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ABSTRACT OF THE DISSERTATION 

 

Understanding the cellular heterogeneity of fetal-like and adult tissues to study cell-type-

specific functional genetic variation 

 

by 

 

Margaret Kathleen Rose Donovan 

 

Doctor of Philosophy in Bioinformatics and Systems Biology with a Specialization in 

Biomedical Informatics 

 

University of California San Diego, 2019 

 

Professor Kelly A. Frazer, Chair 

 

Genome-wide association studies (GWAS) have suggested that the underlying 

genetic basis of complex traits and disease is driven by large numbers of non-coding 

variants with modest effects that likely act by modifying gene regulation. Towards 

understanding the regulatory impact of genetic variation, expression quantitative trait loci 



 

 

 

xiv 

 

(eQTL) analyses have been performed across dozens of human tissues to link the 

influence of genetic variants on gene expression levels. While these eQTL studies have 

provided important biological insights, they are still limited by not considering the 

contexts in which these variants function, including the stage of development and cell 

type. Specifically, others have shown increased disease risk in adulthood has links to fetal 

origins, suggesting that characterizing gene expression in fetal-like cells could identify 

genetic variants that are associated with adult traits, but function primarily or solely 

during development. Additionally, as eQTL studies are typically performed across bulk 

tissues, unaccounted for cellular heterogeneity present in bulk gene expression 

measurements can affect genotype-gene expression associations. Thus, it is important to 

identify regulatory variants that alter gene expression in both primitive and adult cell 

types and to characterize cellular heterogeneity across tissues to comprehensively 

understand the genetic basis of complex traits and disease. 

Here, I present two studies, which utilize gene expression data from fetal-like and 

adult tissues to characterize cellular heterogeneity at distinct stages of human 

development. I have examined the cellular heterogeneity in fetal-like induced pluripotent 

stem cell (iPSC)-derived cardiovascular progenitor cells (CVPCs) using single cell 

(sc)RNA-seq data to identify cell populations that emerge as a result of the cardiac 

differentiation. Further, I deconvoluted 180 iPSC-CVPCs and identified factors innate to 

iPSCs that impacted cardiac fate. Next, I showed that mouse scRNA-seq can be used as 

an alternative to human scRNA-seq for the deconvolution of adult GTEx bulk tissues and 

considering cell composition eQTL studies powered the discovery of novel eQTLs, some 

of which were cell-type-associated and colocalized with GWAS disease loci.  
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Chapter 1: Association of human iPSC gene signatures and X 

chromosome dosage with two distinct cardiac differentiation 

trajectories 
 

 

1.1 Abstract 

 

Despite the importance of understanding how variability due to non-genetic 

factors (clone and passage) influences iPSC differentiation outcome, large-scale studies 

capable of addressing this question have not yet been conducted. Here, we performed 232 

directed differentiations of 191 iPSC lines to generate iPSC-derived cardiovascular 

progenitor cells (iPSC-CVPCs). We observed cellular heterogeneity across the iPSC-

CVPC samples due to varying fractions of two cell types: cardiomyocytes (CMs) and 

epicardium-derived cells (EPDCs). Comparing the transcriptomes of CM-fated and 

EPDC-fated iPSCs, we discovered that 91 signature genes and X chromosome dosage 

differences are associated with these two distinct cardiac developmental trajectories. In 

an independent set of 39 iPSCs differentiated into CMs, we confirmed that sex and 

transcriptional differences impact cardiac fate outcome. Our study provides novel 

insights into how iPSC transcriptional and X chromosome gene dosage differences 

influence their response to differentiation stimuli and hence cardiac cell fate. 

 

1.2 Introduction 

 

Variability in human induced pluripotent stem cell (iPSC) lines compromises 

their utility for regenerative medicine and as a model system for genetic studies. This 

variability impacts iPSC differentiation outcome and despite using standardized 
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differentiation protocols, results in the generation of samples with cellular heterogeneity 

(i.e. multiple cell types are present within a given sample and the proportions of cell 

types vary across samples). Previous large-scale quantitative trait loci (QTL) studies in 

iPSCs 1,2 have shown that genetic variation accounts for the majority of expression 

differences between iPSC lines, but non-genetic (i.e., clonality and passage) factors also 

contribute to these differences 3. Understanding how non-genetic transcriptional 

differences between iPSC lines impact their differentiation outcome is necessary to 

improve the ability to generate cell types of interest. 

Well-established small molecule protocols for generating iPSC-derived 

cardiovascular progenitor cells (iPSC-CVPCs) 4 produce fetal-like cardiomyocytes, 

which can undergo further specification as cells mature in culture into various cardiac 

subtypes (atrial, ventricular, or nodal) 5. Based on variable cardiac troponin T (cTnT) 

staining, the derived samples are known to display cellular heterogeneity 6,7, but the 

origin of the cTnT-negative non-myocyte cells, and whether the same or different non-

myocyte cell types are consistently derived alongside cTnT-positive myocytes across 

samples has not previously been investigated. The differentiation protocol is dependent 

on manipulation of WNT signaling, initially through activation of the pathway by GSK3 

inhibition, followed by inhibition of the pathway by Porcupine (PORCN) inhibition 8,9. 

An in-depth analysis of the outcomes of independent differentiations of hundreds of iPSC 

lines with different genetic backgrounds could provide insights into the origins of the 

non-myocyte cells, as well as the extent to which non-genetic transcriptional differences 

between iPSC lines contribute to the iPSC-CVPC cellular heterogeneity.  
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Here, we used a highly standardized and systematic approach to conduct 232 

directed differentiations of 191 iPSC lines into iPSC-CVPCs. We characterized the 

cellular heterogeneity of the iPSC-CVPC samples and showed that only two distinct cell 

types were present, cardiomyocytes (CMs) and epicardium-derived cells (EPDCs), which 

varied in proportion across samples. As differentiation protocols to derive iPSC-CMs and 

iPSC-EPDCs primarily differ by a step involving WNT inhibition to derive the former, 

but not the latter 10,11, we hypothesized that the observed cellular heterogeneity could 

result from suboptimal WNT inhibition in subsets of cells across iPSC lines. To test this 

hypothesis, we analyzed transcriptional differences between iPSC lines that differentiated 

into CMs and those that differentiated into EPDCs (e.g. iPSCs with a CM-fate or EPDC-

fate) and discovered 91 signature genes associated with these two distinct cardiac 

differentiation trajectories. These signature genes are involved in differentiation, 

including the Wnt/β-catenin pathway, muscle differentiation or cardiac-related functions, 

and the transition of epicardial cells to EPDCs by epithelial-mesenchymal transition 

(EMT). While the proportion of variance explained by each of the signature genes varied 

over three orders of magnitude, altogether they captured approximately half of the total 

variance underlying iPSC fate determination. Additionally, we show variability in X 

chromosome gene dosage (XactiveXactive vs XactiveXinactive vs XY) across iPSCs plays a role 

in cardiac fate determination. The association with X chromosome gene dosage could in 

part be due to higher expression in CM-fated iPSCs of chrXp11 genes, which encodes 

ELK1 and PORCN. Transcriptomic analysis of an independent set of 39 iPSCs 

differentiated to the cardiac lineage using a similar small molecule protocol 12 confirmed 

our findings. 
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1.3 Results 

 

1.3.1 iPSC-CVPCs show cellular heterogeneity across samples  

To gain insights into molecular mechanisms that could influence variability in 

human iPSC differentiation outcome, we employed a highly systematic approach to 

differentiate 191 pluripotent lines from 181 iPSCORE individuals (Figure 1.1a) into 

iPSC-derived cardiovascular progenitor cells (iPSC-CVPCs). We used a small molecule 

cardiac differentiation protocol used to derive cardiomyocytes 13 followed on D15 by 

lactate selection to obtain pure cardiac cells 14. In total, we conducted 232 

differentiations, of which 193 (83.2%, from 154 lines derived from 144 subjects) were 

completed, i.e. reached Day 25 of differentiation, while 39 (from 37 lines derived from 

37 subjects) were terminated prior to Day 25, because they did not form a syncytial 

beating monolayer (Table 1.1). The completed iPSC-CVPCs at D25 on average had a 

high fraction of cells that stained positive for cardiac troponin T (%cTnT, median = 

89.2%; Figure 1.1b) and were positive by immunofluorescence (IF) for cardiac markers 

(Figures 1.1c-f); however, 15 lines had %cTnT < 40%, indicating that despite lactate 

selection, there was substantial cellular heterogeneity within and across samples. 

  

Table 1.1 Table describing the number of lines and subjects 

for each attempted differentiation 

Cell type 
Number of 

differentiations 

Number 

of lines 

Number of 

subjects 

iPSC 232 191 181 

Terminated 

iPSC-CVPC 
39 37 37 

D25 iPSC-

CVPC 
193 154 144 
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Figure 1.1 Characterization of cellular heterogeneity in iPSC-CVPC samples 

(A) Overview of the study design. Skin fibroblasts from 181 subjects were reprogrammed to 

iPSCs and differentiated to iPSC-CVPCs (191 lines, 232 differentiations). After WNT pathway 

activation at day 0 (D0) and its inactivation by IWP-2 at D3-5, cells differentiate to 

cardiomyocytes (CMs) if the WNT signaling is successfully inhibited. If WNT signaling is not 

sufficiently inhibited, cells differentiate to EPDCs. 193 of the 232 differentiations were completed 

(D25), and we observed that different CVPC samples had different proportions of CMs and 

EPDCs. (B) Distribution of %cTnT. Dashed redline represents the median value. (C-E) 

Immunofluorescence staining of (C) iPSC-CVPCs, (D) human atrium, and (E) ventricle with IF 

markers DAPI (blue), ACTN1 (red), and CX43 (green). (F) Immunofluorescence staining iPSC-

CVPCs with IF markers DAPI (blue), MLC2a+ (red) and MLC2v+ (green), and MLC2v+ 

MLC2a+ (yellow). (G) scRNA-seq UMAP plot showing the presence of three populations: CMs 

(orange), EPDCs (blue) and ESCs (green). (H) scRNA-seq UMAP plot showing the distribution of 

the nine analyzed samples (8 iPSC-CVPC lines and one ESC line) across the three clusters. (I) 

Scatterplot showing the correlation between the %cTnT and the fraction of cells in Population 1 

(CMs) for each of the nine samples. (J) Heatmap showing across all 34,905 single cells the 

expression markers for: 1) stem cells (POU5F1; SOX2; 2) CMs (NKX2-5, ACTN2, TNNT2, 

MEF2C, MYL7, GATA4); 3) EMT (POSTN, SNAI2); 4) fibroblasts (DDR2, THY1); and 5) smooth 

muscle (PDGFRB, TAGLN2, CNN1, ACTA2, VIM, TAGLN).  
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1.3.2 Subset of cells show differential response to WNT inhibition during 

differentiation 

To examine the cellular heterogeneity in the iPSC-CVPCs, we performed single-

cell RNA-seq (scRNA-seq) on eight samples with varying %cTnT values (42.2 to 95.8%) 

and combined these data with scRNA-seq from the H9 ESC line (total of 34,905 cells). 

We detected three distinct cell populations: 1) Population 1, 21,056 cells (60.3%); 2) 

Population 2, 11,044 cells (31.6%); and 3) Population 3, 2,805 cells (8.1%, Figure 1.1g). 

While Populations 1 and 2 were comprised of the eight iPSC-derived samples, Population 

3 almost exclusively included ESC cells (97.7% of the 2,870 ESC cells, Figures 1.1h). 

The relative proportions of cells that each of the iPSC-CVPC samples contributed to 

Population 1 versus Population 2 was strongly correlated with its %cTnT value (r = 

0.938, p = 1.89 x 10-4, t-test; Figure 1.1i), suggesting that Population 1 was 

cardiomyocytes. 

As cardiomyocytes (CMs) and epicardium lineage cells could both survive 

lactate purification 14,15, we investigated if the non-myocyte cells composing Population 2 

were iPSC-epicardium-derived cells (iPSC-EPDCs). We examined the expression levels 

of 17 marker genes (Figure 1.1j) specific for either CMs or EPDCs (including smooth 

muscle, fibroblasts, genes involved in EMT) and two marker genes for stem cells. 

Consistent with having a high number of cTnT-positive cells, Population 1 expressed 

high levels of CM-specific genes, while Population 2 expressed high levels of EPDC-

specific genes, and Population 3 expressed high levels of the stem cell markers POU5F1 

and SOX2 (Figure 1.2a,b). Of note, TNNT2 was expressed in some of the cells in 

Population 2, which is consistent with the strong, but not absolute correlation between 
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%cTnT value and fraction of Population 1 (Figure 1.1i), and previous studies showing 

that some EPDCs express TNNT2 7. These results show that the small molecule 

differentiation protocol followed by lactate purification resulted in the absence of 

undifferentiated cells at D25 and in the derivation of two distinct cell populations, one of 

which expresses high levels of CM markers, including TNNT2, NKX2-5 and MEF2C 

(Population 1), and the other which expresses EPDC markers, including SNAI2, DDR2, 

VIM and ACTA2 (Population 2). Of note, the protocols for generating iPSC-derived 

cardiomyocytes (iPSC-CMs) and iPSC-EPDCs both involve activating the WNT 

signaling pathway 10,15 and have a shared intermediate mesoderm progenitor, but 

subsequent WNT inhibition directs differentiating cells to iPSC-CMs and endogenous 

levels of WNT signaling direct differentiating cells to iPSC-EPDCs 7 (Figure 1.1a). 

Therefore, our results suggest that iPSC-CVPC cellular heterogeneity results from 

suboptimal WNT inhibition in a subset of cells during differentiation, which then give 

rise to EPDCs. 



 

 

 

9 

 

 

Figure 1.2 Distribution of single cells across three clusters 

(a) Distribution of single cells across the three cell populations for the nine analyzed samples: 

scRNA-seq UMAP plots from 34,905 single cells showing their distributions across the three 

different clusters for the nine analyzed samples (8 iPSC-CVPCs lines and one ESC line). Each of 

the nine samples has a different color, as indicated in Figure 1.1i. (b) Expression levels for marker 

genes: For each gene in Figure 1.1j, density plots show the gene expression distribution across all 

cells associated with each cell population (Population 1 = orange; Population 2 = blue; Population 

3 = green.). Red dashed line represents the median. UMAP plots from 34,905 cells show in 

maroon all the cells expressing the indicated marker gene higher than its median expression across 

the three populations. 
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1.3.3 iPSC-CVPCs are composed of immature CMs and EPDCs  

 

To estimate the relative abundances of CM and EPDC cells across our collection 

of iPSC-CVPC samples, we selected the top 50 significantly overexpressed genes in each 

of the three scRNA-seq populations (150 genes in total, p < 10-13, edgeR), obtained their 

expression levels in bulk RNA-seq from 180 iPSC-CVPCs, and inputted these values into 

CIBERSORT 16. We observed that the proportions of each cell type varied across the 

samples, although the iPSC-CVPCs tended to have a greater fraction of CMs (84.8 ± 

31.8%, Figure 1.3a) than EPDCs (14.7 ± 32.0%), and essentially no stem cells (0 ± 

0.8%). Due to lactate selection, the small number (67) of cells predicted to be ESCs may 

represent a distinct differentiated cell type that is more similar to stem cells than either 

CMs or EPDCs. The estimated fraction of CMs and EPDCs in the iPSC-CVPCs was 

highly correlated with %cTnT values (r = 0.927, p  0; t-test Figure 1.3b), similar to that 

observed in the analysis of the scRNA-seq data (Figure 1.1j). Finally, we showed that the 

iPSC-CVPCs with high estimated CM or EPDC cellular fractions respectively showed 

higher expression of CM markers (MEF2C, NKX2-5 and ACTN2) and EPDC markers 

(ACTA2, TAGLN, DDR2 and SNAI2, Figure 1.3c). These results indicate that cellular 

heterogeneity across iPSC-CVPC samples largely reflects different proportions of CMs 

and EPDCs. 

