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ABSTRACT OF THE DISSERTATION

Bubble Nucleation and the Electroweak Phase Transition
By
Arianna Braconi
Doctor of Philosophy in Physics
University of California, Irvine, 2021

Professor Mu-Chun Chen, Chair

While the Standard Model of particle physics has been extremely successful in describing
particle interactions, there are still phenomena that remain unexplained. The asymmetry
between matter and antimatter in our universe is one of the most obvious unanswered ques-
tions, and the lack of a fundamental understanding of the origin of the parameters in the

flavor sector is another important unanswered question.

It might be possible for a mechanism to address both of the above issues. If the electroweak
phase transition was first order, it could be possible to create the observed matter-antimatter
asymmetry during this time. Additionally, it has been proposed that large Yukawa couplings
could generate the necessary CP-violation to produce the observed baryon asymmetry that

the Standard Model currently lacks.

This may be implemented via the Froggatt-Nielsen mechanism, which would have the addi-
tional benefit of addressing the problem in the flavor sector as well. It has been proposed
that implementing the Froggatt-Nielsen mechanism to produce large Yukawa couplings that
vary during the electroweak phase transition could produce a strong enough phase transition

needed for successful electroweak baryogenesis.
First order phase transitions proceed via the nucleation of bubbles, which percolate and

X



expand, eventually filling the entire universe with the new phase. Calculating the bubble
nucleation rate is not always simple, and it has been pointed out that in some models with
an additional scalar, bubbles actually fail to nucleate. This means that where a first-order

phase transition is naively expected, there is actually no phase transition at all.

The study of bubble nucleation in the case of large Yukawa couplings that vary during the
electroweak phase transition will be undertaken here, and we will see that the potential

barrier height plays an important role in the nucleation of bubbles.



Chapter 1

Introduction

There are still many physical phenomena that our current Standard Model of particle physics
cannot explain, and these unexplained phenomena hint at new physics beyond the Standard

Model.

One of the most obvious unexplained phenomena is the huge asymmetry in our present
universe between matter and antimatter. Our universe seems to be made up of only matter,
and no antimatter. It is unlikely that our universe began with such a mismatch between
baryons and antibaryons, so it is reasonable to instead search for processes in the early

universe that could produce such an asymmetry.

Another unexplained mystery is what is called the “Flavor Problem.” For some reason, our
universe produces three generations of matter, each more massive than the last. There is
no apparent reason for this redundancy. Additionally, heavier quarks can decay into lighter
quarks, and these mixing angles also exhibit a clear hierarchy. Such a clear hierarchy would
suggest some deeper structure to the masses and mixing angles in the quark sector. It is
also unclear why the masses span such a huge range of magnitudes; the lightest quark, the

up quark, is only 2 MeV, while the heaviest quark, the top quark, is 173 GeV, a difference



of nearly six orders of magnitude.

It is interesting to consider scenarios where these two problems have a common solution.
The most obvious path is to consider that perhaps the matter-antimatter asymmetry was
produced during the electroweak phase transition, the time when the electromagnetic and
weak forces separated from a single unified force into the two distinct forces we observe
today. This is an attractive possibility because the electroweak scale is around 100 GeV,

which is accessible to current experiments, so it is a theory that is currently testable.

As mentioned above, in our present universe, electroweak symmetry is broken, but in the
early universe, within a nanosecond of the Big Bang, when temperatures were much hotter,
this symmetry was unbroken. A matter-antimattery asymmetry can be generated during a
phase transition from unbroken to broken symmetry, if the phase transition meets certain
criteria and there is sufficient CP-violation. In the Standard Model, the electroweak phase
transition is what is known as a “crossover,” and there is not a sufficient source of CP-
violation to explain the observed abundance of baryons over antibaryons, so we must search

elsewhere.

If the electroweak phase transition can be shown to have been first order, which proceeds
via nucleation of bubbles, it could possibly explain the matter-antimatter asymmetry in our
universe [1]. Any mechanism which produces a baryon-antibaryon asymmetry during the

electroweak phase transition is called Electroweak Baryogenesis [2].

In order for the electroweak phase transition to be strongly first order, it requires physics
beyond the Standard Model. The simplest extension to the Standard Model which can
produce a first order phase transition is the addition of a singlet scalar [3, 4, 5] that couples
to the Higgs via interactions of the form Vi, = kH?S? where H is the Higgs and S is the

new scalar.

It is known that the Standard Model does not produce sufficient CP-violation to create



the observed baryon asymmetry [6, 7], this is due to the parameters in the CKM matrix
being too small. It was proposed in [8] that if the value of the Yukawa couplings was large
(order one) at the time of the electroweak phase transition, that this could possibly produce
sufficient baryon asymmetry to match observation. It was also shown in [9] that a first order
phase transition may be possible if the Yukawa couplings were order one before the phase
transition, and actually varied throughout the phase transition. This can be implemented
via the Froggatt-Nielsen mechanism which is connected to the flavor problem, potentially
addressing both the mattery-antimatter asymmetry problem and the flavor problem. We

will be exploring this possibility further.

Studies of phase transitions are typically computationally very intense, so oftentimes sim-
ple approximations are used. However, some of these approximations may miss important
aspects of the phase transition. In [10], the dynamics of bubble nucleation during the elec-
troweak phase transition in the presence of an extra scalar was explored. It was found that
for most of the parameter space where a first order phase transition was naively expected,
bubbles fail to nucleate at any temperature. This means that the phase transition cannot
proceed and thus cannot be first order. This has important implications in that it drasti-
cally limits the allowed parameter space for electroweak baryogenesis that was previously

considered acceptable.

In the present analysis, the dynamics of bubble nucleation were studied in scenarios with
large and varying Yukawas coupling constants, and it was found that bubbles do not nucleate
in many of the scenarios studied, and bubble nucleation only occurred in a narrow range of

parameters.



1.1 A Brief History of the Early Universe

The expansion of the universe implies that it was denser and hotter in the distant past,
originating in a “Big Bang.” In order to better understand early universe phase transitions,

it is helpful to be familiar with the evolution of the early universe.

It is theorized that immediately after the Big Bang, when temperatures were above 106
GeV, all of the three fundamental forces described in the Standard Model were unified into
a single Grand Unified Force. There are, of course, issues with this, and questions remain
whether the universe even achieved temperatures this high immediately after the Big Bang

since there is no direct evidence of temperatures above a few MeV.

At some point, as the universe began to expand and the temperature of the universe cooled,
the three forces would have separated into the strong and electroweak forces via a phase

transition.

As the universe cooled further, to temperatures around 100 GeV, the electroweak phase
transition took place. This phase transition separated the electroweak force into the separate
weak and electromagnetic forces that we know today. Prior to this phase transition, the
Higgs was in its symmetric phase with background value (¢) = 0, and hence all particles
were massless. After the phase transition, the particles assumed a mass as the Higgs assumed
its nonzero background expectation value (¢) # 0 that we have today. In the Standard Model
this phase transition is a crossover, meaning the system changes smoothly from one phase

to the another.

At lower temperatures, around 200 MeV (the scale of strong interactions), and just a few
microseconds after the Big Bang, the transition from the quark-gluon plasma to hadronic
matter took place. At higher temperatures quarks and gluons behaved as free particles in the

plasma, while at lower temperatures after the phase transition they are confined to colorless



bound states. This phase transition is also thought to be a smooth crossover.

As the universe cooled further, to temperatures about 1 MeV to 50 keV, which corresponds
to about 1-300 seconds after the Big Bang, neutrons and protons were captured into nuclei.
Prior to this time, neutrons and protons moved freely within the primordial plasma. The
nucleons condensed into light atoms, mostly helium, deutrium, and lithium (heavier elements
were not synthesized yet and were instead produced during the stellar evolution). This is

the epoch of Big Bang Nucleosynthesis.

After Big Bang Nucleosynthesis, the matter in the universe was in the state of a gas of mostly
hydrogen. However, the binding energy was insufficient to keep the electrons bound in the
atoms, and matter was in a state of baryon-electron-photon plasma. As the temperature
decreased, the the plasma began to form atoms. This era is called Recombination. Before this
period photons were scattered by electrons in the plasma, making the plasma opaque. After
Recombination, the gas was transparent to photons. This means that the cosmic microwave
background that we see today comes from the recombination epoch (about 370,000 years

after the Big Bang).

1.2 Problems in the Standard Model

Currently, the Standard Model is used to describe particle interactions between three of
the four fundamental forces. The Standard Model is based on an SU(3). x SU(2), x U(1)y
gauge group governing particle interactions and consists of three generations of quarks, three
generations of leptons, a Higgs Boson, as well as gauge bosons to mediate the strong, weak
and electromagnetic forces. While the Standard Model has been immensely successful in
describing particle interactions, there are some glaring issues that cannot be explained within

the structure of the Standard Model.



