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Abstract

We present some theoretical and experimental re-
sults of an important caching problem which arises
frequently in data intensive scientific applications.
For such applications, jobs need to process several
files simultaneously, i.e., a job can only be serviced
if all its needed files are present in the disk cache.
The set of files requested by a job is called a file-
bundle. This requirement introduces the need for
cache replacement algorithms based on file-bundles
rather then individual files. We show that traditional
caching algorithms suchLeast Recently Used (LRU)
and GreedyDual-Size (GDS)are not optimal in this
case since they are not sensitive to file-bundles and
may hold in the cache non-relevant combinations of
files. We propose and analyze a new cache replace-
ment algorithm specifically adapted to deal with file-
bundles. We tested the new algorithm using a disk
cache simulation model under a wide range of condi-
tions such as file request distributions, relative cache
size, file size distribution, and incoming job queue
size. In all these tests, the results show significant im-
provement over traditional caching algorithms such
as GDS.

1. Introduction

1.1. Overview

Data intensive scientific applications concern ap-
plication software that have very large data and stor-
age resource requirements. Such applications are be-
coming increasingly prevalent in domains of scientific
and engineering research, examples include long run-

ning simulations of time-dependent phenomena that
periodically generate snapshots of their state as in As-
trophysics and climate modeling, simulation of com-
bustion phenomena, and very large data sets gener-
ated from experiments such as BaBar [2] or the Large
Hadron Collider (LHC) in the area of high energy par-
ticle physics. The large datasets, from simulations and
actual experiments, are preprocessed and maintained
in units of files on geographically dispersed mass stor-
age systems. Subsequent data analyses and visualiza-
tion applications retrieve subsets of these files onto
high performance computing resources creating large
demands for disk and tape storage retrieval and net-
work bandwidth.

Caching has long been recognized as one of the
most important techniques to reduce bandwidth con-
sumption [1, 3, 9, 10]. The general use of the term
caching implies a specialized buffer storage that is
used to speed up access when the data is transferred
between different levels of a storage hierarchy with
different characteristics: speed of access, size and cost
per bit (see Fig. 1).
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Figure 1. The Different Levels of Caching in
Data Intensive Applications

Successful caching relies on two properties of the
access patterns of most application to be effective:
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temporal locality - if a file is accessed once, it is
likely to be accessed again soon

spatial locality - if a file is accessed then files in
close proximity (e.g., on the same storage tape)
are also likely to be accessed.

The disk cache manager often has no knowledge of
the request stream for files in the cache. Consequently,
many cache systems are based on recognition of pat-
terns of either recently used or frequently used files
and use this to determine which files should be kept in
cache and which should be evicted.

1.2. Problem description and Previous Work

Consider a sequence of jobs that make requests
for files at a computational resource where each job
is comprised of one or more file requests. The re-
quests are serviced in some order:first come first serve
(FCFS), shortest job first (SJF), etc. A cacheC of
some fixed sizes(C), is available for storing a subset
of all the requested files. A job is serviced only if all
the files it needs are already in the cacheC, otherwise
it waits in queue until all its requested files are trans-
ferred from a Mass Storage System (located either lo-
cally or at a remote site) intoC. These data trans-
fers cause time delays for the job execution, as well
as consumption of valuable resources such as network
and data storage bandwidth. The problem we address
is therefore finding an optimal cache replacement pol-
icy that maximizes throughput, or alternatively min-
imizes the volume of data transfers, under a limited
cache space.

We refer to the set of files requested by a job as
a file-bundle. Processing a job requires that all the
files in itsfile-bundlebe present simultaneously in the
cache. For this reason, it is necessary in this envi-
ronment to make cache loading and replacement deci-
sions based onfile-bundlesrather then a single file at
a time as in traditional file caching algorithms. This
difference is quantified further in section 3.

The quest for optimal caching strategies has posed
some interesting challenges and has culminated in
the development of numerous cache replacement poli-
cies some of which include: Least Recently Used
(LRU), Least Frequently Used (LFU), Greedy Dual

Size (GDS) and Minimum Average Cost Per Replace-
ment (MACR). The closest environment, in the use
of caching techniques, to the one desirable in scien-
tific data management, is in web-caching where proxy
servers and reverse proxy servers are configured es-
sentially as distributed caches. The most widely used
caching system in this domain is the Squid Cache Sys-
tem. Other distributed systems that provide caching
functionalities are thedCache[5], and Storage Re-
source Managers (SRM) [11].

Although the literature provides a considerable
number of papers [4, 7, 8, 12, 14, 16] that describe and
analyze caching and replacement policies, the main
concern of most of these efforts is the maintenance of
a “popular” set of files in the cache in order to maxi-
mize “hit” ratios and minimize expected access costs
for requested files not found in cache. The problem
discussed in this paper is radically different from these
earlier works as requests require caching of multiple
files simultaneously rather than single files.