To characterize the similarities between the iPSC-CVPC transcriptomes and 

those of adult heart and artery samples, we performed a PCA analysis using the 

transcriptomes of 184 iPSCORE iPSCs, 180 iPSC-CVPCs, and the 1,072 GTEx samples, 

including left ventricle, atrial appendage, coronary artery and aorta 17.We found that 

principal component 1 (PC1) showed that iPSC-CVPCs correspond to an intermediate 
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state between the iPSCs and adult samples, suggesting that the derived CMs and EPDCs 

are similar to immature cardiac cells (Figure 1.3d). PC2 divided the samples based on 

cardiac lineage, namely the myocardium (left ventricles and atrial appendages) and 

epicardium (coronaries and aorta) 18. This analysis shows that derived iPSC-CMs and 

iPSC-EPDCs lie on different cardiac developmental trajectories, with the CMs 

corresponding to immature myocardium and the EPDCs to immature epicardium.  
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Figure 1.3 Transcriptomic features of 180 iPSC-CVPC samples 

(a) Relative distributions of cell populations estimated using CIBERSORT across 180 iPSC-

CVPC samples. (b) Scatterplot showing the correlation between %cTnT (X-axis) and the fraction 

of Population 1 in the iPSC-CVPCs calculated using CIBERSORT (Y-axis). (c) Heatmap showing 

the expression levels of CM and EPDC marker genes (Figure 1.1j) in 180 iPSC-CVPC samples at 

D25. Samples are colored based on their fraction of Population 1. (d) PCA on the 1,000 genes 

with highest variability from 184 iPSC samples, 180 iPSC-CVPC samples (triangles colored 

according to their % Population 1), and samples from GTEx (squares, left ventricle, right 

ventricles, coronary artery and aorta).  
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1.3.4 iPSC expression signatures impact cardiac fate differentiation 

 

Although all iPSCORE iPSCs have previously been shown to be pluripotent 19, 

we sought to determine if transcriptomic differences existed between the iPSC lines that 

derived CVPCs containing CMs versus those that gave rise to EPDCs (Figure 1.4a). 

Given that all 180 iPSC-CVPCs contain both CMs and EPDCs but at different ratios, we 

initially had to determine the optimal CM:EPDC ratio to group the iPSC lines into those 

that were CM-fated and those that were EPDC-fated. Thresholds for 193 iPSC-CVPCs 

that completed differentiation (harvested on D25) were defined by the ratio of CM:EPDC 

estimates from CIBERSORT (estimated %CM: estimated %EPDC), while the 39 iPSC-

CVPC differentiations terminated prior to D25 for not forming a beating syncytium were 

assigned a CM:EPDC ratio of 0:100 (0% CM:100% EPDC). We tested ten different 

CM:EPDC ratios and found 116 autosomal genes that were differentially expressed at 

one or more of these ratios (Storey q-value < 0.1, t-test, Figure 1.4a,b). We observed that 

the maximum number of the 116 genes (84, 72.5%) were differentially expressed at the 

30:70 (CM:EPDC) threshold and 55 of them (47.4%) had their strongest p-value at this 

ratio. For this reason, we determined that the 30:70 threshold was optimal and grouped 

the iPSCs into 125 that were CM-fated (produced ≥ 30% CMs), and 59 that were EPDC-

fated (produced >70% EPDCs, Figure 1.4b).  
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Figure 1.4 iPSC gene signatures associated with cardiac differentiation fate 

(a) Testing of ten CM:EPDC ratios (0:100 to 90:10, with 10% increments) to determine the 

optimal threshold for defining an iPSC as CM-fated or EPDC-fated. For each threshold the 

number of iPSC lines defined as CM-fated (orange) or EPDC-fated (blue) is shown. (B) At the 

same thresholds indicated in (A), shown are the numbers of differentially expressed autosomal 

genes between the iPSC lines defined as CM-fated and EPDC-fated. The 30:70 threshold has the 

maximum number of differentially expressed genes. (C) Volcano plot showing mean difference in 

expression levels for all autosomal genes between CM-fated iPSC lines (their corresponding 

derived samples have CM population > 30%) and EPDC-fated iPSC lines (X axis) and p-value (Y 

axis, t-test). A positive difference indicates over-expression in CM-fated iPSCs, whereas a 

negative difference indicates over-expression in EPDC-fated iPSCs. Significant genes are 

indicated in red. (D) Expression levels of the 91 signature genes in iPSCs as a function of the % 

CM population in their corresponding iPSC-CVPC samples. Thick lines represent the average for 

36 genes overexpressed in CM-fated iPSCs (orange) and for 55 genes overexpressed in EPDC-

fated iPSCs (blue). (E) WNT/ß-catenin pathway, muscle/cardiac related, or EMT/mesenchymal 

development signature genes (those differentially expressed with nominal p-values (p < 0.0015) 

indicated with an asterisk). (F) GLM estimate (% CM population ~ expression) calculated for each 

signature gene. Mean and 95% confidence interval are shown. (G) Bar plot showing the 

percentage of variability in iPSC fate that is explained by each of the 91 signature genes. Bars 

highlighted in red show the 35 signature genes identified by L1 normalization that independently 

contributed to variance. Due to the fact that the 91 genes do not have independent expression, the 

total sum of the % variance explained is >1. 
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Of the 84 autosomal differentially expressed genes at the 30:70 (CM:EPDC) 

threshold, 35 were overexpressed in the CM-fated iPSC lines and 49 were overexpressed 

in the EPDC-fated iPSCs (Figure 1.4b,c,d). These genes have functions associated with 

three differentiation signatures: 1) Wnt/β-catenin pathway (13 genes); 2) muscle and/or 

cardiac differentiation (six genes); and 3), EMT and/or mesenchymal tissue development 

(six genes, Figure 1.4e). We noted that seven borderline significant autosomal genes were 

also involved in one of the three represented signatures, and therefore added them to the 

final list of differentially expressed genes. We investigated the associations between the 

expression levels of the final list of 91 signature genes (Table 1.2) in the 184 iPSCs and 

the fraction of CMs in the resulting iPSC-CVPCs using linear regression, and found 

significant associations for all genes (Figure 1.4f). These results show that, independently 

from the 30:70 (CM:EPDC) threshold used in the initial differential expression analysis, 

the expression levels of these signature genes in the 184 iPSCs were significantly 

associated with differentiation outcome (e.g. CM- or EPDC-fate). 
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Table 1.2 All 91 genes significantly differentially expressed 

between CM-fated and EPDC-fated iPSCs  

Gene Name Expression Difference p-value (t-test) Storey q-value 

PRCC 0.618529454 2.88E-06 0.01205865 

FOS 0.558406525 6.67E-06 0.013943832 

WRNIP1 0.513679615 5.87E-06 0.013943832 

CDK13 0.463221631 0.000112617 0.034464603 

CTNNBL1 0.462866405 4.51E-05 0.02910997 

TSHZ3 0.461497119 0.000286561 0.06420694 

SMARCE1 0.459118456 0.000110539 0.034464603 

RANBP9 0.458788345 3.33E-05 0.024611753 

TAF12 0.449478357 2.40E-06 0.01205865 

DDX27 0.448880833 3.69E-05 0.025726776 

GSK3A 0.444607137 5.14E-05 0.02910997 

LRRC47 0.438821079 5.45E-05 0.02910997 

FAM32A 0.434495706 8.62E-05 0.031155239 

EIF6 0.429786878 2.59E-05 0.024611753 

KLF10 0.414685251 0.000616654 0.092558302 

LENG1 0.408202719 0.000713826 0.09735479 

MCM6 0.401969502 0.000227921 0.054996333 

RNF31 0.401277066 0.00073254 0.098832907 

FAF2 0.383104624 0.000473391 0.083467392 

SMAP2 0.376384072 0.000253781 0.060080777 

MED10 0.370823102 0.000102522 0.033852295 

HSPH1 0.369954886 0.000175825 0.044122921 

OTUB1 0.365142144 0.000641798 0.09281717 

FKBP15 0.357407066 0.000555377 0.091691214 

GNAI2 0.354845566 0.000334199 0.071073176 

PIP5K1A 0.334889726 0.000713791 0.09735479 

RAB5B 0.328344869 0.000383614 0.071841008 

GPR176 0.321026033 0.000347509 0.071262367 

POLR3A 0.316185628 5.36E-05 0.02910997 

NCKIPSD 0.30889223 0.000650965 0.09281717 

ZNF407 0.306692831 0.000368762 0.071816322 

UBN2 0.296411412 0.000394992 0.072205659 
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Table 1.3 All 91 genes significantly differentially expressed 

between CM-fated and EPDC-fated iPSCs (Continued) 

Gene Name Expression Difference p-value (t-test) Storey q-value 

TTI1 0.294890987 0.000619643 0.092558302 

PLRG1 0.294560965 0.000432973 0.077609668 

SNRNP200 0.290958385 5.93E-05 0.02910997 

CSDE1 0.282710822 0.00089626 0.105070434 

LMAN1 -0.202369391 0.000339866 0.071073779 

STT3B -0.234785987 0.000478957 0.083467392 

SYTL1 -0.242179725 0.000593076 0.092004325 

CALU -0.253299668 2.30E-05 0.024413109 

FSTL3 -0.271361948 0.000260981 0.060641254 

TMEM259 -0.276598907 0.000120441 0.035144568 

RABL6 -0.278855606 0.000499478 0.085851237 

TLE3 -0.290777299 0.001171725 0.113969644 

EXTL2 -0.306679543 1.49E-05 0.020835271 

FBXO5 -0.308185476 5.95E-05 0.02910997 

B4GALNT4 -0.30848578 0.000129442 0.036912736 

PIDD -0.309094532 0.000381197 0.071841008 

ALDH1B1 -0.317848552 0.001106848 0.112000298 

RPS15 -0.318386014 0.000671838 0.093784302 

APOE -0.319862507 2.33E-05 0.024413109 

SCN4B -0.327868094 0.000880088 0.105070434 

CLDN3 -0.3318153 0.000834927 0.105070434 

ATP5F1 -0.332244288 9.55E-05 0.033278093 

WFS1 -0.33560547 0.000517693 0.087779657 

FGD5-AS1 -0.340267921 0.000541854 0.090651242 

RHPN1 -0.344623087 6.54E-05 0.029583781 

PTPLAD1 -0.353806396 3.07E-05 0.024611753 

YES1 -0.356807254 8.46E-06 0.015164087 

BTBD17 -0.361029531 0.000147429 0.039358532 

DDX11 -0.363962468 0.000630168 0.09281717 

FBXL15 -0.364558194 0.000601269 0.092004325 

IKBIP -0.365221839 0.000100393 0.033852295 

RTN4R -0.36702925 0.000272395 0.062142609 
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Table 1.4 All 91 genes significantly differentially expressed 

between CM-fated and EPDC-fated iPSCs (Continued) 

Gene Name Expression Difference p-value (t-test) Storey q-value 

CD4 -0.377453722 0.00039707 0.072205659 

RP11-486G15.2 -0.377453777 0.00036343 0.071816322 

B3GNT1 -0.380958591 0.000672697 0.093784302 

ZNF219 -0.383156897 0.000372035 0.071816322 

MGAT1 -0.386426098 0.000141543 0.038608449 

FAM35A -0.390447022 8.25E-07 0.010347182 

ENPP5 -0.393241942 0.000333879 0.071073176 

CMBL -0.405426981 0.000352127 0.071262367 

F2R -0.407691113 7.54E-05 0.029583781 

CCBE1 -0.408620523 0.001349212 0.115952539 

LRFN4 -0.417677335 3.27E-05 0.024611753 

MICALL2 -0.420069961 6.03E-05 0.02910997 

WFIKKN1 -0.426110939 0.000112023 0.034464603 

C18orf56 -0.426783944 7.85E-05 0.029840058 

ZNF670 -0.432012917 2.76E-05 0.024611753 

GDF1 -0.432533942 5.03E-06 0.013943832 

C19orf60 -0.434593453 0.00019482 0.047931036 

PURG -0.436080216 0.000643584 0.09281717 

LRFN1 -0.440493195 0.000135821 0.037871174 

CYB5R1 -0.44313245 0.000600015 0.092004325 

C11orf31 -0.443214265 7.12E-05 0.029583781 

RP3-449O17.1 -0.452125413 2.22E-05 0.024413109 

TGFBI -0.452163339 0.001308647 0.114534817 

AC024560.3 -0.468757978 0.000585005 0.092004325 

NPTX2 -0.492895354 7.37E-05 0.029583781 

COL8A2 -0.498153533 6.88E-05 0.029583781 

CD82 -0.527262952 1.09E-05 0.017147403 
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1.3.5 Signature genes capture a large fraction of the variance underlying iPSC fate 

outcome  

While the signature genes likely impacted cardiac fate determination, we did not 

expect each gene to contribute equally. To explore the impact of each gene individually 

on differentiation outcome, we calculated how much the 91 genes explained the 

variability underlying iPSC cell fate. To quantify the percent of variance explained by 

each gene (R2), we fit a generalized linear regression model with a logit link function to 

each gene individually. We found that the percent of variance explained by each 

individual gene varied over three orders of magnitude (1.73 x 10-3<R2< 8.97%; Figure 

1.4g). 

We next asked how these signature genes altogether captured variability in 

differentiation fate. As several of the signature genes had correlated expression levels, to 

reduce overfitting in the regression analysis, we included an L1 norm penalty (i.e. 

LASSO regression) and used 10-fold cross validation. We identified 35 genes that 

independently contributed to variance, and whose expression levels collectively 

explained more than half of the variability in differentiation outcome across iPSC lines 

(average R2 from the 10-fold cross validation = 0.512). Together these data show that, 

while the proportion of variance explained by each of the signature genes varied widely, 

altogether they captured approximately half of the total variance underlying differential 

iPSC fate outcome. 
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1.3.6 Inherited genetic variation does not influence differentiation outcome 

 

We investigated if genetic variation associated with the expression of any of the 

signature genes contributed to the differentiation outcome of iPSCs. We assessed the 

genotypes of 8,620,159 variants in each iPSC line and performed a GWAS study to 

investigate the association between genotype and the fraction of CMs in the 

corresponding iPSC-CVPCs. We found that none of these variants associated with 

differentiation outcome at genome-wide significance (p < 5 x 10-8, Figure 1.5a). To 

further examine the association between genetic background and differentiation outcome, 

we tested if differentiations of different iPSC clones from the same individual, and from 

members of the same twin pair, were more likely to yield similar outcomes compared 

with differentiations of iPSC clones from individuals with different genetic backgrounds, 

and observed similar distributions Figure 1.5b). While our power to perform a GWAS 

study was limited, this analysis shows that the genetic background did not contribute to 

the variance underlying iPSC differentiation outcome, indicating that non-genetic (i.e., 

clonality and passage) factors played a role in determining whether an iPSC line 

differentiated to CMs or EPDCs. 
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Figure 1.5 Associations between genetic background and differentiation outcome 

(a) Manhattan plot showing the association between genetic variation and differentiation outcome 

(measured as % CM population in iPSC-CVPCs). Red dashed line shows p-value = 0.05 adjusted 

using Bonferroni’s method (p = 5 x 10-8). (b) Boxplots showing distributions of the differences in 

the %CM population between differentiations of different iPSC clones from the same subject, 

from the same twin pair, and from individuals with different genetic backgrounds. P-values were 

calculated using Mann-Whitney U test. 

 

  



 

 

 

23 

 

1.3.7 GSEA implicates ELK1 targets and genes on the X chromosome  

 

To understand whether the transcriptomic differences between CM-fated and 

EPDC-fated iPSCs were associated with alterations in specific pathways or cellular 

function, we performed a gene set enrichment analysis (GSEA) on 9,808 MSigDB gene 

sets 20 using the 15,228 expressed autosomal genes in the 184 iPSCs. We identified 22 

gene sets that were significantly associated with iPSC cell fate, including enrichment in 

the 59 EPDC-fated iPSCs for extracellular matrix (Figure 1.6a) and in the 125 CM-fated 

iPSCs for transcription factor activity and ELK1 targets. To capture gene sets associated 

with expression differences on the X chromosome, we performed differential expression 

and GSEA on 113 female iPSC lines (87 CM-fated; 26 EPDC-fated). The two most 

significant gene sets were loci located within chrXp11 and chrXp22 (Figure 1.6b). 

