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Abstract

Virtualized environments to analyze cyber-physical attacks and defenses

by

Luis Salazar

The ever-increasing ubiquity of cyber-physical systems is creating an attractive

target for developing malware and cyber attacks. From consumer-grade IoT de-

vices like drones to specialized industrial equipment in critical infrastructure,

many new and varied attacks and malware emerge to afflict these systems, impact-

ing the physical environment and processes handled by the devices. A fundamental

part of protecting a system against malware and cyber attacks involves under-

standing the nature of the attack to devise an effective countermeasure. However,

due to the nature of some of these systems, a comprehensive analysis might be

unfeasible or outright dangerous. To overcome this limitation, we propose using a

virtualized scenario, emulating the system’s behavior, more specifically the phys-

ical and networking behavior, to dynamically analyze cyber-attacks and malware

without compromising the physical integrity of the systems and their environ-

ment. We first test the feasibility of this idea by simulating cyber-attacks against

a virtual quadcopter drone before testing the attacks on its physical counterpart

once the attacks are deemed "safe" for the user and the drone. Then, we emulate

an industrial process using software-defined networks to evaluate the feasibility

of implementing defense mechanisms against attacks with some features provided

by software-defined networks. Finally, we combine the virtualization of cyber-

physical systems and the use of software-defined networks to simulate a power

grid system to dynamically analyze the behavior of an actual malware known as

"Win32.Industroyer" by infecting a virtual machine in an isolated virtual environ-

ment. Our ultimate goal is to refine a framework to allow researchers to safely
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simulate cyber-physical systems to test attacks, defenses, and malware against a

virtual avatar of the existing system.
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Chapter 1

Introduction

Cyber-physical systems, interconnected by a data network and interacting with

the physical world, are becoming more widespread, making them an appealing

target for cyberattacks and malware. These attacks can affect various devices,

from consumer-grade IoT devices like drones to specialized industrial equipment.

As a result, an increasing number of attacks and malware varieties are being

developed to target these systems, causing damage to the physical environment

and processes that the devices handle.

It is essential to understand the potential threats affecting different systems to

ensure their protection. However, there are situations where it is not feasible or

safe to conduct attack scenarios due to the dangerous consequences of a successful

attack, such as hazardous conditions or significant financial loss. For instance, a

successful cyberattack against industrial processes can result in life-threatening

situations, depending on the physical process. Another example is that, against

drone systems, a successful compromise of the underlying system can pose a risk

of injury to bystanders.

This plight has become increasingly dangerous among systems that provide

essential services to society, part of our civilization’s critical infrastructure. These
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attacks are threatening enough when carried out by motivated individuals, such

as the Maroochy Shire attack by a disgruntled former employee [9]. Even more

so when governments sponsor nation-state actors to potentially coordinate cyber

attacks with military operations, such as the multiple Russian operations against

Ukraine targeting the power grid and heating systems [34, 44, 8, 11, 12, 21].

These threats beg the question of how you should study these attacks and

malware without affecting the systems you intend to protect. Some of these

systems are critical, and a recovery process from a catastrophic failure, such as a

power grid black-start [40], can delay the operation for days. In other cases, tests

against cyber-physical systems can expose bystanders to injury, for instance, if a

successful attack against a drone forces it to plummet to the ground. Therefore,

we thought of using virtualized systems to safely test such dangerous or unfeasible

scenarios.

This research aims to develop a comprehensive framework to emulate a cyber-

physical system’s physical and networking elements. It will provide a virtual-

ized environment that enables researchers to conduct detailed analyses of existing

threats and test various attack and defense mechanisms. The framework will al-

low for precise simulations of complex scenarios, providing valuable insights into

the vulnerabilities and strengths of cyber-physical systems. By facilitating a safer

and more efficient testing environment, this research will play a critical role in

enhancing the security and resilience of these systems against cyber attacks.

To ensure the feasibility of our new solution, we devised a plan to assess

the overall idea. First, we intend to use existing simulations to develop attacks

on a system from a virtualized environment. This is an effective way to test

how the system will respond to potential attacks and the fidelity of the available

simulation. Once we develop the attack, we will test it in the physical device,
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within a controlled environment, to check for any vulnerabilities. Our focus will

be on Autonomous Vehicles (AVs), as several different simulators are available for

various AVs.

After determining whether the idea is feasible, we assess a crucial component

essential to our solution: Software-Defined Networks (SDN). We intend to utilize

the adaptable nature of SDN as part of the virtualization framework to simulate

the networking behavior of the cyber-physical systems within the framework. We

want to determine if SDN features are suitable enough to simulate a cyber-physical

system and test a reasonable countermeasure that leverages this component. Hav-

ing done that, we now have the two primary components of a cyber-physical sys-

tem in a virtual surrogate: the physical simulation and the networking component.

However, these components rely on existing simulators. Ideally, a comprehensive

framework must be extensible and allow custom simulations.

The next step is to identify the requirements for the framework and develop

a solution that meets those requirements. To define the criteria, we consider a

threat against a sophisticated cyber-physical system where testing is not feasible.

To illustrate this, we will focus on the power grid, a prime target for cyber-attacks

and strategically important in international conflicts, thus considered a critical in-

frastructure. Moreover, real-world examples of nation-state cyber attacks against

a power grid exist. Our intuition is that if the solution can adapt to this intricate

scenario, it suffices as a reasonable solution to conduct security research on other

less elaborate cyber-physical systems.

Once we have a solid framework in place, we continue to enhance it with the

goal of outsmarting both malware and human attackers. We add extra features

to create a hybrid-interaction honeypot, which simulates interaction with a non-

existent physical system, making the attacker believe they are engaging with a

3



real process.

1.1 Outline of the Dissertation

In this section, we present the outline of this dissertation and a summary of

each chapter. We begin the dissertation by introducing some fundamental con-

cepts useful to understanding and establishing a context for the remainder of the

document in chapter 2. We then present related efforts considering the main ap-

proaches of our study in chapter 3. In chapter 4, we clarify the particular research

problem we are interested in, formulate the scope, and explain the methodology

and research questions. In chapters 5 to 9, we endeavor to answer our research

questions by delivering the results from our attack simulations, software-defined

network evaluation, framework design, malware study, and framework enhance-

ments.

Chapter 1: Introduction - Cyber-Physical Systems security challenges. In

this chapter, we present the primary motivation of the study, showcasing the

unique challenges these systems have and how using virtualized surrogates can

aid researchers in this endeavor. We define various approaches to illustrate the

advantages of virtualized systems.

Chapter 2: Background - We provide fundamental information relevant to the

context of the various approaches we take to develop the virtualization framework.

We delve into details of autonomous vehicles, software-defined networks, and the

power grid.

Chapter 3: Related work. We first indicate the primary research trends we

will focus on for the remainder of the study, showcasing relevant efforts driv-

ing these topics. We start by presenting various works related to threats against

autonomous vehicles, followed by various security solutions for cyber-physical sys-
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tems, and ending with different power grid simulations and models.

Chapter 4: Proposed Work - Defining our research scope, methodologies, and

threat model for the research questions. In this chapter, we want to construct

a systematic way to address the various virtualizations in accordance with spe-

cific assumptions regarding the attacker and define minimal requirements for our

simulated environments.

Chapter 5: We showcase the experiments and results regarding our efforts to

use virtualized versions of a drone to test different attacks, comparing the results

between the virtualized version and the actual drone, showcasing the feasibility of

using a virtualized surrogate as a viable replacement of a cyber-physical system.

Chapter 6: We showcase the experiments and results regarding our efforts to

showcase how the various features of software-defined networks can be fundamen-

tal tools in security research. To accomplish this, we test a defense mechanism

and evaluate its performance in a virtualized environment.

Chapter 7: We showcase the design of our simulation framework. From the

design challenges to the requirements, we present our considerations when design-

ing the virtualization framework. We aim to use this tool to study a real-world

malware sample in a contained, virtualized environment.

Chapter 8: We showcase the results of our study regarding the infamous mal-

ware Industroyer. We analyze both iterations of the malware using our simulation

framework, observing the behavior of each malicious payload to gain previously

unknown insights about the artifacts.

Chapter 9: We demonstrate viable ways to enhance the framework for diverg-

ing lines of research, showcasing its flexibility and extensibility. We add honeypot

functionalities to our framework, increasing the veracity of the simulation.
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Chapter 2

Background

This chapter presents some introductory information regarding the primary

topics and key concepts we will address to further the reader’s understanding:

Autonomous vehicles, software-defined networks, and a brief description of the

power grid.

2.1 Autonomous vehicles

Autonomous Vehicles (AVs), including aerial, ground, and sea vehicles, are

becoming integral to our lives. Unmanned aerial vehicles are projected to be the

most popular kind of AV with a projected 11.2 billion dollar global market by

2020 [55] and with applications ranging from agricultural management to aerial

mapping and freight transportation [28].

AVs have a variety of sensors at their disposal to interact with the physical en-

vironment, ranging from cameras to GPS and Inertial Measurement Units (IMU).

An IMU is a standard component in AVs and includes accelerometers, gyroscopes,

and magnetometers. Accelerometers measure a vehicle’s acceleration, gyroscopes

measure a vehicle’s angular velocity, and magnetometers act like a compass for
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the vehicle. A typical configuration includes one accelerometer, gyroscope, and

magnetometer per vehicle axis. The three axes are pitch (rotating a vehicle up-

wards or downwards), roll (rotating the vehicle sideways), and yaw (rotating the

orientation of the vehicle). In addition to IMUs, AVs typically use sensors like

GPS receivers for location information, RADARs, LiDARs, or ultrasonic sensors

to detect nearby obstacles and cameras.

The vehicle’s autopilot processes all this sensor information to complete a mis-

sion. In a simulated environment, the simulator takes the position of the sensors

and actuators, reflecting any changes within a simulated scenario. To exchange

sensor information and rotor output, the autopilot and the simulator send and

receive messages encapsulated within the MAVLink network protocol [50]. The

simulator sends messages with the sensor data (GPS, accelerometer, gyroscope,

magnetometer, etc.); the autopilot sends the actuator control messages.

The MAVLink protocol defines messages encapsulated in variable-length pack-

ets sent through a TCP connection or UDP data frames (figure 2.1). The packet

starter field determines the protocol version. The flags fields are only available

in version 2.0. The message ID is 1 byte for versions 0.9 and 1.0 and 3 bytes for

version 2.0. The signature is only available in version 2.0 and is optional. The

particular autopilot we used employs a TCP connection to communicate with the

ground controller and a UDP data stream to handle internal communications.

2.2 Software-Defined Networks

In the traditional networking switch architecture, the various functions that a

device must fulfill are segregated into three main categories represented as layers or

planes: management, control, and data. Peer communications occur in the same

plane, whereas cross-category communications occur between planes. Figure 2.2
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1 byte :: Packet starter
1 byte :: Payload length
1 byte :: Incompatibility flags
1 byte :: Compatibility flags
1 byte :: Sequence number
1 byte :: System ID
1 byte :: Component ID
1|3 bytes :: Message ID

2 bytes :: Checksum (X.25 CRC)
0-13 bytes :: Signature (optional)

0-255 bytes :: Payload

Figure 2.1: MAVLink protocol frame format.

illustrates the most common interactions between these categories.

Data plane
Forwarding table

Control plane

Management plane

Unknown packets

Control packets

Statistics,

Status

Configuration

Program forwarding table

Policy

Centralized controller

Figure 2.2: SDN centralized controller planes.

The main idea behind SDN is to move all the software involving the decision-

making process out of the network switches and into a centralized system to

optimize decisions based on a complete overview of the managed network and not

just a single device. Ultimately, SDN leaves the forwarding responsibilities to the
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device and centralizes the decision-making responsibilities within a controller.

In most scenarios, most packets handled by an SDN switch involve the data

plane, which manages packet buffering, scheduling, and forwarding. Suppose the

forwarding table has not recorded the header information of any given packet, or

the received packet is a control packet. In that case, these packets are delivered to

the control plane to obtain the corresponding table entry. The remaining features

involve the interaction between the switch and the administrator, handled by the

management plane. In short, the data plane handles the raw data to be forwarded

by the device, and the intelligence regarding the decision-making process is carried

out by the control plane based on the configuration made by the administrator

through the management plane.

2.2.1 Southbound API

Since a remote controller takes care of the decision-making process, there has

to be a mechanism with which the network switches communicate with said con-

troller. This communications channel is the southbound API, which handles the

messages between the controller and the SDN devices to configure the network.

The Open Networking Foundation developed OpenFlow as its standard south-

bound API and is supported by several manufacturers such as Cisco, Juniper,

Huawei, Brocade, IBM, Dell, and HP.

In addition to developing OpenFlow, the Open Networking Foundation pub-

lished the OpenFlow switch specification [15], describing the actual requirements

that a logical SDN switch must have to properly support OpenFlow as a south-

bound API. These requirements include the support of OpenFlow as the commu-

nications protocol between the switch and controller and include the main compo-

nents of an OpenFlow-compliant Switch. The main components of an OpenFlow
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logical switch can be summarized in a set of flow tables, a group table, and a set

of OpenFlow channels with the controller.

By using OpenFlow as a southbound API, the controller can add, delete, or

update flow entries within the tables in a logical device, both in a predefined

manner or dynamically, in response to particular conditions in the packets.

A flow table is a set of flow entries at a high level. Each entry comprises match

fields and a set of instructions or actions to carry out for each matching packet.

This matching is carried out in priority order, starting from the first table within

the switch and checking each subsequent table for a matching entry, taking into

account the actual priority of every entry. If there is a matching entry, the switch

follows the instructions associated with that entry; if there is no one, the switch

follows the instructions configured in the “table-miss” entry.

A critical characteristic of a flow entry involves the actions the switch will carry

out for every matching packet (e.g., output port = x). However, the OpenFlow

specification states that this action set can only contain one action of each type.

This restriction means that if the administrator wants to execute the same action

type several times with different parameters for the exact matching packet, one

entry is insufficient, which poses a problem since only the first matching entry will

be executed, excluding any further actions contained in additional matching flow

entries with lower priority.

To address this restriction, the OpenFlow specification defines the group table

comprising group entries. Figure 2.3 depicts the main idea behind group tables.

Every group entry contains an ordered list of action buckets, where each action

bucket is essentially an action set of a regular flow entry. This feature enables an

administrator to execute multiple action sets for a matching packet. By stating

a specific group as the action within the action set of a flow entry, the matching

10



packet will be processed with the actions described in the action buckets of the

corresponding group entry.

output port = x
output port = y

...
group = c

...
output port = z

Flow table i identifier
type

counters
buckets

output port = x

output port = y

Group entry c

w
x
y
z

ports

Match

Incoming packet

Matches flow entry
for group c in table i

Figure 2.3: An example of a group table action.

Figure 2.3 shows an example of a group table action as part of a flow table

entry. An incoming packet that matches the entry on the flow table i that has

an action set including the group c will instruct the switch to find the c entry

within its group table and execute the actions defined in the buckets of the group

entry, which allows the execution of multiple actions of the same type for a single

matching packet.

2.2.2 Northbound API

In addition to having switches communicating with the controller, we need

a way to let network applications reach the controller. The main idea behind

the northbound API is to provide a mechanism with which an application can

communicate with the controller to manage the network. The rationale behind this
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idea is that an application might handle a different set of information regarding

the process implemented on top of a network that might not be directly related to

network packets (e.g., sensor data, business analytics, market behavior, natural

phenomena). With such information, different network decisions might be more

effective toward the objective of the process, whatever it might be.

