3 7 7 7

OUR MILP cost, makespan 7 3 3 3

The challenge in practice for a large semiconductor design organization is to provide

‘just-in-time’ resources for each project, such that (i) project execution is not delayed by re-

source starvation, and (ii) utilization of each resource type satisfies resource limits or usage poli-

cies. Current industry dynamics lead to strict boundary conditions (e.g., time-to-market, tapeout

deadline), and constrained capital spending pushes business units to seek increased productivity

through maximum utilization of existing resources. Today, resource planning and allocation, es-

pecially involving allocation of multiple disparate resource types, have largely been dictated by

heuristics and historical experience. Decision support is urgently needed for “course corrections”

and understanding of the impact of resource allocation decisions. With this as background, our

main contributions in this section are as follows.

1. We model two resource-constrained optimal project scheduling formulations, SCM and

RCM, as MILPs. Our formulations handle multiple projects, multiple activities with

precedence constraints, and multiple types of resources.

2. We handle co-constraints between resource types and allocation of resources from multi-

ple (fully-shared, conditionally-shared, segregated) resource pools. Each pool may have a

different penalty function, capturing real-world scenarios in a large SOC design company.

To our knowledge, we are the first to consider co-constraints between resource types.

3. We optionally enforce stability constraints that upper-bound the change in a project’s al-

located resources between successive timesteps.



199

4. Application of SCM to a three-project scheduling problem extracted from a leading-edge

design center of Company X80 shows substantial compute and license cost savings com-

pared to the actual allocation/scheduling solution used by the product company. Our so-

lution reduces the schedule makespan of all projects by 1.4 work-weeks,81 i.e., ∼2.7% of

annual design infrastructure cost. (Per “Moore’s Law”, the semiconductor industry ad-

vances at ∼1% in a calendar week [349]. Therefore, during this time the semiconductor

industry advances by more than 1%.) We also demonstrate the scheduling of two dozen

chip development projects at the design center level, subject to resource and datacenter ca-

pacity limits as well as per-project penalty functions for schedule slips. The design center

was unable to solve this problem and ended up purchasing 600 additional servers to avoid

schedule slips. Our solution shows that the schedule requirements could have been met

without purchasing any additional servers.

5. Application of RCM to a four-project scheduling problem extracted from a leading-edge

design center of Company X shows substantial human resource costs left on the table by

the actual allocation/scheduling solution used by the company. For a particular activity

related to chip design, our solution reduces head count by 37%, which translates to∼$5M

savings at that particular (non-U.S.) design center. Our solver can also provide decision

support via “what-if” analyses of cost and schedule tradeoffs.

6. Of separate interest is the description of our testcase generator that we use to perform

scalability and sensitivity studies. We propose to make our generator and solvers open-

source as prototyped at [350].

5.2.1 Problem Formulations

We now present (i) notations used in our discussion, (ii) resource categories that arise

in multi-tapeout project scheduling, and (iii) our MILP formulations. We have spent consider-

able time working with technical management at one of a world top-5 semiconductor company’s

design centers, to arrive at the optimization formulations described below. Table 5.13 gives no-

tations used in our work. “I” represents an input to the MILP and “O” represents an optimization

variable. We also indicate which notations are used in each of the SCM and RCM formulations.
80Owing to confidentiality reasons we cannot reveal the name of the company, so we refer to it as Company X

henceforth.
81In the semiconductor industry, we typically refer to one “work-week” as five working days in a week.



200

Table 5.13: Notations used in SCM and RCM formulations.

Parameter Description I/O Formulation
N Total number of projects I SCM, RCM
T Maximum duration over all projects; t = 1,2, ...,T I SCM, RCM
Pi Projects indexed by i = 1,2, ...,N – SCM, RCM
J(i) Total number of activities for Pi I SCM, RCM
ai, j Pi’s activities, where j = 1,2, ...,J(i) – SCM, RCM
Ha(i, j) Set of predecessor activities of ai, j that I SCM, RCM

must complete before ai, j can start
K Available resource types I SCM, RCM
Rk,t Upper bound (UB) on # resources of type k at time t I SCM
Hr(i, j,k) Set of predecessor resources for resource type k for ai, j I SCM
g(i, j,h,k, t) Function that sets an UB on # resource type k at any time t, for each predecessor h ∈ Hr(i, j,k) I SCM
Li, j,k # resources of type k required to complete ai, j I SCM, RCM
Uk,t UB on # fully-shared resources of type k at time t I SCM
Ũk UB on # fully-shared resources of type k at any time t O RCM
Vi,k,t UB on # segregated resources of type k for Pi at time t I SCM
Mi,k,t UB on # conditionally-shared resources of type k for Pi at time t I SCM
Gi,k,t UB on total # resources of type k used by Pi at time t I SCM, RCM
Bi,k,t UB on change in resources consumed by Pi from t−1 to t I SCM, RCM
dnom

i, j (enom
i ) Nominal duration of ai, j (Pi) I SCM, RCM

Ca
i, j(t) (Cp

i (t)) Penalty function for ai, j (Pi) at time t I SCM, RCM
Ck Weight for resource type k I RCM
C Cost of switching activities/projects I SCM+
wi, j,k,t # resources of type k consumed by ai, j at time t, given by forecast resource allocation I SCM
δ % of variation allowed in wi, j,k,t I SCM
snom

i, j ( f nom
i, j ) Nominal start (finish) time of ai, j for tethering constraints I SCM, RCM

ri, j,k,t # fully-shared resources of type k consumed by ai, j at time t O SCM, RCM
qi, j,k,t # segregated resources of type k consumed by ai, j at time t O SCM
yi, j,k,t # conditionally-shared resources of type k consumed by ai, j at time t O SCM
zi, j,k,t # unused conditionally-shared resources of type k consumed by ai, j at time t O SCM
si, j ( fi, j) Start (finish) time of ai, j O SCM, RCM
Si, j,t (Fi, j,t) 0-1 variable, set to 1 if t ≥ si, j (t ≥ fi, j); 0 otherwise O SCM, RCM

Resource Pool Types

Chip design companies typically have three pools for each resource type. (Resource

types include compute nodes, memory, storage, people, etc. [204].)

Fully-shared resources are shared across all projects. We use ri, j,k,t to denote the number of

fully-shared resources of type k used by activity ai, j of project Pi at time t. For example,

if there are two projects P1 and P2 with one activity each, and 20 fully-shared resources of

type k are available, then P1 and P2 can share these 20 resources among themselves such that

r1,1,k,t + r2,1,k,t ≤ 20.

Segregated/dedicated resources are allocated exclusively to a specific project. These resources

are not available for use by any other projects at any time. We use qi, j,k,t to denote the number of

segregated resources of type k used by activity ai, j of project Pi, at time t. For example, if there
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are two projects P1 and P2 with one activity each, and they are respectively allocated 10 and 20

segregated resources of type k, then q1,1,k,t ≤ 10, and q2,1,k,t ≤ 20.

Conditionally-shared resources are allocated to each project, but any resource unused by a

project may be used by other projects. We use yi, j,k,t to denote the number of conditionally-

shared resources of type k used by activity ai, j of project Pi, at time t. For example, if there

are two projects P1 and P2 with one activity each, and they are respectively allocated 10 and 20

conditionally-shared resources of type k, then y1,1,k,t ≤ 10, and y2,1,k,t ≤ 20. We use the notation

zi, j,k,t to denote the number of resources of type k that is used by activity ai, j of project Pi at time

t, from the pool of unused conditionally-shared resources of other projects. In the preceding

example, we have z1,1,k,t ≤ 20− y2,1,k,t , and z2,1,k,t ≤ 10− y1,1,k,t .

Figure 5.10 illustrates two scenarios with three projects A, B and C. Each project has

one activity and consumes resource type k at time t. Each project may use resources from any

of the three pools with the following constraints: (i) segregated resources qi, j,k,t consumed by

a project cannot exceed the upper bound Vi,k,t as shown in Figure 5.10, and (ii) conditionally-

shared resources yi, j,k,t consumed by a project cannot exceed Mi,k,t . Figure 5.10(a) shows a

feasible allocation of resources from each pool. Projects A and B have a total of eight units

of unused resources in their conditionally-shared pools after allocation of resources from each

pool.82 Project C uses five out of these eight units, i.e., zC, j,k,t = 5. The total number of fully-

shared resources consumed by all three projects, i.e., 3 + 2 + 6 = 11, cannot exceed Uk,t = 20.

Figure 5.10(b) shows an allocation of resources that is infeasible because yC, j,k,t = 6 > MC,k,t = 5.

Furthermore, project C uses more resources from the unused conditionally-shared resource pool

lable, i.e., zC, j,k,t > 8.

82Projects A, B and C use 4, 4 and 5 resources from their respective segregated pools, which are within the upper
bounds VA,k,t = VB,k,t = VC,k,t = 5.
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Figure 5.10: Examples showing (a) feasible and (b) infeasible allocations of resources among
three projects A, B and C.
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MILP Description of the Schedule Cost Minimization (SCM) Formulation

Given the inputs listed in Table 2 for the SCM formulation, we seek to minimize the

total cost (i.e., sum of schedule penalties) of all projects:

minimize
N

∑
i=1

T

∑
t=1

Cp
i (t)+

N

∑
i=1

J(i)

∑
j=1

T

∑
t=1

Ca
i, j(t) (5.16)

This optimization is subject to the following constraints.83

Constraints on start and finish times. Constraint (5.17) indicates that all Si, j,t and Fi, j,t are

binary variables. Constraints (5.18) and (5.19) respectively establish the relation between si, j

and Si, j,t , and between fi, j and Fi, j,t . Constraint (5.20) sets all Si, j,t and Fi, j,t to zero before the

start time of the first activity of the project (if snom
i,1 is not given, we assume the project can start at

t = 1, i.e., snom
i,1 = 1) [25] [143] [146]. Constraint (5.21) (resp. Constraint (5.22)) prevents each

start Si, j,t (resp. finish Fi, j,t) indicator variable from having a value of zero once an activity has

started (resp. finished) execution [25] [143] [146]. Constraint (5.23) ensures that an activity’s

start time precedes its finish time [11] [25] [50] [239].

∀i, ∀ j, ∀t, Si, j,t ,Fi, j,t ∈ {0,1} (5.17)

∀i, ∀ j, si, j = T −

(
T

∑
t=1

Si, j,t

)
+1 (5.18)

∀i, ∀ j, fi, j = T −

(
T

∑
t=1

Fi, j,t

)
(5.19)

∀i, ∀ j, ∀t < snom
i,1 , Si, j,t = 0, Fi, j,t = 0 (5.20)

∀i, ∀ j, ∀t, Si, j,t ≥ Si, j,t−1 (5.21)

∀i, ∀ j, ∀t, Fi, j,t ≥ Fi, j,t−1 (5.22)

∀i, ∀ j,
T

∑
t=1

Si, j,t ≥
T

∑
t=1

Fi, j,t (5.23)

Constraint on activity precedence. Constraint (5.24) assures precedence requirements: all

predecessors of an activity ai, j must complete before its start time si, j [11] [17] [134] [143].

∀i, si, j > fi,h, ∀h ∈ Ha(i, j) (5.24)

83In our description, we point to example references that adopt similar formulations.
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Constraint: Upper bounds on resource consumptions. Constraints (5.25) and (5.26) upper-

bound the total number of resources of each type that are used at time t, summed over all activi-

ties of all projects (each project). Recall that we use yi, j,k,t to denote the number of conditionally-

shared resources of type k that are used by activity ai, j of project Pi at time t. We use zi, j,k,t to

denote the number of conditionally-shared resources of type k that are used by activity ai, j of

project Pi at time t from the pool of unused conditionally-shared resources of other projects.

That is, zi, j,k,t denotes the number of resources borrowed from other projects. Constraints (5.27)

– (5.34) ensure that an activity does not use any resources before it starts or after it ends [22]

[50] [239]. For example, Constraint (5.27) ensures that no resources are used before the activ-

ity starts (Si, j,t = 0, ∀t < si, j which forces ri, j,k,t = 0, ∀t < si, j) and Constraint (5.28) ensures

that no resources are used after the activity finishes (Fi, j,t = 1, ∀t > fi, j which forces ri, j,k,t = 0,

∀t > fi, j). Constraint (5.29) also sets an upper bound on the number of segregated resources of

type k used by ai, j. Constraint (5.35) sets an upper bound on the total number of fully-shared

resources of type k used by all activities of all projects. Constraint (5.36) sets an upper bound

on the total number of conditionally-shared resources of type k used by all activities of Pi. Con-

straint (5.37) ensures that the total number of resources used by all the projects from the unused

conditionally-shared resource pool is not greater than the number of resources available in the

pool. Constraints (5.38) and (5.37) together ensure that a project does not receive resources from

its own contribution to the unused conditionally-shared resource pool.

∀k, ∀t,
N

∑
i=1

J(i)

∑
j=1

(ri, j,k,t +qi, j,k,t + yi, j,k,t + zi, j,k,t)≤ Rk,t (5.25)

∀i, ∀k, ∀t,
J(i)

∑
j=1

(ri, j,k,t +qi, j,k,t + yi, j,k,t + zi, j,k,t)≤ Gi,k,t (5.26)

∀i, ∀k, ∀ j, ∀t, ri, j,k,t ≤Uk,t ×Si, j,t (5.27)

∀i, ∀k, ∀ j, ∀t, ri, j,k,t ≤Uk,t × (1−Fi, j,t) (5.28)

∀i, ∀k, ∀ j, ∀t, qi, j,k,t ≤Vi,k,t ×Si, j,t (5.29)

∀i, ∀k, ∀ j, ∀t, qi, j,k,t ≤Vi,k,t × (1−Fi, j,t) (5.30)

∀i, ∀k, ∀ j, ∀t, yi, j,k,t ≤Mi,k,t(Si, j,t) (5.31)

∀i, ∀k, ∀ j, ∀t, yi, j,k,t ≤Mi,k,t(1−Fi, j,t) (5.32)
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∀i, , ∀ j, ∀k, ∀t, zi, j,k,t ≤
N

∑
p=1

Mp,k,tSi, j,t (5.33)

∀i, , ∀ j, ∀k, ∀t, zi, j,k,t ≤
N

∑
p=1

Mp,k,t(1−Fi, j,t) (5.34)

∀k, ∀t,
N

∑
i=1

J(i)

∑
j=1

ri, j,k,t ≤Uk,t (5.35)

∀i, ∀k, ∀t,
J(i)

∑
j=1

yi, j,k,t ≤Mi,k,t (5.36)

∀k, ∀t,
N

∑
i=1

J(i)

∑
j=1

zi, j,k,t ≤
N

∑
i=1

(Mi,k,t −
J(i)

∑
j=1

yi, j,k,t) (5.37)

∀i, ∀k, ∀t,
J(i)

∑
j=1

zi, j,k,t ≤∑
p 6=i

(Mp,k,t −
J(p)

∑
j=1

yp, j,k,t) (5.38)

Constraint: Resource requirements of activities. Constraint (5.39) ensures the completion of

an activity [217].

∀i, ∀k, ∀ j,
T

∑
t=1

(ri, j,k,t +qi, j,k,t + yi, j,k,t + zi, j,k,t) = Li, j,k (5.39)

Constraint: Resource co-constraints. Constraint (5.40) ensures that the number of resources

of type k used by activity ai, j satisfies the upper bound constraints implied by the co-constraints

between its predecessor resources (cf. Table 5.13). For instance, let the number of used re-

sources of type k = 1 (e.g., compute nodes) be upper-bounded by 2× the number of used re-

sources of type k = 2 (e.g., static timing analysis (STA) licenses) at all times for a1,1, i.e.,

at most two compute nodes can be used for every STA license. Therefore, Hr(1,1,1) = {2}
and g(1,1,2,1, t) = 2 at all times. The constraint will set (r1,1,1,t + q1,1,1,t + y1,1,1,t + z1,1,1,t) ≤
2× (r1,1,2,t + q1,1,2,t + y1,1,2,t + z1,1,2,t), ∀t. Note that this constraint is specific to each activity

of a project, and not for the entire project. To the best of our knowledge, previous works do not

handle such co-constraints, as reviewed in Section 2.3.2.

∀i,∀ j, ∀k, ∀t, ∀h ∈ Hr(i, j,k),

(ri, j,k,t +qi, j,k,t + yi, j,k,t + zi, j,k,t)≤ g(i, j,h,k, t)× (ri, j,h,t +qi, j,h,t + yi, j,h,t + zi, j,h,t) (5.40)

Constraint: Stability in resource allocation. Constraints (5.41) and (5.42) ensure stability

in the consumption of resources, for each project. That is, we upper-bound the change in the
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quantity of each resource used by any given project between successive timesteps t and t−1. In

the real world, resources such as engineers may work on activities related to multiple projects

in a day. However, major changes to allocations do not, as a practical matter, occur within

short time windows. For example, if 100 engineers work on an activity of Project A for a week,

reassigning 80 of them to work only on Project B in the following week would be undesirable to

see in management’s plans.

∀i, ∀k, ∀t,
J(i)

∑
j=1

(ri, j,k,t +qi, j,k,t + yi, j,k,t + zi, j,k,t)−

J(i)

∑
j=1

(ri, j,k,t−1 +qi, j,k,t−1 + yi, j,k,t−1 + zi, j,k,t−1)≤ Bi,k,t (5.41)

J(i)

∑
j=1

(ri, j,k,t−1 +qi, j,k,t−1 + yi, j,k,t−1 + zi, j,k,t−1)−

J(i)

∑
j=1

(ri, j,k,t +qi, j,k,t + yi, j,k,t + zi, j,k,t)≤ Bi,k,t (5.42)

Constraint: Tethering forecast resource allocations. Constraints (5.43) and (5.44) ensure that

a project’s forecast resource allocation is not modified by more than a certain degree (indicated

by δ). Specifically, no forecast value in the active period (snom
i, j ≤ t ≤ f nom

i, j ) of the activity84 can

be perturbed by more than δ% in the MILP solution. Constraint (5.45) ensures that activity ai, j

consumes exactly the amount of resources needed, according to the forecast resource allocation,

for its completion.

∀i, ∀ j, ∀k, ∀ snom
i, j ≤ t ≤ f nom

i, j ,(ri, j,k,t +qi, j,k,t + yi, j,k,t + zi, j,k,t)≥ wi, j,k,t(1−δ/100) (5.43)

∀i, ∀ j, ∀k, ∀ snom
i, j ≤ t ≤ f nom

i, j ,(ri, j,k,t +qi, j,k,t + yi, j,k,t + zi, j,k,t)≤ wi, j,k,t(1+δ/100) (5.44)

∀i, ∀ j, ∀k,
T

∑
t=1

(ri, j,k,t +qi, j,k,t + yi, j,k,t + zi, j,k,t) =
T

∑
t=1

wi, j,k,t (5.45)

Intuition behind the variables included in the model. We choose input parameters and opti-

mization variables based on typical usages in IC design companies. We use Ha(i, j) to enforce

precedence relations among the activities of a project (e.g., parasitic extraction cannot start until

the design has completed routing; STA cannot start until the design has been synthesized; or STA

84 If a schedule cannot be pulled in, then the lower bound on t should be 1 (instead of snom
i, j ) in Constraints (5.43)

and (5.44).
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with signal integrity cannot start until the design has been placed). We use Rk,t because com-

panies typically budget for a certain number of resources during the planning phase. However,

they may increase the number of resources of a particular type during the project’s execution

when they realize that its deadline cannot be met without these additional resources. The time-

dependent variable allows us to handle such changes in our formulation. We introduce Hr(i, j,k)

and g(i, j,h,k, t) to handle co-constraints between resource types. For instance, at most two

compute nodes can be used for each STA license used. Similar to Rk,t , we use Uk,t as the upper

bound on the number of fully-shared resources, which can change over time. For example, when

a project’s deadline becomes risky to meet, units of resources may be removed from the shared

pool and allocated to the dedicated pool of the project four work-weeks before tapeout (TO).

We use Bi,k,t to achieve a stable allocation, since resources should not be drastically shuffled

(“whipsawed”) across projects in consecutive units of time. For instance, we may not want to

allocate 100 engineers to a project on Day 1, but only five engineers on Day 2.

Penalty functions in the objective. The objective function can be any function that is linear

in the optimization variables presented in Table 5.13. We use an objective function that mini-

mizes the sum of two schedule-related penalties over all projects [180]. The first penalty is for

the overall duration of each project relative to the nominal duration of the project. The second

penalty is for the duration of each activity in each project relative to the nominal duration of the

activity. Commonly used penalty functions are: Ramp: penalty due to each successive day of

schedule slip increases linearly as we move further past the deadline (therefore, the total penalty

is quadratic in number of days in the slip); Step: penalty due to each successive day of slip is

constant (and the total penalty is linear in the magnitude of schedule slip); Delta: total penalty

for slip is constant (does not depend on the extent of the slip). We use nominal duration of

the activities (and projects) to penalize the schedule. The nominal finish time of a project is

calculated using the nominal start time of the first activity of the project snom
i,1 and the nominal

duration of the project enom
i . The nominal finish time of ai, j can be calculated using the nominal

start time of the activity and the nominal duration of the activity, i.e., f nom
i, j = snom

i, j +dnom
i, j , where

snom
i, j = max{1+ f nom

i,h }, over all h ∈ Ha(i, j), or snom
i, j = si,1 if Ha(i, j) = /0.

Complexity of the MILP. Even in a large SoC product company, number of projects N ≤ 30,

number of activities per project J(i)≤ 20, number of resource types K ≤ 10, and T ≤ 300 when

the unit of time is days. There are (2×N × J(i) + 2×N × J(i)× T + 4×N ×K× J(i)× T )
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variables (= 2×30×20+2×30×20×365+4×30×10×20×365≈ 9M, for 365 days). We

note that actual values of N, K, T , etc. will likely be smaller than these bounds. If necessary, to

reduce the number of variables, we can change the unit of time from days to weeks or months.

In our experiments, we use IBM ILOG CPLEX v12.6 [296] as our solver and the runtime of our

MILP is around 45 seconds for a total of ∼10K variables, and 9 minutes for a total of ∼100K

variables, and 52 minutes for a total of ∼500K variables (see also Figure 5.17 below).

Notice that there are two types of input scenarios that can lead to infeasible solutions.

• If the value of T (maximum duration over all projects) is not large enough for all projects

to finish within that duration, CPLEX will report that the MILP is infeasible.