Notably, the chrXp11 locus encodes both ELK1 and PORCN, whose protein product 

(Porcupine) is targeted for WNT inhibition in CM differentiation protocols, but not 

EPDC differentiation protocols 8,9 (Figure 1.6b). The chrXp22 locus includes the majority 

of genes (52/99, 52.5%) that are known to escape chromosome X inactivation 21, and thus 

may potentially have varying X-linked gene dosage across female iPSCs. Overall, GSEA 

shows that genes differentially expressed between CM-fated and EPDC-fate iPSCs are 

involved in a variety of pathways including ELK targets and potentially associated with 

the X chromosome activation status. 
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Figure 1.6 X chromosome gene dosage plays a role in cardiac differentiation fate 

(a) GSEA results: For each gene set, -log10(q-value) is shown. Positive values correspond to gene 

sets enriched in CM-fated iPSCs, whereas negative values correspond to EPDC-fated iPSCs. For 

autosomes all iPSCs were included (top), for the chromosome X only the 113 female iPSCs were 

analyzed (bottom). Storey q-value was used to adjust for multiple testing hypothesis, q-values < 

0.05 were considered significant. (B) Cartoon showing the differentially expressed loci on 

chromosome X and the position of ELK1 and PORCN. (C) Barplot showing the associations 

between sex and differentiation outcome (orange: iPSC-CVPC samples with CM fraction > 30%; 

blue: with EPDC fraction > 70%). P-values were calculated using Z-test (glm function in R). (D) 

Density plot showing the differences in allelic imbalance fraction between autosomal genes (pink) 

and chrX genes outside of the pseudoautosomal region (maroon) in female iPSCs. (E) Density plot 

showing the differences in allelic imbalance fraction between chrX genes in female CM-fated 

(light orange) and EPDC-fated (light blue) iPSCs. (F) Density plot showing the differences in 

allelic imbalance fraction between chrX genes in female D25 iPSC-CVPC samples with CM 

fraction > 30% (orange) and EPDC fraction > 70% (blue). P-values in D-F were calculated using 

Mann Whitney U test. 
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1.3.8 Sex is associated with iPSC differentiation outcome 

 

To identify other iPSC factors potentially associated with differentiation 

outcome, we examined three characteristics of the 181 subjects in our study (sex, 

ethnicity, and age) and passage of the iPSCs at D0. Analyzing the 125 CM-fated and 59 

EPDC-fated iPSC lines with a general linear model, we found no association between 

differentiation outcome and ethnicity or age (p > 0.8; GLM, Z-test; Figure 1.7a,b), but 

observed a significant association with sex (p = 2.57x10-5, GLM, Z-test; Figure 1.6c) and 

a trend for iPSC passage at D0 (p = 0.069, GLM, Z-test; Figure 1.7c). These data suggest 

that iPSCs derived from female subjects and iPSCs with higher passages at D0 had an 

increased predisposition for the CM fate. Furthermore, considering only the 191 

completed differentiations (D25 iPSC-CVPC samples), we found that iPSC-CVPC 

samples derived from female subjects compared to those derived from males had 

significantly higher %cTnT values (mean = 83.0% and 77.7%, respectively for females 

and males, p = 6.0 x 10-4, Mann-Whitney U test; Figure 1.7d) and a higher fraction of 

CMs (p = 6.46 x 10-4, Mann-Whitney U test; Figure 1.7e). These results indicate that 

iPSCs derived from female subjects and, to a lesser extent, iPSCs that have spent more 

time in cell culture, have a greater inherent predisposition to differentiate towards the CM 

lineage. 
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Figure 1.7 X chromosome inactivation in iPSCs 

(a,b,c) Associations between differentiation outcome (orange: iPSC-CVPC samples with CM 

fraction > 30%; blue: with EPDC fraction > 70%) and (a) ethnicity (most similar superpopulation 

from the 1000 Genomes Project), (b) age at enrollment, and (c) passage at monolayer (D0). (a) is 

shown as barplots; (b,c) are shown as density plots. P-values were calculated using Z-test (glm 

function in R). (d,e) Density plots showing the association between sex (teal: males; magenta: 

females) and (d) %cTnT, and (e) fraction of CM population for 191 iPSC lines. P-values were 

calculated using Mann-Whitney U test. (f) Allelic imbalance difference between CM-fated and 

EPDC-fated iPSCs. The dots represent each gene on chrX, while the black solid line corresponds 

to the smoothed interpolation of differences for all the genes. The locations of the Xp22 and Xp11 

loci on the chrX G-banding ideogram are highlighted in yellow, as well as ELK1 (yellow) and 

PORCN (red). P-values above each locus indicate the difference in allelic imbalance between CM-

fated and EPDC-fated iPSCs in each locus (Mann Whitney U test). (g,h,i) Allelic imbalance 

fraction from inactive and escape genes in Xp22: Density plots showing the allelic imbalance 

differences in chrX genes on the Xp22 loci in female samples between iPSC lines with CM-fate 

(light blue) and EPDC-fate (light orange) differentiations. Allelic balances compared in Xp22 are 

from all genes in the region (g), escape genes (h), and inactive genes (i). P-values were calculated 

using Mann Whitney U test. 
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1.3.9 Female iPSCs with X chromosome reactivation associated with CM fate  

 

Given the observation that female iPSCs have a greater potential to differentiate 

to CMs and that differential expression of chrXp11 genes were associated with 

differentiation outcome, we asked if variation in X chromosome inactivation (Xi) and 

activation (Xa) state across female iPSC lines was associated with CM or EPDC-fate. 

Using RNA-seq data generated from the 113 female iPSCs, we evaluated allele specific 

effects (ASE) of X chromosome and autosomal genes. We defined the strength of ASE 

for each gene as the fraction of RNA transcripts that were estimated to originate from the 

allele with higher expression (hereto referred to as “allelic imbalance fraction”, AIF). We 

observed that AIF in autosomal genes was close to 0.5, indicating that both alleles were 

equally expressed (Figure 1.6d), while AIF on the X chromosome in iPSCs tended to be 

bimodal, with some genes showing monoallelic expression (AIF ~1.0; XaXi) and others 

showing biallelic expression (AIF ~0.5; XaXa). We observed that AIF was less in the 87 

CM-fated female iPSCs compared with the 26 EPDC-fated female iPSCs (p = 0.011, 

Mann-Whitney U test, Figure 1.6e) and that this difference in AIF became even more 

pronounced in the corresponding derived iPSC-CVPC samples (p = 4.81x10-6, Mann-

Whitney U test, Figures 1.6f, 1.7f). These finding show that differential chromosome 

XaXi status, as well as altered gene expression in chrXp22 and chrXp11, in iPSCs 

contribute to differences in cardiac fate differentiation outcome. 

Since we observed differences in X chromosome reactivation state between CM-

fated and EPDC-fated female iPSCs, we next asked if the two GSEA X chromosome 

associated intervals (chrXp22 and chrXp11; Figure 1.6a) showed corresponding allelic 

imbalance trends. We plotted AIF differences, where a positive AIF difference indicates 
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X chromosome reactivation in the 26 EPDC-fated iPSCs and a negative in the 87 CM 

fated-iPSCs (Figure 1.7f). We observed that distinct regions across the X chromosome 

were differentially eroded in the EPDC-fated versus CM-fated iPSCs. In particular, 

chrXp22 showed X reactivation in CM-fated iPSCs (p = 6.31 x 10-3, Mann Whitney U), 

with both escape (p = 0.020, Mann Whitney U) and non-escape genes (p = 0.023, Mann 

Whitney U) showing evidence of reactivation (Figure 1.7g,h,i). As chrXp22 contains 

more than half of escape genes on the X chromosome, this observation confirms that 

increased X reactivation in CM-fated iPSCs results in increased expression of both 

escape and non-escape genes. As GSEA identified genes on chrXp11 to be overexpressed 

in CM-fated iPSCs, the lack of X reactivation in this interval (p = 0.28, Mann Whitney 

U) suggests alternative regulatory mechanisms may also alter gene expression levels on 

the X chromosome. Overall, these results suggest that differential X chromosome 

reactivation as well as other mechanisms underlying altered regulation of X chromosome 

and autosomal genes contribute to iPSC cardiac lineage fate determination 

 

1.3.10 Independent iPSC-CM derivation study validates findings 

 

To assess the generalizability of our findings, we examined an independent 

collection of 39 iPSCs 12 reprogrammed using an episomal plasmid from Yoruba 

lymphoblastoid cell lines Figure 1.8a). Differentiation of these lines resulted in the 

successful derivation of 13 iPSC-CMs (%cTnT range at D32: 40 to 96.9), whereas 24 

were terminated on or before day 10 due to the fact that they did not form a beating 

syncytium. To examine if the successfully derived Yoruba iPSC-CMs showed the 

presence of EPDCs, we used RNA-seq data and CIBERSORT to estimate cellular 
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compositions and observed variable relative distributions of CM and EPDC populations 

(Figure 1.8b). Consistent with our iPSCORE iPSC-CVPC samples, the estimated CM 

population fractions were significantly correlated with %cTnT values (r = 0.81, p= 7.94 x 

10-4, t-test; Figure 1.8c). To understand if the CMs and EPDCs appear at the same time 

during differentiation, we analyzed data generated the from the Yoruba lines a four 

timepoints 22 and observed that both cardiac lineages are typically present by day 5 and 

that the ratio of these two cardiac cell types remains relatively stable past day 10. Finally, 

Yoruba iPSC-CMs derived from females tended to have an increased percentage of CMs 

compared with those derived from males (Figure 1.8d). These observations show that the 

Yoruba iPSCs and derived cardiac cells could be used to investigate the generalizability 

of the associations that we had observed between transcriptomic differences in iPSCs and 

cardiac fate differentiation outcome. 

As several factors (Figure 1.8a) were different between the iPSCORE iPSC and 

Yoruba iPSC sets (i.e. different reprogramming method, genetic backgrounds, and donor 

cell types), we expected that there would be significant differences between their 

transcriptional profiles. We initially analyzed how correlated gene expression was: 1) 

within iPSCORE iPSCs; 2) within Yoruba iPSCs; and 3) between all pairwise 

comparisons of the iPSCs in these two different collections (Figure 1.8e). We observed 

high correlations of gene expression across iPSCs within each collection, however the 

correlation between samples from different studies was significantly decreased, 

indicating that the two sets have significant genome-wide gene expression differences. 

We next examined differential gene expression between the CM-fated iPSCORE iPSC 

and Yoruba iPSCs that successfully differentiated into iPSC-CMs (Figure 1.8f), and 



 

 

 

31 

 

observed that the majority of genes (69.6% with q-value < .10) were significantly 

differentially expressed between the two iPSC sets. These results show that there are 

strong batch effects on gene expression between the iPSCORE and Yoruba iPSC lines. 
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Figure 1.8 Validation of association between iPSC gene signatures, sex and differentiation 

outcome 

(a) Schematic depicting differences (subject ethnicities, donor cell type, reprogramming method) 

between the iPSCORE iPSC and Yoruba iPSC as well as differences in the cardiac differentiation 

protocol. (b) Estimated fractions of CMs and EPDCs for 13 Yoruba iPSC-CM samples from 

RNA-seq using CIBERSORT (two iPSC-CMs did not have RNA-seq). (c) Scatterplot showing the 

correlation between %cTnT (X axis) and the fraction of cells in population 1 (% CMs) calculated 

using CIBERSORT (Y axis) for 13 Yoruba iPSC-CM samples. (d) Boxplots showing the 

distribution of estimated fraction of cells in population 1 (% CMs) for 9 female Yoruba iPSC-CM 

and 4 male Yoruba iPSC-CM. P-value was calculated using Mann-Whitney U test. (e) Box plots 

showing correlation of gene expression in all 184 iPSCORE iPSCs with RNA-seq (purple), 34 

Yoruba iPSCs with RNA-seq used for differentiation (yellow; 14 successful iPSC and 20 

terminated iPSC, five iPSCs did not have RNA-seq), and the pairwise comparison of the Yoruba 

iPSC against the iPSCORE iPSC (grey). (f) Volcano plot showing mean difference in expression 

levels for all autosomal genes between 14 Yoruba iPSC lines that were successfully differentiated 

and 125 iPSCORE iPSC lines that differentiated to >30% Population 1 (CMs) (X-axis) and p-

value (Y-axis, t-test). A positive difference between mean expressions indicate iPSCORE-specific 

over-expression, whereas a negative difference between mean expressions indicate Yoruba-

specific over-expression. Significant genes are indicated in red. (g) Smooth color density 

scatterplot showing gene expression differences between iPSCs with different fates in 184 

iPSCORE iPSC (125 CM-fated vs 59 EPDC-fated) (X-axis) to the expression differences between 

iPSCs with different outcomes in Yoruba iPSC (14 successful vs 20 terminated) (Y-axis). A 

positive difference indicates shared over-expression of genes between CM-fated iPSC in 

iPSCORE and successfully differentiated iPSC in the Yoruba set, whereas a negative difference 

indicates shared over-expression of genes between EPDC-fated iPSC in iPSCORE and terminated 

iPSC in the Yoruba set. Of the 91 signature genes that were differentially expressed in the 

iPSCORE iPSCs based on cell fate, eight had nominally significant expression differences in the 

same direction in the Yoruba iPSC set (shown in red). (h) Barplot showing that the eight 

iPSCORE differentially expressed genes (panel g) with nominal significant expression differences 

in the same direction (e.g. over-expressed or down regulated) in the Yoruba iPSCs is greater than 

random expectation. Of 13,704 genes expressed both in the iPSCORE and Yoruba iPSCs, we 

obtained 6,909 for which the average normalized expression differences had either the same 

positive (CM fate/successful differentiation) or negative (EPDC fate/terminated differentiation) 

direction. The 6,909 genes included 47 of the 91 iPSCORE signature genes. We found that 466 

(6.7%) of the 6,909 genes were nominally significant for being differentially expressed between 

the 14 successful and 20 terminated differentiations in the Yoruba samples, while 8 of the 47 

iPSCORE differentially expressed genes (17.0%) had a nominal p < 0.05. This analysis shows that 

the 91 iPSCORE signature genes are 2.5 times more likely than expected (17.0% vs. 6.7%, p = 

0.012, Fisher’s exact test) to be differentially expressed in the Yoruba samples based on cardiac 

differentiation fate.  
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We investigated if, despite the strong batch effects on gene expression between 

iPSCORE and Yoruba iPSCs, we could detect inherent transcriptional differences 

impacting cardiac fate determination that were shared between the iPSC sets. Given the 

relatively small size of the Yoruba study there was insufficient power to detect 

transcriptional differences between the lines with different differentiation outcomes 

(Successfully completed versus Terminated). Therefore, for each gene, we compared the 

mean expression differences between iPSCs with different cardiac fate outcomes in 

iPSCORE (CM-fate – EPDC-fate) to the expression differences between iPSCs with 

different differentiation outcomes in the Yoruba set (Successfully completed – 

Terminated, Figure 1.8g). We observed a small, but significant correlation (r = 0.0299, p 

= 4.71 x 10-4, t-test) between genes that were differentially expressed in the iPSCORE 

iPSCs and those that were differentially expressed in the Yoruba iPSCs. Further, we 

specifically examined the 91 signature genes significantly associated with iPSCORE 

iPSC cardiac fate outcome and found eight with nominally significant expression 

differences in the same direction (e.g. overexpressed or downregulated) in the two sets of 

iPSCs (Figure 1.8g), which is 2.5 times more than random expectation (p = 0.012, 

Fisher’s exact test; Figure 1.8h). These data suggest that the iPSCORE iPSCs and Yoruba 

iPSCs shared transcriptional differences that impacted cardiac fate differentiation 

outcome. 

 

1.4 Discussion 

 

While previous directed cardiac differentiation studies have observed the 

emergence of both cardiomyocytes and a non-contractile cell population, the origin of 
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these non-contractile cells, and whether the same or different non-myocyte cell types are 

present across iPSC-CVPC samples has not previously been addressed. We showed that 

two distinct cell types were present in 154 iPSC-CVPC samples derived from iPSCs in 

iPSCORE. One of the derived cell types were cardiomyocytes (CMs), characterized by 

high expression levels of cardiac-specific genes, and the other derived cell type was 

epicardium-derived cells (EPDCs), characterized by high expression of marker genes for 

EMT, smooth muscle and fibroblasts. We found the same two cardiac cell types present 

in iPSC-CMs derived from an independent collection of 39 Yoruba iPSCs; and that both 

cardiac cell types were typically present by day 5 and their ratios remained relatively 

stable past day 10 12,22. A recent study showed that adding hESC-derived epicardial cells 

to cardiomyocyte grafts in vivo improves transplantation efficacy, as it increases 

contractility, myofibril structure and calcium handling and decreases tissue stiffness 23. 

