
UCLA
UCLA Electronic Theses and Dissertations

Title
Predictive Optimization of Pharmaceutical Efficacy

Permalink
https://escholarship.org/uc/item/9jg419jn

Author
Wang, Hann

Publication Date
2014
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9jg419jn
https://escholarship.org
http://www.cdlib.org/


University of California

Los Angeles

Predictive Optimization of Pharmeceutical

Efficacy

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Mechanical Engineering

by

Hann Wang

2014



c© Copyright by

Hann Wang

2014



Abstract of the Dissertation

Predictive Optimization of Pharmeceutical

Efficacy

by

Hann Wang

Doctor of Philosophy in Mechanical Engineering

University of California, Los Angeles, 2014

Professor Chih-Ming Ho, Chair

Drug combinations significantly expanded the opportunity space of druggable

genome in cancer therapeutics, but the discovery of novel combinations is still

limited by the capacity of our current drug screening technology. To address the

challenge, we introduced a data-driven search method called the Predictive Opti-

mization of Pharmaceutical Efficacy, or PROPHECY, for the selection of drugs in

combinatorial cancer therapeutics. The user provides the genetic profile, of cancer

cell lines or primary cells, and PROPHECY will select optimal drug combinations

from a comprehensive list of drugs to meet clinical objectives. The decision mak-

ing is accomplished by in silico drug screening in which the sensitivities of a cell

on different drug combinations are ranked. The predictive model of sensitivity

is trained to recognize signatures of information spread in the protein-protein in-

teraction network. Once a comprehensive dataset of drug screening experiment

is supplied, the computer could automatically learn interactions between drug

targets and disease genes in the information signatures, and infer sensitivity for

unseen drug and cell line pairs. We showed that the prediction have high correla-

tion with experimental data by cross validation performed on a dataset of 40,000

entries, which represents 100 cancer drugs applied on 450 cell lines. We also veri-

fied the applicability of PROPHECY by performing an in vitro experiment with 36
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two drug pairs suggested by the program and a panel of 6 cell lines. PROPHECY

not only predicted the sensitivity with high accuracy, but also discovered novel

high efficacy combinations and reproduced existing drug combinations. Unlike

currently predominant approach of reductionistic drug development, the predic-

tion of drug efficacy is based on network view of proteomic scale data, so can

accurately reflect modular activity of the proteome and elucidate target gene in-

teractions in de novo drug combinations.

iii



The dissertation of Hann Wang is approved.

Pei-Yu Chiou

Yong Chen

Ren Sun

Chih-Ming Ho, Committee Chair

University of California, Los Angeles

2014

iv



To my parents . . .

who—among so many other things—

retained my curiosity and joy of research by never forcing me to study

v



Table of Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Selection of Combination Drugs . . . . . . . . . . . . . . . . . . . 4

1.2.1 Key advantages of combination drugs . . . . . . . . . . . . 4

1.2.2 Difficulty of identifying and optimizing a combination drug 5

1.2.3 Approaches for combination drug optimization . . . . . . . 6

1.3 Prediction of drug response . . . . . . . . . . . . . . . . . . . . . 10

1.3.1 Feature Selection . . . . . . . . . . . . . . . . . . . . . . . 10

1.3.2 Model fitting Algorithm . . . . . . . . . . . . . . . . . . . 12

1.4 Network medicine and network pharmacology . . . . . . . . . . . 13

1.4.1 Protein-Protein interaction network . . . . . . . . . . . . . 14

1.4.2 Network-based tools for the prediction of disease genes . . 15

1.4.3 Network tolerance study . . . . . . . . . . . . . . . . . . . 16

1.5 Measurement of Combination efficacy . . . . . . . . . . . . . . . . 17

2 Tumor Biology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.1 The evolutionary process of cancer . . . . . . . . . . . . . . . . . 22

2.2 Cancer genes and the growth advantage they convey . . . . . . . . 22

2.3 Somatic mutations of cancer cells . . . . . . . . . . . . . . . . . . 23

2.4 Nonlinear effect of mutations . . . . . . . . . . . . . . . . . . . . . 23

2.5 Epigenetic landscape . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.6 External and internal perturbation . . . . . . . . . . . . . . . . . 27

vi



2.6.1 Trade-off of information, limitations . . . . . . . . . . . . . 27

2.6.2 Network diffusion to mimic the convergence of cancer attractor 28

2.6.3 Navigating the cancer attractors . . . . . . . . . . . . . . . 29

3 Framework of PROPHECY . . . . . . . . . . . . . . . . . . . . . . 31

3.1 Systems overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 Screening database . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3 Drug Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4 Disease Gene Database . . . . . . . . . . . . . . . . . . . . . . . . 38

3.5 Network Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.6 Predictor Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.7 Transformation of dependent variable . . . . . . . . . . . . . . . . 40

3.8 Decomposition in machine learning . . . . . . . . . . . . . . . . . 40

4 Graphs and Network diffusion . . . . . . . . . . . . . . . . . . . . 43

4.1 Network metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.1.1 Degree centrality . . . . . . . . . . . . . . . . . . . . . . . 44

4.1.2 Betweenness centrality . . . . . . . . . . . . . . . . . . . . 45

4.1.3 Bridging centrality . . . . . . . . . . . . . . . . . . . . . . 45

4.2 Diffusion of information in the network . . . . . . . . . . . . . . . 46

4.2.1 Diffusion kernel . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2.2 PageRank . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.3 Spectral clustering of data points in different sets of feature space 50

4.4 Spectral clustering . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.4.1 Comparing the similarity of two hierarchical clusters . . . 52

vii



5 Regression Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.1 Assemblage of design matrix from network metrices . . . . . . . . 54

5.2 Gaussian process . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.2.1 Prediction with noisy observations . . . . . . . . . . . . . 55

5.3 Transformation for better fitting . . . . . . . . . . . . . . . . . . . 57

5.3.1 The mean and variance of prediction . . . . . . . . . . . . 57

6 Integration of Databases . . . . . . . . . . . . . . . . . . . . . . . . 59

6.1 STRING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.2 STITCH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.3 Cancer Cell Line Encyclopedia (CCLE) . . . . . . . . . . . . . . . 62

