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A PEDESTRIAN'S GUIDE TO LIE TRANSFORMS:

A NEW APPROACH TO PERTURBATION THEORY IN CLASSICAL MECHANICS*
Robert G. Littlejohn

Lawrence Berkeley Laboratory
University of California
Berkeley, California 94720

November 1978

ABSTRACT
Lie transforms are developed as a practical tool for perturbation

theory in classical mechanics. The spirit of the presentation is

_pedagogical.v In order to define the general context of Lie transform

perturbation methods, an extensive discussion is given of traditional
perturbation methods in Hamiltonian and other systems, with an emphasis

on averaging techniques.

*Work supported by the U.S. Department of Energy.



1. Introduction

This paper concerns perturbation theory in classical mechanics and especially
the use of Lie transforms in the Hamiltonian subset thereof. The characteristic
feature of the Lie transform méthbd in perturbation theory is the exploitation
of the group structure of the set of canonical transformations. In the Lie
transform method, Lie operators are used to generate canonical transformations,
so that canonical transformations ére in effect parametrized by their Lie
genefatérs. This parametrization turns.out to provide a compact notation for
the tranéformations themselves as well as for the various formulas which naturally
arise in perturbatién theory. J

The use of Lie traﬁsforms as a practical computational tool has only come
aboﬁt invthe last ten yéars or 50. The tardiness of the discovery of this
application of Lie groups might seem surprising, since classical mechanics
is an old subject, and the basic theory of Lie groups has been in existence
since the late nineteenth century. 'Actually, there have been a number of
workers throughout the years who have come close to discovering the Lie transform
method. In one of the earliest papers on quantum mechanics, Heisenberg, Born
and Jordan1 developed a perturbation theory for quantum mechanics which is

similar in spirit to the classical theory presented here. These authors failed

to make the necessary changes to transcribe their theory into classical mechanics,

perhaps in part because they did not know how to effect that transcription.
The first use of the Lie transform method in classical mechanics was made by
Hori,2 a worker in celestial mechanics, and his ideas were developed and extended

by Deprit,3 Dewar,4 and others,

The object of this paper is to make the Lie transform method as accessible
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as possible to those with a minimum of experiencé with classical perturbation

! theory, group theory, etc. Therefore the theory will not be developed in

r - its most abstrac; form; and gener#l formulas will.not be given; but some -

idea of the genéiél theory will Se indicated from place to place. For a more

‘ rigorous and complete presentafion of Lie transforms, the work of Cary5 may
be cdnsulted.

The level of knowledge of Hamiltonian mechanics required for this paper
is that of a graduate level course in classical mechanics; For the less
experienced reader, a section on Hamiltonian mechanics has been included
which can serve as é reminder or a reference for certain basic, well-known
facts. Nevertheless, there is no pretense that this survey is complete.

In fhe'development of Lie transforms, a few theorems of Hamiltbnian mechanics
are required wﬁich are not so well-known. These will be developed énd proved

as they are needed.

[d]
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‘2. Ordinary Differential Equations In Classical Mechanics

In this section WeidiSCuSS some mathematical properties of ordinary
differential eqﬁéfions which are relevant to claséical mechanics, and especially
those properties which will be needed for later developments in this paper.

We bégin by emphasizing the fruitfulness of thinking in terms of first order
differgntial,équationé. A phése plane analysis is given of a differential
equétion Arising in a physical context in order to show the power.of tﬁe

phase space concept: We next define autonomous.and non—autohomous systems,
and discﬁss the differéncés. Then we establfsh the connéction between systems

of ordinary differential equations and families of mappings of phase space

~onto itself. Fihally; we discuss constants of integration, and their use

as a means of solving differential equatioms.
A central mathematical problem of classical mechanics is the solution

of systems of ordinary differential equations. If these equations are derived

- from Newton's laws or from a Lagrangian formulation of mechanics, then they

will typically be second order differential equations in the independent
variable, which is time. On the other hand, the méthémétical tﬁeory of
differential equations is best deveioped around systems which are first
order in the independent variable. There is no loss of generality in.such

a development, since any system of differential equations of any order

can be easily transformed into another system of first order.equations. In

physical applications, the change from a system of second order differential

equations to a system of first order equations most often corresponds to a

- change of interpretational emphasis from configuration space to phase space.
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The phase space in question may be the familiar phase space of Hamiltonian

‘mechanics, or it méy be something somewhat more general, as the following

example_will show.

As an exémplé to illustrate the great conceptual utility of phase space,
we consider the motion of a body falling near the earth's surface, subjecf
to a frictional drag due to the atmosphere. In order to make a simple
model of this physical system, we assume that the motion is purely in the
vertical direction, and that thé force of friction is proportional to the
velocity. We let x represent the height of the body above the ground, and
we let m, k and g represent respectively the mass of the body, the propor-
tionality constant in the friction law, and the acceleration of gravity.

Then Newton's laws give the following differential equation for the motion:

m X + Kk X+ mg = O _ . (2.1)

Although this equafion is easily solved in closed form, we wish instead to
analyze it in.phase space to gain information of a qualitative nature about
the solution. |

The configuration space implied by (2.1) is one-diménsional. We may
transform (2.1) into a pair of coupled, first order differential equations

via the substitution

(2.2)

which gives for the transformed set

x = v

. 2.3

2.2

e
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2.3

The two-dimensional (x,v) space in which the solution to (2.3) evolves may

'be considered to be a kind of generalized phase space. By "generalized"

we mean that there is no necessary connection with Hamiltonian mechanics;
the phase spacevin question is nothing more than a compound configuration-
velocity space.

A number of properties stem from the fact that the system (2.3) conﬁists
of first order equations. We note that a complete set of initial conditions
for the system (2.3) consists of a point (xo,vo) in phase space. It does not
matter at what time the initial conditions are given, since the rigﬁt—hand
sides of.equations (2.3)'ére independént of time. Thus, there is a unique
trajectory passing through every point in phase space. This property is
not shared by configufétion space, where many trajec;ories will pass through
a given point. One can use this property pf phase space to assign a vector
to each point, indicating the direction of the trajectory passing through
that point and, by-itsvmagnitude, the rate of the flow along the trajgctory.
In other words, a set of first order differential equations such as (2.3)
caﬁ be used to define a vector field in phase space, representing the flow
generated by the equations.

.The flow field of the set (2.3) is shown graphically in Fig. 1. 1In this
figure, the flow vectors have all been normalized to a standard length, so ;hat
the vector field shows only the direction of the flow, not its magnitude.

In order to emphasize the value of the phase space concept, we_note.the
following properties of the ;ystem (2.3) which can be seen from Fig. 1.
First, the invariance of the flow field with respect to translations in the

x coordinate is obvious. This fact can be used to construct a constant of
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2.4

integration. Next, we see\that there is a limiting velocity v, given by
v, = Bk (2.4)

No matter what the initial conditions, all trajectories evolve so that.the
velocity approaches -~V as t > », This is the terminal velocity for fall
in the atmosphere. A body falling with v > vy is'accélerated downward,
while one falling with v < -v

0

by the atmosphere. Finally, we note that the shape of the actual trajectories

is accelerated upward, i.e. its fall is braked

can be filled in by eye by looking at the flow field. Although it happens
that (2.3) can be solved in closed form, it is easy to imagine slight modifi-

cations to (2.3) which would result in a system that could not be easily

solved. The plot of the phase flow, however, would hardly be any more

difficult to generate or interpret.

We return now to the more géneral problem of an arbitrary set of ordinary
differential equations} It is easy to see that by some simple substitution,
analogous to (2.2), the set can be transformed into a system of first order
equations which describe a flow in a gengralized phase space of some finite
dimensionality. We denote the dimensionality of the phase spaée by D, and
we let z be an D-vector which represents a point in that space. The flow
field will be a D-dimensional vector field, ﬁhich we denote by E(g,t); in

general, it will depend'explicitly on the time., The equations of motion

will take on the following very general form:

2 = F(%,t) (2.5)

In the case that the functions F are independent of time, the set (2.5)

is said to be autonomous. (In Hamiltonian mechanics, an autonomous set
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corresponds to a conservative system.) For an autonomous set of differential

" equations, there is a unique trajectory passing through every point of phase

space, as in the.examble just given above. Furthermore, different trajectories
never intersect.one andther, although a given trajectory may close on itself,
in the form of a smooth, simply connected 1oop.* For a non-autonomous set,
noﬁé of these properties hold, since the flow field changes as time progresses.
In a later section we.shall use non-autonomous Hamiltonian equations of motion
t; generate canonicél,transformations.

It is frequently useful to associate the system (2.5) with a family of
mappings of phasé épgée onto itself.. To make this corfespondence, consider

0
condition).. At a later time’t1 the phase point z will have evolved along a

some initial time t_. and some initial point in phase space z = zg (an initial

trajectory to a new position z = 2z If the initial point z. is now regarded

l'v 0
as a variable which ranges over all of phase space, then we have associated
with the set (2.5) and the two times to and tl a certain mapping of phase

space onto itself, which we denote by M(to,tl). To illustrate the action of

this mapping we write
%2, = M4, t) 2 (2.6)

This mapping can be regarded as a time evolution operator.

For an autonomous system of differential equations, the associated

mapping of phase space onto itself M(t.,t.) depends only on the time difference
. 0’1 . .

T = ti—to. Furthermore, the set of all such mappings for all possible time

differences 1 forms a one-parameter Lie group, in which T may be chosen as

*These two statements depend on certain continuity and differentiability
requirements on the functions F. These requirements almost always hold for
systems of physical interest, except possibly at singular points such as the
origin in the Kepler problem.



the parameter. The group multiplication law is expressed by

M(.,_—J M(Te) = M (T, +7T2) o (2.7)

This result is intuitively obvious; in a later section, a similér line of

reasoning will be followed.in the development of direct canonical transformatiéns.
Let us now conéider the actual solution of a system of differential

equatipns such as (2.5). Of course, the general solution for arbitrary

functions F cannot be written down, but the general form will be

g = Y(a:t) (2.8)

In this expression the vector 2 represents the D constants of integration
which necessarily appear in the general solution, and Y is a vector function
which causes the differential equations to be satisfied. The constants of

integration may be the initial conditioms Zg at some time to, or they may be

~other quantities of interest, such as the energy, momentum, etc,

It is often useful to consider the inverse of (2.8). Regarding the time
t as a parameter, (2.8) can be inverted, giving the D quantities a as functions

of the D quantities z. The result is a relation of the form
a=Alz,1t) R (2.9)

This expression shows that the constants of integration can be regarded

as time-dependent phase functions. Alternatively, we can interpret (2.9)

as a time-dependent change of variables, taking 2 into a, and taking the set

of differential equations (2.5) into the new set

0 (2.10)

.
0
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2.7

Of course, it is trivial to solve the new set (2.10).

Cleafly, finding the transformation of variébles (2.9) is equivalentk
to solving the original system of equations. Indeed, thé whole ovaamilton-
Jacobi theory is built around this idea, that differential equations can be
solved by finding the righfvcoordinate transformation. This philosophy will

be further developed in the next section, where we discuss Hamiltonian mechanics.
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3. An Overview of Hamiltonian Mechanics

In this section we review somé standard results of Hamiltonian mechanics,
and we introduce some notation which, while not quitevstandard, will be useful
for later work. The reviewvof Hamiltoniaﬁ mechanics presented here is not
intended to be complete; it is only included in order to enhance the continuity
of the presentation of this paper. In particular, we only state, and do not
prove, certain well-known theorems. For a more thorough discussion of Hamil-
tonian mechanics, the standard references6’7’8 on classical mechanics may
be consulted.

In the last section we used the term ''phase space" to mean a compound
Aconfiguration-velocity space, or, more loosely, any space in which the evolution
of a system of first order differential equations takes place. In ﬁhe context
of Hamiltonian mechanics, the term phase space Has é more restricted meaning,
which we now proceed to elaborate upon.

Hamiltonian phase space always has an even number of dimensions, which we
denote by 2N. The quantity N is called the number of degrees of freedom. A
point in phase‘space is represented by a 2N—ve§tor.i. it is customary to
divide the 2N components of z into N components, called the q's, and N more
components, called the p's. The q's and p's can be regarded as two N-vectors,

-

q and B- The convention we shall adopt for the decomposition of z into q

~

and p is as follows:
~ .

AN

(zl,..",zN,zN+l,..{,22N)
(qu AL ’qN’pl’ LR b' ’pN)
(q’p) ) : (3.1)

i}

~ o~
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3.2

The q's are called generalized coordinates and the é's generalized momenta.
We shall often call the z's, including both the q's and p's, simply
"coordinates",'meaning codrdinatés in phase space.

In Hamiltonian.mechaﬁics,‘the equations of motion for the coordinates
z or (q,B) take on a special form. The equations of motion are derivable from’
a certain scalar function on phase space, the Hamiltonian, denoted by H(q,B,t).

In general, the Hamiltonian will be time-dependent. The equations of motion .

are given by

o)
x

i sy
. (3.2)
e _ _ oH
L= 2

?

These equations are a special case of (2.5), in that the functions E appearing
there can be written in terms of the derivatives of the scalar H. This is’

a strong restriction on the form of the functions E, and gives rise to numerous

propérties of Hamiltonian systems which are not shared by more general sets

of differential equations. 1In view of these properties,.flow fields F which

have the form of the right hand side in (3,2) are called Hamiltonian flows.
It is customary to derive the Hamiltonian equations of motion (3.2) by

proceeding from a Lagrangian through the Legendre transformation. Here they

have simply'been posited, in effect as a definition of a speéial case of

systems of first order differehtial equations. This has been done for several

 reasons.’ First, it is assumed that the customary procedure is familiar.

Next, we wish here to emphasize the connection between Hamiltonian mechanics

AN
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and the theory of ordinary differential equations, as outlined in the last

" section. And finally, we want to play down the interpretation of the Q's

as physical coordinates and the p's as physical momenta, since canonical
transformationé'ﬁill~in general mix the q's and p's in such a way as to make
this interprétation no longer valid.

It is often convenient to employ the symbol z for a point in phase space,
instead of the more usual (g,g). Not only does this notation treat the q's
and p's dn an equal footing, thereby giving rise to more compact formulas,
but it also clarifies the connection with the theory presented in section 2.
Nevertheless, the ﬁsual (2,2) notatidnvis sometimes more transparent, and in

this paper we shall use the two notations interchangeably. 1In this section,

~we will present the standard theorems of Hamiltonian mechanics in both the

(q,p) notation and the z notation.
~ ~v
- We begin with the equations of motion, (3.2). To rewrite these in the
E'notation, it is convenient to introduce a certain 2Nx2N matrix y, which

is defined by its partition into four NxN matrices:

Y= |- o | (3.9)

fo y. 2 | L (3.43)

_ aw, | .
Z; = Z Yy 3 | | (3.4b)

3.3
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The following properties of y are important to note. First, the components

~

of y are real constants. Second, Y is antisymmetric:

~
~

Yy = - Yii - - (3.5a)

And finally, vy is orthogonal:

2N .
Y Yie = Sk (3. 5b)
i=4 . ‘ .
Equations (3.2) or (3.4) are special uses of the Poisson Bracket. In
(q,p) notation, the Poisson'Bracket‘is defined as follows. Given any two
* .
phase functions A(q,p,t) and B(q,p,t), the Poisson Bracket of these two

functions, written {A,B}, is another phase function, given by
N/ aa 23 3A 2B |
{A,3} = Z( 24 3p g Bg;j (3.6a)
. a=4 :

In z notation, the definition of the Poisson Bracket reads

- 2A 2B o
{a,} = X %2 (3.6b)
or, in component form,

' 2N A B '

A 3 2B ‘
{a,B} = E AR 7 - (369

) 4 ' _ : S
=1

* . .
" By ''phase functionv we mean a real-valued function on phase space, which may
depend additionally on time.. For functions of physical interest, the term
"dynamical variable" is virtually synonymous.
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3.5
Using the Poisson Bracket notation, the equations of motion (3.4) can be -
cbmpactly written as follows:
¢- {z,4 (3.7
_ : v *

The Poisson Bracket has the following important properties. For any
phase functions A, B, C and for any real numbers A, u we havg, first, the
linearity of the PoiSson Bracket in its two operands:-

{AA+1B,C} = A{A,C} + u{B,C} ~ (3.8a)
{A,ABHC} = A{4,B} + u{A,C) (3.8b)
Next, the PoiSsoanrackef is anti-symmetric in its two operands:
{A,B} = -{B,A} | © (3.8¢)
Finally, it obeys the Jacobi identity:
{a,{B,C}} + {B,{C,A}} + {C,{A,B}} =0 (3.84)

We now introduce an alternative notation for the Poisson Bracket, which

will be of great use when we discuss the development of direct canonical

transformations in terms of their associated Lie generators. Since the Poisson
Bracket {A,B} is linear in the second operand B, it may be regarded as a
linear operator, specified by A, which takes the phase function B into the

new phése function {A,B}. We denote the operator by LA’ and write

= .
The properties (3.8) are exactly the prgperties required to classify the set

of all phase functions as a Lie algebra,’ with the Poisson Bracket acting as

the Lie product. The corresponding Lie group is the group of canonical trans-
formations,. : . '
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LAB = {A,B} ' (3.9a)
or LA‘= {4, } : . (3.9b)
The symbol L is a mnemonic for '"Lie'"; the L operators are elements of a Lie
algebra. To illustrate the use of the L operators, we transcribe properties
‘(3.8) into the alternative notation. First, the linearity property:
Lowatupy = My tulg | - G108
LA(AB+uC) = ALAB + uLAC : : (3.10b)
Next, anti-symmetry:
LAB = —LBA . (3.10c¢)
Finally, the Jacobi identity:
[Lyolgd = Lia,m) | | - 3.109)
In (3.10d4) the sQuaré brackets represent the usual commutator of two linear
operators.
We now recall some facts about canonical transformations, and develop
upon them. A coordinate transformation of the form
q' = q'(q,p,t)
- (3.11)
p' =p'(q,p,t)
is said to be a canonical transformation, by definition, if the following
relations hold:
Ial " = v 1} =

|
(=]

] ' - : v [ (i,j = 1,...,N), ‘ (3.12)
fajspyd = -lpyra5) = &y, B |
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This definition is transcribed into z notation as follows. The transformation

z' = 2'(z,t) (3.13)
is canonical if
N B f =
{zi,zj} Yij (i,j =1,...,2N) (3.14a)
i.e., if"
1” .. I_ !
v 2%y Y«i Az - Y v _
2%y 0Z¢ (3.14b)
L7 I . :
=94

Canoﬁical transformations have the following properties. First, the

Jacobian of a canonical transformation is unity:

'zl .
de’c[a” ] =1 - (3.15)

3%

This fact is of use in transforming denéity functions in phase space to a new
set of canonical coordinates, since it implies dg = dg'; It élso,means that
every canonical transformation has an inverse. Concerning the inverse we have
another property:* the inverse of a canonical transformation is also a canonical

transformation, i.e. if (3.14b) holds, then we have

2N ' oo
22i vy 24 -y . (3.16)
3ZK. 321 )

(S

=41

* » v
This property and the next one are required in the proof that the set of
canonical transformations forms a group. :
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3.8
Finally, we have the important property that the product of two canonical
transformations is another canonical transformation. That is, if z > z'
and z' + z" are canonical transformations, then so is z +z".