Our findings suggest that the generation of EPDCs during iPSC-CM differentiation may 

enhance the structure of the derived CMs; and that to efficiently use iPSC-CVPCs in a 

clinical setting, future studies may need to optimize the relative proportions of CMs and 

EPDCs that maximize their transplantation efficiency. 

The scale of our study, 232 attempted differentiations of 191 iPSC lines into the 

cardiac lineage, provided the power to develop a framework to identify non-genetic 

transcriptional differences in iPSCs that influence their cardiac differentiation outcome. 

To minimize the factors that might influence differentiation outcome, such as the optimal 

cell confluency at which to start differentiation, we attempted to standardize all steps in 

the differentiation protocol, in order to remove subjective decisions and diminish 

experimental differences between samples. We identified 91 signature genes whose 
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differential expression was associated with differentiation outcome and showed that 

many of these genes are involved in cardiac development, including the Wnt/β-catenin 

pathway, muscle differentiation or cardiac-related functions, and the transition of 

epicardial cells to EPDCs by EMT (Figure 1.9). Many of the transcriptomic differences 

between iPSCORE iPSCs with CM-fates versus those with EPDC-fates may be due to 

aberrant epigenetic landscapes resulting from a combination of the reprogramming 

method (Sendai virus) and cell of origin (fibroblasts). However, given that the Yoruba 

iPSCs were reprogrammed using a different method (Episomal plasmid) and cell of 

origin (LCLs), and yet the iPSCORE and Yoruba iPSCs shared gene expression 

differences associated with cardiac lineage outcome, it is likely that our findings will 

likely be generalizable to other collections of iPSCs. We hypothesize that the signature 

genes associated with cardiac lineage outcome will vary across iPSC collections and 

depend on the reprogramming method and cell type of origin but will largely be involved 

in the same pathways identified in this study. 
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Figure 1.9 iPSC characteristics that influence their cardiac fate determination 

(a) Cartoon showing iPSC characteristics that influence their cardiac fate determination, including: 

1) the expression levels of 91 genes grouped into three gene signature classes (WNT/B-catenin 

pathway, cardiac development genes and genes involved in EMT, see Figure 1.4); 2) sex, female 

iPSCs are more likely to differentiate to CMs than males (see Figure 1.6); and 3) X chromosome 

activation state, female iPSCs that have activated both X chromosomes (XaXa) are more likely to 

differentiate to CMs (see Figure 1.6). 
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We observed that variability across iPSCs on X chromosome gene dosage (XaXa 

vs XaXi vs XY) played a role in cardiac lineage fate (Figure 1.6). While human iPSCs 

are known to have only partial XaXa 24,25, we identified two loci (chrXp11 and chrXp22) 

encoding genes whose expression levels are associated with two the distinct cardiac 

differentiation trajectories (CMs vs. EPDCs). The higher expression of chrXp11 genes in 

CM-fated iPSCs may at least in part be due to fact that ELK1 and PORCN are both 

encoded in this interval, as the protein product of PORCN (Porcupine) is inhibited by 

IWP-2 during CM differentiation 8, but not during EPDC differentiation 7,10,11,15 (some 

EPDC protocols inhibit Porcupine but then reactivate the WNT pathway at a later time 

point 26-28. Furthermore, we found that ELK1 targets are overexpressed in CM-fated 

iPSCs, which is consistent with previous studies showing that knockdown of ELK1 in 

immortalized human bronchial epithelial cells, small airway epithelial cells, and luminal 

breast cancer cell line (MCF-7) is associated with increased EMT 29,30. Also consistent 

with ELK1 playing a role in the association between X chromosome dosage and 

differentiation outcome is a previous study showing that ELK1 overexpression or 

downregulation respectively mimics the phenotypes of XaXa or XaXi pluripotent stem 

cells 31. Of note, atrioventricular septal defects (AVSD) occur in ~20% of individuals 

with Down Syndrome (DS), and has a higher prevalence in female DS patients 32. Given 

that EPDCs play an essential role in septal formation 33, our study suggests that future 

work should investigate the extent to which X chromosome gene expression levels are 

altered in cardiomyocytes from individuals with DS, and if this is associated with the 

formation of fewer EPDCs.  
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Overall, our study suggests that expression differences of 91 signature and X 

chromosome genes result in the iPSCORE iPSC lines having differential propensities to 

respond to WNT inhibition during differentiation, and consequently are fated to produce 

iPSC-CVPC samples with different proportions of CMs and EPDCs. As iPSCs in the 

iPSCORE collection have passed standard quality checks to confirm their pluripotency 

and genomic integrity 12,19, these transcriptomic expression differences associated with 

cardiac lineage outcome are not detected using current quality metrics. In conclusion, our 

findings suggest that to derive human iPSC lines that respond similarly in differentiation 

protocols, it may be necessary to improve reprogramming methods such that the 

transcriptome and X chromosome activation state is fully reset to the naïve state, and 

incorporate inactivation of one of the X chromosomes in female lines as an early step in 

differentiation protocols. 

 

1.5 Experimental procedures 

Subject information and whole genome sequencing 

Individuals (108 female and 73 male) were recruited as part of the iPSCORE 

project 19 and included 7 MZ twin pairs, members of 32 families (2-10 members/family) 

and 71 singletons and were of diverse ancestries. Subject descriptions including subject 

sex, age, family, ethnicity and cardiac diseases were collected during recruitment. As 

previously described 1, we generated whole genome sequences from the blood or skin 

fibroblasts of the 181 subjects on the HiSeqX (Illumina; 150 bp-paired end).   
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iPSC derivation and somatic mutation analysis 

As previously described, we reprogrammed fibroblast samples using non-

integrative Cytotune Sendai virus (Life Technologies) and the 191 iPSCs (7 subjects had 

2 or more clones each) were shown to be pluripotent and to have high genomic integrity 

with no or low numbers of somatic copy-number variants (CNVs) 19,34.  

 

Large-scale derivation of iPSC-CVPC samples  

To generate iPSC-derived cardiovascular progenitors (iPSC-CVPCs) we used a 

small molecule cardiac differentiation protocol 4. The 25-day differentiation protocol 

consisted of five phases, the optimizations for each step are described in detail below: 1) 

expansion: we developed the ccEstimate algorithm to automate the detection of 80% 

confluency for iPSCs in T150 flasks; 2) differentiation: we tested whether increasing the 

dosage of IWP-2 to induce to inhibit the WNT pathway improved differentiation 

efficiency and found that 7.5 µM at D3 of  the differentiation provided in a single dose 

for 48 hours results in the most efficient differentiation; 3) purification: since fetal 

cardiomyocytes use lactate as primary energy source and have a higher capacity for 

lactate uptake than other cell types 35,36, we incorporated lactate metabolic selection for 

five days to improve iPSC-CVPC purity 14; 4) recovery: after metabolic selection, iPSC-

CVPCs were maintained in cell culture for five days; and 5) harvest: we collected iPSC-

CVPCs at D25 for downstream molecular assays and cryopreserved live cells. 

The 232 attempted differentiations of the 191 iPSC lines were performed as 

follows: 
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Expansion of iPSC: One vial of each iPSC line was thawed into mTeSR1 

medium containing 10 μM ROCK Inhibitor (Sigma) and plated on one well of a 6-well 

plate coated overnight with matrigel. During the expansion phase, all iPSC passaging was 

performed in mTeSR1 medium containing 5 μM ROCK inhibitor, when cells were 

visually estimated to be at 80% confluency. The iPSCs were passaged using Versene 

(Lonza) from one well into three wells of a 6-well plate. Next, the iPSCs were passaged 

using Versene onto three 10 cm dishes at 2.54x104 per cm2 density. The iPSCs 

molonalyer was plated onto three T150 flasks at the density of 3.66 x 104 per cm2 using 

Accutase (Innovative Cell Technologies Inc.). Prior to expansion with Versene, after 

thaw iPSCs were passaged 1-2 times using Dispase II (20mg/ml; Gibco/Life 

technologies). iPSCs were at passage 22.7 ± 4.8 (range 17 to 44) at the monolayer stage 

(i.e., initiation of differentiation).  

 

Differentiation: At 80% iPSC confluency (measured using ccEstimate, see 

section below “Estimation of optimal time for initiation of iPSC-CVPCs differentiation 

using ccEstimate”) cell lysates were collected from 32 lines for RNA-seq data generation, 

where these iPSC and subsequent generated molecular data are referred to as D0 iPSC. 

After reaching 80% confluency (usually within 4-5 days), differentiation was initiated 

with the addition of the medium containing RPMI 1960 (gibco-life technologies) with 

Penicillin – Streptomycin (Gibco/Life Technologies) and B-27 Minus Insulin (Gibco/Life 

Technologies) (hereafter referred to as RPMI Minus supplemented with 12μM CHIR-

99021 (D0). After 24h of exposure to CHIR-99021, medium was changed to RPMI 

Minus (D1). On D3 medium was changed to 1:1 mix of spent and fresh RPMI Minus 
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supplemented with 7.5μM IWP-2 (Tocris). On D5, after 48h of exposure to IWP-2, the 

medium was change to RPMI Minus. On D7, medium was changed to RPMI 1960 with 

Penicillin – Streptomycin (Gibco/Life Technologies) and B-27 Supplement 50X 

(hereafter referred to as RPMI Plus) (Gibco/Life Technologies). Between D7 and D13, 

RPMI Plus medium was changed every 48h.  

 

Purification: On D15 the cells were collected from the flask using Accutase and 

plated onto fresh T150 flasks at confluency 1-1.3 x 106 per cm2. On D16, cells were 

washed with PBS without Ca2+ and Mg2+ (Gibco/Life Technologies) and medium was 

changed for RPMI 1960 no glucose (Gibco/Life Technologies) supplemented with Non-

Essential Amino Acids (Gibco/Life Technologies), L-Glutamine (Gibco/Life 

Technologies), Penicillin-Streptomycin 10,000U (Gibco/Life Technologies) and 4mM 

Sodium L-Lactate (Sigma) in 1M HEPES (Gibco/Life Technologies). Medium 

supplemented with lactate was changed on D17 and D19.  

 

Recovery: On D21 cells were washed with PBS and medium was changed for 

RPMI Plus. On D23 medium was again changed for RPMI Plus. The first beating cells 

were usually observed between D7 and D9 and as early as D7 (immediately after the 

media change) and robust beating was usually observed between D8 and D11. During the 

lactate selection iPSC-CVPC were beating robustly less than 16 hours after reseeding. 

For all successfully derived iPSC-CVPCs on D25, total-cell lysate material was collected 

and frozen for downstream RNA-seq assays. 
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Harvest: On D25 cells were collected using Accutase and processed for the 

following molecular material for downstream assays: 1) cell lysates (RNA-Seq); 2) 

permeabilized cells (ATAC-Seq); 3) live frozen cells (scRNA-seq); 4) cross-linked cells 

(ChIP-Seq, median number of vials/iPSC line = 3; ~1.0 x 107 cells/vial), and 5) dry cell 

pellets (methylation and protein). RNA-seq was generated from 180 iPSC-CVPC 

differentiations (149 lines from 139 subjects) that successfully reached D25. 

 

Estimation of optimal time for initiation of iPSC-CVPCs differentiation using 

ccEstimate 

Heterogeneity of growth rates across different iPSC lines could result in different 

confluency at the monolayer stage (i.e., faster growing lines will be more confluent) and 

hence impact differentiation outcome. To reduce the effects of the iPSC lines having 

different growth rates, we developed an automatic pipeline that analyzes images of 

monolayer-grown cells, determines their confluency and predicts when cells reach 80% 

confluency to initiate the differentiation protocol. Cell confluency estimates (ccEstimate) 

are performed by first dividing each T150 flask into 10 sections and acquiring images for 

each section every 24 hours after cells are plated as a monolayer. The final image is 

acquired immediately after treatment with CHIR, which occurs when their confluence is 

at least 80% (Day 0). The time required for cells to reach 80% confluence is estimated on 

the basis of the confluence curve derived for each section in each flask. To digitally 

measure iPSC confluency, ccEstimate performs image analysis using the EBImage 

package in R 37. Images are read using the readImage function. As lighting may be 

different between the center and the border of an image, only the central part of the image 
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is retained. To separate cells from the background and calculate confluence (i.e. the 

fraction of the surface of the flask that is covered by cells) the following operations are 

performed: 

1. The image is transformed to monochromatic by determining the intensity of each 

pixel as the average of the intensities of the red, green and blue channels. 

2. Edges are sharpened using high-pass filter. The matrix used for this filter is 

15x15 with values -1 on the diagonals and +28 in the center.  

3. Contrasts are enhanced by multiplying the pixel intensities by 2. 

4. Mean and standard deviation of the pixel intensities are calculated. The image is 

transformed from monochromatic to binary by setting all pixels with intensity 

more than two standard deviations higher than the mean to white (intensity = 1) 

and all other pixels to black (intensity = 0).  

5. The resulting binary image is dilated using a disc-shaped structuring element 

with diameter 5 pixels. 

6. 1,000 50x50 pixels sub-images are randomly selected. For each sub-image, the 

number of white pixels is calculated. Confluence is estimated as the fraction of 

the randomly selected sub-images with at least 50% of white pixels.  

Confluency measurement data is collected for at least the first three days after plating 

as monolayer to train a generalized linear model (GLM) using the function glm in R to 

estimate when cells must be treated with CHIR. Estimation is performed separately for 

each flask section and CHIR is added to all three flasks associated to a given line when at 

least 75% of sections have confluence 80%. 
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Using ccEstimate, we could start differentiation at the same confluency level for each 

iPSC sample, thereby reducing or neutralizing the effects of different growth rates. On 

average, each sample required 4.23 ± 1.12 days to reach 80% confluency. The correlation 

between the number of days required to reach 80% confluency and the %CM population 

was -0.05, suggesting that iPSC growth rate does not affect differentiation outcome.  

 

Flow cytometry  

On D25 of differentiation, iPSC-CVPCs were stained with cTnT antibody, 

acquired using FACS and analyzed using FlowJo V10.2. Immunofluorescence analysis of 

iPSC-CVPCs Immunofluorescence was assessed in 5 iPSC-CVPC lines. Live frozen 

iPSC-CVPC harvested on D25 were thawed, plated for five days, fixed, permeabilized 

and incubated with antibodies.  

 

Generation of RNA-seq data 

For gene expression profiling of iPSCs, we used RNA-seq data from 184 samples 

(cell lysates collected between passages 12 to 40). For gene expression profiling of iPSC-

CVPCs, we generated RNA-seq data from 180 samples at D25 differentiation. All RNA-

seq samples were generated and analyzed using the same pipeline to obtain transcript per 

million bp (TPM) 1.  
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Generation of scRNA-seq data 

To capture the full spectrum of heterogeneity among the iPSC-CVPCs, we 

selected eight samples with variable %cTnT (42.2 to 95.8%). After removing 

proliferating cells and doublets we obtained 34,905 cells. 

 

CIBERSORT 

Expression levels of the top 50 genes overexpressed in each of the three cell 

populations (total 150 genes) were used as input for CIBERSORT 16 to calculate the 

relative distribution of the three cell populations for the 180 iPSC-CVPC samples at D25.  

 

Characterizing transcriptional similarities of iPSCs, iPSC-CVPCs and GTEx adult 

tissues  

We performed principle component analysis on RNA-seq on 184 iPSCs, 180 

iPSC-CVPCs and 1,072 RNA-seq samples from GTEx.  

Determining optimal CM:EPDC ratio estimates from CIBERSORT to define iPSCs 

cardiac fates 

To obtain the optimal threshold, we conducted a series of differential expression 

analyses on 15,228 autosomal genes in the 184 iPSC lines (147 completed and 37 

terminated) considering the ratio of population frequencies at ten thresholds. The 30:70 

(CM:EPDC) ratio resulted in the highest number of differentially expressed genes (84 

genes with Storey q-value < 0.1, t-test), which is substantially greater than random 

expectation. Thus, we grouped the 184 iPSC lines into: 1) those that have CM fates, i.e. 
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produced iPSC-CVPC with >= 30% Population 1, and 2) those that have EPDC fates, i.e. 

produced iPSC-CVPC with > 70% Population 2.  