Due to the potential diversity of such applications and the fact that they

might not be implemented within the controller, the latter must provide different

mechanisms to fulfill such requirements. That is where the northbound API comes

into play.

Different controllers implement different types of northbound APIs. However,

most controllers show a trend in how they implement these APIs. For the most

part, controllers implement at least two different APIs that achieve the same

goals. The main API provides extensions in the same programming language

used to build the controller (i.e., Python API, Java API).

However, controller developers usually implement a secondary API, which pro-

vides an external communications channel between an application and the con-

troller via some specific protocol. The northbound API is traditionally imple-

mented by providing a REST API for this communications channel.

2.2.3 The SDN controller

The SDN controller is the centralized system that makes all the forwarding

decisions in an SDN. It is this system that becomes crucial in any SDN imple-

mentation. There are several controllers, some of which are suitable for quick

prototypes, while others are fully developed commercial-grade controllers.

Currently, the two most popular open-source SDN controllers are OpenDay-

light and ONOS. The Open-Source Foundation supports the former, while the
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Open Networking Foundation supports the latter. While both controllers are

Java-based and provide several desirable features, the same organization that de-

fines the OpenFlow standard specifications maintains ONOS, which guarantees

seamless compatibility with the protocol. This difference becomes evident in the

performance variations between the two controllers. While both controllers are

comparable, ONOS has been proven to outperform OpenDaylight[63]. For these

reasons, we have decided to implement our solution in ONOS.

2.3 The power grid

The primary purpose of a power grid is to supply the energy that users demand.

However, because storing energy in high amounts is not feasible, any generated

power must be consumed while it is being generated. Therefore, power grids

demand coordination between supervision and control, where Supervisory Control

and Data Acquisition (SCADA) systems fulfill an essential role, making them the

primary target for an attack.

A complete power grid comprises generation, transmission, and distribution.

In generation are the power plants and the substations that increase the voltage

to the transmission level. In transmission, there are mainly the power lines and

intermediate substations that help keep the voltage level during the long journey to

the consumer. Finally, the distribution systems are the substations that decrease

the voltage to consumption level and distribute the electricity between end-users.

The SCADA system supervises and controls the power grid’s operation within

acceptable levels for the elements in the power grid. However, power grid operation

is still complex and requires human decision-making in contingency cases. SCADA

are systems whose inputs on one side are measurements (e.g., voltage, amperage,

and breaker positions) and output the operation state of the system. On the
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Figure 2.4: Power Grid Components

other hand, inputs are commands that produce topology change actions over the

system.

Many critical infrastructures, such as power systems, have existed for over a

century; however, it is only in the past two decades that remote monitoring and

control of these systems migrated from serial communications to IP-compatible

networks, supporting various industrial control protocols such as IEC 60870-5-

104 (IEC 104), DNP 3.0, Modbus/TCP, ICCP, and IEC 61850. Some protocols

focus on substation automation (IEC 61850), others on communications between

control centers (ICCP), and others on remote monitoring and control of large-scale

systems (IEC 104 or DNP 3.0).

An RTU is an electronic device that interfaces the power grid with the SCADA.

These devices collect the measurements in the substations and report them to the

SCADA system using one of the remote monitoring and control communication

protocols. Aside from that, they execute the commands received from the SCADA.

All the communication between SCADA and RTU is carried out in compliance
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with several standards. Among them is the standard IEC 60870-5-104.

2.3.1 IEC 60870-5-104 (IEC 104)

One of the most recent cyberattacks against power grid systems occurred in

2016 in Ukraine, where attackers issued control commands via the IEC 104 pro-

tocol to cause a power outage that affected more than 200,000 consumers [44].

The International Electrotechnical Commission (IEC) originally developed IEC

104 in 1995, and its original version is IEC 60870-5-101 (IEC 101). Then, in 2000,

it was extended to IEC 104. It is widely used in Europe and Asia to monitor

and control large geographical areas. IEC 104 encapsulates telecontrol messages

into Application Protocol Data Units (APDUs) over TCP/IP using port 2404, as

shown in figure 2.5.

Start byte (0x68)
Length - 1 byte
Control field - 4 bytes

APCI

ASDU type - 1 byte
Variable structure qualifier - 1 byte
Originator address - 2 bytes
Common address - 2 bytes
Information Objects - Variable length

ASDU

APDU

Figure 2.5: IEC 60870-5-104 frame.

The contents of this TCP payload have one or more APDUs. The Application

Protocol Control Information (APCI) is the first part of an APDU, which acts as

the message’s header. The Application Service Data Unit (ASDU) is the second
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part. It carries the sensor values and control messages between the controlled sta-

tion (e.g., Remote Terminal Unit (RTU)) and the controller station (e.g., SCADA

systems).

There are three types of APDUs:

I-Format APDUs carry sensor and control data between endpoints.

S-Format APDUs acknowledge after a specific (but configurable) number of

I-format APDUs received.

U-Format APDUs provide three connection control functions: start trans-

mission (STARTDT act/con), stop transmission (STOPDT act/con) and keepalive

connection request (TESTFR act/con).

An ASDU is an I-Format APDU that is comprised of a data unit identifier

(DUI) and an information object (IO), as shown in figure 2.5. DUIs always main-

tain the same structure for all types of ASDUs, while the structures of IOs vary

for different ASDUs. DUIs involve “what” kind of data or command is being sent

(type ID) and “why” it was sent (cause of transmission). Each IO corresponds

with a specific field device, and the device has a unique ID known as the Informa-

tion Object Address (IOA). IOs encapsulate the actual measurement data values

or control commands within their IOAs.

2.3.2 Manufacturing Message Specification (MMS)

Manufacturing Message Specification (MMS) is a Transmission Control Pro-

tocol (TCP) in the IEC 61850 stack that supports real-time process data and

supervisory control information between network devices and computer applica-

tions. MMS supports communication between client and server devices to monitor
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and control the different objects. The client can be a system or a monitoring de-

vice, and the server represents the objects accessed by the client. These objects

are shielded in a Virtual Manufacturing Device (VMD), which includes domains

and variables to execute operations such as read, write, event signaling, etc. The

MMS protocol delivers information from the substation Bay Level to the Sta-

tion Level, exchanging data of the Logical Nodes and their components. That

information varies depending on each logical node, primarily used to send data

to higher-level devices such as RTUs and SCADA systems, predominantly used

inside a substation.

Communication in MMS (broadly IEC 61850) is modeled as object-oriented

classes and methods. Every physical device in the network can be accessed using

its network address. Logical Devices (LDs), such as bay control, protection relay,

breaker IED, etc., are associated with the physical device. It comprises several

Logical Nodes (LNs) that define different functionalities of the actual devices.

Examples of Logical nodes are Measurement (MMXU), which provides voltage

and current per phase, Control Switch (CSWI), Breaker Switch (XSWI), Circuit

Breaker (XCBR), etc. The properties of every logical node are defined using the

functional constraints (FCs), data objects (DOs), and data attributes (DAs). This

data is mapped onto the TCP/IP protocol, allowing the client to access the server

through an IP address to read/write data and exchange files.
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Chapter 3

Related work

Our work is related to several lines of research. For our first approach and fea-

sibility study of the simulation, our work intersects with existing attacks against

autonomous vehicles. There are also various defense mechanisms involving cyber-

physical systems, potentially allowing us to mimic or incorporate them in a

software-defined network. Finally, our ultimate objective of building a convinc-

ing simulation to analyze sophisticated malware involves existing simulations and

models.

3.1 Threats against autonomous vehicles

Most autonomous vehicles trust all sensor data to make navigation and other

control decisions. In addition, they trust that the control command given to ac-

tuators is executed faithfully. While the trusted sensor and actuator data without

any form of validation have proven to be an effective trade-off in current market

solutions, it is not a sustainable practice as AVs become more pervasive and sensor

attacks mature in their sophistication.

There are two main threats to autonomous vehicle sensors: GPS spoofing and
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transduction attacks. GPS spoofing attacks have happened in real-world systems.

For example, several instances of GPS spoofing attacks affecting the navigation of

more than 24 vessels in the Black Sea have been reported [70] (and experts believe

these GPS attacks are anti-drone measures). Moreover, while there is skepticism

to believe the claims that Iran spoofed a military-grade GPS to capture a U.S.

Unmanned Aerial Vehicle [52], launching the same takeover attack on commercial

GPS systems is relatively easy [29, 26, 65].

Another set of attacks against autonomous vehicles (and any cyber-physical

device) is transduction attacks. Sensors are transducers that translate a physical

signal into an electrical one. Still, these sensors sometimes have a coupling between

the property they want to measure and another analog signal the attacker can

manipulate. For instance, sound waves can affect accelerometers and compel them

to report incorrect movement values [66], and radio waves can trick pacemakers

into disabling pacing shocks [31]. These attacks are effective on drones by using

sound to affect gyroscopes [61] or lasers to affect camera sensors [10].

Classical security mechanisms, such as software security, memory protection,

authentication, or cryptography, are not enough to protect these cyber-physical

systems, as transduction attacks represent a new class of attacks that classical

software security does not effectively handle [18]. To identify these latest attacks,

there is a growing interest in Physics-Based Attack Detection (PBAD) [20].

PBAD consists of two steps. The first step extracts the system’s physical

invariants to create a model to predict future sensor measurements. One of the

most popular models of physical invariants is called a Linear Dynamic State-Space

Model (LDS) [67]. The second step for PBAD is an online anomaly detection al-

gorithm that compares predictions with observed states and warns the operator

when the accumulated discrepancy between predicted and observed states exceeds
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a threshold. PBAD has been studied in water control systems [24], state estima-

tion in the power grid [37], boilers in power plants [69], chemical processes [5, 7],

and a variety of other cyber-physical systems [20].

3.2 Security solutions for cyber-physical systems

As far as we could identify, the most prominent defense mechanism for cyber-

physical systems in the current literature is honeypots. To gather information

about novel threats to ICS, honeypots can be used to identify new attack pat-

terns to help us prepare better countermeasures. The design of general-purpose

ICS honeypots has many challenges, including the diversity of vendors, industrial

protocols, physical processes, control devices, and functionalities. Previous work

has faced challenges when trying to replicate the diversity of these systems while

ensuring a high-fidelity environment.

The application of honeypots in CPS is a growing area of research. Irvene et

al. present an example of a honeypot for a robotic vehicle [27], where they fool

an attacker into believing that a given attack was successful by simulating unsafe

actions within a honeypot environment of the protected robotic system. For ICS,

Rubio et al. [53] present, among other intrusion detection solutions, a commercial

use case of a honeypot solution developed for acquiring and analyzing information

related to a threat or attack against an ICS. Another relevant example developed

under the Honeynet project is Conpot1: a low interactive server-side ICS honey-

pot that provides a range of typical industrial control protocols. While Conpot

presents examples of industrial systems to attackers, a sophisticated attacker can

identify the honeypot by observing that the system does not satisfy the tradi-

tional physical properties of devices in a typical industrial setting. To further
1http://conpot.org
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enhance the realism of the simulated system, Litchfield et al. present HoneyPhy,

a honeypot that models the physics of the devices (e.g., delays) [36].

In addition to honeypots, our work is related to SDN applied to CPS. Skowyra

et al. [58] showed how a verifiably safe SDN can be implemented as part of a CPS.

With the versatility of such networks, new ideas emerge involving this concept of

programmable networks as part of a CPS and, more precisely, as part of an ICS.

Antonioli et al. developed MiniCPS, a research tool that leverages the flexibility

of SDN to present a framework with which any researcher can simulate an entire

ICS network corresponding to a physical model of a known system [4].

3.3 Power grid simulations and models

Malware analysis is more effective if it can be deployed in a sandbox that rep-

resents a realistic environment where it is intended to be deployed. A securely

isolated virtual machine is sufficient to understand general malware affecting sys-

tem resources. However, we must emulate or simulate new equipment and in-

dustrial protocols to interact with the malware. A cost-effective solution is to

use a simulated environment replicating the conditions of such critical infrastruc-

tures, allowing us to observe both the malware’s digital behavior and the attack’s

physical repercussions.

Some simulation software frameworks, such as Mosaik [56], simulate various

scenarios in large-scale smart grids. According to the smart grid network topol-

ogy, its core function is to create a communication framework among the network

endpoints. With this communication framework, all the components, including

the control centers and Remote Terminal Unit (RTU), can exchange the control

commands and the measurement data in the corresponding physical control sys-

tem events. Mosaik configures TCP socket connections for the simulated power
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grid components to connect to Mosaik modules. However, it does not emulate

the configurations in the network layers of the OSI model. Thus, users have no

settings for specifying industrial protocols and other network configurations. As a

co-simulation framework, Mosaik requires other established simulators (e.g., Mat-

lab Simulink) to model the smart grid components. It provides APIs to connect

to the external power grid simulator to access these models.

We evaluated some existing power grid testbeds to determine whether they

would be a suitable starting point for our purposes (Table 3.1). We examined

whether the system provides an appropriate device and network components sim-

ulation, is fully open-source, easily extensible, and supports all the protocols typ-

ically used in power grid systems.

Table 3.1: Power grid / Smart Grid testbeds.

[41] [6] [39] [42] [54] [25] [57] [1] [23]
Physical simulation    # #  # #  
SITL / HITL  #        
Network simulation       #   
Proprietary modules          
Industrial protocols 0/4 0/4 0/4 2/4 2/4 2/4 1/4 1/4 1/4

#: Not supported  : Supported

While searching for different testbeds and simulators, we noticed that the ones

with an accurate power grid model lacked the capabilities to support the required

network protocols (in particular, none supported IEC-101 and IEC-104), and those

with accurate network simulations lacked a reliable physical model. Most of them

have some external component, such as a system-in-the-loop (SITL) or hardware-

in-the-loop (HITL), making it difficult to replicate or use proprietary modules that

prevent it from being easily extensible, as its original goal constraints the design.

HITL testbeds aim to test and refine a system by adding hardware components
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that reflect the changes in the physical system. In contrast, SITL testbeds add an

existing system to simulated real-time devices to test and refine these simulations.

These environments rely on proprietary software or hardware, limiting their

extensibility and openness. In addition, none of them support all the devices or

the industrial protocols we need in our study.
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Chapter 4

Proposed work

4.1 Problem statement

Exploring cybersecurity within Cyber-Physical Systems (CPS) presents an ex-

citing and crucial challenge. Integrating computational elements with physical

processes in CPS creates unique difficulties, making safe and controlled research

impractical. Given the vital role of CPS in critical infrastructure like power grids,

any experimentation carries significant risks. To develop secure and resilient sys-

tems, we need innovative research frameworks that accurately simulate these com-

plex systems without compromising their integrity or safety.

4.2 Scope

In this dissertation, we propose establishing a methodology to develop accurate

virtual representations of cyber-physical systems to test or analyze malware and

cyberattacks against such systems safely.

The roadmap to develop such a methodology starts by evaluating the feasibility

of properly executing attacks against a commercial drone device’s existing virtu-
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alized development framework. Once the attacks have been tested and deemed

reasonably safe, we proceed to test the same attacks on the physical counterpart,

the commercial drone. For an attack to be deemed “safe”, the scenario in which

it is executed must not endanger any bystanders or the drone itself. Moreover,

the attacks must only affect the drone without inadvertently compromising any

nearby cyber-physical device.