Canonical transformations and the Poisson Bracket operation are closely
connected. We note here one important relation between the two, namely, the
invariance of the Poisson Bracket with respect to canonical transformations.

By this we mean that if_a-+ 5' is a canonical transformation, then
A . 2B 2A 2B
a3} = oF .lf °% <= 3z’ Z Z’ (3.17)

Thus the value of a Poisson Bracket expression is independent of the set of

canonical variables whiéh are used to compute the derivatives appearing therein.
The imﬁortance of canonical transformations lies in the following theorém.

We consider a Hamiltonian H(E,t), and a possibly time-dependent coordinate

traﬁsformation z > 5'. Due to the time evolution of the coordinates 5 eﬁgendered

ﬁy H(E’t) through the equations (3.4), there will be a corresponding time |

evolution of the new coordinates g'. The theorem in question states that there

will exist a function K(z',t) such that

2N

L) x-' __—.aK

g: = 9 ?E, : | - (3.18),
i=1 ' :

. *
if and only if the transformation z > 5’ is canonical. In other words,

it is only under canonical transformations that the form of the Hamiltonian

*
Strictly speaking, for this theorem to be true as stated, the definition of

canonical transformation (3.14) should be modified by replacing Yy OO the

right hand side by_cyij, where c ‘1s any non-zero constant. See réferences 7 and 8.
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equations of motion is preserved.

Although this theorem ensures the existence of a new Hamiltonian K under
a canonical transformation, it does not say how to find the functional form’
of K, given H and the transformation in question. 1In the special case of a
time-independent transformation, however, the answer is simple: the old and
new Hamiltonians are numerically equal, i.e.

K(z',t) = K(z'(3),t) = H(z,t) (3.19)

The case of a timeQdépondent transformation will be postponed for a moment.

: Consider now the question of how to generate canonical transformations,
which are so important in Hamiltonian mechanics. The standard method is to
use‘mixod—variable ganarating functions, as we shall call them in this paper.
There are 2N types of these functions,10 although we shall concentrate on only
one type, the one called F2 by Goldstein.11 This generating function is a
function S(g,g',t) of the old coordinates and new momenta, and possibly the time,

and it generates a canonical transformation via the prescription

(3.20)
2S5 : f

¢ = ==

- ’

~

Note that the relations (3.20).express the old momenta and the new coordinates
.as functions of the new momenta and old coordinates. When the relations
(3.20) are solved so as to express new variables strictly in terms of old

variables, as in (3.11), or vice versa, then the result is always a canonical
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transformation. ‘

We give here a very simple example of a mixed variable generating function,

namely
s(q,p") = q.p' (3.21)

It is trivial to show that this function generates the identity transformation.
If the canonical transformation generated by (3.20) is time-dependent, it
is possible to express the new Hamiltonian K(q',p',t) in terms of the old
N o

Hamiltonian H(q,p,t) and the generating function S. The relation 1is

~N o~

K(g,p'8) = Wlg.p.t) + X S(‘i,g’,’<) | (3.22)

~ ~ -~

Note that old and new variables are mixed throughout this expression. This
formula generalizes (3.19) to the case of time-dependent transformations.

We have called the function S appearing in (3.20) a "mixed variable"
generating function, because it mixes old and new variables. This terminoiogy
is not standard, but is used here to distinguish this type of generatiﬁg
functions from Lie generating functions, to which we devote a later section
of this paper.

We turn now to a discussion of Hamilton-~Jacobi theory.12 In this paper
it will never be necessary to solve the Hamilton-Jacobi equation, because the
required solutions will either be obvious from inspection or else they will
be standard and well-known. Nevertheless, from the standpoint of understanding
the basic principles involved in our presentation of perturﬁation théory,

Hamilton-Jacobi theory is very helpful. Therefore the following material,

if not already familiar, can be regarded as primarily of enrichment value.
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In section 2 we discussed the idea that a system of differential equations
could be solved by finding a coordinate transformation, such as (2.8) or
(2.9), in whiéh the new coordinates are all constants in time. 1In the context
of Hamiltonian mechanics the éame idea can be employed, although now the
coordinate transformation must be a canonical transformation. It is in fact

‘always possible, at least formally, to find a canonical transformation (q,E) -+
(q',g') in which the old variables evolve according to some given Hamiltonian
H(q,E,ﬁ) and in which the new variables are all constan;s. The mixed variable
generating function S(i,g',t) for this canonical transformation satisfies a

certain partial differential equation, the Hamilton-Jacobi equation:

29 28 _ '
H(gq, $=.4) + 5% =0© (3.23)

-~

H

The canonical transformation generated by S gives, for the new Hamiltonian K,

w(a’, f"{> =0 | | (3.24)

~

From this it follows that the new variables (2',2') are all constants in ﬁime.
The generating function S which satisfies (3.23) is called "Hamilton's Principal
Function'.
In the case of Hamiltonians H(Efg) which are independent of time there

is a slight modificatién of the procedure.outlined above which is often useful.
Instead of seeking a transformation (S’E) > (i',g') such that the new Hamiltonién
K vanishes, one seeks a transformation such that the new Hamiltonian K depends
only on the new generalized moﬁenta, and is independent of the new generalized

coordinates;:

K = K(p") - (3.25)
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This form for K ensures that the new generalized momenta p' are constants of

~

the'motion, and that the new generalized coordinates q' evolve linearly in time:

~

K ,
YW = 3t v 4 (o) (3.26)

The generating function W(q,p') for this transformation is called "Hamilton's

Characteristic Function', and it satisfies
Y = k(¢ (3.27)

The relationship between (3.27) and (3.23) is very similar to the relationship
between the time-independent and time-dependent Schrldinger equations, respec-
tively. For this reason we will call (3.27) the time-independent Hamilton-
Jacobi equation, although this terminology seems not to be standard.

Since the new momenté p' are.constants of the motion, any functions of. the

~

B' will also be constants. Therefore there is great arbitrariness in the choice
of the B', since any invertible functions B" = R"(R') can serve equally
well as new momenta. This arbitrariness is reflected in fhe fact that the
functional form of the new Hamiltonién K(R') in (3.27) is unspecified. One
can, in fact, choose this functional form virtually at will. One possible
choice is to let K be equal to one of the new momenta, say pi.

For periodic or.multiply periodic systems, however, it is common to choose
the new momenta p' to be the so-called action variables J. The action variables

g

are defined by

| | |
To = 5= O Pdy . (3.28)
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where the (qi,pi) are one pair of original coordinates in H(q,p). In order

that the J, given by (3.28) be constants of the motion; it is necessary that

i
the Hamilton-Jacobi equation (3.27) be separable in the coordinates (2,2).

In practice, this does not constitute a restriction on the usé of ‘action
variables J as new momenta, Beéause the Hamilton-Jacobi equation is only
solvable in the case that it is separable. Since the new momenta are specified
by (3.28), the functional form of K = K(g) will also be specified. This
specification will be unique unless there is more than one set of éoordinates
(S’B) in which the Hémilton—Jacobi_equation is separable.

The new generalized coordinates g: which are conjugate to {Iare called
angle variables, and ére denoted by 8. Thus the coordinate transforﬁation
generated by W(g,g), the solution to (3.27), takes thé form (2’2) > (9,{).

The new variables are colledtively called "action-angle variables'.

We will now give, without a detailed derivation, the action-angle trans-
formation for the hafmonic oscillator. This is done pa;tly to illustrate
some features of Hamilton-Jacobi theory, and partly because the harmonic

oscillator will enter into examples later on. We begin with the harmonic

oscillator Hamiltonian in the form
2 22
H(q,p) = (" + w'q") (3.29)
The action variable J for this system is

S

w

L

H(q,p) (3.30)
/3]
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Hence, the new Hamiltonian has the form

K=uwl . : (3.31)

Then, the time-independent Hamilton-Jacobi equation for the generating function

W(q,J) reads as follows:

' 2072 z.vi)z .
1<% ( 3q :, - (3.32)

i
£
Yy

Finally, the solution W to this equation yields the following canonical

transformation, the action-angle transformation:

qu -%: sin O

(3.33)

’P:'VQCO.T Cose

Evidently, solving the Hamilton-Jacobi equation (3.23) or its time-inde-
pendent form (3.27) is equivalent to solving the original set of equatioms,
(3.2). In practice, however, the Hamilton-Jacobi equation can be solved only
in those cases where the original system (3,2) can be solved. Nevertheless,
this does not mean that the Hamilton-Jacobi equation is useless, as will be

shown in later sectionms.
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4.1

4. An Overview of Non-Hamiltonian Perturbation Theory

There are very few dynamical.systems in classical mechanics which can
be solved in closed férm in terms of well—kndwﬁ functions. Therefore for
most problems iﬁ.is necéssary to develop the solution as some kind of
infinite series, of which several types will be investigated here.

in this section we will discuss systems of ordinary differential equations
without reference to Hamiltonian mechanics. Although the thrust of this
paperlis'airected at Haﬁiltonian systems, there are several reasoné to
include the more general case in the discussion. First, there are many
examples in the 1iﬁera£uré of perturbétion methods applied to s?stems of
differential equations, without using any.Hamiltonian formalism. Often
. these éystems are; in'fact; derivable from a Hamiltonian, i.e. they represent
Hamiltonian flows in phase space, but the authors have simply chosen not
to use Hamiltonian methods. And sometimes the equations cannot be derived
from a Hamiltonian.” Second, a treatment of general systems helps clarify
some of the steps taken in Hamiltonian systems, such as_the introduction.
of éction—anglevvariables. And third, a general system of differential
equations is, after all, more general than the special éase of Hamiltonién
systems.

We begin this section with a discussion of infinite series develdéed
in'péwers of time, and ﬁoint out the drawbacks of such a development.'
Then we turn to power series in a small parameter €, describing an_ expansion
about a solvable problem. We‘discuss at length the desirability of sub-
jecting Systems of differential equations to a preparatory transformation,

analogous to an action-angle transformation in Hamiltonian mechanics, before



4.2

performing any perturbation expansions. This transformat@oﬁ is illustrated
by the example of the pendulum. Next we describe the method of successive
approximations, and actually carry it out for the pendulum system. We
discuss in detail a short-cut through the method of successive approximations,
called the method of averaging, which is frequently used in practice. Finally,
we discuss secular terms and their significance.

Let us consider solviﬁg a set of differential equations by developing

a power series in time. We begin with (2.5), which we reproduce here:

g = F(g,t) | (4.1)

This equation can be differentiated with respect to time, and by substituting

(4.1) into the result, we can obtain Z as a function of z and t only:

. D
w“ ?F, 2:: 2 3F
., = —_— 2 [
% 2t v
Jsd J

) .
. Z’ £ 9F:
J=1 J : .

Repeating this process, the third derivative g can similarly be expressed

as a function of z and t only:

W 9K PF ’
N E [ Fe 2828 o FfF, 26 (4.3)
“ 21, 2% TS
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Clearly, this process can be continued to any order, and hence the derivatives
n . :
.dnz/dt for all n can be expressed as functions of z and t.
If we are now given some initial conditions, say z = 2z, at t = t_, then
. ) ~ ~0 0 ‘

equations (4.1) to (4.3) and their generalizations allow us to compute é(to),

g(to), etc., and hence to develop E(t) in powers of t—tO:
. £ -t - o
g(t) = 2(+) + (4-+) E(te) + £___2_'l o) 4. o (4.8)

Thus we have a solutidn of the original set of differential eduations
(4.1) for some time interval centered around t = to.
Iﬁ practice, thé sélution (4.4) is not completely useiess, but it is
a last resort. Even in cases where (4.4) has a large circle of cbnvergence,

its practical computational value is almost always restricted to very short

time intervals. It is possible to use (4.4) and a large number of short

time intervals to span a large time interval, and this is in fact what is

done, with various modifications in the name of efficiency, in almost

eVery algorithm for the numerical integration of differential equationms.

But the fact remains that developments such as (4.4) are best suited for
the production of tables of numbers, ahd not for gainingAanalytic insight
into the true solution.

In theoretical applications, péwer series developments such as (4.4) are
sometimes very useful. For example, if a power series converges on some
interval, then it uniquely defines an analytic function. Thus power series

are useful in existence and uniqueness proofs. In this paper, we will use

- an expansion almost identical to (4.4) in our development of direct canonical

transformations, and it is for this reason that we have discussed series
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solutions of this type.
For many physical systems it is possible to develop other forms of

infinite expansions which offer great improvements over the form (4.4).
These are physical systems which are "close", in some sense, to a system
which is solvable in closed form. The differential equations representing
such systems will generally have the form

z = F(z,t,¢) : ' (4.5)
where € is a small parameter, and where the system

5 = F(z,t,0) (4.6

is solvable. Systéms which cannot be put into the form (4.5) are usually

relegated to numerical study.

For fhe remainder'of this section we will restrict the form (4.5) in
seQeral important ways. First, we assume that the flow functions F are
independent of time, i.e. that the system of differential equations is
aﬁ;onomoUs; Néxt,,we make the mild assumption that Elcgn be‘expanded in a

power series in e, which we write as follows:
£ = E(z,€) = E(2)+ ef(3) « € ER(g)+.. 4.7

The term E taken alone generates the unpertufbed trajectories, for which

0
we assume the solution is known. Finally, we assume that the unperturbed

M N - .
motion is periodic. This is the most important assumption we make.

We impose these restrictions because our main purpose in discussing

non-Hamiltonian perturbation theory is illustrative. In spite of these

restrictions, however, the class of systems we shall study in the remainder
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of this section is very common in pfactice, and many important features of
perturbafion theory are illustrated by it. Cértain_generalizations, su;h as

to systems whosg.unperturbed-motion is multiply periodic (e.g. the solar system),
are relativel& éasy to éffect. for these we refer the reader to the literature.

It is useful to form a geometrical picture, due to Kruskal,13 of the class
of systéms we shall bevstudying. We denote the dimensionality of phase space
by D, so ;hat 2z is a D-vector. Since we are éséuming that the unperturbed
motioﬁ is periodic, the uﬁperturbed trajectdries will be closed loops, one
of which passes thrbugﬁ every éoint of phase spaée. It is easy to see that
it will take D-1 quantitiés to specify an unperturbed loop, and one quantity
to specify a point on a particular loop. ‘The latter quantity can bé chosen
to be én.ang]e—iike vériab]e~§ith period 2w; this quantity‘evolves monotonically
in time under the action of thevunpefturbéd system. The D-1 quantities which
identify a particular loop are all constants of the unperturbed motion. We
dd not assume that' the motion around the loops is uniform,.in any sense,
or that the period'of the motion is the same from one loop to another.

When carrying out a perfurbation expansion it is best to use a set of
coordinafeé whicﬁ is "natural" to the unperturbed system. For the class of
svstems we are conSidering here, the nétural set of coordinates is dgscriptive
in a réther obvious way of the unperturbed 1oops.b We denote some choice
of the D-1 quantities which identify the unperturbed loops by Y which is a
(D-l)—vectdr. In addition, we denote the angle-like variable specifying
a posifion on a particular 1oép by 6. Altogether, the unperturbéd ioops
allow us to define a certain coordinate transformation, z (Z,e), which
prepares the system of differential equations for a perturbation analysis.

We will call this transformation the "preparatory transformation'; in
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Hamiltonian mechanics, its analog is the action-angle transformation for
‘the unperturbed system.
When the preparatory transformation is -apolied to the system (4.7),

the equations of motion take on the following form:

n

€ G (40 + € Gz (y,8) + ...
&lg) + € &ly,0) « € &, (4,0 + ...

3
(4.8)

6

Here the functions G QZ’ etc., are (D-1)-vectors. Note that there is no

ul"

term G, since the D-1 quantities y are all constants of the unperturbed

0’ A
motion. In terms of the variables (y.6), the unperturbed motion consists
’ ~
of an evolution in 6 only. Later we shall give an example of the preparatory
‘transformation; for the time being we simply note that it can be obtained

in CIQsed.férm, since the‘uﬁperturbed system is assumed to be solvable.

Now we consider, on general topological grqunds, the effects of the
perturbing terms’gl, @i, etc., in (4.8). Generally, there are two possibilities.
It may happen that the perturbing terms will distort and change the freqﬁency
of the unperturbed loops, but will not break them. That is , it may happen
that the true perturbed motion is perio&ic like thé unpérturbed motion.

This is shown schematiéally as Case A in Fig. 2. Alternatively, the perturbing
terms may break the loops, converting them into helices. 1In this cése one

has "drifts", since one.can consider the true, perturbed motion as consisting
of a slow drift of the unperturbed loops. through phase space; This case is

shown as case B in Fig. 2.

*

In genefal, the term in ¢, will depend on 6 as well as y, but this dependence

0
can always be transformed away. See Ref. 13.
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"F16, 2. THE EFFECTS OF PERTURBATIONS
ON PERIODIC MOTION.

Case A.

Let us now'také an example of a system of the typé described above and
sﬁbject it to a preparatory transformation of the form z + (Zfé)' We choose
for-bur example the pendulum, first, because it is a simple e*ample of a
non-linear oscillator, and second; because it has remarkably wide applications.

We set up tﬁe pendulum problem as follows. Fig. 3 defines the variable X,
which is the angle the pendulum shaft, assumed to be massless, makes-
with its lower equilibrium position. Letting m, R and g represeht
the mass of‘the pendulum bbb, the length of the shaft andtthe
acdeleratiop of gravity, respectively, we can immediately write

down the kinetic and potential energies of the system:
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F1c. 3, PENDULUM VARIABLES.
T imR%?
V(%) = ‘V"\SR(\—Cost) (4,9)

By using, for example, the Euler-Lagrange equations, we get for the-

equation of motion

M 2 . . .
x= - SnX | (4.10)

where-
W, = ® : ‘ ‘ S (4.11)

is the frequency of small oscillations.

Equation (4.10) can be brought into the form (4.7) as follows.



First we define v = i, in order to transform (4.10)into a coupled set of

first order differential equations:

. }
= -wg sinx | ' (4.12)

e R

Next, we choose to consider only small oscillations, and to treat the effects
of finite amplitude as a perturbation. (We exclude the case of amplitudes
which are so large that the pendulum swings over the top.) To do this, we

consider x to be a small quantity, and expand outs the sin function in powers

4.9

of x:
w = v
. 2 L3 4 1 S _ ) (4.13)
o = _wo(x_ bx - \20 x tee ) . .