The first, and most obvious, is that the Standard Model only addresses interactions between
three of the four fundamental forces; it completely neglects gravity. Not only that, the
Standard Model is inconsistent with general relativity, and one or both theories must be
modified. Much effort has been spent trying to correct this issue, and so far we still do not

have an acceptable solution.

Another problem is the strong CP problem. Why does QCD allow for CP-violation in the
strong force, but no such violation has ever been found? It would appear that the strong
force then does, in fact, conserve CP symmetry, but why? The most well-known proposed

solution to this problem is the addition of pseudoscalar particle called the axion, proposed

by Peccei and Quinn [11].

Yet another problem is that Standard Model cannot explain why neutrinos have masses.
According to the Standard Model, neutrinos should be massless, but it was discovered [12]
in 1998 that neutrinos actually oscillate between flavors, which is only possible if they have

a nonzero mass [13].

Another problem is dark matter and dark energy. Dark matter is thought to make up 26%
of our universe, yet we do not know what it is! The most favored explanation is that it is a
yet-undiscovered particle that interacts weakly or not at all with the other three fundamental
forces [14]. Dark energy makes up nearly 70% of the energy density of the universe, and

could explain the apparent (and also unexplained) increase in the expansion of the universe.

The two final problems are what we will concern ourselves with in the current paper: the
matter-antimatter asymmetry of the universe and the “flavor problem,” as mentioned pre-
viously. The universe is made up of matter, and not of antimatter, although there is no
apparent reason for this. There is no reason why matter should be favored over antimatter,
and no apparent reason why the initial conditions of the universe would favor one type of

matter over the other. The Standard Model cannot explain this asymmetry of our uni-



verse, which is one of the prime motivations for the search for physics beyond the Standard

Model [15].

The flavor problem [16], as mentioned above, is twofold: there is an obvious hierarchy in the
masses and mixing angles of the six quarks, with no apparent explanation; and these masses
also span six orders of magnitude. What causes such huge differences in quark masses?

There is currently no answer.

The possibility that there is a connection between matter-antimatter and flavor problems
is one which we will explore here. This possibility is intriguing because not only would it
kill two birds with one stone, but it would have interesting cosmological implications for the

evolution of the universe as well.

1.2.1 The Flavor Problem

In the Standard Model, there are 19 parameters (if we neglect neutrino masses): the three
gauge couplings, the Higgs quartic coupling, and the Higgs mass squared make the first five.
The remaining 14 are all found in the flavor sector: six quark masses, three lepton masses,
four quark mixing angles, and the strong CP angle. If we add the parameters for addressing
the neutrino sector, we will then have 23 out of 28 parameters relating to the flavor sector

in the Standard Model [17, 18].

The origin of these physical parameters is unknown and unexplained within the Standard
Model. Why are there three generations of quarks and leptons each with increasing mass?
The strong hierarchical pattern of flavor parameters clearly does not seem arbitrary, are they
connected in some way? The fermion masses exhibit a strong hierarchy, and the quark masses

span six orders of magnitude. The mixing angles within the quark sector also exhibit a strong



hierarchy and are as of yet unexplained. The lack of understanding of such fundamental issues
is called the “flavor problem.” Since questions are not addressed within the Standard Model,

all of these parameters must be input by hand.

The masses and mixing angles in the quark sector in the Standard Model arise from the

Yukawa interactions, described by the lagrangian
;Cy = _Y;?QLZ(I)DR] - Y;?QLZ'E(I)*URJ' + h.C., (11)

where the Yukawa matrices, Y% are 3 x 3 complex matrices, ® is the Higgs field, € is the 2x 2
antisymmetric tensor, and the labels 7, j represent the generation indices. The left-handed
quarks are represented by the doublet ()7, and the right-handed quarks by the singlets Ug

and Dpg for the up and down types, respectively.

When the Higgs field acquires a vacuum expectation value (vev), the expectation value is
no longer zero, (H) = (0,v/1/2) and the electroweak symmetry is spontancously broken and

mass terms are generated for the fermions.

The above lagrangian is written in the weak interaction basis. To obtain the physical masses
of the particles it is necessary to perform a bi-unitary transformation on the Yukawa matrices
to bring them to their diagonal form in the mass basis. Four unitary matrices are needed,

Vi ’g, and the diagonal mass matrix is given by

u u,d \u, u,d v
Mt = ypdywdyd (E) (1.2)

In 1973 Kobayashi and Maskawa introduced a third generation of quarks to explain the
observed CP violation [19]. This was an addition to the previous Cabbibo matrix that only

incorporated the two generations of quarks known at the time. From the charged-current



weak interactions we can obtain what is called the CKM matrix given by

Vud Vus Vub
Vermu = ViV = | Vig Vi Vi | - (1.3)
Vie Vis Va

The CKM matrix contains the parameter responsible for all CP-violating flavor-changing
interactions, and the elements of the matrix are all fundamental parameters in the Standard

Model and must be measured and inserted by hand.

It is easy to see the hierarchy present in the CKM matrix when written in what is called the

Wolfenstein parametrization

1—3A2 A AN3(p — in)
—A 1—1A2 AN +O(\Y), (1.4)
AN = p—in) —AN 1

where A ~ 0.226, A = 0.814, p = 0.135, n = 0.349 and CP-violation is encoded in the term

(p—in).

As the CKM matrix describes the probability of transition from one quark type to another,
with the probability proportional to |V;;]?, it is very clear that there is a strong hierarchy

among the quark mixings, with no apparent explanation.

1.2.2 Baryon Asymmetry

As mentioned previously, the universe at present is made up of essentially only baryons and

no antibaryons [15]. Why there is such a staggering asymmetry of baryons to antibaryons in

9



our universe is an outstanding problem in particle physics, and cannot be answered within the
Standard Model, hinting at New Physics. Any process that produces a baryon asymmetry

in the early universe is called baryogenesis.

The baryon asymmetry can be parametrized by 7npg, which is the ratio of baryon to photon
number densities. It is can be measured by studying Big Bang Nucleosynthesis and the

Cosmic Microwave Background radiation, and is given by

m= 2 =6.2x 10710, (1.5)
Ty

In the early universe when temperatures were much higher (higher than a few hundred MeV)
quarks and antiquarks were continually pair-created and annihilated in the quark-gluon
plasma. This means that in the early universe, there existed approximately one unpaired
quark per ten billion quark-antiquark pairs. At high temperatures the number of photons
is about the same as the number of baryons, so the baryon asymmetry can be rewritten in
terms of the number densities of quarks and antiquarks,

Ng — Ng

~ 1071, (1.6)
ng + Ng

where n, and ngy is the number densities of quarks and antiquarks, respectively. This seem-
ingly small asymmetry is responsible for our universe being composed of matter and not
antimatter. This asymmetry was likely generated during the early universe at temperatures
above 10'% GeV, in some sort of process where baryon number is not conserved. Then as
the universe cooled, quarks and antiquarks annihilated, while the unpaired quarks remained,

giving rise to the baryon asymmetry we see today.

It is reasonable to assume that when the universe began, there was no asymmetry between

baryons and antibaryons, and that this asymmetry arose due to some process that did not

10



conserve baryon number. The problem of the baryon asymmetry is twofold: (1) understand
where it came from; (2) understand its value. Since these two problems cannot be solved in

the Standard Model, it is a very strong hint towards New Physics.

In 1967, Andrei Sakharov proposed a set of three necessary conditions that any baryon-
generating process must satisfy simultaneously in order for it to produce baryons and an-
tibaryons at different rates [20]. These are known as the Sakharov conditions. The conditions

are:

e Violation of baryon number
e Violation of C and CP symmetries

e Departure from thermal equilibrium .

The justification for the first condition is relatively obvious, in that if the theory does not
possess a mechanism for baryon number violation, it can produce no baryon asymmetry.
The second condition is necessary because if charge conjugation symmetry is not violated,
interactions which produce an excess of baryons over antibaryons will happen at the same
rate as interactions which produce an excess of antibaryons over baryons, and again no
asymmetry is left. CP-violation is similarly needed because otherwise left-handed baryons
and right-handed antibaryons will be produced at the same rate as left-handed antibaryons

and right-handed baryons. We can see this by studying the evolution of the density matrix,
pt) = e—ilfl(t—to)p(t())ez'1*3’(15—15(>)7 (1.7)

where H is the Hamiltonian of the system, and ty is the initial time. If the system is
C- and CP-invariant, the unitary operators Uz and Ugp corresponding to C- and CP-

transformations, respectively, will commute with the Hamiltonian. In the case of CP-

11



invariance, for example, we have
UcpHUZS = H, (1.8)
which in terms of the density operator yields

Ucrp()Uch = plt). (1.9)

If the initial state is also CP-invariant, then the above is true at time ¢, as well. If we

consider the fact that the baryon number operator, B , is CP-odd, this means
UcpBUZL = —B (1.10)

which yields

~

(B(t)) = Tr[Bp(t)] = 0, (1.11)

which means the medium is baryon symmetric.