After testing the feasibility of virtualizing attacks, we evaluate the possibility

of using dynamic virtualized elements in a network to determine the effectiveness

of new defenses against known attacks directed at cyber-physical infrastructures.

Once again, we use existing virtualized technologies to implement the new defense

mechanisms to test these ideas.

In conclusion to the feasibility of implementing attacks and defenses in a vir-

tualized environment, we propose developing a modular emulation framework ca-

pable of reproducing the physical characteristics of a power grid to analyze the

behavior of malware, specifically Win32/Industroyer and its newer variant In-

dustroyer2. As this malware interacts with the target system using specialized

protocols, and no viable virtualized system to date can effectively interact with

such malware, we develop our emulation framework compliant with the necessary

industry standards.

We identified the following criteria for our solution:

Isolation: It must be isolated from any other network.

Secure-coupling: We must be able to integrate a machine infected with mal-

ware.

Network tracking: A network traffic capture is essential to understand how the

malware interacts with its targets.
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Flexibility: It must support various industrial control protocols. In this specific

instance, power grid protocols for remote substation control and substation

automation.

Physical simulation: It must simulate changes in a physical process.

Customizable: The simulation scenarios must be configurable.

Extensible: It must support future scenarios with different processes.

Once the framework is effective against a real threat, we will test its exten-

sibility by adding additional features to provide new functionalities that are not

necessarily required to interact with the malware but aid in convincing an attacker

that they are interacting with a real system. Honeypot functionalities.

4.3 Threat model

In all of the evaluated scenarios, there is going to be a consistent threat actor

for each case. In every scenario, the attacker has already partially compromised

the network, allowing them to communicate with the target device. That is, the

attacker already has a foothold within the network with the necessary privileges to

communicate with the target. In the case of the autonomous vehicle, this means

access to the wireless network used to communicate with its autopilot. In the

remaining cases, a workstation within the monitoring network is assumed to be

compromised.

Moreover, we assume the attacker has detailed knowledge of the target system.

In the case of autonomous vehicles, they know the details of the vehicle’s sensors,

actuators, models, and autopilot. In the other cases, they know the target IP
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addresses, device identifications, where applicable, and target object identification,

where applicable.

While this threat may seem somewhat overestimated at first glance, this is

where the capabilities the attackers had during the cyberattacks against Ukraine’s

power grid. Thus, we are accommodating our threat model to observe the same

attacker.

4.4 Research questions

Following the previously mentioned scope, we intend to answer the following

research questions:

• Is it possible to seamlessly replicate an attack for a cyber-physical system

in a virtualized environment?

• Do the simulated consequences represent a reasonable abstraction of the real

world?

• Can a newly devised cyberattack be tested before safely replicating it against

a physical device?

• Can virtualized systems aid in the defense of a targeted system?

• Is it possible to implement a virtual defense mechanism that would remain

undetected?

• How feasible is it to develop a realistic virtualized environment to replicate

complex industrial control systems?

• Is it possible to safely interact with real malware under strictly contained

virtualized scenarios?
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Chapter 5

Simulating and testing attacks on

drones

Like many cyber-physical systems, drones inherently trust the information pro-

vided by their sensors. Furthermore, drones managed by a ground controller also

trust the messages sent by this device. This trust is primarily attributed to these

systems’ real-time constraints, limiting the robustness of any security mechanisms

the device may have. This trust and the limited computational resources make

drones a prime attack target.

To design and test a defense mechanism against drone attacks, and any cyber-

physical system for that matter, accurately simulating a replica of the device and

its physical environment provides a way to refine any new implementation without

jeopardizing the device.

5.1 Environment description

We conducted all the tests against an Intel Aero Drone hardware running a

Dronecore PX4 flight controller. We used the jMAVSim simulator as a drone
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replica and a standalone PX4 autopilot as the flight controller to simulate the

drone. The drone and the simulator use the MAVLink protocol to communicate

with a ground controller. The user can program a flight mission on the drone

employing the ground controller. However, while the drone is flying, the user

can alter the drone’s behavior either with a remote radio controller or by sending

specific commands through the ground controller.

A middleware layer and a flight stack comprise the drone’s PX4 autopilot

firmware (figure 5.1a). The middleware layer communicates with all the device

sensors and publishes this information on a message bus [48]. The flight stack

then uses this information to estimate and evaluate the commands it needs to

send to the actuators.

Middleware

Sensors

Flight Stack

Estimators Controllers

Mixers

PX4 Autopilot

Actuators

(a) Overall autopilot architecture

PX4
Autopilot

jMAVSim
–“Physical world”–

MAVLink
Router

Ground
Controller

MAVLink
–UDP:14560–
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Control commands≫

M
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–U
D
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≪
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channel≫

MAVLink
–TCP:5760–

≪User control commands/
Telemetry≫

(b) Communication scheme

Figure 5.1: PX4 autopilot abstraction.

The initial evaluation of the attacks took place inside a simulated environment.

In this scenario, the autopilot firmware runs in a host located within a local net-

work. For the sensor data, jMAVSim -a multirotor simulator with MAVLink

protocol support- was also executed in the same local network. The communica-

tion channel between the two components employs the MAVLink protocol (figure

5.1b). A MAVLink router exists between the flight stack and the ground con-
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troller in the real drone and the simulation environment as part of the autopilot

implementation to translate MAVLink messages from the ground controller’s TCP

handling to the autopilot’s UDP message bus.

To exchange sensor information and rotor output, the autopilot and the simu-

lator send and receive messages encapsulated within the MAVLink protocol [50].

The simulator sends messages with the sensor data (GPS, accelerometer, gyro-

scope, magnetometer, Etc.); in return, the autopilot sends the actuator control

messages. The autopilot and the simulator exchange data asynchronously. The

simulator sends each particular sensor message on a specific time-based sample

rate for every sensor value. In contrast, the autopilot sends control messages in

response to the stimuli received from the simulator.

5.2 Naive drone attacks

The threat model for the attacks relies on a dreadful implementation flaw

within the PX4 communication scheme. Since the communications channel em-

ploying the MAVLink protocol transmits everything without encryption, MAVLink

2.0 defines an optional signature field as part of the data frame. However, PX4’s

implementation of the MAVLink protocol ignores this field, and it exchanges all

the messages without verifying the origin. Given that the communications chan-

nel between a ground controller and a drone does not implement message signing,

a third party can send arbitrary messages to the drone over the same commu-

nications channel. Since there is no actual authentication mechanism, the drone

would acknowledge such messages as legitimate messages.

Moreover, the defacto communication mechanism employed by the drone uses

a standard ad-hoc 802.11 wireless network “protected” with a default password

that most users neglect to change. This configuration flaw enables an attacker to
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connect a malicious host to this access point. An extremely naive attack would

entail running the same software used as a ground controller in the malicious host

and issuing arbitrary commands directly from the software. Since the protocol has

no authentication scheme, an attacker can establish a secondary communications

channel with an instance of the same software, and the drone would allow it.

GC

legitimate malicious

Figure 5.2: Drone attack vector.

The main issue with this type of naive attack is that the legitimate user has the

same capabilities as the attacker, allowing the user to counteract most malicious

actions sent by the attacker. Due to this fact, extracting some commands sent by

the controller and scripting the messages needed to execute a particular action is

more efficient. By doing so, the legitimate user might have the same capabilities

but not the same speed as a machine sending multiple messages in a specific

manner to achieve a particular malicious goal.

To fool the drone into recognizing the malicious host as a ground controller,

the latter must periodically send a heartbeat message indicating to the drone

that the host is both alive and a ground controller. This deception is achieved by

implementing a simple MAVLink communications channel that connects to the

drone’s MAVLink router and sends the message with ID 0 (a heartbeat).

We captured some specific values needed for communication between the ground

controller and the drone while sniffing the legitimate traffic. In particular, the
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first heartbeat message has an uninitialized custom_mode field and sets the sys-

tem_status field to represent the ‘MAV_STATE_UINIT’ state. This initial message

is necessary for the drone to register the ground controller. Afterwards, the heart-

beat messages are sent with a ‘custom_mode’ set to 0xc0080600 and the sys-

tem_status set to ‘MAV_STATE_ACTIVE’. Once a host sends both heartbeat mes-

sages, the drone acknowledges it as a ground controller and accepts incoming

commands from said host.

The first test involves a basic naive attack as a proof of concept, invoking

a fundamental action the drone performs. In this case, we chose the “disarm”

action, in which the drone effectively shuts down the rotors upon receiving a

disarm command issued by the ground controller, regardless of any control logic

running on the flight controller. By identifying the message responsible for issuing

such a command, an attacker could send the same message during a flight, causing

the drone to plummet to the ground.

To capture the ‘disarm’ command, we initialized a drone with a legitimate

ground controller. The rotors were armed, and a ‘takeoff’ command was issued,

followed by a ‘land’ command and a ‘disarm’ command. While these actions

took place, we captured the messages the drone and ground controller exchanged

using a network traffic sniffer. A fundamental finding regarding implementing the

MAVLink protocol for these actions is that all messages share the same structure

and message ID. All the commands needed to take off, land, arm, and disarm the

drone share the same MAVLink message ‘COMMAND_LONG’ with varying parameters.

This message enables the ground controller to send specific commands with up

to seven parameters to the drone. Each command is, according to the definition,

identified by an ID. However, the ground controller software implementation uses

a custom definition of such commands in which they do not specify an actual
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command ID (the value is set to 0), and they specify custom parameter values.

In particular, the ‘disarm’ command sets the parameters 1, 6, and 7 with some

custom values to signal the drone to disarm the rotors.

The first naive attack involved sending the ‘disarm’ command from a malicious

host while the drone was in mid-air. We tested this attack on both the simulated

environment and the actual drone. In both cases, the drone gracefully accepted

the command and plummeted to the ground.

The second not-so-naive attack attempts to force the drone to either change

its current course or receive the instruction to go to a particular set of coordi-

nates. To accomplish this, we took a new traffic capture in which we captured

the command to send the instruction to travel to a specific latitude, longitude,

and altitude. The attack entails repeatedly sending a message to the drone, in-

structing it to a specific location. Afterward, the malicious host monitors the

telemetry information broadcast by the drone to all registered ground stations to

determine whether the drone is reducing its distance from the desired destination.

If a significant increase in distance is detected, the automated attack script sends

the same instruction again, forcing the drone to resume the malicious trajectory.

Once the drone is reasonably close to the target location, the script sends the

drone a ‘land’ command.

While all the naive attacks were successful, the solution for this attack vec-

tor is relatively simple: implement the message signature scheme defined by the

MAVLink protocol version 2.0. This solution would prevent an attacker from send-

ing arbitrary messages to the drone without having the necessary key to sign the

messages while avoiding using encryption schemes over the entire communications

channel.
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5.3 GPS attacks

Tampering with GPS signals is a complex and unreasonable technique in re-

search, as it will affect the desired target and any undesired nearby devices that

rely on this technology, potentially affecting unaware users of these devices. This

fact places an ethical constraint on any attack tests involving GPS signals.

To simulate the tampering of the GPS sensor data, we took advantage of the

scheme used by the simulator to send the sensor data to the PX4. As depicted in

figure 5.1b, the sensor data is encapsulated inside MAVLink messages exchanged

between jMAVSim and the PX4 autopilot. We can tamper with sensor data by

intercepting these messages before arriving at the autopilot’s middleware.

We identified that the message carrying the GPS coordinates is the MAVLink

message with the ID 113 (HIL_GPS), which must be intercepted and modified to

tamper with the GPS Coordinates. This message carries the current GPS coordi-

nates simulated by jMAVSim, effectively being the GPS coordinates provided by

a regular GPS device within an actual drone. By modifying these coordinates, an

attacker can create a deviation between the exact physical location of the drone

and the location received by the autopilot. This deviation will, in turn, force the

autopilot to estimate its calculations based on false readings, compelling the drone

to behave unexpectedly throughout the attack.

Inside each HIL_GPS MAVLink message, both latitude and longitude are en-

capsulated as two integers, representing the degrees x107. For instance, a latitude

of 1◦0′0′′ is the integer 10,000,000. Since each degree is equivalent to roughly

111 kilometers (69 miles), by adding 5,000 to any GPS coordinate value inside

a MAVLink message, that tampering would create a deviation of approximately

55 meters (60 yards). We consider this deviation a reasonable one for testing

purposes.
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Item Value
GLOBAL_POSITION_INT.lat 3.298559450000000e+8
GLOBAL_POSITION_INT.lon -9.674850060000000e+8
GLOBAL_POSITION_INT.alt 1.901530000000000e+5
HIGHRES_IMU.xacc 3.301204741001129e-2
HIGHRES_IMU.yacc -1.333707012236118e-3
HIGHRES_IMU.zacc -9.831379890441895e+0
HIGHRES_IMU.xgyro -2.466390375047922e-3
HIGHRES_IMU.ygyro 1.280557457357645e-2
HIGHRES_IMU.zgyro 5.454805679619312e-3
HIGHRES_IMU.xmag 8.958292603492737e-1
HIGHRES_IMU.ymag 2.638268284499645e-2
HIGHRES_IMU.zmag 1.798238515853882e+0

Table 5.1: Sample sensor data extracted from a HIL_GPS message.
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Figure 5.3: Drone’s GPS deviation.

Whenever we apply such a deviation during a routine flight between two coor-

dinates, the user will observe a sudden “jump” that the drone makes throughout

its trajectory. Once this jump occurs, the autopilot starts correcting its course

accordingly to complete its current task. The user observes this correction as a

different trajectory of the drone returning to its original path and then resuming
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its flight (figure 5.3a).

Three stages comprise this GPS attack. While the drone is flying, performing

its routine tasks to achieve its goal, we start the attack. At this stage, the drone

discards the deviations created by the tampering as merely GPS imprecision.

As time passes and a GPS timeout occurs, the autopilot begins to acknowledge

the new reported position as the actual physical location of the drone. At this

point, a second stage of the attack begins. The autopilot starts compensating for

the deviation introduced by the attack by “returning” to its original trajectory.

However, this compensation is a deviation from the original path in the opposite

direction of the deviated coordinates. Once the autopilot makes the corrections,

the final stage in which the drone resumes its flight within a corrupted trajectory

begins, resulting in the drone reaching a tampered destination while reporting the

arrival to the original destination.

Figure 5.3b depicts the entire attack, which shows both the data received

by the attacker (the sensor data) and the data sent to the autopilot (tampered

data). The former is drawn in blue, while the latter is in red. The figure shows

how the autopilot reacts to the tampered coordinates. At first, a timeout must

occur to acknowledge the anomalous sensor data as legitimate. Once that timeout

occurs, the flight controller initiates a trajectory correction routine to return to

the original path.

5.4 Simulation feasibility

In both instances, we examined how simulated attacks can seamlessly translate

to actionable attacks against the target drone. These two types of attack are

based on the premise that the attacker can either freely communicate with the

drone’s autopilot posing as a ground controller, or they can tamper with the sensor
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readings and reporting.