Finally, we artificially introduce a parameter ¢ into (4.13), in order to
remind ourselves which quantities are to be considered small. We do this in

the following way:

X =YV

. 3 z
v o= —U:x -+ %Q:x --\—i—o—wo‘!s-&...

Evidently, every power of € corresponds to two powers of x, i.e. e= 0(x2).
Since € is just a formal device for keeping track of the relative magnitude
of terms, it can be set to unity at the completion of a perturbation expan-
sion. Such an artificial introégction of a smallness parameter is common in
perturbation theory. |

The system (4.14) is now in the form indicated by (4.7). The vector z

(4.14)
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corresf)ond; to the components (x,v); phase space is 2-dimensional.

We next want to consider the transformation of the system (4.14)into the form
indicated by (4.8). To do this, we first require a proof that the unperturbed.
system is periodic.

This proof is easy. The unperturbed system is a harmonic oscillator:

=¥ } (4.15)

n = -CA)':%

The general solution to this is

x = A sin (0t + &)

, (4.16)
wo A cos (wot ¢)

A

where A (the amplitude) and ¢ (the initial phase) are constants of integration.

The unperturbed motion is certainly periodic, and the loops in phase space
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which represent the unperturbed .trajectories are ellipses centered about the
origin, as shoﬁn'in Fig. 4. A given trajectory in pﬁase space,-i.e.va given
ellipse,‘is specified by the quantity A, and the quantity w0t+¢ specifies the
location of a phaéé‘point on that trajectory.

We now consider the transformation z = (x,v) > (Z,e). Since z is 2-dimen-
sional, the vector y will be l-dimensional, i.e. a scalar. According to the
discussion above, the quantity y must specify the unperturbed loop, and é
must spécify the position along tﬁat loop. From the solution developed for
the unperturbed system in the previous paragraph, it should be more than evident
that we waﬁt to identify y with thevampiitude* A and 6 with the quantity
m0t+¢0. Accordingly, we take as our ﬁransformation (x,v) »- (A,8) the following:

(4.17)

vo= Aw, CosQ‘

When this is substituted into (4.14) there results the following system:

. € .\t L3, - € 1,5 nS
A = c QA sin®0cos® - o wg A Sin 6 cos® + ... (4.18a)
6= @ - £, Ksin0 +,\§: Wy AY sin®0 - .. (4.18b)

Clearly, (4.18) is in the form indicated by (4.8), as required.
Let us now consider an actual perturbative solution to a system such as
(4.8). 1In so doing, it is not our purpose to present a complete perturbation
theory, free of pitfalls, for periodic systems of differential equations. Such
: . ' ’ oy 1
theories exist; they are associated especially with the names Krylov, Bogoliubov,
. . 16 13 . ,
Mitropolski, and Kruskal. _Instead, we want to develop a rather naive

perturhation method, which will illustrate certain typical qualitative results

& : :
Actually, any function of the amplitude A would serve equally well., C.f. the

action-angle transformation, (3.33), where the action J = mA2/2.



.4.12‘
and give us a quantitative basis with which to coﬁpare further work. We will
begin with the specific example of the»pendulum.

Let us return to (4.18), where we left the pendulum problem. It simplifies
later work to expand the trigonometric functions appearing there in terms of

; multiple angles, i.e. a Fourier series, and having done so we obtain

A= Sranh®(25m20 - sin 40)
- €% wZAS(5sin20 - 4 5w46 + sin 66) + 0(e?) (4.19a)
3840 .
6= W - £ wo At (3 — 4 0520 + cos40)

+ € WM (1
3840

48

(40~ 15 cos 268 +b cos48 —cos68) + 0(e?)  (4.19b)
It will be observed that the 0(82) terms are complicated. For the time being
we will focus our attention only on the terms through O(e), and the 0(e2) terms
will simply be incliuded for later reference.

The system (4.19) possesses a solution A(t), 6(t), which we seek as a power

series expansion in €. To do this we posit the following ansatz:

Ao (1) + e A + € A1) + ..

Al
(4.20)

8() = 6, (%) + € 6,(¢) 4+¢€20,() + ...

The subscripts on the right hand side of (4.20) represent the order of the
~terms. Note in particular that the symbols A0 and 60 are meant to represent
functions of time, and not initial conditions. The expressions (4.20) are
to be subsﬁituted into (4.19), all functions of (A,8) are to bé expanded out

as power series in e, and then terms are collected, order by order. When this

is done, there results, first at order zero, the following set:
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A° = 0 ’ . o
' . (4.21a)
o T W,
*
, At order ome: o
A = g do Ay (2 sin 28, = sin 48,)
. ' (4.21b)
6, = -4-16 woAt(3—4Ccs7.9° +co$49°) '
And at ofder two:
'i\z - .Lg 131\ A (25\n29¢ -"am49\) + 473 8, (cosZB - us49«)}
.-'"‘L’_" wvo (55"1230 - 4Sm46° + MnGB)
3840 ®
. . | . | _
9, = --;Ewo[ZA.A, ( 3~ 4cos26,+ cos49¢) +4A.9,(zs;“ 200 - sin49¢)]
(4.21c)

4

L — oK (10 - 15 cos 26, + b cos 4y - cos b))

Note that the. system (4.21) forms a hierarchy, in which the derivatives
of (A ,0 ) at any order are expressed purely in terms of (An,en) at lower orders.

Thus it is possible to solve for the functions (An,en) order by order, in an

iterative process.

Let us carry out this solution through first order. At order zero we have

. .
In this paper "order zero" will mean the term in eo, i.e. the term which is 0(1).

Likewise, "order one'" will mean O(e” ), etc.
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A ) = €, : ' (4.22a)
Bo(t) = wot + &, , (4.22b)
where C0 and ¢0 are constants of integration. Of course, this solution is
that of the unpertutbed system, the simple harmoﬁic oscillator. We now
substitute (4.22) into (4.21b) to get
L] z ’
A, = :’—;- /C: [2 ain 2(m°£+¢b - sin4(u;o-£+¢,)]
. . ' . _ ' (4.23)
- : 2 )
B = - % C,--[ 3 = 4eos 2(wot + d)) + cos 4 (ast+ cbo)]
Thesé can be immediately integrated to give
AR = C, + “\"q; [—4 cos 2(wot +&5) + cos 4 (ot +¢,)]
(4.24).

B,(t) = ¢>,'—__‘%[12a>,t -ssan_fz(m,,ud:,)+san4(wo4.+¢.)]

* .
where»Cl and ¢l are new constants of integration. Evidently, this process
can be carried to any order; for example, to get the second order solutionms,
we would substitute (4.24) and (4.22) into (4.21c) and then integrate. Due

to the substitution of lower order solutions into higher order equationms,

the procedure outlined here is sometimes called '"the method of successive

. approximations.”

We have in equations (4.24) a quantitative expression of the first order

effects of finite amplitude in the pendulum. Let us examine these equations

* ' :

It can be shown that all the constants which appear in this order-by-order
integration are dependent on only two constants, as required by the original
system (4.19). '
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to see what they imply physically.

First we look at the expression for A The term C1 will combine with the

1°
term Cy in (4.22a)to give Cd+eCl, which we may call C', another constant.
The only other terms in (4.24a) are oscillatory in time. Therefore, through

first order, we can write, for the time evolution of the quantity A,
. | 2,
A(t) = C' + e(oscillatory terms) + 0(e") (4.25)

We see that the effect of the perturbation on the duantity A, which is a
constant of the unperturbed motion, is simply to introduce small amplitude
oscillatioﬁs, and thaﬁ Fhe time average.qf the amplitude A is a constant
even in the presencé of the perturbation. This tells us that the pendulum
system is of the type célled.CaSevA in Fig. 2.

Actually, on physical grounds, we can expect the pendulum.to be of the
Case A type, without doing an& mathematics. Even for finite amplitudes, the
pendulum system is périodic, because it'swings between two turning points.
This means that the true trajectories in phase space must be closed loops,
and héﬁce the qﬁantity A, which is defined in terms of the unperturbed loops,
can never deviate very far from its unperturbed.value. Iﬁ particular, the true
trajectories cannot be inward or outward going spirals, nor can they be

loops which drift off.

In fact, the periodicity of the pendulum system, even for finite amﬁlitudes,
is a reflecfion of the fact that there is a time-independent constant of the
true motion, whose contoufs are'thg true trajectories in phase space. This
constant ié, of course; the energy, and‘it would appear naturally in a
Hamiltonian formulation of the penduium problem. For the time being we are

deliberately ignoring Hamiltonian mechanics, and as a result we have "missed"
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the energy constant.

We can, however, imagine a slight modification to the pendulum problem
for which no energy constant would exist, and for which Hamiltonian mechanics
would be useless. Suppose ﬁhat the pendulum experienced a small frictional
force, so that the swings were gradually slowing down. If we were to treat
the frictional force as an additional perturbation, we would find that there
would be another term in the expression for A(t), (4.25), which wbuld represent
a monotonic decrease in the amplitude. ‘The trajectories in phase space of the
true motion would be spirals slowly winding toward the origin, and we would |

have an example of the type of system called Case B in Fig. 2.

Next, let us look at (4.24b), the gquation for el(t), and interpret it.
The constant ¢l can be combined with the conétant ¢O to give a new constant
o' = ¢O+e¢l, just as was done for the constants CO and Cl' In addition to the
term ¢l, there are oscillatory terms, similar to those in the expressign for Al.

Finally, there is a term which is linear in time. Altogether, we can write for

the time evolution of 6,

() = ¢' + “)o(i - ._é_‘%:.)f + € ( osc{\\a*org ‘\’QVTMSB +. O(Ez) (4.26)

The effects of the perturbation on the quantity 6 are thus twofold. First,
there are small amplitude oscillations which are introduced; their time average
vanishes, and for the long-term qualitative behaviour of the system they are
unimportant. Second, the angle 6 no longer evolves, even on the average, at

-~

the frequency w,, but at a slighfly reduced frequency, given by

0,
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2 :
C 2
W= Wy ( 41 - € %) -+ O(G) (4.27)
By referring to (4.22a), we see that the true frequency w is dependent on
the amplitude A, and that large amplitude oscillatidns are slower than small
ones:
2
W = w,.(i— € -%-) + 0(e?) : -(4.28)

A frequency shift of this type is often an important qualitative efféct; for
‘example,vit implies ph#ée mixing in an ensemble of systems.
We have not meant to be cavalier in our dismissal of the oscillatory terms
in (4.24). Certainly, if one wants to find the position of the system at a
particular moment in time, these terms cannot be ignored. Buf for mény problems,
one is not interested in oscillatory terms, but rather only in the long-term
behaviour of the system, such as frequency shifts or drifts of loops in ﬁhase.
space. The problem of the adiabatic motion of a charged particle (the guiding
center problem) provides a good physical picture of this point of view. Typically,
one does not care about all the "little wiggles" in.the ﬁarticle;s motion, but
only about where the particle will drift to after some long period of time.
In-such cases, there is a shortcut through the method of successive approxi—
mations, as we have deveioped it for the pendulum problem, which leads directly
to the long-term behaviour of a system and bypasses all the oscillatory terms,
as well as ﬁost of the algebra.‘ This shortcut is called "the ﬁethod'of'
averaging", and it is described here because of its great intuitive appeal

and because of its frequent occurrence in the literature.

To illustrate the method of averaging, we return to the set (4.19), and
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1ook only at tﬁe terms through O(E). The ﬁrescription we follow is to.take the
0(e) expressiéns and simply throw away‘all'oscillatory terms. The result is
é.:iw;(ﬁ_—_e% . (4.29)
These equations contain all the essentials of the long-term behaviour of the
pendulum system, which we discussed above, but they omit the oscillatory terms.
Let.ué now look at the method of averaging in the context of the generél
system (4.8). We igqoxe.the terms of second and higher order, and focus only
~on the first order terms, gl(z,e) anvaI(Z,e). As we did with the pendulum
probiem, we expand the perturbing terms gl and ¢, in a Fourier series in 6,

1 1

which we may express as follows:.

Guly,8) = 2 Gan(y) €”
Mw a0 |
’ 4o .. (4.30)
th @ - )
§,(4.0) = Z & () e™

Then the averaging procedure is effected‘by throwing away all the terms in

the.series (4.30) except the ones corresponding to n = 0. The result will be

;é . € §1O(E)A
(4.31)

.

= @o(‘é) o € @10(":‘!)

We call (4.31) "the averaged equations".
Clearly, in order to apply the averaging procedure it is not necessary
to compute the Fourier coefficients-gln(y), an(y) for n # 0; only the n=0

coefficients are needed. These coefficients are given by
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k34 . )
Gao(¥) = 3";[ G, (y,0) 48 | __
° 4 (4.32)
2
§,.(s) = o= | &, (y,0)4d0

=

It is evident that Fhe left hand sides of these equations are the average
with respect to 8 of the perturbing terms, and it is due to this circumstance
that the'method of averaging derives its name.

The averaging ope;aﬁion, which is equivalent to the selection of the n=0
Fourier coefficient, is-of such frequent occurrence in this kind of work that
we present here a special notation for it. Given any function f(8), we define

the averaged function, f, as follows:

n

I - ;%; (o) de . (4.33)

(.}

The averaged fuﬁctioﬁ.f is independent of 6. Note that the averaging operator,
which we are deno;ing'by an overbaf, is a linear operator. I; is also frequently
convenient to have a notation for the compiementary'linear operator, which
selects out the purely oscillatory térms.v We denote this operator with an

over-tilde, and define it by
£(8) = £(8) -§ | (4.34)

In terms of this new notation, we can rewrite the averaged equations (4.31)

as foliows:

g - RIAE
, ' (4.35)
6= By + €3y
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Geometrically speakiﬁg, the first D-1 of the averaged equatioﬁs (4.35)
represent the drifts or distortions df the phasé'space loops in an approximate
sense, the approximation involved being the neglect of small amplitude oscillations.
And the last of tﬁé.averéged equations (4.35), the one in 6, gives the average
rate of rotatioh around these loops, in ﬁhe same‘approximation.

Thé intuitive appeal of the method of averaging comes from the fact that
if one simply_neglects all the oscillatory terms in the perturbing functions,
then Lﬂe resultiﬁg equations give the cofrect'time evolutidn, aparf from
oscillatory1terms, at least to first order in e. We héve shown this propefty
explicitly in the caéé:of the pendulum éystem, but it holds for the general
system (4.8) and (4.35) as well. It is on the basis of this intuitive appgal
that the'mgthod of averaging.is'frequently used in the literature, without
rigorous justification.

Lest the method appeaf too obvious, hpwever, we note the important fact
that the method of averaging, as we have presented it, does not in general
work beyond first order. That is, if one takes the original system (4.8),
and averages both the 0(e) and 0(52) terms, the resulting set of averaged
équations will not correctly describe the averagéd time eﬁolution through
0(52), Another way of stating this is to say that the process of averéging
and that of solving for the time evolution only commute ﬁhrough first order.

Let us néw return to the pendulum problem as an example of the method
- of successivé approximations, and consider ihe solution to secbnd order.

To effect this solution we mustltake (4.21&), substitute into it the expressions
(4.22) and (4.24), and then integrate. A simple inspection of these

equations immediately shows one important characteristic of the second order -
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results: they are very complicated. This complexity is reason in itself ’
for finding‘a better_method of effecting perturbation expénsionsvthan'thevmethod
of successive approximations. As Qe shall see, there is a better method, ét
.'least for Hamiltonién systems; it'is-tﬁe Lie transform method.

For the time.being, howevér, we want to focus on certain features of the
second érder terms without going through all the mathematical details. We
consider_the expression for Az in (4.21c), and concentrate'on the terms
involving 6 From (4.24b) we see that 8 coﬁtains terms proportional to time,

1’ 1

and thus AZ will contain terms proportional to

£ cos 2((&)0"& + Cbo)

and others similar to it. When these are integrated, there will result terms
like-

+ sin z(‘do{‘ + d>o)

Such terms are called secular terms, meaning that they are unbounded in time,

and their apﬁearance at second order constitutes a major shortcoming of
the method of successive approximafions. |
To see why secular terms are a proﬁlem, let us write out, schematically,
the solution A(t) through 0(52), as we did above in (4.255 through 0(e). We

will have

: A(t) = A0 + e(osgillatory terms)

+ EZ(OScillatory terms)

e + ezt(oscillatory‘terms) + 0(53) (4.38)
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Taken at face walue, the secular terﬁs at O(ez) seem to say that the true
trajectory in phase space experiences perturbative distortions, taking it away
from the unperturBed trajectory, which grow in time until there is a total
disruption of any resemblance to the unperturbed trajectory. And yet we
argued above on physical grounds, appealing to conservation of energy for both
the unperturbed and perturbed systems, that the function A(t) could never

evolve.very far from A_, its constant, unperturbed value. Hence we seem to have

0’
a paradox.

The resolution to the paradox_ié that (4.38) is good only for limited
amounts of time.* Invﬁarticular, as soon as times t have been reached which
are O(l/ej,lthen the 0(52) secular terms in (4.38) become comparable in
ﬁagnitude to the O(e) terms, and the entire series expansion in € becomes
goﬁputationally useless. On the ofher hand, if series can be developed which
are free from secular terms, then the € 6rdgring is good for all times, no
matter'how largé.

The Hamiltonian methods which we describe in following sections allow
for the easy development of series which are free from secular terms at
all orders. Our purpose here has been té demonstrate how secular terms may

arise in some perturbation approaches, and why they are a problem. Therefore

we will not dwell on means of getting rid of them in a non-Hamiltonian theory.

* ’ . ' :
When we write A(t) = A0 + eAl(t) + 0(62), we mean that there exists some

number M > 0 such that.
< M

tm | AW — Ao - €Ay
€% | €*

In general, the quantity M will depend on the value of t chosen. If we say
that the ordering is uniform, we mean that there exists some M = MO good for all
values of t, or, what is the same thing, that the function M(t) is bounded. ' The

ordering (4.38) is, by these definitions, not uniform in the 52 terms.
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This concludes our discussion of non-Hamiltonian perturbation theory.

The ideas outlined in this sectibn were largely developed by astronomers
during the eighteentﬁ and nineteenth_centuries. Newton used what is essentially
the method.of averaéing in his study of the effects of solar perturbations

on the mobn's orbit, apd he obtained expressions for the average rate of

drift of the line of nodes of the moon's orbit along the ecliptic. A precise
calculation ofrthis sorﬁ is‘essential.for the accuréte prediction of eclipses.
The mefhéd of successive;approximations was used by Lagrange and Laplace in
their study of the celestial mechanics of the solar system. These and later
workers wéfé especially troubled by the'appearance of secular terms, since
they wished to determine whether the solaf system is stable for indefinite
periods of-timé. This concern gave impetus to a study of meaﬁs of eliminating
secular';erms, and such means were found by Poincarél7 ét the end of the
nineteenth century. We shall study Poincaré's method in the next section;
essentially,'it involves'a kind of frequeﬁcy renormalization.