The departure from thermal equilibrium is necessary because if a system is in thermal equilib-
rium with respect to baryon number violating interactions, then the system has zero baryon
chemical potential, which corresponds to zero baryon number density. Another way to think
of this is that thermal equilibrium means that the conditions in the universe are time reversal
symmetric (T). And since we are fairly confident CPT is a symmetry of nature, T and CPT
together imply CP symmetry, which means that the number of baryons and antibaryons

produced in the process would again be equal.

While the Standard Model does meet all three Sakharov conditions, the amount of baryon

asymmetry is not enough to explain the observed asymmetry we see today. The main issue

12



is that the CP-violation induced by the CKM matrix is not nearly sufficient to generate the

observed asymmetries. This is why BSM models must be considered.

In some baryogenesis mechanisms, the third criterion can be satisfied by the decay of heavy
particles in an expanding universe. This is common in GUT baryogenesis models. In elec-
troweak theory, this condition can be met if the electroweak phase transition is strongly first
order, which proceeds via the nucleation of bubbles. Bubbles nucleate and expand out to
eventually fill the entire universe, which causes the order parameter of the phase transition to
change rapidly as the bubbles move outward, leading to a significant departure from thermal

equilibrium.

The electroweak phase transition is not first order in the Standard Model, because the Higgs
is much too heavy. It is instead a crossover which unfortunately does not satisfy Sakharov’s
third condition sufficiently. However, there are mechanisms that would allow the electroweak
phase transition to be first order, the two we will be investigating presently are the addition

of singlet scalar and large Yukawa couplings that vary during the phase transition.

1.3 Phase Transition Dynamics

Phase transitions occur when a symmetry of the ground state at zero temperature is not
respected at higher temperatures. However, the symmetry can be restored at high temper-
atures [21]. As mentioned previously, at very high temperatures the electroweak symmetry,
SU(2)r, x U(1)y, was unbroken. As the temperature cooled, this symmetry was broken into
SU2), xU(l)y = U(1)em. In the Standard Model, this phase transition proceeded via a

crossover [22].

13



In order to study phase transitions, one must calculate what is called the effective potential,
which is the free energy density of the system [23, 24]. In the case of the Higgs potential,
at high temperatures after the Big Bang, the potential was symmetric, roughly resembling
a parabola, with (¢) = 0. As the temperature cooled, a new minimum appeared, and the
Higgs field eventually assumed this value at the new minimum where (¢) # 0. This can
proceed via one of three ways, a first order phase transition, second order phase transition,

Oor Crossover.

A first order phase transition is associated with a discontinuity in the heat capacity and
hence the order parameter at some temperature. A second order phase transition, on the
other hand, has a continuous heat capacity (as a function of temperature), and hence no

discontinuous jump in the value of the order parameter as the temperature changes.

(D) (D)

T

T T

Figure 1.1: The heat capacity versus temperature for a first order (left) and second order
(right) phase transition.

The distinction between first and second order transitions can be seen graphically below
in Fig. 1.2. At high temperatures the potentials are symmetric, but as the temperature
decreases, a new local minimum emerges at (¢) # 0. At a temperature called the critical
temperature, T,, the two local minima are equal, an the phase transition can proceed. Even-

tually the new minimum away from zero becomes the global minimum as the temperature
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approaches zero. The potential associated with the first order phase transition generally
develops a potential barrier separating the two local minima. The configuration must then
tunnel from the (¢) = 0 false (metastable) minimum to the true global minimum via the

nucleation of bubbles.

A first order phase transition proceeds via spontaneous nucleation of bubbles of new phase
due to thermal fluctuations which allow tunneling to the energetically favorable global min-
imum. The bubbles percolate, expand, collide, and the system eventually returns to the
homogeneous state of thermal equilibrium, but with (¢) # 0, and the released free energy is

converted to heat.

A second order phase transition typically has no energy barrier between the two phases,
and proceeds with the properties of the medium (in the case of the Higgs potential, (¢))
changing homogeneously from the symmetric phase to the broken phase. A second order
phase transition produces no bubbles, since at every moment the system is in a state close
to thermal equilibrium. A crossover is a bit more subtle, since in a crossover technically no
phase transition occurs at all. The system slowly and smoothly shifts from one phase to the

other, which happens over a region of phase space compared to at a specific point.

1.3.1 Electroweak Baryogenesis

Electroweak baryogenesis refers to any mechanism that produces an asymmetry between
baryons and antibaryons during the electroweak phase transition in the early universe [1].
It has the added benefit of being both theoretically attractive and experimentally testable.
Successful electroweak baryogenesis requires a strongly first order electroweak phase tran-

sition [25], which proceeds via nucleation of bubbles of broken phase into the unbroken
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/\0/¢ \,/

(0}

Figure 1.2: The effective potential (Vg) at various temperatures for a first (left) and second
(right) order phase transition.

(®)=0

Figure 1.3: Bubbles of broken phase, where (¢) # 0, percolate and expand outward into the
symmetric phase, eventually filling all of space.

phase until only broken phase remains. These bubbles are crucial for creating the desired

baryon-antibaryon asymmetry in the universe and satisfying Sakharov’s three conditions.

Besides adding new singlet scalars to the Standard Model, some other propositions to realize

a first order electroweak phase transition include the 2-Higgs Doublet Model [26], and the
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MSSM [27] (although which is now strongly disfavored).

One of the most powerful probes of beyond Standard Model CP-violation is the electric dipole
moment of the electron [28]. Since the Standard Model prediction [29] for the electron EDM
is impossibly small at current experiments, any detection at future experiments would be a

smoking gun for new physics.

A first order electroweak phase transition can also produce a cosmological signal in the form
of gravitational waves [30], which are created by the expansion and collisions of bubbles of
broken phase during the phase transition. The signal is too low to be picked up by LIGO,
but will likely be detectable by LISA in the future [31].
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Chapter 2

The Effective Potential and Bubble

Nucleation

2.1 The Effective Potential

Typically, calculations related to the electroweak phase transition are carried out using
perturbation theory, however this method can be rife with uncertainties. A proper study
of the phase transition must be done using Monte-Carlo methods, which are extremely
computationally intensive. For many purposes, it suffices to use perturbation theory to gain

an understanding of certain scenarios for electroweak baryogenesis.

The calculation of the effective potential is the main tool in studying phase transitions
perturbatively. This method was developed [32, 33| using the path integral formalism. For
a review, see [34]. The free energy density of a medium at temperature 7" and uniform
Higgs field equal to (¢) is called the effective potential. At zero temperature, the free energy
reduces to the energy of the system (because quantum corrections are small) and the effective

potential coincides with the scalar potential.
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2.1.1 Calculation of the Effective Potential

The effective potential for a scalar field like the Higgs is given by the tree-level potential,
plus one-loop zero temperature corrections, one-loop finite temperature corrections, and the

daisy correction.

Vear(0, T) = Vo(¢) + VI¥=2(8) + Vi 7°(6, T) + Voaisy (6, T) . (2.1)

Both the zero temperature and finite temperature one-loop corrections receive contributions
from all particles that couple to the Higgs, while the daisy correction receives contributions

only from the bosons.

To compute the effective potential for the Standard Model of electroweak interactions, one

starts with the tree level potential dependent on the Higgs field,
1 A
Vo(¢) = —51°0" + 76", (2.2)

where there is a tree-level minimum at v? = m?/\. The electroweak symmetry is broken by

the SU(2) doublet

o = @;) (2.3)

which obtains a vev,

(¢) = % (S) (2.4)
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The Higgs mass is then given by

m () = 3A¢? — 1%, (2.5)

so that at the vev the Higgs mass is mi(v) = 2 \v? = 2u?. The weak gauge boson masses

are given by

miy (¢) = %cbz, (2.6)
2 2
my(p) = W;Tgydﬂ (2.7)

where g, and gy are the weak and hypercharge coupling constants.

The fermion masses are also dependent on the value of the Higgs field, and are given by

= _¢2a (28)

where y; is the Yukawa coupling for each fermion. However, only the top quark will con-
tribute significantly to the one-loop effective potential due to its large Yukawa coupling, as

other fermions have negligible couplings and hence their contributions are also negligible.