Simulated environments provide a crucial proving ground for cybersecurity re-

search because they allow for the exploration of complex attack scenarios without

risking actual harm to the system or the surrounding environment. By using

simulations, researchers can meticulously dissect the attack vectors that could

compromise a CPS, understanding not just the immediate effects on the targeted

system, but the potential cascading effects throughout the interconnected net-

work. This approach is particularly beneficial in comprehending the consequences

of attacks on systems where real-world testing would be impractical or ethically

unacceptable.

Furthermore, simulations afford the unique advantage of repeatability under

controlled conditions. Researchers can iteratively adjust the parameters of an

attack, pinpointing the precise vulnerabilities within the system’s architecture or

its operational protocols.

The fidelity of these simulated environments has increased dramatically, al-

lowing them to accurately mirror the complexities of real-world cyber-physical

systems. This fidelity ensures that the insights gained are highly applicable and

can significantly enhance the security posture of CPS against a wide array of cyber

threats.

In essence, the utilization of simulations as a testing ground for cybersecu-

rity research on generic cyber-physical systems is not only feasible but impera-

tive. This methodology enables a proactive approach to security, where potential

vulnerabilities can be identified and addressed before they are exploited in the

real world, thereby safeguarding the integrity and functionality of critical cyber-

physical infrastructures. Moreover, they allow the researchers to conduct these

tests without compromising the physical integrity of the system.
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Chapter 6

Using Software-Defined Networks

to secure Industrial Control

Networks

As part of our approach to creating a simulation framework for cyber-physical

systems, we evaluate the advantages of incorporating software-defined network-

ing. Since we already observed the feasibility of testing attacks in a simulated

environment, we now focus on defense mechanisms.

Most of the literature on Industrial Control Systems (ICS) security has focused

on preventing and detecting attacks [19]; however, responding to attacks has re-

ceived much less attention [19, 2]. In particular, most research papers focusing on

intrusion detection for control systems do not discuss what to do after an attack

has been detected [20].

To address this gap, we propose an intrusion-response architecture that lever-

ages Software-Defined Networking (SDN) to automatically reconfigure the at-

tacked network in real-time, based on alerts generated by an IDS. While previous

38



attempts focused on replacing compromised sensor and control messages with

trustworthy sources [45], we focus on two new use cases for network reconfigura-

tion during an attack:

• We show how to create a honeypot of an industrial system to reroute the

attacker to this honeypot.

• We show and work around the challenges of creating a honeypot when the

attacker is already inside the industrial control network.

For our purposes, we need to implement a way to give an external system a

copy of all packets in the managed network. Since we would like to manipulate

the network dynamically based on the current state of the simulated system, we

need to implement a mechanism that can control the network’s behavior via the

northbound API.

Since grouping allows the switch to send packets through multiple ports, we

can add an entry to redirect a copy of all the traffic to a single passive interface

attached to the external system. Group entries are then defined to acquire a copy

of each packet sent through the corresponding port of each device connected to

the SDN switch toward this system. This effectively obtains a complete copy of

the network packets within the protected network.

6.1 System description

Figure 6.1 shows the three main components that comprise the ICS: a physical

process, a field network (a network between field devices and controllers), and a

supervisory network (a network between controllers and SCADA systems). A

secure architecture for ICS [43] suggests that these components should be placed

in layers so that, ideally, an element within a given layer can only communicate
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with other elements of the adjacent layers when necessary. Other interactions

between layers are possible but usually discouraged.

Since the controller is more of an SDN than an ICS component, it must be

placed accordingly. We conceive this element as the management component of

all the network requirements of both the field and supervisory networks. As such,

it must interact, if needed, with SDN elements within these networks.

However, due to security concerns and the essential role this element will exert

over the scenario, direct communication between the components involved in the

actual physical process and the SDN control network is not desired. Considering

this constraint, a new layer above the field and the supervisory networks within

the ICS architecture contains the SDN controller.

Field network (SDN)

Supervisory network
SDN control network

Physical process

MV101
Tank 101

0.0

LIT101

P101

SDN switch

PLC101

Router

SCADA Supervisor SCADA Historian

SDN Controller

MV201

0.0

PH201

SDN switch

PLC201

0.0

LIT301

Tank 301
P301

PLC301
Control loop 1 Control loop 2 Control loop 3

SDN switch

OpenFlow

Figure 6.1: ICS network layers with SDN.

Figure 6.1 depicts the scenario used as a general testbed for our incident re-

sponse scheme. In this scenario, three PLCs control a simulated physical process
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representing a water purification plant. An SDN virtual switch is managed by

an SDN controller and handles the data plane of all the communications in the

network.

We assume the attacker has compromised the field network. They achieve

this compromise either externally or internally (Figure 6.2). How they acquired

the privileges required to gain access to the network is out of the scope of this

scenario. We assume that they already executed such actions and gained the

necessary privileges.

0.0

Control Loop

0.0

Control Loop

0.0

Control Loop

Field network

(1)

(2)

Figure 6.2: Theat model against the ICS.

The threat model includes two different kinds of attackers. The first attacker

contemplated by the model is an external attacker who gains access to the field

network (1). The second is an attacker located directly within the field network

(2). Regardless of the kind, they can communicate with the devices inside each
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control loop directly or through some routing. In other words, they have a com-

munications channel between the attacker’s location in the network and the target

devices.

6.2 Intrusion response scheme

Figure 6.3 depicts our design for an external IDS. The main idea behind this

scheme is to obtain a copy of all the network traffic flowing within the field network

and relay that traffic to an external IDS. This system is implemented within the

same SDN control network, as it must communicate with the controller to alter

the SDN due to an alert dynamically.

SDN field network

SDN Controller

Mirror
IDS

ICS Network traffic

Northbound API

Figure 6.3: Intrusion detection scheme.

The intrusion detection scheme uses mirrored traffic acquired from all the

OpenFlow devices the controller manages. Upon detection, the IDS reacts to

defined attacks by sending northbound API commands to the SDN controller to
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prevent further attacks.

An external IDS can detect anomalous behavior of the physical process itself.

Furthermore, it can also analyze the network traffic with traditional network IDS

to identify known malicious techniques within the field network. Moreover, any

commands sent from the IDS to the SDN controller would not be accessible from

within the field network, preventing the attacker from realizing any countermea-

sures the IDS took.

Some related work has already addressed some challenges involving using an

IDS with SDN regarding the data capture [71]. Despite the many benefits that the

SDN provides, the segregation of the control and data planes makes it challenging

to inspect the complete packets circulating within an SDN. As a possible solution,

Yoon et al. [71] present a conceptual design in which the application layer that

handles the northbound API of a controller acquires the traffic from the SDN

network through a separate NIC in an in-line fashion. However, they mention the

possible performance issues this might pose for the SDN as a whole. They also

provide some insights regarding the implementation with passive modes, in which

the controller requires additional network interfaces between the control and data

planes to collect the entire payload, which is impossible via the control channel.

For our purposes, we consider that a passive-mode implementation is adequate

for the intended solution. Not only does this implementation allow the inspection

of the packets, but it also avoids affecting the overall performance of the SDN

controller. Therefore, our scheme uses a passive-mode IDS in a separate machine,

communicating with the SDN controller via the controller’s northbound API.
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6.2.1 ICS Honeypot

The main idea of our defense mechanism is to take advantage of the SDN

controller to execute the necessary actions to relocate an attacker detected within

the field network into a honeypot network. This honeypot network must con-

tain simulated replicas of the physical devices implemented in each control loop,

creating the illusion of an actual working ICS with all its inner workings and

communications between the components.

We used miniCPS to implement the honeypot because it provides valuable

features to simulate a pre-defined ICS on top of a virtualized SDN using mininet.

At this stage, our work focuses on the actual usage of SDN technology rather than

the simulation of the devices themselves, which we will address in the future. We

point out that the previous efforts already partially tackled the simulation of

the process, which includes the implementation of the EtherNet/IP stack as the

communications protocol for the simulated ICS.

There are four components to the defense scheme: the SDN controller (ONOS),

the field and honeypot networks (Mininet and MiniCPS), and the IDS. ONOS

will control the networking, manage the interactions between the field network

and the honeypot, and the mirroring scheme to deliver the network traffic to

the IDS. The latter, in turn, will receive the raw network packets from both the

field and honeypot networks to make the appropriate security decisions, which are

then translated to REST API commands that are sent to the controller as needed

(figure 6.4).

In addition to these external components, the field and honeypot networks

need to communicate whenever needed. However, only specific cases where the

field devices might be jeopardized should allow this communication. In other

words, there has to be a bridge between both networks that should only allow
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Figure 6.4: Fundamental interactions between the components of the ICS de-
fense scheme.

traffic to flow upon specific requests by the IDS. Under normal circumstances,

this bridge should effectively insulate both networks.

While probably the most intuitive method of implementing this bridge would

be establishing a link between each pair of SDN switches in each control loop

between the field network and the honeypot, this approach could depend on the

router to forward traffic between different control loops within the honeypot. This

forwarding would mean that the router must know the honeypot when the whole

idea is to be invisible from the existing network. Therefore, having a centralized

bridge allows the field and honeypot networks to communicate as needed without

depending on the router. Every routing decision can be defined via flow table

entries as required, while regular communications between these networks can be

restricted by default, making the networks invisible to each other.

Whenever an attacker is identified and isolated inside the field network, the

IDS effectively relocates the attacker within the honeypot. We send the appro-

45



Corporate

Control loop 1 0.0

Control loop 2 0.0

Control loop 3 0.0

Field network

Honeypot loop 10.0

Honeypot loop 20.0

Honeypot loop 30.0

Honeypot network

Mirror

m
irr

or
lin

ks

Bridge
“inactive

links”

Figure 6.5: Attacker relocation.

priate instructions to ONOS from the IDS via the REST API. These instructions

include the flow table entries that allow the SDN switches to reroute all the traffic

incoming from the attacker through the bridge and into the honeypot, as well as

the corresponding replies from the fake devices within the honeypot back to the

attacker (figure 6.5). Under normal circumstances, flow tables in the bridge switch

prevent traffic from flowing between the field network and the honeypot, hence

the name “inactive” links. Upon detection of an attacker, flow tables are modified

as necessary to reroute all the traffic involving the attacker into the honeypot.
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6.3 Performance tests

Since this scheme is meant to be a seamless transition between the existing

network and the honeypot network, it is paramount that attackers do not realize

that they have been moved to the honeypot network. This means that not only

the real scenario must be replicated, but the behavior of the network must be

maintained.

To accomplish a seamless transition from the existing network to the honeypot,

the SDN controller must relocate all the traffic sent by the attacker and redirect

it to the honeypot so that the activities performed by the attacker appear to be

continuous. The success of this approach will confirm whether SDN is a suitable

mechanism for our future endeavors regarding the simulation framework.

We performed two main tests in the scenario depicted in figure 6.6. The first

one involves a custom UDP service. We chose a UDP service because we need to

measure the response time of the traffic itself while transitioning between the two

networks. Moreover, a connection-oriented service could change the test outcome

due to possible re-connection times. Therefore, a service that does not require a

connection will indicate the actual response times of the network as a whole. This

connection-less nature means that the necessary flow table updates on the SDN

devices along the path will account for any delays in the communication.

The custom UDP service is a simple service that replies 8 bytes of data to

any arriving packet. The 8 bytes are just a timestamp coded in a long integer.

Whenever the client sends a packet, it records its local timestamp and calculates

the difference between the timestamp it sends and the client’s timestamp by the

time it receives the response. Note that the calculation only uses the local times-

tamp. The remote timestamp is only used as a payload for the packet, meant to

add a standard-sized payload to the traffic between the client and service. This
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difference in time will be the service’s round-trip time (RTT), which is the time

it takes to send a packet, be “processed” by the service, and receive a response.

SDN Bridge Switch SDN Switch 1

SDN Switch 2SDN Mirror Switch

SDN Honeypot 1

SDN Honeypot 2

IDS

Client
“attacker”

Real
service

Honey
service

3

1

2

Figure 6.6: Performance test scenario.

Figure 6.6 shows the performance test scenario. Two machines execute the

same service both in the field and honeypot networks. An “attacker” located in

the field network will initially exchange data with the genuine service (1). Upon

executing the relocation mechanism, the SDN controller reconfigures the switch

flow tables to redirect the traffic to the honeypot network (2). The attacker then

exchanges data with the honeypot service (3). To get a sense of any noticeable

delay, the attacker logs the RTT of each packet sent to the service, unaware of

the service’s location throughout the process.

While the test runs, we configure a set of flow table rules in the SDN controller,

forcing the switches to redirect the client’s traffic (“attacker”) to the honeypot net-

work. Since all the packets will have the wrong Ethernet frames, the attacker must

request the “new” MAC address to continue using the service. Furthermore, the

SDN devices that have just updated their flow tables will add the rules whenever

traffic matches every new rule. Meanwhile, since the packets do not reach the

intended destination, the attacker experiences a timeout in the communication.

The result of this redirection, as seen by the SDN controller, is depicted in
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Figure 6.7: An execution of the test as seen by the SDN controller.

figure 6.7. All the traffic generated by the host with IP address 192.168.1.100

-located in the field network on the right- is sent to the honeypot network on the

left. In this case, the host is contacting the service published by the IP address

192.168.1.10, which is exposed in both hosts sharing that IP address in the field

and honeypot networks, making a seamless transition possible. The remaining

hosts in both networks communicate with each other within the boundaries of

each network. Notice that the links between both networks appear as dashed red

lines, indicating a "disabled" or "disconnected" link. This disconnection results

from a set of flow table entries used to isolate both networks.

Figure 6.8 shows the collected results of a sample execution. For each packet

sent, the attacker logs the RTT of that particular packet with the current times-

tamp. This data can depict the behavior of the SDN network while transporting

the data between two hosts. The gap highlighted in grey represents the downtime

experienced due to the relocation of the attacker from the field network to the

honeypot via flow tables. As with any other regular traffic in an SDN, the first

packet of a new connection has a larger RTT than the remaining traffic associated

with a particular communications channel between two hosts.

To estimate the behavior of the SDN to such relocation, we performed this
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Figure 6.8: An execution of the performance test.

Total packets 314
Received packets 291
Lost packets 23
Packet loss 7.32%
Execution time [s] 54.774531
Connection uptime [s] 30.544737
Connection downtime [s] 24.229794 (44.24%)
Average RTT [us] 546.05
Recovery RTT peak [us] 2,034

Table 6.1: Metrics of an execution of the performance test.

test 100 times. Each time, the attacker logged the RTT of every sent packet

and either the time it took to get a response or a timeout of 1 second. We

performed each execution in the following manner: the attacker sent data for 15

seconds, then the relocation took place, and finally, an additional 15 seconds of

data transmission. The idea is to have a standard 30-second uptime to reach the

“intended” destination for the payloads. The intended destination would be the

genuine service; in the honeypot, the fake service.
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Since the main challenge of the relocation is to avoid the detection of the

honeypot by the attacker, the relocation timeout (i.e., the time it takes to receive

a response after the relocation takes place in the controller) is a variable that

must be considered as part of the performance of the protection scheme, this

delay in the communication must be slight enough to avoid any concerns by the

attacker. Figure 6.9 presents the measured downtime on every test execution.

The delay experienced by the client service appears to have a random component.

The changes in the delay revolve around 25 seconds, which means that this is how

long the attacker will experience a service outage.
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Figure 6.9: Downtime measured on each execution of the test.