• Infeasibility can also arise due to inconsistent resource constraints. For example, if 20

units of resource A and 10 units of resource B are required for the completion of an

activity of a project, but the co-constraint is such that to use one unit of A, one unit of B

must be used, infeasibility arises because we will never be able to use more than 10 units

of A.

Example of SCM. We now describe the SCM problem formulation, with the help of a small

example. Table 5.14 shows the values of input variables and their meaning.

Optimal solution. We seek to minimize the schedule makespan of both projects for this example.

Table 5.15 shows one of the possible optimal solutions for the example problem. Both of the

projects can be completed by t = 4. (Resource utilization for each activity is shown only for

the first resource. The utilization for the second resource is identical.) We note that a1,2 utilizes

five units of the first resource at t = 4 from the unused conditionally-shared pool of P2. The

formulation is able to capture the notion that if a project is not using any of its conditionally-

shared resources, then those resources can be used by other active projects.
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Table 5.14: Input variables and their meanings for the SCM example.

Variable and value Meaning

N = 2 There are two projects P1 and P2.

T = 10 The maximum duration over both projects is 10.

J(1) = 2 There are two activities a1,1 and a1,2 in project P1.

J(2) = 1 There is one activity a2,1 in project P2.

Ha(1,2) = 1, In P1, activity a1 must complete before activity a2.

K = 2 There are two types of resources.

R1,t = 40, R2,t = 40 At most 40 units of either resource can be used at any point in time.

Hr(1,1,2) = 1,
The first resource is a predecessor resource for the second

Hr(1,2,2) = 1,
resource for all activities and projects.

Hr(2,1,2) = 1

g(1,1,1,2, t) = 1 ∀t,
One unit of the first resource must be used before using one unit of the

g(1,2,1,2, t) = 1 ∀t,
second resource by any activity at any point in time.

g(2,1,1,2, t) = 1 ∀t

L1,1,1 = 60, L1,2,1 = 65, 60 units of each resource are required to complete activity a1,1;

L1,1,2 = 60, L1,2,2 = 65, 65 units of each resource are required to complete activity a1,2; and

L2,1,1 = 30, L2,1,2 = 30 30 units of each resource are required to complete activity a2,1.

U1,t = 20 ∀t, At most 20 units of each resource are fully-shared

U2,t = 20 ∀t between both projects at any point in time.

V1,1,t = 5, V1,2,t = 5 ∀t, Each project has five units of each resource that are segregated, i.e., they can be used only by

V2,1,t = 5, V1,2,t = 5 ∀t activities of that project at any point in time. These resources are not shared with other projects.

M1,1,t = 5, M1,2,t = 5 ∀t, Each project has five units of each resource that are conditionally-shared at any point in time,

M2,1,t = 5, M1,2,t = 5 ∀t i.e., they can be used by activities of other projects if they are unused by the project.

G1,1,t = 35, G1,2,t = 35 ∀t, At most 35 units of either resource can be used by either

G2,1,t = 35, G1,2,t = 35 ∀t project at any point in time.

Table 5.15: Consumption of the first resource for both the projects in an optimal solution.

Activities

a1,1 a1,2 a2,1

Time t r1,1,1,t q1,1,1,t y1,1,1,t z1,1,1,t r1,2,1,t q1,2,1,t y1,2,1,t z1,2,1,t r2,1,1,t q2,1,1,t y2,1,1,t z2,1,1,t

1 20 5 5 0 0 0 0 0 0 5 5 0

2 20 5 5 0 0 0 0 0 0 5 5 0

3 0 0 0 0 20 5 5 0 0 5 5 0

4 0 0 0 0 20 5 5 5 0 0 0 0

Total (for
60 65 30

each activity)
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MILP Description of the Resource Cost Minimization (RCM) Formulation

Given the inputs listed in Table 5.13 for the RCM formulation, we seek to minimize

the total number of resources required and the total cost (i.e., sum of schedule penalties) of all

projects:

minimize
K

∑
i=1

CkŨk +
N

∑
i=1

T

∑
t=1

Cp
i (t)+

N

∑
i=1

J(i)

∑
j=1

T

∑
t=1

Ca
i, j(t) (5.46)

This optimization is subject to the following constraints.

Constraints on start and finish times. We use Constraints (5.17) – (5.23) as in the SCM For-

mulation (Section 5.2.1).

Constraint on activity precedence. We use Constraint (5.24) as in the SCM Formulation (Sec-

tion 5.2.1).

Constraint: Upper bounds on resource consumptions. Constraints (5.47) and (5.48) upper-

bound the number of resources of each type used at time t across all activities of all projects

(each project). Constraints (5.49) and (5.50) ensure that an activity does not use any resources

before it starts or after it ends.

∀i, ∀k, ∀t,
J(i)

∑
j=1

ri, j,k,t ≤ Gi,k,t (5.47)

∀k, ∀t,
N

∑
i=1

J(i)

∑
j=1

ri, j,k,t ≤ Ũk (5.48)

∀i, ∀k, ∀ j, ∀t, ri, j,k,t ≤ Gi,k,t ×Si, j,t (5.49)

∀i, ∀k, ∀ j, ∀t, ri, j,k,t ≤ Gi,k,t × (1−Fi, j,t) (5.50)

Constraint: Resource requirements of activities. Constraint (5.51) ensures the completion of

an activity.

∀i, ∀k, ∀ j,
T

∑
t=1

ri, j,k,t = Li, j,k (5.51)
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Constraint: Stability in resource allocation. We modify Constraints (5.41) and (5.42) from the

SCM Formulation as follows, to ensure stability in the consumption of resources for each project.

∀i, ∀k, ∀t,
J(i)

∑
j=1

(ri, j,k,t)−
J(i)

∑
j=1

(ri, j,k,t−1)≤ Bi,k,t (5.52)

∀i, ∀k, ∀t,
J(i)

∑
j=1

(ri, j,k,t−1)−
J(i)

∑
j=1

(ri, j,k,t)≤ Bi,k,t (5.53)

5.2.2 Experimental Setup and Results

In this section, we describe computational studies using three multi-project schedul-

ing problem instances taken from a large design center (tens of market-leading system-on-chip

product tapeouts per year) of a world top-5 semiconductor company, referred to henceforth as

Company X. The results show a potential for significant resource savings (data center provision-

ing, EDA tool licenses, people, and schedule) from our MILP formulations, when compared to

the scheduling solutions actually used by Company X’s design center. We also show the scaling

of solver runtime with instance parameters.

Table 5.16: Activity requirements (per block) for each project.

Activity #core #mem L1 L2 L3 Hrs.
1. A1 1 1 1 12

2. A2 4 2 2 24

3. A3 4 2 2 72

4. A4 4 2 1 8

5. A5 (per corner) 8 8 1 4

6. A6 4 4 1 12

7. A7 4 2 1 8

8. A8 (per corner) 8 8 1 4

9. A9 8 8 1 1 24

10. A10 4 2 1 8

11. A11 (per corner) 8 8 1 4
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Schedule Modification Use Case

The first industry problem instance has N = 3 projects, each in the final pass of imple-

mentation, within an overall timeline of T = 90 days. The three projects P1, P2 and P3 respec-

tively contain 15, 10 and 10 “hard macro” blocks. As listed in Table 5.16, there are 11 activities

associated with each project (ai,1 = A1, ..., ai,11 = A11).85 The table shows that each activity, per

block, uses some amount of each of five resource types: compute cores, units of memory (e.g.,

a unit might be 16GB RAM), and tool licenses of types L1, L2 and L3.86 Further, activities A5,

A8 and A11 per block are performed at 75 corners and two modes (functional and test).87 The

projects have access to the following total amounts of these resources: (i) compute cores = 4800,

(ii) units of memory = 4800, (iii) L1 licenses = 50, (iv) L2 licenses = 30, and (v) L3 licenses =

400.88

Additional constraints governing the projects and the scheduling solution are: (i) for

each project, the activities must follow a given precedence order, as shown in Figure 5.11 – for

example, in Project P2, activities a2,1,a2,2,a2,3 and a2,4 must all be completed before activity

a2,5 can commence, but there are no ordering constraints among a2,1 – a2,4; (ii) at any point in

time, the number of compute cores consumed cannot exceed 10 times the number of tool licenses

consumed, and also cannot exceed twice the number of units of memory consumed; (iii) each

project is given a 30% allocation of the 4800 total compute cores (i.e., as segregated resources),

with the remaining 10% of the compute cores being fully-shared resources; and (iv) no project

can use more than 350 L3 licenses, 40 L1 licenses, or 60% of the total supply of any other type

of resource (compute cores, memory units, L2 licenses) at any time.

MILP solution using SCM. Our SCM MILP formulation straightforwardly allows capture of

the above-described multi-tapeout project scheduling problem. All projects can be completed

within the 90-day limit. In one optimal solution, projects P1, P2 and P3 are completed in 59,

39 and 34 days, respectively. Figures 5.12(a)–(c) show the resource consumption profiles of the

three projects, where no stability constraints, i.e., Constraints (5.41) and (5.42), are imposed.

85Please see Table 5.20 in Section 5.2.4 for a mapping of activities and resources to actual chip design flow termi-
nologies.

86According to [229], leading exemplars of these resources include EDA tools such as Cadence’s Innovus [286],
Assura QRC [284] and Tempus Timing Signoff [288], and Synopsys’s IC Compiler [340], Star-RCXT [343] and
PrimeTime-SI [342]. The EDA tools used in the production design flows studied here cannot be specifically revealed
here, but are from this set.

87Thus, for example, performing A5, A8 or A11 activity for a 10-block chip will require 10 (blocks)× 75 (corners)
× 2 (modes) × 8 (cores) × 4 (hours) = 48000 core-hours of compute resource.

88In this instance, there are∼65K variables and∼980K constraints. The runtime of the solver is around 9 minutes.
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Figure 5.11: Precedence order of activities in projects (a) P1, (b) P2, and (c) P3.

From top to bottom the schedules for each project are shown at 48-hour, 24-hour, 12-hour and

six-hour granularities, respectively. When timestep granularity is coarsest (48-hour), MILP run-

time is around 3.4 minutes and resource consumptions switch rapidly across activities, whereas

when timestep granularity is finest (six-hour), MILP runtime is around 2.2 hours and makespan

tightens as compared to the makespan of 48-hour granularity solutions.

Schedule modification. The salient problem that we address here is one of late-breaking sched-

ule changes. After projects are initially scheduled, there can arise a need to modify some of the

instance parameters during schedule execution (e.g., due to a design bug and resulting Engineer-

ing Change Order (ECO)), then re-solve for the project schedules from that point on. Here, a

late-breaking bug (i.e., a bug that is found and fixed very late in the schedule) in the behavioral

description of the design for project P2 caused large-scale changes. In the actual project, this

led to a push-out of activity a2,8 (A8), which in turn pushed out all downstream activities for the

project. As a result, there is a need to determine optimal scheduling of the remaining activities,

i.e., where P1 resumes from a1,5 on, P2 resumes from a2,8 on, and P3 has only its last activity

a3,11 remaining to be scheduled. An optimal MILP solution for the “from the moment of the

ECO onward” scheduling problem is shown in Figures 5.13(a), (c) and (e) with projects P1, P2,

P3. The solution actually used in the company design center is shown in Figures 5.13(b), (d) and

(f). In the MILP solution, all three projects are completed by 34 extra days from the point of

the late breaking bug, while the industry solution takes 41 extra days for completion. Our MILP

solution could thus have saved 1.4 work-weeks in the schedule makespan of the three projects.89

89According to the actual industry solution, each of the projects P2 and P3 should be given 50% of the resources
until P3 is completed. This entails that P1 will be given 50% of the resources while P2 and P3 (for cleanup) get 20%
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Figure 5.12: MILP solutions for projects (a) P1 (b) P2, and (c) P3 at 48-hour, 24-hour, 12-hour
and six-hour granularities from top to bottom, respectively. For readability we have scaled

down the values of cores and storage memory as Cores/8 and Mem/8.

of the resources each, and the number of fully-shared resources is restored to 10%. Since we do not consider cleanup
activity (of P3) to get the optimized solution, we re-allocate P3’s resources to P1 (10%, as no project can consume
more than 60% of the resources) and P2 (the remaining 10%) for fair comparison of the solutions.
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Figure 5.13: Solutions of (a) MILP for P1, (b) industry for P1, (c) MILP for P2, (d) industry for
P2, (e) MILP for P3, and (f) industry for P3 with a late-breaking RTL bug in project P2. Cores

and Mem are exactly overlapping in the industry solution in all three figures. For readability we
have scaled down the values of cores and storage memory as Cores/8 and Mem/8.

Scheduling Tethered to Forecasts

The SCM MILP formulation can be extended, with a few additional constraints (and

corresponding inputs), to address a forecast-tethered resource allocation problem. The use case

is that we are given (typically, bottoms-up from project owners) a forecast resource allocation

for activity ai, j,k and its consumption wi, j,k,t of resource type k. The optimal solution must satisfy
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the Constraints (5.43)–(5.45). Figure 5.14(a) illustrates the allocation for one project, and Figure

5.14(b) illustrates a consumption forecast over time for three identical such projects. At times,

forecast consumption is greater than the upper bounds of resources (e.g., servers/datacenter ca-

pacity), hence the allocation is infeasible. Figure 5.14(c) shows a feasible scheduling that is

obtained by modifying the forecast resource allocation within upper bounds, thereby constrain-

ing the consumption peaks to be within bounds.
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Figure 5.14: Forecast allocation for (a) one project, (b) three such projects – infeasible, and (c)
a feasible MILP-derived allocation.

We find an optimal schedule by tethering an instance of an industrial forecast resource

allocation from the design center of Company X. The instance consists of 24 projects along with

the forecast resource consumption of each project from November 2014 to September 2015. The

total forecast resource consumption, over all the projects, is greater than the current servers (and

datacenter capacity) during certain months. Therefore, we optimize the allocation so as to bound

the consumption within Rk,t (i.e., the current servers or datacenter capacity). We consider two

variants: (i) pull-in of the project schedule, and (ii) reduction of the amounts of shared allocations

from the upper bound Rk,t . Table 5.17 summarizes the experiments we conduct for this instance.
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CS = 1560 denotes the number of current servers, and DC = 2100 denotes the datacenter ca-

pacity. fs-in denotes whether the fully-shared resources (210 units of CS or DC) are included in

Rk,t ; pi-en denotes whether pull-in is enabled; pi denotes the number of months by which the

schedule is pulled in; and po denotes the number of months by which the schedule is pushed out.

Our penalty functions for schedule changes (pull-in or push-out) per month are as follows: no

penalty when the change is <5% of the forecast duration of the project; penalty function pen1

for changes between 5% and 30% of the duration; and penalty function pen2 for changes beyond

30% of the duration. Usually, pen2 is significantly higher than pen1. Furthermore, there are

two types of projects – committed and proposed. Committed projects are penalized more than

proposed projects when not adhering to the forecast schedule. Values in parentheses show the

total number of months that the committed projects are either pushed out or pulled in.90

Table 5.17: Resource allocations tethered to forecasts.

Rk,t δ (%) fs-in pi-en pen1 pen2 # po # pi
CS 30 3 7 ramp step 6 (3) -

CS 30 7 7 infeasible

CS 40 7 7 ramp step 14 (8) -

CS 40 3 7 ramp step 3 (0) -

CS 30 3 7 step delta 15 (8) -

DC 30 3 7 ramp step 0 (0) -

DC 30 7 7 ramp step 0 (0) -

CS 30 3 3 ramp step 5 (2) 5 (0)

Note that for the allocation to be bounded by Rk,t , δ must be sufficiently large such that

tethering can bring the total consumption, for each of the months, to be within Rk,t . For example,

if the total forecast consumption for a month is 100 units and Rk,t is 70 units, then δ ≥ 30% to

obtain a feasible solution. The maximum CPU time needed to solve any of the instances in

Table 5.17 is only a few seconds, since the unit of T is months and T = 11. The design center

management of Company X could not solve this problem. Their solution was to purchase the

additional 600 servers required to meet committed project forecast demands during the months of

peak execution. However, our solver can provide an allocation that does not require the purchase

of additional servers while still meeting the schedule.

90In this instance, there are∼1K variables and∼4.5K constraints. The runtime of the solver is around 3.2 seconds.
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(Human) Resource Allocation Use Case

Our third industry instance has N = 4 projects, each with a makespan of 16 work-weeks

(or, 80 days). Each of the four projects P1, P2, P3 and P4 has eight activities with assigned

“billable man-weeks”, i.e., total amount of human resources needed to complete each activity.

Four types of human resources (HR1, . . . , HR4) are available for each project. Table 5.18 shows

the resource requirement for each project across multiple activities.91 Project P4 begins first; the

start dates of projects P3, P2 and P1 are respectively offset by five, nine and five work-weeks

(there are five days in a work-week) relative to the start date of project P4. The precedence graph

for activities for each project is shown in Figure 5.15. In addition, all resources are fully-shared

across the four projects.92

From a scheduling standpoint, design management would typically like to assess time-

to-market versus resource costs. Our solver allows “what-if” analyses to understand these trade-

offs. To understand resource costs when time-to-market is critical, we set the makespan of each

project to 16 work-weeks. Figure 5.16(a) compares our RCM MILP solution with the indus-

try solution. The RCM MILP solution reduces the maximum amount of resources required in

any work-week, Ũ1 (for HR1) by 13.5% (185 units to 160 units), Ũ2 (for HR2) by 37.5% (240

units to 150 units), Ũ3 (for HR3) by 25.5% (200 units to 149 units), and Ũ2 (for HR4) by 30%

(130 units to 91 units). Such reduction in the number of human resources required can result

in highly significant cost savings for a company. For example, one unit of a HR resource costs

$56 per hour in a non-U.S. location [204]. The resource works 8 hours per day for 5 days

per week. The overall makespan of all four projects is 26 work-weeks. Therefore, reducing

Ũ2 by 90 units for HR2 saves 56× 8× 5× 26× 90 ∼ $5.2M for the company. To understand

resource costs when time-to-market can be relaxed, we have evaluated a solution in which we

set the makespan of each project to 20 work-weeks. Figure 5.16(b) compares MILP solutions

for 20 work-weeks with those for 16 work-weeks. The relaxed project makespans enable fur-

ther reductions in the maximum amount of resources required in any work-week: Ũ3 (for HR3)

by 10.7% (149 units to 133 units), Ũ4 (for HR4) by 14.3% (91 units to 78 units), and Ũ2 (for

HR2) by 16.7% (150 units to 125 units), relative to our solutions for the 16 work-week project

makespan. The additional reduction of Ũ2 by 25 units for HR2 alone can result in further savings

of (56×8×5×26×150)− (56×8×5×29×125)∼ $0.62M for the company.

91Table 5.20 in Section 5.2.4 provides a mapping of activities and resources to chip design flow terminologies.
92In this instance, there are ∼6K variables and ∼31K constraints. The runtime of the solver is around 18 seconds.
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Table 5.18: Billable engineer work-weeks for each activity for each project.

Project
Activity Resource type used Project P1 Project P2 Project P3 Project P4
1. A12 HR1 140 145 45 160
2. A13 HR1 420 425 45 500
3. A14 HR2 115 100 45 200
4. A15 HR2 345 300 145 580
5. A16 HR3 870 990 140 640
6. A17 HR3 80 260 30 50
7. A18 HR2 220 300 90 390
8. A19 HR4 480 550 180 540
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Figure 5.15: Activity precedence for all projects.
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Figure 5.16: Comparison of allocations: (a) Industry vs. MILP with makespan of all projects
set to 16 work-weeks and (b) MILP solutions when the makespan of all projects are 16 vs. 20
work-weeks. Ũi=1,2,3,4 is the maximum over total amount of HR{1,2,3,4} units consumed in

any work-week.

Artificial Testcase Generator

We have separately developed a generator of random multi-tapeout project scheduling

instances, where parameters such as N, T , J(i), Rk,t , Uk,t , Vi,k,t , Mi,k,t , Gi,k,t , and dnom (cf. Table
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5.13) are all Gaussian random variables, and various pairs of resources may be co-constrained.

Further, the randomly generated instances can have different topologies of precedence con-

straints (cf. Figure 5.11). Our generator is implemented in Python; it takes in values of N,

T , J(i), Rk,t , Uk,t , Vi,k,t , Mi,k,t , Gi,k,t , and dnom as command-line arguments, and generates a prob-

lem instance input as illustrated in the example in Section 5.2.1. IC design companies typically

deal with ∼30 projects with known priorities (set by marketing teams and management). There

is usually one ordering of these projects and not N! permutations, so we do not study all possi-

ble orderings of projects. In particular, we do not exhaustively enumerate instances as in [143].

As demonstrated above, our MILP can handle ≤ 30 simultaneous projects whose priorities have

already been decided.93

Scalability Studies

Furthermore, we have also studied the scalability of our optimal solution approach with

respect to CPLEX v12.6 solver runtimes. We use artificial testcases from our generator described

in Section 5.2.2 for our scalability studies. Figure 5.17 shows the sensitivity of CPLEX runtime

to changes in various instance parameters, relative to a base instance configuration of N = 6, J =

8, T = 200, K = 6 (the red point shown in each of the plots in the figure). Each plot sweeps

one of the instance parameters as: (i) N = {2, 4, 6, 8}, (ii) J = {2, 4, 6, 8, 10} (J(i) = J ∀i =

{1, . . . ,N}), (iii) T = {150, 200, 300} days, and (iv) K = {2, 4, 6, 8}. All other parameters

are fixed at the base configuration values. The parameter being varied is shown on the x-axis;

runtime (seconds) is shown on the y-axis. Here, all projects are identical, i.e., they all have the

same number of activities, and corresponding activities have the same resource requirements.