We propose here algorithms based on an analysis
of the problem that maximizes the throughput of jobs,
i.e., number of jobs serviced per unit time, while also
minimizing thebyte miss ratio. The typical perfor-
mance metrics in cache replacement algorithms are
the hit ratio, the miss ratio, the byte hit ratio, and
the byte miss ratio. A good cache replacement pol-
icy maximizes thehit ratio (or minimizes themiss ra-
tio) or alternatively maximizes thebyte hit ratio (or
minimizesbyte miss ratio). Suppose we have a work-
load of a sequence ofN jobs R = 〈r1, r2, . . . rN 〉,
where each jobri = {fi} makes a request for only
one filefi . Let the size of a filefi by denoted ass(fi).
Of the N requests, let the set of files found in the
cache beH whereh is its cardinality, i.e.,h = |H|.
The hit ratioρhit, is defined asρhit = h/N . The
miss ratioρmiss is defined as1 − ρhit = 1 − h/N .
The byte hit ratioρbyte−hit is defined asρbyte−hit =
(
∑

i∈H s(fi))/(
∑

j∈R s(fj)) and the byte miss ratio
ρbyte−miss is defined as1− ρbyte−hit.

We compare our results with some earlier works on
caching, using thebyte miss ratioas our performance
metric for most of the experiments. We also show how
the results are affected when queues of waiting jobs
are taken into consideration. The rational in choosing
byte miss ratio(or conversely, the byte hit ratio), met-
ric for comparison is that, we wish to minimize the
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amount of data transfered into and out of the cache.
When considering single file caching, there is a strong
correlation between thebyte miss ratioand thebyte hit
ratio but this is not necessarily true, when file-bundles
are considered.

1.3. Main Results

The main results of this paper are:

• Identification of a new caching problem, which
arises frequently in scientific applications that
deal withfile-bundlecaching.

• Derivation of a new cache replacement algo-
rithm File Bundle Cache (FBC), that is simple
to implement. Unlike existing cache replace-
ment algorithms in the literature, we track the
file-bundlesthat were requested in the past to de-
termine what combinations of files should be re-
tained or evicted from the cache. This results in a
much lower cache miss-ratio under a wide range
of conditions tested.

• Results of extensive simulation runs that com-
pare the FBC algorithm with GreedyDual-
Size[4] cache replacement consistently show that
FBC gives a much lower average volume of data
transfers per request with file requests observing
either Uniform or Zipf distributions.

• The heuristic algorithmOptCacheSelectused by
FBC is an approximation algorithm to an inter-
esting combinatorial problem whose exact solu-
tion is NP-Hard. For this algorithm, we derive
tight bounds from the optimal solution and show
that the value of the solution produced is a factor
of at most1/(2d∗) of the optimal one whered
is the maximum number of requests that use the
same file.

The rest of the paper is organized as follows. In
Section 2 we discuss file caching and its significance
to data intensive application. In Section 3 we present
a heuristic based on a greedy algorithm calledFBC,
and its bound from the optimal solution is derived us-
ing LP relaxation in Section 4. Our experimental set
for the comparison of our proposed algorithm with
GredyDual-Size is introduced in Section 5 and the re-
sults are discussed in Section 6. We conclude with

Section 7 where we give some directions for future
work.

2. File Caching in Scientific Data Manage-
ment

This work is motivated by file caching problems
arising in scientific and other data management appli-
cations that involve multi-dimensional data [8, 15].
The main common characteristic of such applications
is that they deal with objects that have multiple at-
tributes (10 to 500), and often partition the data such
that values for each attribute (or a group of attributes)
are stored in a separate file (vertical partitioning).
Subsequent analysis and data mining jobs that oper-
ate on this data often require that several of these at-
tributes are compared or combined together for further
computation. In relational database terminology, this
is equivalent to computing a multi-way join.

An example of caching offile-bundlescomes from
the area of bitmap indices for querying high dimen-
sional data [15]. In this case, a collection ofN ob-
jects (such as physics events) each having multiple at-
tributes, is represented using bitmaps in the follow-
ing way: the range of values of each attribute is di-
vided into sub-ranges also called bins; a bitmap is
constructed for each bin with a ‘0’ or ‘1’ bit indicat-
ing whether an attribute value is in the required sub-
range (see Fig. 2). The bitmaps (each consisting ofN
bits before compression) are stored in multiple files,
one file for each bin of an attribute. Range queries
are then answered by performing boolean operations
among these files. Again, in this case all files contain-
ing bitmaps relevant to the query form afile-bundleas
they must be read simultaneously to answer the query.
As a small example, in Fig. 2 the values of attribute
A are partitioned into 5 bins each stored in a separate
file. A request that includes a range query5 ≤ A ≤ 35
requires caching of afile-bundleconsisting of the files
f1, f2,f3, andf4. These files must be cached simul-
taneously in order to perform an “OR” operation on
them.

Other examples of applications that requirefile-
bundlesare applications that need to compute derived
data based on raw data residing in several files. For ex-
ample applications that analyze physics experimental
data coming from detectors, requirefile-bundlescon-
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Figure 2. Illustration of file-bundle consisting
of bitmap files

sisting of files with measurement data (energy level,
momentum etc.) together with other files containing
instrument calibration data for proper interpretation of
the measurements.