To fix this issue, we look at the origin of this delay. As it turned out, it was

caused by how the relocation process generates the flow table entries. At this

point, the flow entries match the attacker’s address, and as an instruction, the

entries have an OUTPUT action towards the port connected to the bridge between

the field network and the honeypot network. While this effectively redirects all the
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attacker’s traffic toward the honeypot, there is an issue with the MAC addresses.

The network should deliver all the traffic that the attacker is sending to the original

device. While the honeypot device has the same IP address, the MAC address of

the emulated device is different from the original one.

A naive solution would simulate the honeypot devices with the same MAC

addresses. However, as the internal indexing of hosts within the SDN controller

is MAC addresses-based, this would be counter-productive as legitimate traffic

would be sent to the honeypot, and innocuous traffic from the honeypot would be

sent to the field network, ultimately affecting the physical process.

We added new flow entries in the honeypot switches to solve this issue. The

idea behind these new flow entries is that they allow us to modify the packets

to change the destination MAC addresses. The solution is to change the MAC

address to the corresponding addresses of the honeypot device whenever an at-

tacker’s packet is rerouted; the same thing must be done in the opposite direction,

and every packet originating from the simulated device must be altered to change

the source MAC address to that of the original device. The requests for the ser-

vice will be redirected to the honeypot service, and the responses will be correctly

routed to the attacker. After implementing these changes, figure 6.10 shows the

RTT of a sample execution under these conditions. Changing the MAC addresses

significantly improved the response time to the point that, at most, a single packet

is lost.

When done correctly, looking at these results, the relocation mechanism is

reasonable for identifying and removing a detected attacker from a network. If a

convincing honeypot is deployed in the dummy network, the attacker can continue

to “interact” with the system without realizing it is a honeypot.
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Figure 6.10: Another test execution after the MAC address issue was resolved.

Total packets 302
Received packets 301
Lost packets 1
Packet loss 0.33%
Execution time [s] 30.831129
Connection uptime [s] 30.803247
Connection downtime [s] 0.027882 (0.09%)
Average RTT [us] 531.57
Recovery RTT peak [us] 1,057

Table 6.2: Metrics of executing the performance test after the MAC address
issue was resolved.

6.4 Simulating with Software-Defined Networks

The test scenario we used, in which we tested attacks and defense schemes

against an ICS, highlighted the advantages of using SDN features as part of a

complex simulation. Moreover, its flexibility allowed us to test a custom environ-

ment, simulating a cyber-physical system. While the simulation was built by a

third party, these tests allowed us to corroborate the usefulness of SDN for this
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endeavor.

Using an SDN as a base for the simulation, we can dynamically generate

custom networking scenarios and incorporate various simulations to mimic several

complete systems. This opens the door to developing a custom solution that can

aid us in our goal to create a research framework capable of emulating a reasonably

realistic version of a system.
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Chapter 7

Network Emulation Framework

for Industrial Control Systems

The primary motivation for developing this framework is the current situa-

tion between Russia and Ukraine. In less than a decade, Ukraine has suffered

from several cyber attacks attempting to cause electrical outages. On December

23, 2015, in a dark and cold winter, Ukraine suffered a blackout caused by cyber

attacks [74]. This was the first confirmed case worldwide of cyberattacks intention-

ally targeting the power grid. In this first incident, attackers gained remote access

to the industrial networks of power companies, and a remote adversary operated

the human-machine interface of operators, opening circuit breakers manually.

A year later, on December 17, 2016, a fifth of Ukraine’s capital, Kyiv, experi-

enced another blackout [22, 46]. This time, the target was a transmission utility,

and unlike the previous year when remote human attackers opened the circuit

breakers, the attack in 2016 was launched automatically by the first known indus-

trial malware targeting the power grid: Industroyer [8] (also known as CrashOver-

ride [11]).

Finally, on April 8, 2022, operators discovered another malware tailored to
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attack circuit breakers automatically in the first months of the Russian invasion

of Ukraine. This new malware was called Industroyer 2, and it represented yet

another attempt to target Ukraine’s power grid amid many other Russian cyber-

attacks coordinated alongside their kinetic military action [35].

The two Industroyer malware payloads represent a watershed moment for the

security of critical infrastructures for several reasons: (1) they represent the first

and only known malware samples specifically deployed by malicious actors to

target the power grid. (2) Industroyer is the only known malware that caused

a power blackout successfully. (3) Industroyer 2 exemplifies how modern wars

combine cyber and kinetic attacks to maximize a show of force. (4) While the

attackers in 2015 needed a real-time network connection to the power company

to open circuit breakers, Industroyer and Industroyer 2 can, in principle, be de-

ployed in air-gapped systems (or systems with robust network segmentation where

remote connections are not allowed) because the malware could automatically tar-

get power grid equipment without the need for human feedback. (5) Industrial

malware may have other advantages over remote (manual) attackers, like the abil-

ity to repeatedly send commands to devices faster than an operator could respond.

In the remainder of the document, we will refer to “Industroyer” as “Indus-

troyer 1” to avoid ambiguity.

We believe academic researchers working on the security of the power grid

want to learn the details of how Industroyer 1 and 2 launched the attacks and the

impact that similar malware may have in the future so that we can understand the

attacker’s decision-making behind the payload design and also anticipate future

attacks. However, as stated before, any tests or execution of these artifacts in

actual power grid systems is unfeasible and dangerous. Thus, a secure virtual

environment is necessary.
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7.1 Framework design

The typical design to simulate physical systems involves translating all the

different physical components into some non-linear system described by several

differential equations. After doing so, the simulation follows these equations to

reflect the system’s physical state. As with every solution, this approach has

both advantages and disadvantages. On the one hand, the simulator has complete

knowledge of every variable in the system, as the equations characterize the system

entirely. Moreover, as the simulator holds all the variables, any response is given

without relevant delay. On the other hand, the simulation is fixed to a specific

scenario and has no flexibility to scale up without a significant update to the

system’s equation model. Moreover, the model describing the system being fixed

means that all the information must be processed in the same simulation process,

regardless of how many threads the simulator uses, which means a single end-point

simulating the whole system.

Considering these advantages and disadvantages, we decided that our simula-

tion should break apart the model into simpler mini sub-models that can work

autonomously, regardless of the scenario’s topology. By building the simulator,

we mean determining the simulation model of a single RTU and running it as a

stand-alone simulator in a single end-point. This way, we do not need to know

the topology beforehand, and the simulator can accommodate different physical

topologies without changing the underlying model. However, the disadvantage

comes with an added delay, as we need some mechanism for the separate RTUs

to exchange messages regarding their current state.

The framework design has three main components: Physical processes, net-

work protocols, and network infrastructure. Employing this design pattern allows

the future deployment of additional modules to support a diverse set of protocols
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and processes.

Framework

Network emulation

Physical process ICS Protocol

Figure 7.1: Framework modular design.

Based on this overall design and the requirements we identified in the dis-

sertation scope, Figure 7.2 illustrates the proposed design. Isolation, Secure-

coupling, and Network traffic are three characteristics that a virtual network

linked to a virtual machine’s network interface offer. Two virtual machines linked

by a host-only network in the hypervisor prevent potentially hazardous network

traffic from leaving the secure environment (Figure 7.2 2 ). Moreover, having

all the malicious traffic routed to the simulated network via a virtual machine

interface allows us to capture any network traffic for analysis.

To implement the virtual network itself, kernel namespaces, often used in

container solutions, provide a viable way of simulating multiple hosts in a single

Linux machine. Mininet uses the same concept to create virtual network hosts.

Since it is Python-based, we can develop a way to integrate a physical simulation

into the network emulation provided by Mininet. Moreover, Mininet uses Open

vSwitch to interconnect the simulated hosts, providing a software-defined network

solution that allows us to connect the simulation to a virtual machine’s host-only

network interface, integrating the infected host to the simulated network (Figure

7.2 1 ). This solution offers a secure and isolated network to capture and analyze

the network traffic.

We can achieve Flexibility, Extensibility, and Customizable characteris-
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tics by implementing the sandbox in separate modules. Any industrial control

protocol supported by the sandbox would be a separate module, dynamically

loaded and enabled as required. By making the sandbox modular by design, we

can incrementally add new physical processes and industrial control protocols as

needed. Moreover, implementing a handler component to parse a configuration file

with the description of the desired scenario allows us to build complex topologies

dynamically without explicitly developing the scenario but rather the modules

comprising it.

Finally, the Physical emulation must provide realistic data over the imple-

mented protocols. We must interconnect the physical simulation with the network

simulation (Figure 7.2 3 ). For this purpose, we identified two primary compo-

nents for our sandbox: the communication with the network emulation and the

physical process.

Infected VM

local server

Sandbox VM

Host-only network

Hypervisor named pipe

Network Emulation

Mininet
vSwitch

modules

Handler

Proto 2Proto 1 Proto n

Serial Emulation

Physical Emulation

1

2

3

Figure 7.2: Sandbox architecture.

Since one of our requirements is to support various industrial control proto-

cols, albeit not necessarily at the same time, each simulated host must be able to

dynamically enable or disable the support for an industrial control protocol. More-

over, the network topology and simulated hosts must be configurable. Therefore,

there needs to be a component that parses the configuration requirements and
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uses each supported protocol as required. Since this component will essentially

handle the information flow of the simulated industrial device, we could tie this

component to the physical simulation, requesting and updating values from the

simulated physical process and translating these values into the industrial control

protocol.

With this information handler in mind, we can implement the different sup-

ported industrial control protocols into modules that the handler can dynamically

import to enable a specific protocol and communicate with the infected machine

or any standard industrial control client.

This handler presented the primary implementation challenge. Once the sand-

box instantiates a device, the virtual device must follow with an instantiation of

this handler. Therefore, each virtual device implementation must have a unique

handler that bridges the device with the different network protocols and the physi-

cal simulation. Following our flexibility and extensibility requirements, these han-

dlers must be imported and instantiated at runtime. To overcome this complexity,

we implemented a generic launcher that checks the device and handler modules

against the provided configuration at runtime and creates the required instances.

Using this launcher component, we do not restrict the implementation to a partic-

ular scenario and allow the sandbox to be extended to include additional physical

processes and devices.

So far, we have implemented modules for handling IEC-60870-101, IEC-60870-

104, and Modbus TCP using Scapy, IEC-61850 using the iec61850bean library, a

Matrikon OPC server for OPC-DA, and CPPPO for Ethernet/IP CIP.

IEC-60870-101 (Serial) and IEC-60870-104 (TCP/IP) are remote control pro-

tocols operators use to control multiple substations from a central control room.

Therefore, this scenario simulates the remote communication between an infected

60



host in a control center and multiple remote substations linked by a WAN or a

legacy serial dial-up connection. We use the IEC-61850 module to simulate de-

vices within the local LAN of a substation. Thus, the infected machine in this

scenario would be a local operator workstation inside the substation within the

local LAN.

For the physical process simulation, we can either have one virtual host do all

the simulations and coordinate with the other hosts or have each host simulate

part of the physical process and synchronize the simulation state with the relevant

hosts. In either case, we need the simulated hosts to communicate with each other

and synchronize the state of any physical sensors and actuators handled by the

simulated devices. This physical communication must be: (1) Fast, meaning that

the physical process simulation must be as realistic as possible and run in real time.

(2) Up-to-date, meaning that each device holds only the most recent data. (3)

Concise, meaning that we only send the necessary values, and (4) Addressable

as we want the values to reach the desired device.

A UDP protocol is sufficient for the fast and up-to-date requirements, as

there would be no issue with a missing packet if a device receives a more recent

packet, and the lack of flow control offers a speed advantage over a TCP protocol.

As for conciseness and addressability, a fixed-size structure of bytes carrying

the necessary information fulfills this requirement. We designed a simple small

payload that allows us to transmit concise sensor and actuator values to and from

the simulated devices, with addressable device IDs, as most industrial control

protocols do.

Our proposed solution is a UDP protocol that uses fixed 28-byte packets con-

taining sender and receiver IDs, a message type, two integer values, and two float

values. Sender and Receiver IDs make the protocol addressable in the applica-
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tion layer, meaning that the sender can broadcast the packet without knowing

the recipient’s IP address and effectively transmit a value, which is helpful in sce-

narios in which we dynamically build a network topology without knowing the

IP addresses that Mininet assigns to the hosts. The message type allows us to

customize the messages and specify the packet’s data, be it a range, set-point,

sensor value, or actuator value. Since we want a standardized way of sending the

data, we always send a fixed-size payload, and it is up to the message type to

determine the semantics of the four values.

Using this protocol, we construct the physical simulation in separate modules

that we instantiate as needed. These modules use the protocol to communicate

with the simulation handlers, providing them with the up-to-date state of the

sensors and receiving any state changes for the actuators to simulate the modifi-

cations in the simulation.

7.2 Deployment tests

A command injection attack happens when an unauthorized party sends a

command to a Remote Terminal Unit (RTU). To execute this command injection

attack, we take some ideas from the behavior of Industroyer 1 to create malicious

software that runs on a compromised device in the SCADA network. The malware

launches attacks in stages from this compromised device: The first stage corre-

sponds to a reconnaissance state in which it scans the network to identify any

live hosts and then determines which are RTUs. Following this initial reconnais-

sance stage, the malware connects to the identified RTUs, posing as a legitimate

SCADA server, which allows the malware to receive the polled measurements and

status from all the identified RTUs. The malware extracts and accounts for all the

IOAs in each RTU by receiving the reported status data. After gathering enough
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information from the RTUs to map out all the circuit breakers in the system to

each RTU, it executes the final stage of the attack by sending commands to each

RTU with a circuit breaker that instructs the RTU to open the breakers, resulting

in a massive blackout.

We use a Python script to simulate our malware. The script runs in an addi-

tional node in mininet representing the compromised device (e.g., a compromised

operator’s workstation). Once the execution starts, the script identifies live hosts

by sending ARP probes destined for each host in the compromised machine’s

subnet. Once identified, the malware probes each live host with a stealth SYN

scan (A half-open TCP connection that closes the socket before the three-way

handshake is complete) for the specific TCP port 2404 designated for IEC104

communications. If a live host is an RTU, the TCP socket will receive a TCP

SYN-ACK packet; otherwise, it will receive a TCP RST packet. With this simple

technique, the malware can ascertain whether a particular endpoint will likely be

an RTU.

After this, the script opens a socket with each RTU and sends a ’STARTDT

act’ packet, allowing the malware to receive the IEC104 polled measurements and

states, looking for any RTUs that report a type-3 ASDU, which corresponds to a

circuit breaker in the context of a power grid. For each type-3 ASDU, the malware

uses the same scapy-based IEC 104 module to extract the IOA corresponding to

the particular circuit breaker the RTU is reporting, mapping out which RTUs

have circuit breakers that could be compromised. After the malware finds no

new circuit breakers in the network, it sends a type 45 ASDU (Single Command)

for each identified breaker, instructing each corresponding RTU to open it. By

doing so, and because our simulated power grid is a radial circuit, the load node

is “physically disconnected,” causing a simulated blackout.
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The authors in [30] also propose a series of compelling deception attacks in an

emulated power grid system. Although the assumed adversary shares the ARP

poisoning technique to obtain network access in their and our attack scenarios,

our attack design differs from theirs in terms of the industrial protocol, the power

grid component, the threat model, and the consequences of the attack.
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user@host :~/# python3 commander .py
[+] Using att -eth0
[+] Searching for live hosts in 10.0.0.0/24 ...