The one-loop correction to the scalar potential at zero temperature is obtained by summing
over all one particle irreducible (1PI) diagrams with one loop and zero external momenta,

as displayed in Fig. 2.1

The details of the calculation are given in appendix B.2, and can be generalized to any

number of complex scalar fields. After renormalizing using the MS scheme, the one-loop
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Figure 2.1: 1PI diagrams contributing to the one-loop effective potential.

zero temperature contribution is given by

2

Ve =3 WD [t (10 | 249 - 2 + 2wtz (29)

6472 mz(v) 2

where the sum is over all particles that couple to the Higgs. F' is 0 or 1 for bosons and
fermions, respectively, and n; is the particle’s multiplicity (1 for each boson, 4 for colorless
Dirac fermions, and 12 if the fermion also carries color). This expression already includes all

counter-terms necessary to maintain the tree-level values of the mass and coupling constant.

To calculate the finite temperature contributions, the same procedure is carried out as for
the zero temperature correction, but instead using the finite temperature Feynman rules

when summing over all 1PI diagrams. This yields

Ve, T) = % i/ (%—?) , (2.10)

i
where Jp/p is the thermal bosonic or fermionic function given by

Tpr = /d:cx2 log |1 — (~1)e VT (2.11)

0

This integral has convenient high temperature approximations for m?/T? < 1, allowing us
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to rewrite the thermal bosonic and fermionic function as

m? ™omm? o m2\? 1 md m?
/S (RAACHD LY (R 2.12
B(T?) 5T RT 6 <T2) 32 T Og(abTQ) ’ (2.12)
2 7 4 2 2 1 4 2
P i WA s LB WL G (2.13)
T2) 7360 2472 3274 0\ a7

where Ina, = 5.4076 and Inay = 2.6351, and the mass dependence on ¢ is understood.

2.1.2 The Daisy Correction

The existence of symmetry restoration implies a failure of perturbation theory at high tem-
peratures [35]. Since the tree-level potential, which is not temperature dependent, has bro-
ken symmetry, temperature-dependent radiative corrections should not be able to restore
the symmetry. The one-loop approximation is valid at temperatures below the critical tem-

perature; however, near the critical temperature this approximation breaks down.

Quadratically divergent loops that add a factor of AT?/m? to the two-point functions can
be safely ignored at low temperatures where \T?/m? < 1. At and above the critical tem-
perature, these divergent diagrams (called daisy, or sometimes ring diagrams) cannot be
safely ignored and must be accounted for by resumming over an infinite number of dia-
grams at every order. This is equivalent to replacing the particle mass by an effective mass,
m? — m?+1I(T'), where II(T) is the thermal mass of the particle. Physically, this means as
the particle propagates in the medium, it can interact with the background distribution of

particles, thereby increasing the effective mass of the particle.

Again considering a self-interacting real scalar field, a loop amplitude with divergence D will
be of the form TP f(m/T), and absent any infrared divergences as m/T approaches zero the
loop will go like TP. For example, the diagram in Fig. ??, which contributes to the self

energy, has divergence D = 2 and thus scales like \T2.

22



Figure 2.2: One-loop contribution to the self energy of a scalar field, scales like \T72.

If the divergence is less than or equal to zero, infrared divergences appear in the bosonic
propagators when summing over the Matsubara zero modes (see Appendix C for details). In
these cases there is only one factor of T, so every logarithmically divergent loop contributes
a factor of T'. For example, the diagram in Fig. 2.3 has two logarithmically divergent loops
and thus contributes a factor of A272. These graphs, as we will see, are suppressed by a

factor of A compared to the daisy diagrams, and can be ignored.

N
N

Figure 2.3: Two-loop contribution to the self-energy for the scalar theory. This diagram is
suppressed by a factor of A compared to the one-loop diagram.

We can now see that the diagrams with the largest contributions will be the diagrams with
the largest number of quadratically divergent loops. If we take the diagram in Fig. 77, and

add n loops on top of it, we will have an additional contribution of (A7?)".

If we rescale the contributions according the mass scale of the theory, M, each additional
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quadratically divergent loop adds a factor of AXT?/M?. In order for the one-loop approxi-
mation to be valid we need to have this factor much less than one. However, at the critical
temperature we know this is not true, so we can see now that the one-loop approximation is
not valid at high temperatures near the critical temperature. We can no longer safely ignore
these quadratically divergent diagrams. The solution is to re-sum all powers of AXT?/M? into

a thermal mass term, and replace the mass by an effective mass.

Figure 2.4: Daisy contribution to the self energy which cannot be ignored at high tempera-
tures.

After resumming over the Matsubara zero modes that produce the infrared divergence, we

obtain

Vouss (6. 7) = 3 L (m(6) — [m2 () + 11(T)]"?) (2.14)

i
for the daisy contribution.

In the case of the Higgs, the thermal mass is given by [36]

3 1 AP
Mu(T) = —g2+ —g*>+ = + 2L ) 77 2.15
o(T) <16g2+16gy+2+4) : (2.15)
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where y; is the top quark Yukawa coupling. Only the top quark contribution to the Higgs
is included here since it is much larger than all the others. We will see in later sections that
when the other Yukawa couplings are large, their contribution to the Higgs thermal mass

must be included.

The daisy correction is especially important when studying first order phase transitions
because it affects the cubic term in the effective potential, which is the term responsible for
the potential barrier. For example, if the thermal mass is large relative to the mass squared,
the potential ceases to behave as a cubic term in ¢ and the phase transition is no longer

necessarily first order.

2.2 A Simple Phase Transition

Now that we have completed our calculation of the effective potential, it is helpful to illustrate
with a simple example the difference between first and second order phase transitions. One
can write the effective potential in a simplified approximate form using the high temperature

expansions of the thermal bosonic and fermionic functions. This gives
2 2\ 12 5 Ay
Vers(0.T) = D(T” = T5)¢" — ET¢” + ¢, (2.16)

where D and A are slowly varying functions of temperature, and can be assumed to be
constant. At zero temperature, the point at ¢ = 0 is unstable, and the minimum at ¢(0) =
+ %To is the global minimum and hence a stable minimum. If the coefficient E is zero,
corresponding to the cubic term in ¢, the phase transition is second order at a temperature
of Ty. This is because without the cubic term, there is no potential barrier between the

symmetric and broken phase. The Higgs expectation value for temperatures below the
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critical temperature is then given by

(9) = TO\/? (1 - %) (2.17)

If the coefficient F is nonzero, this cubic term in ¢ can yield a first-order phase transition by

creating a potential barrier between the symmetric and broken phases. As the temperature
cools from very high temperatures where the potential is in the symmetric phase, a second

local minimum begins to develop at ¢ # 0, at a temperature 77 of

\D
T, = TO\/L (2.18)

SADT? — 9E?’

The temperature at which the new local minimum decreases to the same value as the min-
imum at the origin is the critical temperature, 7., and the phase transition can now occur.
This minimum continues to descend, and at zero temperature it is the true global minimum.

This new minimum is at ¢. and given by

. 2F
¢ —. (2.19)
T, A

where the phase transition can begin at 7, via tunneling through the barrier between the
symmetric and broken phases. If the barrier is very high, the tunneling probability is very
small and tunneling may start at a lower temperature. In some cases, as we will see, this

stops tunneling from occurring at all, and there is no phase transition.
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2.3 Bubble Nucleation

First-order cosmological phase transitions proceed via the nucleation of bubbles of true
vacuum out of metastable false vacuum states. Inside the bubble, the free energy density is
lower than the free energy density outside the bubble; if a bubble is too small, the surface
tension is too great and the bubble collapses; if the bubble is sufficiently large it will expand
and convert the medium to the new phase. If the internal pressure of the bubble is sufficient
to counterbalance the surface tension, the bubble will expand. The minimum bubble size
that can begin to expand is called the critical bubble, and it is these bubbles that will drive

the phase transition.

The formalism of bubble nucleation in cosmological phase transitions was developed in [37]
(for further information on tunneling, see [38]). The tunneling rate, or bubble nucleation

rate, is determined by the euclidean action. Start first with a lagrangian

1

£=3

(0,00"¢ — V() (2.20)

where the euclidean action is given by

Sp = / G (0,0)° + V(gb)) . (2.21)

The dimension d is 4 for zero temperature and 3 for finite temperature tunneling. Bubbles
will nucleate when the probability per unit time per unit volume that the false vacuum will

decay is order one. The bubble nucleation rate per unit volume is given by

L~ a@)es, (222)

at zero temperature, where A(T') is a slowly varying, and is typically quite difficult to solve

and must be done numerically. At finite temperatures the nucleation rate per unit volume
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is given by

r
= Ae%8/T, (2.23)

At high temperatures, the action’s O(4) symmetry becomes an O(3) symmetry, and the

euclidean action simplifies to

o[ raeN?
2 \dp
0
where p is the usual spherical coordinate.
The corresponding equations of motion for the critical bubble are
d’¢  2d¢
— 4+ —— =V (¢, T). 2.25
o=V (225)

This is identical to a classical particle moving in an inverted potential, —V(¢). The solution
to the critical bubble profile can then be solved by the “overshoot-undershoot” method
described in [39].