Schedule granularity. Our problem formulation discretizes time, with the unit t potentially

representing hours, days, months, etc. A more granular time unit permits more accurate mod-

eling at the cost of runtime. Recall that Figures 5.12(a)–(c) showed solutions to the industrial

schedule modification instance by varying timesteps at 48-hour, 24-hour, 12-hour and six-hour

93We have run our solver on 480 testcases for the j30 benchmark from PSPLIB [321], for which optimal solutions
for each testcase are available. Other benchmarks such as j60, j90 and j120 do not have optimal solutions posted
in PSPLIB [321]. This benchmark has one project with 30 activities, and each testcase varies the following: (i)
precedence constraints between activities, and (ii) upper bounds of resources for each activity over various timesteps.
For each testcase, renewable resources map to Rk,t , and non-renewable and doubly-constrained resources map to
Gi,k,t in our MILP. For non-renewable resources we set the same upper bound for all t. We have confirmed that MILP
solutions are the same as optimal solutions posted in [321] for j30. The runtimes of both PSPLIB and MILP solutions
differ by±3% when the respective solver implementations (in CPLEX v12.6) are run on an Intel Xeon E5-1410 server
at 2.80GHz.
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Figure 5.17: Runtime variation with parameters: (a) N, (b) J(i), (c) T , and (d) K.

granularities from top to bottom, respectively. As expected, we see slightly tighter makespans

for the projects at the finest granularity (six-hour) than at the coarsest granularity (48-hour). The

solver runtime increases from 3.4 seconds (with 48-hour solution granularity) to 2.2 hours (with

six-hour solution granularity).

Sensitivity Studies

We analyze the effect of the upper bounds (on the resources) on the optimal schedule.

In the first industry instance described in Section 5.2.2, we increase the upper bounds of the

resources, that is, we proportionately increase Rk,t , Uk,t , Vi,k,t and Gi,k,t . Figure 5.18(a) shows

that the makespan decreases when the upper bounds of all the resources increase.

We also create another instance in which we increase only upper bounds of compute

server and storage resources, and do not change the upper bounds of other resources. From the

Pareto curves in Figure 5.18(b), we can see that in this instance at Company X, additional com-

pute servers and storage would not help at all. In this particular instance, the number of licenses

is the bottleneck, and makespan can be improved only if more licenses are made available. (This

also shows effects of the resource co-constraints, i.e., additional compute and storage resources
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Figure 5.18: (a) Impact on makespan when the upper bounds on resources are increased. (b)
Pareto curves for changes to resource upper bounds.

cannot be maximally utilized due to shortage of licenses.) From our interactions with senior

management at the Company X design center, we understand that these types of sensitivity anal-

yses can be very useful for resource planning and procurement.

Engineer Allocation Studies

Last, we study stable allocation of certain resource types such as engineers, who cannot

be rapidly re-allocated to different projects or activities. We modify the objective of our SCM

problem as follows.

minimize C
K

∑
k=1

N

∑
i=1

J(i)

∑
j=1

T

∑
t=2
|ri, j,k,t − ri, j,k,t−1|+

N

∑
i=1

T

∑
t=1

Cp
i (t)+

N

∑
i=1

J(i)

∑
j=1

T

∑
t=1

Ca
i, j(t) (5.54)

This optimization is subject to start and finish times, resource upper bounds and activity

precedence constraints as described in Section 5.2.1. We consider each engineer as a resource

type, so Rk,t = 1, ∀t. In consecutive timesteps t−1 and t, the engineer is either working on an

activity ai, j of Project Pi, or working on another activity either of the same project or a different

project. When the engineer is working on the same activity, there is no switching between

consecutive timesteps and the absolute difference of |ri, j,k,t − ri, j,k,t−1| is zero. However, when

the engineer works on a different activity or project, then the absolute difference is one, and is

multiplied by the fixed cost C of switching activities or projects. The total number of switches

made by the engineer is multiplied by C in the objective function to obtain the total cost of

switching. Our objective is to minimize the cost of switching across all engineers.
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To verify the above formulation, we use our generator described in Section 5.2.2 and

create four input instances E1,2,3,4 with five, 10, 30 and 30 projects, respectively. Each instance

has one activity per project (i.e., J(i) = 1,∀i = 1, . . . ,N), and the number of engineers varying

between 100 and 250 (i.e., K = 100, K = 150, or K = 250), T = 90 weeks, Rk,t = Uk,t = 1,∀t,
and si,1 = 1. In instance E1, we assess solutions with C set to 0, 0.1, 1, 10 and 100. C = 0

corresponds to zero cost of switching between projects, C = 1 corresponds to a small cost of

switching, and C = 100 corresponds to a large cost of switching. Table 5.19 summarizes the

number of switches made by each engineer over all projects. In instance E1, when the cost of

switching is zero, there are a total of 4108 switches without any impact to the overall schedule

makespan. When the cost of switching is large (C = 100), there are zero switches but the overall

schedule makespan increases by four weeks. When the cost of switching is small (C = 1),

the total number of switches reduces from 4108 to 2180, but the makespan increases by one

week and the total cost increases from 0 to 15050. Thus, we observe sensible behavior of the

tradeoff between total number of switches (stable assignment) and overall schedule makespan.

Instances E2 and E3 further show the tradeoff in total number of switches and overall schedule

makespan, using different values of C for the same number of projects and engineers. Instance

E4 demonstrates scalability as the number of projects is increased to 30, and the number of

engineers is increased to 250. In all instances, we reduce the total number of switches made by

engineers by increasing C; however, the total cost increases as schedules of projects are pushed

out by one to seven weeks.94

We also solve a variant of the engineer allocation problem by adding constraints that

upper-bound the number of switches of each engineer during the overall schedule makespan. We

use the same objective function as the SCM problem with additional constraints. We validate

our solver for this variant using instance E4 from above, and by varying the upper bound on the

number of switches allowed per engineer as {+∞, 30, 20, 10, 5, 1}. When the upper bound is

+∞, the total cost is zero and matches the total cost when C = 0 for instance E4 in Table 5.19.

When the upper bound is 30, the total cost is 3830; when the upper bound is 20, the total cost is

33150; when the upper bound is 10, the total cost is 97150; when the upper bound is 5, the total

cost is 116650; and when the upper bound is 1, the total cost is 226250.

94Instance E1 has ∼46K variables, ∼350K constraints and a runtime of around three minutes. Instance E2 has
∼150K variables, ∼1.1M constraints and a runtime of around 28 minutes. Instance E3 has ∼450K variables, ∼3.2M
constraints and a runtime of around 50 minutes. Instance E4 has ∼680K variables, ∼5.4M constraints and a runtime
of around 2.3 hours.
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Table 5.19: Total cost, number of switches, µ and σ of switches over all engineers, and overall
schedule makespan impact.

Testcase N #Engineers
Switching Cost Total µ σ

Total Cost
∆ Overall

C #Switches (#Switches) (#Switches) Makespan

E1 5 100

0 4108 39.8 7.33 0 0 weeks
0.1 3804 38.8 7.20 410.4 +1 weeks
1 2180 21.5 6.36 1920 +1 weeks
10 1280 12.4 4.28 12840 +1 weeks

100 0 0 0 15050 +4 weeks

E2 10 150

0 5690 37.5 5.25 0 0 weeks
0.1 5520 36.6 5.20 572 +1 weeks
1 2777 18.5 5.06 3207 +2 weeks
10 1550 10.6 3.4 16360 +2 weeks

100 0 0 0 22680 +4 weeks

E3 30 150

0 5910 39.0 5.36 0 0 weeks
0.1 5760 38.2 5.33 606 +1 weeks
1 1965 12.9 4.22 3475 +2 weeks
10 1342 8.8 2.75 17940 +3 weeks

100 0 0 0 28500 +4 weeks

E4 30 250

0 9870 39.2 6.05 0 0 weeks
0.1 8920 35.6 5.20 1112 +1 weeks
1 5680 22.8 5.59 30520 +3 weeks
10 2870 11.2 3.65 72950 +4 weeks

100 0 0 0 251280 +7 weeks

5.2.3 Conclusions

The lack of tools for management of semiconductor design resources (servers, tool li-

censes, engineering headcount) can impact a company’s bottom line by many millions of dollars

per year. In this work, we capture multi-project, multi-resource constrained project scheduling

as SCM and RCM MILP formulations that are readily solvable using commercial engines such

as CPLEX. The MILP solutions provide optimal scheduling and allocation solutions for complex

multi-tapeout management scenarios in a large design center. Aspects of our formulation that are

unique to semiconductor design, and that take our work beyond the earlier RCPSP formulation

of Kolisch et al. [142] [144] [143], include multiple resource pools and co-constraints between

resources of different types. We demonstrate the flexibility and value of our optimization in

three scenarios taken from Company X’s design center’s recent history. (1) We find an optimal

schedule for three concurrent tapeouts when a late-breaking RTL change hits one of the projects,

and save 1.4 work-weeks of schedule compared to the solution deployed by the company. This

level of saving corresponds to 2.7% of annual labor and infrastructure costs, and enhances mar-

ket competitiveness. (2) We find an optimal schedule for 20+ projects, subject to datacenter
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capacity limits and a tethering constraint with respect to original forecast resource allocations.

Our solution shows that a slight relaxation of the tethering constraint would allow committed

projects to proceed within resource limits. Our solution meets the schedule with no additional

servers. By contrast, in the absence of decision support tools, the company’s solution entailed

the purchase of hundreds of additional servers. (3) We find an optimal allocation of human

resources for four projects and save up to 37% of a particular resource type relative to the solu-

tion adopted by the company. In a non-U.S. location, this single resource type reduction would

imply a ∼$5M savings for the company within a half-year project scheduling makespan. We

also provide “what-if” analyses capabilities with our solver, and demonstrate sensitivity analy-

ses (schedule benefits of incremental resources) and scalability of our solution approach. Since

we introduce new concepts such as conditionally-shared, segregated and fully-shared resource

types along with and resource co-constraints, we are unable to compare against any previously

existing MILP formulations of such problems.

Our work is applicable across multiple stages of project and capacity planning processes.

For example, it can be used (i) as part of a fiscal planning process to comprehend the overall

resource requirements of a site or a computing cluster; (ii) by program management as a what-if

tool so that infrastructure can join engineering headcount as a factor in scheduling decisions; and

(iii) by “Engineering Compute” operations teams to understand the impact of product roadmap

or schedule changes on datacenter and EDA licensing infrastructure, so that corrective actions

may be taken in a proactive and principled manner. By providing a foundation for improved

engineering resource allocation to maintain high overall resource utilizations and low schedule

latencies, we enable design organizations to improve design throughput and efficiency with given

resources. Ultimately, this helps to continue the scaling of design cost efficiencies that are so

vital to the IC industry.

Our formulations can be improved in a number of directions which are the subject of

ongoing investigation. For instance, it will be helpful to be able to automatically determine

threshold values of inputs (e.g., the schedule length T or the tethering constraint δ) at which

feasible solutions exist. Scheduling decisions should also comprehend distributions of job sizes

or job complexities (which can vary per block and according to the state of a project), and auto-

matic change of timestamps when schedule changes occur. Solutions can be further stabilized by

adopting iterative optimization approaches. A further open direction is to optimize robustness of

scheduling solutions in the face of stochasticity in resources and personnel.
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5.2.4 Glossary of Chip Design Flow Terminologies

Table 5.20 maps activities and resources from problem instances in Section 5.2.2 and

Section 5.2.2 to chip design flow terminologies.

Table 5.20: Glossary for the schedule modification use case (Section 5.2.2) and (human)
resource allocation use case (Section 5.2.2).

Schedule modification use case (Section 5.2.2) Human resource allocation use case (Section 5.2.2)

Activity / Resource Chip Design Flow Mapping Activity / Resource Chip Design Flow Mapping

A1 Placement A12 Block-Level Design (BLD)

A2 Routing A13 Full-Chip Design (FCD)

A3 Search and Repair A14 Block-Level Verification (BLV)

A4 Extraction A15 Full-Chip Verification (FCV)

A5 Static Timing Analysis (STA) A16 Block-Level Physical Design (BLPD)

A6 Functional ECO A17 Full-Chip Physical Design (FCPD)

A7 Extraction A18 Gate-Level Simulation (GLS)

A8 STA (per corner) A19 Emulation (EMU)

A9 Timing ECO HR1 Design Resources

A10 Extraction HR2 Design Verification Resources

A11 STA (per corner) HR3 PD Resources

L1 P&R License HR4 EMU Resources

L2 RCX License – –

L3 STA License – –

5.3 Optimal Reliability-Constrained Overdrive Frequency Selection

in Multi-core Systems

Modern systems with multi-core processors typically operate at multiple operating modes,

e.g., nominal and overdrive (or, “turbo”) [303]. Applications running on multi-core systems have

different requirements for the number of cores used at any given moment, as well as for corre-

sponding operating modes. For example, in a system with eight cores, applications A and B may

have very different usage of these cores over time. Figure 5.19(a) conceptually illustrates the

time-varying usage of cores by applications A and B. Each application uses at most four cores

simultaneously over the course of its execution. When memory and I/O resources are not a bot-

tleneck, the operating system scheduler packs tasks using some or all of the available processing

cores in the multi-core system. Figure 5.19(b) illustrates how the scheduler might pack execu-

tions of A and B across eight cores (cf. Packed A, B shown in green color in Figure 5.19(b)). A
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key observation is that when all of the cores are not simultaneously active, task scheduling on a

subset of the available cores can be adjusted so that the cores wear out in a balanced manner and

meet lifetime as well as performance requirements.

Mean time to failure (MTTF) is a measure of the lifetime of a core. MTTF of a core de-

grades due to reliability mechanisms such as electromigration, time-dependent dielectric break-

down, stress migration, thermal cycling, bias temperature instability, hot carrier injection, etc.

[213] [233]. Below, we use the following terminology.

• power-on-hours (POH) denotes the effective number of lifetime hours consumed. POH is

a measure of a given core’s lifetime degradation, and differs from the total number of hours

for which the core operates, due to operating conditions, e.g., frequency and temperature;

• nominal temperature is the temperature at which the MTTF degradation of a core is the

same as the number of hours it is active;

• nominal frequency is the frequency at which the temperature of a core attains its nominal

value;

• overdrive frequency is the frequency due to overclocking the cores;95

• acceleration factor (AF) denotes the increased MTTF degradation due to operating at

higher temperatures [305] [347]. AF is the ratio of original MTTF (at nominal tempera-

ture) to actual MTTF due to operating at a higher than nominal temperature.96

To meet performance and throughput requirements, cores operate at overdrive frequen-

cies, and hence at higher than nominal temperatures. Thus, overdrive modes can result in cores’

actual MTTFs becoming significantly smaller than original MTTFs. MTTF degradation can lead

to two challenges. (1) All the cores in a multi-core system can fail even before all assigned tasks

are completed. A common strategy is to dynamically adapt overdrive frequencies so that all

tasks are completed within the system’s lifetime [131] [213]. (2) To reduce MTTF degradation,

overdrive frequencies must be reduced and can violate a minimum “acceptable performance”

requirement for tasks. We use Black’s Equation [24] to calculate the MTTF due to electromigra-

tion. We consider a core to be reliable as long as the POH of the core is ≤MTTF.

As reviewed in Section 2.3.3, prior works on task scheduling for multi-core systems

are taxonomized as reliability-constrained (RC) or non-reliability-constrained (NRC). RC task

95At overdrive frequencies, the core’s temperature is higher than nominal.
96AF = 1 when a core is active at its nominal temperature, and AF > 1 at higher than nominal temperatures. This

captures the well-known acceleration of wearout with higher operating temperature [305].
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Figure 5.19: Core usage profiles of (a) individual applications A and B, and (b) after the
scheduler packs execution using eight cores. Note that B starts after A. The numbers in the

colored boxes refer to the number of cores active.

scheduling policies can be further classified as those that make system “lifetime guarantees”

(LG) and those that make “no lifetime guarantees” (NLG). Existing RC-LG policies apply (1)

dynamic power management (DPM), (2) dynamic thermal management (DTM), or (3) dynamic

reliability management (DRM). Such works are “performance-guaranteeing” (PG) if they guar-

antee lower bounds on “acceptable performance”. Table 5.21 classifies existing works and our

work according to the foregoing taxonomy.

Previous NRC, RC-NLG and RC-LG policies can be suboptimal. We demonstrate the

suboptimality of these existing policies using a simple counterexample. We consider a system

with four cores and MTTF of seven years (= 61320h) for each core. The nominal frequency

and temperature are respectively 1.5GHz and 358K, the maximum frequency is 3.0GHz, and

the maximum temperature is 398K. We assume that the scheduler assigns tasks for each (m

(= the number of active cores), nominal execution time, overdrive execution time) 3-tuple as

follows: (1, 1000h, 3000h), (2, 2000h, 5000h), (3, 3000h, 8000h), and (4, 2000h, 5000h). Last,

we assume that overdrive-mode tasks require a minimum overdrive frequency or “acceptable

performance” of 1.8GHz.

Using HotSpot v5.01 [227] as detailed in Section 5.3.2 below, for the above instance

optimal (discretized) overdrive frequencies can be found using exhaustive search for each m

respectively as 2.85GHz, 2.3GHz, 1.8GHz and 1.8GHz.97 However, NRC and RC-NLG policies

will operate always at 3.0GHz and 398K, inducing an acceleration factor AF = 9.77 relative to

97We describe in Section 5.3.1 the use of HotSpot v5.01 [227] to simulate temperatures (from which wearout
acceleration factors (AFs) are derived) for different frequencies and combinations of active cores.
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Table 5.21: Classification of existing works on multi-core task scheduling and our work.

Work
NRC

RC

NLG
LG

DPM DTM DRM PG

Reiss et al. [208] 3

Karpuzcu et al. [132] 3

Mihic et al. [174] 3

Rosing et al. [213] 3

Rong et al. [212] 3

Coskun et al. [53] and [54] 3

Srinivasan et al. [233] 3

Karl et al. [131] 3

Our work 3 3

the nominal operating temperature of 358K. Assuming execution of tasks are balanced across

the four cores, Figures 5.20 and 5.21 respectively illustrate suboptimalities of NRC and RC-

LG policies for a system with four cores, where each core has an initial lifetime of seven years

(61320h) and the tasks listed in the previous paragraph are as assigned by the scheduler. The

figures show how time progresses along with execution of nominal and overdrive tasks, starting

with m = 1 and followed by m = 2,3 and m = 4 for Figure 5.21. For example, for m = 1 in

both figures, the duration of nominal tasks Enom = 1000h, each core executes 250h at a nominal

frequency fnom = 1.5GHz, and the corresponding AF is 1.0, hence the value of power-on-hours,

POH, is 250h×1.0 = 250h for each core. All POH values are shown with a negative sign to

indicate effective lifetime consumed. Further, for m = 1, the duration of overdrive tasks EOD =

3000h, each core executes 750h at an overdrive frequency fOD = 3.0GHz, and the corresponding

AF is 9.77, hence the POH is 750h×9.77 = 7372.5h.

With NRC policies, Figure 5.20 shows that the effective lifetime of each core at the end

of m = 3 nominal tasks is 24947.5h (“Lifetime remaining” in the figure). This is because each

core consumes 1220h + 24425h after executing 1000h in nominal and 2500h in overdrive modes

for m = 2, and 3150h after executing 2250h in nominal mode for m = 3. For balanced execution

of m = 3 overdrive tasks, each core requires 6000h of execution; this requires the lifetime of each
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core to be 6000h×9.77 = 58620h, which exceeds the effective lifetime of 24947.5h. (Moreover,

this is without resourcing any tasks for m = 4.) This simple example shows that existing NRC

policies are not optimal, in that they cannot guarantee that cores will complete all tasks before

failing. The conclusion from our counterexample: Operating at the maximum frequency for all

overdrive tasks is not the optimal strategy, as it ignores lifetimes of cores.

With RC-LG policies, Figure 5.21 shows that the POH of each core is 250h + 7327.5h

+ 1220h + 22100h after executing 250h in nominal mode and 750h in overdrive mode for m = 1,

and 1000h in nominal mode and 2500h in overdrive mode for m = 2. Cores can be run at the

maximum value of 3.0GHz for m = 1, but cannot maintain this frequency for m = 2,3,4 if the re-

quired tasks are to be completed while maintaining the system’s lifetime (“Lifetime remaining”

is 1422.5h ≥ 0 in the figure). Executing the frequency assignment approach of RC-LG policies,

we experimentally determine that overdrive frequency for m = 3,4 can be at most 1.6GHz, which

is less than the minimum required overdrive frequency of 1.8GHz as illustrated in Figure 5.21.

The positive value of “Lifetime remaining” cannot be utilized to increase any of the overdrive

frequencies further, as this violates lifetime requirements. Thus, our simple example shows that

existing RC-LG policies are not optimal, in that they cannot guarantee lower bounds on “ac-

ceptable performance”. The conclusion from our counterexample: executing overdrive tasks at

the maximum frequency and decreasing the frequency to meet lifetime is not the optimal strat-

egy, as it does not consider duration of all overdrive tasks across all combinations of active cores.

m = 1 

Core 2 Core 3 Core 4 Core 1 

61320 61320 61320 61320 

fnom = 1.5GHz 
fOD = 3.0GHz 

m = 2 
-24425 

fnom = 1.5GHz 

-24425 

Enom = 1000; AF = 1.00 

Enom = 2000; AF = 1.22 

m = 3 -3150 fnom = 1.5GHz -3150 Enom = 3000; AF = 1.40 

EOD = 8000; AF = 9.77 

-3150 

Lifetime remaining 

-250 
-7327.5 EOD = 3000; AF = 9.77 

EOD = 5000; AF = 9.77 

-1220 -1220 

-58620 -58620 -58620 

-250 -250 -250 

-7327.5 -7327.5 -7327.5 

-1220 -1220 

-24425 -24425 

-3150 

-58620 fOD = 3.0GHz 

24947.5 24947.5 24947.5 24947.5 

m = 3 

ti
m

e
 

NRC-SUB 

Initial Lifetime  

fOD = 3.0GHz 

Figure 5.20: Suboptimality of NRC policies. Enom and EOD respectively indicate the nominal
and overdrive execution times. Lifetime of all cores are completely used up by the end of

nominal mode execution in m = 3. Thus, tasks requiring m = 3 overdrive mode execution, and
all tasks requiring m = 4, cannot be completed. All times are in hours.
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m = 1 

Core 2 Core 3 Core 4 Core 1 

61320 61320 61320 61320 

fnom = 1.5GHz 
fOD = 3.0GHz 

m = 2 -1220 fnom = 1.5GHz 
fOD = 2.4GHz 

-1220 

EOD = 3000; AF = 9.77 

Enom = 2000; AF = 1.22 
EOD = 5000; AF = 8.84 

m = 3 
-3150 fnom = 1.5GHz 

fOD = 1.6GHz 
-3150 

-11280 -11280 

Enom = 3000; AF = 1.40 
EOD = 8000; AF = 1.88 

-3150 

-1220 -1220 

-3150 
-11280 

m = 4 -3520 fnom = 1.5GHz 
fOD = 1.6GHz 

-3520 
-11050 -11050 

Enom = 2000; AF = 1.76 
EOD = 5000; AF = 2.21 

-3520 
-11050 

-3520 
-11050 

1422.5 1422.5 1422.5 1422.5 Lifetime remaining 

Enom = 1000; AF = 1.00 -250 
-7327.5 

-250 -250 -250 

-7327.5 -7327.5 -7327.5 

-22100 -22100 -22100 -22100 

-11280 ti
m

e
 

Initial Lifetime  

Figure 5.21: Suboptimality of RC-LG policies. Enom and EOD respectively indicate the nominal
and overdrive execution times. Tasks requiring m = 3 and m = 4 overdrive mode execution

must operate at an overdrive frequency of 1.6GHz instead of the required 1.8GHz. All times are
in hours.