In addition ﬁo the problem of secular terms, there was another difficulty
which troubled workers in celestial mechanics during the‘nineteenth century.
This latter difficulty is the so-called problem of small divisors. We have
not discussed this problem. in this section, because it makes its appearance
only when the unperturbed system is multibly periodic, a case we have not
considered; The problem of small divisors derives essentially from the effects
of resonances between the different oscillators of the unpertﬁrbed systemn.

In recent years there has been importaﬁt progress invunderstaﬁding this
Vproblem, and in connecting it with studies in statistical mechanics and other

_ fields.
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5. Hamiltonian Perturbation Theory: Traditional Methods

Hamiltonian systems deserve special attention, both from a physical and
from a mafheméticgl point of view. Hamiltonian floﬁs in phase space are
associated with a remarkable structure of mathematical properties, some of
which were discussedvin‘seétioﬁ 3. Physically speaking, Hamiltonian systems
are in some sénsé_fundamental, even though not every dynamical system can
be represented by é Hamiltonian. For example, one aspect of the fundamental
nature of Hamiltonian systems is that only éuch systems can be quantized.

From the point of view.of pfactical perturbation calculations, ﬁamiltonian
systems §ffer the-iﬁpoftant advantége'that the equations of motion are
containéd\implicitlyrin the_Hamiltonian; which is a scalar function. This is
in contrast to genéralusystemslof differential-equatiéns, such as (2.5), where
the flow functions form a D-vector in a D-dimensional phase épace. ”Hence;
;oughly speaking, manipulations on a Hamiltonian system will involve D times
less laborvthap equivalent manipulations on an explicit set of différential
A equationé. (For a Hamiltonian system of N degrées of freedom, D = 2N.)
In addition, variable transformations. in Hamiltonian méchanics, i.e.
canonical transformations, are specified by-a scalﬁr.fuﬁction, thch is the
generating function. This may be the mixed variable generating function,
discussed 'in section 3, or it may be the Lie generating function, to be
discussed in a later séétion. For a general system of differential eﬁuations,
a coordinate transformation must be explicitly specified, in-the form
of a Qector—valued function, |

We begin this sgction by diséussing the preparatory transformation for

Hamiltdnian.sygtgms,'and we relate this transformation to Hamilton-Jacobi
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theory. Next we consider the method of averaging for several different classes
‘of Hamiltonian systems. The method of averaging and Hamilton-Jacobi theory
are then used to motivate the method of Poincaré and Von Zeipel, which is
discussed at length. Finally, we point out some of the drawbacksAof the
Poincaré-Von Zeipel method, and we indicate how these drawbacks are alleviated
by the Lie transform method,

As a starting point for our study of perturbation theory in Hamiitonian

mechanics we consider Hamiltonians of the following form:
H(z,the) = Hy(z,t) + e (z,0) + e Hy(z,0) + ... (5.1)

We assume that the syetem described by HO, the unperturbed system, is
solvable in closed form. It follows that the Hamilton-Jacobi equation for
the unperturbed systeﬁ is also solvable.

In the examples to be considered in this paper, HO will be independeet
of time. In this case, which is very cemmon in practice, the solution to
the time-independent Hamilton-Jacobi equation for the unperturbed system’

yields a time-independent canonical transformation z = (q,p) > z' = (q

~ o~ ~ ~ ~

euch that H, depends on the momenta p' alone. Thue, in terms of the variables

0 ~

5', the Hamiltonian may be written
2
H(z',t,e) = HO(B') + eHl(%',g',t) + € Hz(i',g',t) + ... - (5.2)

If the unperturbed system is periodic or multiply periodic, then the variables
z' may be chosen to be the acéion—angle variables, represented by (g,l).

Restating (5.2) in terms of action-angle variables, we have

HB,3,6,6) = Hy(J) + e (8,3,6) + c7H,(8,0,0) + ... (5.3)
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In (5.2) °r‘(5-3) the momentalg' or the action variables J, respectively,
are constants of the unperturbed motion.

By solving the‘Hamilton—Jacobi equation for the unperturbed system
we find a set of;Variabies,_denotéd by g'.in (5.2), which is "natural".to
the unperturbed system.- As a'pfactical matter, finding the canonical
transformation g.f g' is the first step in any Hamiltonian perturbation
analysi;. It will be recégnized. that this transformation is the analog,
for Hamiltonian sys;eﬁs, of tﬁe preparatory transfdrmation discussed i&
‘section 4.  This transformation may also be regarded in another light,
_némgly asvthe first (order zero) step in a perturbative éolutionbto the
Hémilton—Jacobi equation for the full, perturbed Hamiltonian. More will
be‘said about this point of view. later.

To illustrate the preparatory‘transformation in Hamiltonian mechanics,

we will use the example of the pendulum, which was discussed in section 4.

Returning to (4.9), it is a simple matter to find the Lagrangian and thence

the Hamiltonian. Setting the moment of inertia mR2 = 1 for convenience,’

we have -

M) = §p* + wd (4= cos x) (5.4)

Here the symbol x stands for the generalized coordinate q. As we did in

section 4, we consider small oscillations, i.e. small x, and accordiﬁgly we

expand the cos function in powers of x. In addition, we artificially
introduce a parameter of smallness €, exactly as we did in section 4.

The resulting Hamiltonian is

(5.5)

. z ’
€ a4 - € Pyl _
Hiw ) = 2 (p2s @ind) - &l o S ot -
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In (5.5) the unperturbed Hamiltonian represents a harmonic oscillator;
“as expected. To effecf the preparatory transformation we need to solve”
the Hamilton-Jacobi eduétion for the harmonic oscillator. This solutioﬁ
has already been‘éiven in section 3, in the form of a transformation (q,p) ~
(G,J} to action-angle variables. ' Using (3.33) it is simple to transform
the Hamiltonian (5.5) so that it appears in the form indicated by (5.3).

The result is

’ 3
: - _ € T%sin? € J° sint - ..
H(e,3) = .w.,‘J" - TJ Sin 9 + Py Stﬁ. (5.6)

For future refereﬁce,_we write (5.6) in an alternate form, by expanding

the perturbing‘terms'in Fourier series in 6. This gives

H(e,-'f) = We I

—4_€§ 32(3 - .4 cos 28 =+ C°549)

€ T2 (45_ 15 B - cos 16)
e — - 15 €020 + b cas 40 cos 66)

+ 0(e?) | o (5.7)

As another example of thé preparatory transformation, iet us consider
the pendulum problem frdm anpihef point of view. Instead of considering
small oscillations abouﬁ the equilibrium position, let us consider pendulum
motion for which the kinetic energy dominates the potential énergy, i.e.
motion conéisting of high speéd,,nearly free rotations compleﬁely arouhd
the circle shown in Fig. 3. 1In this case we may consider the unperturbed
: éYstem to consist.of free rotations, and we may treat the effects of gravity

as a perturbatioh. Then it is appropriate to take the entire potential
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enefgy term in (5.4) as a perturbation, and to introduce a smallness

parameter € as follows:

W o= Lp* +ew(L- cés "‘) (5.8)

It is easy to see that the unperturbed Hamiltonian in (5.8) represents
free rotations.

From the point of view of the preparatory transformation, we see that
there i1s no work to do on (5.8), since it is already in the form indicated
by (5.2). The Hamiltonians (5.7) and (5.8) represent the pendulum in
two limits, the former being the small energy limit, and the latter,

.the large energy limit. Of course, when € = 1, the two Hamiltoniaﬁs
are numerically equal. 1In both these limits, the pendulum system has been
prepared for a perturbation analysis.

We now take up the method of averaging, which is a simple form of

: .
first order‘perturﬁation theory, with Hamiltonian systems. We begin by
considering special cases, and then extend the results to more general
cases.

First we investigate systems of one degree of freedbm, which are time-
independent and periodic in their unpertgrbed motion., Due to the periodicity
of the unperturbed system, thére exist action—angle variables (8,J) for

the unperturbed system, and in terms of these variables the Hamiltonian takes

the form

H(8,J) = HO(J) + eHl(S,J) + EZHZ(B,J) + ... '(5.9)

The variables (6,J) are scalars, because the system has one degree of freedom.
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The pendulum system in both its limits (5.7) and (5.8)* falls into this class.
In éection 4 we showed that the process of_throwing away oscillatory

terms commutes with the process of solvingvthe differential equations,

at least through first order. For Hamiltonian systems, the only modification

to this rule is that we throw away oscillatory terms, not in the equations

. The result will

1
be "the averaged Hamiltonian", which we denote by the symbol K. According

~of motion, but rather in the perturbing Hamiltonian H

to the rule,
R(J) = H,y(3) + eil(J) + 0(e2) : (5.10)

Note that, due to the averaging, the new Hamiltonian K is independent of
6. This means that the avéraged equations of motion are trivial to solve,
since the action J is a constant of the averaged motion.

We will illustrate the method of averaging with the pendulum system.

In the low energy limit, the Hamiltonian (5.7) averages into
. 2 : ,
K = Wo 3' —-— —|6_C J ’ (5.11)

The equations of motion generated by this Hamiltonian are

5 = - €1 '
1] We 8 | (5.12)

*In the large energy limit, the unperturbed system is periodic because of the
topological properties of the x coordinate. 1I.e., the variable x appearing in
(5.8) is really an angle (see Fig. 3), and has a period of 2m. The variables
(x,p) in (5.8) are action-angle variables, and could perhaps more suggestively
be written (6,J).
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By using equation (3.33) the action J and the amplitude A may be related to

one another:

(5.13)

Hence it may be seen that (5.12) and (4.29) are equivalent, and that the
results of our non-Hamiltonian treatment are recovered.

In the large energy limit, the Hamiltonian (5.8) averages into

In this limit, the perturbing term has no effect, at first order, on the
averaged equations. This follows since the O(e) term in (5.14) is a constant,
and has no effect on the equations"of motion. Later we will see that the
perturbing term does have an effect at second order, the so-called pondero-
motive force. )

Now we take up the case of systems of N degrees of freedom, which are
acted upon by a time-dependent perturbation. We assume that the perturbation

is periodic in time with frequency w. The Hamiltonian for such a system,

after the preparatory transformation has been applied, has the form
(G, po 1) = Holp) + e (3., 8) + OCeT) (5.15)

The assumption of periodicity allows us to expand H1 in a Fourier series

. iwt
in e H

: inwt
H (4. p,%) = Z Hm(%,f) ™ (5.16)
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The Fourier coefficients Hlt are given by
. ” :
_ w | w —tnwt " ( ‘ {) ‘ ,
Han (9.9) = 52 dt e 1194 (5.17)
. (]

As an example of such a system we may consider a particle which is free

except for the effects of a small amplitude electrostatic wave:
H(t,p,k) = £p° + ced, cos(h-x - wt) (5.18)

This}system'has 3 degrees of freedom; x, p are 3-vectors.in Cartesian coordinates.
The similarity of thit example to the large energy limit of the pendulum should
be noted. | | |

" When afsystem such as (5.15) is solved by successive approximations or

other perturbation methods,fthere result in the solution terms proportional

i : : : .
to e.nwt.' If one is not interested in these oscillatory terms, one can

average the Hamjltonian first and then solve the.equations of .motion. The
result will be the same as the solution to the exact, i.e. unaveraged,

. . ' inwt
Hamiltonian, apart from oscillatory terms in e

, at least through first

order in ¢. The averaging operation in this case is defined somewhat differently
than in (4.33); here we want to select out the n = 0 Fourier coefficient in
(5.16), so we define the averaging operator by

w
@

— e ‘
£ (1,57 = o= | dt :F(},f,f) (5.19)

]

With this definition of the averaging operator, we can write the éveraged

Hamiltonian K corresponding to (5.15) as follows:

K(q,p) = Ho(p) + e-H—l(‘l’B) + o(ez) ' (5.20)
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It is easy to see, in the example (5.18), that the average of the perturbing
- term vanishes.

In practice, a syetem such as (5.15) often arises in a physical context
in which the exniicit time dependence of the Hamiltonian is in some sense
"fast", while the implicit time dependence of the variables q,p is "slow".
For example, (5.18) might represent a slow.particle in a high frequency wave.
Consequently, the averaging procedure we have described here is often used
to get first order results in situations where there are two time scales.

A slight variation on Hamiitonians such as (5.15) is the case of time-
independent Hamiltoniens in which one.qf the (q,p)vconjugate coordinate
pairs is periodic and '"fast", in comparison to the other degrees of freedom. .
In this case it wculd'be abprcpriate to average with respect to the fast
variables alone. Actually, it can be shown that this case encompasees both
the previous two cases considered, (5.9) and (5.15).

Finally, let us consider systems which are time-independent and multiplyv
periodic in their unperturbed motion. Furthermore, 1et us assume that the
different oscillators of the unperturbed system ali have comparable frequencies,
so that there are no fast and slow time scales. The soiar system is a good
example of such a dynamical system, if the perturbing terms are teken to be
the interplanetary gravitational pdtentials. Such a system can be written

in terms of action-angle variables as
HO,3) = Hy(D) + i (8,0) + cHy(8,]) + ... G

In this case it is appropriate to expand the perturbing terms in a multiple -

Fourier series. For eXaﬁple, for H1 we may write

in-8 '
Ha(0,7) = 2 Hia (3) € o (5.22)

AN
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In (5.22) 2 is an N-vector of integers, for a Hamiltonian with N dégrees of
freedom, and the sum is taken over a11 such vectors of integers. The averaging
is effected by selecting the n = 0 (by which we mean n = (0,0, ... ,0))
component in thé Fourier series, as shown here for an arbitrary periodic

. function f(g):

T e
5. _L_.&ae. ..,gaeN £(9)
o ), ), (5.23)
Then we have, for ;hevaveraged Hamiltonian K,
K@) = B, + () + 0(e?) (5.24)

Note that the averaging procedure has removed the § dependence of the
Hamiltohian;.so that all the actions J are constaﬁts of the averaged motion.

fhere are many other possibilities for the averaging. process, e.g.
systems with some fast variables and some Slow, or systems with thfee time
scales, etc.‘ In each case an averaging operator is defined on the basis of
‘,the approximation desired,. and in each case theAresults are good through
first order in €. The pattern should by now be well established.

We will no@ use the ﬁamiltonian (5.21) and its averaged correspondent
(5.24) in order to motivate the perturbation method of Poincaré and Von Zeipel.
We recall that the canonical.fransformatién génerated by the solution to ;he
Hamilton-Jacobi equation has the property that the new Hamiltonian depends
only on the new momenta. In'our Hamiltonian (5.24), the order zefo term
(the unperturbed Hamiltonian) dépends only on the momenta because of the

preparatory transformation, which is derived from the solution to the
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Hamilton-Jacobi equation for the unperturbed system. We have already noted
‘that finding ehe preparatory transformation is equivalent to the order zero
step in a perturbative solution to the Hamilton-Jacobi equation for the full,
perturbed system; Now we observe, in the averaged Hamiltonian (5.24), that
the O(e) term also depends only on the generalized momenta. This suggests
that  the method of everaging is somehow connected with the 0(e) eolution of
the Hamilton-Jacobi equation for the full, perturbed system.'

The methbd of averaging has so far been presented as an approximation
scheme, in the sense fhat selected terms are thrown away, both in the Hamiltonian
and in the solutipﬁ. In‘accordance with the philosophy of the Hamilton-Jacobi
eQuation, however, we ask if the results of the averaging procedure can be
aehieved by ‘a canonicai tfansformation. That is, we want to see if instead

of being thrown away, the terms in question can be transformed away. If so,
-tﬁen Qe will have found a.transformation such that the new Hamiltonian is
indepeﬁdent of the generalized coqrdinates, and this transformaeion must be -
generated by a‘solﬁtion to the Hamilton-Jacobi equation for the full, perturBed
system.

The idea of eliminating the dependenee of terms in the Hamiltonian on

the generalized coordinates by means of a eanonical transformation is an
essehtial iﬁgredient in the perturbation method of Poincaré and.Von Zeipel.
We shall &evelop this method on systems of the‘form (5.21), i.e. systems
which are-time—independent and multipiy periodic in.their unperturbed motion.
At the end of this develoﬁment, we will comment on the application-of the
Poincaré—Von Zeipel method to other elasses of systems.

Toliowing the idea of trensforming terms away, we want to consider the

application of a canonical transformation (g,g) -+ (Q',{') to the Hamiltonian
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(5;21), such that the new Hamiltonian K depends only on the momenta J'.

Since the unperturbed Hamiltonian HO is already a function of J alone, we
expect this canonical transformation to be the'identity transformation plus
corrections at fifst and‘higher orders. That is, we assume that the transfor-

mation has the form

8(8',3") = ¢' + €@, (8',J

g' + egl(g',g') + e J

) + €79
2 | (5.25)

2y

~
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Here we have chosen to express the old variables (g,g) as functions of the
new variables (8',J'). The functions 91, 51’ 92, J2, etc., of the new
variables, are to Be chosen so that the transformation is canonical and so

that the new Hamiltonian K is independent of 8'. We will call a transfor-

mation:such as (5.25) a near-identity transformation, becausé the oraer zero
terms represenﬁ the identity transformation.

In the perpurbationvmethod of Poincaré and Von Zeipel, the transformationl
‘(5.25) is generated by a mixed variable generating function, wﬁich we
take to be a function of the old generalized coordinates 8 and the new generalized
momenta gf, and which we denote by F(8,J'). This géneraﬁing function is
expanded in a.power series in ¢, ahd the order zero term (see equation (3.21))

is chosen so as to generate the identity transformation:

F(8,1") = g-J' + eF (8,1") + ezpz(g,.l') + ... (5.26)

~

Writing out the canonical transformation generated by this function, we have

' - oF oF, ~, .
g ) g v € 7::‘:‘—'(9";’) + el '_}—o (g:g) * (5 278)

Te 3 eedgy) « @ Wlgg) v (5.27)
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In terms of the undetermined functions Fl’ FZ’ etc., the transformation
(5.27) is a completely general near-identity canonical transformation.

We would now like to compare (5.25) and (5.27) in order to determine

the functions 91;

determination is not immediate, because (5.25) expresses the old variables

;51’ etc., in terms of the derivatives of Fl’ etc. This

solely in terms of the new variables;‘whereasb(5.27)’mixes old and new variables
on both sides of both equations. Hence it is necessary to "disentangle"

(5.27) ‘to express old Vériables purely as.a function 6£ new variables.
The.disentanéling is not difficult if only carried through first'ordef.
Siﬁce the old and new variables are equal to one another with 0(e) corrections,

they may be freely intérchanged in the O(é) terms if errors at 0(52) are
being ignored. By.replacing 8 by 8' in the O(;) terms and solving (5.27a)

for the old variables as functions of the new, we have

| oF, .. - .
8= ¢ -€ 55(8,7) + ole) (5.28a)
T oo g oF, ' n (5.28b)
) T+ o€ ae,(g),g;) + o(e?) .