3. Algorithms and Bounds from Optimality

3.1. File Bundle Caching Algorithm

The main idea behind our caching strategy is to
load the cache with a set of files that correspond to
popularfile-bundles, thus maximizing the probability
that an arriving request can find all the files it needs
in the cache. We illustrate the difference between this
strategy and caching policies based on single file pop-
ularity with a small example shown in Fig. 3: for a
given cache state and a requestr, we say that the cache
supportsr or, alternatively, thatr is a request-hit if the
file-bundleneeded byr is found in the cache.

3.2. Example

Let us assume that we have six possible requests
r1, r2, ..., r6 each associated with afile-bundledrawn
from F = f1, f2, ...f7 as shown in Table 1 and in
Fig. 3 by the lines connecting requests to their associ-
ated files. Further, let us assume that all files are of the

same size, the cache can hold only three files, and all
six requests are equally likely,i.e. with a probabilty of
1
6 that any request is the next one to arrive. Each row
in Table 2 shows the probablity of the event that a file
is requested by a random request. Note that the sum
of probabilities is more than 1 as the events are not
mutually exclusive. We note that the most popular file
is f5 as 4 requests out of the six possible requests need
it. This is followed by filesf6 andf7 each needed by
3 of the requests. Each row in Table 3 shows request-
hit probabilities,i.e., the probablity that a random re-
quest will find itsfile-bundlein the cache under some
cache content. Only 5 cases of cache content out of
the 35 cases (possible ways of choosing 3 files from
7) are shown. We note that keeping the 3 most popu-
lar files (row 1 of the table) does not lead to the largest
request-hit probability. The best request-hit probabil-
ity is represented in the cache of Fig. 3 and by the
second row of the table with a request-hit probability
of 1

2 as keeping filesf1, f3, f5 in the cache results in a
request-hit for 3 out of the six possible requests.

Request File-Bundle
r1 f1,f3,f5
r2 f2,f6,f7
r3 f1,f5
r4 f4,f6,f7
r5 f3,f5
r6 f5,f6,f7

Table 1. Requests and their file-bundles

File No of File request
Requests probability

f1 2 1/3
f2 1 1/6
f3 2 1/3
f4 1 1/3
f5 4 2/3
f6 3 1/2
f7 3 1/2

Table 2. File request probabilities

The previous example illustrates the need for
caching strategies that take into account request-hits
rather than simple file-hit based algorithms. We also
note that a simplistic approach that loads or evicts
file-bundlesfrom the cache associated with requests
based solely on their popularity (LFU- Least Fre-
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Cache Contents Requests Request-hit
Supported probability

f5,f6,f7 r6 1/6
f1,f3,f5 r1,r3,r5 1/2
f1,f5,f6 r3 1/6
f3,f5,f6 r5 1/6
f1,f2,f3 - 0

Table 3. Request-hit probabilities
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Figure 3. Example of file selection

quently Used based algorithms) does not work, as file-
sharing betweenfile-bundlesmust also be taken into
account. For example, let us consider a small subset
of the requests as shown in Fig. 4. The relative popu-
larity of each of the 3 requests is also given. Eviction
of thefile-bundleassociated with the relatively unpop-
ular requestr2 (popularity of .2) will cause a cache
miss for the highly popular requestsr1 andr3 (each
with popularity of .4) whosefile-bundlesoverlap with
it. Similar example can be constructed forfile-bundle
LRU based algorithms as well. For that reason, the
degree of file-sharing must also be taken into account
by an effective cache replacement algorithm.
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Figure 4. Example file-bundle overlaps

We now proceed to describe our caching algorithm,
FBC, which loads and evicts files from the cache in
response to new requests. At the heart of our caching
strategy is an algorithm calledOptCacheSelect, called
by FBC, to determine which files must be loaded
and/or replaced.

We will first describeOptCacheSelectand then
show how it is incorporated into the main algorithm
FBC. It takes into account file sizes and request fre-
quency counts as well as degree of file-sharing. It
will be described in more detail below. The result pro-
duced byOptCacheSelectis a new set of files loaded
into the cache that attempts to maximize request-hit
probability. The algorithm is a greedy heuristic that
attempts to achieve a good approximation to an NP-
hard problem that is a generalization of the Knapsack
problem. Some theoretical results about the complex-
ity of the problem and analysis of the effectiveness of
the approximation are given in Section 4

The OptCacheSelectalgorithm gets as its input a
data structureL(R) containing full information about
a collection of historical requestsR. The data struc-
ture L(R) is initially empty and gets updated with
each request processed. For lack of space we will not
present here the exact implementation ofL(R), which
is basically a hash-table with pointers to other struc-
tures, but rather describe its contents. For each request
ri ∈ R that was served by the system we store inL(R)
the following information:

• An associated valuev(ri). In our current imple-
mentationv(ri) is simply a counter incremented
by 1 each time this request appeared so far, but
it can also reflect request priority or some other
measure of importance. In Section 6 we show
how this function can be used to enhance “fair”
scheduling of the requests.