In this section, we formulate and solve a new maximum-value, reliability-constrained

overdrive frequencies (MVRCOF) optimization problem that, unlike existing works, guarantees

prescribed levels of “acceptable performance” and “acceptable throughput”. To the best of our

knowledge, ours is the first approach that guarantees minimum performance and throughput re-

quirements under reliability constraints. Our MVRCOF formulation maximizes the value (or,

the advantage) of operating active cores at overdrive frequencies. The optimization is performed

offline and is subject to four types of constraints: a lower bound on lifetime of each core, com-

pletion of all tasks within the system’s lifetime, and upper bounds on instantaneous power and

temperature. We develop a solver for the MVRCOF problem that determines the duration each

combination should remain active so that all cores have balanced wearout. If no feasible solu-

tion exists, the scheduler may be notified to modify the task profile. To find the optimal solution,

we perform exhaustive search over all overdrive frequencies within upper and lower bounds and

all combinations of simultaneously active cores.98 To make our flow scalable and efficient, we

perform a one-time characterization of temperature and wearout for each combination of active

cores, at each overdrive frequency. To our understanding, the MVRCOF solution is suitable for

task migration in datacenters and other multi-core systems [169].

98We implicitly consider that all possible overdrive frequencies are feasible for a given block implementation. The
relationship between feasible range of overdrive frequencies and the area, mix of different-Vt cells in implementation,
etc. of a block is an open direction for future work.
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Our contributions are the following.

• We propose a new MVRCOF formulation to maximize the value of operating multiple

cores in overdrive frequencies under reliability constraints and given weights (relative

importance) for overdrive and nominal frequencies in different modes.

• Our formulation guarantees satisfaction of prescribed lower bound constraints on both

“acceptable performance” and “acceptable throughput” across all combinations (C(N,m))

of active cores. (m is the number of active cores, m = 1,2, ...,N). To the best of our

knowledge, we are the first to make minimum performance and throughput guarantees

under electromigration reliability constraints.

• We determine optimal overdrive frequencies for each m out of N available cores. These

frequencies can be maintained throughout the lifetime of the multi-core system.99

• We develop both exhaustive (discretized) search for the optimal solution, as well as an

approximate heuristic. In practice, our heuristic is within 3.3% of optimal across multiple

testcases and converges up to ∼10× faster than the exhaustive search.100

• Our approaches determine the execution times of each combination of active cores; this

can be used by OS schedulers to assign tasks to cores while maintaining required MTTF

for all cores. (As we discuss below, this implies balanced wearout of cores.) Although

we validate our solutions using four, six and eight cores, our method can be applied to

systems with more than eight cores.

• We empirically demonstrate that our optimal solutions improve the objective function

value by between 2.2% and 17.4% when compared to the existing reliability-aware task

scheduling approaches of [53] and [213].

5.3.1 Problem Formulation

We now formulate our MVRCOF optimization problem to maximize the value101 of a

set of overdrive frequencies, such that no core wears out before its prescribed lifetime require-

ment. We assume that the scheduler packs tasks from multiple applications and provides a final
99This implicitly assumes that each core in the system can adapt (e.g., by supply voltage scaling) to aging in order

to maintain a given target (nominal or overdrive) operating frequency.
100Our method is based on offline simulations. Comparison of our results with measured data remains a direction

for future work.
101By “value”, we refer to the advantage of operating at overdrive frequencies. We maximize the advantage by

maximizing the overdrive frequencies.
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operating schedule as conceptually illustrated in Figure 5.22. Further, we do not consider the

cost of task migration.

There are two kinds of inputs: (1) system description, and (2) task description. Table

5.22 lists the parameters used in our formulation and solution. Figure 5.23 shows the inputs

and outputs of the MVRCOF problem graphically. We assume that the values for the system

description parameters are given. The operating system scheduler provides values for the task

description parameters depending on application demands for performance and the number of

cores used. For example, applications that benefit from frequency overdrive are accounted for in

EOD,m and wOD,m parameters, whereas applications that do not benefit from frequency overdrive

are accounted for in Enom,m, fnom,m and wnom,m parameters.

We define “acceptable performance” as 1.3× fnom,m, based on [303]; this does not com-

promise the generality of our conclusions. Further, we define “acceptable throughput” as the

ability to complete all tasks within the multi-core system’s given lifetime.

Given the above-described inputs, the problem to maximize the value of a set of over-

drive frequencies is formally expressed as

maximize
N

∑
m=1

(wOD,m · fOD,m ·EOD,m +wnom,m · fnom,m ·Enom,m)

subject to

∀m,1.3× fnom,m ≤ fOD,m ≤ fmax (5.55)

∀i,MT T Fi ≤MT T F (5.56)

∀i,Pi ≤ Pmax (5.57)

∀m,Tm ≤ Tmax (5.58)

where

• Constraint (5.55) ensures lower bounds on “acceptable overdrive performance” that are at

least 30% greater than fnom,m, and also restricts fOD,m values to be less than the maximum

frequency of the system.
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Table 5.22: Parameters used in MVRCOF problem formulation and solution.

Parameter Description Type

N #symmetric cores indexed by i = 1,2, · · ·,N System

Pmax maximum power consumption of any core System

fmax maximum frequency of any core System

Tnom core temperature at nominal frequency System

Tmax maximum die temperature System

MTTF lifetime of each core System

Ea metal activation energy (0.7eV [124]) Physical

k Boltzmann’s constant (8.62×10−5eV/K) Physical

m
#simultaneously running, or active, cores, 1≤ m≤ N

Task
(at the same nominal or overdrive frequency)

l operating mode of any core ({nom, OD}) Task

fnom,m nominal frequency of m cores Task

wl,m
weights in objective function of achieved

Task
frequencies, wl,m ≥ 0, ∀l,m

El,m execution time in operating mode l with m cores Task

Pi power of the ith core at any time Variable

Tm temperature of the die with m active cores at any time Variable

t j,m,l execution times for the jth combination of m cores Variable

bi, j,m
binary variable (1 when core i is present in the

Variable
jth combination of m cores, 0 otherwise)

MTTFi effective lifetime of the ith core after it has been active Variable

POHl,i POH of the ith core in operating mode l Variable

AFi, j,m,l
AF of the ith core in the jth combination

Variable
of m cores in operating mode l

Ti, j,m,l
temperature of the ith core in the jth combination

Variable
of m cores in operating mode l

∆ f OD discrete amount by which overdrive frequency is increased Variable

fOD,m overdrive frequency for m cores Output

v j,m,l
% total execution time for the jth combination

Output
of m cores in operating mode l

ui,l
% of lifetime during which the ith core is active

Output
in operating mode l

• Constraint (5.56) ensures “acceptable throughput”, i.e., tasks are completed within the

system’s lifetime.



235

• Constraints (5.57) and (5.58) ensure that the power of each core, Pi, and the temperature

of the die with m active cores, Tm, are within maximum power and temperature upper

bounds.102 MTTFi is calculated using Equations (5.59) – (5.61) [305].

We use the execution times in the objective function to determine the duration over which cores

in mode m execute at fOD,m.

AFi, j,m,l = exp
(

Ea

k
·
[

1
Tnom

− 1
Ti, j,m,l

])
(5.59)

POHl,i =
N

∑
m=1

C(N,m)

∑
j=1

t j,m,l ·bi, j,m ·AFi, j,m,OD (5.60)

MT T Fi = ∑
l={nom,OD}

POHl,i (5.61)
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Figure 5.22: Core usage profile from scheduler after packing tasks from multiple applications.
The task profile represents typical datacenter workload from [23].

Optimal (Discretized) Solution Flow

We now present our flow to solve the MVRCOF optimization problem. We also present

our heuristic flow and a baseline flow to compare reliability-constrained with lifetime guaran-

tee (RC-LG) policies. To work around potential nonlinear constraints, we perform exhaustive

search of fOD,m across all m by increasing values of fOD,m from 1.3× fnom,m to fmax by ∆ f OD. We

perform one-time characterization (∼9.5h on an Intel Xeon E5-2640 2.5GHz system) of temper-

102We obtain Pi from post-layout power simulation of a core at fnom,m or fOD,m. Tm is the die temperature obtained
from HotSpot v5.01 [227] simulations.
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Figure 5.23: Graphical representation of inputs and outputs of the MVRCOF problem.

ature and AF for all discretized values of fOD,m for each combination of m out of N cores and

generate a lookup table (LUT)103 as follows.

1. Perform post-layout gate-level power simulation of a single core. We set the switching

activity factor at primary inputs in the nominal mode as 0.11 [304] and in the overdrive

mode as 0.3 [221]; We also set the clock period as the inverse of the overdrive frequency

in the SDC file [21].

2. Perform temperature simulation with power using HotSpot [227].104

3. Create a LUT entry for the ith core if it is present in the jth combination of m cores as

( fOD,m, temperature, AF). For each core and for each fOD,m, there are at most N×C(N,m)

entries. Figure 5.24 illustrates an example of a subset of a LUT for a system with three

cores.

4. Increase fOD,m by ∆ f OD as long as fOD,m +∆ f OD ≤ fmax. Go to Step (1).

Algorithm 4 shows details of our flow to determine the optimal values of fOD,m. f (.)

in the algorithm indicates that the output value is a function of the input parameters (.). Lines

1–18 initialize MTTF of all cores, overdrive frequencies across all m, the variable bi, j,m for each

core, and the variables that store the optimal value of the objective function and the overdrive

frequencies. Lines 19–46 contain the loops for the exhaustive search. Lines 22–34 comprise the

innermost loop which, given an overdrive frequency, determines if all cores in all combinations

103The reader will notice that we are assuming that temperature is restored to its nominal value before task execution
begins on each successive combination of active cores. We believe this assumption is reasonable as long as task
assignments have relatively long durations, and given that, in a day, cores are utilized ∼60% of the time (i.e., system
is idle for ∼9h) [208]. Our experiments indicate that the time for temperature to drop from 125oC to 85oC is ∼10s,
and this is consistent with the results of [279]. Achieving a solution that is “history-aware” remains a direction for
future work.

104Thermal parameters for HotSpot [227] simulations are calibrated with Intel Xeon processors [54].
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Core (m, j) fOD,m (GHz) Temp (K) AF 

 
 
 

     1 

 
 
 

(1,1) 

3.0 398 9.77 

2.95 392.5 7.34 

2.90 396.9 5.34 

1.80 362.0 1.29 

 
 
 

    2 

 
 
 

(2,1) 

3.0 398 9.77 

2.95 393.1 7.58 

2.90 388.4 5.90 

1.80 367.6 1.82 

 
 
 

    3 

 
 
 

(3,1) 

3.0 398 9.77 

2.95 397.5 9.53 

2.90 396.9 9.24 

1.80 377.4 3.42 

Figure 5.24: Example of a subset of a lookup table (LUT) for a three-core system.

can complete execution within the prescribed lifetime. If a core is present in a combination, Line

25 obtains its AF from the LUT, and Line 26 executes the following linear program (LP), which

calculates t j,m,nom and t j,m,OD to balance wearout across all cores. Formally, the LP is expressed

as

maximize c

subject to

∀i,c≤ ∑
l={nom,OD}

POHl,i (5.62)

∀i, ∑
l={nom,OD}

POHl,i ≤MT T F (5.63)

C(N,m)

∑
j=1, l∈{nom,OD}

t j,m,l = El,m (5.64)

where

• Constraint (5.62) ensures c is the minimum POH across all cores.

• Constraint (5.63) ensures that all tasks are completed within the multi-core system’s life-

time.

• Constraint (5.64) ensures that the sum of nominal and overdrive execution times across

all combinations of m active cores meet the respective required execution times. POHl,i is

obtained from Equation (5.60).
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fOD,m Power(fOD,m) 
Power 

simulation 
Thermal 

simulation 

(fOD,m, temp, AF) LUT  
(Max size: N2 × C(N,m) for each fOD,m)  

(m, j) Core (i) Temp fOD,m AF 

Algorithm 1 

For each core i, fOD,m and combination j of m 

Optimal obj fn 
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fOD,m and tj,m,l 

LP 

Figure 5.25: Flow to obtain optimum solution. Algorithm 4 uses the lookup table (LUT) and
repeatedly invokes the LP solver.

If an optimal solution exists for the LP, Line 27 calculates POH for the core using Equa-

tion (5.61) and Line 28 updates the core’s effective MTTF, MT T Fi, based on t j,m,l and El,m

values. If all cores can complete execution within their lifetimes, Line 36 calculates the value of

the objective function. Lines 38–41 store the overdrive frequencies and largest value of the ob-

jective function obtained up through the iteration iter. (We compare iter across our testcases in

Section 5.3.2.) Lines 42–43 increment fOD,m by ∆ f OD. When all values of frequencies across all

m have been tried, Lines 47–51 output the optimal solution or report infeasibility if no feasible

solution exists.

Figure 5.25 shows our complete flow from generating the LUT to using Algorithm 4

and the LP to achieving optimal values of the objective function, fOD,m and t j,m,l . We can now

determine the optimal values of v j,m,l and ui,l from the values of t j,m,l . Exhaustive search across

all discretized values of fOD,m across all cores present in the jth combinations of m achieves

a discretized optimal solution. The time complexity of Algorithm 4 is O(N2 ·C(N,m) · fsteps),

where fsteps = ( fmax−1.3× fnom,m)/∆ f OD. By construction, our optimal flow guarantees “ac-

ceptable performance” because we search for optimal values of fOD,m that are at least 30% above

the nominal frequency. The optimal flow also guarantees “acceptable throughput” because our

LP always guarantees balanced wearout and Lines 29–31 of Algorithm 4 do not allow cores to

operate at frequencies that cannot guarantee task completion within a core’s effective lifetime.

Heuristic flow. We also develop a heuristic flow to solve the optimization by maximizing over-

drive frequencies for each m in the order of decreasing wOD,m×EOD,m. This is because maxi-

mizing fOD,m for the largest wOD,m×EOD,m causes large improvement in the objective function

value. The flow is similar to the exhaustive search; however, rather than explore all modes in

their numerical order, we start with the mode that has the largest product of wOD,m×EOD,m and

obtain the maximum fOD,m. The flow uses Lines 20–45 of Algorithm 4 to determine the maxi-
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Algorithm 4 Determination of optimal fOD,m
Input: N, fmax, fnom,m, Enom,m, EOD,m, wnom,m, wOD,m, ( fOD,m, temp) LUT, MT T F
1: for all i = 1,2, ...,N do
2: MT T Fi←MT T F
3: end for
4: for all m = 1,2, ...,N do
5: fOD,m← 1.3× fnom,m
6: end for
7: for all m = 1,2, ...,N do
8: for all j = 1,2, ...,C(N,m) do
9: for all i = 1,2, ...,N do

10: if core i ∈ combination j then
11: bi, j,m← 1
12: else
13: bi, j,m← 0
14: end if
15: end for
16: end for
17: end for
18: iter← 1; Bestval← 0; Best f od []← 0
19: for all m = 1,2, ...,N do
20: while fOD,m ≤ fmax do
21: Valiter ← 0; term← 0
22: for all j = 1,2, ...,C(N,m) do
23: for all i = 1,2, ...,N do
24: if bi, j,m > 0 then
25: Get AF: AFi, j,m,OD← f ( fOD,m,LUT, i, j,m)
26: Solve LP: t j,m,l ← f

(
AFi, j,m,l ,MT T F

)
27: Calculate POH: POHi← f

(
t j,m,l ,Enom,m,EOD,m

)
28: Update MTTF: MT T Fi←MT T Fi−POHi
29: if MT T Fi ≤ 0 then
30: term← 1
31: end if
32: end if
33: end for
34: end for
35: if term > 0 then
36: Calculate objective function value:
37: Valiter ← wnom,m · fnom,m ·Enom,m +wOD,m · fOD,m ·EOD,m
38: if Valiter > Bestval then
39: Bestval←Valiter
40: Best f od [m]← fOD,m
41: end if
42: fOD,m← fOD,m +∆ f OD
43: iter← iter +1
44: end if
45: end while
46: end for
47: if Bestval > 0 then
48: Output Bestval and Best f od [1,2, ...,N]
49: else
50: Output no feasible solution exists
51: end if

mum fOD,m for each m in decreasing order of wOD,m×EOD,m. We compare the iter value (i.e.,

the number of iterations) from Line 43 between the optimal and heuristic solutions in Section

5.3.2.
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Baseline reliability-constrained with lifetime guarantee (RC-LG) flow. To compare the so-

lutions of our optimal and existing RC-LG policies, we describe a baseline flow in which we

use frequency assignment approach in RC-LG policies. RC-LG policies assign the maximum

frequency of a combination m as long as power, thermal upper bound and lifetime constraints

are met [132] [208] [213]. The frequency is dynamically changed to meet lifetime requirements.

The baseline flow is as follows.

• Choose core(s) with the maximum MTTF for execution and whose MT T Fi ≥ the required

(nominal or overdrive) execution times.

• Find the maximum fOD,m subject to power, thermal upper bound constraints and MT T Fi

(when multiple cores are active, use the minimum MT T Fi,∀i).105

5.3.2 Experimental Setup and Results

We now describe our testcase generator, and present our results.

Testcase Generation

To construct different testcases, we modify (1) wnom,m and wOD,m, (2) Enom,m and EOD,m,

and (3) fnom,m values. While we make certain choices of parameter values in our experiments,

these choices do not compromise the generality of our method and conclusions. Let the ratio

rm = wnom,m
wOD,m

be a random variable chosen uniformly in the interval [0.1, 10]. Then, wOD,m = 1
1+rm

and wnom,m = rm
1+rm

.106 For each m, we generate a value of rm to obtain wnom,m and wOD,m.

Figure 5.22 illustrates an example of the scheduler-determined total execution times in

an eight-core system when m = 1,2, ...,8 cores, respectively, are active. To model a similar

skewed Gaussian distribution of Etot,m = Enom,m + EOD,m for the random variable m with mean

µ, standard deviation σ and probability density function f (m|µ,σ), we assume the following.

• All cores begin execution with the same MTTF = {7, 10} years to represent typical server

cores [243].

• µ = bN
2 c+1,∀N; µ is an integer as it equals m with the largest Etot,m.

105We perform exhaustive search for the maximum fOD,m, starting from fmax. If a frequency can complete current
and future tasks within the lifetime of all cores, then we set this as the maximum fOD,m. Otherwise, we decrease in
50MHz steps until fOD,m = fnom,m.

1060.1≤ rm ≤ 10 allows us to obtain extreme values such as wnom,m = 0.1 and wOD,m = 0.9, and wOD,m = 0.1 and
wnom,m = 0.9.
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• 3σ = max
(
N−

(
bN

2 c+1
)
,bN

2 c
)

= bN
2 c because the execution times with fewer or more

active cores are less than the ones which use approximately half of N [208]. σ does not

need to be an integer because we only want to make sure that |m− µ| ≤ 3σ. Therefore,

σ = 1
3 · b

N
2 c,∀N.

• U is a uniformly random number in [0.35, 0.5], denoting the peak core utilization of

Amazon EC2 datacenters, following core utilization data in [161]. Then, we have that

Enom,µ +EOD,µ = MT T F×U , and Etot,m = Etot,µ× f (m|µ,σ) when m 6= µ.

• re,m is a uniformly random number in [0.1, 0.5] following task priority information in

[161], which denotes the ratio of Enom,m to Enom,m + EOD,m. Then, we have that Enom,m =

re,m×Etot,m, and EOD,m = Etot,m−Enom,m.

• fnom,m takes on values between [1.5, 2.0]GHz in steps of 50MHz so that the maximum

frequency is ≤ 3.0GHz [282].

Decomposition of Task Trace

We decompose packed tasks from Figure 5.22 to resemble realistic datacenter traces

with the following assumptions. (1) For a given m, all cores execute either nominal or overdrive

tasks. (2) In a day, nominal tasks run for ∼20% (5h) and overdrive tasks run for ∼40% (10h)

[23] [151] [208]. The cores are idle for the remaining 9h. (3) Tasks are nonpreemptive. (4)

Overdrive tasks are scheduled before nominal tasks.

We obtain Enom,m and EOD,m from above and calculate the per-day nominal and overdrive

tasks for each m so that they are in the ratio of their total execution times.107 Therefore, in a day,

across all m, the sum of nominal tasks in a day adds up to 5h and the sum of overdrive tasks

adds up to 10h. We now generate a trace by sequencing tasks as {overdrive, nominal} for each

day such that execution times of all nominal and overdrive tasks respectively add to Enom,m and

EOD,m. The sequencing gives the notion that overdrive tasks must be completed before nominal

tasks. We use these traces to validate our solutions, as we describe next.

Results

To simulate a design to fill 25mm2, 38mm2 and 51mm2 die at ∼70% utilization respec-

tively with four, six, and eight vector processor-like cores, we create a floorplan file for Hotspot

107For example, if Enom,1 is 10% of total execution time of nominal tasks across all m, then in a day the nominal
task for m = 1 is 10% of 5h.
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[227] that instantiates each processor core as 72× jpeg encoder [318] cores. To obtain area and

power for 72× jpeg encoder, we perform synthesis, place-and-route, and power analysis of a

single jpeg encoder core and scale the area and power values by 72. We use 45nm foundry li-

braries, synthesize the jpeg encoder design using Synopsys Design Compiler vG-2012.06 [337]

and perform place-and-route using Cadence SOC Encounter vEDI10.1 [287] with clock period

set to 0.5ns. The post-layout netlist for a single jpeg encoder core contains ∼38K instances

and the area of standard-cells is 0.06mm2. We then perform power analysis by varying supply

voltage from 0.8V to 1.2V in steps of 10mV, varying the frequency (transcribed to clock period

in the SDC [21] file) from 1.5GHz to 3.0GHz in steps of 50MHz.108 We develop a solver using

custom Tcl scripts to implement Algorithm 4 and the heuristic flow, and solve all our generated

LP instances using lp solve [309]. For all m, we set fnom,m = 1.5GHz and the minimum fOD,m to

be 1.8GHz (i.e., 20% greater than the nominal frequency, following [303]). We set Pmax to 30W

[303] and Tmax to 398K [305].