~

This can be directly compared to (5.25).

We may now substitute (5.28) into (5.21) to determine the new
Hamiltonian K. (Since the transformation is time-independent, the old and
new Hamiltonians are numerically equal to one another. See (3.19) and

©(3.22).) Expanding the result to first order in e, we have

K(-Q’a ;II) ) “(Q’g)
Ho ()

' e%‘(gli ,3:‘) +l

M. (T) | 2F (8 ;S')}
Bgl . 29,

5.29

v 0le?) ( )
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It is convenient to write the new Hamiltonian K also as a'power series in €:
R@Q',ID = KD + K (0,1 + €K (8", 1) + ... (5.30)
We then collect terms in (5.29) in powers of €, and we get a hierarchy

of equations, of which the first two are

K, (Z) = Ho(3) (5.31a)

3 . W (I) dF (e T)
PRl 20"

(5.31b)

We are now in a position to choose the function Fl, and hence the functions

91, 91’ so as to make K independent of 6'. By examining (5.3la), we see

that KO is (as expected) already independent of 6'. As for Kl,,we examine

(5.31b), and we see that if K, is to be independent of g', then the term

1

must cancel the §' dependence of H Accordingly, we break

[ l'

.. 2F
LAY
containing 58
H1 into its averaged and oscillatory parts, and write
| J— ’ ~t [ I) 3“.(9-') . )Fi(gl’gl) .
Ke(F) = W(F) + W (@ T) + =3 Y (5.32)

This suggesfs that we find a function F1 such that

M. (T) >F, (g, 3" ~
d - L = - 5.33
')g' vagr . v H‘l(g a;) ( )
If such an F1 can be found, then
Ke(3') = Ho(39) | ~(5.34)

This result is satisfying, because it gives for Kl simply the average

of Hl’ and it makes K identical to the averaged Hamiltonian shown in

(5.24), at least through o(e).
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Now we examine (5.33) to try to find a solution for F It may be

1
_seen that (5.33) is a first order, linear, partial differential equation
for Fl. Appendix A summariées the theory of such differential equations,
and shows that (5;33) does, indeed, always have a solution. For the time
being we can simply solve (5;33) by inspection.

To do this, we define the vector go(g) as the freduency vector of the

unperturbed oscillators, i.e. the vector é as determined by the unperturbed

Hamiltonian H . :

0
M. (3I) _ ‘
- W, (T) = Lon=d
- 2.(2) 23 | (5.35)

Fdf-the term ﬁl, we use the Fourier expénsion (5.22), the definition of the
averaging operator, (5.23),‘énd the definition of the complementary operator,

(4.34), to write

o~ P ‘I:Zl'g' .
Ha (g, 7) = Z Hip (27) € (5.36)

2o

Then the equation (5}33) can be written

, o ‘ in-,é'
Wo (T 25-.&&.?) = - % Hin (37) € (5.37)
29’ )
B ¥0 |

It is then easy to see that a solution F. to (5.37) is given by

1

n.g’

v in _
C . ] H1,1| (gl) e | ) .
« ' - 2 - : .
F(g,3) = e w (29 (5.38)

: ’ A~ A0 ~

2do

In (5.38) it is necessary to assume that the denominator does not vanish,
which is equivalent to assuming that there are no "first-order resonances"

among the unperturbed oscillators.
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Through 0(e), we have accomplished what we wanted. A canonical transfor-
mation has been found, via the generator given in (5.38), which eliminates
the © dependence of the Hamiltonian. In fact, the process we have just
described for the 0(e) term can be carried to any order, and it yields
a new Hamiltonian K which is independent of g' to all orders.‘ This Hamiltonian
is often called the "averaged Hamiltonian', since it agrees with the
results of the method of averaging at first order. 1In effect, the Poincaré-
Von Zeipel method allows the definition of the averaged Hamiltonian to be
extended to arbitrary order. Corresponding to this terminology, the
Poinéaré—Von Zeipel method is sometimes called the "generalized method of
averaging', or simply "the method of averaging', without ény qualification.

Now suppose we want té find the explicit functions of time, §(t), J(t),
which are the solutions‘to (5.21). The first step is to find ﬁhe time
evolution of the variables 8', J'. This ié easy, since the averaged

Hamiltonian K depends only on the momenta J':
K(I") = Ko(I') + ek (I") + ... (5.39)

This means that the momenta g' are all constants of the motion::

. 3K
4 - - —_— =
3/ = 26 o} (5.40)
As for the angles §', they evolve linearly in time, with a frequency
which we may call u:
. Coak(T) |
9= 2@ - =5 (5.41)

It may be observed that if w is expanded in a power series in €, then
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5.17
the first (order zero) term is the frequency 90, defined in (5.35) in terms
-of the unperturbed Hamiltonian:
, BK’.(;') .
@w(F) = @.(F) + € 3 T (5.42)

The explicit éolutions to (5.40) and (5.41) are

g'(t) = constant - (5.43a)

g'(t) = g(g')t + 96 : o (5.43b)

where 66 is a set of inditial conditions.

After we have the functions g'(t), g'(t), we can use the transformation

(5.28) in order to find the functions g(t), g(t). So far we have not actually

written out the transformation equations. Rather we have simply found

their generating function, given by (5.38). On substituting the generétihg
function into (5.28) we get the following, explicit form for the transfor-
mation:

’

: Hv(J‘, '!'g
g - € ZI.L( i) + o()

g = 23\ n. w, (3) (5.44a)
. mn#o ~
v : ' t'nge’ 5.44Db
T3 -« E x M3 ™F L o(e) (5449
- o (T
p#o n Qo(.. ) .

It is then tfivial to substitute §'(t), J'(t) into (5;44) to get 9(t), J(t),
Leﬁ us carry out the Ppincaré—Von Zeipel perturbation‘mefhéd thrbugh

first ordef for the pendulum éystem in the low energy limit, és givén Ey

(5.6) or (5.7). This example has only one degree of freedom, so all the

N-vectors appearing in the equations (5.25) to (5.44) become scalars. It



5.18
is a simple matter to specialize all these equations to the pendulum
-problem; let us begin with (5.31), which becomes
174 J') = We 3”
¢ (5.45a)

?F, (65 3")

L 3 . B
K (326) ¢ - T3 eon 2070 condt) wwo ZUEES (g

L4

We choose F1 to cancel the oscillatory part of (5.45b). This choice gives

the following partial differential equation for Flz .

’ ’ t2 .
w, ?F(8,3) :ra (= 4cos 20" + cos49') (5.46)
286’ :

This equation corresponds to (5.37) in the general case, and upon integration

it yields

Feys) = - I (g s 26" 4 win40’)
e 192 o . (5.47)
For the new Hamiltonian K we have
K(T) = w,3 - £ 3% 4+ ole?) (5.48)

16

which agrees with (5.11), obtained by the method of averaging. The solution

to the equations of motion of the averaged Hamiltonian are

J' = constant
(5.49)
v - v
0 wt + 60
where 65 is a constant of integration and where w is the true frequency,
given by

@ = Wy — _‘8_3' + ole?) (5.50)
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Finally, the transformation (B,J) + (8',J') can be explicitly determined
‘using Fl and equations (5.44) or (5.28). These give
= 4 - _§—— ._3_-# - H ! . N ! 2
é 9 » % o (- 8sin28 « 5n49) + O(e?) (5.51a)
T T :
J = 3' -+ ._e_;].——— (—4COS 26’ _.,' ¢-054e') <+ O(ez) (5.51b)

48 Wo

It is relatively straightforward to compare this work on the pendulum
system'to the results of the method of successive approximations, given
in section 4, and to éhow that they are equivalent. There are important
differences in form; howéver, reiating to frequency renormalization and
secular terms. These will be discussed later, after we have Lie transforms
at our disposal.

The essence of fhe perturbation method of Poincaré and Von Zeipel is
the use of near-identity canonical transformations, generated by mixed
variable.gengrating functions, to eliminate the dependence of a Hamiltonian
on one or more variables or classes of terms. We have illustrated this_
method for systems whose unperturbed motion is multiply periodic, and shown
how to eliminate the dependence of the Hamiltonian on the angles §. The
method is flexible, howeve;, and can be used with other classes of systems.
For‘example, in the cése of time-dependent systéms such as (5.15), it is
possible to choose the transformation so that the new Hamiltonian K is
independent of time. Or, with systems with some fast variables and some
slow variables, it may be des}rable to choose the\transformation so that
the dependence on the fast generalized coordinates is eliminated. All

these goals can be achieved with the method.

We have discussed the Poincaré-Von Zeipel method because it illustrates
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many of the features of the Lie trénsform method in a more familiar context,
and because it is the traditional perturbation method for Hamiltonian systems.
We have illustrated the method only to first order, however, becausevto

go to higher ordéf would take us too far astray from our main goal, which

is the Lie tfansform method. Since we have not developed higher order
‘pertufbations, it has not been possible to give a-completevdiscussion\of

the problem of secular terms. Such a discussion will come later.

Before moving on to the Lie transfofm technique, we will point out éome
of the difficulties from which the Poincaré-Von Zeipel method sufferé,
difficulﬁies which ére remédied‘by the Lie téchnique. The foremost difficulty
of the Poincare-Von Zeipel method arises from the use of mixed variable
generating functions, and it is in this respeét that the Lie method is
characteristiéally different. The use of mixed.variaﬁle genérating'functions
means that the'hew and old #ariables'must be disentangléd before the new
Hamiltonian éap be found. We ha§e succeeded above in disentangling‘our
v'transformation to firét order. To higher orders,»the diéentangling procéss

is Very complicated and laborious, énd gives rise to férmulas of no

apparent symmetry or structure. A related problem.is that it ié frequently
.desirable to have not only the canonical transformation, such as (5.44),

but also its inverse, and then one must either.invert a power series of

else perform the disentangling in the reverse order. In the Lie method,
canonical transformations are generated without mixing old aﬁd new_variables,
thereBy completely bypasSing fhe_disentang}ing process. Furtﬁermoré, in

thg Lie transform technique both the canonical transformations generated

- and their inverses are expressed in terms of Poisson brackets, which represent
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Lie products in the Lie algebra of the group of canonical transformations.
This allows not only for a simple and clear relation between canonical
transformations-and their inverses, but also gives risg to a compaét and
.powerful notafidﬁ for ekpressions between vafiables aﬁd functions. We‘
turn now to a description of fhe‘generation of canonical transformations

with Lie generators. .
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6. Near—Identity'Canonical Transformations and Their Lie Generators

In this section we develop formulas relating canonical transfor@ations,
expreésed as a poher series, to their Lie generators. We begin this sectioh
by establishing Séme notational conventions concerning functions on phase
space and transformation operators on those functions. Then we prove
an imfortant theorem which connects Hamiltonian flows to canonical trans-
formations. Finally, we use this theorem to writé‘canonical transformation
operaﬁors in_terms of their associated Lie operatofs;

There is a certain notational problem which arises in work with near-
identity'tranéformaﬁiqﬁs, éanonical or.otherwise, which sometimes causes
confusion. ‘Although this problem is essentially tfivial, it can, unless
prbperly deal; with, consume-a>distracting amount of attenﬁion. Therefore
we will discuss the problem and gstablish certain notational conventions
bgfore proceeding with the development of neaf—identity canonical trans-
fofmations.

The source of the problem can be traced to certain ambiguous aspects
of the notation commonly used. by physicists for functions and values of
functions. In the common parlance of physicists, the word "function",
especially when épplied to physically meéningful quantities, has a meaning
which roughly corresponds to the 2292.92.2.23122° Consider, for example,
the eléctrostatic potential ¢ in 5—dimensipngl space. If a certain point
of space is described both by its Cafteéian coordinates (x,y,z) and- by
its spherical coordinatés (r,6,¢), then it would be common for a physicist
‘to write ¢(x,y,z)_= ¢(r,0,¢), meaning that the value of the potential is

the same no matter how the points of space are labeled. Similarly, in
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H;miltoniaﬁ mechanice, when we perform a time-independent canonicai trans-
. formation z +z', the old and new Hamiltonians are numerically equal to
~one another, and it would be common for a physicist to write H(E) = H(z").
This transformafion law has the same meaning as the equality of electro-
static potentials written above. Operatibnally, it means the following.
First we find the old coordinates z as functions of the new coordinates
z', giving the functions z(z'). These are then substituted into H(z) to
elimihate g‘in favor of g'. The result is what is called ﬁ(g').

The intuitive picfure behind tﬁe physicist's notation for functions
is that the values of'a.function, whether it be the electrostatic potential
or. the Hamiltonian,‘ére attacﬁed te points of epace, which are viewed
as geometrical entities. ‘In a sense, geometrical points are considered
to ferm the independent variable of functions, and the coordinates (x,vy,2)
or (f,9,¢), or z or %', are simply taken to be 1abels of points. Hence
an equation such as H(g) = H(z') has the import of the statement, 'Let's
relabel the peinte of phase space."

. The physicist's.notatiqn for functions is offen cbnvenieht and physically
suggestive, but it is somewhet imprecise; Usually the level of imprecision
is acceptable, but not always, as is the case with near-identity trans-
formations.* Thevsource of the imprecision is that_whereas geometrical
peints may form the independent variable in coeception, nevertheless'n—tuples
of numbers form the independent variable in notation.

This problem may be. illustrated with a simple examﬁle drawn from

T : :
More generally, the problem occurs with families of transformations,

especially groups, which are continuously connected with the identity
transformation. A similar problem occurs with the study of rotation
operators, especially in quantum mechanics. See Ref. 18.
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' Hamiltonian mechanics. Let us take the transformation law for Hamiltonians

‘under a time-independent canonical transformation z + z':

+

H(z) = H@z") : (6.1)

Here the idea is that points of phase space, in a geometrical sense,
form the independent variable of H. Now suppose the actual transformation

is gived by
14

:5' =z+a - (6.2)

for some constant vector 3; (This is; in fact, a canonical transformation.)

Then substituting'(6.2) into (6.1) gives
H(z) = H(z+a) ' . (6.3)

vwhich, taken at face Qalue,.sayé that H is periodic with period a. This
is, of course,lﬁonsenéé.

The problem is that when we made the substitution, we were treating
the independent variable of H, not as a set of geometrical points, but
.rather as n-tuples.of numbers. The contradiction Arosejbecause‘we have
used two intefpretationé of the independent variable in one breath, so
to speak. Since we have here two poihts of view, which‘are in danger of
beihg‘confused, it is important that we commit ourselves to one or the
other, as convenient, and to be alert to ﬁhe possibility of confusion.

In work with near—identit§ canonical t;ansformations, it furns out

. to be most convenient to adopt the convention that the independent variables

of phase functions are n-tuples (really 2N-tuples) of numbers. According
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to this intérpretation, equation (6.1) has the following meaning: There
_exist two 2N-tuples, z and z', for which the function H.takes on the same
value. Clearly, this meaning is not fhe intent of the transformation law.
To state the traﬁsformation law according to our convention for inter-
pretation of independent variables, we must use a different symbol for
the new Hamiltonian, becéuse it is a distinct function. In this regard,

we may consider (3.19), which we reproduce here:
K(z') = K(z'(2)) = H(z) ' (6.4)

An important thing to observe is that ‘the coordinate transformation z+z'
haé caused the_functién H to be transformed into é new and distinct function
K,'

Since we are treating the'independeht variables of phase functions as-
2N-tuples of numbers, and not as geometrical points, we can no longer
think of a function as the name of a value. Instead, it is better to
keep in mind tﬁe precise mathematical definition of the word "function":
A function is a mapping from one.set to another. The former set is called
the domain, and the imagé of the domain in the latter set is called the
range. For phase functions, the domain is the set HiZN; there may also
be aaditional parameters, such as time. In this paper we use the word
"function" in the mathematiciaﬁ's senée*, whicﬁ may be succinctly contrasted
with the physicist's use‘of the word by saying that a function is a mapping,
and not a Qaiue. o |

In accordance with this usage, we shall strive, especially in this

* -
The usual physicist's terminology is lurking in certain places, but never,
it is hoped, where any confusion can arise. '



section and the next, to carefully distinguish functions from the values
' 2
of functions. For example, if H is a function, and E:E&Iq, then H(z) is a

value, i.e. a number. To be precise, a statement such as H = H(g) makes

6.5

no sensé; it is like equating apples and oranges. We have already violated

this rule in (6.4), where we have treated z' both as a 2N-tuple and also as
a function. To be more precise, we can state the transformation law (6.4)
as follows. If the function Z is a canonical transformation, so that the

image z' of a point g_under the transformation is given by
z' = Z(z) (6.5)

then the new Hamiltonian K is given in terms of the old Hamiltonian H by

K(z') = K(Z(z)) = H(z) | 6.6)

We have in (6.6) an example'of how relations among functions may be
defined in terms of the values of functions. The simplest relation is
that of equality. We say that two phase functions F and G are equal,

i.e;-F = G, if
F(z) = G(z) (6.7)

for all z. Other operations among functions, such as addition, are defined
in the obvious way. Note that in (6.6) it is not true that K = H; tﬁe
loose statement that the old and new Hamiltonians.aré equal must bgi
interpretea with caution. ' |

It.is impo;tant to observe that the symbol z appearing in (6.7)
_ is'really a_dummy;.any other symbol for the phase space point would do

as well. 1In this regard it is instructive to examine (5.31) and the
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equations leading up to it. It may be seen that the variables §', J',
‘while being written so as to indicate "new" variables, are really dummies.
The set (5.31)-cpu1d Be rewritten as a set of relations among functions,
as folléws:
o7 %o (6.8)
9 oF

- H 3F
Kl Hl+a—£0.agl.

In all the steps 1eading up to (5.31), functions were treated as if tﬁe
independént variables were ZN—tuples of numbers, and not geometrical points.
Fér exaﬁple, Fl(g';gfj means Fl(g,{') gvaluatedvag 9= 9', and not Fl(g,g')
re-expressed as a function.qf 8' through the relation (5.25).

Now we define a class of transformation operators, which are very
ﬁseful in work with Lie series. We consider a near—identit& transformation,
given by z' = Z(z), and we associate.with Z a certain transformation‘operator,
which we denote by. T,‘which acté upoﬁ bhase functions to give other
phase functions. If F is a phase function, theq we will represent the action
of T upon f by TF, which we may call G. The operator T is defined by
specifying its action upon all phase functions F,.as féllows. FIf G = TF,

and T is associated with the near-identity transformation Z, then
G(2) = F(z(z)) - (6.9)
for all z. Another way to write this is

(TF) (z) = F(Z(2)) | (6.10)

where the parentheses around TF mean that the operator T acts first on

the function F, giving a new function, which is then evaluated at z.
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Actually, since T acts on funqtions and not numbgrs, it makes no seﬁse to
-evaluate first and operate with T second; nevertheless, the notation (6.10)
leaves no room for confusion.