 

Comparing the number of differentially expressed genes with random expectation 

To determine if the number of significantly differentially expressed genes was 

higher than expected by chance, we shuffled the assignments of the 184 iPSC RNA-seq 

samples to differentiation fate (125 CM and 59 EPDC) 100 times.  

 

Contribution of 91 signature genes in iPSCs to determination of cardiac fate  

For each of the 91 signature genes, we built a GLM with the expression of the 

gene as input and the differentiation outcome (e.g. % Population 1) as output using a logit 

link function. To understand the cumulative contribution of all 91 signature genes on 

cardiac differentiation fate, we built a GLM with an L1 norm penalty using the 

expression of all 91 genes as input and the differentiation outcome as output using. To 

avoid overfitting the model, we used a 10-fold cross validation. 

 

Detecting associations between genetic background and differentiation outcome 

We obtained genotypes for 8,620,159 biallelic SNPs and short indels with allelic 

frequency >5% in the iPSCORE collection. Genotypes were obtained for each SNP in all 

individuals using bcftools view 38. Linear regression was used to calculate the associations 

between the genotype of each variant and differentiation outcome (% CM population in 

the iPSC-CVPCs), using passage at monolayer and sex as covariates. 
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Gene set enrichment analysis using the MSigDB collection 

We performed GSEA using the R gage package 39 on all MSigDB gene sets 20. 

FDR correction was performed independently for each collection. The normalized mean 

expression difference between iPSCs that differentiated to CMs and iPSCs that 

differentiated to EPDCs was used as input for GSEA.  

 

Associations between iPSC and subject features and differentiation outcome 

A GLM was built in R using age, sex, ethnicity, age, and passage of the iPSCs at 

D0 of differentiation as input and differentiation outcome as output (0 = EPDCs; and 1 = 

CMs).  

 

Identifying X chromosome inactivation in female iPSCs and iPSC-CVPCs 

To analyze X chromosome inactivation, we used 113 female iPSCs, of which 87 

where CM-fated and 26 were EPDC-fated. We called ASE in RNA-Seq from iPSC and 

iPSC-CVPCs as previously described 1. Genes lying in X chromosome pseudoautosomal 

(PAR) regions (PAR1: 60001- 2699520, PAR2: 154931044 – 155260560) were removed 

from analysis. We defined the strength of ASE for each gene as the fraction of RNA 

transcripts that were estimated to originate from the allele with higher expression 

(referred to as allelic imbalance fraction, AIF).  

 

Validation of findings in Yoruba iPSC set 

The Yoruba iPSCs 12 were generated from LCLs using episomal reprogramming. 

Differentiation was performed using a small molecular method and iPSC-CMs were 
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harvested on D31 or D32. 15 lines successfully generated iPSC-CMs and 24 were 

terminated on or before day 10. We downloaded RNA-seq for 34 of the Yoruba iPSC and 

13 iPSC-CM samples from Gene Expression Omnibus (GEO; GSE89895), as well as 297 

samples from 19 distinct iPSCs in a timecourse experiment (day 0-15) performed on the 

same Yoruba iPSC samples 22. RNA-seq was aligned using STAR, gene expression was 

quantified using the RSEM package and normalized to TPM. The RNA-seq for the 13 

Yoruba iPSC-CMs and from all timecourse time points were analyzed using 

CIBERSORT similar to the iPSCORE samples.  

 

1.6 Data and software availability 

 

Accession numbers for the RNA-seq data, scRNA-seq, and WGS genotypes are 

dbGaP: phs00924 and phs001325. The 191 iPSC lines are available through WiCell 

Research Institute: https://www.wicell.org/; NHLBI Next Gen Collection. 
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Chapter 2: Cellular deconvolution of GTEx tissues powers eQTL 

studies to discover thousands of novel disease and cell-type 

associated regulatory variants 

 

2.1 Abstract 

 

The Genotype-Tissue Expression (GTEx) resource has contributed a wealth of 

novel insights into the regulatory impact of genetic variation on gene expression across 

human tissues, however thus far has not been utilized to study how variation acts at the 

resolution of the different cell types composing the tissues. To address this gap, using 

liver and skin as a proof-of-concept tissues, we show that readily available signature 

genes based on expression profiles of mouse cell types can be used to deconvolute the 

cellular composition of human GTEx tissues. We then deconvoluted 6,829 bulk RNA-seq 

samples corresponding to 28 GTEx tissues and show that we are able to quantify cellular 

heterogeneity, determining both the different cell types present in each of the tissues and 

how their proportions vary between samples of the same tissue type. Conducting eQTL 

analyses for GTEx liver and skin samples using cell type composition estimates as 

interaction terms, we identified thousands of novel genetic associations that had lower 

effect sizes and were cell-type-associated. We further show that cell-type-associated 

eQTLs in skin colocalize with melanoma, malignant neoplasm, and infection signatures, 

indicating variants that influence gene expression in distinct skin cell types play 

important roles in skin traits and disease. Overall, our study provides a framework to 

estimate the relative fractions of different cell types in GTEx tissues using signature 

genes from mouse cell types and functionally characterize human genetic variation that 

impacts gene expression in a cell-type-specific manner. 



 

 

 

52 

 

2.2 Introduction 

 

Understanding the regulatory impact of genetic variation on complex traits and 

disease has been a longstanding goal of the field of human genetics. To decipher the 

mechanistic underpinnings of complex traits, the GTEx Project17 has generated a large 

dataset, including over 10,000 bulk RNA-seq samples representing 53 different tissues 

(corresponding to 30 organs) obtained from 635 genotyped individuals, to link the 

influence of genetic variants on gene expression levels through expression quantitative 

trait loci analysis (eQTL). While GTEx has provided important biological insights, 

unaccounted for cellular heterogeneity (i.e., different cell types within a tissue and the 

relative proportions of each cell type across samples of the same tissue) present in bulk 

RNA-seq can affect genotype-gene expression associations40. Since regulation of gene 

expression varies across cell types, not accounting for cellular composition could result in 

loss or distortion of signal from relatively rare cell types, thus characterization of cellular 

heterogeneity across all GTEx tissues is critical for more comprehensive eQTL studies. It 

is possible that future studies pursuing cell-type-associated eQTLs may utilize single cell 

approaches (e.g. single cell RNA-seq; scRNA-seq); however, non-trivial technical 

challenges, such as hard to dissociate tissues and low capture efficiencies, make the 

generation of a GTEx-scale single-cell expression dataset a substantial undertaking, 

which would take years to complete. Thus, as single-cell large-scale scRNA-seq 

collections progress, our present knowledge of how genetic variation influences cell-

type-associated gene expression would greatly benefit from conducting eQTL analyses 

on bulk GTEx tissue samples whose cellular heterogeneity has been characterized 

through existing deconvolution methods16,41,42. 
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To characterize the heterogeneity of bulk RNA-seq samples, gene signatures 

from cell types known to be present in a given tissue can be used to deconvolute the 

cellular composition (i.e. the proportion of each cell type). The signature genes needed to 

deconvolute a heterogeneous tissue can be obtained by analyzing scRNA-seq generated 

from an analogous tissue. However, there are relatively few human scRNA-seq resources 

currently available43-47, and thus only a small fraction of GTEx tissues could be 

deconvoluted using gene expression signatures derived from existing human single-cell 

data. While human single-cell data is limited, the Tabula Muris exists48, which is a 

powerful resource of scRNA-seq data from mouse including more than 100,000 cells 

from 20 tissue types (referred in the Tabula Muris resource as organs and tissues). A 

recent study showed that similar cell types in humans and mice share sufficient gene 

expression signatures to integrate scRNA-seq data between the two species49, raising the 

possibility of utilizing the available scRNA-seq from mouse to generate the gene 

expression signatures for deconvolution of GTEx tissues.  

To examine the feasibility of using mouse-derived gene expression signatures to 

deconvolute human tissues, we compared cellular composition estimates of GTEx liver 

and GTEx skin samples generated using human scRNA-seq to those generated using the 

Tabula Muris scRNA-seq resource. We show that the human and mouse single-cell data 

captured many overlapping cell populations and that using either human-derived or 

mouse-derived gene signatures to deconvolute the 175 GTEx liver samples and the 860 

GTEx skin samples resulted in highly correlated estimated cellular compositions. We 

show that the main differences between the cell types identified using the human-derived 
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versus mouse-derived signature genes were due to: 1) subtle biological differences that 

exist in human and mouse immune cells, and 2) resolution (i.e., the ability to detect less 

abundant cell types and distinguish between similar cell types) which was impacted by 

technical differences in the human and mouse scRNA-seq data sets, including the number 

of cells captured and subjected to scRNA-seq and the spatial location from which the 

tissue was sampled. We used gene signatures derived from the Tabula Muris resource to 

deconvolute 6,829 GTEx samples corresponding to 28 tissues from 14 organs, which 

enabled us to determine how the fractions of different cell types vary across GTEx 

samples derived from the same tissue. Using deconvoluted liver and skin GTEx samples 

for eQTL analyses, we identified thousands of novel (i.e. not detected using bulk RNA-

seq samples) genetic associations that tended to have lower effect sizes, some of which 

are cell-type-associated. Finally, we show that skin cell-type-associated eQTLs colocalize 

with GWAS variants for melanoma, malignant neoplasm, and infection signatures, 

indicating that variants that are functional in limited skin cell types may play major roles 

in skin traits and disease. Taken together, our study demonstrates two major principles: 1) 

mouse-derived signature genes can be used to deconvolute the cellular composition of 

human tissues; and 2) the estimation of cellular heterogeneity by deconvolution enhances 

the genetic insights yielded from the GTEx resource. 
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2.3 Results 

 

2.3.1 scRNA-seq from mouse and human analogous tissues capture similar cell types  

 

To examine the extent to which scRNA-seq generated from analogous human 

and mouse tissues (Table 2.1) captured similar cell types, we first examined liver as a 

proof-of-concept tissue (Figure 2.1a, “proof-of-concept”). We used previously defined 

cell types from Tabula Muris mouse liver cells (which were purified for viable 

hepatocyte and non-parenchymal cells followed by FACS sorting; 710 cells; 5 cell 

types)48, and to be consistent, we used the Tabula Muris annotation approach to analyze 

existing human liver scRNA-seq data (total liver homogenate; 8,119 cells; 15 cell 

types)43. In brief, on the 8,119 human liver single-cells, we performed nearest-neighbor 

graph-based clustering on components computed from principal component analysis 

(PCA) of variably expressed genes, and then used marker genes to define the cell 

populations corresponding to each of the 15 previously observed cell types 43. 
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Table 2.1 Mapping of Tabula Muris scRNA-seq tissues/organs used to 

deconvolute human GTEx tissues 

GTEx issue Tabula Muris organ 

Aorta Heart (aorta subset) 

Artium Heart (left and right atrium subset) 

Bladder Bladder 

Amygdala Brain-nonmicroglia 

Anterior cinglulat cortex (BA24) Brain-nonmicroglia 

Caudate (basal ganlia) Brain-nonmicroglia 

Cerebellar Hemisphere Brain-nonmicroglia 

Cerebellum Brain-nonmicroglia 

Cortex Brain-nonmicroglia 

Frontal cortex (BA9) Brain-nonmicroglia 

Hippocampus Brain-nonmicroglia 

Hypothalamus Brain-nonmicroglia 

Nucleus accumbens (basal ganglia) Brain-nonmicroglia 

Putamen (basal ganglia) Brain-nonmicroglia 

Spinal cord (cervical c-1) Brain-nonmicroglia 

Substantia nigra Brain-nonmicroglia 

Colon - Sigmoid Colon 

Colon - Transverse Colon 

Adipose - Subcutaneous Fat 

Adipose - Visceral (Omentum) Fat 

Kidney - Cortex Kidney 

Liver Liver 

Mammary Mammary 

Skeletal muscle Muscle 

Pancreas Pancreas 

Skin - not sun exposed Skin 

Skin - sun exposed Skin 

Spleen Spleen 

Ventricle Heart (left and right ventricle subset) 
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Human and mouse scRNA-seq from liver captured several shared cell types, 

including hepatocytes, endothelial cells, and various immune cells (Kuppfer cells, B 

cells, and natural killer (NK) cells) (Figure 2.1b-e), however we noted that there were 

many more distinct cell types for human liver. This was due to the fact that cell type 

resolution (i.e. the ability to distinguish between similar cell types) can be influenced by 

1): the number of cells captured and subjected to scRNA-seq, which may influence the 

proportion of observed common or rare cell types50; and 2) how the tissue was sampled, 

which may enrich for selected populations or capture how populations are distinguished 

by spatial location (i.e. zonation). Some of the 15 cell types identified in the human liver 

scRNA-seq were highly similar and clustered near each other, for example there were 

four hepatocytes populations and two endothelial cell populations (human periportal 

sinusoidal endothelial cells (SEC) and central venous SECs) distinguished by their 

zonation (Figure 2.1b,c). In contrast, for the mouse liver scRNA-seq, which had 

considerably fewer cells analyzed, we only observed one hepatocyte population and one 

endothelial population (Figure 2.1d,e). If we collapsed the cell types that were similar to 

each other in the human scRNA-seq, we obtained 7 distinct cell classes (Figure 2.1b,f), 

which largely corresponded to the 5 cell types from mouse liver scRNA-seq 

(cholangiocytes and hepatic stellate cells were absent due to having been sorted by 

FACS; Figure 2.1d-f). Overall, these results show that scRNA-seq generated from human 

and mouse liver captured similar cell types and that technical differences, including the 

number of cells analyzed and tissue sampling methodology, affects the cell type 

resolution.  
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2.3.2 Mouse liver signature genes can estimate cellular composition of human liver 

samples 

To establish the ability to use expression profiles of signature genes derived from 

mouse scRNA-seq for the deconvolution of human GTEx tissues, we first examined if the 

similarly annotated cell types identified in the two species (Figure 2.1b-e) clustered 

together based on their gene expression profiles. We harmonized the human and mouse 

liver scRNA-seq using canonical correlation analysis (CCA) and visualized using 

uniform manifold approximation and projection (UMAP) (Figure 2.2a,b). We observed 

that the corresponding cell types across the two species clustered closely together, 

indicating that they had highly similar gene expression profiles. 
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Figure 2.1 Human and mouse liver scRNA-seq contains similar cell types 

(a) Overview of the study design. We first conducted proof-of-concept analyses, where we 

compared cellular estimates of two proof-of-concept GTEx tissues (liver and skin) after having 

deconvoluted each using both mouse and human signature genes obtained from scRNA-seq. We 

then performed cellular deconvolution of the 28 GTEx tissues from 14 organs using CIBERSORT 

and characterized both the heterogeneity in cellular composition between tissues and the 

heterogeneity in relative distributions of cell populations between RNA-seq samples from a given 

tissue. Finally, we used the cell type composition estimates as interaction terms for eQTL analyses 

to determine if we could detect novel cell-type-associated genetic associations. (b)  UMAP plot of 

clustered scRNA-seq data from human liver. Each point represents a single cell and color coding 

of cell type populations (See Methods: Defining the cellular composition of liver) are shown 

adjacent (Figure 2.1c). Similar cell types can be collapsed to single cell type classifications and are 

noted with colored, transparent shading (Figure 2.1f). (c) Bar plots showing the fraction of each 

cell type from the scRNA-seq data from human liver. Color-coding of cell types correspond to the 

colors of the single cells in Figure 2.1f. (d) UMAP plot of clustered scRNA-seq data from mouse 

liver. Each point represents a single cell and color coding of cell type populations are shown 

adjacent (Figure 2.1e). Each cell type has a corresponding collapsed cell type in human liver and is 

noted with colored, transparent shading (Figure 2.1f). (e) Bar plots showing the fraction of each 

cell type from the scRNA-seq data from mouse liver. Color-coding of cell types correspond to the 

colors of the single cells in Figure 2.1d. (f) Legend showing the colors of collapsed similar cell 

types from human liver (transparent shading in UMAP Figure 2.1b,d). All cell types from mouse 

liver have a corresponding collapsed cell type in human liver (hepatocyte, endothelial, 

macrophages, B cell, NK/NKT cell) and human liver also contains two additional cell types not 

present in mouse (cholangiocytes and hepatic stellate cells). 
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Figure 2.2 Comparison of GTEx liver cell estimates using mouse versus human signature 

gene 

(a) UMAP plot of integrated scRNA-seq data from human and mouse liver. Each point represents 

a single cell and color coding of cells indicates the species the cells were obtained from (human = 

green; mouse = purple). (b) UMAP plot of integrated scRNA-seq data from human and mouse 

liver. Each point represents a single cell and color coding of cell type populations are shown in the 

adjacent legend. The collapsed populations are the same as those shown in Figure 2.1f. (c,d,e) Bar 

plots showing the fraction of cell types estimated in the 175 GTEx liver RNA-seq samples 

deconvoluted using gene expression profiles from high resolution human liver scRNA-seq (C), 

low resolution mouse liver scRNA-seq (D), and GTEx estimates generated by collapsing high 

resolution human cell types within each of the 7 distinct cell classes (E). (f) Heatmap showing the 

correlation of GTEx liver cell population estimates from human liver scRNA-seq at high and 

collapsed resolutions (rows) and mouse liver (columns) at low resolution. Color coding of 

heatmap scales from red, indicating negative correlation in estimates, to blue, indicating positive 

correlation in estimates. Significance is indicated with asterisks. (g, h) Scatter plots of estimated 

cell compositions across 175 GTEx livers deconvoluted using human scRNA-seq for human 

hepatocyte 0 population (d) and human collapsed endothelial cells (e) versus estimated cell 

populations deconvoluted using mouse scRNA-seq. 
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We next compared the cellular composition estimates of 175 GTEx bulk liver 

RNA-seq samples17 obtained by deconvolution using human signature genes to those 

obtained using mouse signature genes (Figure 2.1a, “proof-of-concept”), which 

respectively consisted of the top 200 most significantly overexpressed genes for each cell 

type identified in scRNA-seq from high resolution human liver (i.e. signature genes from 

15 cell types) and low resolution mouse liver (i.e. signature genes from 5 cell types). 