6.4 Genomics of Drug Sensitivity in Cancer (GDSC) of the COSMIC

database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.5 Mapping of data across databases . . . . . . . . . . . . . . . . . . 63

7 Result and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 66

7.1 Spectral clustering showed network diffusion signature as a powerful

observable for classification . . . . . . . . . . . . . . . . . . . . . . 67

7.2 Analysis of the quality of the sensitivity model . . . . . . . . . . . 73

7.2.1 Cross validation on the single drug dataset . . . . . . . . . 73

7.2.2 Compare information gain by predictors: PageRank vs Gene

scores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

7.2.3 Learning rate of PROPHECY . . . . . . . . . . . . . . . . 77

7.2.4 Compare the intragroup correlation between regression meth-

ods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

viii



7.2.5 Reciever operating characteristics curves by different pre-

dictors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

7.3 Experimental verification of PROPHECY, a two drug combination

verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

7.3.1 Design of experiment . . . . . . . . . . . . . . . . . . . . . 85

7.3.2 Result of the two drug experiment . . . . . . . . . . . . . . 86

A Dose response of the 2 drug combinations experiment . . . . . 95

B Specifications in Prophecy . . . . . . . . . . . . . . . . . . . . . . . 102

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

ix



List of Figures

1.1 The complexity of predictive models. . . . . . . . . . . . . . . . . 11

1.2 Venn diagram showing the expansion of target space . . . . . . . 16

2.1 Difference between gene centric and network centric predictors . . 29

3.1 Predictive Module of PROPHECY. . . . . . . . . . . . . . . . . . 32

3.2 The block diagram of PROPHECY. . . . . . . . . . . . . . . . . . 41

6.1 Sample query of the P53 gene from the STRING database . . . . 60

6.2 Sample query of doxorubicin from the STITCH database . . . . . 65

7.1 Hierarchical clustering of cell lines based on the similarity matrix

of the Euclidean distance in drug sensitivity between each cell lines. 69

7.2 Hierarchical clustering of cell lines based on the Euclidean distance

of cell lines in the feature space of gene expression level . . . . . . 70

7.3 Hierarchical clustering of cell lines based on the Euclidean distance

of cell lines in the feature space of PageRank . . . . . . . . . . . . 71

7.4 Bk versus the number of clusters, k . . . . . . . . . . . . . . . . . 72

7.5 Correlation plot of the result of 3 fold cross validation of the Gaus-

sian process predictor, k. . . . . . . . . . . . . . . . . . . . . . . . 75

7.6 Box plot of the Pearson correlation coefficient of the result of cross

validation from the PageRank model and the gene score model . . 76

7.7 Number of randomized training point, Nt vs the Pearson correlation

coefficient, R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

7.8 Number of randomized training point, Nt vs the Pearson correlation

coefficient, R on a semilog scale . . . . . . . . . . . . . . . . . . . 79

x



7.9 Histogram of correlation coefficient as separated by cell lines with

PCA regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

7.10 Histogram of correlation coefficient as separated by cell lines with

Gaussian Process regression . . . . . . . . . . . . . . . . . . . . . 81

7.11 Histogram of correlation coefficient for each cell line as calculated

with a profile of drugs by Gaussian Process regression . . . . . . . 82

7.12 The reciever operating characteristics curve with different predic-

tors trained by the Gaussian process model . . . . . . . . . . . . . 84

7.13 Bargraph comparison of 2 drug combination experiment of MDA-

MB-231 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

7.14 Bargraph comparison of 2 drug combination experiment of MDA-

MB-468 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

7.15 Bargraph comparison of 2 drug combination experiment of KG1 . 88

7.16 Bargraph comparison of 2 drug combination experiment of K562 . 89

7.17 Bargraph comparison of 2 drug combination experiment of A549 . 89

7.18 Bargraph comparison of 2 drug combination experiment of NCIH522 90

7.19 Correlation plot of the prediction versus output of 2 drug combi-

nation experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

A.1 Dose response of MDA-MB-231 . . . . . . . . . . . . . . . . . . . 96

A.2 Dose response of MDA-MB-468 . . . . . . . . . . . . . . . . . . . 97

A.3 Dose response of KG1 . . . . . . . . . . . . . . . . . . . . . . . . 98

A.4 Dose response of K562 . . . . . . . . . . . . . . . . . . . . . . . . 99

A.5 Dose response of A549 . . . . . . . . . . . . . . . . . . . . . . . . 100

A.6 Dose response of H522 . . . . . . . . . . . . . . . . . . . . . . . . 101

xi



List of Tables

7.1 2 drug combinations applied on breast cancer cell lines . . . . . . 92

7.2 2 drug combinations applied on leukemia cell lines . . . . . . . . . 93

7.3 2 drug combinations applied on lung cancer cell lines . . . . . . . 94

B.1 List of cell lines trained in Prophecy . . . . . . . . . . . . . . . . 102

B.2 List of drugs trained in Prophecy . . . . . . . . . . . . . . . . . . 119

xii



Acknowledgments

I would like to thank my advisor Prof. Chih-Ming Ho by introducing me the

exciting field of combination therapy, and the continual support and guidance he

gave me throughout my years at UCLA. I am especially blessed with the freedom

Prof.Ho offered us to explore new frontier in science and engineering, and the

encouragement he gave us to foster truely original research. I would like to thank

the members of my committee, Prof. Benjamin Wu, Prof. Ren Sun, Prof. Yong

Chen, and Prof. Pei-Yu Chiou for their friendly guidance, thought-provoking

suggestions, collegiality each of them offered to me over the years and for their

extreme patience in the face of numerous obstacles. I would like to give special

thanks to the PROPHECY team member Thet Phyo Wei, Athena Huang, Meng-

Huan Wu, Alejandro Schuler, Bryan Lee, Jing-Yao Chen, and Zhao Yang, this

project would not had been as fruitful if not for the inspiration that spark from

our endless discussion and dedication they put into making things happen. I

would like to thank my fellow doctoral students for their support, feedback, and

friendship.

xiii



Vita

2002–2006 B.S.E., Mechanical Engineering Department, National Taiwan

University.