We report experimental setup and results with four109, six and eight cores, and MTTF

of each core set to seven years. Table 5.23 shows the Enom,m, EOD,m, fnom,m, wnom,m, and wOD,m

values for each testcase. We name our testcases as N-testcase# where N indicates the number

of cores. Testcase 6-II uses twice the EOD,m values from Testcase 6-I. Testcases 4-I and 4-II

use different weights for m = 1,4. Our results enable (1) validation of our discretized optimal

solutions, and (2) comparison of solutions from optimal, heuristic, and baseline (RC-LG) flows.

To validate our solutions, we confirm the sensibility of how varying ∆ f OD, wnom,m, and

wOD,m affect the value of the objective function. Then, for Testcase 8-I, we present the optimal

values of v j,m,l and ui,l which can potentially be used by the operating system scheduler for task

migration.110

Impact of ∆fOD. Table 5.24 shows the optimal values of fOD,m and the value of our objective

function for different values of ∆ f OD from our optimal flow. The objective function value varies

by less than 0.3% when ∆ f OD varies from 200MHz to 50MHz. However, when ∆ f OD = 50MHz,

the solution requires ∼13× the number of iterations to converge.111 Smaller values of ∆ f OD

achieves higher values of the objective function, as expected. Because the MVRCOF solver runs

108We assume that for a given block implementation all the possible fOD values are feasible by construction, i.e.,
the implementation ensures no timing violations when the frequency is set to fmax.

109The area of four cores with 70% utilization is (4×72×0.06)/0.7≈ 25mm2.
110Testcase 6-II is infeasible because no value of fOD,m with lower bound (“acceptable performance”) set to 1.8GHz

can complete the tasks within the system’s lifetime.
111On a Intel Xeon E5-2640 2.5GHz system, each iteration executes roughly in 0.7s.
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Table 5.23: Details of testcases. Each row shows execution times and weights for two values of
m.

Testcase m
Enom,m EOD,m

wnom,m wOD,m
fnom,m

(Kh) (Kh) (GHz)

4-I
1, 2 1, 2 3, 5 0.5, 0.3 0.5, 0.7

1.5
3, 4 3, 2 8, 5 0.2, 0.4 0.8, 0.6

4-II
1, 2 1, 2 3, 5 0.2, 0.3 0.8, 0.7

1.5
3, 4 3, 2 8, 5 0.2, 0.5 0.8, 0.5

4-III
1, 2 1, 2 3, 5 0.1, 0.2 0.9, 0.8

1.5
3, 4 3, 2 8, 5 0.9, 0.8 0.1, 0.2

4-IV
1, 2 1, 2 3, 5 0.1, 0.2 0.9, 0.8

1.5
3, 4 3, 2 8, 5 0.1, 0.2 0.9, 0.8

4-V
1, 2 1, 2 3, 5 0.9, 0.8 0.1, 0.2

1.5
3, 4 3, 2 8, 5 0.1, 0.2 0.9, 0.8

6-I

1, 2 0.5, 0.7 1, 2 0.5, 0.45 0.5, 0.55

1.53, 4 1.2, 1.6 3.5, 5 0.3, 0.2 0.7, 0.8

5, 6 1.3, 0.9 4, 2.5 0.4, 0.4 0.6, 0.6

6-II = 6-I = 6-I = 2×6-I = 6-I = 6-I = 6-I

8-I

1, 2 0.55, 0.45 0.6, 0.8 0.5, 0.45 0.5, 0.55

1.5
3, 4 0.65, 0.8 0.9, 1.1 0.3, 0.2 0.7, 0.8

5, 6 0.77, 0.73 1, 0.95 0.3, 0.35 0.7, 0.65

7, 8 0.74, 0.59 0.82, 0.73 0.4, 0.4 0.6, 0.6

offline and runtime is not significant concern for our testcases, we use ∆ f OD = 50MHz to achieve

higher value of the objective function.

Impact of wnom,m and wOD,m. Table 5.25 compares solutions of all testcases with four cores,

4-I – 4-V, from our optimal flow. The value of the objective function depends on the values of

Enom,m×wnom,m and EOD,m×wOD,m. In our experiments, we set fnom,m = 1.5GHz for all m, so

the value depends on EOD,m×wOD,m. At smaller values of m, fOD,m is larger as compared to

larger values of m because as m increases, overdrive frequency is limited by the maximum die

temperature Tmax. Specifically, because EOD,m×wOD,m is higher in 4-I – 4-IV for m = 1,2,3 than

in 4-V, testcases 4-I – 4-IV yield a higher value of the objective function than 4-V. Testcase 4-IV
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has the highest value of EOD,3×wOD,3, so it yields the highest value of the objective function

even though fOD,3 for 4-IV is the same as 4-III. Therefore, larger values of fOD,m are achieved for

smaller values of m and larger value of the objective function is achieved when EOD,m×wOD,m

is large for these corresponding values of m.

Table 5.24: Objective function value vs. ∆ f OD. Larger value is better.

Testcase m ∆ f OD fOD,m (GHz) Objective function value iter

4-I
1, 2

200MHz
3.0, 2.2

32870 21
3, 4 1.8, 1.8

4-I
1, 2

50MHz
2.85, 2.3

32995 271
3, 4 1.8, 1.8

6-I
1, 2, 3

100MHz
2.8, 2.9, 2.6

28367.5 1500
4, 5, 6 1.8, 1.8, 1.8

6-I
1, 2, 3

50MHz
2.85, 2.9, 2.6

28392.5 10572
4, 5, 6 1.8, 1.8, 1.8

8-I

1, 2, 3
100MHz,

2.9, 2.9, 2.8
12316.0, 1845,

4, 5, 6
50MHz

1.8, 1.8, 1.8
12316.0 11254

7, 8 1.8, 1.8

Table 5.25: Objective function value vs. weights at ∆ f OD = 50MHz.

Testcase m fOD,m (GHz) Objective function value iter

4-I 1, 2, 3, 4 2.85, 2.3, 1.8, 1.8 32995 271

4-II 1, 2, 3, 4 2.95, 2.25, 2.05, 1.8 36175 408

4-III 1, 2, 3, 4 2.95, 2.35, 2.05, 1.8 28005 424

4-IV 1, 2, 3, 4 2.95, 2.35, 2.05, 1.8 41125 424

4-V 1, 2, 3, 4 3.0, 2.3, 2.0, 1.8 29600 410

Task migration policy based on optimal values of v j,m,l and ui,l for Testcase 8-I. Based on

notations and terminologies described in Section 5.2.1, Table 5.26 shows values of v j,m,l for

each active combination j of 1 ≤ m ≤ 8 active cores in both nominal and overdrive execution

modes. For example, v11,2,OD = v17,2,OD = 25.8 for C(N = 8,m = 2). Out of total lifetime of

seven years, each core is active as follows: core 1 for 12.91%, core 2 for 10.29%, core 3 for
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Table 5.26: Comparison of % execution time in each core and in each active combination with
8-I, ∆ f OD = 50MHz. Execution times are shown as nominal/overdrive.

C(8,2) == 28 combinations ( j = 1,2, ...,28) C(8,6) == 28 combinations ( j = 1,2, ...,28)

Cores Cores

j 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

3 50/0 - - 50/0 - - - - 1.3/0 1.3/0 1.3/0 1.3/0 1.3/0 - - 1.3/0

4 0/24.2 - - - 0/24.2 - - - 0/0.3 0/0.3 0/0.3 0/0.3 - 0/0.3 0/0.3 -

5 0/0 - - - - 0/0 - - 0/0 0/0 0/0 0/0 - 0/0 - 0/0

9 - 0/0 - 0/0 - - - - 0/31 0/31 0/31 - 0/31 - 0/31 0/31

11 - 0/25.8 - - - 0/25.8 - - 0/0 0/0 - 0/0 0/0 0/0 0/0 -

12 - 0/0 - - - - 0/0 - 98.7/7.8 98.7/7.8 - 98.7/7.8 98.7/7.8 98.7/7.8 - 98.7/7.8

13 - 0/0 - - - - - 0/0 0/0.3 0/0.3 - 0/0.3 0/0.3 - 0/0.3 0/0.3

16 - - 0/0 - - 0/0 - - 0/2 - 0/2 0/2 0/2 0/2 0/2 -

17 - - 0/25.8 - - - 0/25.8 - 0/0 - 0/0 0/0 0/0 0/0 - 0/0

19 - - - 0/0 0/0 - - - 0/29.7 - 0/29.7 0/29.7 - 0/29.7 0/29.7 0/29.7

22 - - - 0/24.2 - - - 0/24.2 - 0/28.7 0/28.7 0/28.7 0/28.7 0/28.7 0/28.7 -

23 - - - - 0/0 0/0 - - - 0/0 0/0 0/0 0/0 0/0 - 0/0

25 - - - - 50/0 - - 50/0 - 0/0 0/0 0/0 - 0/0 0/0 0/0

Sum 50/24.2 0/25.8 0/25.8 50/24.2 50/24.2 0/25.8 0/25.8 50/24.2 100/71.1 100/68.1 1.3/91.7 100/68.8 100/69.8 98.7/68.5 0/92 100/68.8

11.46%, core 4 for 11.58%, core 5 for 12.44%, core 6 for 10.05%, core 7 for 9.66% and core 8

for 13.44%. As expected, as they enjoy better heat removal, the cores towards the periphery of

the die (e.g., cores 1, 4, 5, 8) are active for longer duration (higher percentages of chip lifetime)

than other cores [53].112 The operating system scheduler can use the optimal values of v j,m,l

and ui,l to determine how long each core should execute at nominal and overdrive frequencies

for balanced wearout. Using the linear programming approach to determine the execution time

of each combination leads to the times being very imbalanced across combinations. As part of

our future work, we will explore techniques such as geometric programming which may lead to

more balanced solutions.

Comparisons of optimal, heuristic, and RC-LG solutions. We compare our optimal solutions

with (1) our heuristic solutions and (2) baseline (RC-LG) solutions [53] and [213]. Figures

5.26–5.28 show the results of these comparisons. Figure 5.26 shows that for our testcases, the

heuristic solutions are at most 3.3% worse than the optimal solutions, but can converge in up

to 10× fewer iterations as shown in Figure 5.27 when compared to the number of iterations in

Table 5.24. Moreover, our solutions guarantee that all tasks in each combination of m execute

at fOD,m ≥ 1.8GHz, i.e., the solutions meet “acceptable overdrive performance” requirements.

In addition, we guarantee “acceptable throughput” because all tasks complete within the multi-

core system’s lifetime. Figure 5.26 shows that the baseline method’s solutions can be up to

112To confirm the optimality of these solutions, we separately solve the dual program for each m,
minimize ∑

2N
i=N λiMT T Fi +µ1Enom,m +µ2EOD,m and verify that we obtain identical objective function values.
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17.4% below optimal, even as they execute around 27% of the overall overdrive execution time

below the minimum required frequency of 1.8GHz as shown in Figure 5.28. In other words, the

baseline solutions do not meet “acceptable performance” requirements. For Testcase 6-II, the

baseline flow achieves a solution within lifetime constraints, but unfortunately executes 75.5%

of the overall overdrive execution time at frequencies below 1.8GHz. Runtime versus accuracy

tradeoffs would determine a user’s choice between optimal and heuristic methods.
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Figure 5.26: Comparison of objective function values from optimal, heuristic, and baseline
solutions for seven testcases that yield an optimal solution.
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Figure 5.28: Percentage of overdrive execution time below “acceptable performance” of
1.8GHz of baseline solutions. Across all testcases, the baseline solutions will execute 27% of
the overall overdrive execution time below the minimum required frequency of 1.8GHz. Our

optimal and heuristic solutions always guarantee execution at overdrive frequencies ≥1.8GHz.

5.3.3 Conclusions

When scheduling tasks in multi-core systems implemented in leading-edge IC technolo-

gies, reliability awareness is critical to achieving guaranteed lower bounds on performance and

throughput. With this in mind, we have formulated and solved a new maximum-value, reliability-

constrained overdrive frequencies (MVRCOF) problem. We show how an optimal (discretized)

solution may be found using exhaustive search, and we propose a heuristic that maximizes the

overdrive frequency in the order of user-specified weights for each operating mode. We develop

a solver that serves as the foundation of both the optimal and heuristic flows. Our methods

are the first to guarantee both acceptable performance and throughput, in that all tasks are exe-

cutable for their entire duration at the optimal overdrive frequencies, without exceeding the total

lifetime requirement of any core. Further, we determine optimal execution times of each core in

each mode; these can be utilized by schedulers for balanced wearout of cores. Experimentally,

across eight testcases on between 4 and 8 cores, our optimal overdrive frequencies achieve be-

tween 2.2% and 17.4% greater value than existing RC-LG policies [53] and [213] (the largest

improvement is for the 8-core testcase).



248

5.4 Acknowledgments

Chapter 5 is in part a reprint of A. B. Kahng and S. Nath, “Optimal Reliability-Constrained

Overdrive Frequency Selection in Multicore Systems”, Proc. International Symposium on Qual-

ity Electronic Design, 2014; and the submitted drafts: W.-T. J. Chan, Y. Du, A. B. Kahng, S.

Nath, K. Samadi and H. Yao, “Toward “True 3D”: Assessment of a New Objective in Analytic

3DIC Placement”, Proc. Asia and South Pacific Design Automation Conference, submitted draft;

and P. Agrawal, M. Broxterman, B. Chatterjee, P. Cuevas, K. H. Hayashi, A. B. Kahng, P. K.

Myana and S. Nath, “Optimal Scheduling and Allocation for IC Design Management and Cost

Reduction”, ACM Transactions on Design Automation of Electronic Systems, submitted draft.

I would like to thank my co-authors Prabhav Agrawal, Mike Broxterman, Wei-Ting J.

Chan, Biswadeep Chatterjee, Patrick Cuevas, Dr. Yang Du, Kathy H. Hayashi, Professor Andrew

B. Kahng, Pranay K. Myana, Dr. Kambiz Samadi and Professor Hailong Yao.

I also thank Prof. Sungkyu Lim, Dr. Shreepad Panth and Kyungwook Chang of Georgia

Tech for their generosity with time and bandwidth to confirm correctness of our replication of,

and comparisons with, the shrunk2D flow. I thank the authors of [112] [113] [114] for providing

APlace source code.



Bibliography

[1] K. Acharya, K. Chang, B. W. Ku, S. Panth, S. Sinha, B. Cline, G. Yeric and S. K. Lim,
“Monolithic 3D IC Design: Power, Performance, and Area Impact at 7nm”, Proc. Inter-
national Symposium on Quality Electronic Design, 2016, pp. 41-48.

[2] S. M. Afifi, H. G. Hosseini and R. Sinha, “Hardware Implementations of SVM on FPGA:
A State-of-the-Art Review of Current Practice”, International Journal of Innovative Sci-
ence, Engineering & Technology 2(11) (2015), pp. 733-752.

[3] N. Agarwal, T. Krishna, L.-S. Peh and N. K. Jha, “GARNET: A Detailed On-Chip Net-
work Model Inside a Full-System Simulator”, Proc. IEEE International Symposium on
Performance Analysis of Systems and Software, 2009, pp. 33-42.

[4] P. Agrawal, M. Broxterman, B. Chatterjee, P. Cuevas, K. H. Hayashi, A. B. Kahng, P. K.
Myana and S. Nath, “Optimal Scheduling and Allocation for IC Design Management and
Cost Reduction”, ACM Transactions on Design Automation of Electronic Systems, 2016,
submitted draft.

[5] P. D. Allison, Multiple Regression: A Primer, Thousand Oaks, Pine Forge Press, 1999.

[6] C. J. Alpert, C. Chu and P. G. Villarubia, “The Coming of Age of Physical Synthesis”,
Proc. IEEE/ACM International Conference on Computer-Aided Design, 2007, pp. 246-
249.

[7] C. J. Alpert, A. Devgan and C. Kashyap, “A Two Moment RC Delay Metric for Perfor-
mance Optimization”, Proc. ACM International Symposium on Physical Design, 2000,
pp. 73-78.

[8] C. J. Alpert, J. Hu, S. S. Sapatnekar and C. N. Sze, “Accurate Estimation of Global Buffer
Delay within a Floorplan”, IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems 25(6) (2006), pp. 1140-1146.

[9] A. Andreev, I. Pavisic and P. Raspopovic, “Multi-Layer Assignment”, U.S. Patent No.
6,182,272, 2001.

[10] A. Ardakani, F. Leduc-Primeau, N. Onizawa, T. Hanyu and W. J. Gross, “VLSI
Implementation of Deep Neural Network Using Integral Stochastic Computing”
arXiv:1509.08972v1 preprint, 2015.

249



250

[11] M. Ayala and C. Artigues, “On Integer Linear Programming Formulations for the
Resource-Constrained Modulo Scheduling Problem”, Technical Report 10393, Rapport
LAAS, 2010.

[12] M. Becer, V. Zolotov, R. Panda, A. Grinshpon, I. Algor, R. Levy and C. Oh, “Pessimism
Reduction in Crosstalk Noise Aware STA”, Proc. IEEE/ACM International Conference on
Computer-Aided Design, 2005, pp. 954-961.

[13] V. Balabanov, M.-K. Hsu and Y.-W. Chang, “Method of Analytical Placement with
Weighted-Average Wirelength Model”, U.S. Patent No. 8,689,164 B2, 2014.

[14] A. Banerjee, R. Mullins and S. Moore, “A Power and Energy Exploration of Network-
on-Chip Architecture”, Proc. IEEE/ACM International Symposium on Networks-on-Chip,
2007, pp. 163-172.

[15] N. Banerjee, P. Vellanki and K. S. Chatha, “A Power and Performance Model for Network-
on-Chip Architectures”, Proc. Design, Automation and Test in Europe, 2004, pp. 1250-
1255.

[16] S. Bansal and R. Goering, “Making 20nm Design Challenges Manageable”, http://www.
chipdesignmag.com/pdfs/chip design special DAC issue 2012.pdf (accessed on July 21,
2016).

[17] P. Baptiste and S. Demassey, “Tight LP Bounds for Resource Constrained Project
Scheduling”, Operations Research Spectrum 26 (2004), pp. 251-262.

[18] P. Batude, M. Vinet, A. Pouydebasque, C. Le Royer, B. Previtali, C. Tabone, J.-M. Hart-
mann, L. Sanchez, L. Baud, V. Carron, A. Toffoli, F. Allain, V. Mazzochhi, D. Lafond, O.
Thomas, O. Cueto, N. Bouzaida, D. Fluery, A. Amara, S. Deleonibus and O. Faynot, “Ad-
vances in 3D CMOS Sequential Integration”, Proc. IEEE International Electron Devices
Meeting, 2009, pp. 1-4.

[19] D. A. Belsley, “Multicollinearity: Diagnosing Its Presence and Assessing The Potential
Damage It Causes Least-Squares Estimation”, National Bureau of Economic Research
Working Paper No. 154, 1976.

[20] D. A. Belsley, Regression Diagnostics: Identifying Influential Data and Sources of
Collinearity, Wiley, 1980.

[21] J. Bhasker and R. Chadha, Static Timing Analysis for Nanometer Designs: A Practical
Approach, Springer, 2009.

[22] D. Bienstock and M. Zuckerberg, “A New LP Algorithm for Precedence Constrained
Production Scheduling”, Optimization Online (2009), pp. 1-33.

[23] O. Bilgir, M. Martonosi and Q. Wu, “Exploring the Potential of CMP Core Count Man-
agement on Data Center Energy Savings”, Proc. Workshop on Energy Efficient Design,
2011.

[24] J. R. Black, “Electromigration Failure Modes in Aluminium Metallization for Semicon-
ductor Devices”, IEEE Letters 57(9) (1969), pp. 1578-1594.



251

[25] A. Bonfietti, M. Lombardi, L. Benini and M. Milano, “Cross Cyclic Resource-
Constrained Scheduling Solver”, Artificial Intelligence 206 (2014), pp. 25-52.

[26] G. E. P. Box and M. E. Muller, “A Note on the Generation of Random Normal Deviates”,
Annals of Mathematical Statistics 29(2) (1958), pp. 610-611.

[27] U. Brenner and A. Rohe, “An Effective Congestion Driven Placement Framework”, Proc.
ACM International Symposium on Physical Design, 2002, pp. 6-11.

[28] M. D. Buhmann, S. Dinew and E. Larsson, “A Note on Radial Basis Function Interpola-
tion Limits”, IMA Journal of Numerical Analysis 30 (2010), pp. 543-554.

[29] A. E. Caldwell, A. B. Kahng, S. Mantik, I. L. Markov and A. Zelikovsky, “On Wirelength
Estimations for Row-Based Placement”, IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems 18(9) (1999), pp. 1265-1278.

[30] N. Callegari, D. Dramanac, L.-C. Wang and M. S. Abadir, “Classification Rule Learning
Using Subgroup Discovery of Cross-Domain Attributes Responsible for Design-Silicon
Mismatch”, Proc. IEEE/ACM/EDAC Design Automation Conference, 2010, pp. 374-379.

[31] A. Cao, S.-M. Chang and D.-C. Yuan, “Local Clock Skew Optimization”, U.S. Patent No.
8,635,579, 2014.

[32] S. Chakrabartty and G. Cauwenberghs, “Sub-Microwatt Analog VLSI Trainable Pattern
Classifier”, Journal of Solid State Circuits 42(5) (2007), pp. 1169-1179.

[33] J. Chan and S. Parameswaran, “NoCEE: Energy Macro-Model Extraction Methodology
for Network-on-Chip Routers”, Proc. IEEE/ACM International Conference on Computer-
Aided Design, 2005, pp. 254-259.