[!] 10.0.0.1 is alive .
[!] 10.0.0.2 is alive
[!] 10.0.0.3 is alive
[!] 10.0.0.4 is alive
[!] 10.0.0.5 is alive
[!] 10.0.0.6 is alive
[!] 10.0.0.7 is alive
[!] 10.0.0.8 is alive

[+] Scanning for RTUs ...
[!] Found RTU at 10.0.0.1
[!] Found RTU at 10.0.0.2
[!] Found RTU at 10.0.0.3
[!] Found RTU at 10.0.0.4
[!] Found RTU at 10.0.0.5
[!] Found RTU at 10.0.0.6
[!] Found RTU at 10.0.0.7

[+] Scanning complete !
[+] Probing RTUs ...

[!] RTU in 10.0.0.2 has breakers
[!] New breaker found in 10.0.0.2. IOA: 101
[!] New breaker found in 10.0.0.2. IOA: 103
[!] RTU in 10.0.0.3 has breakers
[!] New breaker found in 10.0.0.3. IOA: 101
[!] New breaker found in 10.0.0.3. IOA: 102
[!] New breaker found in 10.0.0.3. IOA: 103
[!] RTU in 10.0.0.4 has breakers
[!] New breaker found in 10.0.0.4. IOA: 101
[!] New breaker found in 10.0.0.4. IOA: 102
[!] New breaker found in 10.0.0.4. IOA: 103
[!] RTU in 10.0.0.5 has breakers
[!] New breaker found in 10.0.0.5. IOA: 101
[!] New breaker found in 10.0.0.5. IOA: 102
[!] RTU in 10.0.0.6 has breakers
[!] New breaker found in 10.0.0.6. IOA: 101
[!] New breaker found in 10.0.0.6. IOA: 103
[!] New breaker found in 10.0.0.2. IOA: 102
[!] New breaker found in 10.0.0.5. IOA: 103
[!] New breaker found in 10.0.0.6. IOA: 102

[+] Opening all breakers ...
[-] Opening breakers in 10.0.0.2 ...

[#] Opening IOA 101 ...
[#] Opening IOA 103 ...
[#] Opening IOA 102 ...

[-] Opening breakers in 10.0.0.3 ...
[#] Opening IOA 101 ...
[#] Opening IOA 102 ...
[#] Opening IOA 103 ...

[-] Opening breakers in 10.0.0.4 ...
[#] Opening IOA 101 ...
[#] Opening IOA 102 ...
[#] Opening IOA 103 ...

[-] Opening breakers in 10.0.0.5 ...
[#] Opening IOA 101 ...
[#] Opening IOA 102 ...
[#] Opening IOA 103 ...

[-] Opening breakers in 10.0.0.6 ...
[#] Opening IOA 101 ...
[#] Opening IOA 103 ...
[#] Opening IOA 102 ...

[+] Done!
[+] Closing connections ...
[+] Bye!

Figure 7.3: Execution of the simulated malware performing a command injection
attack.
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Chapter 8

Studying a malware with the

framework

Table 8.1: Malware samples.

Sample Industroyer SHA-256
101.dll 1 a319551ef72492b3cd489de676b2f6e7938a5ef23e572d36dd742b599686caac
104.dll 1 7907dd95c1d36cf3dc842a1bd804f0db511a0f68f4b3d382c23a3c974a383cad
61850.dll 1 4e7d2b269088c1575a31668d86de95fd3dde6caa88051d7ec110f7f150058789
haslo.exe 1 ad23c7930dae02de1ea3c6836091b5fb3c62a89bf2bcfb83b4b39ede15904910
opc.exe 1 156bd34d713d0c8419a5da040b3c2dd48c4c6b00d8a47698e412db16b1ffac0f
svchost.exe 1 7cc9ac6383437dd96161b93b017500a22a2c8d05f58778b9b9fce8ea73304546

40_115.exe 2 d69665f56ddef7ad4e71971f06432e59f1510a7194386e5f0e8926aea7b88e00

We summarize our Industroyer samples in Table 8.1, providing the SHA-256

signatures of each payload. The curious reader can verify the signatures via third-

party services such as “virustotal” to corroborate the authenticity of the samples.

Industroyer 1 consists of a set of DLLs and executable files. In contrast, Indus-

troyer 2 is a single executable file. Both malware versions are post-exploitation

tools (final payload) deployed after a successful intrusion.
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8.1 Methodology

To understand the malware capabilities, we studied each payload sample through

three sequential stages: static analysis, dynamic analysis, and semantic analysis.

Static analysis: Initial sample exploration to gather sufficient information

about each malicious image without executing them. Some of the tests performed

involve strings extraction, gathering of import/export functions, and detection

of anti-debugging mechanisms (e.g., obfuscation/encryption). In this stage, we

determined various execution constraints, such as the file format of the expected

configuration files for specific payloads, a control flow graph analysis to determine

the predicted values by the malware, and entry points for further debugging.

Dynamic analysis: Behavioral study of the sample. The objective is to un-

derstand how the malware behaves when executed. Based on the execution con-

straints obtained from the static analysis, we deployed an isolated environment

that simulated the scenario expected by the malicious software. The output of

this stage provides information about the interaction between the malware and its

environment (e.g., packet captures, log files, etc.). It helps us to craft adequate

packets for the modules in scenarios where the malware waits for certain values

and packet sequences.

Semantic analysis: Semantic study of the sample. The objective is to un-

derstand the real impact of the malware execution against the physical system.

We simulate physical systems and electricity network services in our testing envi-

ronment using the modules we designed for the framework to determine how the

malware can affect the targeted infrastructure.
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8.2 Attack Patterns of Industroyer 1 & 2

Being a modular industrial control malware, Industroyer 1 can carry out multi-

pronged and multi-target attacks against different processes and parts of the power

grid operation by using four payload modules, each targeting a specific power grid

control protocol: IEC 101, IEC 104, IEC 61850, and OPC Data Access (OPC-

DA). In contrast, Industroyer 2 is a stand-alone executable that uses a single

protocol to perform its attack: IEC 104. Each supported protocol also reveals

the potential industrial control targets the attackers could compromise. Using

Industroyer 1, an adversary could launch an attack against an OPC-DA server,

RTUs via IEC-101 or IEC-104, and substation IEDs using IEC-61850. As for

Industroyer 2, the targets are RTUs supporting IEC-104.

Given the flexibility of this malware, it can compromise an operator’s work-

station pretty much anywhere within the confines of the power grid network and

still be effective against the system. Figure 8.1 shows the attack surface of the

malware and the different interactions it can employ to disrupt the system. It

has a module to interact with substations via the old serial standard IEC 101,

another module to use the modern TCP-based IEC 104, a module to interface

with substation devices using IEC 61850 directly, and a final one to interact with

legacy OPC servers.

Figure 8.1 shows how Industroyer 1 could have interacted with several devices

in the power grid; e.g., it could be launched from the SCADA computer in the

central control room and use serial connections (such as IEC 101) or TCP/IP

connections (such as IEC 104) to reach substations. Alternatively, it can be

deployed in a workstation within a substation and use IEC 61850 to discover and

target IEDs. As far as we know, this is the most detailed network architecture

representing the capabilities of Industroyer 1 and 2 and the specific locations
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Figure 8.1: Industroyer’s attack surface

where they could interact with power grid equipment. This diagram also helps us

design the scenarios we will use in the sandbox to fool Industroyer 1 and 2 into

believing they are inside a power grid.

Figure 8.2 shows the overall process each payload executes to accomplish its

task. While there are specifics to each payload, we found that the overall process

follows the same pattern.

Targets. This is the step where the payloads differed the most. In some cases,

the attacker had a lot of information about the specific targets and baked the tar-

gets into the executable (e.g., Industroyer 2); in other cases, the malware expected

a specific target (e.g., IP addresses, ASDU Common Address, and specific IOAs)
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Figure 8.2: Overall malicious process for each payload
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but this information was provided via a configuration file read at execution time

(e.g., Industroyer 1’s IEC 104 payload), finally, in some cases the malware did

not have nor expected any information about the target; instead, the malware

executed commands to perform a reconnaissance task to identify potential targets

(e.g., Industroyer 1’s OPC-DA payload).

Blocking. Most payloads prevented a legitimate process from interfering. If

the legitimate control process retains a communications channel with the target,

it can prevent or override any malicious command. Each payload attempts to

avoid this by terminating the legitimate process (e.g., the IEC-104 payload termi-

nates the running SCADA software communication agent) or locking the required

resource within the operating system (e.g., the IEC-101 payload blocks all serial

ports).

Connection. Most payloads use a TCP-based protocol to send malicious

commands to the targets. These payloads create a separate thread to handle each

TCP connection (e.g., IEC-104) or occupy the serial port (IEC-101).

Exploit. In this step, the malware sends malicious commands to devices in

the power grid. Some payloads send specific commands to each target (e.g., the

IEC-61850 payload sends 35 commands to a CSWI). In contrast, others enter an

infinite loop in which they periodically send malicious commands (e.g., the IEC-

104 payload of Industroyer 1 keeps repeating a configurable sequence of commands

forever).

Regardless of the specific payload nuances, the main objective of all payloads

is to change the status of particular circuit breakers controlled by RTUs or IEDs.
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8.3 Malware payloads

To study each payload, we configured the framework according to the necessary

network protocols and modules for the payload to execute correctly. By executing

the payloads in a virtualized, isolated, and controlled environment, we gained

particular insights for each payload. We now summarize our findings for each one

of the payloads.

8.3.1 IEC 101 payload

The IEC 60870-5-101 payload communicates with the target RTU via a serial

port in the compromised host. As shown in Fig. 8.2a, the overall process has three

primary stages: 1 Initialization and configuration, 2 Establishing the commu-

nication and resetting the serial link, and 3 malicious control loop. It uses the

FT1.2 frame format over the serial port to communicate with the target. Figure

8.3 shows the structure of such frames.

Start byte (0x68)

Block length (1 byte)
Block length (copy)
Start byte (copy)

Control field (1 byte)
Address field

Link User Data (ASDU)
Checksum (1 byte)
End byte (0x16)

U
se

r
da

ta

Variable length

Start byte (0x10)

Control field (1 byte)
Address field

Checksum (1 byte)
End byte (0x16)

U
se

r
da

ta

Fixed length

0xE5 / 0xA2
Single control

Figure 8.3: Description of standard frame format FT1.2

This payload requires a configuration file containing the serial port to use, the

remaining ports to occupy, the name of the legitimate process, the RTUs’ Common
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Address, and the target IOA ranges. In the first execution stage, the payload

reads the configuration file, terminates the legitimate process, and occupies the

configured serial ports.

The second stage involves establishing a proper connection with the target

RTU. The payload sends a “Reset link” command encoded in FT 1.2 format to

the RTU through the serial port, re-establishing a clean communications channel

with the target and resetting the send-receive counters related to the IEC-101

protocol.

In the final stage, the payload enters an infinite loop, periodically alternating

between sending a single (C_SC_NA_1) and a double (C_DC_NA_1) command

with the ‘OFF’ value. This payload follows the Select-Before-Operate paradigm

by sending two frames per command, one for selecting the information object and

the other to execute the command.

It then continuously sends an ‘OFF’ value in an attempt to open the circuit

breakers in the target substation. The payload will send a single and a double

command for each circuit breaker in the configured IO range, infinitely iterating

this range. An educated guess as to why attackers alternate between single and

double commands is that they were unsure which type of command the various

IOs in the target substations support; thus, they send both.

8.3.2 IEC 104 payload

This payload requires a configuration file containing several target parameters:

IP addresses, ASDU Common Addresses, IO Address ranges, TCP port, and time-

outs. In addition to these parameters, the attacker can fine-tune the next stage

with additional parameters that control the qualifier of the IEC-104 command,

whether the malware will alternate the value of each command, and the initial
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value to use.

In this first execution stage, the payload reads the configuration file and iden-

tifies all the target RTUs with their corresponding attack parameters. After this,

a second stage involves ending the legitimate connections by terminating the le-

gitimate process, if any. In the third stage, the malware creates a thread for every

target RTU, prepared with all the necessary parameters to establish a connection

with its target and the corresponding attack. Given the configuration, each thread

will vary the actions performed during the malicious loop according to the attack

parameters.

Substation 1: alternate
Substation 2: on
Substation 3: off

Substation 1

Substation 2

Substation 3

Figure 8.4: Differing attacks by IEC 104 in Industroyer 1.

Following the attack configuration, the payload enters an infinite loop in the

final stage. This payload loosely follows the IEC-104 standard in that it only
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sends the minimum necessary messages to communicate with the targets without

strictly following an expected procedure of a legitimate connection. Moreover,

this payload disregards any messages the target sends, continuing the attack even

if the target RTU replies with an error frame. The attack itself varies according

to how the adversary configured it. It can send the same value (ON or OFF)

in every IEC-104 frame or alternate between values. This is the only payload

that allows that level of configuration. All other payloads have a fixed set of

instructions for the circuit breakers: (send repeated open commands, such as IEC

101, or alternate between open and close 36 times as IEC 61850). With the IEC

104 payload, the attacker can select to send continuous open commands (to keep

overriding a manual close command), send repeated close commands, or send an

alternating set of commands (open, followed by close) in an infinite loop.

Overall, the IEC-104 payload had the most advanced configuration file. As

shown in Fig. 8.4, the attacker could create different configurations that allowed

the malware to interact differently with each device and each substation. For

example, it could ask one device in a substation to alternate its status and another

in the same (or a different substation) to remain open.

8.3.3 OPC

The OPC payload of Industroyer 1 aims to find manipulable devices using

known standard COM interfaces and close and immediately open enumerated

circuit breakers to cut off power. Our analysis shows that the malware attacked

the OPC client station by initially retrieving the registered OPC servers in its

Windows registry. It obtains all items in these servers and finally looks for items

with a specific string identifying the targeted circuit breaker. Once it finds those

items, it uses the exact commands to select and execute a disconnection from the
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power grid. As shown in Fig. 8.2c, the execution of the OPC payload is as follows:

1 Initialization and configuration: The OPC module’s entry points call a

single primary function that handles the entire logic of the executable. Without

requiring a configuration file, as some of the other payloads, the OPC payload’s

primary function starts by enumerating all OPC servers in the Windows registry

by looking for the OPC Server 2.0 CATID, a globally unique identifier (GUID)

that distinguishes between types of interfaces.

2 Establishing communication: The payload uses the Component Object

Model (COM) interface IOPCBrowseServerAddressSpace to find locally regis-

tered OPC servers. An OPC group needs to be created for each server to interact

with and manipulate items. The function invokes the IOPCServer::AddGroup

method to achieve this. Then, to enumerate the OPC items in each server, In-

dustroyer 1 leverages the IOPCItemMgt interface.

3 Retrieving OPC items: The payload looks explicitly for items containing

one of the following strings: ctlSelOn, ctlOperOn, ctlSelOff, ctlOperOff, and

stVal. According to ESET [8], these are strings associated with OPC items for

ABB devices, which are used as abstractions of the circuit breakers. During the

server enumeration, the primary function logs the name of each server. Assuming

all the strings are present, the function will begin by logging the name, quality, and

value of \Pos.stVal. The OPC item \Pos.stVal holds the current status of the

circuit breaker, which can have one of four integer values: 0 for intermediate-

state, 1 for off, 2 for on, and 3 for bad-state. The rest of the items are

functions that execute specific commands in the physical breaker.