2008–2010 M.S.E., Mechanical Engineering Department, Johns Hopkins

University.

2010–present Graduate Student Researcher, Mechanical and Aerospace En-

gineering Department, UCLA.

Publications

Hann Wang, Aleidy Silva, and Chih-Ming Ho. ”When Medicine Meets Engineer-

ing Paradigm Shifts in Diagnostics and Therapeutics.”

xiv



CHAPTER 1

Introduction

1.1 Overview

In recent years, biology has under gone a major make over, especially as our

technologies for data collection became faster and more high-throughput, and our

computational power has grown exponentially in the past decade. New method

needs to be introduced in order to tackle this explosion of information. Biologist

today can no longer rely on simple over the counter software to solve the problem

at hand. As we are crossing the ”Excel barrier”, meaning that the number of rows

of data that we need to process exceed the capacity of excel, more sophisticated

tools need to be used.

The main theme of this dissertation is to provide a method to process the

massive amount of biological data we have now and to generate knowlege au-

tomatically. The original idea here came from my first two years of experience

working on the optimization of combination drugs. During these two years, I

worked on feedback systems control (FSC), a platform technology for dosage op-

timization of combination therapy invented by Prof. Chih-Ming Ho. [WYS08]

FSC integrates experimental design and model fitting method to guide the search

for optimal dosage in a multidimensional dose response surface. The technology

allows the rapid search of optimal dosing of 5 to 15 drugs, and can avoid bruit

force experiment which requires millions of experiment to test all possible dosages.

Despite FSC is a robust and quantitative way for a multi drug design, the selection
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of the initial drug library still relies on knowledge and experience of pharmacolo-

gist and physicians. Knowledge-based techniques for drug search has historically

been an important mean to gain insight into the underlying mechanism, and made

important contributions to our understanding of biology. However, in view of the

real size of the possible drug combinations that can be generated from existing

drugs and chemicals, knowledge based approach for drug selection will be biased

toward existing biomedical practices. Furthermore, the number of possible path-

ways and pathway crosstalks needs to be considered in a complex network system

is beyond the grasp of human brain. Thus, a computational method that can ex-

tract meaningful information and quantitatively guide the drug selection process

is highly desirable.

To construct a small scale library of 5 to 10 drugs from hundred and thousands

of chemicals, we developed a computational screening method called Predictive

Optimization of Pharmaceutical Efficacy, or the PROPHECY, which took advan-

tage of the currently available public genomic and proteomic data to accelerate

the selection process. The selection of combination drugs is based on ranking of

the predicted sensitivity, which is infered from the mutation profile of the cell

being treated and the target set of the drug combination.

The inference of sensitivity is based on a statistical model trained with machine

learning methods in a process very similar to the training of an email spam filter.

To construct a email spam filter, the computer has to be exposed to a large amount

of email samples and the machine learning algorithm will figure out a statistical

model that best describe what is a spam. In our case, we need to aggregate a large

amount of training cases of dose response experiment in order for the computer to

find out the mapping between the input, which is mutation profile of the diseased

cell and target set of combination drugs, and the output, the sensitivity of the

cell toward the combination. The data is aggregated from a number of publicly

available databases, which includes data for the genomic profiles of the cell lines,
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drug-target information, dose response dataset, and protein protein interaction

network. One key finding in our inference process is the use of diffusion signature

in the network, which can greatly enhance the accuracy of the statistical model.

The dissertation is divided into 7 chapters. In chapter 1, we gave a general

overview of the project, and then review the key concepts in the literature that

have inspired the work and laid down the ground work. In chapter 2, we intro-

duced the basics of tumor biology and a flavor of post Darwinian biology, which

is a convinient mental instrument to guide the thinking process. In chapter 3, we

provided the complete framework of PROPHECY, and all things considered in

the algorithms is given unambigously in mathematical formula. In chapter 4, we

discussed graphs and networks and how the network signature is extracted. In

chapter 5, we discussed the regression methods that used to build the machine

learning model. In chapter 6, we examined the data that were extracted from

the databases, and specifically the way we assembled the data. In chapter 7, we

provided a full proof of the model by both numerical and physical experiment.

The network signature’s specificity in classification was demonstrated by cluster-

ing method. We then provided detailed characterization on the quality of the

regression result. Finally, we discussed a physical drug combination experiment

that provided solid evidence of the discerning power of PROPHECY.

In this chapter, we began by reviewing existing methods for drug combination

selection that attack the problem from different angles. We hope that through

exposing readers from these different views we can help the reader understand the

complexity involved in combinatorial drug selection and also the various assump-

tions made on the inception of the works. We then briefly review a few methods

that were used to make predictions on drug response. Finally, we will introduce

the concept in network medicine and pharmacology, a booming field that provide

a wealth of novel idea that inspired many aspects of this project.
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1.2 Selection of Combination Drugs

The predominant strategy in curing cancer is to eliminate as many cancer cells as

possible, while sparing normal cell in the human body. However, the traditional

chemotherapy attacks regular bioprocesses which also exist in regular cells, ex-

ploiting only the fact that the cancer cells divide more rapidly. So, the toxicity

profile for chemotherapy is usually hard to manage. After 70th when biologi-

cals gradually became practical, there immerge many novel targeted therapeutics

which target the proteins that only expressed in cancer cell. However, targeted

therapy only gain limited success in treating cancer, mainly due to the redundancy

and robustness present in the cellular network. So, in order to better regulate

the complex biological system, combination therapy, a neo-classic approach that

reimagine the possibility of mixing chemicals, gradually regain momentum as re-

searchers discover that multiple perturbation is more likely to better regulate the

underlying system.