The right.haﬁd side of (6.10) has the form of the '"composition' of the
two functions F and Z, which is éometimes denoted in the mathematical
literature by thé_symbol °©, Thus we could write TF = FeZ. We shall not
use this notation in this paper, but the importance‘éf the composing
Operation'should be noted. Composing two functions together to obtain
a third can be used‘asva definition of the "multiplication" of two functions,
and it isvprecisely‘this multiplication law which allows the set of all
cahonical transformations to be‘éonsidefed a gioup.*

We have in (6.6) an‘example where the T operator is useful. The

transformation law for time-independent canonical transformations can be

written
H = TK ~(6.11)

This equation will be of use in the next section;

To follow our definition of the T operator perfectly rigoroﬁsly, we
can allow T to act only on functions, and nbt on numbers‘or phase points
(i.e; 2N~tuples of numbers). Nevertheless, we are dealing with near-
identity canonical tranéformations, and such transformations can be régarded
- as mappings of phase space onto itself. Hence it is sometimes convenient

to think of T as the mapping itself, and to write

*In this regard, it may be noted that the T operators form a linear repre-
sentation of the group of canonical transformations. The 'carrier space"

-of this representation, i.e. the linear vector space upon which the operators
act, is the set of all phase functlons.
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z' = 2(z) =Tz (6.12)

This notation was used in (2.6), without elaboration.
To bring (6.12) into a form which is rigorously in accordance with
the definition of T, we may introduce the identity function %-,_which is

defined in terms of its values as follows:

4(z) =z | (6.13)
for all z. Then to be precise, we can write (6.12) as

T =7 N (6.14)

Although this usage may seem pedantic, it is useful in cases of confusion.
It is often useful to deal, not only wiph T, but also with its inverse.

‘Now we change notation, and write Z for what we have been calling z,

f

representing a Canonical transformation. The subscript f stands for

"forward"; we will write Z for the inverse transformation, where b stands

b

for '"backward". Since the two transformations are inverses, we have

2.

(@) =2, 2. (2) =z - (6.15)

for all Z. .The transformation which is inverse to T, which we denote by

T—l, is defined by

TP (2) = F(Z, (2) | . (6.16)
~ From this defiﬁition and from (6.15) it follows that

T T = TT = 1 _ ©(6.17)
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where I is the identity transformation.

Earlier in this paper, in section 3, we introduced certain operators
which represent the operation of forming the Poisson bracket. These are
the L opérators,ﬂand their action upon a phase function produces anothér
phase function. In.this sense.they are‘in the same family as the T operators,
althoﬁgh they are defined quite differently. As we shall see, there is
an intimate connectioh beﬁween the L operators and the T operators: the
former ére the Lie genéraﬁors of the 1a£ter.

‘Now we state an important theorgm, which will form the heart of our
deﬁelopmént of canonical transformations via their Lie generators. |
Suppose we have some_ﬁamiltonian H(z,t), which wevtake to be time-dependent.
We choose some pair of times t =t and t = t,, and we choose some initial

0 1

Following the evolution of the phase point

conditions z = z., a .
‘o s 2z Zp tt to

under the action of H, z will move élong a trajectory from Z0 at t = t0

to a new point, which we will call gl, at t = tl. We now regard go.as

a variable, and think of z, as being a function of Zg» parametrized by

the two times.to and tl. In accordance with our conventions for functiomns,

we reserve the symbol z. for a value, and write Z . for the function:

1 f

z, = gf(go;to,tl) v (6.18)

Although we are-usiﬁg the symbol Zf’ which was used in an earlier

paragraph for a canonical tranéformation, we are here not assuming that

gf is canonical. This is, hoﬁever, exactly the point of the theorem in

question. The theorem states: For any Hamiltonian H(z,t) and for any

- pair of times t, and t -+ El’ given by (6.18), is

0 1’

a canonical transformation. In other words, Hamiltonian flows in phase

the transformation Zo
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space generate canonical transformations.
In order to prove this theorem, we first prove a weaker version,
namely that the transformation (6.18) is canonical for infinitesimal
time differences“tl-to. ‘We set At = tl-to, and assume that At is small.
Then, by using the equations of motion (3.7) and a power series expansion
in At, such as wés developed in equation (4.4), we can write
2. =z + At{z.,H(z.,t )} + 0(At?) (6.19)
~1 =0 ~0°7M0°70 . o
We prove that (6.19) is canonical by appealing directly to the definition,
(3.14). ”Taking the variables 50 as the variables with respect to which
derivatives are formed in the Poisson brackets, we have
{zli’?lj} = {ZOi’ZOj} |
+ At{zoi’{sz’H(EO’tO)}} + At{{ZOi,H(go,to)},zoj}
+ 0(at?) | | (6.20)
The first term gives Yij’ and for the other two terms we can use the
Jacobi identity (3.8d) to write
{z,.,z..} = v,.. - At{y,,,H(z.,t )} +0(At2)
11’713 ij 13775070
=v,, + o(at?) (6.21)
1]

The term in At vanishes, since the Yij are constants. Hence the trans-
formation (6.19) is ‘canonical through 0(At).
Now let us consider finite time differences. We change notation a

bit, and write t for t, and z for'gl, and we will define Tt by T = tl—to.

1

'We do not assume that v is small. Then (6.18) becomes

2 = Z;(Zgitgtgh) , (6.22)
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where t = t0+T; Corresponding to this transformation we have an operator

T, which we write as T(to,t) or T(to,t +1) to show the parametric depeﬁdence

0
on the times. T may be thought of as an evolution operator or a propagator.

We consider ‘some time t' intermediate between ts and t = t0+r, i.e.

t0<t'<t. Then it is evident, by compounding two partial evolutions, that

T(to,t) = T(t',t)T(tO,t') | (6.23)

Note the order of the factors; the right-most operator propagates the
system from t0 to t', and then'the_left~most operator propagates it
from t' to t. )

We can ‘go further than this. Let us divide thé time interval 1= t-to

into a large number n of small time intervals of duration At:

At = t/n (6.24)

We denote the k-th time value by tyo given by

-'tk = tO + kat, | k=1,...,n ‘ | (6.25)

Then we have, in analogy to (6.23),

T(ty,t) = T(t _,0T(E .t 4) ... T(tl,tz)T(tO,tl? -(6.26)

Now we let n becomeAvery-large. According to (6.21), each of the
factors in (6.26) is canonical with‘an error at worst of ordér At2, i.e.
0(1/n2). Since the product of any two canonical transformatiéns isléanonical,
and since.there are n factors in (6.26), the overall transformation is
canonical with an error at worst of order 1/n. But n may be made arbi-

trarily large, so the whole transformation T(to,t +1) is. canonical.



£
-
s
«
-
P
e
s
.
q
-
-
&
£
LY 2%

6.12

This complete our proof of the theorem. The proof is not rigorous, but
‘it conveys the right idea.

In perturbation theory we are interested in ﬁear—idéntity'canonical
transformations,‘énd one of thé virtues of fhe Lie transform method is
its relative simplicity when dealing with higher order (i.e. second and
beyond) perturbations. Therefore we will now carry out the expansion
(6.19) through second order.

Tb be systematic about this, we follow the same steps as we did in
dgriving‘(4.4). We shuffle notation again, letting z be a phase point
at t = to, and g"the“ﬁewbpoint at tiﬁe t. We use this notation because
we are thinking of a canonical tranéfdrmafion in the form z + z'. Hence we

‘will have
(z5ty,t) | (6.27)

for the canonical transformation; we want to expand this in powers of
t = t-t..
B

To do this we need the various derivatives of gf with réépect to t,

evaluated at t = t These derivatives we denote by z, %, etc. The first

0

derivative is given by the equations of‘motion:
2(t) = -{H(z,t),z} (6.28)

Here we have reversed the order of the terms in the Poisson bracket for

future notational convenience. The second derivative is obtained by

- differentiating (6.28):

2(6) = ~28(z,0),2) + {H(z,0),{H(z,0),2)} | (6.29)
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‘'These two equations should be compared to (4.1) and (4.2).
We take these two equations, set t=t0, and then substitute them into
the Taylor series expansion,
B 12 . 3 :
z(t) = %(tO) + TE(tO) +'§T g(to) +‘0(T ) (6.30)
Here we are calling E(to) simply z and we are representing z(t) by z'.
Altogether this giveé
3’ = g_. T{H(g,fos, g}
c?
+‘._2_!__[-{ %%(g,t.b,g} + {n(g,m,{H(g,eg,g}}]
+ O(%d) - » ©(6.31)

According to the theorem above,_the transformation (6.31) is canonical to
ail orders, for all functions H(g,t). It is clear that the process we have
used to derive (6.31) can be carried to arbitrary order. Now we want té
modify the notation in the'expression (6.31) in various waYs._

First; let us define a sequence of functions HO, Hl, eesy €LEC.,
by expanding H itself about t=t0:

[ -]

Hig,t) = Z " H,. (2) '  (6.32)

M“n=o0

We have chosen to absorb the n! denominators into the definition of the

H , so that
n .

n ’ ' ’
mto 24t T | L ©(6.33)
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Eliminating H in (6.31) in favor of the Hn gives
g’ =z - win, gl
2? ’
- F —é—!—["'{“iy 31 + ‘[H!’){HO: g}}
v o(e®) (6.34)
Next, we will use the L operators to rewrite the Poisson brackets
appearing in (6.34). This gives
g/,.:._ 'g‘_ ‘ULH°Z
ot ' 2
M) [“L“t * L"o] z
+ o(v?) : (6.35)

We note that if we write z' = Tz, as in (6.12), then (6.35) can be written

T(,‘to‘,‘t) g = [ I‘ - T Luo + I}, ( -Lu, + L:o)+ O(’t‘)] Z (6.36)

As noted before, this equation should be regarded as.describing the action

L. , etc., not on the.coordinates Z, but rather

of the operators T, LHéf H,

on thé identity function (z).

Finally, we state without proof the fact that if (6.36) holds, as
‘an equality between the actions of two operators on the identi;y fuﬁction
L, thenbit holds for the actions of these operaﬁors on an arbitrary
function. This means, by the definition of equality of operators, that

the two operators are equal. Hence we may restate (6.36) in the following
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form:

T(te,t) = T - Tlu, + %(-Luutﬁo) « 0(z°) (6.37)

This resuit:éétablishes thg connection between canonical'transforﬁations
T and their Lie generatbrs'L. Often we will call the function H(z,t),
which on account of (6.33) implicitly contains all the functions Hn(g),
the "Lie generator'. Since H is a phase function, and since it generates
canonical transformations, it is analogous to the mixed-variable generéting
functions which were used in section 5. In contrast to those functions,
however, the Lie geﬁeratof, through tﬁe Lie transform series (6.37), generates
canonical ttansfofmations without mixing old and new variables.

The n-th order term in (6.37) gets more and more complicated as n gets
large,'althbugh there does exist a simple aigorithm for generating the n-th

order term. In the case of time-independent Hamiltonians, however, it
' oH

at"

is easy to write down the general term. 1In this case, H = HO’ 5t =0,
and equations (6.28) and (6.29) generalize into
df (1) = ) I, iu, o fa,zib (6.38)

where the Poisson bracket is iterated n times. Using this and following
the stéps leading to (6.37) gives an interesting result, .in which we have

set t =0 for convenience:

0 _ ’
— )  m . B |
T4 = § '(,n)g Uy = expltla) (6.39)

M=o .

Using (6.39) it is possible to express, at least formally, the

solution E(t) to a time-independent Hamiltonian system in terms of
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the initial conditions:
E(t) = exp(—tLH) Zo (6.40)

This result is not of much practical value for finding the function z(t),
since it is really nothing more than a Taylor series expansion of z(t) in
powefs of time about t=0. But it does have theoretical interest. For
example, it may be compared to its quantum mechanical analog, also for a
time-independent Hamiltonian:

vy = exp(-ith) {vi) (6.41)

In general; the COnnéétion between classical and quantum mechanics is
made much more clear by thé-iﬁtroduction'ofuthe L and T operators, althoﬁgﬁ
we will ﬁot elaborate on_thié subjéct here.

Let us now return to the general case of a time-dependent Hamiltonian,
and consider the issue'of findiﬂg the iﬁverse of the transformatioﬁ T(to,t)
given in (6.37). From the basic meaning of the evolution operators it

should be ‘evident that
T(to,t) T(t,to) =1 (6.42)
so that
e, t) = T(e,e) (6.43)
O’ ] 0 . .

Hence the inverse of T(to,t) is obtained simply by swapping to and t,vwhich
will cause T to go into -1.. Nevertheless, it is not possible to invert

(6.37) simply by taking T » -7, because the functions Ho, Hl’ etc., defined

in (6.33), depend implicitly on the time to
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If, however, we swap t and to in'(6.37),ri.é. set T + -1, and replace
, ;g
Hn by Hn, where |
. ” ,
A SR U 2—5.( 4 :
W@ = o7 e (8 (6.44)
then we will obtain T(t,to). Carrying this out gives
T(t,t) = T '{(,t)
=T srly v T(-Ly + L] o(x?) |
This is not the most convenient form for T—l(to,t), since the forward
transformation T(to,t) is given in terms of one set of Lie operators,
LH , LH', etc., whereas the inverse is-expressed in terms of another set,
. ° 1
LH;’ LH;,'etc. Therefore we choose to express LH;.in terms of LH“’ and to
rewrite'T_l(to,t) in terms of the latter operators.
 To do this, we apply the definition of H;, (6.44), to (6.32). After
a little algebra this gives
Ha = . mn (6.46)
kzn '
Writing this out explicitly for the first two orders, we have
' 2
H) = Hy + TH + 0(1")
. v (6.47).
" o + )
Hl Hl o(t)
- Substituting this back into (6.45) then gives
(6.48)

- ' 2 2
T ‘(to,t)g T +ly, ¢ %‘(LM + Lu.) +'o(1:3)
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This is the desired form for the inverse of T(to,t).

The transformation (6.37) and its inverse.(6.48) are not intended
for effecting series developments in powers of time. The drawbacks of
such developmenﬁé were pointed out in section 4. Rather, the purpose
of developing the theory of Lie generators of cénonicél transformations has
beeﬁ to employ those transforma;ions in perturbation theory.

In the next section we will illustrate the use of Lie transforms
in perturbation theory. For now, however, we will simply comment on the
change in the point of view, from canonical transformations resulting
f?om thé time evoluti6n of‘a Hamiltoﬁian systeﬁ, to the "e-—evolution"
associated with a Lie generator. This whole ﬁheorv has been developed
from the étandpoint of. the time evolution of é Hamiltonian system purely
for shggestive value. There is no mathematical reason why t shouid be
interpreted as time, or H as a Hamiltoqian.

To effect‘the_change in poiﬁt of view, we Vill henceforth denote the
Lie generator by the svmbol w instead of H, and we will likewise replacé
t by e. We consider w to be a function of €, and we expand w about é=0.
This corresponds to settihg t0=0 in the results aﬁove,.and to éssociating
both t and t with ¢. We use this expansion to define a series of functions
Wis Woy cee s similar to HO, Hl’ ... defined in (6.33). For future
notational convenience, we shift the subscripts by 1, so that LAY

corresponds to Hn' Thus we have the following expansion for w(e):

]

it

W, +EW, 4+ €Wy + ..

: 0o . ' .
o Z € W, | (6.49)

M=o

w (€)
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Finally, we abbreviate the Lie operator Lw by writing simply Ln'
. h
Using these conventions, we can easily transcribe the transformation
operator (6.37) and its inverse (6.48) into the new notation:
12 2 3
T(e) =1 - sLl + 3¢ ‘(—L2 + Ll) + 0(e7) (6.50)
The) = 1+ 'eLl‘ + %ez(L2 + Li) + o(e3) (6.51)

In the next section we will apply these formulas to’pertgrbation theory.
We state here a rule for finding T-l, given T. First, we replacé Ln

wherever it appears by —Ln. Second, we invert the order of all non-

commuting L operatots. The L operators do‘not in general commute,* as

may be seen from the Jacobi identity, (3.10d).> The non-commutivity of the

L. operators first becomes an issue at third order, where terms such as

172

In this section we have developed the theory of Lie generators in a

L.L_ appear. This must be distinguished from L2L1'

relatively ad hoc way. A much.mbre elegant derivation has been summarized
by Carys, who centers his arguments around a certain differential equation
in operator space. Cary's formulas, including a Lie generator equivalent
of the Hamilton-Jacobi equation, are expressed in closed form, i.e. not

as a power series in €. We turn now to the application of the Lie series

to perturbation theory.

* .
For two phase functions A and B, LA and LB commute if and only if {A,B}
is a constant.
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7. Hamiltonian Perturbation Theory With Lie Transforms

Many of the basic brinciples of Hamiltonian perturbation theory were’
discussed in section 5. The main.difference between this section and tha;
one is that hére‘ﬁe shall effect near-identity canonical transformations
with Lie transforms. Hence muéh of ;he discussion of the techniques sur-
'rounding Hamiltoﬁian perturbation theory need not and will not be repeaféd.

Our first object is to study the application of near-identity canonical
transformations to a Hamiltonian. We will begin with the case of time-
independent transformations and later generalize our results to the time-
deéendenﬁ case.‘ We obtain from this study a set of formulas in tabular
form which can be used in perturbation theory. Then we apply these
formulas to two examples.

Let us consider a time-independent Hamiltonian H and a fime—independent

near-identity canonical transformation z + z', given by the function Z:
z' = 2(z) | (7.1)

Associated with Z is a transformation operator T according to (6.10), and

by (6.11) we have
H=TK (7.2)

where K is the new Hamiltonian.

Since we are usually interested in finding K, given H, We'write_(7.2)

in the following form:
K=TH _ : (7.3)

This equation is developed perturbatively, i.e. as a power series in ¢,
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as follows. First we expand both K and H in powers of e, according to

' © | .
K = E €™ Ky . (7.4)

‘\»\:-o

the rules

H o= Z €" Hn (7.5)
n=p :
Next, we use.(6.51)‘to expand T_l in term$.of the geherators wl,'wz, etc.
Then, multiplying sgries together in (7.3) and pollecfing terms, order by

order, gives a hierarchy of equations, which we tabulate here through 0(52):

Kl = Hl + Llﬂo : , (7.6b)

_ 1 2 -
K2 = HZ + LlHl + 2(L2 + Ll)HO (7.6¢)

The first equation; (7.6a), says that thé old and new Hamiltonians
are equal at order zero. Thisbis not surprising.

‘The O(é) equation,‘(7.6b), is.a partial differential equation
for the Lie generator vy 1

K., which is to be determined. To see this, note that the term L_H_ can

in terms of the known function H, and the function.