From the 175 GTEx bulk liver RNA-seq samples, we independently extracted the 

expression of the signature genes at the two resolutions, and used CIBERSORT16 to 

estimate the cellular compositions (i.e. high resolution human liver estimates and low 

resolution mouse liver estimates) (Figure 2.2c,d). To investigate how resolution impacted 

the correlation between human and mouse signature gene estimates, we also collapsed the 

high resolution human liver cellular composition estimates for each of the 175 

deconvoluted samples by summing the estimates across similar cell types in each of the 7 

distinct cell classes (Figures 2.1b,f and 2.2e). We then calculated all pairwise-correlations 

between each of the estimated cell populations in the 175 GTEx liver samples from 

human (high and collapsed resolution estimates) with the estimated cell populations from 

mouse (low resolution estimates) (Figure 2.2f). We found that hepatocyte estimates from 

mouse liver were positively and highly correlated with the human high resolution 

hepatocyte 0 population estimate (r = 0.71, p-value = 5.4x10-28), but not correlated with 

any of the other three high resolution hepatocyte populations (1, 3 and 4); and was 

slightly less correlated with the collapsed hepatocyte population estimate (r = 0.64, p-

value = 1.015x10-21) (Figure 2.2f,g). This indicates that the low resolution mouse 

hepatocyte population corresponds to one of the four human hepatocyte 
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populations/zones potentially due to tissue sampling. Further, we observed that the 

endothelial estimates from mouse were highly correlated with the collapsed human 

endothelial population estimates (r = 0.98, p-value = 1.2x10-115) but not correlated with 

either high resolution human periportal SECs or central venous SECs (Figure 2.2h). This 

indicates that the human endothelial population estimates captured a higher resolution of 

cell type specificity (i.e. two independent endothelial zones), whereas the mouse 

endothelial population estimates likely captured a mixture of both cell types (i.e. the two 

endothelial zones are combined into a single cell population), which is potentially due to 

the lower number of mouse cells analyzed. While in general we observed high correlation 

in the human and mouse population estimates for most cell types (hepatocytes, 

endothelial cells, and Kupffer cells), B cells were non-significantly correlated, and NK-

like cells were negatively correlated (Figure 2.2f). This difference in immune cell 

estimates in GTEx liver is not wholly unexpected, as biological differences, including 

immune response differences, exist between species 51. To further examine the accuracy 

of the deconvolution, we conducted simulations to obtain 100 human liver samples with 

known cell type distributions, and confirmed that the estimated cell population 

distributions obtained using both human and mouse gene expression signatures were 

consistent with their expected values (Figure 2.3a,b).  Our results show that, while 

technical differences in scRNA-seq generation and biological differences between 

humans and mice may impact cell estimation performance, overall mouse signature genes 

can be used to deconvolute human GTEx bulk RNA-seq samples. 
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Figure 2.3 Testing the accuracy of deconvolution using simulated samples of known cell type 

distributions 

Plots showing the correlation between 100 simulated samples with known cell type distributions 

cell types (rows) and cell type estimates from human and mouse cell types (columns) for (a) all 

cell types and (b) collapsed cell types. For most cell types, we observed high correlation (r > 0.6) 

between the known cell type distributions and the population estimates obtained by deconvolution 

using human and mouse expression signatures. There were two exceptions: 1) human stellate cells 

(r = 0.572 between human estimates and known cell type distributions), likely because their gene 

expression signatures were derived from only 79 cells; and 2) B-cells (r = 0.363 between mouse 

estimates and known cell type distributions), consistent with between-species immune system 

differences. 
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2.3.3 Deconvolution of GTEx skin confirms mouse signature genes can estimate 

cellular composition 

To examine the similarity of cellular estimates across 860 GTEx human skin 

samples obtained using human-derived versus mouse-derived signature genes, we used 

scRNA-seq from human epidermal cells52 (digested dorsal forearm skin biopsies; 5,670 

cells; 9 cell types) (Figure 2.4a,b) and Tabula Muris mouse skin cells (FACS sorted 

epidermal keratinocytes; 2,263 cells; 6 cell types) (Figure 2.4c,d). While the previous 

human and mouse liver scRNA-seq studies43,48 used similar naming conventions for the 

cell type annotations (Figure 2.1b-e), the human and mouse skin scRNA-seq studies48,52 

did not (Figure 2.4a-d), and thus we first needed to identify the corresponding cell types 

across the two species. To accomplish this, we harmonized the human dermis and mouse 

skin scRNA-seq using CCA (Figure 2.4e,f) and visualized using UMAP. We observed 

three distinct superpopulations: 1) superpopulation 1, epidermal cells, consisting of the 

four human keratinocyte populations (14, 5, 711, and 1) and mouse epidermal cells, basal 

cells, stem cells of epidermis, and outer bulge cells (keratinocyte stem cells), 2) 

superpopulation 2, consisting of the three human fibroblast populations (0, 3, and 4) and 

mouse inner bulge cells (keratinocyte stem cells); and 3) superpopulation 3, leukocytes, 

consisting of human lymphocytes and mouse leukocytes (Figure 2.4e,f). Further, the 

different cell types within each of the three clusters expressed corresponding marker 

genes, confirming that they indeed were similar cell types in the human and mouse skin 

scRNA-seq. Overall, we found human and mouse skin scRNA-seq captured shared cell 

types that cluster into three distinct superpopulations. 
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Figure 2.4 Testing the accuracy of deconvolution using simulated samples of known cell type 

distributions 

 (a) UMAP plot of clustered scRNA-seq data from human epidermis. Each point represents a 

single cell and color-coding of cell type populations are shown adjacent (Figure 2.4b). (b) Bar 

plots showing the fraction of each cell type from the scRNA-seq data from human epidermis. 

Color-coding of cell types correspond to the colors of the single cells in Figure 2.4a. (c) UMAP 

plot of clustered scRNA-seq data from mouse skin. Each point represents a single cell and color-

coding of cell type populations are shown adjacent in Figure 2.4d. (d) Bar plots showing the 

fraction of each cell type from the scRNA-seq data from mouse skin. Color-coding of cell types 

correspond to the colors of the single cells in Figure 2.4c. (e) UMAP plot of integrated scRNA-seq 

data from human epidermis and mouse skin. Each point represents a single cell and color-coding 

of cells indicates the species the cells were obtained from (human = green; mouse = purple). (f) 

UMAP plot of integrated scRNA-seq data from human epidermis and mouse skin. Each point 

represents a single cell and color coding of cell type populations and collapsed superpopulations 

are shown in the adjacent legend. (g,h) Bar plots showing the fraction of cell types estimated in 

GTEx skin RNA-seq samples from human epidermis scRNA-seq (g) and mouse skin scRNA-seq 

(h). (i) Heatmap showing the correlation of GTEx skin cell population estimates from mouse skin 

scRNA-seq at high and collapsed resolutions (rows) and human skin (columns). Color-coding of 

heatmap scales from red, indicating negative and low correlation in estimates, to blue, indicating 

positive and high correlation in estimates. Significance is indicated with asterisks. (j,k) Scatter 

plots of estimated cell compositions across 860 GTEx skin samples deconvoluted using human 

scRNA-seq for human keratinocyte 14 population versus mouse stem cell of epidermis population 

(j) and keratinocyte 1, 5, 14, 711 population versus collapsed mouse epidermal cell populations 

(k). 
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We next compared the cellular composition estimates of 860 GTEx bulk skin 

RNA-seq samples17 obtained by deconvolution using human gene expression signatures 

to mouse gene expression signatures (Figure 2.1a, “proof-of-concept”). We obtained 

signature genes for each cell type identified in scRNA-seq from human skin (i.e. 

signature genes from each of 9 dermis cell types) and mouse skin (i.e. signature genes 

from each of 6 skin cell types) and used CIBERSORT to deconvolute the 860 GTEx skin 

RNA-seqs (Figure 2.4g,h). Given the presence of the three superpopulation clusters 

observed in the mouse and human scRNA-seq integration analysis (Figure 2.4f), similar 

to liver, we investigated how resolution impacted the correlation between human and 

mouse signature gene estimates. We independently collapsed the high resolution human 

epidermis (9 cell types) and the high resolution mouse skin (6 cell types), by summing 

the estimates across the cell types in each of the three distinct superpopulations. We then 

calculated all pairwise-correlations between each of the estimated cell populations in the 

860 GTEx skin samples from human estimates (high and collapsed) with the estimated 

cell populations from mouse (high and collapsed resolution) (Figure 2.4i). Using the 

integration analysis (Figure 2.4f) as a guide, we examined the similarity of estimates 

from human and mouse cell populations mapping to each of the three superpopulations. 

First, we examined the similarity of human cell types in Superpopulation 1 (Keratinocyte 

14, Keratinocyte 5, Keratinocyte 711, Keratinocyte 1, cornified envelope, and collapsed 

estimates of these cell types) and mouse cell types in Superpopulation 1 (epidermal cell, 

basal cell, stem cell of epidermis, outer bulge, and collapsed estimates of these cell types) 

(Figure 2.4f; dark purple shading). We observed the human keratinocyte population 14 

had a strong positive correlation with the mouse stem cell of the epidermis estimates (R = 
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0.89; p = 2.4 x 10-103) (Figure 2.4i,j). We also found that collapsed mouse epidermal cell 

estimates were correlated with collapsed human keratinocyte population estimates (R = 

0.44, p = 1.19 x 10-43) (Figure 2.4i,k). These results indicate that despite differences in 

annotations, estimates from mouse and human cell types mapping to the epidermal cell 

superpopulation are highly correlated. Second, we examined the similarity of human cell 

types in superpopulation 2 (fibroblast 0, fibroblast 3, fibroblast 4, and collapsed estimates 

of these cell types) and the single mouse cell type (inner bulge) in this cluster (Figure 

2.4f; light purple shading). We found that human fibroblast (high resolution and 

collapsed) estimates were not correlated with the mouse inner bulge cell population 

estimates (Figure 2.4i), indicating that, despite similar enough global gene expression 

patterns for the human fibroblasts and mouse inner bulge cells to cluster together, their 

signature genes distinguish them as different cell types during deconvolution. Third, we 

examined the similarity of the human cell type (lymphocyte) and mouse cell type 

(leukocyte) in superpopulation 3 (Figure 2.4f; pink shading). Similar to the liver 

estimates, mouse and human leukocyte estimates were not correlated (Figure 2.4i), likely 

due to known species differences in immune cells. As we observed in liver, we confirmed 

that technical and biological differences influence cell estimate performance, however 

overall cell composition estimates derived from human and mouse skin signature genes 

are correlated, supporting our ability to use mouse scRNA-seq as an alternative to human 

scRNA-seq for the deconvolution of GTEx tissues. 
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2.3.4 Cellular deconvolution of GTEx tissues reveals surprising levels of 

heterogeneity   

To understand the extent to which the mouse signature genes obtained from cell 

types across 14 tissues were able to distinguish between the 28 GTEx tissues, we 

extracted the expression of the signature genes (Table 2.1) across the 6,829 bulk GTEx 

RNA-seq samples and visualized how the samples clustered (Figure 2.5a). We observed 

that the mouse signature genes were able to differentiate between the human GTEx 

organs, as well as illustrated the existence of organ substructures delineating 

heterogeneity in tissues belonging to the same organ. For example, tissues from the same 

organ clustered closely together and distinctly from other organs, including the heart 

tissues (atrium and ventricle), brain tissues (cortex, frontal cortex, hippocampus, anterior 

cingulate cortex, amygdala, substantia nigra, spinal cord, putamen, nucleus accumbens, 

caudate, and hypothalamus), adipose (visceral and subcutaneous), and colon (sigmoid 

and transverse). Of note, within the brain we also observe clustering according to 

zonation, including clustering of samples from the cerebellum and cerebellar hemisphere, 

as well as clustering of samples from the frontal cortex, cortex, and anterior cingulate 

cortex. These results suggest that signature gene capture both organ differences, as well 

differences that exist in tissues from the same organ that hint at tissue substructures 

driven by sample heterogeneity.  

To understand the cellular heterogeneity of 28 GTEx tissues (Figure 2.1a, 

“cellular deconvolution”), we used the signature genes from 14 mouse tissue types (Table 

2.1) to perform cellular deconvolution of 28 GTEx tissues from 14 organs (Figure 2.5b; 

Table 2.1), where the number of samples for each GTEx tissue varied from 11 (bladder) 
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to 860 (skin). We found that all samples were well-deconvoluted (P-value < 0.001; 

CIBERSORT, 1,000 permutations) and that each deconvoluted GTEx tissue contained a 

variable number of cell types ranging from two (bladder) to seven (brain and heart) 

(Figure 2.5c). In ~30% of the tissues (9 out of 28), we found that not all mouse cell types 

were estimated, possibly due to the GTEx tissues having been isolated for bulk RNA-seq 

from a different spatial location than mouse or species differences in cell types. 