• the setF (ri) of files requested byri and the size
of each such file.

We need the following additional definitions in the
description of the algorithm. We denote the size of a
cacheC by s(C). For a filefi, let s(fi) denote its size
and letd(fi) represent the number of requests served
by it. The adjusted size of a filefi, denoted bys′(fi),
is defined as its size divided by the number of requests
it serves, i.e.,s′(fi) = s(fi)/d(fi).

The adjusted relative value of a request, or simply
its relative value,v′(rj), is its value divided by the
sum of adjusted sizes of the files it requests,i.e.

v′(rj) =
v(rj)

∑

fi∈F (rj)
s′(fi)
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The algorithm OptCacheSelect(L(R),S(C)) at-
tempts to select an optimal set of files that fits in the
cache in order to serve a subset ofR with the highest
total value. It does so by servicing requests in decreas-
ing order of their adjusted relative values skipping re-
quests that cannot be serviced due to insufficient space
in the cache for their associated files. The final solu-
tion is the maximum between the value of requests
loaded and the maximum value of any single request.
The justification for the comparison performed in this
latter step is given in Appendix A.

The intuition behind usingv′(rj) as a measure for
ranking requests is thatv′(rj) increases with an in-
crease in request popularity and degree of sharing of
its files with other requests. On the other hand, it de-
creases when the amount of cache resources used by
F (rj) grows.

input : A data structureL(R) as described
above and a cacheC of sizes(C)

output: The solutionG - a subset of the
requests inR whose files must be
loaded into the cache.

Step 0: /* Initialize */
G← φ; //set of requests selected
s(C ′)← s(C) ; // s(C ′) keeps track of
unused cache size
Step 1: Sort the requests inR in decreasing
order of their relative values and renumber
from r1, . . . , rn based on this order
Step 2:
for i← 1 to n do

if s(C ′) ≥ s(F (ri)) then
Load the files inF (ri) into the cache
s(C ′)← s(C ′)− s(F (ri)) ; //
update unused cache size
G← G∪ ri ; // add requestri to
the solution

end
end
Step 3: Compare the total value of requests
in G and the highest value of any single
request and choose the maximum.

Algorithm 1 : Algorithm OptCacheSelect

Note: In practice we can even do better by recom-
putingv′(rj) for all requestsrj not selected yet (and
resorting) following Step 2. This is done by setting

to 0 the size of files inF (rj) that are already in the
cache. The reason for this is that these files will not
consume any additional cache resources. This leads
to an increase in adjusted value for requests that share
files with the previously selected requests.

We are now in a position to describe the main steps
of our caching algorithm,FBC, as illustrated in Fig. 5.
Initially the cache is empty, whenever a new request
rnew arrives all its missing files (files requested by
it but not currently in the cache) are loaded into the
cache (Fig. 5a). At some point the cache fills up (Fig.
5b) and a caching replacement decision must be taken
when a new request,rnew, arrives.
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Figure 5. The steps of algorithm FBC

All files requested byrnew not currently present in
the cache must be loaded into the cache and some
other files currently in the cache must be evicted in
order to make space for them (Fig. 5c). We reserve
sufficient space for the new files requested byrnew

and then call on algorithmOptCacheSelectdescribed
above to decide on the optimal files that must be main-
tained in the remaining part of the cache to maximize
request-hit probability (Fig. 5d).

The Algorithm 2 formalizes the steps of theFBC
algorithm.

4. Complexity Analyses of the Algorithms

4.1. Linear Programming Relaxation

We now proceed to analyze the quality of the solu-
tion produced by the OptCacheSelect algorithm which
is at the heart of our caching strategy. We refer to the
problem faced by this algorithm as the File-Bundle
Caching (FBC) problem which is defined as follows:
Given a collection of requestsR = {r1, r2, . . . , rn},
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input : A new requestrnew, a data structure
L(R) including information about
requestsR = {r1, . . . rn}, their
valuesv(rj), the setsF (ri), a cache
C of sizes(C) ,F (C) the set of files
currently in the cache, and the sizes
s(fi) of all files requested by
members ofR.

output: The solutionG - a set of files that
must be loaded intoC

Step 1: ComputeS, the amount of space
needed by files inF (rnew) that are not
currently in the cacheC
Step 2: Call OptCacheSelect(L(R),s(C)-S)
and store its solution inF (Opt)
Step 3: Load into the cacheC the files in
F (Opt)\F (C)
Step 4: Update the data structureL(R) with
all relevant information aboutrnew

Algorithm 2 : Algorithm OptFileBundle

and a constantM . Each request inR is associated
with a valuev(ri) and a subset of files (file-bundle)
drawn from a set of filesF = {F1, F2, . . . , Fm}
where each file inF has a sizes(Fi). Find a subsetR′

of the requests,R′ ⊆ R, of maximum total value such
that the total size of the files needed byR′ is at most
M.