1.2.1 Key advantages of combination drugs

Combination is more selective toward cancer cell Recent studies on net-

work theory suggested that multiple weak hits can disrupt the signal transduction

of the network and can more effectively damage the integrity of the complex sys-

tem, and systems biology studies on yeast and E. coli network supported the

result. [ACP05] Researchers also found that two drug combinations will have

the potential to induce ”synthetic lethality” in cancer. Synthetic lethality is the

sensitization of cancer cells by inhibiting two genes which are essential to the

growth advantage of cancer cells but non-essential in the physiology of regular

cells. [Kae05]
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Combination therapy can solve the crisis of target depletion The cur-

rent preclinical cost of developing a new drug is 1.5 billion dollars. The R&D

cost of the pharmaceutical industry has grown exponentially, but the number of

the approval from FDA remains constant. [Mun09] We argue that the surging

cost came partially due to the fact that new therapeutic target has come to a de-

pletion after the human genome project. Nearly all druggable targets have been

discovered. [OAH06] However, facing the new situation of target depletion, the

current industry still respond it with the old thinking of targeted therapy. More

high-throughput experiment was wasted, exploiting the same mechanism because

each chemical has its own defined target. One obvious way to solve this crisis is to

introduce the thinking of combination therapy. So, a single target of intervention

can be evolved to multiple target and thus introduce a larger possibility space for

perturbation.

1.2.2 Difficulty of identifying and optimizing a combination drug

The problem of finding combination drug can be broken down into two parts.

First, a set of chemicals needs to be identified to narrow down the search space

from a large library of chemicals. Second, the narrowed downed library of drugs

can then be optimized for best dosage combination and dosing schedule. Our

current effort focus on solving the first problem, and we will briefly review the

second problem as there are a number of valuable lessons which can be learned

from solving the dosing problem. The scheduling of drugs is beyond the scope

of this dissertation, as it is still an open ended question in the field. For general

review for the strategy of choosing combination drugs, there are a handful of good

reviews that the readers can refer to. [ZLK07, FCD10, ABW12, Azm12, BGL11,

Kit07a, ABW12]
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1.2.3 Approaches for combination drug optimization

The approaches for assembling combination drug is difficult to categorize, as the

assumptions on the model systems, physical and mathematical tools, and the

objectives of the studies have a wide range of spectrum. As such, we listed some

of the most promising approaches in the field in the hope of being exhaustive.

However, the optimization problem in terms of chemoinformatics is beyond the

scope of this dissertation, so it is not enlisted in our review.

Combination based on properties of existing combinations Drugs can

usually be accurately classified based on their properties including their set of

targets and the therapeutic indications. This class of methods exploit the fact

that certain properties are often enriched in successful combinations, and can

perceivablly be used to predict new combinations. Zhao et al. studied the feature

pairs that arises in FDA approved combination, and found that one of the fea-

ture dictates that certain protein pairs are repeatedly being targeted in approved

combinations, and the features identified can be used to narrow down the search

space for combinations. [ZIZ11] Yildirim et al. constructed the drug-target net-

work by linking approved drugs with known therapeutic target. They found that

strong local clusters were formed in the network, indicating that many drugs share

the same targets and are follow on drugs. They also observed that the trend of

drug development is going toward a more functionally diverse polypharmacology.

[YGC07] Vazquez et al. focused on uncovering drug combinations which can elim-

inate a heterogeneous population of cancer cells. [Vaz09] They found the drug by

identifying the minimum set of drugs which can cover more of the lethal targets

of the heterogeneous cancer population, and thus transform the selection problem

into a minimum hitting set problem. Their method can help the design for dealing

with heterogeneous population of cancer cells, but ignores the interaction of drug

targets in the context of molecular network.
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Bruit force based approach for combination search Although knowledge

based approach can leverage our knowledge for biology and greatly accelerate the

discovery of new drugs, the complex behavior and the context of biology is often

ignored or stripped from the whole picture. So, knowledge based approach often

produce less than optimal outcomes at later experimentation of the system, gener-

ating unexpected result. A robust method which can reflect the biological context

is therefore preferred. Bruit force method refers to the exhaustive experimenta-

tion of the entire possibility space. Given the explosion of dosage combinations,

bruit force method is limited to study pairwise combination in general. Borisy et

al. exploit this approach by applying the bruit force search on multiple biological

systems and several hundred compounds. [BEH03] The synergy between drug

pairs are then calculated which cannot otherwise been deduced from single drug

study. Even though bruit force approach can hardly be extended to multi-drug

scenario, it is currently the only experimental way to reliably probe a large set of

initial chemicals, ranges from tens to hundreds of compound.

Network pharmacology Network pharmacology concerns the combination of

network biology and polypharmacology. [Hop08, SFS09] As mentioned earlier, it

was shown that multiple perturbations in the network can be more effective than

single targeted inhibition, as demonstrated by systems biology studies and network

theory. The challenge, however, is how to leverage the knowledge of network

properties to find out the principles that consititute effective perturbation of the

network. This new line of study sits in a very special place amidst all spectrum

of method. The network pharmacology take advantage of the current advances in

omics technology, and use the most condensed form of the omic information, the

network map to help the development. Also, the information volume has been

pushed to an unprecedented scale. A comprehensive review of the subject can be

found in [CKK13]. Wang et al. examined the location of targeted proteins in the
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genetic regulatory network, and found that drug targets of combination therapy

tend to be neighbors in interacting pathways in the network. [WXS12]

[JZM09, KSB07]

Modeless approach to search for combination on a response surface

Feedback system control (FSC) is a method of phenotypic screening that lever-

ages the power of stochastic search algorithm to optimize the dosages of combina-

tion therapy. [WYS08, SUY09, HH10, TVH11, AYF11, YAF11, VTH11, WBH11]

It has been demonstrated successfully at a number of biological systems includ-

ing cancer, viral infection, stem cell culture, and herbal drugs. At the core of

method, a complex response surface is assumed to exist as a manifold in the mul-

tidimensional space of the dosages of the chemicals involved. The response surface

represents the objective function which is determined by the goal of the therapy.