Additionally, the relative distribution of the estimated cell types varied between different 

samples of the same tissue (Figure 2.5d). Tissues with the least heterogeneous cell 

population distributions between samples were aorta and spleen, whereas those with the 

most heterogeneous cell population distributions between samples were brain (13 

tissues), colon, and left ventricle. Examining the tissues corresponding to the same organ, 

we noted that some had the same cell types estimated at similar distributions (adipose 

subcutaneous and visceral), some had the same cell types present at variable proportions 

(heart atrial appendage and left ventricle; 13 brain tissues), and others had variable cell 

types present/absent (colon transverse and sigmoid). These results reveal a striking 

heterogeneity in GTEx tissues that has not been previously appreciated and may be 

contributing noise to eQTL analyses.   
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Figure 2.5 Cellular deconvolution of 28 GTEx tissues 

(a) UMAP using the expression of all scRNA-seq derived signature genes across the 28 GTEx 

tissues. (b) Stacked bar plots showing the fraction of cell types estimated in GTEx RNA-seq 

samples from mouse scRNA-seq. (c) Bar plots comparing the number of cell types discovered in 

mouse scRNA-seq (light grey) vs. the number of these cell types that were estimable for each 

GTEx tissue. (d) Box plots showing per RNA-seq sample the distribution of the log2 average 

square distance from the mean estimated cellular compositions for each GTEx tissue.  
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2.3.5 eQTL analyses using deconvoluted tissues increases power   

 

Since we observed heterogeneity in the relative distributions of cell populations 

across GTEx RNA-seq samples, we hypothesized that considering the cell population 

distributions of each sample would improve eQTL analysis by increasing our power to 

detect novel tissue and/or cell type associations (Figure 2.1a). We identified 19,621 

expressed genes in GTEx liver samples and performed one eQTL analysis not 

considering cellular heterogeneity (i.e. bulk resolution), and three eQTL analysis using 

cell population estimates as covariates to adjust for cellular heterogeneity: 1) considering 

high resolution human liver estimates (15 cell types; Figure 2.2a); 2) considering 

collapsed resolution human liver estimates (7 cell types; Figure 2.2c); and 3) considering 

low resolution mouse liver estimates (5 cell types; 2.2b). Using cell population estimates 

as covariates we detected many more genes with significant eQTLs (eGenes) than at bulk 

resolution (Figure 2.6a). We found that considering high resolution estimates identified 

the most eGenes (10,117) with 1.3 fold and 3.1 fold more than collapsed and low 

resolution estimates, respectively. These findings show that conducting eQTL analyses 

using highly resolved cell population estimates as a covariate significantly increases the 

power to identify eGenes. 
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Figure 2.6 Using cellular deconvolution to discover cell-type-associated eQTLs 

(a) Bar plot showing the number of eGenes detected in each eQTL analysis from liver (shades of 

red) and skin (shades of blue). (b,c,d) Distributions of (b) number of GTEx tissues where each 

eGene has significant eQTLs, (c) effect size β and (d) standard error of β in liver and skin. Colors 

are as in panel a. Vertical dashed lines represent mean values. P-values were calculated in 

comparison with the bulk resolution analysis for each tissue using Mann-Whitney U test. (e,f,g,h,i) 

Bar plots showing the number of eGenes significantly associated with each cell population 

considering cell estimates for: liver high resolution (e), liver collapsed resolution (f), liver low 

resolution (g), skin high resolution (h), and skin collapsed resolution (i). Total number of eGenes 

for each cell type indicates the cell type is significantly associated and the hashed number of 

eGenes for each cell type indicates the association is cell-type-specific (e.g. only significant in that 

cell type). In cases where a given cell type had no significant association, the bar is not shown. 
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Given the differences in the number of detected eGenes based on cell-type 

resolution, we hypothesized that eGenes detected at low powered resolutions (bulk and 

collapsed resolution) commonly shared eQTLs with other GTEx tissues (i.e. tissue-

neutral) and the eGenes detected using higher powered resolutions had more tissue-

associated eQTLs (i.e. less frequently in other GTEx tissues). For each resolution, we 

calculated the number of GTEx tissues in which each eGene has eQTLs. We observed 

that eGenes identified using cell populations as covariates in general were more tissue-

associated than eGenes detected at bulk resolution. Compared to bulk resolution, high 

resolution eGenes were the most tissue-associated (p = 4.2x10-194; Mann-Whitney U test), 

then low resolution eGenes (p = 2.17x10-174; Mann-Whitney U test), and collapsed 

resolution was the least tissue-specific (p = 6.59x10-94; Mann-Whitney U test) (Figure 

2.6b), showing that the resolution of cell population estimates used as covariates is 

correlated with the power of the study to identify tissue-associated eGenes.  

Furthermore, using cell populations as covariates resulted in decreased effect size 

(β) (Figure 2.6c) and standard error (SE) of β (Figure 2.6d), where relative to bulk 

resolution, the higher the resolution of the eQTLs, the smaller the β and SE of β. 

However, in general the β values for the top hit for each gene were highly correlated 

between eQTLs detected using cell populations and eQTLs detected without using cell 

populations (r > 0.975). By performing a permutation test, we excluded that the detection 

of a larger number of eQTLs using cell populations was due to the fact that a larger 

number of covariates was used. These results indicate that using cell population 

distributions as covariates overall reduces the noise, thereby potentially increasing our 

power to identify eQTLs. 
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2.3.6 Resolution of deconvoluted tissues impacts the number of identified cell-type-

associated regulatory variants     

To examine if some of the eQTLs identified using cell population estimates as 

covariates were cell-type-associated, we used a statistical interaction test53-55 to assess if 

modeling the contribution of a cell type significantly improved the observed association 

between genotype and gene expression. Interaction tests were performed on all 

independent pairs of eGenes and corresponding lead eQTLs using liver cell type 

estimates from the high, collapsed, and low resolution as interaction terms. Overall, 

across the high, low, and collapsed resolutions we respectively detected 74, 121, and 528 

cell-type-associated eGenes (i.e., eGene is more significant considering cell type 

estimates but associated with one or more cell type(s); FDR-corrected p-values < 0.1, χ2 

test, Figure 2.6e-g) and 54, 68, and 220 cell-type-specific eGenes (i.e. eGene is 

associated with only one cell type; Figure 2.6e-g). We investigated if relative cell 

abundance influenced our ability to detect cell-type-associated eGenes (i.e., is there more 

power for high abundance cells) and determined that it did not play a factor. Further, we 

noted by using low resolution and collapsed resolution cell populations, we respectively 

detected 1.6 and 7.1 times more cell-type-associated eQTLs than high resolution cell 

populations (respectively, p = 1.9 x 10-7 and 7.3 x 10-250, Fisher’s exact test, Figure 2.6e-

g). While initially counter-intuitive to the previous evidence showing higher resolution 

eGenes are more tissue-specific (Figure 2.6b) and have decreased noise (Figure 2.6c,d), it 

is possible we identify a greater number of cell-type-associated eGenes using low 

resolution cell population estimates due to prevention of the dilution of eQTL signals 

between shared cell types, as might occur in cases where a regulatory variant has similar 
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effects across similar cell types. Overall, these results suggest that accounting for cellular 

heterogeneity between samples allows for the discovery of novel cell-type-associated 

(and cell-type-specific) eQTLs. 

 

2.3.7 eQTL analysis of deconvoluted GTEx skin confirms ability to identify cell-

type-associated regulatory variants   

To further investigate the impact of using cell populations on power to identify 

novel eGenes and cell-type-associated eQTLs, we conducted eQTL analyses using the 

GTEx tissue (skin), which includes the largest number of RNA-seq samples (Figure 

2.4b). Although we deconvoluted 860 skin RNA-seqs using signature genes from high 

resolution mouse skin scRNA-seq (6 cell types; Figure 2.4b), only 749 had corresponding 

genotypes from 510 distinct individuals. We identified 24,029 expressed genes in the 749 

skin RNA-seq samples with corresponding genotypes and performed three eQTL 

analyses: 1) without considering cell population distributions (bulk resolution); 2) 

considering high resolution mouse skin cell estimates (6 cell types; Figure 2.4c); and 3) 

considering collapsed resolution mouse skin cell estimates (3 cell types; Figure 2.4c,f). 

Using cell (high and collapsed) population distributions as covariates, respectively, we 

detected a 30% and 24% increase in eGenes with significant eQTLs (12,011 and 11,497 

compared with 9,232, Figure 2.6a). Similar to our observation in liver, we found that 

eGenes specific for the eQTL analysis performed using high and collapsed cell 

populations as covariates, respectively, had eQTLs in fewer tissues than eGenes detected 

at bulk resolution (p = 8.46 x 10-157; p = 4.12 x 10-128, Mann Whitney U test; Figure 2.6b), 

had a decreased effect size β (p = 1.81 x 10-32; p = 8.53 x 10-23, Mann Whitney U test, 
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Figure 2.6c), and had decreased standard error (SE) of β (p = 1.93 x 10-18; p = 2.04 x 10-

13, Mann Whitney U test, Mann Whitney U test; Figure 2.6d). We also observed that the β 

values for the top hit for each eGene were highly correlated between eQTLs detected 

using high and collapsed cell populations and eQTLs detected without using cell 

populations (r = 0.994; r  = 0.996). Further, at high resolution we detected 384 cell-type-

associated eGenes (FDR-corrected p-values < 0.1, χ2 test, Figure 2.6h) and 375 cell-type-

specific eGenes (FDR-corrected p-values < 0.1, χ2 test, Figure 2.6h), which were 

predominantly associated with leukocytes, while at collapsed resolution we detected 511 

cell-type-associated eGenes (FDR-corrected p-values < 0.1, χ2 test, Figure 2.6i) and 220 

cell-type-specific eGenes (FDR-corrected p-values < 0.1, χ2 test, Figure 2.6i), associated 

with both the collapsed epidermal cell population and leukocytes (Superpopulations 1 

and 3; Figure 2.4f). We hypothesize that substantially fewer cell-type-specific 

associations were observed in the high resolution epidermal cell types (epidermal cell, 

basal cell, stem cell of epidermis, outer bulge; Figure 2.6h) compared with the collapsed 

epidermal cells (Figure 2.6i), because of a dilution of signal between similar cell types. 

The relatively large number of cell-type-associated eGenes in skin compared with the 

liver could be reflective of sample size differences between the two tissue (749 and 153, 

respectively) impacting power to detect eGenes. These results show that even in eQTL 

studies using large sample sizes, accounting for cellular heterogeneity results in the 

detection of thousands more eGenes, which tend to show cell-type-associated differential 

regulation.  
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2.3.8 Colocalization identifies cell-type-associated regulatory variants are associated 

with specific skin diseases   

To explore the functional impact of the cell-type-associated eQTLs identified in 

skin, we examined their overlap with GWAS signals for skin traits and disease. From the 

UK Biobank, we extracted GWAS summary statistics for 23 skin traits where the cell 

types identified from skin scRNA-seq (Figure 2.7a) likely played a role in the traits and 

grouped them into seven categories based on trait similarity: 1) malignant neoplasms, 2) 

melanomas, 3) infections, 4) ulcers, 5) congenital defects, 6) cancer (broad definition, 

non-malignant neoplasm), and 7) unspecified skin conditions. As the three collapsed skin 

superpopulations identified the most cell-type-associated eGenes, we performed 

colocalization of the eQTLs identified using the collapsed resolution cell estimates and 

skin GWAS loci to identify shared causal variants using coloc56 and examining instances 

with PP4 > 0.5 (PP4, posterior probability of the colocalization model having one shared 

causal variant). We identified 394 variants that showed evidence of colocalization. These 

results show that we could identify hundreds of skin eQTLs that likely share a causal 

variant with skin GWAS traits. 

We next asked if skin GWAS traits were enriched for eQTLs that are associated with 

distinct cell types. We tested the enrichment of cell-type-associated eQTLs at multiple 

PP4 thresholds and found malignant neoplasms and melanomas were enriched for eQTLs 

associated with keratinocyte stem cells from the inner bulge (p = 1.13 x 10-3, p = 2.82 x 

10-4 Fisher’s Test; Figure 2.7b,c), and infections were enriched for eQTLs associated with 

leukocytes (p = 9.69 x 10-3 Fisher’s Test; Figure 2.7d). We did not observe a significant 

enrichment of cell-type-associated eQTLs in ulcers (Figure 2.7e), congenital 
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malformations (Figure 2.7f), cancer (broad definition), or unspecified skin conditions. It 

is unclear if this is to be expected, as it is possible other cell types not estimated may be 

contributing to the diseases or in the case of congenital malformations, it is possible that 

expression differences impacting congenital malformations may be functioning during 

development and not detectable in adult skin. Overall, these results suggest that GWAS 

lead variants are commonly cell-type-associated regulatory variants, indicating that onset 

or progression of human disease and traits may be controlled at the cell type level. 

We next sought to specifically examine the eGenes that most strongly colocalized 

with malignant neoplasms or melanoma (PP4 ≥ 0.8), as bulge stem cells have been 

implicated in playing a role in cancer57-62. We found six eGenes not previously associated 

with skin cancers with eQTLs significantly associated with inner bulge stem cells, 

including: 1) BRIX1, which has been found to play a role in cancer progression63; 2) 

RP11-875011.1, an antisense gene, which has not previously been implicated in cancer, 

however antisense genes are thought to contribute to the regulation of human cancers64 ; 

3) MUL1, which has been associated with the progression of human head and neck 

cancer65; 4) PMS2P3, has been implicated in affecting survival in pancreatic cancer66; 5) 

FTH1, which has been shown to be involved in regulating tumorigenesis67,68 and whose 

increased expression in keratinocytes may be in response to stress69,70; and 6) CNTN2, 

which is involved in cell adhesion and has been implicated in tumor development71,72. 

The identification of these disease-associated eGenes supports our ability to identify cell-

type-associated eQTLs whose functions are congruent with playing a role in the etiology 

of cancer. Together these results show that conducting eQTL studies accounting for 
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cellular heterogeneity can identify the likely causal cell-type-associated variants and 

genes underlying GWAS disease loci. 
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Figure 2.7 Using Colocalization of cell-type-associated skin eQTLs with skin GWAS traits 

(a) Cartoon describing the approximate organization of cell types identified in scRNA-seq from 

skin. Colors used for each cell type are used throughout Figure and described in the adjacent 

legend. (b,c,d,e,f) Line plots showing the enrichment of cell-type-associated eQTLs in various 

GWAS traits: malignant neoplasms (b), melanoma (c), infection (d), ulcers (e), and congenital 

malformations (f). Enrichment is plotted as the log(OR) (y-axis) over all probabilities of the eQTL 

signal overlapping (0 = not overlapping – 1 = completely overlapping) with the GWAS signal (x-

axis). Lines are colored following color-coding of each cell type from Figure 2.7a. 
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2.4 Discussion 

 

Human scRNA-seq data representative of all tissues in GTEx that could be used 

to deconvolute the more than 10,000 GTEx bulk RNA-seq samples does not yet exist. As 

the Tabula Muris resource of mouse scRNA-seq from 20 organs was recently released48, 

we sought to determine if mouse signature genes obtained from scRNA-seq could be 

used as an alternative for human signature genes for cellular deconvolution of GTEx 

RNA-seq samples. Using scRNA-seq from both mouse and human for two proof-of-

concept tissues (liver and skin), we derived signature genes and used these expression 

profiles to deconvolute GTEx liver and skin RNA-seq samples. In general, human and 

mouse estimates between the two proof-of-concept tissues were comparable, where 

discrepancies in cell composition estimates between the two species primarily resulted 

from technical and subtle immunological differences. Specifically, in both liver and skin, 

technical differences impact the resolution at which cellular composition can be 

estimated, including: 1) the number of cells captured and subjected to scRNA-seq; and 2) 

tissue sampling methodology. Further, differences in cell composition estimates for 

immune cells were observed most likely due to immunological differences between the 

two species. These differences highlight that high resolution scRNA-seq (more cells/cell 

types sampled from diverse zones) is key to identifying and estimating the composition 

of highly specialized and rare cell types.  For these reasons, the cell composition 

estimates we obtained from CIBERSORT using mouse-derived signature genes from 

proof-of-concept liver and skin scRNA-seq may still be missing cell types not captured in 

the Tabula Muris resource. An additional challenge we found that influenced our ability 

to compare cell composition estimates was the scRNA-seq cell annotations in human and 
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mouse skin did not use consistent naming conventions, thus it was not immediately clear 

how to compare cell estimates across the studies. We were able to overcome this 

challenge by integrating the mouse and human scRNA-seq, which allowed us to infer 

three similar superpopulations of cell types across the two species based on gene 

expression.  

To examine cellular heterogeneity across the GTEx resource, we used the 

signature genes obtained using scRNA-seq from 14 mouse tissue types to deconvolute 

6,829 GTEx RNA-seq samples mapping to 28 tissues from 14 organs. We found that 

GTEx tissues exhibit substantial cellular heterogeneity, with the number of cell types 

ranging from two in bladder to seven in brain and heart. Additionally, some of the tissues, 

including brain, colon, and left ventricle, showed highly variable proportions of estimated 

cell types between samples, contributing to intra-tissue cellular heterogeneity. Together, 

these results reveal a source heterogeneity in GTEx tissues that has not been previously 

considered and may contribute to reduced power to detect eQTLs.  