For the overshoot-undershoot method, we take a particle rolling on the inverted potential,
and find an initial placement near the true vacuum, ¢r, (global maximum in the inverted
case) such that when the particle rolls down the potential it stops at the point corresponding
to the false vacuum, ¢r. One then varies the initial placement of the particle; if it “over-
shoots,” or rolls past the false vacuum, the initial placement must be placed a bit further
from the true vacuum. If instead the particle does not reach the false vacuum as it rolls down
the potential, it “undershoots,” the next iteration must place the initial condition closer to

the true vacuum. The corresponding configuration is usually called the bounce solution.

Once we establish the critical radius of a bubble large enough to grow after formation, the
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subsequent progress of the phase transition depends on the ratio of the rate of production
of bubble to the expansion rate of the universe. At the electroweak scale this corresponds

to a bubble nucleation rate of order unity when

Se
— = 140. 2.26
; (226)

(There is some discrepancy in this result, with some sources citing as low as ~ 100 [40]. We

will be using 140 in this analysis.)

2.3.1 Generation of Baryon Asymmetry

The vacuum structure of non-abelian gauge theories has non-trivial vacuum gauge configu-
rations which, in the case of the electroweak theory leads to the anomalous non-conservation
of baryon number. Transitions between different vacua are accompanied by a change in the
baryon number, albeit these are highly suppressed at zero temperature. However, at finite

temperature these transitions can be possible via thermal effects.

Thermal fluctuations in the SU(2) gauge field and symmetry breaking Higgs field can cause
transitions between degenerate minima with different baryon numbers separated by a poten-
tial barrier. The transitions may actually proceed over the potential barrier between different
vacua, and the maximum free energy for the transition corresponds to a static, unstable field

configuration at the top of the barrier called a sphaleron [41].

The sphaleron solution is a saddle point in the field configuration space, representing the

lowest barrier between two neighboring vacuums, and hence classically unstable.

In [42] it was argued that the barrier separating vacua may be surmounted at temperatures
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around 100 Gev, so this is relevant for electroweak physics.

Sphalerons can “washout” any baryon asymmetry created during a phase transition if the
phase transition is not strongly first order. Taking into account the baryon violation rate
and the probability of fluctuations over the barrier, in order for a phase transition to be

viable [43, 44] in electroweak baryogenesis it must satisfy

&

> 1.0 2.27
TC ~ Y ( )

where T, is the critical temperature and ¢, is the expectation value of the Higgs field at that

temperature.

As mentioned previously, in order for any model to generate baryon asymmetry, it must
satisfy the three Sakharov conditions simultaneously. In our case, electroweak baryogenesis
satisfies the out of equilibrium criteria with a first order phase transition. However, the
CP-violation in the Standard Model CKM matrix is not sufficient to produce the baryon
asymmetry we observe today, so some other mechanism must be present to provide sufficient

CP-violation.

The first order phase transition can satisfy both the second and third of Sakharov’s condi-
tions. During the phase transition the value of the Higgs field is changing, and is when the
departure from thermal equilibrium takes place and when C- and CP-violation takes place.
The creation of baryons during electroweak baryogenesis takes place near of bubble walls, as

explained in [2].

Particles in the cosmic plasma scatter off the bubble walls which can generate violations of
C- and CP-symmetry in front of the bubble wall. CP-violation comes into play when chiral
fermions scatter off the Higgs at the bubble wall. This is a kinetic effect as particles inside

the bubble are massive, while particles outside the bubble are massless. A chiral asymmetry
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is created in front of the bubble wall that is converted by sphalerons into a baryon number.
These asymmetries then bias electroweak sphaleron transitions to produce more baryons
than antibaryons as the bubble wall expands. As the bubbles expand, some of the baryon

excess created outside the bubble is swept up by the expanding bubble into the broken phase.
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Chapter 3

Electroweak Phase Transition with

Varying Yukawa Couplings

A scenario was proposed in [9] that a first order electroweak phase transition can be obtained
if the Yukawa coupling constants varied as the universe evolved. Order one Yukawa couplings
were assumed before the phase transition, which then decrease to assume their present
values during the phase transition. This proposal utilized the Froggatt-Nielsen mechanism
to implement the variation in the Yukawa couplings, and has the benefit of addressing both
the flavor problem and the matter-antimatter asymmetry. The Froggatt-Nielsen mechanism
was originally proposed as a solution to the flavor problem, however; this mechanism could
affect the dynamics and cosmology of the early universe which has not been studied in much

depth.
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3.1 The Froggatt-Nielsen Mechanism

The Froggatt-Nielsen Mechanism [45] assumes a new U(1)py flavor symmetry under which
the fermions are charged. This symmetry is broken by a new scalar field called the “flavon,”
which acquires a vev to break the U(1) flavor symmetry, and is typically a Standard Model
singlet. If the left- and right-handed fields have different charges under U(1) gy, the effective
Yukawa couplings of the fermions are generated by higher dimensional operators when the
flavon field obtains a vev. The effective Yukawas couplings are dependent on the flavon vev
and are of the form (Y (S)/M)"™, where the scale of new physics is A = M/Y and (S) is the

vev of the flavon, and M is the mass scale.

The hierarchy observed in the Standard Model Yukawa couplings is then derived from dif-
fering powers of (S)/A. The lagrangian of this theory with a single additional flavon is given
by

S\ - S\™
L = yi (K) QiPU; + v (K) QiPD;, (3.1)

where @); is the Standard Model quark doublet, U; and D; are the right handed up and down
type quarks, respectively, and the subscript ¢ denotes the generation. The Higgs boson is

denoted by ® (® = ioo®*), and y;; are order one dimensionless couplings. The values of n;;

and 7;; are chosen such that the terms are singlets under the new U(1) flavor symmetry.

Once the symmetry breaks and the flavon obtains a vev, the lagrangian looks like

n

~ Us ﬁij AN F vs K ~
L = i (m) QiPU; + yij (m) Qi®D;, (3.2)

where y;; (ﬁ) now plays the roll of the Yukawa coupling in the mass basis. We can see
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that in the mass basis the effective Yukawa couplings now have a clear hierarchy, and let

Us

V2A

€

(3.3)

Now we can see that the effective Yukawa couplings are determined solely by powers of

(ef)™, where ny is appropriately chosen to give the particle’s observed Yukawa coupling.

For example, making a typical assignment of Froggatt-Nielsen charges to the quarks

Qs:0 Q2:42 Q1:+3
U3 . 0 U2 . +1 U1 : +47 (34)
D32—|—2 D22+2 D11—|—3

for the effective Yukawa couplings in terms of powers of € this yields

yy~1l Yo~ €y~ e

Yy~ €2 yo~ et yg~ €.

One can also rewrite the entries of the CKM matrix in terms of powers of €. This mechanism
allows the mass and mixing hierarchies to be explained as powers of the expansion parameter,
rather than assigning seemingly arbitrary Yukawa couplings for each fermion. This also

means that the mechanism does not depend on the scale of the new physics, only on the

()

ratio i
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3.2 Varying Yukawa Couplings

It was proposed in [9], that a first order electroweak phase transition can be achieved by
varying the Yukawa couplings throughout the phase transition. An analysis of the effective
potential and phase transition with varying Yukawa couplings was carried out, where the
Yukawa couplings are taken to be order one before the electroweak phase transition, then

assume their observed Standard Model values after the phase transition.
A simple ansatz was used to account for this variation in the Yukawa couplings,
y(9) = - (3.6)
Yo v S ¢ ;

where ¢ is the value of the Higgs field, y; is a constant of order one, and n simply controls
how quickly the Yukawa couplings change throughout the phase transition. The constant yq
corresponds to the present value of the Yukawa for a given fermion. For a simple toy-model

analysis, a value of yyo = 0.02 for all quarks was assumed.

In this case, the mass of the fermions would also depend on the Higgs vev through y(¢), and

can take the form

my(¢) = =7 (3.7)

which would mean the masses of the fermions could vary significantly during the phase tran-
sition. If additional scalars are added, then the mass of the fermions can also be dependent

on powers of the vev of those scalars, to be seen in later sections.