It is easy to show that in the special case thatfile-
bundleshave no overlaps, i.e., each file is needed by
exactly one request the FBC problem is equivalent to
the knapsack problem. The FBC problem is NP-hard
even if file-bundlescontain exactly 2 files. This is
done by reduction from the Densek−subgraph (DKS)
problem [6]. An instance of the DKS problem is de-
fined as follows: Given a graphG = (V,E) and a
positive integerk, find a subsetV ′ ⊆ V with |V ′| = k
that maximizes the total number of edges in the sub-
graph induced byV ′. Given an instance of a DKS
problem, the reduction to an instance of FBC is done
by making each vertexv ∈ V correspond to a filef(v)
of size 1. Each edge(x, y) in E corresponds to a re-
quest for afile-bundleconsisting of the two filesf(x)
andf(y). A solution to the FBC instance with a cache
of sizek corresponds to a solution to the instance of
the DKS where thek files loaded into the cache cor-

respond to vertices of the subgraphV ′ in the solution
of the DKS instance. We also note that any approx-
imation algorithm for the FBC problem can be used
to approximate a DKS problem with the same bound
from optimality. Currently the best-known approxi-
mation for the DKS problem [6] is within a factor of
O(|V |1/3−ǫ) from optimum for someǫ > 0. It is also
conjectured in [6] that an approximation to DKS with
a factor of(1 + ǫ) is NP-hard.

In view of the complexity of approximating FBC
problem, we now derive a bound using LP relaxation
techniques on the ratio between the value of an op-
timal solution to the FBC problem and the one pro-
duced by algorithm OptCacheSelect. The best bound
we are able to derive is2d∗ whered∗ represents the
maximum number of requests sharing a single file.
This is summarized in the following theorem

Theorem 4.1. Let VOptCachSelect represent the value
produced by Algorithm OptCachSelect and letVOPT

be the optimal value. Letd∗ denote the maximum de-
gree of a file, i.e.,d∗ = maxi d(fi) then

VOPt

VGR
≤ 2d∗

The problem formulation of the LP, its dual and the
details of the proofs are presented in Appendix A.

5. Simulation Framework

We designed a simulation model to explore how the
FBC algorithm compares with theGreedyDual-Size
algorithm [4, 16]. For that purpose, we implemented
a modified version ofGreedyDual-Sizewhere each re-
quest is for a set of files rather than a single file as in
the original implementation. The implementation is
described below in Algorithm 3. Each cached filef is
associated with a valueH(f) defined by the costc(f)
of reading the file into cache, and the sizes(f) of the
file. Whenever space is required, the file selected for
eviction is that with the minimumH(f) value. By
maintaining cached files asmin-heapdata structure
based on theH(f) values, the selection of candidates
for eviction is done in logarithmic time. The modifi-
cation to theGreedyDual-Sizeto GreedyDual-MFis
conducted by repeated eviction of the fileq which has
the minimumH value until all the files in the new re-
quest can be accommodated in the cache.
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Input : A request streamR = r1, r2, ....N , a
cacheC of sizes(C), F (C), the set
of files currently in cache. Note: a
request is for a set of files
ri = {f0, f1, . . . , fri

}
Result: Loading of the cache that satisfies

GreedyDual-Size Algorithm for each
requestri.

Initialize L← 0 ;
for i← 1 to N do

Get next request
Setreq ← ri ;
foreach f ∈ req do

if f is already in cacheC then
H(f)← L + c(f)/s(f) ;

else
while there is not enough room in
C to holdf do

SetL← min q∈C
q 6∈ri

H(q) ;

Evict q such thatH(q) = L ;
Load f into the cacheC ;
SetH(f)← L + c(f)/s(f) ;

end
end

end
end
Algorithm 3 : Algorithm GDS-MF

5.1. Workload Characterization

We constructed a simulated workload consisting of
a given set of jobs, with each job requesting a random
number of files from a pool of available files. The
parameters chosen for our simulated workload are as
close as possible to observed real experiments that log
single file requests at a time. The size of each file
was generated randomly between a minimum size of
10 MB and a maximum size of 300 MB. The set of
files requested by each job was chosen uniformly from
the list of available files such that the total size of the
files requested by any given job was smaller than the
available cache size. The cache sized varied between
5 GB and 100 GB. Each simulation run consists of
generating a large number of jobs (≈ 20000) and se-
lecting a number of them (typically 10000) using ei-
ther a uniform or Zipf distribution in order to study
the effects of the various parameters.

5.2. Simulation Environment

The simulation program,cacheSim, was written
in C++ with extensive use of STL. Using a cluster
of three 1.6 GHz dual Opterons with 2GB of RAM
each, we ran a large number of experiments to study
the behaviour of the proposed algorithms for differ-
ent combinations of parameters. These experiments
consumed over 1000 hours of CPU time. The main
performance metric used is thebyte miss ratioand
this was observed primarily for two different work-
load distributions, and varying cache sizes.