[34] T.-B. Chan, A. B. Kahng, J. Li and S. Nath, “Optimization of Overdrive Signoff”, Proc.
Asia and South Pacific Design Automation Conference, 2013, pp. 344-349.

[35] T.-B. Chan, K. Han, A. B. Kahng, J.-G. Lee and S. Nath, “OCV-Aware Top-Level Clock
Tree Optimization”, Proc. Great Lakes Symposium on Very Large Scale Integration, 2014,
pp. 33-38.

[36] W.-T. J. Chan, A. B. Kahng, S. Nath and I. Yamamoto, “The ITRS MPU and SOC Sys-
tem Drivers: Calibration and Implications for Design-Based Equivalent Scaling in the
Roadmap”, Proc. IEEE International Conference on Computer Design, 2014, pp. 153-
160.

[37] W.-T. J. Chan, Y. Du, A. B. Kahng, S. Nath and K. Samadi, “3D-IC Benefit Estimation and
Implementation Guidance from 2D-IC Implementation”, Proc. IEEE/ACM/EDAC Design
Automation Conference, 2015, pp. 1-6.

[38] W.-T. J. Chan, A. B. Kahng and J. Li, “Revisiting 3DIC Benefit with Multiple Tiers”,
Proc. ACM International Workshop on System-Level Interconnect Prediction, 2016, pp.
6:1-6:8.



252

[39] W.-T. J. Chan, K. Y. Chung, A. B. Kahng, N. MacDonald and S. Nath, “Learning-Based
Prediction of Embedded Memory Timing Failures during Initial Floorplan Design”, Proc.
Asia and South Pacific Design Automation Conference, 2016, pp. 178-185.

[40] W.-T. J. Chan, Y. Du, A. B. Kahng, S. Nath and K. Samadi, “BEOL Stack-Aware Routabil-
ity Prediction from Placement Using Data Mining Techniques”, Proc. IEEE International
Conference on Computer Design, 2016, to appear.

[41] W.-T. J. Chan, Y. Du, A. B. Kahng, S. Nath, K. Samadi and H. Yao, “Toward “True
3D”: Assessment of a New Objective in Analytic 3DIC Placement”, Proc. Asia and South
Pacific Design Automation Conference, 2017, submitted draft.

[42] C.-C. Chang and C.-J. Lin, “LIBSVM: A Library for Support Vector Machines”, ACM
Transactions on Intelligent Systems and Technology 3(2) (2011), pp. 27:1-27:27.

[43] K. Chang, J. Shen and T. Chen, “A Low-Power Crossroad Switch Architecture and Its
Core Placement for Network-on-Chip”, Proc. Design, Automation and Test in Europe,
2005, pp. 375-380.

[44] K. Chang, Georgia Institute of Technology, personal communications, 2016.

[45] W.-H. Chang, L.-D. Chen, C.-H. Lin, S.-P. Mu, M. C.-T. Chao, C.-H. Tsai and Y.-C.
Chiu, “Generating Routing-Driven Power Distribution Networks with Machine-Learning
Technique”, Proc. ACM International Symposium on Physical Design, 2016, pp. 145-152.

[46] X. Chen and L.-S. Peh, “Leakage Power Modeling and Optimization in Interconnection
Networks”, Proc. International Symposium on Low Power Electronic Design, 2003, pp.
90-95.

[47] C.-K. Cheng, A. B. Kahng, K. Samadi and A. Shayan, “Worst-Case Performance Predic-
tion under Supply Voltage and Temperature Variation”, Proc. ACM International Work-
shop on System-Level Interconnect Prediction, 2010, pp. 91-96.

[48] M. Cho, S. Ahmed and D. Z. Pan, “TACO: Temperature Aware Clock-tree Optimization”,
Proc. IEEE/ACM International Conference on Computer-Aided Design, 2005, pp. 582-
587.

[49] C.-B. Cho, W. Zhang and T. Li, “Thermal Design Space Exploration of 3D Die Stacked
Multi-Core Processors Using Geospatial-Based Predictive Models”, Proc. SPEC Bench-
mark Workshop on Computer Performance Evaluation and Benchmarking, 2009, pp. 102-
120.

[50] N. Christofides, R. Alvarez-Valdes and J. M. Tamarit, “Project Scheduling with Resource
Constraints: A Branch and Bound Approach”, European Journal of Operational Research
29 (1987), pp. 262-273.

[51] C. Chu and Y.-C. Wong, “FLUTE: Fast Lookup Table Based Rectilinear Steiner Mini-
mal Tree Algorithm for VLSI Design” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems 27(1) (2008), pp. 70-83.



253

[52] M. Clarke, D. Hammerschlag, M. Rardon and A. Sood, “Eliminating Routing Congestion
Issues with Logic Synthesis”, Whitepaper, Cadence Design Systems, 2011. http://www.
cadence.com/rl/resources/white papers/routing congestion wp.pdf (accessed on July 21,
2016).

[53] A. K. Coskun, T. S. Rosing, K. A. Whisnant and K. C. Gross, “Static and Dynamic
Temperature-Aware Scheduling for Multiprocessor SoCs”, IEEE Transactions on Very
Large Scale Integration Systems 16(9) (2008), pp. 1127-1140.

[54] A. K. Coskun, R. Strong, D. M. Tullsen and T. S. Rosing “Evaluating the Impact of
Job Scheduling and Power Management on Processor Lifetime for Chip”, Proc. ACM
SIGMETRICS, 2009, pp. 169-180.

[55] J. Cong, G. Luo, J. Wei and Y. Zhang, “Thermal-Aware 3D IC Placement Via Transfor-
mation,” Proc. Asia and South Pacific Design Automation Conference, 2007, pp. 780-785.

[56] J. Cong and G. Luo, “A Multilevel Analytical Placement for 3D ICs”, Proc. Asia and
South Pacific Design Automation Conference, 2009, pp. 361-366.

[57] J. Cong and G. Luo, “An Analytical Placer for Mixed-Size 3D Placement”, Proc. ACM
International Symposium on Physical Design, 2010, pp. 61-66.

[58] N. Cressie, “Geostatistics”, The American Statistician 43(4) (1989), pp. 197-202.

[59] K. Crombecq, L. De Tommasi, D. Gorissen and T. Dhaene, “A Novel Sequential Design
Strategy for Global Surrogate Modeling”, Proc. Winter Simulation Conference, 2009, pp.
731-742.

[60] W. J. Dally and B. Towles, Principles and Practices of Interconnection Networks, Morgan
Kaufmann, 2004.

[61] D. Ding, J.-R. Gao, K. Yuan and D. Z. Pan, “AENEID: A Generic Lithography-Friendly
Detailed Router Based on Post-RET Data Learning and Hotspot Detection”, Proc.
IEEE/ACM/EDAC Design Automation Conference, 2011, pp. 795-800.

[62] D. Ding, B. Yu, J. Ghosh and D. Z. Pan, “EPIC: Efficient Prediction of IC Manufacturing
Hotspots with a Unified Meta-Classification Formulation”, Proc. Asia and South Pacific
Design Automation Conference, 2012, pp. 263-270.

[63] X. Dong, J. Zhao and Y. Xie, “Fabrication Cost Analysis and Cost-Aware Design Space
Exploration for 3D-ICs”, IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems 29(12) (2010), pp. 1959-1972.

[64] F. Dubois, V. Catalano, M. Coppola and F. Petrot, “Accurate On-Chip Router Area
Modeling with Kriging Methodology”, Proc. IEEE/ACM International Conference on
Computer-Aided Design, 2012, pp. 450-457.

[65] J. Dyck and K. Singhal, “De-Risking Variation-Aware Custom IC Design with
Solido Variation Designer and Synopsys HSPICE”, Whitepaper, Synopsys Inc.,
2010. https://www.synopsys.com/Tools/Implementation/CustomImplementation/
CapsuleModule/Solido-HSPICE-wp.pdf (accessed on July 21, 2016).



254

[66] T. El Motassadeq, V. Sarathi, S. Thameem and M. Nijam, “SPICE versus STA Tools:
Challenges and Tips for Better Correlation”, Proc. IEEE International System-on-Chip
Conference, 2009, pp. 325-328.

[67] T. El Motassadeq, “CCS vs NLDM Comparison Based on a Complete Automated Cor-
relation Flow between PrimeTime and HSPICE”, Proc. Saudi International Electronics,
Communications and Photonics Conference, 2011, pp. 1-5.

[68] R. Embree, personal communication, July 2013.

[69] C. Fagot, P. Girard and C. Landrault, “On Using Machine Learning for Logic BIST”,
Proc. IEEE International Test Conference, 1997, pp. 338-346.

[70] S. Fenstermaker, D. George, A. B. Kahng, S. Mantik and B. Thielges, “METRICS: A
System Architecture for Design Process Optimization”, Proc. IEEE/ACM/EDAC Design
Automation Conference, 2000, pp. 705-710.

[71] T. Fountain, T. Dietterich and B. Sudyka, “Mining IC Test Data to Optimize VLSI Test-
ing“, Proc. ACM SIGKDD International Conference, 2000, pp. 18-25.

[72] Y. Freund and R. E. Schapire, “A Short Introduction to Boosting”, Journal of Japanese
Society for Artificial Intelligence 14(5) (1999), pp. 771-780.

[73] R. Friese, T. Brinks, C. Oliver, H. J. Siegel and A. A. Maciejewski, “Analyzing the Trade-
Offs between Minimizing Makespan and Minimizing Energy Consumption in a Heteroge-
neous Resource Allocation Problem”, Proc. International Conference on Advanced Com-
munications and Computation, 2012, pp. 81-89.

[74] S. Ganapathy, R. Canal, A. Gonzalez and A. Rubio, “Circuit Propagation Delay Estima-
tion through Multivariate Regression-Based Modeling under Spatio-Temporal Variabil-
ity”, Proc. Design, Automation and Test in Europe, 2010, pp. 417-422.

[75] R. Gandikota, K. Chopra, D. Blaauw and D. Sylvester, “Victim Alignment in Crosstalk-
Aware Timing Analysis”, IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems 29(2) (2010), pp. 261-274.

[76] T. Goel, R. T. Haftka, W. Shyy and N. V. Queipo “Ensemble of Surrogates”, Structural
and Multidisciplinary Optimization 33(3) (2007), pp. 199-216.

[77] R. Goering, “What’s Needed to “Fix” Timing Signoff?”, DAC Panel, 2013.

[78] B. Goplen and S. Sapatnekar, “Efficient Thermal Placement of Standard Cells in 3D
ICs using a Force Directed Approach”, Proc. IEEE/ACM International Conference on
Computer-Aided Design, 2003, pp. 86-89.

[79] S. S. Gosavi, “Machine Learning Methods for Fault Classification”, Master’s Thesis, Uni-
versität Stuttgart, 2013.

[80] G. Guindani, C. Reinbrecht, T. Raupp, N. Calazans and F. G. Moraes, “NoC Power Esti-
mation at the RTL Abstraction Level”, Proc. IEEE Computer Society Annual Symposium
on VLSI, 2008, pp. 475-478.



255

[81] S. Hamdioui, “Testing Embedded Memories: A Survey”, Mathematical and Engineering
Methods in Computer Science 7721 (2013), pp. 32-42.

[82] G. Hamerly, E. Perelman, J. Lau, B. Calder and T. Sherwood, “Using Machine Learning
to Guide Architecture Simulation”, Journal of Machine Learning 7 (2006), pp. 343-378.

[83] K. Han, A. B. Kahng, J. Lee, J. Li and S. Nath, “A Global-Local Optimization Frame-
work for Simultaneous Multi-Mode Multi-Corner Skew Variation Reduction”, Proc.
IEEE/ACM/EDAC Design Automation Conference, 2015, pp. 1-6.

[84] S. S. Han, A. B. Kahng, S. Nath and A. Vydyanathan, “A Deep Learning Methodology to
Proliferate Golden Signoff Timing”, Proc. Design, Automation and Test in Europe, 2014,
pp. 1-6.

[85] T. Hastie, R. Tibshirani and J. J. H. Friedman, The Elements of Statistical Learning: Data
Mining, Inference, and Prediction, Springer, 2009.

[86] X. He, T. Huang, L. Xiao, H. Tian, G. Cui and E. F. Young, “Ripple: An Effective
Routability-Driven Placer by Iterative Cell Movement”, Proc. IEEE/ACM International
Conference on Computer-Aided Design, 2011, pp. 74-79.

[87] X. He, T. Huang, W.-K. Chow, J. Kuang, K.-C. Lam, W. Cai and E. F. Y. Young “Ripple
2.0: High Quality Routability-Driven Placement via Global Router Integration”, Proc.
IEEE/ACM/EDAC Design Automation Conference, 2013, pp. 1-6.

[88] F. J. Hickernell, “A Generalized Discrepancy and Quadrature Error Bound”, Mathematics
of Computation 67(221) (1998), pp. 299-322.

[89] L. Huang, F. Yuan and Q. Xu, “Lifetime Reliability-Aware Task Allocation and Schedul-
ing for MPSoC Platforms”, Proc. Design, Automation and Test in Europe, 2009, pp. 51-
56.

[90] K. Huang, H.-G. Stratigopoulos and S. Mir, “Fault Diagnosis of Analog Circuits Based on
Machine Learning”, Proc. Design, Automation and Test in Europe, 2010, pp. 1761-1766.

[91] M.-K. Hsu, S. Chou, T.-H. Lin and Y.-W. Chang, “Routability-Driven Analytical Place-
ment for Mixed-Size Circuit Designs”, Proc. IEEE/ACM International Conference on
Computer-Aided Design, 2011, pp. 80-84.

[92] M.-K. Hsu, V. Balabanov and Y.-W. Chang, “TSV-Aware Analytical Placement for 3-D
IC Designs Based on a Novel Weighted-Average Wirelength Model”, IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems 32(4) (2013), pp. 497-509.

[93] J. Hu, A. B. Kahng, B. Liu, G. Venkataraman and X. Xu, “A Global Minimum Clock
Distribution Network Augmentation Algorithm for Guaranteed Clock Skew Yield”, Proc.
Asia and South Pacific Design Automation Conference, 2007, pp. 24-31.

[94] M. D. Hutton and D. Karchmer, “Early Timing Estimation of Timing Statistical Properties
of Placement”, U.S. Patent No. 8,112,728, 2012.



256

[95] A. A. Ilumoka, “Efficient Prediction of Crosstalk in VLSI Interconnects using Neural
Networks”, Proc. Electrical Performance of Electronic Packages and Systems, 2000, pp.
87-90.

[96] E. Ipek, S. A. McKee, B. R. de Supinski, M. Schulz and R. Caruana, “Efficiently Ex-
ploring Architectural Design Spaces via Predictive Modeling”, Proc. ACM International
Conference on Architectural Support for Programming Languages and Operating Sys-
tems, 2006, pp. 195-206.

[97] K. Jeong and A. B. Kahng, “Methodology from Chaos in IC Implementation”, Proc.
International Symposium on Quality Electronic Design, 2010, pp. 885-892.

[98] K. Jeong, A. B. Kahng, B. Lin and K. Samadi, “Accurate Machine Learning-Based On-
Chip Router Modeling”, IEEE Embedded Systems Letters 2(3) (2010), pp. 62-66.

[99] Z.-W. Jiang, B.-Y. Su and Y.-W. Chang, “Routability-Driven Analytical Placement by
Net Overlapping Removal for Large-Scale Mixed-Size Designs”, Proc. IEEE/ACM/EDAC
Design Automation Conference, 2008, pp. 167-172.

[100] R. Jin, W. Chen and T. W. Simpson, “Comparative Studies of Metamodeling Techniques
under Multiple Modeling Criteria”, Structural and Multidisciplinary Optimization 23(1)
(2001), pp. 1-13.

[101] T. R. Jones, S. L. Crain and J. J. Burkis, “Method for Determining Timing Delays Asso-
ciated with Placement and Routing of an Integrated Circuit”, U.S. Patent No. 5,629,860,
1994.

[102] M. Jung, T. Song, Y. Wan, Y.-J. Lee, D. Mohapatra, H. Wang, G. Taylor, D. Jariwala, V.
Pitchumani, P. Morrow, C. Webb, P. Fischer and S. K. Lim, “How to Reduce Power in 3D
IC Designs: A Case Study with OpenSPARC T2 Core”, Proc. IEEE Custom Integrated
Circuits Conference, 2013, pp. 1-4.

[103] M. Jung, T. Song, Y. Wan, Y. Peng and S. K. Lim, “On Enhancing Power Benefits in
3D ICs: Block Folding and Bonding Styles Perspective”, Proc. IEEE/ACM/EDAC Design
Automation Conference, 2014, pp. 1-6.

[104] A. B. Kahng, S. Mantik and D. Stroobandt, “Requirements for Models of Achievable
Routing”, Proc. ACM International Symposium on Physical Design, 2000, pp. 4-11.

[105] A. B. Kahng and D. Stroobandt, “Wiring Layer Assignments with Consistent Stage De-
lays”, Proc. ACM International Workshop on System-Level Interconnect Prediction, 2000,
pp. 115-122.

[106] A. B. Kahng and S. Mantik, “A System for Automatic Recording and Prediction of Design
Quality Metrics”, Proc. International Symposium on Quality Electronic Design, 2001, pp.
81-86.

[107] A. B. Kahng and S. Mantik, “Measurement of Inherent Noise in EDA Tools”, Proc. Inter-
national Symposium on Quality Electronic Design, 2002, pp. 206-211.



257

[108] A. B. Kahng, S. Mantik and D. Stroobandt, “Toward Accurate Models of Achievable
Routing”, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Sys-
tems 20(5) (2001), pp. 648-659.

[109] A. B. Kahng and S. Muddu, “Predictive Modeling of Lithography-Induced Linewidth
Variation”, SPIE Photomask and Next-Generation Lithography Mask Technology, 2008,
pp. 70280M-1-70280-14.

[110] A. B. Kahng and G. Smith, “A New Design Cost Model for the 2001 ITRS”, Proc. Inter-
national Symposium on Quality Electronic Design, 2002, pp. 190-193.

[111] A. B. Kahng and X. Xu, “Accurate Pseudo-Constructive Wirelength and Congestion Es-
timation”, Proc. ACM International Workshop on System-Level Interconnect Prediction,
2003, pp. 61-68.

[112] A. B. Kahng and Q. Wang, “Implementation and Extensibility of an Analytic Placer”,
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 24(5)
(2005), pp. 734-747.

[113] A. B. Kahng, S. Reda and Q. Wang, “Architecture and Details of a High Quality, Large-
Scale Analytical Placer”, Proc. IEEE/ACM International Conference on Computer-Aided
Design, 2005, pp. 890-897.

[114] A. B. Kahng, S. Reda and Q. Wang, “APlace: A General Analytic Placement Framework”,
Proc. ACM International Symposium on Physical Design, 2005, pp. 233-235.

[115] A. B. Kahng, B. Li, L.-S. Peh and K. Samadi, “ORION 2.0: A Fast and Accurate NoC
Power and Area Model for Early-Stage Design Space Exploration”, Proc. Design, Au-
tomation and Test in Europe, 2009, pp. 423-428.

[116] A. B. Kahng, B. Lin and K. Samadi, “Improved On-Chip Router Analytical Power and
Area Modeling” Proc. Asia and South Pacific Design Automation Conference, 2010, pp.
241-246.

[117] A. B. Kahng, “The Road Ahead: Product Futures”, IEEE Design and Test of Computers
28(6) (2011), pp. 88-89.

[118] A. B. Kahng, J. Lienig, I. L. Markov and J. Hu, VLSI Physical Design: From Graph
Partitioning to Timing Closure, New York, Springer, 2011.

[119] A. B. Kahng, B. Lin and S. Nath, “Explicit Modeling of Control and Data for Improved
NoC Router Estimation”, Proc. IEEE/ACM/EDAC Design Automation Conference, 2012,
pp. 392-397.

[120] A. B. Kahng, B. Lin and S. Nath, “Comprehensive Modeling Methodologies for NoC
Router Estimation”, Technical Report CS2012-0989, University of California, San Diego
Computer Science and Engineering Department, 2012.

[121] A. B. Kahng, “The ITRS Design Technology and System Drivers Roadmap: Process and
Status”, Proc. IEEE/ACM/EDAC Design Automation Conference, 2013, pp. 1-6.



258

[122] A. B. Kahng, B. Lin and S. Nath, “Enhanced Metamodeling Techniques for High-
Dimensional IC Design Estimation Problems”, Proc. Design, Automation and Test in
Europe, 2013, pp. 1861-1866.

[123] A. B. Kahng, B. Lin and S. Nath, “High-Dimensional Metamodeling for Prediction of
Clock Tree Synthesis Outcomes”, Proc. ACM International Workshop on System-Level
Interconnect Prediction, 2013, pp. 1-7.

[124] A. B. Kahng, S. Nath and T. S. Rosing, “On Potential Design Impacts of Electromigration
Awareness”, Proc. Asia and South Pacific Design Automation Conference, 2013, pp. 527-
532.

[125] A. B. Kahng, S. Kang, H. Lee, S. Nath and J. Wadhwani, “Learning-Based Approxima-
tion of Interconnect Delay and Slew in Signoff Timing Tools”, Proc. ACM International
Workshop on System-Level Interconnect Prediction, 2013, pp. 1-8.

[126] A. B. Kahng, “Lithography-Induced Limits to Scaling of Design Quality”, Proc. SPIE
Conference on Design-Process-Technology Co-Optimization for Manufacturability, 2014,
pp. 905302-1-905302-14.

[127] A. B. Kahng and S. Nath, “Optimal Reliability-Constrained Overdrive Frequency Selec-
tion in Multicore Systems”, Proc. International Symposium on Quality Electronic Design,
2014, pp. 300-308.

[128] A. B. Kahng, M. Luo and S. Nath, “SI for Free: Machine Learning of Interconnect Cou-
pling Delay and Transition Effects”, Proc. ACM International Workshop on System-Level
Interconnect Prediction, 2015, pp. 1-8.

[129] A. B. Kahng, B. Lin and S. Nath, “ORION3.0: A Comprehensive NoC Router Estimation
Tool”, IEEE Embedded Systems Letters 7(2) (2015), pp. 41-45.

[130] A. B. Kahng and X. Xu, “Accurate Pseudo-Constructive Wirelength and Congestion Es-
timation”, Proc. ACM International Workshop on System-Level Interconnect Prediction,
2003, pp. 61-68.