This addition of varying the Yukawa couplings greatly changes the dynamics of the phase
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Figure 3.2: Zero temperature one-loop fermion contribution to the effective potential with

varying y; and n.

transition, particularly the finite temperature contributions of the fermions.

Below are the contributions for a fermion with varying n and y1 versus constant Yukawa

couplings. As can be seen, the contributions change significantly.

The finite temperature contributions are naturally also impacted. This contribution is the

most important now for generating a first order phase transition because the variation in the

Yukawas creates the crucial cubic term in the potential.

If one studies the high temperature approximation of the thermal fermionic function,

7 <m2(¢)) ~ 7_7T2_7T_2m?f(¢) B
f 360 24 T2 32 T4

T2

1 mi(9)
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Figure 3.3: Finite temperature one-loop fermion contribution to the effective potential, with
varying y; and n.

we see that it can give rise to a cubic term. Since the mass is now dependent on the Yukawa
couplings which are varying, this means the second term in the thermal fermionic function

has a dependence on ¢?
m2(¢>)=:yi(—¢—>L¢E (1——€?%—¢2)q¥ (3.9)

and so we have the necessary ¢ term for a first order phase transition where there previously

was 1none.

The Higgs thermal mass and hence the daisy contribution from the Higgs is also affected.
The thermal mass now is a funciton of ¢, whereas previously it was a constant value. The
Higgs thermal mass in the Standard Model, including only the top quark contribution due
to its large coupling is given by

3 1 Ay
Iy(0, T) = CG +Ey+2+4)ﬂ, (3.10)

whereas with varying Yukawa couplings all of the fermions which couple to the Higgs must

be included (since they now have large couplings before the phase transition) and is given
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1 )\ t 191
H¢(¢7T) = ( 167Y ' 2 Zi k y4(¢)) T°

(3.11)

where n; is the degrees of freedom for the remaining fermions and y; are their Yukawa
couplings.
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Figure 3.5: Effective potential at the critical temperature with varying Yukawa couplings,
physical masses, and y; = 1 for all and varying values of n.

The overall effect of allowing the Yukawa couplings to vary during the phase transitions is
twofold: the first is the most significant, changing the phase transition from second to first
order, and the other is decreasing the critical temperature. As mentioned previously, a first
order phase transition suitable for electroweak baryogenesis must satisfy ¢./7. 2 1.1, which

the case of varying Yukawa couplings with y; = 2.0 and yy = 0.02 satisfies. The switch from
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Figure 3.6: Higgs thermal mass and daisy contribution in the case of varying Yukawas.

second to first order is clearly the most important to early universe cosmology, as a first

order phase transition is necessary for electroweak baryogenesis.

Overall, if the Yukawa couplings vary during the electroweak phase transition, the phase
transition undergoes two main changes. First, the finite temperature one-loop contributions
from the fermions creates a cubic term in ¢ and thus a potential barrier between the sym-
metric and broken phases where previously there was none. This can result in a first-order
phase transition. Second, large Yukawa couplings at ¢ ~ v increase the Higgs thermal mass,
which lowers the potential close to ¢ = 0 through the Daisy correction. The net result of

these effects is to create a first-order phase transition in what was previously a crossover.

3.3 Stability of a Theory with Varying Yukawas

In the Standard Model, the Higgs quartic coupling becomes negative around 10'° GeV,
rendering the Higgs potential unstable. Increasing the number of Yukawa couplings that are

of order one drastically lowers the scale at which the quartic coupling becomes negative [46].
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This can be seen analytically from the 1-loop § function (equation A.3 in appendix A). If we
assume only one large quark Yukawa coupling and no CKM mixing, then the leading order

terms can be approximated as

B & 2402 4 12)y% — 6y . (3.12)
If additional quark Yukawa couplings of order one are added, the 8 function becomes

BS) ~ 242 + 12)\ny? — 6ny* | (3.13)

where n is the number of order one Yukawa couplings. The addition of these large Yukawa
couplings will make the negative term dominant, driving the Higgs quartic coupling negative
at a lower scale. Here, the effects of the large Yukawa couplings on the evolution of 5&1) is
independent of the specific variation used in the Yukawa couplings, and can include a broad
range of models where the additional scalar fields are heavy. In the case of additional light
scalars, the beta functions will need to be calculated (dependent on the model) to incorporate

those effects.

To evaluate the full renormalization group equations (RGEs) with large Yukawa couplings,
and their effect on the running of the Higgs quartic coupling, the Mathematica package
SARAH [47] was used. In Figure 3.7, the number of Yukawa couplings equal to 1.0 were
successively increased at the electroweak scale. The top quark Yukawa coupling and all other
parameters were kept at their Standard Model values. It is clear that this drastically lowers
the scale at which the Higgs quartic coupling becomes negative, pushing it very close to the

electroweak scale.

In the next case considered, the order one Yukawa couplings are imposed at 1 TeV. Figure 3.8

has Yukawa couplings equal to 1.0 and 2.0. As shown in the figures, setting the Yukawa
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case of the Standard Model.

couplings to be order one or greater increases the Higgs quartic coupling at the electroweak

scale. This in turn has the effect of lowering the Higgs mass, as seen in the following section.
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Figure 3.8: RGE running of the Higgs quartic coupling with additional Yukawa couplings
of order one and boundary conditions imposed at the TeV scale. The number of additional
Yukawa couplings is given by n, n = 0 corresponds to the case of the Standard Model. Left,
yukawas equal to 1.0, right 2.0
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Figure 3.9: The effective potential with varying Yukawa couplings. Solid blue line: The
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ters. Dashed lines: The effective potential with RGE-improved values of the Higgs sector
parameters. The orange curve uses y; = 1.0; the green curve uses y; = 2.0.

At the electroweak scale, the parameters of the Higgs potential are p = 89 and A = 0.13.
This allows for a first order phase transition with varying Yukawa couplings at 115 GeV,
and shown by the solid blue line in Figure 3.9. However, this does not take into account the
effects that additional large Yukawa couplings would have on the running of the RGEs and

therefore on the values of the Higgs parameters at that scale.

To account for these effects, the RGEs were run downwards from the TeV scale, with a
successively increased number of large Yukawa couplings. The potential of the two most
extreme cases are shown, where the top Yukawa coupling retains its Standard Model value
but the five additional quark Yukawa couplings are set equal to 1.0 and 2.0, corresponding

to the orange and green curves in Figure 3.9.

The large Yukawa couplings increase the value of the quartic coupling at the electroweak
scale, which in turn lowers both the vev and the temperature at which a phase transition
occurs. For a transition to be considered strongly first order, it must meet the condition that
¢c/T, [48]. In the case of the additional five quark Yukawa couplings equal to 1.0, shown by
the orange curve in Figure 3.9, the quartic coupling increases to 0.27 which lowers the vev
to 137 GeV, leading to a Higgs mass of 95 GeV. In this scenario the critical temperature

decreases to 112 GeV, and ¢../T, decreases to 1.23. In the case of additional Yukawa couplings
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equal to 2.0, shown by the green curve in Figure 3.9: the quartic coupling increases to
0.97, the vev decreases to only 58 GeV, the critical temperature decreases to 52 GeV, with

¢./T. = 1.12. The predicted Higgs mass in this case is also lowered, to 80 GeV.
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Chapter 4

Bubble Nucleation

4.1 Bubble Nucleation in the Case of Varying Yukawa

Couplings

It is possible to have a parameter space where a first order phase transition is expected,
but bubbles fail to nucleate, as shown in [10]. In this section, we will look at the bubble
nucleation dynamics for the case of varying Yukawa couplings using the Python program
CosmoTransitions [49]and see that just satisfying ¢./T. 2 1.0 does not capture the full

picture.

For instance, one can have two potentials, with similar critical temperatures and similar
values of ¢. (so that they both satisfy ¢./T.), but one has a very tall barrier and the other
has a more modest barrier. This barrier height will affect whether bubbles are able to

nucleate or not.

In the toy model presented above with y; = 2.0 and all Yukawa couplings set to yy = 0.02,

bubbles fail to nucleate, even though ¢./T, 2 1.0 is true. However, if we refine the model to
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include the physical masses of the quarks (as opposed to setting yo = 0.02 for all), it does
appear that bubbles can nucleate for certain values of n and y;. This is likely due to the
fact that the potential barrier is lower in the case with physical masses as seen in Fig. 4.1,

allowing the action to reach the required S/T ~ 140 threshold.

0.8

{

Vet x 1078 [GeV]

0.0 =
50 100 150 200 250 300

¢ [GeV]

Figure 4.1: The effective potential at the critical temperature. Blue curve: physical Yukawas;
Orange curve: all Yukawas set to yo = 0.02. The tall barrier in the latter case prevents
bubbles from nucleating.