4 Writing OPC items: The payload uses the IOPCSyncIO interface to write

0x01 bytes to ctlSelOn and ctlperOn to close the circuit breaker the given item

refers to. The module then logs the new values and uses the same interface to
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write 0x01 bytes to ctlSelOff and ctlOperOff, opening the circuit breakers.

The payload retrieves and logs the final status after the last write.

In typical scenarios, to close a circuit breaker (thereby activating it), one must

first select the circuit breaker by sending a 0x01 byte to the ctlSelOn item.

Then execute the task by similarly sending a 0x01 byte to the ctlOperOn item.

To open a circuit breaker (which would be the objective of a malicious actor

trying to cut off power), one would have to send a 0x01 byte to ctlSelOff and

ctlOperOff. Industroyer 1 performs these actions automatically, where the values

of ctlOperOn, ctlOperOff, ctlSelOn and ctlSelOff are overwritten to 1.

The module writes a log file during its operation and prints the status of the

stVal item, which, as we previously mentioned, could represent the resulting circuit

breaker status. The payload logs the values of the stVal item in different stages

of its execution: The initial value is logged under State: Before; The second value

after setting ctlSelOn and ctlOperOn under State: After ON ; and the third value

after setting ctlSelOff and ctlOperOff under State: After OFF. According to

our tests, the logging and value writing will still work in case some items are

missing; however, we believe that the malware requires all of these items to be

present to impact the physical circuit breakers.

8.3.4 IEC-61850 Payload

Industroyer 1 targets MMS, a protocol used to connect with IED devices.

Unlike other protocols, IEC-61850 is deployed within the substations themselves.

Thus, understanding its functionality requires additional insight into the inner

workings of a substation.

Fig. 8.5 illustrates a general IEC 61850 network in a substation. The 61850

payload has three primary stages, as shown in Fig. 8.2b:
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Figure 8.5: A power grid substation network.

1 Initialization and configuration: The payload’s entry point may have a

configuration (.ini) file with a list of target IP addresses. In this stage, the pay-

load reads the configuration file and identifies targets with open port 102 (MMS

service); otherwise, it scans the local network for viable targets.

2 Establishing communication: In this stage, the payload creates an individual

thread for each IP address with an open 102 port to establish the connection and

launch the attack. It sends a TCP connection request and a Connection-Oriented

Transport Protocol (COTP) request. If the target accepts the COTP request, the

malware sends an MMS connection initiation request. The target confirms the

connection initiation by sending an MMS initiation response and establishing a

successful connection.

3 Malicious control loop: In the final stage, the payload enters into a loop of

write requests. The goal of the 61850 payload is to locate the control switches

(CSWIs) exposed by the target. The malware targets these switches and changes

the values of their control variables.
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Devices (IEDs) that support IEC 61850 are typically factory-configured with

data models from the manufacturer. These data models summarize the device’s

capabilities. For instance, if an IED can protect a circuit from over-current, it

will have a logical node named PTOC (a logical node beginning with a “P” means

it is for protection). Similarly, a device with over-voltage protection will have a

logical device named PTOV.

Industroyer 1 uses the command getNameList to find the logical devices of

a given IP address supporting IEC 61850. In particular, Industroyer 1 requests

if the device has logical nodes named CSWI. This logical node is used for control

(logical names starting with “C” means that they are control devices). These

control elements can operate circuit breakers (XCBR), isolators (XSWI), or other

process equipment located in a merging unit in the switchyard (the process level

in Fig. 8.5). Logical node names starting with an “X” means that these devices

are switchgear and are located in the switchyard.

In the analysis of the 61850 payload, we observed that Industroyer 1 tries to

identify the following CSWI objects:

stVal: This variable indicates the status of the CSWI. It can assume several

possible values, among which 0x40 is for position OPEN and 0x80 CLOSED. In

our analysis, we found that any value that is not 0x80 is (incorrectly) considered

as OPEN by Industroyer 1.

ctlModel: Defines the mode in which the CSWI operates. In mode 0, it only

reports its status; in mode 1, it can be controlled directly by a single command;

in mode 2, it is configured with Select Before Operate (SBO), where (for

safety reasons) the switch first needs a select command indicating the intention

to change its status, and only after it receives a second command (operate) it

changes its value. In mode 3, it can be controlled by a single command, and
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the IED confirms that the physical device changed its position as requested (or

not). Finally, in mode 4, the switch is in SBO mode, and in addition, it sends the

confirmation command. We configured the IED server to reply with all of these

possible values but found that Industroyer 1 considered ctlModel replies of 0, 1,

2, or 3 as if the server was configured with a ctlModel of 1 (i.e., Industroyer 1

sends an Operate command without a Select beforehand).

After the initial reconnaissance is completed, Industroyer 1 delivers its ma-

licious commands by sending write requests based on the ctlModel value. If

ctlModel=4, then it sends two write requests: (1) SBO to select the device before

sending Operate command, and (2) Oper to change the control value of CSWI.

For any other value of ctlModel, it sends only one write command, Oper (which,

as we mentioned before, violates the standard). We infer that the machine tar-

geted by Industroyer 1 was only either in a ctlModel mode of 1 or 4, and that

is the reason the malware developers did not create an accurate payload for the

reply if the server replies with a ctlModel of 0, 2, or 3.

Another interesting observation is that the malware sends a sequence of 36

commands, each time alternating the status of the circuit breaker. This repeated

opening and closing of the circuit breaker may be meant to damage the circuit

breaker or associated device (in addition to trying to create a blackout).

8.3.5 Industroyer 2

Unlike its predecessor, Industroyer 2 does not use a custom configuration file

through the command line to determine the targets and nature of the attacks.

Instead, the malware has hard-coded configurations that specify the different tar-

gets. Having the targets hard-coded means the attacker must re-compile the

malware whenever they need to change the attack targets. Moreover, since the
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adversary needs to have this information at compilation time, we assume that

the attackers had prior detailed knowledge about the target infrastructure (IP

addresses of target RTUs and specific IOA addresses of the circuit breakers).

We summarize the overall process in the same four basic steps, shown in

Fig. 8.2e: 1 the malware parses the configuration from the hard-coded strings,

2 it kills the legitimate process and any active connections with the targets,

3 it launches an individual thread for each target RTU, and 4 it executes the

malicious process over a newly established connection with each target RTU.

Upon execution, the malware first checks the command line arguments to

determine the value of two possible arguments: "-t" and "-o".

Including the "-t" flag will set a timed start of the process. If the attacker

includes this argument as part of the command line, the malware will take the

following token in the command line and use it to determine when the process

begins. The minute specified by the parameter determines this time. For instance,

if the adversary runs the malware using the value “-t 40”, the malware will wait

until the next 40th minute in an hour. If the attacker runs the command, say at

02:35, the process will begin at 02:40; if s/he runs it at a minute greater than the

specified, it will wait until the next occurrence of the specified minute within the

following hour. For instance, if s/he runs it at 02:55, the process will begin at

03:40.

As for the second possible argument, the meaning is relatively straightforward;

the "-o" parameter determines the filename of a log file the malware will use to

store the output. If this argument is not specified, the malware prints any output

on the standard output.

As a result of the static analysis we performed on the sample, we determined

that an array of strings comprises this hard-coded configuration, each string con-
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taining the necessary values to execute an attack against a targeted RTU. As an ex-

ample, the configuration string located at offset 0x9818 is u"192.168.122.2 2404

2 0 1 1 PService_PPD.exe 1 \"D:\\OIK\\DevCounter\" 0 1 0 0 1 0 0 8 1104

0 0 0 1 1 1105 0 0 0 1 2 1106 0 0 0 1 3 1107 0 0 0 1 4 1108 0 0 0 1 5

1101 0 0 0 1 6 1102 0 0 0 1 7 1103 0 0 0 1 8 ".

In the sample we analyzed, the malware targets three IP addresses, each with

a specific list of targeted information objects (target circuit breakers). The target

systems exist within at least two subnetworks, one of which could be a subnetwork

with a 23-bit prefix (Fig. 8.6).

10.82.40.105 
ASDU Address: 3 
Target IOAs: 44

192.168.122.2 
ASDU Address: 2

Target IOAs: 8

192.168.121.2 
ASDU Address: 1
Target IOAs: 16

Compromised host 
<Unknown IP address>

Figure 8.6: Targets of Industroyer 2.

Table 8.2 shows the specific targets. We infer the attacker targeted three RTUs

(presumably three different substations). In the first substation, it attempted

to open 16 circuit breakers; in the second substation, it attempted to open 8

circuit breakers; and in the third substation (the largest substation with 44 circuit

breakers), it attempted to open 28 circuit breakers, and then it attempted to

change the status of 16 circuit breakers from open and then to close. Opening

this large amount of circuit breakers in three different transmission substations

can significantly negatively impact the power grid.

Notice that the attacks included always disconnecting the circuit breaker, al-
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Table 8.2: Industroyer 2 configured targets
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192.168.121.2 1 0 0 16 0 16 0 0
192.168.122.2 2 0 0 8 0 8 0 0
10.82.40.105 3 0 0 44 28 16 0 28

ways connecting the circuit breaker, and connecting and disconnecting repeatedly.

This last attack appears similar to the Aurora generator attack [73], where connect

and disconnects can be used to apply maximum torque.

8.4 Malware evolution

Having access to both variants of the malware, used years apart, allowed us

to compare both samples and gain some insights into the evolution of the attack.

Industroyer 1 does not follow the standard in many ways. Not only did it disregard

any incoming packets, but it also did not behave as a legitimate client. Industroyer

2 fixed these issues by following the correct behavior of the standard. While

Industroyer 1 can be detected by monitoring the expected protocol behavior,

Industroyer 2 would bypass this anomaly detection check.

Fig. 8.7 shows the expected behavior of a controlling station in IEC 104. Under

normal circumstances, the controlling station would establish a TCP connection

with the RTU, poll for the existing devices with an interrogation command, and

send keep-alive frames to maintain the connection with the controlled station
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while receiving measurements.

TCP connection

Established

Begin data transmission

Interrogation

Data transmission

Terminate TCP

Timeout T1

STARTDT Timeout T1STOPDT

C_IC_NA_1 (100)

Timeout T1

STOPDT

I/S/U Frame

Timeout T1

STOPDT

I/S/U Frame

C_SC_NA_1 (45)

Figure 8.7: IEC-104 connection behavior. Industroyer 1 (red) does not follow
the expected behavior of a legitimate connection (black).

The behavior of the IEC-104 payload of Industroyer 1 varies from the behav-

ior of its successor. Industroyer 1 skips the interrogation stage, disregards any

incoming frames and begins to send commands after starting the data transmis-

sion at a rate of 2 frames/s in an infinite loop for as long as the process executes.

Industroyer 2, however, follows the standard more closely; not only does it ver-

ify every received frame as a valid IEC-104 frame, but it follows the legitimate

control flow of sending an interrogation command prior to any other interaction

with the controlled station after the data transmission begins, sending commands

at a rate of 0.2 frames/s. Also, Industroyer 2 does not execute indefinitely like

the 104 and 101 payloads (or 36 times in the case of the 61850 payload); it sends

one (or two) commands to the configured targets and gracefully terminates the

connection with the controlled station after sending the malicious commands.

Looking at the evolution of these attacks, we see the attackers constantly

changing tactics in attempts to trip devices. First, Industroyer 1 was a Swiss

army knife to attack the power grid. It was developed without any specific target,
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and it could deal with legacy connections (IEC 101), modern connections (IEC

104), and interoperability systems (OPC). In addition to working on SCADA

computers in a central control room, Industroyer 1 could even be deployed in the

computers at substations (IEC 61850).

In addition, Industroyer 1 was highly configurable. It expected configuration

files telling it how and what to attack. It also attempted a limited reconnais-

sance of potential victim devices. Finally, it had several bugs; most notably, it

did not strictly follow the industrial protocol specifications, and its success may

have depended on how tolerant victim devices were to non-standard industrial

protocols.

Because Industroyer 1 was so adaptive, without the configuration files, we

do not know the targets or the attacks launched (did they open and close the

circuit breakers? Only some of them? Open and then close? etc.) In contrast,

Industroyer 2 was a targeted strike; it did not read any configuration files, so

attackers knew how and what to attack before deploying the malware. It also

only targeted one industrial protocol (instead of four.) Industroyer 2 was also

fairly polished, following the expected behavior defined by the industrial protocol

standards more precisely. These changes might mean that the attackers did not

want to share all their capabilities with the forensic teams and that the malware

was now polished enough to interact with most devices without errors. As time

passes, attack tools may become more polished, and the teams using them will

only use the pieces necessary for the attacks.
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Chapter 9

Extending the framework

A honeypot is an imitation information system designed to mimic genuine

network services. Its purpose is to trick potential attackers into engaging with it,

capturing and recording each interaction. This collected data helps researchers

better understand and analyze attacker behavior.

To gather information about novel threats to ICS, honeypots can be used

to identify new attack patterns to help us prepare better protections. The first

ICS honeypots, such as the SCADA HoneyNet Project [47], were initial efforts to

provide low-interaction simulations limited to one or two network protocols com-

monly used in Industrial Control. Newer ICS honeypots such as HoneyPLC [38]

extended previous work to offer a high-interaction environment and support for

more ICS protocols and devices.

Developing general-purpose ICS honeynets presents numerous challenges due

to the diverse range of vendors, industrial protocols, physical processes, control

devices, and functionalities involved. Previous efforts have grappled with accu-

rately replicating the varied nature of these systems while maintaining a realistic

environment. By expanding our framework, we have introduced a cutting-edge

hybrid-interaction honeynet that represents a significant advancement in the field
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of ICS honeynets. Leveraging our framework’s modular architecture, we seam-

lessly integrate additional high-fidelity physical process simulations, industrial

control protocols, and precise device fingerprints through a profile engine.

9.1 Interaction levels

Low-Interaction. Low-interaction honeypots are a type of cybersecurity re-

source that provides adversaries with minimal functionalities. Typically, they are

implemented using uncomplicated scripts. These honeypots offer two distinct ad-

vantages: they are easier to develop and maintain, and their limited functionalities

pose a lower risk of adversaries gaining control over them. However, the primary

drawback is that adversaries may abandon their attack before realizing they are

interacting with a deceptive resource.

High-Interaction High-interaction honeypots are designed to simulate inter-

actions that closely mimic those of a natural system [3]. They can be implemented

using genuine devices or through software emulation, such as virtualization. In the

context of ICS, high-interaction honeypots excel at simulating attacks in a highly

realistic setting compared to low-interaction honeypots. This is made possible by

their ability to provide a higher fidelity in simulating physical processes, thereby

creating a more authentic environment for analyzing and responding to potential

threats.

High-interaction honeypots, while offering advanced interaction capabilities,

come with notable drawbacks. Firstly, their deployment and maintenance ex-

penses are quite high. Secondly, there is a substantial risk of an adversary taking

control. The considerable freedom provided by high-interaction honeypots could

be exploited by an adversary to commandeer the honeypot, lock out the ad-

ministrator, and utilize the honeypot to establish a foothold in the network [68].
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Despite their superior interaction capabilities, caution is advised when using high-

interaction honeypots due to the significant risk of adversary takeover.