Combination search based on statistical model of the response sur-

face For modeless approaches of optimization, as it is iterative, it still takes

considerable time to perform the experiment and find the global optimal dosage,

making the method unsuitable for applications such as animal studies or person-

alized medicine. In order to over come the difficulty of iterative searching, the

modeless method is improved by incorporating our knowledge of the underlying

model. As most of the complex systems are evolved to adapt to multiple stim-

uli, and become robust in the transition of states, the response surface should

appear to be smooth in the multidimensional dosage space. By using the as-

sumption of robustness, we can approximate the response surface by using sim-

ple mathematical function such as polynomials or nonparametric methods such

as Gaussian process. Special sampling methods, such as orthogonal array de-

sign or Latin hypercube design are then applied to probe the surface. Statistic

model based approaches can greatly reduce the time required to optimize the
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drugs, so is gradually becoming the default choice for combinatorial optimization.

[DXH13, DSS11, JDX13, WSH13, YZD13, HDM13, PNV13] The approach we

proposed in this dissertation drew inspiration from this approach by building sta-

tistical model of the phenomenon, but the way the model is built is significantly

different from this approach.

Combination optimization based on systems biology approach The sys-

tems biology approach is closely related to the network approach, but different

in the scope and detailed mathematical modeling. The systems biology approach

considers more detailed maps of molecular network and how the wiring, feedback,

feedforward loops, cross-talk were constructed in the molecular network. The ap-

proach also usually required detailed knowledge of the reaction constants involved

in the chemical processes of the network.

Yang et al. simulated the dynamics of arachidonic acid metabolic network

under the influence of drugs, and find the drug targets that can best restore

the network from the disease state to normal state. [YBO08] Wu et al. identified

optimal combinations for type 2 diabetes by ranking the possible combination with

a custom made score. [WZC10] They first generate a predicted gene expression

level of the applied combination, and then use the gene expression level of the

subnetwork to infer the possible symptoms and efficacy, which in turn is used to

calculate the score. They successfully identified the combination of metformin

and rosiglitazone, which is a clinically approved drug that used to treat type 2

diabetes. There are many excellent reviews on this type which can be found at

[FSN06, BIB10, CSE12].
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1.3 Prediction of drug response

Making predictions on the drug response often requires building a mathematical

model. There are a few types of prediction varying in complexity, as shown in

figure 1.1. Here, we are focusing our attention on machine learning type of model

that makes pointwise predictions (instead of dynamic output) based on training

data.

Building a machine learning model means building a mapping between a set

of predictors (or input, independent variable) and a label (or output, dependent

variable). The label can be a numerical value or class labels. When the label is

numerical value the learning problem is called regression, and in the case of class

labels the learning problem is called classification. Throughout this dissertation,

we will refer to the predictors and labels very often, and sometimes interchanged

with other names.

1.3.1 Feature Selection

Feature selection is the process of extracting meaningful quantities from the pre-

dictors, and features are the actual input that a machine learning model takes to

map to labels. Often times, predictors can be used directly as the feature for the

learning algorithm. For example, the length of the spring in a spring mass system

can be used directly as the training data to fit the model. However, in many real

world applications, when the predictors have nonlinear interactions or does not

directly cause the label, feature extraction is often required to process the data

for better fitting. A good feature is reflective of the underlying mechanism and

often presents high linearity with the output. In any model fitting or machine

learning scenario, feature selection represent if not the most important part of

the whole analysis. In other words, feature selection can either make or break a

fitting algorithm.
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Figure 1.1: The complexity of predictive models. Network biology usually use

fixed point prediction, while systems biology provide dynamical simulations. How-

ever, the scope of network biology can usually encompass the entire proteom while

systems biology can only simulate a subset of the network.

The raw data for the prediction of drug response span from macroscopic

trait of an organism, organ, tissue, cell and all the way to molecular signature.

The macroscopic features for a disease includes lineage [NNC00], race [JSG05],

gender[HGH06], age [GLP95], PET scan [WOB01], MRI images [PGL05, TBT04,

DDG02], response of in vitro assay [AGS80, KYM08]. Recently, due to the ad-

vances in several technologies in molecular biology, especially those of microar-

ray, and next generation sequencing, larger and more reliable data set started

to emerge. Common molecular signatures includes gene mutation profile, DNA
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copy number variation, gene expression profile [PDB06, LCP06, BCS12, GEH12],

epigenetic signals [JB02], proteomic profile [HPF08, NWG11], post translational

modifications [MJ03].

1.3.2 Model fitting Algorithm

The predominent method in molecular level generally exploit the gene expression

signature as predictors of the drug response. Here we review some of the most

important models through out the years, and the goal in which they intended to

achieve. The eventual goal is important as each study might have different appli-

cation in mind when they developed the method and thus different assumptions

and expeirmental collection methods.

connectivity map The connectivity map is a plateform for finding the simi-

larity between the gene expression signature of disease, and drug perturbation.

[LCP06] At the core of connectivity map was their intention to capture the

trantient perturbation of gene expression caused by drug action. The best molecule

or set of molecules that has the opposite perturbation compared with disease can

then be used presumably to reverse the disease phenotype. Connectivity map

serves as an interesting idea that capture the transient nature of perturbation. In

the dynamical systems view, this is analogous to identifying the ”force” that is ap-

plied on a state, and the state is the current expression level of the cell. However,

the method does not take into account the genetic profile of the disease, which in

the case of cancer, is vital to define the malfunctioning parts or i.e. the epigenetic

landscape of the system. 1 So, the method will have limited use for sensitivity

prediction of cancer drug combinations, as it does not take into account the long

term and high order interaction of drug actions with disease genes.

Sirota et al. applied similar approach as the connectivity map for drug reposi-

1Please refer to chapter 2 for epigenetic landscape.
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tioning. [SDK11] This type of method is strong in illucidating the mechanism of

action of the drug. However, it is not clear how it can be applied in combinato-

rial drug scenario as the gene expression pattern will change unlinearly with the

application of combinations due to principles of enzymatic reactions.

Drug sensitivity biomarker discovery through elastic net regression In

a back to back publication by Barretina and Garnett et al., they took the scale

of genomic study to the next level by integrating various genetic profile and by

collecting the signatures from 947 and 368 cell lines each.[BCS12, GEH12] The

goal of this study is to identify biomarkers that correlate with drug sensitivity.