1 10

be written

Wy 9 H,
Lt“o = {WL, “o} = Ta_:.z. bg ) (7.7)

In fact, since we are assuming that the transformation T, and hence the

" generators W, are independent of time, it may be seen that LIHO is

taken with respect

" nothing more than the total time derivative of‘wl,
We will denote this time derivative

to the unperturbed Hamiltonian HO.
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with the symbol DO; for a general, ;ime—dependent function f(g,t),>we have,

- by definition,

Dof =324 £, H,) (7.8)

Since vy does not depend explicitly on time, we can apply (7.8) to (7.6b)

to get
Dw, =K, - H . , . (7.9)

~ Equation (7.9) is a first—order, linear, partial differential eqﬁation

for vy - Appendix A summarizes the theory of such equations; for our

purposes here we simply note that the solution W, can always be found,
by the process of "1ntegrat1ng along unperturbed trajectories". Our

ability to solve (7.9) for w. depends critically on our ability to solve |

1

the unperturbed systemn.

The importance of the D operator .is such that we wish to eliminate

0

0 and replace them with the DO notation.

all Poisson brackets with H
This step is only a ﬁatter of convenience, and the reai reéson for doing
it will be seen later when we take up the case of time—dépendenﬁ transfor=
matiqns. For the time being we may take the desirability of this step

on faith, and rewrite (7.6) as follows:

KO = HO | (7.10a)
K, = Hl f Dowl | , ~ (7.10b)
K, =H, + L. H, + (D w + LlDowl) (7.10c)

2 2 11

Fihally, we take each equation at order n in the hierarchy, and use
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equations of lower order to eliminate the terms in Dowk for k < n. We
bring the term in Down to the left hand side. This gives
0= KO - Ho | (‘7.lla)
- Dgw; =K, - H, :_ _ : (7.11b)
Dyw, = 2(K2 - HZ) - Ll(H1 + Kl) v (?.llc)

The hierarchy is written in this form.because we will want to regard
the equations as 1hhompgeneous linear‘differential equations for the
w , which will be‘sblved in an iterative process.

. Before appiying these results to perturbation theory, let us extend
- them ta the case of time—depeadeht‘canonical transformations. If the
canonical transformation is expressed in terms of its mixed—variable
generating function S, then the transformation law relating old and new
Haﬁiltonians is given by (3.22), which is in contrast to (3.19) or (7.2)_
for time—independent-transformatioﬁs. Our object now is to develop a
fbraula analogaus to (3.22)>for the Lie generator{_

There are several strategies for doing this. One would be to express

S in terms of w, and then use (3.22). The mixed-variable nature of S,
however, makes this approach very awkward. A rather elegant method is
given by Cary,5 who works with an equation involving derivatives of
the T oparators with respect to both t and € parameters. Here we Shall
take a more simple-minded approaéh, whigh is to imbed a time-dependent
Haﬁiltonian system of N degrees of freedom in a time-independent, i.e.
‘autonomous, Hamiltonian system of N+1 degrees of freedom. We shall call

the latter system the "extended system". Since the extended system is
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autonomous; we can use the formulaé'(7.ll). We then examine what' these
formulas, for the extended system, imply fbr the original system. |

The imbéddigg process we describe here is common in studies of dif-
ferential equatioﬁs, the object being to take a non—autonoméus system
and to make it‘autonomous by going to a phase space of larger dimensionality;
We suppose that we héve some Hamiltonian H(g,t) of N degrees of freedom,
with z representing (ql,...qN,pl,.;.,pN). Then we coﬁsider a new phase
space of N+1 degrees of freedom, whose coorainates 7 are given by
(ql,...,qN,t,pl,.;;,pN;h), In the extended space, t does not répresent
time, but rathgr one of the coordipates;vit is effectively 41 Likewise,
h is not a phase‘fuﬁCtion, but rather a generalized momentum; it is effectively
Pyt1” We will use script symbols, such as %> for quantities referring
tb the extended phase space.

We would like to find, in the extended phase space, a Hamiltonian
# which gives autonomous equations of motion which are'equivalent‘to the
non-autonomous equations of motion generated by H in the original phase

space. Such a Hamiltonian exists, and it may be taken to be

*(3) - B4k, p,0) = H(g.p8) + (7.12)

The flow generated by & in the extended phasé space will be characterized -

by a time-like parameter, which we céli s. This whole construction is

‘simply a méthematicai artifice, so we need not attach any physical significance
to s. The equations of motion generated by (7.12) are autonomous, because

X has no explicit dependence on s. Hence the transformation formulas
developed in this séction can be applied to #, if the operations are taken

in the extended phase space.
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Firsﬁ we write down the equations of motion resulting from A in the
extended space. These are

dq 2 (P - 2H (g &

k- St 2 Y %,t) (7.13a)
df - - W 2H (

ree 2 ~(.,) = - 59 (8.0) (7.13b)

at < = (P i ‘ (7.13¢)

dh _  _H(z) - -2 | (7.13d

= (3) 2. (5,4) (7.13)

o
@
o
‘+
t

 From (7.13¢) we have dt = ds;-so (7.13a) and (7.13b) aré the same equations
of motion, with t as the independent variable, as the Hamiltonian H
" generates in the 6rigina1 phase'space.

Now let us suppose that H is expandéd as a power series in €, as in
(7.5). Ve allbw each of the terms Hn’ inclﬁding HO’ to depend on time.

We associate with this expansion a similar expansion of & , by defining

#(g) = Holz,¥) + % - (7.14a)

7.14b
HalP) = Holgd) , m>o0 ( )

Hence, of all the M,, only %, depends on the variable h.
This expansion allows us to apply a Lie transform to & and to obtain
a new Hamiltonian H in the extended phase space. Let us be careful

~as to what this means. The Lie transform corresponds to a certain s-inde-

. pendent canonical transformation in the extended phase space, which we

6
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denote by J. Hence we will have
j{ = 3,-1# . (7.15)

fhis cano#ical tfansformation will take the wvariables gfinto new variables
i;, such that if the s-evolution of Z’is given by X, then the s-evolution
of zkis given by X .- The.caﬁonical transformation will correspond to

a certain Lie generator, which will be a function of 3'(and hence -in
general of t and h), énd whichwill enter into the formulas (7.6) or

their éduivalents. ’

We will want to‘design'the transfofmatién J so that the variable t,
which is a dynamical variable in the extended phase space, does not change
gndér the transformation. To achieve this goal, we simply restrict ourselves
to generators w which are independent of h. We do allow w to depend on
g-and t, however. We do not use a script symbol for the Lie generator w,
for although i; is a function on fhe extended phase space, it can aiso
be considered to be a time-dependent function on thé original phase
space. |

To prove that if w is independent of h, thén aﬁ doesAnot chénge t,
we must consider the Poissoﬁ bracket on the extended épace. If we write
{ , }3 for the extended Poisson bracket, and simply { , } for the Poisson
bracket in the originél épace, then we have, for any two functions  and

% on the éxtended space,
L 3B ok o |
{54, Blz = {#4,8} «+ 3t 2h 3—3’{ 3t (7.16)

‘Suppose now that s§ is some wn, and independent of h, and that B is

t. Then applying (7.16) gives
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{wn,*}z = 0 - (7.17)
By examining (6.50), it is easy,tb see that
gt = £ (7.18)
When we apply the Lie transform J to % to get the new Hamiltonian
X , we will be forming extended Poisson brackets between wn and #,, as
indicated by (7.6). However, of the X, , only H, depends on h, and then
in a very simple way; and wﬁ is independent of h. Therefore, by applying
(7.16) to (7.14) we have
: - AWn
{w"’ .7’/"}3 - £w‘> HJ + 2t (7.19a)
(7.19b)

{wn,, 751,..}' = {wﬂ., 74...},‘ m> O

It should be noted that in (7.19a) we have the total time derivative of
v s computed along.unpertufbed tfajectofies,.including the term in'§¥n,
" for the case tﬁat w depends explicitly on the time.

“The extended canonical transfdrmation & will take the coordinatés.jz
into new coordinates 3& which we may write as'(%';t',g',h') or (z',t',h").

It will also produce the new Hamiltonian x , which will describe the

s-evolution of the new coordinates 7', according to the equations of motion:

Ay 2K (5) (7.20a)
ds 2t

;j_g_’ oo )T:r(?') .V(7.20b)
‘% S~ X¢ ) | (7.20¢)
% B (Z’) A (7.20&)
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Let us consider (7.20c). Because of the restricted form we have chosen
for the Lie generator w of J, namely %% = 0, we have t' = t. Also, from
(7.13¢) we had dt = ds. Therefore we have dt' = ds, and (7.20c) must give

us

AR () = & : _
R #) : (7.21)

or »
N %(7') = {\_’ " K (gl t’)
‘ ST (7.22)
for some function K. It.may be guessed, although it remains to be proved,
that K is the new Hamiltonién in the original phase space. This proof is,

howevér, easy. .We simply substitute (7.22) back into (7.20), to get

4y 2K (g,4')

= o C 723
Ag'g _ 3K(gﬂ£) . (7.23b)
ds 2¢ . )
dt’ | 1 |

4t , (7.23c)
df’ _ _ K i’,-t’. _

a5 - ay(" ) | (7.23d)

Equation (7.23c), when substituted into (7.23#) and (7.25b), shows that

the variables g',g' eyolve according>to the Hamiltonian equgtions of motion,
with:K as:the Hamiltonian and t as the independent parametérJ By‘definition,
' then, K is the new Hamiltonian in the original phase space.

Now we apply formulas (7.6) for ¥ taking % into X . We expand both

X and K in a power series in e, like (7.4), and, bearing in mind the form
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(7.22), we get

Ho(g) = Koz, 8) + & (7.24a)

HolF) = K (5,4 (7.24b)
Here we have dropped. the primes on the variables %, z, t, h. The primed
variables were used in the last two paragraphs to suggest ''new variables",
but they are really dﬁmmies. We do this because the hierarchy (7.6) 15 
a set of relations among functions, not values.

First let us write out (7.6) for extended phase space operations.
Wé_translate the L operators into extended Poisson bracket'notation. This
gives

*, - H, _ ' © (7.25a)
K= Hy v lw,HY, (7.25b)

Ho= Mo+ LWy, Wby + 4{we, Moy + 20w, wa, Ml b, (7.250)

wa'we use (7.14), (7.19)’ahd (7.24) to express this in terms of operations

on the original phase space. This gives

K, = H, | (7.26a)
K. =H + {w.,i.} +29 (7.26b)
1 1 1’70 3t
K = : 1 1w
, KZ = H2 + {wl,Hl} + E{WZ’HO} + 2 at2
1 . 1 ow
+ 5 vy {wy Bl Y + 5w ,5el) | (7.26c¢)

These equations are the generalization of (7.6) to the case of time-

dependent canonical transformations.
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As we did with (7.6), let us now rewrite (7.26) in a more usable form.
. To do this, we introduce again the operator DO’ representing time evolution

Since the wh now depend on time, we have terms in Qﬂh

as generated by H 5t

e
as is indicated by (7. 8) That is, we write
ow

.Dowh = —En'+ {wn,Ho} v » (7.27)

(-]

in (7.26), we get

Using this to eliminate %%n

K. =H. | : . (7.28a)

0 0
Kl é H + Dow1 : (7.28b)
- 1 1
K, = H, + {w By } + 2 Dow2 + {w »D o¥1 } (7.28¢c)

It may be seen that these are exactly the same as equations (7.10),

except-that now D, has a more general meaning than it did before. From

0
this it follows that the equations (7.11) are valid for time-dependent
as well as time-independent canonical transformations, if only the

operator D. is taken to represent the total time derivative along unperturbed

0
ofbifs, as shown in (7.27). .Tﬁis fact remains true af a;l ofders.
Therefore it is the hierarchy (7.11) which we will use for perturbation
theory, including time-dependent casee.

we comment on one final poine concerning our pfocedure for dealing
with time—dependeet canonical transformations. Te be complete, we
need to show tﬁat the s—independent canonical transformation 5’ in the
extended space, when restricted to the original phase space, produces a
‘canonical.transformation T in that space: This is easy to prove, although

‘we shall not do so.

Let us now study the application of the Lie transforﬁ formulas (7.11)



- This equétion should be compared to (5.45b), which we solved without much
- comment. Here we want to elaborate upon the method of solution.

Equation (7.32) is a single equation in two unknowns, namely v, and

7.12
with some examples. We remark that although the formulas (7.11) are valid
. for an arbitrary H, ngvertheless.they are generally useful in a practical
sense only when H has been subjected to a preparatory transformation, so
that Ho'depends only on the momenta p or actions J (for a periodic
unperturbed system). '

As an examplevof a time-independent system, let us analyze the low
energy. limit' of the pendulum system. We return to (5.7), from which we |
tabulate the following:

Ho(e,J) = moJ‘ : | v . (7.29a)
. 1.2
_Hl(G,J) = - Z§-J (3 - 4 cos 206 + cos 49) (7.29b)
| 1B : |
H, (0,J) = === ~—(10 - 15 cos 26 + 6 cos 46 - cos 66) (7.29¢)
2 2880 wg _
At order zero, using (7.1la), we have simply
KO(J) = wOJ _ (7.30)

‘At order one, we use (7.11b). Given the explicit'form of HO’ we write
out the term Dowl:

Dowy = Wi Hol = wo Wy (7.31)
2%
Hence (7.11b) becomes the following differential equation for Wyt
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K Therefore it has no unique solution. If we choose either wy or Kl,

1°
- then (7.32) can be solved for the other, but some such choice must be made.
This make$ sense: different canonical transformations (specified by wl)
give rise to diffefent néw Hamiitonians.

In solving (5.45b) we had an equivalent latitude in our choice of

solution, and there we took

K, (3 = H (3 = - i : : C(7.33)

1

it has the agreeable consequence that it causes K

This choice for K, certainly would allow us to solve (7.32) for Wys and

1 to be independent of 6,

making the equations of motion generated by K easy to solve. Nevertheless,

there are many ways to make Kl

is perhaps K1=0. If we made this choice for Kl, we would, in effect,

"transform away" the entire perturbing term, and not just its 6-dependent

'independent of 6, the simplest of which

part.

To see why we do not want to take K =0, we may examine (7.32), and

1

see what would happen if we did. The solution for vy would be

p 2 '
Wy (8,7) = —a— {,—‘,(1}29 - Bsin20 + sin40) | (7.34)

The problem with this solution is the term in 126. Since 6 has an unbounded
growth in time, this term is a secular term. When we use this form fof Wy
in the transformation (6.50), and apply it to the old variables (98,J) to

find the new, the secular term in w, would cause secular terms to appear

1

in the transformation. This is exactly the phenomenon we observed in

the method of successive approximations, and its deleterious effects
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on the convergence properties pf the resulting power series have already

been noted. In fact it may be shown that if we choose Kn=0 for all n>0,

then the result is identical to the method of successive epproximations.
Therefore in solving (7.32) we adopt a double criterion: first,

Kl must be.independent of 6; and second, wl must be free of secular terms.

The first requireﬁent says that the term in %gl inv(7.32) must cancel all

the 6 dependence of H,; and the second requirement says that %%1 must

1;
contain only terms which are oscillatory in 6, since otherwise, upon
integration with fespect to 8, there would result secular terms. This

double criterion gives a unique choice for ggi and Kl, which is most con-

veniently expressed in terms of the averaging operator and its complement,

" defined in (4.33) and (4.34):

ow. _ ~
Wy 30% = Hl -~ (7.35)

Kl = Hl (7.36)

It turns out that this criterion also gives a unique choice for v and
Kn at all higher orders.

Examining (7.36), we have

Ky (3) = - :'-1'-%. A | (7.37)

and the results of the method of averaging appear once again. Not only
that, but if we are not interested in the actual transformation, generated
by w, but only in the averaged Hamiltonian K, then we need not even solve

(7.35) for w A similar property persists at all orders. In order to find

1

K through order n, it is only necessary to know w through order n-1.
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Nevertheless, it is easy enough to integrate (7.35) and actually obtain Wy
wi(e T) = LI ( 8 sin 20 + Sm49) (7:38)
\92.. Weo ‘ ]
Now let us céfry the pendulum problem to second order. We examine
(7.11c), and re-express the left-hand side in the form
©y ae2 = Z(K 2) -Ll(H1 +»Kl) : (7.39)
We break both Hl and Hz_into their averaged and oscillatory ﬁarts, and
we-use (7.36) to rewrite this as
W, M2 - 'L(l‘(z - H) 7‘{“’1: \.{} - {Wi,HA (7.40)

20

Like (7.32), this is a single equation for two unknowns, in this case,

vy and K2.' Applying the criteria developed above, we want to absorb

all the purely oscillatory terms into 322, and leave the rest to define

90

K Cohsidering the terms on the right-hand side of (7,40), the decom-

2;
position into averaged and oscillatory parts is obvious except. for the
last two terms, the Poisson brackets. Now, {wl,ﬁi} is purely oscillatory,

because w, is purely oscillatory and because H, is purelf averaged. That

1 1
is, this term is linear in purely oscillatory quantities. The term {wl;ﬁl},
however, is quadratic in purely oscillatory quantities, so it has an

averaged as well as an oscillatory part. To see this, consider cos 8,

which is purely oscillatory. Then consider cos2 8, which has an osqiilatory

.
A J-dependent constant of integration could be added to this result,
but it would have no effect of importance except to make all the succeeding

formulas unnecessarily complicated. Such a term corresponds to .a shift

in origin, as a function of J, of the "nice" phase in Kruskal's rings;
see Ref. 13 for details. It is best to keep only purely oscillatory terms
when integrating to get W
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part, namely %cos 26,’and an averaged part, namely-%. Therefore, on
. taking the average of (7!40), we have

o) 'g'. ').(Kg_ - -q,_) - {w,, H1} . (7.41)
" which we can aiso write as:

Ky = Hp + + {wy, 0.3 . o (7.42)
L ikewise, 6n taking the oscillatory part, we have -
QWIY e - T '
wo 2 - - 2Hg - Z{Wg_, H1} - {w’_,.Hi} (7'43)

To find the second ordef Hamilﬁonian Ké, we need to evaluate the
‘right;hand side of (7.42). Note that, in addition to the average of
HZ’ Kz‘contains an addifional term. This term is resﬁonsiblé for
preventing the method of averagiﬁg, as i; was naively developed in sections
4 and 5, from being_valid-at second order. This term is a kind of non-
linear effect, sinCerit is.quadratic in first_order quantities. In fact,
since it is tﬁe'average'bf:a term which.is quadratic in first order quantities,
it represents a zero frequency beat. To explicitly evalﬁate K2, we first

work_oﬁt the Poisson bracket {wl,ﬁl}; this requires a little algebra,

which gives

~ | s ' | -
fw, B} = - L= - (47- 9cos 26 + cos 6B) (7.44)

1152 Qo
- Substituting this into'(7.42), we have

: ' (7.45)
3
k() = - 2:56 \Zs | |
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Note that in order to find Kz,,we needed wl, but not Wy Now (7.30),
- (7.37) and (7.45) can be combined to give
7(3’)- wo T 1-—-—6'—“?‘ S 5_‘_,_0(53)] 7.46
K =, e 16 \ We 256 \&, . (7.46)

From this it is easy to obtain the second order correction to the frequency:

0 = wol{i - é.(_:f_ _ 3l (%)_j + o(e’)]' | (7..47)

g \Ye 256

The expansions (7.46) and (7.47) are actually convergent series for ¢ in
some neighborhood of e£=0, and they are connected with certain elliptic
integralé.'