In Fig 4.2, we can see there is a region of parameter space where a first order phase transition
may be possible if we take bubble nucleation into account, whereas in the toy model with

all Yukawa couplings set to 0.02 bubbles do not nucleate anywhere.

However, there are problems with increasing the Yukawa couplings, besides those noted in
Section 3. The large Yukawas can lead to questionable forms of the effective potential near
the critical temperature due to the large variations in the finite and zero temperature fermion

contributions with increasing values of y;.

As can be seen along the bottom edge of the parameter space, where y; is large it would
appear that bubbles can nucleate; however the form of the potential is undesirable. Ad-
ditionally, CosmoTransitions is not reliable for potentials of this form, so a more nuanced

approach must be taken to determine if bubbles do in fact nucleate in such a region.
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Figure 4.2: Bubble nucleation for various values of n and y;. Red indicates no phase transi-
tion, green indicates first order phase transition.

Along the left edge of parameter space, bubbles are able to nucleate. As can be seen in
Fig. 3.5, varying n does not seem to have much effect on the shape of the effective potential.
Values greater than one merely cause the Yukawa couplings to decrease at a faster rate,
approximating more closely to the Standard Model case where they do not vary at all, so
this is expected. Large values of y; with n = 1, do on the other hand, have a substantial

effect.

The large values of y; seem to make the barrier too large for bubbles to nucleate, so a smaller
1 is needed if this mechanism is to be successful. However, a smaller y; also has the effect

of weakening the phase transition for successful baryogenesis, so a balance must be found.
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Figure 4.3: The full effective potential for different points in parameter space.

4.2 Electroweak Phase Transition with Additional Scalars

In order to vary the Yukawa couplings and implement the Froggatt-Nielsen mechanism, at
least one additional scalar field is necessary. If we consider a case with a single additional
scalar field, the tree-level potential takes the form

2
Toy2 4 52y ZQSZJQ. (4.1)

2
M A
V=-50+39 -50 1]

The masses squared of the Higgs and flavon are given by the eigenvalues of the scalar mass

matrix
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where

0V
2
o= . ‘g(o'q;; 7) = —mg + 3no? + Sk (4.4)
0?V (g, o)
2 _ J _
My, = —8¢80' /i(bO', (4'5>

and the eigenvalues in the mass basis are given by

mj = (mzm) +m2, + \/(m(%qb —m2, )%+ 4m3§0> (4.6)

(miqb +m2, — \/(mid) —m2, )%+ 4m3§0> : (4.7)

2 _
m, =

N = N =

In a potential with an additional scalar, we are interested in what is called a 2-step phase
transition. This means that at high temperatures the potential is in the symmetric phase
with the vev at (0,0), as the temperature decreases to a new local minima along the o
axis at (0,v,). There is a phase transition at this time, and the flavon obtains a vev. As
the temperature decreases further, another deeper minimum develops along the ¢ access at

(vg, 0), and the electroweak phase transition occurs as the field tunnels from (0, v,) — (v, 0).

Since for this case we want our Higgs and flavon vevs to develop in a specific location and

have a specific tree-level potential, the minimum along the ¢ axis will be located at (1/v/X, 0)

and (0, mq/\/1).

The reason that such a phase transition is desirable is that it allows the Yukawa couplings
to change according to the vevs of both scalar fields (the Higgs and the flavon). There are
different types of 2-step phase transitions. In some models it is not necessary for the flavon
to obtain a value of zero for its final vev, for example, in the model described in [50] a final

value equal to v, /5 is desirable.

48



4.2.1 Bubble Nucleation with Additional Scalar

Here, we will follow the two scalar model with varying yukawas proposed in [9]. We assume
the Yukawa couplings are a function of the additional scalar field . The fermion masses were

taken to be of the form

where n is determined by the Froggatt-Nielsen charges of each fermion, and y; is an order
one constant chosen such that the mass function returns the correct physical mass of the

particle at the vev.
We will consider two-step phase transitions, with the vev pattern of (0,0) — (0,v,) — (v, 0).

It was pointed out in [10] that in many scenarios with a two-step phase transition for points
where a first order phase transitions is naively expected, no phase transition occurs because
bubbles fail to nucleate. The main issue is that if a barrier exists down to zero temperature,

the action is then bounded from below and never reaches the required S/T & 140 criterion.

If we look at a cross section of the parameter space studied in [50], we can see that bubbles
only nucleate in a small range of parameters where the barrier height is not too tall. In
Fig. 4.4, CosmoTransitions is run over the parameter space from x = 1073 to 10°° and

n = 10732 to 10744,

To gain some insight into why only a small region is allowed, we plot in Fig. 4.7 individual
effective potentials in the region where bubbles nucleate and in the region where they do not.
Bubbles only nucleate in the area roughly corresponding to potentials with no (or extremely
small) tree-level barrier between the symmetric and broken phase. This in turn implies a

not-too-tall barrier at the critical temperature.
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Figure 4.4: Bubble nucleation for case with varying Yukawas and additional scalar. Purple:
no phase transition; Pink: first order phase transition; black: non viable vacuum structure,
White: bubbles likely do not nucleate, but more precision is needed.

We see that the barrier height at the critical temperature, all the way down to zero temper-
ature, plays a critical role in determining if bubbles nucleate or not. This is seen in Fig. 4.8,
where the region corresponding to a first order phase transition is the region with no tree-
level barrier. The barriers between the symmetric and broken phase increase in height as
we move to the top right of the parameter space, again corresponding to the region where

bubbles fail to nucleate.
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(a) The case with n = 107* and x = 1072. (b) The case with n = 1073467, = 1070-333,
Bubbles do nucleate in this case. Bubbles do not nucleate in this case.

Figure 4.6: Effective potential at the critical temperature.

4.2.2 Effects of Daisy Correction on Bubble Nucleation

The daisy correction is important for effective potential calculations because it is of order

¢, which contributes to first order phase transitions. However, in our cases it did not have

51



2.0

y

00 I I I
0 50 100 150 200 250

R
+(o- \/,;r)2

s

(a) Effective potential at the critical temper-
ature, blue curve nucleates orange does not.

Figure 4.7: Effective and tree level potentials.

curve: n = 1073467 5 = 1070333,

(a) Barrier height at the tree-level.

Vesrx 1078 [Gev*]

A 2
L P P T I
0 50 100 150

P R
200 250 300

¢* +(0-va)

(b) Tree-level potential, blue curve nucleates
orange does not.

Blue curve: n = 107% and x = 1072; Orange

3.0 -
-2.879 -
-2.758 -
-2.636 -
-2.515
-2.394 -
2.273 4
-2.152

2.03 -
-1.909 -
-1.788 -
-1.667 -
-1.545 -
-1.424
-1.303
-1.182
-1.061 -
0.939 -
0.818 -
0.697 -
0.576
0.455 -

Log k

(b) Barrier height at critical temperature.

Figure 4.8: Barrier heights for potentials at their respective critical temperatures and tree-

level. In units of GeV*.

a significant effect whether bubbles nucleated or not.

In the case of the varying Yukawa couplings and no additional scalar described in Section 3,

the larger the value of y; the more drastic the daisy contribution is changed from the Standard

Model case, as can be seen in Fig. 4.9. As mentioned previously, this has the effect of lowering

the critical temperature and hence delaying the phase transition, but it has almost no effect

on the barrier height as can be seen in Fig. 4.10.

While the daisy contribution is affected most significantly when y; is larger, this will not have
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Figure 4.9: Blue: daisy contribution with Standard Model thermal mass; Orange: daisy
contribution with varying Yukawas and y; = 1.0; Green: daisy contribution with varying
Yukawas and y; = 2.0.

a noticeable affect on the nucleation of bubbles because as y; gets larger, so does the barrier
height. Increasing the barrier height in a region where bubbles already cannot nucleate will

only make the situation for bubble nucleation worse.

At smaller values of y; the daisy correction has a smaller contribution to the effective po-
tential compared to the Standard Model case, which only slightly raises the barrier at the
critical temperature. This is likely to only have an effect on the edge cases where bubbles

nucleate or not.

The same is true for the additional scalar case, where the daisy correction does not have a

significant effect on bubble nucleation.
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ing daisy correction. The daisy correction has the effect of lowering the critical temperature
but does not significantly affect the barrier height in either case.
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Chapter 5

Conclusion

Electroweak baryogenesis is an attractive solution to the matter-antimatter asymmetry in
our universe due to both its theoretical feasibility and experimental accessibility. The possi-
bility that electroweak baryogenesis is connected to the flavor problem and the cosmological
implications of that have not been studied to a large extent. However, in the scenarios

studied so far there remain some issues.