There are several parameters of interest that affect
the result of the simulation:

Popularity Distribution. The popularity distribution
of requests for typical workloads is very hard
to characterize as it varies widely from setup to
setup and even from day to day. As such we
are looking at the effects of the two extremes: a
purely random distribution, and a Zipf one.

Cache Size.Given requests of a known average size,
varying the cache size determines the number of
requests that can fit in cache at any given time.
The more requests already in cache, the more
likely that files requested by an incoming job are
already present in cache.

Incoming Queue Length. Instead of processing a
job as soon as it is submitted, one can also con-
sider aggregating the jobs in an incoming queue
of a given length, and only submitting the best
job once the queue is full.

Queueing FairnessRequests with a consistently low
value stay queued for a large number of itera-
tions. To improve the fairness of the queueing
algorithm, we increase the value of a request in
queue by a function of the number of iterations
the request has been waiting.

6. Discussion of Results

In this section we describe some representative re-
sults of our simulation runs where we studied the
effects of various caching parameters on the perfor-
mance of our algorithm. The first set of experiments
performed involved job popularity distributions. A
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uniform popularity distribution means that every re-
quest from the pool of available requests is equally
likely to be requested, whereas Zipf’s distribution as-
signs a probability of selection proportional to1

i to the
ith most popular request.

Figures 6(a) and 6(b) compare thebyte miss ra-
tio for uniform and Zipf request distributions. The
cache replacement strategy based on theFBC algo-
rithm is superior to the one based on theGDSalgo-
rithm in the sense that the byte miss ratio is lower.
The improved performance of theFBC algorithm is
attributed to keeping requests coherent in the cache,
as well as to keeping track of the popularity of each
request. The latter is evident when we consider a Zipf
distribution where a small set of requests occurs with
a high frequency. TheFBC algorithm increases the
value of each request by keeping track of its popular-
ity thus increasing the likelihood of the request stay-
ing in the cache.

The overall effect of varying the cache size on the
byte miss ratio is shown in Fig. 6, where theRelative
Cache Sizeis defined to be the ratio of the total size of
the files requested to the cache size. As the cache is
able to serve more requests the amount of data mov-
ing into the cache for each request decreases. Three
factors contribute to this effect: 1) the number of files
common to all the requests already cached increases,
thus minimizing the amount of new data that needs
to be brought into the cache, 2) the likelihood of of-
ten seen requests to be already in the cache increases,
and 3) the efficiency of theFBC algorithm improves
with the number of requests considered when making
a decision as to what requests to keep in cache. The
first factor dominates the improved byte miss ratio
for the uniform distribution shown in Fig. 7(a) while
the second one dominates for the Zipf distribution in
Fig. 7(b), hence the dramatic improvement in perfor-
mance with increasing the cache size.

Another set of experiments performed involved ag-
gregating the jobs in a processing queue of varying
length instead of processing them in FIFO order. Once
the queue is full, we run theFBC algorithm on the
queued requests, and then process the request with the
highest value. Fig. 8(a) and Fig. 8(b) show the effects
of varying the processing queue length for a random
and Zipf incoming request distribution, respectively.
As we increase the queue length the byte miss ratio

improves. This is due in part to the increased effi-
ciency of the algorithm with the number of requests
considered, in effect translating to an expansion of the
cache size.

A negative consequence of queuing requests is that
requests with a consistently low value may experience
starvation, i.e., stay queued for a large number of it-
erations. Figures 9(a) and 9(b) show the queueing ef-
fects for uniform and Zipf distributions, respectively,
for a queue length of 10: while the majority of re-
quests are scheduled right away, there exists a tail of
requests which linger in the queue for a large number
of iterations. The effect is twofold: first, the queue is
in effect shorter thus decreasing the efficiency of the
algorithm; second, the execution of such requests is
delayed unreasonably which might not be acceptable
in a real-life environment. To mitigate the situation we
artificially increase the value of a request in queue by
an “anti-starvation” function that takes into account
the number of iterationsi the request has been wait-
ing in the queue before being scheduled for execution.
Three different functions were considered: increase
the request value by 1)i (1-weight), 2) i2 (2-weight),
and 3)2i (e-weight). Since the value of a request de-
pends on its popularity, the effect of increasing a re-
quest value by1-weightor 2-weighton the wait time
is less pronounced for a Zipf distribution than for a
uniform one since the natural increase in value with
popularity of the most often requested requests is of
about the same order of magnitude. Only when we
artificially increase the value of a queued request by
e-weightfor a Zipf distribution we begin to see it dom-
inate the natural increase with popularity.