Now let us look at (7.43), the equation for w Working out the

2

right hand side gives -

W, Wz . S -35we20 + 2 ws40 +3 cosbB (7.48)
o 56 920 wo( s 64 - )

Upon integration, this yields

g3 . .
w2(9,3)= 38‘40 .-JEV(—‘f&Ssmze +5m4d <+ $ln(99>. (7‘49)

This result, combined with (7.38), can be used fo coﬁpute tﬁe canonical
transformation z - g' explicitly. The results are not very illuminating,
so we will not do this here. Nevertheless, it is worthwhile to note
that if the explicit form of the transformation is not required, then.'
it need not be worked out. This circumstance is a characteristic feature
of Hamiltonian perturbationvtheory; it is not shared by non—Haﬁiltonian
perturbation methods. Similarly, it may be noted that if a phase function

(or perhaps a phase space density function, representing an ensemble)

is to be transformed from the old to the new coordinates,,K then the Lie
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SRS IR B RS B B
operafors in.(6.50) or (6.51) can be applied directly to the functioﬁ. It
is, even in this case, not necessary to work out the transformation |
explicitly. This éircumstance is a feature of the Lie transform method,
and it is not éhafed by traditional Hamiltonian methods, such as the
Poincaré-Von Zeipel method.
Although we have not worked out the transformation z~>z', it is
easy to see, from the.fact that the w are purely oscillatory, thatvthe
transfofmation will ha&e the form of a Fourier series‘iﬂkthe angle 6 or
e': For example, if we express the old angle 6 as a funcﬁion of the new
'vafiableg (6',J3'), as we show here in terms of the function o,
6=8'+0(",J") - (7.50)
then © will be a Fourier series in 8':
in®’
S ICA :) Z@D (3) e ;o ’ (7.51)

"The Fourier coefficients en will be power series in e, whose first few

terms can be worked out using (7.38) and (7.49). We afe guaranteed of

a transformation of this form, since we have banished secular terms from

the functions v Since the angle 6' evolves linearly in time with a
frequency w, given by (7.47), we see that the solution 6(t) for the original
angle variable is expanded‘in a Fourier series in time which employs

the true frequency. The use of the true frequency w in this expansion,

rather than the unperturbed frequency Wg» is the reason for referring to

‘this perturbation method as a "frequency renormalization" technique.

We will now stﬁdy a time-dependent system, and subject it to a

perturbation analysis. The system we choose consists of a charged particle
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which is free except for the effects of a small amplitude electrostatic
wave. We let m and e Be thg mass and charge of the particle, and we

let ¢0, k and w»be the amplitude, wave number, and frequency, respectively,
of the wave. We treat this problem in one dimension, and we assume that
the amplitude ¢0 is a constant. The Hamiltonian for this system can be

written as

Hit pt) = .Z.';?‘ + eec\%’cos(h'x -cot) (7.52)

A parameter of smallness € has been introduced in (7.52) to indicate the

perturbing term, ' This Hamiltonian giﬁes the following sequence for Hn

HO(Xsp’t) =‘H P (7.53a)
Hl(x,p,t) = e¢0 cos(kx - wt) (7.53b)
H =0, n>1 ’ (7.53¢c)

Before aﬁplying the perturbation formulas (7.11), we must selecf a
strategy for the perturbation analysis. In the previous example studied,
the low energy limit of the pendulum, we chose the canonical transformation
so that K‘would be independent of the generalized coordinate 6. Heré we
choose, in accordance with the averaging discussion in section 5, to
eliminate the time dependence from K. 1In genefal, one would expect
the resulting K to depend upon x, even after the timé'dependence is gone.

Henée the new Hamiltonian K may well not be solvable, although it ﬁill

'certainly be simpler to deal with than H., It will turn out, however,

" for the Hamiltonian (7.53),‘that this general expectation is not borne

out, and that when t is eliminated by the canonical transformation, then
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x goes with it. For this reason, (7.53) is a very special case of time-

- dependent systems.

0 0

order one we face, once again, the issue of determining criteria to make

When we apply.(7.11) to (7.53), we get, first, K. = H_ , as always. At

the choice for v, and Kl. The order one equation, from (7.11b), is

’ (nbwl)ix,p,t) = K (x,p,t) - e cos(ix - wt) (7.54)

In order to make K. independent of t, the term in D w, must cancel the

1 01

time dependence on the right hand side. Since the perturbing term is
periodic.in time, wé aygue'on analogy fo the discgssion surfounding (7.32),
aﬁd‘we choose the term in Dowi to cancel the purely oscillatory part

of the right hand side and no more. Thus vy itself will be purely oscillatory
in time, and it will coﬁtain no secular terms. In this case the définitioh
we choose for the averaging operator is given by (5.19). Nofe in particular

that it ignores the coordinate x.

Applying these criteria, we get immediétely from (7.54)
K, =0 | . (7.55)

This result was already noted in chapter 5. Intuitively, it is easy to
see why the first order effec;s of the wave on the particle average_to
zero. As the particle moves with its velocity p/ﬁ and as the wave moves
with its phase velocity'w/k, the particle will slide up and down the

potential of the wave, first being accelerated as it goes downhill, and

then being decelerated as it climbs uphill again. On the average, at

least to first order, these two effects will cancel, and we get (7.55).

This argument breaks down, however, if the particle is in resonance or
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near resonance with the wave, a case we will consider later.
Now we consider the equation for v, ‘Writing out Dowlvaccording
to (7.27), we have
= 8wy , p 3w
Dowl atl + = axl (7.56)
Hence we need to solve the equation
B o o P 3w - - |
"Btl(x’p’t) + o ax1(x,p,t_) e¢0 cos(kx - wt) (7.57)
The theory of equations of this type is given in Appendix A; the solution
is eaéily found to be
| e, n( 9 |
wy (2. %) = - sin(kx -w (7.58)
(hr_ -w) - -
m
As desired, vy is purely oscillatory in time.
Let us move on to the second order terms. Examining (7.11lc) and using
(7.55), we have
Ko= % {wg, u)} ‘ | (7.59)
and
DoWy = - {Wi, H;} ' (7.60)
We will not.solve (7.60), although it is easy to do so; instead we just
work out K2 using (7.53b) and (7.58):
2¢2 _ ' :
ek, (7.61)

Ka (P) =
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where we have'set_E0= k¢0, representing the amplitude of the electric field.

'Aitogether, then, we have for K,

2~2 : .
R . 2B o(e?)

The second order term is the "ponderomotive" term; as predicted above,
it is not only indepeqdent of t, but also of x. There is an important
generalization of the Ponderomotive term which appears in certain
applications. In our ofiginal Hamiltonian (7;52), the amplitude of the wave
¢0.was taken to be é constant. If instead thié amplitude 'is taken to
be a slo&ly varying function of x,'which we may write as ¢ (Ax) for some

A<< 1, then, in a certain approximation, the averaged Hamiltonian K becomes

e*( E(An)”
SCER

Now the ponderomotive term does have a dependence on x, giving it the

(7.63)

K("‘)?)" _g% + E_z

mathematical form of a potential energy. Hence this term is sometimes called

the "ponderomotive potential'. Its effect is to repel the particle,

regardless of the sign of its charge, from regions of high field.strength;
Consider now the denominators appearing in the expressions for vy and

K It is not hard to see that the quantity

2

wy = w - kp/m ' | S (7.64)

" is the Doppler shifted frequency of the wave, as seen by the moving particle.

Hence this denominator is small if the particle is nearly in resonance
with the wave, and for exact resoﬁance, the denominator vanishes. For a

nearly resonant particle, we would expect the convergence of the series
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(7.62) to be put in jeopardy, and this is, in fact, exactly the case.

The series (7.62) has a certain circle of cénvergence in € space,
centered about s=Q, and the radius of convergence is a function of Whs and
hence of p. Thié radiué of convergence gées to zero as wD‘goes to zeré, as
might be expected. An equivalent way of stating this is to say that for
fixed € (such as e€=1) there will be a region of phase space for which the
series (7.62) does not converge. This region has the form of an interval
surrounding the resonance value of the momentum, namely p = mw/k, and |
it is called the "trapping region". If the dynamics of the particle are
to be'understood in thé trapping regioh; then another approximation scheme,
apart from (7.52), must be used.

Many of the qualitative features of the Hamiltonian (7.52) can be
understood by subjecting it to a certain closed—formvcanonicél trans;
formation. This transformation is generated by the following mixed-variable

generating function:

| , .
S(x,pht) = xp’ v mPx - oo 2t (7.65)

When the Hamiltonian (7.52) is transformed by this canonicél transformation,
thefe results, apart from various constant factors, exactly the pendulum
Hamiltonian. Physically, (7.65) corresponds to going to a frame of
reference moving with the wéve, and hence iﬁ causes the new Hamiltonian

to be time-independent. |

The phenomenon of resonances is a pervasive one with systems of more

- than one degree of freedom, or with time-dependent systems of one or

‘more degrees of freedom. The convergence of the perturbative series is

put very much in doubt by resonances, although the series may still be
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computationaliy useful for long periods of time. In general, a near-

‘resonance will mean, if not a complete invalidation of the series, then

at least the presence of long-period terms whose amplitude is larger
than would be expected according to the e-ordering. For example, the
planets Jupiter and Saturn aré nearly inva 2-5 resonance, and associated
with this near-resonance are large mutual perturbations with a period of
about 1000 years.

'Sometimes.there may be sevéral resonant regions of phase space. For
example,‘a particle moving in the presence of two waves may be in resonance
with one wave but nét the.other. In cases like this, it may be desirable
to transform away the non-resonant terms, but to keep the resonant ones. -
Thg result will be a Hamiltonian K which still depends on time, but which
has a simpler dependence than the original Hamiltonian. This case illustrates
how Lie fransforms can be used to achieve a variety of goals, depending

on the circumstances.
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Appendix A.  Integrating Along Unperturbed Trajectories
In Hamiltonian perturbation theory we are often called upon to solve
differential equationé'of the form
2 isu) - g (A.1)

for the unknown function f. It is assumed that HO and g are given; the
functions f and g may depend on time, but we assume that HO does not.

(This latter assumption is not essential.) H_ is the unpertﬁrbed Hamiltonian,

0
and f usualiy represents a.Lie generator. We are usually not interested
inlthe_géhéral solution for f, but only in a particular solution with certain
properties, such as thé property.of being purely oscillatory.

The‘equation (A.1) is a first order, linear, inhomogeneous partial
differential equation for f. The theory of such equations is given in

detail in Ref. 19; here we develop only those properties we need.

-The left-hand side of (A.l1) has the form of a convective derivative:

2N

2t > z , 2Z; % . ( )
icd : _ ‘
where
7. = {2, Hl (A.3)

The solution to the partial differential equatioﬁ (A.2) is conveniently
expressed in terms of the solution to the system of drdinary_differeptial
equations (A.B). These ordinary differential equations are thé equatioﬁg
of motion for the unpertgrbed-Hamiltonian, which are solvable by hypothesis.
These equations genérate the unpefturbed trajectories in phase space,

which are called the charaéteristics of the partial.diffe;ential equation (A.2).
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. Since the unperturbed system is solvable, it is possible to find the
£ representing the forward time evolution of the unperturbed .
system. These functions give z as a function of t and the initial conditions

Zg which we assume are evaluated at t=0:
z = Zg(zpt) - O (A.4)

Likewise, it is possible to invert these functions and find the backwards
evolution functions, Z :
. b
zg =, (2,t) | - (a.5)

To find the solution f to (A.1) or (A.2), the following prescription may
be used. First,’ekprEss the function g, assumed to be time-~dependent, in
terms of the variable t' and the initial conditions Zo» to give a new

function G, as follows:
G(zgt') = g(Z.(z4,t"),t") | (A.6)

Second, integrate G with respect to t' with t'=t as an upper limit. The lower
limit is unspecified, and may be taken in the sense of an indefinite integral.

This gives a function F:

. . -
Flgd) = geu' Glg,t") &‘*‘“ 3(Zs(z..40.0) .7

The form of this integral suggests the expression, "integrating along
unperturbed trajectories". Third and finally, use the functions gb’ given

0 dependence of F in terms of z and t. This gives
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the solution f:

52, = F(Zu(zd),4) - g.u' G(Z, (z,4), £)

+ o :
SR CACAERRIND 5.8

The last integral in (A.8) can be re-expressed in some other useful forms
by compounding partial evolutions. This last step depends on the time-

independence of HO’ and it gives

"

t : -
(%, £ g & (%, (5,49, ¢)

)

J‘d‘c %(_‘if,,(g,'r),t.;z') ‘ '(A.9.)

In the last integral we have set T = t'-t.

The fact that (A.9) or (A.8) satisfies (A.2) may be verified by direct

substitution.
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Problems on Lie Transforms.

Problems 1 through 4 are designed as a review of some relevant features of
Hamiltonian mechanics. If you are familiar enough with the material that

these problems are trivial, then simply state "trivial".

1. Show that the product of two canonical transformations is canonical.

Use the definition of canonical transformation in the form (3.14).

2. In deriving (6.29) from (6.28), the following theorem has been used.
Given three phase functions A,B,C, evolving under a Hamiltonian H, such fhat.

A = {B,C}, then
A= {B,c} + {B,(}
The dot means total time derivative, e.g.

e JA
A= 3_1'. + {A,H}

Prove this theorem. Use only the algebra of the Poisson bracket, i.e. don't

‘write things out in component form.

3. Take the harmonic oscillator Hamiltonian,
1, 2 22
H=35(p +owq )
and solve for q(t), p(t) in terms of 4y Py at t=0. Show that the trans-

formation (qO,pO) -+ (q,p) is canonical for all values of t.

4. Solve equation (3.32) and show that a solution W generates (3.33). Don't

worry about branches, i.e. signs of square roots.

5. Consider the non-relativistic motion of a particle of charge e and mass m

in the following magnetic field:

g=(30+sx)’£



where B, is é constant and B is a small quantity. Neglect the motion of the
particle in the z-direction, i.e. treat the problem in the two perpendicular
directions only.

Write down the Newton-Lorentz equations of motion for the particle in
component form. Transform these equations to a set of first-order differential
equations by means of the substitution v_ = i,‘vy = y. Treat the terms containing
B as a perturbation, and note that the unperturbed system is a set of linear
equatiohs, while the perturbation introduces a non-linearity. .The unperturbed
system is periodic (not:only in configuration space, but also in phase space.)
Observe that the system»ié in the form of equation 4.7).

~ The preparatory transformation for this system will bring it into the form

of equation (4.8). Show that the following transformation will do this:

W

Xx =X+ — cos o
29
.y=Y-g—sin6
0
v. = -w sin 6
V. = -W COS 9
y
where QO = eBO/mc. Observe that this transformation allows the solution to the

4
unperturbed system to be written down immediately. Use this solution to give a !
physical interpretation of the new variables (X,Y,w,6).

Finally, average the equations, to bring them into the form of equations

(4.35). Interpret the results physically.

‘6. This problem is the same as problem 5, except that it uses Hamiltonian

‘mechanics. Show that the foilowing vector potential gives the same magnetic
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field which was used in problem 5:

A

sz)_y

N =

é.z (BOX +

Use this vector potential in the standard Hamiltonian for non-relativistic
charged particles in a magnetic field. Expand H in powers of B and ignore terms i
which are 0(82).

The Hamilton-Jacobi equation for the unperturbed Hamiltonian can be solved,

and oné such solution gives the following transformation:

- L
x mﬂ.o'(“_E +423 cos b)

y = A]_—n‘l—_a—_—, (@~ NZ7" sine)

’Px —-'J 2m Qe I 3in O
I _ PS = | '\‘on iy

The new caﬂonical variables are (Q,P,6,J). Show that this transformation is
canonical by appealing to the definition (3.12). In doing this, it is easiest
to compute the Poisson brackets of the old vafiables among themselves with
respéct to the new variables. Transform the Hamiltonian to the new variables, d
and solve the unperturbed system. Use this solution to give a physical
interpretation of the variables (Q,P,6,J).

Finally; average the perturbing term in the Hamiltonian, write dbwn the
averaged équations of motion, and interpret them;
| This system is something of a hybrid, in the sense that one pair of

canonical coordinates, the (8,J) coordinates, represent periodic motion, while

the other pair, the (Q,P) coordinates, may represent unbounded motion. Hence

only the first pair are. action-angle variables, and the Hamiltonian does not



%

fit the form of equation (5.21), although it is similar in spirit.

7. Carry out the expansion (6.50). to third order. Also, find the inverse
(6.51) to third order by using the method in the notes. Show that it agrees
with the rule on page 6.19. Multiply the two series together, keeping all

terms through third order, and show that the result is the identity transformation.

8. Carry out (7.11) to third order. Don't worry about proving that it is valid

for the time-dependent case. Save the results of problems 7 and 8. You may

need them some day.
9. Consider the following Hamiltonian:

1

H=200P

2+ ced(x,1)

where

6(5,t) = §0m) B 0 e,

"This Hamiltoniaﬁ differs from (7.52) in the following ways. First, it is

3-dimensional. Second,'complex notation is used. The quantity ) may be complex,
which allows for an arbitrary origin of phése.for the wave. Third, the
amplitude ¢ is not constant, but is rather a slowly varying function éf X.

Bbth the dimensionless quantities € and A are small, but X is to be
considered much smaller than ¢. We will eXpand fesults to order two in €, buf
keep only order zero in_X. This means that we are examining one particular
corner of parameter space.

Use Lie transforms to transform this Hamiltonian H into a new Hamiltonian

'K, which is to be independent of time. Since the form of the function § is not

specified, it is to be expécted that K will also involve this unspecified



function, and hence not be solvable. It is, however, easier to interpret than

" H.

1 Use the rules of Appendix A to

as a semi-indefinite integral (i.e., the lower limit is indefinite)

Begin by finding the Lie'genérator w

express w;

involving the unspecified function 3. Show that an integration by parts will

convert this integral into a power series in A. Do this and keep only the term

which is order zero in .
Then find Kl, K2 and Wy

chapter 6, to express the old variables X,p in terms of the new variables

~N

Use the expansién of the T operator, given in

x',p', through 0(32). .Drop all terms of order A. The new variables 5',2'

are sometimes called '"oscillation center' variables.
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