Hybrid-Interaction Hybrid-interaction honeynets combine the advantages

of both low and high-interaction honeypots, as referenced in [13, 17]. A key ad-

vantage of these hybrid-interaction honeynets is their flexibility. They enable the

integration of multiple types of honeypots within the same honeynet, allowing for

a mix-and-match approach to meet the specific honeynet requirements. Moreover,

the administrator of a hybrid-interaction honeynet has the ability to manage the

level of adversary takeover risk they are willing to assume. By substituting high-

interaction honeypots with low-interaction ones, they can effectively reduce the

takeover risk. Our goal is to implement these functionalities into our framework.

9.2 Framework enhancements

The principal objective of our enhancement, as illustrated in Figure 9.1a, is to

provide the attacker with a comprehensive virtual network accessible through a

single network interface (as denoted by "1"). We deliberately refrain from making

assumptions about the characteristics of the communication channel between this

network interface and the attacker. Within this network, the attacker should have

the capability to engage with any accessible simulation nodes, and the quality

of this interaction must be sufficiently realistic to convince the attacker that it

mirrors a legitimate industrial control network.

With the aim of achieving this objective, we establish a link between the

network interface of a simulation host, accessible to the attacker, and a virtual

switch (indicated as "2"). This linkage provides the attacker with the ability to

engage with any simulated hosts connected to this virtual switch. Each of these

simulated hosts functions as a representation of a node with a specific role in the
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Figure 9.1: Framework enhancements toward honeypot functionalities.

simulation, such as a Programmable Logic Controller (PLC), a Human-Machine

Interface (HMI), a node simulating a physical process, or any other pertinent node

within the simulated scenario.

The central design concept of our enhancement prioritizes adaptability. Each

simulated node generates a device handler, which oversees the device module and

the industrial protocol listeners (3). The device module encompasses specific con-
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trol logic for the scenario, a memory mapping that imitates an actual device, and

a synchronization mechanism utilized to interact with the physical process simu-

lation (4). The handler serves as a bridge, connecting the device simulation with

the industrial control protocol modules and enabling any actor within the same

network to engage with the simulated device through the appropriate protocols

(5).

These recent improvements have expanded the capabilities of simulating di-

verse industrial control scenarios. In each scenario, a configuration file is utilized

to define the network structure, device specifications, and the necessary modules.

For every device, it is essential to outline 1) network connections, 2) virtual device

details (such as manufacturer, model, and device name), 3) the specific industrial

control module to be activated, and 4) the industrial control protocols to be ac-

commodated. However, one limitation of this approach is that in the event of

a malicious actor conducting reconnaissance activities on the simulated network,

they might still be able to identify the simulated devices as the host operating

system.

One significant limitation arises from the current OS detection techniques.

When using network scanners, they scrutinize the comprehensive network behav-

ior of a specific device to pinpoint particular indicators that suggest a specific

operating system. However, an issue often arises with honeypots, as they inadver-

tently reveal the characteristics of the genuine operating system instead of those

intended for the emulated device.

In order to outsmart an attacker and bypass any detection methods that are

used to identify the operating system being run, we need to start by creating a

custom network profile for each device we want to mimic. There are two key

elements to these device profiles: the open ports and their associated protocols,
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such as the TCP port 80 for HTTP, and the overall network behavior of the

device, including TCP options. To achieve this, we use a fingerprint proxy (refer

to Figure 9.1b) to showcase these aspects of the simulated devices to the attacker.

This specialized proxy is designed to precisely emulate the network behavior

of a specific device, provided its fingerprint is stored in the database. It serves as

a protective barrier, shielding the simulated devices from potential attacks. Ad-

ditionally, we configure the proxy to intelligently reroute incoming connections to

designated industrial control ports, ensuring seamless interaction with the simu-

lated physical processes.

9.3 Physical process simulation and control

For simulating the physical process, we provide two alternative mechanisms.

The first option involves utilizing a virtual device and configuring the virtual

network topology to ensure that this particular node is completely isolated from

any potential interactions with attackers. The second option relies on an external

simulator and entails isolating a secondary network interface within the host,

serving as the simulation node, with dedicated access to the external simulator.

Now that we have integrated a fingerprint proxy, we have the option to in-

troduce a physical simulation node into the network. Alternatively, we could

establish a connection for a secondary network interface to the internal switch,

effectively preventing the attacker from gaining direct access.

Factory I/O serves as an external simulator, designed as a Next Generation

PLC trainer, to offer industrial scenarios and customizable features. It replicates

physical processes in what they refer to as a “scene”, and grants access to virtual

sensors and actuators that actively impact the simulation. Our interface with this

simulator leverages its built-in Modbus support to retrieve or modify sensor and
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actuator values.

We have developed a configurable simulated Programmable Logic Controller

(PLC) to manage various scenarios. This simulated PLC communicates with Fac-

tory I/O using the Modbus protocol. It continuously monitors the current status

of the simulation and executes appropriate control logic based on the simulated

system’s physical characteristics. The device maintains local state in a simulated

memory mapping designed to align with standard industrial control protocols.

This mapping consists of four 64K addressable memory blocks, each containing

pairs of boolean and 16-bit data values organized in distinct read-only and read-

write blocks. This setup allows for the storage of 64K read-only boolean values,

64K read-write boolean values, 64K read-only 16-bit data, and 64K read-write

16-bit data.

We have designed this memory mapping to seamlessly use standard industrial

control protocols. For example, if the PLC we want to simulate uses Modbus, then

the memory mapping will correspond to Modbus’ Discrete Inputs (boolean read-

only), Coils (boolean read-write), Input Registers (16-bit read-only), and Holding

Registers (16-bit read-write). This mapping is compatible with IEC-104, but the

difference is that instead of memory addresses, IEC-104 uses Information Object

Addresses (IOA). In this case, the device determines the specific memory mapping

it needs to access by the given IEC-104 message and IOA. As an example, the

"Single/Double command" in IEC-104 would access boolean read-write memory

regions, while "Single-point information" would access either the read-only or read-

write boolean mappings.

In conjunction with the physical simulation, we have introduced an additional

element to the network in the form of an HMI (Human-Machine Interface) tailored

to each simulated scenario. FUXA, an open-source HMI and SCADA dashboard,
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is employed to deploy these HMIs. This HMI functions as a point of communica-

tion with our simulated devices, mimicking its interaction with genuine industrial

control devices. With the augmented capabilities of the HMI, each scenario offers

a comprehensive overview of the simulated process, furnishing the attacker with

an array of interaction options.

9.4 Honeypot evaluation

Our goal was to compare the effectiveness of a simulated scenario with actual

devices in a physical testbed. We gathered fingerprints from real industrial control

devices and compared the detection accuracy of network scanners between the real

and simulated devices. The output of each scan includes a predicted Operating

System and a confidence percentage. Since multiple scans were performed on each

device, we also analyzed the frequency of each pair (OS, Confidence) for both the

real devices and the simulations. Our objective was to assess the accuracy of

standard scanning tools in identifying ICS devices through our own fingerprint

extraction. To achieve this, we used the frequency of correct OS detection per

device and normalized the results.

Table 9.1 summarizes our results. OS detection performs well for the actual

scanned devices, achieving high percentages in seven of the nine ICS equipment

evaluated; furthermore, performance improves for our framework, getting over

80% OS prediction confidence for eight of the nine devices. Our approach identifies

Industrial Devices as frequently as a person with access to the actual device would

find for all the studied real scanned ICS devices, except Allen-Bradley ENBT/A.

There are two real devices with low detection values: Siemens 200sp and Allen-

Bradley Micrologix 1400. Similarly, our simulated Allen-Bradley ENBT/A scan

identification results are below 50%. In an ideal scenario, scan fingerprinting
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Table 9.1: OS Detection confidence comparison

Device Real Simulation
Allen-Bradley ENBT/A 100 40

Micrologix 1400 36 100
Mguard RS4004 100 100

MOXA EDS-405A 86 100
NI-Crio-9024 100 100
NI-Crio-9068 100 100

Siemens 200sp 10 80
Siemens S7-1500 100 100
Siemens S7-1200 100 100

would allow for exact host identification. However, in practice, there are mul-

tiple fingerprints that map to a single device, or a single fingerprint that maps

to numerous operating systems. Our main hypothesis for the low identification

of Siemens 200sp, Micrologix 1400, and virtual Allen-Bradley ENBT/A is that

the values found in our extracted fingerprints are very similar to those of other

OS. We are encountering the scenario where one fingerprint maps to multiple de-

vices, causing scanners to place high bets on different devices given the conflicting

fingerprints. Embedded systems are especially prone to this type of error since

third-party vendors often sell their system architecture and firmware to various

companies.

As for the physical simulation, we configured our framework with an appro-

priate network topology to follow the defined threat model, in which the attacker

can communicate with the target PLC devices via the fingerprint proxy. This

configuration lets the attacker interact with the simulated PLC devices as if they

were in the same virtual switch (Figure 9.2a).

Since the attacker can communicate with the simulated devices, they have to

issue an appropriate command to modify the physical synchronization compo-

nent, constantly assert the sensor data from the physical simulation, updating the
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Figure 9.2: Water tank attack.

memory map sensor values. The new actuator values from the memory map are

updated to the simulated holding register, where the PLC stores the target value.

From the viewpoint of the framework’s implementation, the protocol listener

handles the Modbus connection, accepts the command if the address is within the

read-write memory mapping, and modifies the value as requested. Concurrently,

the control logic constantly runs a control loop that reads the sensor data, runs the
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control logic, and adjusts the actuator values as needed. In addition, the physical

synchronization component constantly reads the sensor data from the physical

simulation, updates the memory map sensor values, asserts the new actuator

values from the memory map, and updates them within the physical simulation.

Figure 9.2a shows the attack flow. 1 The attacker sends the Modbus command

to the simulated PLC. 2 The Protocol Listener receives the command, updating

the memory map and forcing the control logic to make the necessary changes.

3 The Physical Synchronization component reads the new actuator values due

to the memory map updates and, subsequently, 4 sends them to the physical

simulation, which is ultimately affected by the attack.

To corroborate whether the attack was successful, the attacker must acquire

some relevant sensor data from a physical source that should be affected by the

intended attack. Since sensor data in a PLC is read-only, the attacker must send

a command to retrieve this information from either a discrete input, in the case of

boolean sensors, or an input register. Since the corresponding sensor values in our

chosen scenarios are not discrete, the attacker sends the Modbus command Read

input register targeting the sensor address that stores the relevant value. In this

case, the Protocol Listener accepts the command and returns the current values

from the memory map to the attacker.

Our attack aims to disrupt the process that requires a specific water level in the

tank by attempting to empty the tank. The attacker must send a zero value to the

holding register that stores the set point to accomplish this goal. After executing

the attack as described above, we observed the behavior of the water level in the

tank, shown in Figure 9.2b. Before the attack, the control logic was kept stable,

as the process required. When the malicious command modifies the Set Point

in the memory map, the level decreases to a value close to zero, disrupting the
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process.

In summary, our high-fidelity physical process integration with Factory I/O

allows an attacker to see the changes to the physical system under control, pro-

viding a comprehensive hybrid-interaction honeypot. Our modular design can

enable future researchers to extend our simulations to several other physical pro-

cesses. Factory I/O allows designers to create essentially digital twins based on

the sensors and actuators it supports.
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Chapter 10

Discussion and Conclusion

10.1 Discussion

10.1.1 Lessons learned

In this study, we wanted to evaluate different mechanisms researchers can

use for a variety of purposes involving cyber-physical systems. Testing theoretical

attacks, countermeasures, or even deploying an existing malware. These tasks can

be dangerous in many scenarios involving this kind of system. Unsurprisingly, the

requirements and restrictions for the simulations rise from the intended purpose.

After conducting the various evaluations of the main scenarios we wanted to

study, there is a pattern for this kind of research. As an overall methodology, we

identify the following steps when dealing with any virtualization attempt:

1. Clarify the simulation objective. While there are several simulation mech-

anisms for any given system, the goal of the simulation might not be ap-

propriate for the existing environment. With a clear understanding of the

goal, one can ascertain whether a specific tool or module is useful to con-

ducting the virtualization. For instance, several of the existing simulation
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environments prior to this work were not suitable for studying the malware

samples.

2. Evaluate the constraints and restrictions imposed by both the real system

and the goal. The simulated environment must accommodate any specific

restrictions associated with the intent. As an example, the malware samples

we studied required specific conditions and network protocols to properly

display their behavior.

3. Isolate the environment. Needless to say, when conducting security research

in a virtualized environment, particularly when handling malware, it is es-

sential to avoid exposing any other network to potentially malicious or haz-

ardous network traffic.

4. Identify anomalies. Any anomalous behavior observed during the execution

of the virtualized scenario provides additional insights to refine the virtual-

ization, enhancing its capabilities.

With our study, we learned that using virtualized systems is not only a viable

way to replicate cyber-physical systems, but also a recommended practice. We

were able to build reasonable abstractions of real world systems in various virtu-

alized environments, contrasting their behavior with their physical counterparts,

determining the feasibility of using such systems as research tools. Both attack

and defense stratagems can be studied with this approach.

The primary and fundamental aspect of the simulation that represented most

of the success was one: reliable and compliant protocol modules. Cyber-physical

systems use a plethora of network protocols, some of which are proprietary. A

faithful reproduction of such protocols proved to be instrumental to the success

of this study.
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10.1.2 Safety, security, and other ethical concerns

Throughout this study we worked both with physical devices and known ma-

licious software. The very nature of our study revolves around mechanisms to

safely test ideas and scenarios involving hazardous conditions of physical systems,

and proper solutions to effectively isolate any malicious execution from the world.

With regards to the drone attacks. All the real-world tests we performed

were under strictly controlled conditions. The drone was never flown beyond two

meters above ground, and any attacks limited the horizontal speed of the drone to

half a meter per second. These constraints prevented any harmful consequences

while testing our attacks against the device. As for the specific GPS attacks,

we abstained from testing these attacks in the real world, for we had no way to

restrict the attack to specifically target the drone, showcasing the importance of

a simulation environment.

Any proof of concept we developed involving malicious actions were only exe-

cuted in the isolated environment and no public disclosure of these artifacts was

made to avoid potential malfeasance by third-parties. The attacks were purely

theoretical in nature, but can represent a real threat to the targeted systems.

Thus, we only evaluated the feasibility in the virtualized scenario.

Finally, the entire analysis conducted over the malware samples was carefully

controlled, avoiding the dissemination of the malicious artifact, and preventing

any malicious network traffic from ever leaving the virtualized environment. We

also need to clarify that one of the malware samples has been made publicly

available by a third party (The Industroyer 2 sample.)
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10.2 Conclusion

In this study we showcased several ways in which researchers can leverage the

advantages of virtualized systems to conduct cyber-security research over cyber-

physical systems. In particular, we develop an extensible emulation framework

realistic enough to fool a real-world malware sample. We also present the results

of the first in-depth analysis of a known malware developed by a nation-state

actor, showcasing previously unknown insights revealed by our unique approach.

By leveraging virtualized environments, we were able to test several approaches

to cyber-security research. From new conceptual attacks to potential defense

mechanisms, virtualized systems are a practical tool to evaluate these approaches

without risking the operational integrity of the physical processes involving the

studied cyber-physical systems.
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