This work has a significant difference with our work as it is not applicable to

the comparison between different drugs as in the scenario when combination drug

needs to be searched from a library of drugs. It is geared toward distinguishing the

difference of sensitivity between cell lines for a given drug. Nontheless, the study

inspired the use of signatures representing gene mutations in PROPHECY, and

the comprehensive database of mutations were borrowed as training data here.

One thing worth notice is the gene expression signature from connectivity map

is not taken for each chemicals, so it has different meaning in terms of its role in a

dynamical system. The gene expression level here respresents the initial condition

of the cell instead of the force that exerts on the cell lines.

1.4 Network medicine and network pharmacology

Biological networks are an abstraction of the collection of interactions between

any component that are related to bio processes. The components can include

inter- or intra cellular components, and also can be extended to metabolite and

chemicals. A comprehensive review can be found in [PWS08, GOB10, LHM09].

The section here is intended to review the aspect of biological networks that are
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relevant to combination drug selection.

1.4.1 Protein-Protein interaction network

Protein-Protein interaction network (PPI network) is a graph structure on which

the linkages between all types of proteins in an organism are mapped. The infor-

mation in the PPI network is usually global and on a proteomic scale, so it is also

called the interactome. The nodes in a PPI network are proteins, and currently

the edges are represented probabilistically as confidence scores. This type of prob-

abilistic linkages can not only represent direct physical interactions between two

types of proteins, but also other function interplay including interaction affinity,

co-expression level, co-localization in cellular compartment, and regulatory con-

trol of one protein by the other. [DF10, JPG11, SW11, VCB11] Current PPI

networks have many versions and hosted by different databases. Each of these

databases have different set of methods that is used to infer the linkages between

proteins. Common methods for linkage assesment includes protein binding assays,

co-expression analysis from microarray data, and text mining from the literature.

PPI network is a central piece of information in the construction of PROPHECY,

as protein is highly relevant with disease pathogenesis and therapeutics. [NK10]

Understanding the structure of the network can help us extend the perturbation

of disease genes and chemicals from the causal nodes to the neighbring nodes and

then the entire network. Therefore, the limited view of ”one gene, one function-

ality” can be scaled up to the proteomic scale.

Proteins are the central machinery that operates most of the vital functions in

a cell. Vast majority of genetic diseases are associated with the regulation or func-

tional change of proteins; most of these diseases are oligogenic or polygenic. The

vast majority of drug molecules also target proteins instead of other biomolecules.

There are other types of biological network in use now, including genetic net-
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work, signaling network, and metabolic network. Why did we choose PPI network

intead of the others? There are several major advantages of the PPI network.

First, the structure of PPI network is relatively immutable compare to other net-

work. The linkage of PPI network represent physical processes that will always

hold true for all cell types in human body. The weight of the linkage might change

due to mutation of the corresponding genes or post translational modification of

the protein, but it is relatively small compare to changes in other network, such

as rearrangement of the linkages, which is not uncommon in genetic network. Sec-

ondly, the topology of the PPI network were shown to be related to disease genes

and prominent drug targets. Lastly, PPI network is in proteomic scale, so cover

a wide range of cellular processes.

However, there are potential pitfalls associated with the data quality of the

PPI network. The data completeness of PPI network is a challenging issue, as can

be seen from the new interactions that were discovered historically each year. We

cope with the data imcompleteness by using STRING, the most comprehensive

database known to our knowledge. There are also errors that plague the structure

of the PPI network, including false positives, sampling biases, compartmentaliza-

tion in the cell, and coupling with other bio processes, to name a few. Error in

PPI network is common and the influence can be minimized by choosing a feature

extraction method that is insensitive to false positives. PageRank was selected as

the method of feature extraction in PROPHECY, and was proven to be insensitive

to modification or errors in the network.

1.4.2 Network-based tools for the prediction of disease genes

The predominent method for the discovery of disease genes are through link-

age mapping or genome wide association study. However, the identification of

the causal genes or disease associated genes remains challenging. Thus, a set of

network-based methods were developed to assit the discovery of disease genes by
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taking advantage of the knowledge we have for biological network. The meth-

ods can be categorized into linkage methods, disease module-based methods and

diffusion-based methods, [KBH08, VMR10] among which diffusion-based meth-

ods have the best performance. [BGL11, NK10] Later on in the construction of

PROPHECY, we extend the idea of network diffusion into feature extraction in

machine learning, and proved that network diffusion can uncover extra informa-

tion useful for model fitting of treatment sensitivity.

1.4.3 Network tolerance study

Figure 1.2: Venn diagram showing the expansion of target space. Drug combina-

tions can effectively provide more protein target sets available; due to the lower

toxicity of weak hits, combinations can also increase the druggable target sets.

Therefore, the possible drug target sets can be significantly increased.

Recently, theoretical study on complex network systems has revealed a ro-

bustness against random errors or attacks. [AJB00] The conclusion challenges

the current practice of high-throughput screening for targeted therapy, as cellu-

lar network can often bypass the single target attack by the built in redundency
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in the neighboring pathways. [Kit07b] It is also found that complex system are

vulnerable to attack on hubs in the network. However, hubs are generally not

druggable target as they usually encodes essential proteins in the network; an

attack on these node will result in systemic failure, diseased cell or regular cell

alike.

A multiple target approach is found to be more effective in modulating disease.

[CAP05] It was found that multiple weak hits on the network can more effectively

decrease network efficiency, the information carrying capability, and better control

information flow than single targets. In addition, weak hits on the network does

not completely disable the function of essential genes, so is less toxic compare

with single target strategy. A combination approach that attack multiple nodes

in the network can dramatically increase the druggable proteome, but also pose

challenge to the search methods as the search space of combinatorial problem is

significantly larger than single target problem.

Therefore, to facilitate in silico assembly of drug combinations, new computa-

tional methods need to address the topic of multitarget design, particularly aiming

at prediction of network efficiency. In PROPHECY, the inclusion of multitarget

effect in the network is integrated from the beginning when we started to design

the software. Even for single drug or targeted therapy, the predictors of drugs in

PROPHECY includes all possible bindings of proteins and genes where data is

available.