[131] E. Karl, D. Blaauw, D. Sylvester and T. Mudge, “Multi-Mechanism Reliability Modeling
and Management in Dynamic Systems”, IEEE Transactions on Very Large Scale Integra-
tion Systems 16(4) (2008), pp. 476-487.

[132] U. R. Karpuzcu, B. Greskamp and J. Torrellas, “The BubbleWrap Many-Core: Popping
Cores for Sequential Acceleration”, IEEE International Symposium on Microarchitecture,
2009, pp. 447-458.

[133] C. V. Kashyap, C. J. Alpert, F. Liu and A. Devgan, “PERI: A Technique for Extending
Delay and Slew Metrics to Ramp Inputs”, Proc. ACM International Workshop on Timing
Issues in the Specification and Synthesis of Digital Systems, 2002, pp. 57-62.

[134] B. Keller and G. Bayraksan, “Scheduling Jobs Sharing Multiple Resources under Uncer-
tainty: A Stochastic Programming Approach”, IIE Transactions 42(1) (2009), pp. 16-30.



259

[135] D. H. Kim, K. Athikulwongse and S. K. Lim, “A Study of Through-Silicon-Via Impact
on the 3D Stacked IC Layout”, Proc. IEEE/ACM International Conference on Computer-
Aided Design, 2009, pp. 674-680.

[136] D. H. Kim and S. K. Lim, “Through-Silicon-Via-Aware Delay and Power Prediction
Model for Buffered Interconnects in 3D ICs”, Proc. ACM International Workshop on
System-Level Interconnect Prediction, 2010, pp. 25-32.

[137] M.-C. Kim, J. Hu, D.-J. Lee and I. L. Markov, “A SimPLR Method for Routability-
Driven Placement”, Proc. IEEE/ACM International Conference on Computer-Aided De-
sign, 2011, pp. 67-73.

[138] M. Kim, B.-G. Ahn, J. Kim, B. Lee and J. Chong, “Thermal Aware Timing Budget for
Buffer Insertion in Early Stage of Physical Design”, Proc. IEEE International Symposium
on Circuits and Systems, 2012, pp. 357-360.

[139] D. H. Kim, R. O. Topaloglu and S. K. Lim, “Block-Level 3D IC Design with Through-
Silicon-Via Planning”, Proc. Asia and South Pacific Design Automation Conference,
2012, pp. 335-340.

[140] D. H. Kim, K. Athikulwongse, M. Healy, M. Hossain, M. Jung, I. Khorosh, G. Kumar,
Y.-J. Lee, D. Lewis, T.-W. Lin, C. Liu, S. Panth, M. Pathak, M. Ren, G. Shen, T. Song,
D. H. Woo, X. Zhao, J. Kim, H. Choi, G. Loh, H.-H. Lee and S. K. Lim, “3D-MAPS:
3D Massively Parallel Processor with Stacked Memory”, Proc. International Solid State
Circuits Conference, 2012, pp. 188-189.

[141] D. H. Kim, S. Mukhopadhyay and S. K. Lim, “TSV-Aware Interconnect Distribution
Models for Prediction of Delay and Power Consumption of 3-D Stacked ICs”, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems 33(9) (2014),
pp. 1384-1395.

[142] R. Kolisch and S. Hartmann, “Heuristic Algorithms for the Resource-Constrained Project
Scheduling Problem: Classification and Computational Analysis”, International Series in
Operations Research & Management Science 14 (1999), pp. 147-178.

[143] R. Kolisch and A. Sprecher, “PSPLIB – A Project Scheduling Problem Library”, Euro-
pean Journal of Operational Research 96 (1996), pp. 205-216.

[144] R. Kolisch, A. Sprecher and A. Drexl, “Characterization and Generation of a Gen-
eral Class of Resource-Constrained Project Scheduling Problems”, Management Science
41(10) (1992), pp. 1693-1703.

[145] S. Kotisantis and D. Kanellopoulos, “Combining Bagging, Boosting and Random Sub-
space Ensembles for Regression Problems”, International Journal of Innovative Comput-
ing, Information and Control 8(6) (2012), pp. 3953-3961.

[146] B. A. Kramer and C. L. Hwang, “Resource Constrained Project Scheduling: Modeling
with Multiple Alternatives”, Mathematical and Computational Modeling 15(8) (1991),
pp. 49-63.



260

[147] T.-W. Kuan, J.-F. Wang, J.-C. Wang, P.-C. Lin and G.-H. Gu, “VLSI Design of an SVM
Learning Core on Sequential Minimal Optimization Algorithm”, IEEE Transactions on
Very Large Scale Integration Systems 20(4) (2012), pp. 673-683.

[148] B. C. Lee and D. M. Brooks, “Accurate and Efficient Regression Modeling for Microar-
chitectural Performance and Power Prediction”, Proc. ACM International Conference on
Architectural Support for Programming Languages and Operating Systems, 2006, pp.
185-194.

[149] B. C. Lee, D. M. Brooks, B. R. de Supinski, M. Schulz, K. Singh and S. A. McKee,
“Methods of Inference and Learning for Performance Modeling of Parallel Applications”,
Proc. ACM Symposium on Principles and Practice of Parallel Programming, 2007, pp.
249-258.

[150] S. E. Lee and N. Bagherzadeh, “A High Level Power Model for Network-on-Chip (NoC)
Router”, Integration, the VLSI Journal 35(6) (2009), pp. 1-7.

[151] J. Leverich, M. Monchiero, V. Talwar, P. Ranganathan and C. Kozyrakis, “Power Man-
agement of Datacenter Workloads Using Per-Core Power Gating”, IEEE Computer Ar-
chitecture Letters 8(2) (2009), pp. 48-51.

[152] M. Li, Y. Zhang, W. Jiang and J. Xie, “A Particle Swarm Optimization Algorithm with
Crossover for Resource Constrained Project Scheduling Problem”, Proc. International
Conference on Services Science, Management and Engineering, 2009, pp. 69-72.

[153] X. Li and H. Liu, “Statistical Regression for Efficient High-Dimensional Modeling of
Analog and Mixed-Signal Performance Variations”, Proc. IEEE/ACM/EDAC Design Au-
tomation Conference, 2008, pp. 38-43.

[154] X. Q. Li and M. A. Jabri, “Machine Learning-Based VLSI Cells Shape Function Estima-
tion”, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
17(7) (2002), pp. 613-623.

[155] Y. Li, J. Han and W. Zhou, “Cress: Dynamic Scheduling for Resource Constrained Jobs”,
Proc. International Conference on Computational Science and Engineering, 2014, pp.
1945-1952.

[156] S.-W. Liao, T.-H. Hung, D. Nguyen, C. Chou, C. Tu and H. Zhou, “Machine Learning-
Based Prefetch Optimization for Data Center Applications”, Proc. ACM Conference on
High Performance Computing Networking, Storage and Analysis, 2009, pp. 1-10.

[157] S. K. Lim, Georgia Institute of Technology, personal communications, 2016.

[158] M.-S. Lin, “Top Layers of Metal for High Performance ICs”, U.S. Patent No. 6,383,916,
2002.

[159] F. Liu, “A General Framework for Spatial Correlation Modeling in VLSI Design”, Proc.
IEEE/ACM/EDAC Design Automation Conference, 2007, pp. 817-822.



261

[160] H. Liu, A. Singhee, R. A. Rutenbar and L. R. Carley, “Remembrance of Cir-
cuits Past: Macromodeling by Data Mining in Large Analog Design Spaces”, Proc.
IEEE/ACM/EDAC Design Automation Conference, 2002, pp. 437-442.

[161] H. Liu, “A Measurement Study of Server Utilization in Public Clouds”, Proc. Dependable
Autonomic and Secure Computing, 2011, pp. 435-442.

[162] W.-H. Liu, Y.-L. Li and C.-K. Koh, “A Fast Maze-Free Routing Congestion Estimator
with Hybrid Unilateral Monotonic Routing”, Proc. IEEE/ACM International Conference
on Computer-Aided Design, 2012, pp. 713-719.

[163] W.-H. Liu, T.-K. Chien and T.-C. Wang, “Region-Based and Panel-Based Algorithms for
Unroutable Placement Recognition”, IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems 34(4) (2015), pp. 502-514.

[164] S. N. Lophaven, H. B. Nielsen and J. Sondergaard, “Aspects of the MATLAB Toolbox
DACE”, Technical Report IMM-REP-2002-13, Technical University of Denmark, 2002.

[165] J. Lu, H. Zhuang, I. Kang, P. Chen and C.-K. Cheng, “ePlace-3D: Electrostatics Based
Placement for 3D-ICs”, Proc. ACM International Symposium on Physical Design, 2016,
pp. 11-18.

[166] C.-L. Lung, H.-C. Hsiao, Z.-Y. Zeng and S.-Y. Chang, “LP-Based Multi-Mode Multi-
Corner Clock Skew Optimization”, Proc. IEEE International Symposium on VLSI Design
Automation and Test, 2010, pp. 335-338.

[167] C.-L. Lung, Z.-Y. Zeng, C.-H. Chou and S.-Y. Chang, “Clock Skew Optimization Consid-
ering Complicated Power Modes”, Proc. Design, Automation and Test in Europe, 2010,
pp. 1474-1479.

[168] W.-K. Mak and C. Chu, “Rethinking the Wirelength Benefit of 3-D Integration”, IEEE
Transactions on Very Large Scale Integration Systems 20(12) (2012), pp. 2346-2351.

[169] J. Mars and L. Tang, UC San Diego, personal communication, May 2013.

[170] T. Matsunawa, J.-R. Gao, B. Yu and D. Z. Pan, “A New Lithography Hotspot Detection
Framework Based on AdaBoost Classifier and Simplified Feature Extraction”, Proc. SPIE
Advanced Lithography, 2015, pp. 9427S-1-9427S-10.

[171] T. Matsunawa, B. Yu and D. Z. Pan, “Laplacian Eigenmaps and Bayesian Clustering
Based Layout Pattern Sampling and Its Applications to Hotspot Detection and OPC”,
Proc. Asia and South Pacific Design Automation Conference, 2016, pp. 679-684.

[172] T. Matsunawa, B. Yu and D. Z. Pan, “Optical Proximity Correction with Hierarchical
Bayes Model”, SPIE Journal of Micro/Nanolithography, MEMS, and MOEMS 15(2)
(2016), pp. 021009-1-021009-8.

[173] P. Meloni, I. Loi, F. Angiolini, S. Carta, M. Barbaro, L. Raffo and L. Benini, “Area and
Power Modeling for Network-on-Chip with Layout Awareness”, Proc. IEEE/ACM Inter-
national Conference on VLSI Design, 2007, pp. 1-12.



262

[174] K. Mihic, T. Simunic and G. de Micheli, “Reliability and Power Management of Inte-
grated Systems”, Proc. EUROMICRO Conference on Digital System Design, 2004, pp.
5-11.

[175] D. Milojevic, T. E. Carlson, K. Croes, R. Radojcic, D. F. Ragett, D. Seynhaeve, F. Angi-
olini, G. Van der Plas and P. Marchal, “Automated PathFinding Tool Chain for 3D-Stacked
Integrated Circuits: Practical Case Study”, Proc. IEEE 3D System Integration Conference,
2009, pp. 1-6.

[176] A. Mishra, J. Kumar and U. Singhal, “Resolving Timing Miscorrelation Using Timing
Uncertainties”,
http://www.edn.com/design/integrated-circuit-design/4390721/
Resolving-timing-miscorrelation-using-timing-
uncertainties (accessed on July 21, 2016).

[177] T. Mittal and C.-K. Koh, “Cross Link Insertion for Improving Tolerance to Variations
in Clock Network Synthesis”, Proc. ACM International Symposium on Physical Design,
2011, pp. 29-36.

[178] S. A. Mohamed, A. A. Manaf and C. C. Teh, “A Noise and Signal Integrity Verifica-
tion Flow for Hierarchical Design”, Proc. IEEE International Conference on Computer
Application and Industrial Electronics, 2011, pp. 250-255.

[179] S. Mohanty and M. K. Nayak, “Optimization Model in Human Resource Management for
Job Allocation in ICT Project”, International Journal of the Computer, the Internet and
Management 19(3) (2011), pp. 21-27.

[180] R. H. Mohring, A. S. Schulz, F. Stork and M. Uetz, “On Project Scheduling with Irregular
Starting Time Costs”, Operations Research Letters 28 (2001), pp. 149-154.

[181] C. Moon, Synopsys Inc., personal communication, July 2013.

[182] D. F. Morrison, Multivariate Statistical Methods, 3rd edition, McGraw-Hill Publishing
Company, 1990.

[183] R. Mullins, A. West and S. Moore, “The Design and Implementation of a Low-Latency
On-Chip Network”, Proc. Asia and South Pacific Design Automation Conference, 2006,
pp. 164-169.

[184] W. Naylor, “Non-Linear Optimization System and Method for Wire Length and Delay
Optimization for an Automatic Electric Circuit Placer”, U.S. Patent No. 6,301,693, 2001.

[185] S. K. Nithin, S. Gowrysankar and S. Chandrasekar, “Dynamic Voltage (IR) Drop Analysis
and Design Closure: Issues and Challenges”, Proc. International Symposium on Quality
Electronic Design, 2010, pp. 611-617.

[186] J. O. Ogutu, H.-P. Piepho and T. Schulz-Streeck, “A Comparison of Random Forests,
Boosting and Support Vector Machines for Genomic Selection”, BioMedical Central Pro-
ceedings 5(3) (2011), pp. 1-5.



263

[187] M. M. Ozdal, C. Amin, A. Ayupov, S. M. Burns, G. R. Wilke and C. Zhuo, “ISPD-2012
Discrete Cell Sizing Contest and Benchmark Suite”, Proc. ACM International Symposium
on Physical Design, 2012, pp. 161-164.

[188] B. Ozisikyilmaz, G. Memik and A. Choudhary, “Machine Learning Models to Predict
Performance of Computer System Design Alternatives”, Proc. IEEE International Con-
ference on Parallel Processing, 2008, pp. 495-502.

[189] G. Palermo and C. Silvano, “PIRATE: A Framework for Power/Performance Exploration
of Network-on-Chip Architectures”, Proc. IEEE International Workshop on Power and
Timing Modeling, Optimization and Simulation, 2004, pp. 521-531.

[190] G. Palermo, C. Silvano and V. Zaccaria, “ReSPIR: A Response Surface-Based Pareto
Iterative Refinement for Application-Specific Design Space Exploration”, IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems 28(12) (2009), pp.
1816-1829.

[191] M. Pan and C. Chu, “IPR: An Integrated Placement and Routing Algorithm”, Proc.
IEEE/ACM/EDAC Design Automation Conference, 2007, pp. 59-62.

[192] M. Y. Park and T. Hastie, “L1 Regularization Path Algorithm for Generalized Linear Mod-
els”, Journal of the Royal Statistical Society 69(4) (2007), pp. 659-677.

[193] S. Panth, K. Samadi, Y. Du and S. K. Lim, “High-Density Integration of Functional Mod-
ules Using Monolithic 3D-IC Technology”, Proc. Asia and South Pacific Design Automa-
tion Conference, 2013, pp. 681-686.

[194] S. Panth, Georgia Institute of Technology, personal communications, 2014.

[195] S. Panth, Altera, personal communications, 2016.

[196] S. Panth, K. Samadi, Y. Du and S. K. Lim, “Design and CAD Methodologies for Low
Power Gate-Level Monolithic 3D ICs”, Proc. International Symposium on Low Power
Electronic Design, 2014, pp. 171-176.

[197] S. Panth, K. Samadi, Y. Du and S. K. Lim, “Placement-Driven Partitioning for Congestion
Mitigation in Monolithic 3D IC Designs”, IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems 34(4) (2015), pp. 540-553.

[198] C. S. Patel, S. M. Chai, S. Yalamanchili and D. E. Schimmel, “Power Constrained Design
of Multiprocessor Interconnection Networks”, Proc. IEEE International Conference on
Computer Design, 1997, pp. 408-416.

[199] L.-S. Peh, “Flow Control and Micro-Architectural Mechanisms for Extending the Perfor-
mance of Interconnection Networks” Ph.D. Thesis, Stanford University, 2001.

[200] S. Penolazzi and A. Jantsch, “A High Level Power Model for the Nostrum NoC”, Proc.
EUROMICRO Conference on Digital System Design, 2006, pp. 673-676.

[201] Z. Qi, Y. Cai and Q. Zhou, “Accurate Prediction of Detailed Routing Congestion using
Supervised Data Learning”, Proc. IEEE International Conference on Computer Design,
2014, pp. 97-103.



264

[202] Z. Qian, D.-C. Juan, P. Bogdan, C.-Y. Tsui, D. Marculescu and R. Marculescu, “SVR-
NoC: A Performance Analysis Tool for Network-on-Chips using Learning-Based Support
Vector Regression Model”, Proc. Design, Automation and Test in Europe, 2013, pp. 354-
357.

[203] Z. Qiong, G. Yichao, Z. Ging, Z. Jie and C. Xuefang, “An Ant Colony Optimization Model
for Parallel Machine Scheduling with Human Resource Constraints”, Proc. International
Conference on Digital Enterprise Technology Advances in Intelligent and Soft Computing,
2010, pp. 917–926.

[204] Qualcomm Inc. (IT project manager), personal communication, August 2014.

[205] A. Rajaram, J. Hu and R. Mahapatra, “Reducing Clock Skew Variability via Crosslinks”,
Proc. IEEE/ACM/EDAC Design Automation Conference, 2004, pp. 18-23.

[206] A. Rajaram and D. Z. Pan, “Variation Tolerant Buffered Clock Network Synthesis with
Cross Links”, Proc. ACM International Symposium on Physical Design, 2006, pp. 157-
164.

[207] S. Rakheja and N. S. Krishna, “Establishing Timing Correlation be-
tween Tools”, http://www.edn.com/design/integrated-circuit-design/4313674/
Establishing-timing-correlation-between-tools (accessed on July 21, 2016).

[208] C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz and M. A. Kozuch, “Heterogeneity and
Dynamicity of Clouds at Scale: Google Trace Analysis”, Proc. ACM Symposium on Cloud
Computing, 2012.

[209] P. J. Restle, T. G. McNamara, D. A. Webber, P. J. Camporese, K. F. Eng, K. A. Jenkins,
D. H. Allen, M. J. Rohn, M. P. Quaranta, D. W. Boerstler, C. J. Alpert, C. A. Carter,
R. N. Bailey, J. G. Petrovick, B. L. Krauter, and B. D. McCredie, “A Clock Distribution
Network for Microprocessors”, IEEE Journal of Solid-State Circuits 36(5) (2001), pp.
792-799.

[210] J. A. T. Robles, S. M. Fahmy, K. Madkour and J.-Y. Wuu, “Hotspot Detection Based on
Machine Learning”, U.S. Patent No. 8,402,397 B2, 2013.

[211] L. Rokach, A. Feldman, M. Kalech and G. Provan, “Machine-Learning-Based Circuit
Synthesis”, Proc. IEEE Convention of Electrical and Electronics Engineers in Israel,
2012, pp. 1-5.

[212] P. Rong and M. Pedram, “Power-Aware Scheduling and Dynamic Voltage Setting for
Tasks Running on a Hard Real-Time System”, Proc. Asia and South Pacific Design Au-
tomation Conference, 2006, pp. 473-478.

[213] T. S. Rosing, K. Mihic and G. de Micheli, “Power and Reliability Management of SoCs”,
IEEE Transactions on Very Large Scale Integration Systems 15(4) (2007), pp. 391-403.

[214] J. A. Roy and I. L. Markov, “Seeing the Forest and the Trees: Steiner Wirelength Op-
timization in Placement”, IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems 23(4) (2007), pp. 632-644.



265

[215] M. M. Sabry Aly, M. Gao, G. Hills, C.-S. Lee, G. Pitner, M. M. Shulaker, T. F. Wu and
M. Asheghi, “Energy-Efficient Abundant-Data Computing: The N3XT 1,000x”, IEEE
Computer 48(12) (2015), pp. 24-33.

[216] R. Salakhutdinov, J. B. Tenenbaum and A. Torralba, “Learning with Hierarchical-Deep
Models”, IEEE Transactions on Pattern Analysis and Machine Intelligence 35(8) (2013),
pp. 1958-1971.

[217] F. Salewski, A. Schirmer and A. Drexl, “Project Scheduling under Resource and Mode
Identity Constraints: Model, Complexity, Methods, and Application”, European Journal
of Operational Research 102(1) (1997), pp. 88-110.

[218] R. Samanta, J. Hu and P. Li, “Discrete Buffer and Wire Sizing for Link-Based Non-
Tree Clock Networks”, IEEE Transactions on Very Large Scale Integration Systems 18(7)
(2010), pp. 1025-1035.

[219] S. S. Sapatnekar, “Capturing the Effect of Crosstalk on Delay”, Proc. IEEE/ACM Inter-
national Conference on VLSI Design, 2000, pp. 364-369.

[220] M. Sarevska, B. Milovanovic and Z. Stankovic, “Reliability of Radial Basis Function –
Neural Network Smart Antenna”, Proc. WSEAS International Conference on Communi-
cations, 2005, pp. 1-7.

[221] R. Sasanka, S. V. Adve, Y.-K. Chen and E. Debes, “The Energy Efficiency of CMP vs.
SMT for Multimedia Workloads”, Proc. ACM International Conference on Supercomput-
ing, 2004, pp. 196-206.

[222] P. Sharma, Freescale Inc., personal communication, July 2013.

[223] H. Shojaei, A. Davoodi and J. T. Linderoth, “Congestion Analysis for Global Routing via
Integer Programming”, Proc. IEEE/ACM International Conference on Computer-Aided
Design, 2011, pp. 256-162.

[224] H. Shojaei, A. Davoodi and J. T. Linderoth, “Planning for Local Net Congestion in Global
Routing”, Proc. ACM International Symposium on Physical Design, 2013, pp. 85-92.

[225] G. Sigl, K. Doll and F. M. Johannes, “Analytical Placement: A Linear or a Quadratic
Objective Function?”, Proc. IEEE/ACM/EDAC Design Automation Conference, 1991, pp.
427-432.