Requiring that the electroweak phase transition in the Standard Model be strongly first order
constrains the Higgs mass to be my < 72 GeV. With an observed Higgs mass of 125 GeV, it
is clear that a strongly first order electroweak phase transition requires physics beyond the
Standard Model. A new scenario was proposed in [51, 50, 9] which introduces the idea that

large Yukawa couplings could cause a strongly first order electroweak phase transition.

The Higgs quartic coupling in the Standard Model is positive up to around 10'° GeV, where
the quartic coupling then turns negative, making the Higgs scalar potential unstable. If
additional Yukawa couplings of order one are present before the electroweak phase transi-
tion, the Higgs potential will become unstable at a much lower scale. If the large Yukawa

couplings are present at the TeV scale, the Higgs quartic coupling is driven to be larger at
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the electroweak scale than its Standard Model value. This in turn predicts a lighter Higgs

than the measured value.

In addition to the inconsistency with the observed Higgs mass, there also exist severe con-
straints [52] from cosmology on the proposed scenario with varying Yukawa couplings. All
together, these limitations render this simplest setup with large varying Yukawa couplings

not a viable mechanism for baryogenesis.

More complex models have been proposed, mainly the addition of extra BSM scalars. But
these also have their issues. The main problem is that in much of the parameter space,
there remains a rather large barrier separating the symmetric and broken phase, which stops

bubbles from nucleating and thus the phase transition cannot proceed.

However, it does seem that there is a quantifiable relationship between the barrier height and
the probability of nucleating bubbles, and this will require further investigation. It would be
useful to have a method that is both more robust than the simple ¢./T¢ 2 1.0 criteria, and

yet simpler than running cosmotransitions or performing lattice or Monte Carlo simulations.

It would be interesting to possibly apply some machine learning techniques to this, it is pos-
sible to examine a large section of parameter space using a program like cosmoTransitions
to classify the nature of the phase transition at every point, and compare that informa-
tion with information on the barrier height, width, critical temperature, or a combination
thereof to determine what characteristic has the strongest correlation with each type of phase

transition.

This would be very beneficial because it would introduce a new and simpler way to take into
account bubble nucleation, by simply calculating certain features of the effective potential
instead of running somewhat complicated programs. Since we know that barrier height has
a significant effect on bubble nucleation, this would likely be a fruitful avenue of research

and a simple application of machine learning.
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Other developments in machine learning are also promising, such as in [53] that solves
the differential equations and optimization problems associated with cosmological phase
transitions. This is a promising new avenue of research as it may allow more accurate

solutions to a wide range of problems.
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Appendix A

Renormalization Group Equations

Appendix A shows the renormalization group equations (RGEs) at one loop that are used
in our analysis. The RGEs for the Higgs quartic coupling, and scalar mass at one loop for

the Standard Model [54] are

dX 1

dt 16w (A1)
du B 1 0
dt 16%26“ ’ (A2)

where t = In E/, where E is the running scale. The beta-function coefficients are given by
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9 9/ 3 2
B = 24— ggf)\ — 9g2\ + 3 (%gil + Sg%gé + g;‘) (A.3)

AT (3Y[Y, + 3Y]Ya + VY. )

2T (3] + 300 + (V/Y)?) |

Y = 12+ 20 (VS + 6 (vav ) + 6t (v, (A.4)
9 2 9 2
Eglﬂ 592# .

The gauge couplings for the Standard Model at the one loop level are

= (1) A
dt 167200 (A-5)
where the three 3, functions are expressed as
41
) 3
o = Ly, (6)
19
B = —59 (A7)
Y = —7g3. (A.8)

The RGE'’s for the Yukawa couplings in the Standard Model at one loop are summarized as
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Appendix B

Details of Effective Potential

Calculation

B.1 Zero Temperature 1-Loop Correction

To calculate the zero temperature 1-loop correction to the effective potential, one first starts
with the zero-loop potential, which in this case is simply the classical (tree-level) potential

for a single scalar field as given before
Lo 50, Ay
Vo(¢) = 3m ¢° + Z(b ; (B.1)
with the corresponding lagrangian given by
1w
L= 5(‘3 $0,0 — Vo(9). (B.2)

The zero temperature one-loop correction to this potential is the sum of all of the one

particle irreducible (1PI) diagrams with one loop and zero external momenta as described
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in Section 2.1.

According to the zero temperature Feynman rules, the n-th 1PI diagram will have n prop-
agators, n vertices, and 2n external legs. FEach propagator will contribute a factor of

i/(p®> — m? + ie), resulting in an overall contribution of

Z’n

(p* —m? +i€)"

(B.3)

The external legs contribute ¢** and each vertex contributes —i\/2, where the factor of 1/2
is due to the symmetry of switching the two legs at the vertex. There is an additional overall
factor of 1/2n from the symmetry of the diagrams under Z, and reflection symmetries, as

well as one more overall factor of ¢ from the generating functional.

Integrating over the loop-momenta, the contribution has the form

Vl_lz/ d4p 5 (_Zi/\)n(qbc)%(p?_;;_._k)n (B.4)
Z/ d4p 1 ( - —A§2+ie)>n’ .

We can then use the Taylor series for In(1 + z) to rewrite the integrand as

_ i [ dYp A2
4=3 [ - ) oo
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Next we perform a Wick rotation and where py — ip%, and p* — —p% to obtain

1 [ dYp Az
=3 e [ s o

We then use the shifted mass m2 = m? + $A¢? to rewrite the log term, ignoring terms not

dependent on ¢, to obtain

_ 1 d'p nlp? & m2
Vim g [ gl ), (B3)

which then needs to be renormalized. The renormalized form will then be the zero temper-

ature one-loop correction given in Section 2.1

B.2 Finite Temperature 1-Loop Correction

To calculate the one loop finite-temperature contribution, we follow the same procedure as
the one loop zero-temperature contribution, but the finite-temperature Feynman rules are

used instead. The finite-temperature Feynman rules have the following form:
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Boson propagator:

Loop integral: 3 Z /(2703 (B.10)

Vertex: —ip(2m)’ss & (Z ﬁi) . (B.11)

Following a similar procedure as for the zero-temperature contribution by summing over all

1PI diagrams, we obtain

W ioo [ - AP | (5.12)

2 2
—m
n— p

We then again perform a Wick rotation, taking p? — —p%, and again replacing the mass

with the shifted mass. Considering only the log term, this yields

2 n
In[p* + m? = In {(%) +7+ mg}

= In[w? + w?],

(B.13)

where w,, are the bosonic Matsubara frequencies. (The zero modes of these Matsubara

frequencies, where n = 0 are the source of our later problems leading to the Daisy correction.)
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Summing over the Matsubara frequencies yields

dBp [w 1 8w
Vf—/@;;g {E—l—gln(l—e a1, (B.14)

where the first term in the brackets corresponds to the 1-loop zero temperature contribution
we obtained previously. Assuming spherical symmetry and replacing w with /p? + m? we

are now left with

1 2 =B/ p*+m?
om0 /dp p°In (1 e ) . (B.15)

Making a final substitution of x — S p and dx — [ dp we obtain

o0

1 /232
—/d:v:v21n [1 — e VEHEm (B.16)
o2

0

The integral here represents the thermal bosonic function, Jg[m?3?] as given in eq. 2.11.
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Appendix C

The Daisy Correction

As mentioned in Section 2.1, the Daisy contribution is important because it is of order ¢?,
which is the term in the effective potential that can give rise to a first order phase transition.
Infrared divergences in the Matsubara zero modes (when n = 0) must be summed over
to obtain the correct contribution. Starting with the form for the full finite temperature

correction as given in [55]

a’ - 2, =2 21\ VY
Vo3 3 [ w bt e, (e

where II is the thermal mass of the boson calculated from the two-point function. We rewrite

the second sum as a natural log, which then becomes
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where m is again the shifted mass m? — m? + %(bz

Re-writting the log term, we see that we obtain

log (w2 + p? +m? +1I) — In (w2 + p* + m?). (C.3)

Here we can see that the second term is actually the same as the 1-loop contribution, so we

have recovered the 1-loop contribution while calculating the daisy contribution.

From the one-loop calculation we know that

T d3 1

and we can rewrite the right hand side as

1 2 2 2 92
W (JB((m +10)3%) — Jp(m™j )) . (C.5)

Substituting in the high temperature approximations for the thermal bosonic function we

obtain finally

VD aisy —

Tz ((m(@) + TUT)? = m?(¢)) ,
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which is our daisy contribution.
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