1.5 Measurement of Combination efficacy

According to [GBP95], the most highly used reference models for synergism are

Loewe additivity and Bliss independence. We will briefly introduce these two

measurement, and then introduce the combination index of Chou and Talalay.

Although these models are all controversial, there is by far no consensus in the

17



literature which one shall be the golden standard. We still enlisted them because

they inspired some of the techniques later on applied in the model fitting, and

they can be a good reference for later on to interpret the mechanistic result of

the predicted combinations. Note that, in an actual toxicology study, usually

multiple methods will be used to evaluate the synergism or antagonism of the

proposed therapy. [GJ07] The readers are encouraged to dig into the topic of

synergism. A number of good reviews on this topic can be found in the literature.

[FSN06, KBS05, GBP95, ZLK07, ZLK07].

Bliss independence The Bliss independence is applicable when two compound

is independent, meaning that they take effect by binding to completely different

targets. The efficacy for two independent reagents can be calculated as

E(x, y) = E(x) + E(y)− E(x)E(y) (1.1)

where E(x, y) is the effect of the combined drug, E(x) and E(y) is the effect for

individual drugs at x and y concentration when applied singly.

If the combined effect of the combination drug is higher than what is predicted

in equation 1.1, the combination is considered synergistic, if equal, additive, and

if lower, antagonistic. The resulting formula is simple for Bliss additivity, but the

restriction for independence is high, as many combination drugs share common

targets.

Loewe additivity The interesting thing about Loewe additivity is that its as-

sumptions are exactly the opposite compared with Bliss independence. In Loewe

additivity, it is assumed that all of the drugs acts on exactly the same set of tar-

gets, but can exhibit different potency. We will not list the equations for Loewe

additivity here as it is equivalent to the combination index model of Chou and

Talalay in the mutually exclusive drug case.
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Combination index Combination index is a concept arises when a researcher

needs to compare the efficacy of individual drugs and a combination of them.

Complication exists due to the fact that the dose-response relationship is usually

nonlinear, and more often follows a sigmoidal curve. So, it is non-obvious how

one compare the dosages of one drug and a drug combination. One intuitive

way of solving the problem is to look at a simpler system, namely the reaction

of enzymatic inhibition. Chou and Talalay found the medium effect equation,

which under arithmetic manipulation can represent multiple enzymatic equations.

[CT84] The medium effect equation write as follows

fa
fu

= (
D

Dm

)m (1.2)

where fa and fu are the portion of the system effected and unaffected, D is the

dose, and Dm is the median effect or the IC50 of the inhibitor. For multiple

enzyme system, the median effect becomes,

[
(fa)n
(fu)n

]
1
m =

n∑
i=1

[
(fa)i
(fu)i

]
1
m (1.3)

where (fa)n and (fa)i are the fraction affected for n drug combination and ith

individual drug respectively. Given the multi-inhibitor form, we can define the

combination index as

CI =
n∑
i=1

Di

Dx,i

(1.4)

where Di is the dosage of the ith drug applied, and Dx,i is the dosage of ith drug

when applied singly can produce the effect x as the combination drug. When

CI < 1 the combination is synergistic,

CI = 1 the combination is additive,

CI > 1 the combination is antagonistic.

This can be deduced from the multi-inhibitor form of the median effect equation.

While CI = 1, the median effect equation will describe the isobologram of two

drug, and thus the pure additive effect of the drugs.
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Combination index is relevant to our discovery, as it reveal the linearity of

the effect of enzymatic systems under proper transformation. Thus, we applied

logit transformation for drug sensitivity in our later model, and gain huge effect

to linearizing the dependent variable. Under this linearization, we can show that

many of the effect of genes that convey the growth advantage of tumor cells can

be regarded as additive.
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CHAPTER 2

Tumor Biology

PROPHECY is a plateform for the prediction of drug response of cancer thera-

peutics. We need to understand tumor biology in terms of the cause of cancer,

how cancer convey growth advantage and drug resistance, and the working prin-

ciple of cancer therapeutics in order to generate a model that takes most of the

important predictors into account. We pay special attention to the observables

that are related to these functional advantages as they are the main factors that

can be used to distinguish therapeutic outcome.

We seperate the predictors (or observables) of PROPHECY into two main

categories, including intrinsic predictors that unabiguously point to a disease phe-

notype, and extrinsic predictors that pertains to the perturbations that are intro-

duced by therapeutics. Intrinsic predictors serves two major purposes; they can

point to the functional gain of the disease which will effect the response of disease

to treatment, and they serve as signatures to tell different cancer types apart.

We selected the oncogene profile as the intrisic predictors, and we will review the

reason behind our selection. Notice that many other predictors such as gene ex-

pression levels and epigenetic status are often used as predictors in contrast to our

selection. For extrinsic predictors, we used drug targets and their specificity as

an indicator. In later chapters, we will show how the combination of intrinsic and

extrinsic predictors can provide powerful insight that can accurately determine

the outcome of cancer therapy.

Cancer is a genetic disease, as pointed out in Bert Vogelstein’s seminal paper
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[VK04]. In other words, the genetic signature of cancer will unambiguously define

the characteristics of the cell and thus determine its response to external stimulus.

2.1 The evolutionary process of cancer

The pathogenesis of cancer is a evolutionary process of cells that take place in

the microenvironment of a multicellular organism. Cells aquire random genetic

alterations from various sources and produced a diverse set of phenotypes that

eventually undergo natural selection. Those cells that acquired the hallmarks of

cancer will eventually proliferate, invade organs and finally metastisize. Due to the

random nature of genetic alteration, the cancer cells in a human body will present

a spectrum of genetic alterations, which give cancer cells different capability to

proliferate. This heterogeniety of cancer cells post a great challenge to the design

of therapy, and another confounding factor for the objectives of the design. Much

of the relapse of therapy also follows this evolutionary process, in which a small

number of cancer cells that bear drug resistance survived the therapy and come

back after they repopulated the organs. This evolutionary process is powerful and

can be stopped by reducing the probability of having the phenotype to overcome

therapy. Combination therapy has a higher selective pressure for cancer cells

to overcome, so will lower the risk for relapse. A comprehensive review of the

evolutionary process of cancer can be found at [SCF09].