The effect on the byte miss ratio of our various
“anti-starvation” functions is shown in fig. 10. Sur-
prisingly, we see that the effect of such functions leads
to an improvement in the byte miss ratio, in addition
to the expected improvement in the fairness of the sys-
tem by scheduling all requests in a reasonable number
of iterations. Only when we increase the value of a
queued request bye-weightwe observe a degradation
in the byte miss ratio. We interpret such an increase to
having the effect of delaying the scheduling of all the
requests by the queue length and in effect reducing the
effective queue length to a value of 1. Further studies
need to be performed to understand the tradeoffs pre-
sented by different types “anti-starvation” functions.
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Figure 6. Byte Miss-Ratio vs. Cache Size
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Figure 7. Effect of Varying Cache Size
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Figure 8. Byte Miss-Ratio vs Queue Length
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Figure 9. Queue Wait Time (in iterations) for different “ant i-starvation” functions - Log Plot
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Figure 10. Byte Miss-Ratio for different “anti-starvation ” functions

7. Conclusions and Future Work

We have identified a new type of caching prob-
lem that is notable in applications where multiple files
must be in cache for an application to access them
concurrently. In this case dependencies exist among
files that must be cached. This problem arises in var-
ious scientific and commercial applications that use
vertically partitioned attribute files and maintain each
attribute in different files. Traditional cache replace-
ment policies, where decisions as to which files should
be cached or evicted, are based on one file request at
a time, do not apply here since bundles of files are re-
quested at a time. An application can only proceed if
all the files requested are cached.

The problem of optimally loading the cache so
as to maximize the value of satisfied requests is
NP hard. We have proposed approximation algo-
rithms that were shown analytically to produce so-
lutions bounded from the optimal one by a factor of
1/(2d∗). We applied extensive simulations to com-
pare our best proposed algorithm,FBC with a variant
of the GreedDual-SizeGDS-MF that handles multi-
ple file requests at a time. The metric measure used
in our comparisons was primarily the byte miss ra-
tio. Two streams of synthetic workload that reflect the
file-bundle requests of typical applications were gen-
erated. The first was based on Random request distri-
bution and the second was based Zipf request distri-
bution The results of our tests show that, the proposed
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algorithms outperform theGDS-MF for both distri-
bution but the case of the Zipf distribution was sig-
nificantly more pronounced. The results indicate that
FBC involves less data transfers into and out of the
cache thanGDS-MF.

The FBC algorithm is also of theoretical interest
in its own right because of its connection to the well
known dense k-subgraph and the fact that any approx-
imation to FBC can be used to approximate the latter
problem with the same bounds from optimality.

Although most data intensive scientific applica-
tions, involve caching of file bundles, these envi-
ronments still log the files as single independent re-
quested files. All the log traces of caching activities
examined so far, present the logs as single file requests
at a time. We are working with operational staff of the
dCache system at Fermi Laboratory, and at NERSC
to instrument the caching activities for file-bundles.
These log traces will be used in future for real work-
load cache simulations. Future work will include the
incorporation of theFBCalgorithm in an actual appli-
cation environment, such as the data-grid, where large
scale data intensive scientific applications are being
scheduled to run in the future. We intend to also ex-
tend this work to include cases when the processing
time (duration of time to retain the file in the cache
for processing) and the transfer times of files into the
cache are also considered. The case of a hybrid exe-
cution model is also of interest where we have a mix
of jobs some of which execute according toOne File
at a Timemodel while others execute according to the
File-Bundle at a Timemodel.
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A. Proofs of Lemmas and Theorems

A.1. Primal dual bound from optimal

The FBC problem can be modeled as a mixed-
integer program as follows. Let

zi =

{

1 if the file fi is in cache
0 otherwise

and let

yj =

{

1 if all files used byrj are in cache
0 otherwise

Then the mixed integer formulation,P, of FBC can
be stated as:

P : max
n
∑

j=1

v(rj)yj

subject to

yj − zi ≤ 0,∀i ∈ F (rj), and ∀j

m
∑

i=1

s(fi)zi ≤ s(C), zi ∈ {0, 1}

In this formulation the objective is to maximize the
sum of the value of requests addressed using files in
the cache. The first set of constraints ensure thatyj

is less than all thezi’s corresponding to files used by
requestj. On the other hand if all the files required
by rj are in the cache the optimal solution will setyj

equal to one. The second set of constraints ensure that
sum of the sizes of files in the cache does not exceed
the size of the cache,s(C). The linear relaxation of
this problem,P1, and its associated dual problem,D,
are not only easier to analyze but also provide a useful
bound for a heuristic solution procedure.

P1 : max

n
∑

j=1

v(rj)yj

subject to

yj − zi ≤ 0,∀i ∈ F (rj), and ∀j

m
∑

i=1

s(fi)zi ≤ s(C), 0 ≤ zi ≤ 1.

In this formulation we have relaxed the 0-1 restric-
tion on thezi’s. The advantage of the relaxation is
that we are able to use the dual of the problem to ob-
tain bounds. The technique used by us to obtain the
bound is discussed in detail in Vazirani [13].

D : min s(C)λ +
m
∑

i=1

λi

subject to

∑

i∈F (rj)

λji = v(rj) for j = 1, 2, . . . , n (1)

λs(fi) + λi −
∑

j:fi∈F (rj)

λji ≥ 0 (2)

For i = 1, 2, . . . ,m, λ, λi, λji ≥ 0. The inter-
pretation is as follows:λji are the dual variables cor-
responding to the first set of primal constraints,λ is
the dual variable corresponding to the cache size con-
straint, and theλi’s correspond to the last set of con-
straints bounding thez’s to be less than one.