While genetic association studies performed by GTEx have identified a wealth of 

novel insights into how human genetics function across bulk tissues17, these analyses 

have not considered how cellular heterogeneity can confound these studies through 

biasing or even masking cell-type-specific signals. We found that considering cellular 

heterogeneity significantly improved eQTL analyses by increasing power to detect lower 

effect size genetic associations, as well as by identifying cell-type-specific associations 

that were masked in analyses using bulk RNA-seq data from the same samples. Further, 

we found resolution of cell heterogeneity influenced eQTL results, where considering 

high resolution estimates identified substantially more eQTLs than using lower 
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resolutions (low resolution or collapsed resolution); however, high resolution cell 

estimates identified fewer cell-type-associated genetic associations than lower 

resolutions. It is possible this decrease in associations may be due to a dilution of signal 

between similar cell types. Our observations suggest these two resolutions should both be 

used to power eQTL analyses in complementary ways: 1) high resolution estimates to 

power association analyses to discover lower effect size eQTLs; and 2) collapsed 

resolution estimates to identify cell-type associated eQTLs. We further show that cell-

type-associated eQTLs colocalize with lead variants from relevant GWAS traits, 

highlighting a potential path forward for understanding the impact of genetic variation on 

mechanisms underlying complex traits.  

Overall, we demonstrate that while efforts to generate a resource of scRNA-seq 

data from human tissues73 are in progress, QTL studies using human bulk RNA-seq data 

could utilize readily available mouse-derived signature genes to estimate cellular 

heterogeneity and optimize power to identify cell type-specific genetic associations. As 

the Tabula Muris resource does not represent all of the human GTEx tissues (28 of 53) it 

is possible that scRNA-seq resources from other mammalian species could be used to 

deconvolute the non-represented GTEx tissues. Our study further emphasizes that the 

straightforward approach of taking tissue heterogeneity into account when conducting 

genetic association studies has the potential to greatly expand our understanding of the 

functional impact of genetic variation on molecular and complex human traits. 
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2.5 Methods 

 

Mouse single cell transcriptome profiles from 14 mouse organs from Tabula Muris 

Single cell transcriptome profiles from 14 mouse organs were used in this 

study48. Briefly, transcriptome profiles were generated from three female and four male 

mice (C57BL/6JN; 10-15 month-old) from:  aorta, atrium, bladder, brain nonmicroglia, 

colon, fat, kidney, liver, mammary gland, muscle, pancreas, skin, spleen, ventricle (Table 

S1). Upon extraction of these organs from the mice, single cell transcriptomes were 

generated by first sorting by fluorescence-activated cell sorting (FACS) for specific 

populations (FACS method; SMART-Seq2 RNAseq libraries). We downloaded the 

normalized gene expression and annotated single-cell clusters from each organ as 

Seruat49 R objects  

(https://figshare.com/articles/Robject_files_for_tissues_processed_by_Seurat/5821263/1)

. 

Processing of scRNA-seq from human liver 

10X Genomics formatted BAM files from five human total liver homogenate 

samples43 were downloaded (GEO accession: GSE11546) and converted to fastq files 

using 10X bamtofastq (https://support.10xgenomics.com/docs/bamtofastq). Converted 

fastq files were then processed using cellranger count utility to generate gene expression 

count matrices, then the five processed liver samples were merged using cellranger aggr 

utility. 
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Annotation of the cell populations present in human liver scRNA-seq data 

Analysis of scRNA-seq from human liver43 were conducted following the same 

approach used to annotate mouse organs48. Cells with fewer than 500 detected genes or 

cells with fewer than 1,000 UMI were filtered from the data, resulting in 8,119 cells 

analyzed from human liver.  Gene expression was then log normalized and variable genes 

were identified using a threshold of 0.5 for the standardized log dispersion. Principal 

component analysis (PCA) was performed on the variable genes and significant PCs. 

Clustering was performed using a shared-nearest-neighbor graph of the significant PCs 

and single cells were visualized using Uniform Manifold Approximation and Projection 

(UMAP). Cell populations were then annotated based on the expression of known liver 

marker genes48.  

 

Collapsing liver cell population estimates 

To collapse similar cell populations in GTEx liver samples, we examined the 

UMAP from high resolution human liver scRNA-seq (Figure 2.1b) and compared to the 

UMAP from low resolution mouse liver scRNA-seq (Figure 2.1c) to identify 

broader/lower resolution classifications of cell types present in the liver. We identified 

populations in the human liver scRNA-seq that were similar (e.g. Hepatocyte populations 

0, 1, 3, and 4; Figure 2.1b) with a corresponding population in the mouse liver scRNA-

seq (e.g. Hepatocyte; Figure 2.1c). For populations identified in human not present in 

mouse, we did not perform any collapsing.  
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Annotation of the cell populations present in skin scRNA-seq data 

Human: Skin scRNA-seq49 gene expression data and cell annotations for 8,388 

cells were downloaded from http://dom.pitt.edu/rheum/centers-

institutes/scleroderma/systemicsclerosiscenter/database/. Cells with fewer than 200 

detected genes were filtered from the data.  Gene expression was then log normalized and 

variable genes were identified using a threshold of 0.5 for the standardized log 

dispersion. Principal component analysis (PCA) was performed on the variable genes and 

significant PCs. Clustering was performed using a shared-nearest-neighbor graph of the 

significant PCs and single cells were visualized using Uniform Manifold Approximation 

and Projection (UMAP). The single cells were then annotated using provided cell 

annotations and validated using marker gene expression. As the human skin scRNA-seq 

contained cell types belonging to various layers of the skin, whereas the mouse scRNA-

seq was enriched for epidermal cells, we extracted only the 5,670 human cells belonging 

to the epidermal layer of the skin. We then reanalyzed the subsetted data following the 

above methods by performing PCA, reclustering, and visualization using UMAP. 

 

Mouse: Tabula Muris cell annotations were confirmed by examining marker gene 

expression for epidermal cells, basal cells of the epidermis (Krt1High), stem cells of the 

epidermis (Top2aHigh), leukocytes (Lyz2High), and keratinocyte stem cells (Cd34High). 

While Tabula Muris annotated a single keratinocyte stem cell population, we reannotated 

this population by distinguishing between: 1)  inner bulge cell population exhibiting 

Dkk3High and ITGA6Low expression; and 2) outer bulge cell population exhibiting 

Fgf18High and ITGA6High expression.   
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Deconvolution of complex tissues using CIBERSORT 

Identification of signature genes from single cell populations: For 16 scRNA-seq 

datasets from human liver, human skin, and scRNA-seq from 14 mouse organs, we 

obtained gene expression signatures for each annotated cell type and used as input into 

CIBERSORT16 to estimate the cellular composition of GTEx adult tissues (Table 2.1).  

For each tissue, we identified differentially expressed genes using Seurat FindMarkers 

and then extracted the top 200 most significantly overexpressed genes (adjusted p-value < 

0.05; average log2 fold change > 0.25) for each of the annotated scRNA-seq cell types 

(gene expression signatures). For signature genes obtained from mouse scRNA-seq, we 

converted the mouse genes to their human orthologs using the biomaRt database74,75. The 

final gene signature sets only included mouse signature genes that also had a human 

ortholog. For a given signature gene set: 1) if a mouse gene had more than one human 

ortholog, only one human ortholog was retained in final signature set; and 2) if different 

mouse genes corresponded to the same human ortholog, only unique human orthologs 

were retained in the final signature set.  

 

Cell composition estimation: The mean expression levels of the signature genes 

were used as input for CIBERSORT to calculate the relative distribution of the cell 

populations of 28 GTEx tissues from 14 organs. CIBERSORT 

(https://cibersort.stanford.edu/) was run with default parameters using the TPM values for 

the signature genes identified from scRNA-seq in all RNA-seq samples from the 

analogous GTEx tissue (https://gtexportal.org/home/datasets) (Table 2.1). To determine 
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the cell types detected in GTEx compared to the cell types modeled from mouse, we 

classified a given cell type as estimable in GTEx as those with CIBERSORT estimates 

greater than 0.05% in more than 5% of RNA-seq samples from a given GTEx tissue. To 

estimate cellular heterogeneity across GTEx RNA-seq samples, heterogeneity was 

measured as the average square distance from the mean for each GTEx tissue. We further 

examined how time from death or withdrawal of life-support until each tissue sample was 

fixed/frozen (i.e. ischemic time) is associated with cellular heterogeneity and we did not 

observe a consistent trend between ischemic time and cellular heterogeneity. GTEx 

organs are defined as the regions from which tissues are sampled (variable name SMTS 

from sample attributes data table; phv00169239.v7.p2) and GTEx tissues are defined by 

the distinct area of the organ where the tissue was taken (variable name SMTSD from 

sample attributes data table; phv00169241.v7.p2). For example, samples from the GTEx 

organ, colon, is comprised of two tissues: sigmoid colon and transverse colon. 

 

Harmonization of human and mouse scRNA-seq 

To harmonize scRNA-seq from human and mouse liver and skin, mouse genes 

for each tissue scRNA-seq dataset were first converted to their human orthologs using the 

BioMart database74,75. Mouse and human scRNA-seq were then harmonized by 

identifying genes that anchor the two datasets using Seurat FindIntegrationAnchors and 

using these anchors to integrate the datasets using Seurat IntegrateData. Integrated 

datasets were then visualized using UMAP and corresponding cell types were identified 

by examining overlap of mouse and human cells.  
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Detecting eQTLs using a linear mixed model 

To detect eQTLs, we obtained gene TPMs for 153 liver bulk RNA-seq samples 

and 749 skin bulk RNA-seq samples (sun-exposed and not sun-exposed) from the GTEx 

V.7 website (https://gtexportal.org/home/) and downloaded WGS VCF files from dbGaP 

(525 individuals, phs000424.v7.p2). Only genes with TPM > 0.5 in at least 20% samples 

were considered (19,621 genes in liver and 24,029 in skin). Gene expression data was 

quantile-normalized independently for each tissue type. For all eQTL analyses, we used 

the following covariates: age, sex and the first five genotype principal components (PCs) 

calculated using 90,081 SNPs in linkage equilibrium19. Since some subjects had two skin 

samples (one sun-exposed and one not sun-exposed), we employed a linear mixed model 

(LMM) for eQTL detection, using subject ID as random effect (1|subject_id). We fitted 

LMMs using the lme4 package (https://www.jstatsoft.org/article/view/v067i01/0)) to 

detect eQTLs in skin, described in the following model55: 

Expression ~ genotype + covariates + (1|subject_id) 

For liver, we used sex as random effect (1|sex) to fit an LMM analogous to the skin 

eQTL analysis method, described in the following model: 

Expression ~ genotype + covariates + (1|sex) 

We calculated associations with all variants (minor allele frequency > 1%) ± 1 

Mb around each expressed gene. For each gene, we Bonferroni-corrected p-values and 

retained the lead variant. To detect eGenes, we used Benjamini-Hochberg FDR at 10% 

level on all lead variants.  
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Improved eQTL detection using cell population distributions as covariates 

We repeated eQTL detection adding cellular compositions as covariates to the 

LMMs described above using the following model: 

expression ~ genotype + covariates + cell_populations + (1|random) 

The “cell_populations” term denotes the relative cell population distributions in each 

tissue and (1|random) is each tissue’s random effect (1|subject_id in skin samples; 1|sex 

in liver samples, see: Detecting eQTLs using a linear mixed model).  

Specifically, we conducted three eQTL analysis for the liver using human high 

resolution, human collapsed and mouse low resolution cell populations as covariates. 

Since several cell types were detected at very low frequency, we only used a subset of the 

cell types described in Figure 2.5: 1) for human high resolution: periportal sinusoidal 

endothelial cells, central venous endothelial cells, gdT cells, hepatocytes0, hepatocytes3, 

hepatocytes4, inflammatory macrophages and NK/NKT cells; 2) for human collapsed 

resolution: endothelial cells, hepatocytes, macrophages, NK cells, B cells, 

cholangiocytes, and heptatic stellate cells; and 3) for mouse low resolution: endothelial 

cells of hepatic sinusoid, hepatocytes, Kupffer cells and NK cells. We conducted two 

eQTL analysis for skin using mouse high and mouse collapsed resolution cell populations 

as covariates with the following cell populations: 1) for mouse high resolution: epidermis 

stem cell, leukocyte, inner bulge, outer bulge, epidermis, and epidermis basal cells; and 

2) for mouse collapsed resolution: epidermal cells, leukocyte, and inner bulge cells.  
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Detecting cell-type-specific and cell-type-associated eQTLs 

In order to detect eQTLs associated with one or more cell types, for each cell 

population we repeated the eQTL analyses described above (see: Improving eQTL 

detection using cell population distributions as covariates) by adding an interaction term 

between the genotype and each cell population (celli) estimate to the model 

(genotype:celli). Specifically, for each celli estimate, we compared the following two 

models: 

H0: expression ~ genotype + covariates + cell_populations + (1|random) 

H1: expression ~ genotype + covariates + cell_populations + genotype:celli + 

(1|random) 

In both models (H0 and H1), the “cell_populations” term denotes the relative cell 

population distributions in each tissue and (1|random) is each tissue’s random effect 

(1|subject_id in skin samples; 1|sex in liver samples, see: Detecting eQTLs using a linear 

mixed model). In H1, “genotype:celli” is the interaction term between the genotype and 

celli estimate. 

To compare the two hypotheses (H0 and H1), we calculated the difference 

between the two models using ANOVA and obtained χ2 p-values using the pbkrtest 

package. For each celli estimate used as an interaction term in H1, only eGenes that 

satisfied two requirements were considered to be associated with celli: a) Benjamini-

Hochberg-adjusted χ2 p-value <0.1; and b) ∆𝐴𝐼𝐶= 𝐴𝐼𝐶𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 − 𝐴𝐼𝐶𝑛𝑜 𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 < 0 

(i.e. “genotype:celli” interaction terms that significantly improve the eQTL model). If 

only one cell population improved the eQTL model, the eQTL was labeled “cell-type 

specific”; conversely, if more than one cell population improved the eQTL model, the 
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eQTL was labeled “cell type-associated”. We determined the impact of cell population 

abundance on power to detect cell-type-associated eGenes by examining the distribution 

of ß, standard error, and P-value for cell-type-associated-eQTLs from each cell 

population. 

 

Permutation analysis of liver eQTLs  

To test if the detection of more eQTLs using cell populations as covariates was 

due to improved accuracy of the linear mixed model estimation or was simply associated 

with an increased number of covariates, for each top hit (defined as the variant with the 

strongest p-value for each gene), we permuted the cell type distribution across samples, 

1,000 times. We obtained the average p-value, beta and standard error of beta across all 

permutations and compared these values with the measured p-value, beta and standard 

error of beta for each gene using a paired t-test.  

 

Colocalization of UK Biobank GWAS for skin traits and eQTLs identified from skin  

For each eGene in the skin eQTL analysis deconvoluted using cell type 

estimates, we extracted the p-values for all variants that were used to perform the eQTL 

analysis. From the UK BioBank, we obtained summary statistics for 23 skin-related 

traits, where the traits were grouped into seven categories based on shared nomenclature 

in the trait descriptions: 1) malignant neoplasms; 2) melanoma; 3) infection; 4) ulcers; 5) 

congenital malformations of the skin; 6) other cancer (non-melanoma or malignant 

neoplasm); and 7) unspecified. For all the variants genotyped in both GTEx and UK 

BioBank, we used coloc V. 3.156 to test for colocalization between eQTLs and GWAS 
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signal. For each colocalization test, we considered only the posterior probability of a 

model with one common causal variant (PP4). Enrichment of the associations was 

calculated using a Fisher’s Test at multiple PP4 thresholds (0 – 1; by 0.05 bins), where 

the contingency table consisted of two classifications: 1) if the variant was significantly 

cell-type-associated (FDR < 0.05); and 2) if the variant colocalized with the GWAS trait 

greater than each PP4 threshold. 

 

2.6 Data Availability 

 

Sequence data that support the findings of this study (all Figures) is available for 

human liver scRNA-seq (GSE11546); for human skin scRNA-seq 

(http://dom.pitt.edu/rheum/centers-

institutes/scleroderma/systemicsclerosiscenter/database/); and for Tabula Muris mouse 

scRNA-seq 

(https://figshare.com/articles/Robject_files_for_tissues_processed_by_Seurat/5821263/1)

. Scripts to process, analyze, and generate Figures from the data is available at 

https://github.com/mkrdonovan/gtex_deconvolution. The source data underlying all 

Figures is available in the Source Data available online. 
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