[226] D. Sinha, L. Guerra e Silva, J. Wang, S. Raghunathan, D. Netrabile and A. Shebaita, “TAU
2013 Variation Aware Timing Analysis Contest”, Proc. ACM International Symposium on
Physical Design, 2013, pp. 171-178.

[227] K. Skadron, M. R. Stan, W. Huang, S. Velusamy, K. Sankaranarayanan and D. Tarjan,
“Temperature-Aware Microarchitecture”, Proc. ACM/IEEE International Symposium on
Computer Architecture, 2003, pp. 2-13.

[228] G. Smith, Gary Smith EDA, personal communication, September 2013.

[229] G. Smith, Gary Smith EDA, personal communication, June 2014.



266

[230] G. Smith, “Updates of the ITRS Design Cost and Power Models”, Proc. IEEE Interna-
tional Conference on Computer Design, 2014, pp. 161-165.

[231] P. Spindler and F. M. Johannes, “Fast and Accurate Routing Demand Estimation for Effi-
cient Routability-Driven Placement”, Proc. Design, Automation and Test in Europe, 2007,
pp. 1226-1231.

[232] T. Spyrou, Altera Corporation, personal communication, July 2013.

[233] J. Srinivasan, S. V. Adve, P. Bose and J. A. Rivers, “The Case for Lifetime Reliability-
Aware Microprocessors”, Proc. ACM/IEEE International Symposium on Computer Archi-
tecture, 2004, pp. 276-287.

[234] M. Stephenson, S. Amarasinghe, M. Martin and U. O’Reilly, “Meta Optimization: Im-
proving Compiler Heuristics with Machine Learning”, Proc. ACM Conference on Pro-
gramming Language Design and Implementation, 2003, pp. 77-90.

[235] D. Stroobandt, “Recent Advances in System-Level Interconnect Prediction”, IEEE Cir-
cuits and Systems Newsletter 11 (2000), pp. 4-20.

[236] H. Su and S. S. Sapatnekar, “Hybrid Structured Clock Network Construction”, Proc.
IEEE/ACM International Conference on Computer-Aided Design, 2001, pp. 333-336.

[237] S. Sunder and K. Scholtman, “Multi-Mode Multi-Corner Clocktree Synthesis”, U.S.
Patent No. US20090217225 A1, 2009.

[238] T. Taghavi, C. J. Alpert, A. Huber, Z. Li, G.-J. Nam and S. Ramji, “New Placement
Prediction and Mitigation Techniques for Local Routing Congestion”, Proc. IEEE/ACM
International Conference on Computer-Aided Design, 2010, pp. 621-624.

[239] F. B. Talbot, “Resource-Constrained Project Scheduling with Time-Resource Tradeoffs:
The Nonpreemptive Case”, Management Science 28(10) (1982), pp. 1197-1210.

[240] A. Tetelbaum, “Method of Estimating a Total Path Delay in an Integrated Circuit Design
with Stochastically Weighted Conservatism”, U.S. Patent No. 7,213,223, 2007.

[241] T. Thiel, “Have I Really Met Timing-Validating PrimeTime Timing Reports with Spice”,
Proc. Design, Automation and Test in Europe, 2004, pp. 114-119.

[242] T. Thorolfsson, K. Gonsalves and P. D. Franzon, “Design Automation for a 3DIC FFT
Processor for Synthetic Aperture Radar: A Case Study”, Proc. IEEE/ACM/EDAC Design
Automation Conference, 2009, pp. 51-56.

[243] W. Torell and V. Avelar, “Performing Effective MTBF Comparisons for Data Center In-
frastructure”, APC Whitepaper 112, 2005.

[244] F. Toufexis, A. Papanikolaou, D. Soudris, G. Stamoulis and S. Bantas, “Power, Perfor-
mance and Area Prediction of 3D ICs during Early Stage Design Exploration in 45nm”,
Proc. IEEE International Conference on Electronics Circuits and Systems, 2011, pp. 715-
718.



267

[245] R.-S. Tsay, “Exact Zero Skew”, Proc. IEEE/ACM International Conference on Computer-
Aided Design, 1991, pp. 336-339.

[246] K. Tseng and M. Horowitz, “False Coupling Exploration in Timing Analysis”, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems 24(11)
(2005), pp. 1795-1805.

[247] K. Tsota, C.-K. Koh and V. Balakrishnan, “Guiding Global Placement with Wire Den-
sity”, Proc. IEEE/ACM International Conference on Computer-Aided Design, 2008, pp.
212-217.

[248] V. Vapnik, The Nature of Statistical Learning Theory, Springer-Verlag, 1995.

[249] V. Veetil, K. Chopra, D. Blaauw and D. Sylvester, “Fast Statistical Static Timing Analysis
Using Smart Monte Carlo Techniques”, IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems 30(6) (2011), pp. 852-856.

[250] R. Venkatesan, J. A. Davis, K. A. Bowman and J. D. Meindl, “Optimal n-Tier Multilevel
Interconnect Architectures for Gigascale Integration (GSI)”, IEEE Transactions on Very
Large Scale Integration Systems 9(6) (2001), pp. 899-912.

[251] C. R. Venugopal, P. Soraiyur and J. Rao, “Evaluation of the PTSI Crosstalk Noise Anal-
ysis Tool and Development of an Automated Spice Correlation Suite to Enable Accuracy
Validation”, Proc. International Symposium on Quality Electronic Design, 2008, pp. 334-
337.

[252] M. Vujkovic, D. Wadkins, B. Swartz and C. Sechen, “Efficient Timing Closure with-
out Timing Driven Placement and Routing”, Proc. IEEE/ACM/EDAC Design Automation
Conference, 2004, pp. 268-273.

[253] H.-S. Wang, L.-S. Peh and S. Malik, “Orion: A Power-Performance Simulator for Inter-
connection Networks”, IEEE International Symposium on Microarchitecture, 2002, pp.
294-305.

[254] L.-C. Wang and M. S. Abadir, “Data Mining in EDA – Basic Principles, Promises and
Constraints”, Proc. IEEE/ACM/EDAC Design Automation Conference, 2014, pp. 1-6.

[255] M. Wang, X. Yang, K. Eguro and M. Sarrafzadeh, “Multicenter Congestion Estimation
and Minimization during Placement”, Proc. ACM International Symposium on Physical
Design, 2000, pp. 147-152.

[256] S. Wang and J.-J. Chen, “Thermal-Aware Lifetime Reliability in Multicore Systems”,
Proc. International Symposium on Quality Electronic Design, 2010, pp. 399-405.

[257] S. Ward, D. Ding and D. Z. Pan, “PADE: A High-Performance Placer with Automatic
Datapath Extraction and Evaluation through High-Dimensional Data Learning”, Proc.
IEEE/ACM/EDAC Design Automation Conference, 2012, pp. 756-761.

[258] S. I. Ward, N. Viswanathan, N. Y. Zhou, C. C. N. Sze, Z. Li, C. J. Alpert and D. Z.
Pan, “Clock Power Minimization using Structured Latch Templates and Decision Tree
Induction”, Proc. IEEE/ACM International Conference on Computer-Aided Design, 2013,
pp. 599-606.



268

[259] Y. Wei, C. Sze, N. Viswanathan, Z. Li, C. J. Alpert, L. Reddy, A. D. Huber, G. E. Tellez,
D. Keller and S. S. Sapatnekar, “GLARE: Global and Local Wiring Aware Routability
Evaluation”, Proc. IEEE/ACM/EDAC Design Automation Conference, 2012, pp. 768-773.

[260] J. Westra, C. Bartels and P. Groeneveld, “Probabilistic Congestion Prediction”, Proc.
ACM International Symposium on Physical Design, 2004, pp. 204-209.

[261] J. Westra and P. Groeneveld, “Is Probabilistic Congestion Estimation Worthwhile?”, Proc.
ACM International Workshop on System-Level Interconnect Prediction, 2005, pp. 99-106.

[262] T. Xiao and M. Marek-Sadowska, “Worst Delay Estimation in Crosstalk Aware Static
Timing Analysis”, Proc. IEEE International Conference on Computer Design, 2000, pp.
115-120.

[263] T. Xiao and M. Marek-Sadowska, “Efficient Delay Calculation in Presence of Crosstalk”,
Proc. International Symposium on Quality Electronic Design, 2000, pp. 491-497.

[264] S. Yaldiz, U. Arslan, X. Li and L. Pileggi, “Efficient Statistical Analysis of Read Tim-
ing Failures in SRAM Circuits”, Proc. International Symposium on Quality Electronic
Design, 2009, pp. 617-621.

[265] T. T. Ye, G. de Micheli and L. Benini, “Analysis of Power Consumption on Switch Fabrics
in Network Routers”, Proc. IEEE/ACM/EDAC Design Automation Conference, 2002, pp.
524-529.

[266] M. B. Yelten, T. Zhu, S. Koziel, P. D. Franzon and M. B. Steer, “Demystifying Surrogate
Modeling for Circuits and Systems”, IEEE Circuits and Systems Magazine 12(1) (2012),
pp. 45-63.

[267] N. Yosboonruang, A. Na-udom and J. Rungrattanaubol, “A Comparison of Prediction Ac-
curacy of Statistical Models for Computer Simulated Experiments”, Proc. International
Conference on Statistics and Applied Statistics, 2010, pp. 1-15.

[268] B. Yu, J.-R. Gao, D. Ding, X. Zeng and D. Z. Pan, “Accurate Lithography Hotspot Detec-
tion Based on PCA-SVM Classifier with Hierarchical Data Clustering”, SPIE Journal of
Micro/Nanolithography, MEMS, and MOEMS 14(1) (2015), pp. 011003-1-011003-12.

[269] B. Yu, D. Z. Pan, T. Matsunawa and X. Zeng, “Machine Learning and Pattern Matching
in Physical Design”, Proc. Asia and South Pacific Design Automation Conference, 2015,
pp. 286-293.

[270] B. Yu, X. Xu, S. Roy, Y. Lin, J. Ou and D. Z. Pan, “Design for Manufacturability and
Reliability in Extreme-Scaling VLSI” Science China Information Sciences 59 (2016), pp.
1-23.

[271] M. L. Yu, “A Study of the Applicability of Hopfield Decision Neural Nets to VLSI CAD”,
Proc. IEEE/ACM/EDAC Design Automation Conference, 1989, pp. 412-417.

[272] Y.-T. Yu, G.-H. Lin, I. H.-R. Jiang and C. Chiang, “Machine-Learning-Based Hotspot
Detection using Topological Classification and Critical Feature Extraction”, IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems 34(3) (2015), pp.
460-470.



269

[273] H. Zhang, B. Yu and E. F. Y. Young, “Enabling Online Learning in Lithography Hotspot
Detection with Information-Theoretic Feature Optimization”, Proc. IEEE/ACM Interna-
tional Conference on Computer-Aided Design, 2016, to appear.

[274] S. Zhang and K. S. Chatha, “Approximation Algorithm for the Temperature-Aware
Scheduling Problem”, Proc. IEEE/ACM International Conference on Computer-Aided
Design, 2007, pp. 281-288.

[275] X. Zhang, F. An, L. Chen and H. J. Mattausch, “Reconfigurable VLSI Implementation
for Learning Vector Quantization with On-Chip Learning Circuit”, Japanese Journal of
Applied Physics 55(4S) (2016), pp. 1-6.

[276] J. Zhao and R. Molena, “Techniques to Accelerate Power and Timing Signoff of
Advanced-Node SoCs”, Whitepaper, Cadence Design Systems, 2014. http://www.
cadence.com/rl/Resources/white papers/power timing signoff wp.pdf (accessed on July
21, 2016).

[277] K. Zhong and S. Dutt, “Algorithms for Simultaneous Satisfaction of Multiple Constraints
and Objective Optimization in a Placement Flow with Application to Congestion Con-
trol”, Proc. IEEE/ACM/EDAC Design Automation Conference, 2002, pp. 854-859.

[278] Q. Zhou, X. Wang, Z. Qi, Z. Chen, Q. Zhou and Y. Cai, “An Accurate Detailed Routing
Routability Prediction Model in Placement”, Proc. Asia Symposium on Quality Electronic
Design, 2015, pp. 119-122.

[279] X. Zhou, J. Yang, Y. Xu, Y. Zhang and J. Zhao, “Thermal-Aware Task Scheduling for 3D
Multicore Processors”, IEEE Transactionas on Parallel and Distributed Systems 21(1)
(2010), pp. 60-71.

[280] T. Zhu and P. D. Franzon, “Application of Surrogate Modeling to Generate Compact and
PVT-Sensitive IBIS Models”, Proc. Electrical Performance of Electronic Packages and
Systems, 2009, pp. 77-80.

[281] “3D ICs with TSVs – Design Challenges and Requirements.”
http://www.cadence.com/rl/resources/white papers/3dic wp.pdf (accessed on July 21,
2016).

[282] AMD FX,
http://www.engadget.com/2012/10/23/amd-fx-processor-refresh/ (accessed on July 21,
2016).

[283] ARM Cortex-M0 processor,
http://www.arm.com/products/processors/cortex-m/cortex-m0.php (accessed on July 21,
2016).

[284] Cadence Assura QRC,
https://www.cadence.com/content/cadence-www/global/en US/home/tools/
digital-design-and-signoff.html (accessed on July 5, 2016).



270

[285] Cadence Encounter RTL Compiler User Guide,
http://www.cadence.com/products/ld/rtl\ compiler/pages/default.aspx (accessed on July
21, 2016).

[286] Cadence Innovus Implementation System,
https://www.cadence.com/content/cadence-www/global/en US/home/
tools/digital-design-and-signoff/hierarchical-design-and-floorplanning/
innovus-implementation-system.html (accessed on July 21, 2016).

[287] Cadence SoC Encounter User Guide,
https://www.cadence.com/content/cadence-www/global/en US/
home/tools/digital-design-and-signoff/block-implementation/
first-encounter-design-exploration-and-prototyping.html (accessed on July 21, 2016).

[288] Cadence Tempus Timing Signoff,
https://www.cadence.com/content/cadence-www/global/en US/home/tools/
digital-design-and-signoff.html (accessed on July 21, 2016).

[289] CCS, http://www.opensourceliberty.org/ccspaper/ccs bgr.pdf (accessed on July 21, 2016).

[290] CLK Design Automation Inc., http://www.clkda.com (accessed on July 21, 2016).

[291] Clock Routing Rules,
www.cadence.com/Community/blogs/di/archive/2011/05/10/
five-minute-tutorial-setting-up-clock-routing-rules.aspx (accessed on July 21, 2016).

[292] Dassault Systems Enovia Synchronicity,
http://www.3ds.com/products-services/enovia/products/v6/synchronicity-designsync/
(accessed on July 21, 2016).

[293] Discrete Gate Sizing Contest, http://www.ispd.cc/contests/13/ispd2013 contest.html (ac-
cessed on July 21, 2016).

[294] “How Green is my Silicon Valley?”
http://dac.com/sites/default/files/DACArchive/pubs/46DAC Final Prgm.pdf (accessed on
July 21, 2016).

[295] Google Translate, http://translate.google.com (accessed on July 21, 2016).

[296] IBM ILOG CPLEX, http://www-03.ibm.com/software/products/en/ibmilogcpleoptistud/
(accessed on July 5, 2016).

[297] IBM Blue Gene processor,
http://www.research.ibm.com/journal/rd49-23.html (accessed on July 21, 2016).

[298] IBM-PLACE 2.0 Benchmark Suite, http://vlsicad.eecs.umich.edu/BK/Slots/cache/er.cs.
ucla.edu/benchmarks/ibm-place2/ (accessed on July 21, 2016).

[299] IC Manage,
https://www.icmanage.com/ic-design-management-best-practices/ (accessed on July 21,
2016).



271

[300] Incentia Design Systems Inc., http://www.incentia.com (accessed on July 21, 2016).

[301] inMotion Creative Project Management, http://explore.inmotionnow.com/
capterra-project-management (accessed on July 21, 2016).

[302] Intel 80-core Report, http://techresearch.intel.com/ProjectDetails.aspx?Id=151 (accessed
on July 21, 2016).

[303] Intel Turbo Boost technology – On-Demand Processor Performance, http:
//www.intel.com/content/www/us/en/architecture-and-technology/turbo-boost/
turbo-boost-technology.html (accessed on July 21, 2016).

[304] International Technology Roadmap for Semiconductors,
http://www.itrs2.net/ (accessed on July 21, 2016).

[305] Failure Mechanisms and Models for Semiconductor Devices, JEDEC JEP122G, 2011.

[306] Leon3 Multicore Processor, http://www.gaisler.com/index.php/products/processors/leon3
(accessed on July 21, 2016).

[307] LEF DEF Reference Manual, http://www.si2.org/openeda.si2.org/projects/lefdef (ac-
cessed on July 21, 2016).

[308] Liberty Technical Advisory Board, http://www.si2.org/Liberty-TAB (accessed on July 21,
2016).

[309] lp solve reference guide, http://lpsolve.sourceforge.net/5.5 (accessed on July 21, 2016).

[310] ARESLab, http://www.cs.rtu.lv/jekabsons/regression.html (accessed on July 21, 2016).

[311] MATLAB, http://www.mathworks.com/products/matlab (accessed on July 21, 2016).

[312] Mentor Graphics Inc., http://www.mentor.com (accessed on July 21, 2016).

[313] Nefelus Design Tools, http://www.nefelus.com/design-tools/ (accessed on July 5, 2016).

[314] Netmaker, http://www-dyn.cl.cam.ac.uk/∼rdm34/wiki (accessed on July 21, 2016).

[315] ORION3.0, http://vlsicad.ucsd.edu/ORION3/ (accessed on July 21, 2016).

[316] Openaccess API, http://www.si2.org (accessed on July 21, 2016).

[317] OpenSPARC T2, http://www.oracle.com/technetwork/systems/opensparc/index.html (ac-
cessed on July 21, 2016).

[318] OpenCores, http://opencores.org (accessed on July 21, 2016).

[319] Ostrich, http://www.cadence.com/community/blogs/di/archive/
2008/10/15/an-interview-with-global-timing-debug-
architect-thad-mccraken.aspx (accessed on July 21, 2016).

[320] Platform Load Sharing Facility, http://www-03.ibm.com/systems/services/
platformcomputing/lsf.html (accessed on July 5, 2016).



272

[321] PSLIB Data Sets, http://www.om-db.wi.tum.de/psplib/download.html (accessed on July
5, 2016).

[322] Qualcomm Snapdragon,
https://www.qualcomm.com/products/snapdragon (accessed on July 5, 2016).

[323] Random Forest, https://code.google.com/randomforest-matlab (accessed on July 21,
2016).

[324] RBF2 Manual, http://www.anc.ed.ac.uk/∼mjo/rbf.html (accessed on July 21, 2016).

[325] RedHawk User Guide, https://www.apache-da.com/products/redhawk (accessed on July
21, 2016).

[326] Rent Parameter Evaluation Using Different Methods v2.2-2008, http://vlsicad.ucsd.edu/
WLD/RentCon.pdf (accessed on July 21, 2016).

[327] Runtime Design Automation, http://www.rtda.com/ (accessed on July 21, 2016).

[328] Salesforce Project Management, https://www.salesforce.com/ (accessed on July 5, 2016).

[329] Samsung Exynos, http://www.samsung.com/semiconductor/products/exynos-solution/
application-processor/ (accessed on July 5, 2016).

[330] Samsung Electronics Co., Ltd. (System LSI application processor principal engineer),
personal communication, July 2014.

[331] Apple Siri, http://www.apple.com/ios/siri (accessed on July 21, 2016).

[332] SPICE, http://bwrcs.eecs.berkeley.edu/Classes/IcBook/SPICE/ (accessed on July 21,
2016).

[333] Standard Parasitic Exchange Format,
https://en.wikipedia.org/wiki/Standard Parasitic Exchange Format (accessed on July 21,
2016).

[334] Stanford CPUDB, http://cpudb.stanford.edu (accessed on July 21, 2016).

[335] Stanford NoC, https://nocs.stanford.edu/cgi-bin/trac.cgi (accessed on July 21, 2016).

[336] Synopsys 32/28nm Generic Library for Teaching IC Design,
http://www.synopsys.com/COMMUNITY/UNIVERSITYPROGRAM/
Pages/32-28nm-generic-library.aspx (accessed on July 21, 2016).

[337] Synopsys Design Compiler User Guide, http://www.synopsys.com (accessed on July 21,
2016).

[338] Synopsys Formality User Guide,
http://www.synopsys.com/tools/verification/formalequivalence/ pages/formality.aspx (ac-
cessed on July 21, 2016).

[339] Synopsys HSPICE User Guide, http://www.synopsys.com (accessed on July 21, 2016).



273

[340] Synopsys IC Compiler, http://www.synopsys.com (accessed on July 21, 2016).

[341] Synopsys Interconnect Technology Format,
http://www.synopsys.com/community/interoperability/pages/tapinitf.aspx (accessed on
July 21, 2016).

[342] Synopsys PrimeTime,
http://www.synopsys.com/Tools/Implementation/SignOff/PrimeTime/Pages/default.aspx
(accessed on July 21, 2016).

[343] Synopsys Star-RCXT,
http://www.synopsys.com/Tools/Implementation/SignOff/Pages/StarRC-ds.aspx (ac-
cessed on July 21, 2016).

[344] Synopsys SiliconSmart, http://www.synopsys.com (accessed on July 21, 2016).

[345] Synopsys SpyGlass, http://www.synopsys.com/Tools/Verification/SpyGlass/default.aspx
(accessed on July 21, 2016).

[346] Synopsys VCS and DVE User Guide,
http://www.synopsys.com/tools/verification/functionalverification/pages/vcs.aspx (ac-
cessed on July 21, 2016).

[347] Thermal Reliability,
http://wdc.com/wdproducts/library/other/2579-001134.pdf (accessed on July 21, 2016).

[348] Tilera TILE-Gx Processor, http://www.tilera.com/products (accessed on July 21, 2016).

[349] “When The Chips are Down”,
http://qz.com/387490/as-moores-law-turns-50-computer-
chips-continue-to-get-cheaper-and-more-powerful/ (accessed on July 21, 2016).

[350] UCSD Design Cost Optimization Solver for Multi-Tapeout Project Scheduling,
http://vlsicad.ucsd.edu/MILP/ (accessed on July 21, 2016).

[351] UCSD Gate Sizer, http://vlsicad.ucsd.edu/SIZING (accessed on July 21, 2016).