To avoid trivialities, we assume that for each re-
questj :

∑

i∈F (rj)

s(fi) ≤ s(C), that is, each request

can be addressed from the cache, otherwise we can
eliminate such requests in the problem formulation.

We shall use the linear programming relaxation to
bound the solution produced by OptCachSelect. This
will be done in two steps. First we shall bound the
solution toP1, by upper bounding the solution to D.
Then we produce a feasible solution to the primal that
can be compared to this bound. Then we will bound
OptCachSelect. Consider an approximation algorithm
OptCachSelect(LP) for solvingP1 that is similar to
OptCachSelect except that it allows partial loading of
files. It comprises of ranking the requests in descend-
ing order of thev′(rj)’s and loading them greedily un-
til the cache is full. Assume that if all the files for a re-
quest cannot be fully loaded, they are loaded partially
until the cache is full. Let’s assume that the collec-
tion of requests serviced from the cache without loss
of generality are denoted asr1, r2, . . . , rp. Now, we
exhibit the feasible dual solution. Let

λji =
v(rj)s(fi)/d(fi)

∑

t∈F (rj)
s(ft)/d(ft)

13



It can be verified algebraically that this assignment to
theλji’s satisfies the constraints (1). Let

λ =
v(rp)

∑

t∈F (rp) s(ft)/d(ft)
= v′(rp).

Setλj to 0 for files not used by the p requests as
well as the files used to address only thepth request.
Then for this assignment of dual variable values, the
left hand side of (2) evaluates to

λs(fi) + λi −
∑

j:fi∈F (rj)

λji

= s(fi)
v(rp)

∑

t∈F (rp) s(ft)/d(ft)

− s(fi)
∑

j:fi∈F (rj)

v(rj)/d(fi)
∑

t∈F (rj)
s(ft)/d(ft)

≥ s(fi)

(

v′(rp)−max
j≥p

v′(rj)

)

≥ 0

becausev′(rp) is greater than or equal tov′(rj) of any
unloaded request.

Thus equation 2 are satisfied for such files. Finally,
for files used to address thep− 1 requests, let

λi = max
j<p,i∈F (rj)

{

s(fi)
(

v′(rj)− v′(rp)
)}

.

A similar substitution as above reveals that

λs(fi) + λi −
∑

j:fi∈F (rj)

λji

= s(fi)
v(rp)

∑

t∈F (rp) s(ft)/d(ft)

+ max
j<p,i∈F (rj)

{

s(fi)
(

v′(rj)− v′(rp)
)}

− s(fi)
∑

j:fi∈F (rj)

v(rj)/d(fi)
∑

t∈F (rj)
s(ft)/d(ft)

≥ s(fi)

(

v′(rp)−max
j<p

v′(rj)

)

+ max
j<p,i∈F (rj)

{

s(fi)
(

v′(rj)− v′(rp)
)}

= 0

Finally, the dual objective function value equals

s(C)v′(rp)

+
∑

i∈∪j<pF (rj)

max
j<p,i∈F (rj)

{

s(fi)
(

v′(rj)− v′(rp)
)}

≤



s(C)−
∑

i∈∪j<pF (rj)

s(fi)



 v′(rp)

+
∑

i∈∪j<pF (rj)

max
j<p,i∈F (rj)

{s(fi)} v′(rj)

≤



s(C)−
∑

i∈∪j<pF (rj)

s(fi)



 v′(rp)

+
∑

j<p

v′(rj)
∑

i∈F (rj)

s(fi)

≤ max
i

d(fi)

(

∑

j<p

v(rj)

+

(

s(C)−
∑

i∈∪j<pF (rj)
s(fi)

)

∑

i∈F (rp) s(fi)
v(rp)

)

. (3)

In the second inequality we have used the fact that
the maximum of a sum of positive values is less than
their sum. The final expression equals the value of
the solution produced by the approximation algorithm
times the maximum number of requests that need the
same file. However, the objective function value of
any feasible solution to the dual is greater than the
value of the optimal solution to primal.

Theorem A.1. LetVOptCachSelect represent the value
produced by Algorithm OptCachSelect and letVOPT

be the optimal value. Letd∗ denote the maximum de-
gree of a file, i.e.,d∗ = maxi d(fi) then

VOPt

VGR
≤ 2d∗

Proof. Outline: Modify the algorithm
OptCachSelect(LP ) such that it stops with the
last request that can only be accommodated partially
(or not at all). It then also compares the solution pro-
duced to the value of the last request that could not be
accommodated and outputs the larger of the two solu-
tions. As one of the two terms within the parentheses
on the right hand side of equation (3) is larger than the
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other; the integral solution produced by the modified
OptCachSelect(LP ) is at least1/2d∗ times the
optimal solution. AlgorithmOptCachSelect can be
adapted to produce equivalent or a better solution
thenOptCachSelect(LP )
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