2.2 Cancer genes and the growth advantage they convey

Cancer genes can be categorized into three types: the oncogene, the tumor sup-

pressor genes, and stability genes. [VK04] Oncogenes and tumor suppressor genes

when mutated can convey growth advantages including the activation of genes

that drives the cell cycle, and inhibition of apoptotic signaling and increased

22



supply of nutrient through angiogenesis. [HW11] When the stability genes are

mutated, they do not directly contribute to tumor proliferation. Instead, the sta-

bility genes disrupt the regular safety mechanism which protect the organism from

gene alteration, thereby, increasing the risk of tumor formation.

The exact mechanism through which the cancer cells gain their growth advan-

tage

2.3 Somatic mutations of cancer cells

Cancer cells are the direct descendants of the fertilized eggs of the patient and

therefore carries a copy of its diploid genome. However, just like other lineages,

cancer cell carries a set of differences from its progeniter cells which give cancer

cell selective advantage. We call these differences somatic mutations in contrast

with the germline mutations that are inherited from parents. Germline mutations

on important genes often result in embryonic lethality and thus is not included in

our discussion. [BGL11]

There are several common ways in which cell obtain genetic lesion. Cells

acquire mutations during mitosis due to the built in error rate of the DNA poly-

merase, exposure to radiation such as UV light or X-ray or mutagen of both

external and internal origins. Cancer cell also inherite the mutations coming from

its progenitor cells.

2.4 Nonlinear effect of mutations

Traditional oncology work sepetate cancer mutations into two major categories:

the driver mutations and passenger mutations. Driver mutations are those genes

which mutated will convey growth advantage to the tumor cell, while passenger

mutations are those mutations that does not directly contribute to growth but
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carried on with other genes nontheless. This type of thinking was very popular

in the literature, and associate an causal mutation with the resulting phenotype.

However, it has very limited use as a slight change in the state of the network or

the introduction of an external stimulus will alter the resulting phenotype easily.

Thus, this type of classification is imprecise and misleading, and the function of

each gene is actually dependent on the context of the network dynamics.

Function of genes are context dependent The function of each gene on the

resulting phenotype usually dependant on the context of the network. One of

the very first example found on this dependance was the affect of Jun-activated

kinase (JNK) on apoptosis. [JAG05] It is found that the function of JNK can be

apoptotic or anti-apoptotic depending on the signaling recieved from EGF and

TNF, and the phosphorylation status of JNK along is not sufficient in deteriming

its function. This means the resulting phenotype of perturbation on JNK will

depend on perturbation on other parts of the network. Therefore, it is necessary

to supply information on all of the perturbation in order to predict the final

phenotype.

2.5 Epigenetic landscape

As we come to know that the complex network nature of biological system natu-

rally exhibits, a simple mendelian picture that maps one gene to one phenotype is

no longer suffice. With the aid of network theory and systems biology, we begin to

appreciate the dynamics that governs the phenotype of the system. Waddington

introduced the concept of ”epigenetic landscape”, that coincides with the dynamic

theory of complex systems, and can unambiguously and quantitatively explain the

observed phenomenon, which used to perplex reductionistic biologist. [Hua12]
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The basics of epigenetic landscape The basic framework started with the

notion that we can keep track of the state of the cell by keeping track of the

quantity of all gene products. Then, the dynamics can be described by the change

of gene product with respect to time. The change of state is governed by the wiring

diagram, or network structure, which describes the basic biochemical relationship

such as inhibition and activation between genes. A clear distinction must be

made between the network structure and network dynamics, as the term is used

interchangablly in some literature. However, the structure of the network usually

remains static for an organism while the states of the network nodes may vary

drastically. If we plot the potential energy of the genes in a multidimensional

”state” space of the genes, the resulting manifold is what we called the epigenetic

landscape.

The linkage between phenotypes and epigenetic landscape Each point

in the epigenetic landscape is a manifastation of a particular phenotype. We

would expect that there will be a continuous spectrum of cell types exist in an

organism, but the reality is that there are only a finite number of cell types in the

landscape. Why is the finite number of state the case? This can be explained well

by the attractor states in the landscape. Due to the complex dynamic theory, the

epigenetic landscape is full of attractor states that are stable basins that posses

lower local energy and thus can attract near by states. The process is very similar

to the situation when placing a ball on the edge of a sink, and eventually the ball

can only be stable at the bottom of the sink.

External stimulous such as growth factor or drug will present as network per-

turbations which forces the state of the cell to move from one point to another in

the landscape. If the perturbation is strong enough, the cell will be pushed away

from its orginal state and finally rest in another stable state. [HEB05]
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The static nature of the molecular network structure Just like the net-

work structure, the epigenetic landscape remains mostly static. It is under genetic

alterations that will result in the rewiring of the network. For instance, if an in-

hibitor of an enzyme lost its activity due to mutation in the functional moiety, the

inhibitory linkage from the inhibitor to the enzyme will be deleted. Interestingly,

even though the network structure changed, it appears that the entire epigenetic

landscape will be changed due to the reorganization of the system. However, large

scale simulation of a genetic regulatory network suggested otherwise. People found

that the rewiring result from mutation will actually contribute to the local change

of a small area in the epigenetic landscape. [HEK09] This can be seen from the

fact that many normal cells in the human body also acquired somatic mutation

such as cancer, but remains as healthy phenotype nontheless.

It is hypothesized that cancer emerged as cells reached stable cancerous states

called cancer attractors. These stable states are usually unreachable by normal

developmental path. However, the rewiring of network caused by mutation will

change the barrier between attractors and make these cancer attractors more ac-

cessible to external stimuli, leading to tumor genesis. The construct of cancer

attractors can handsomely explain the reason of finite phenotype exist in the sys-

tem, despite the fact that there are astronomical amount of possible combinations

of genetic lesions. There are only finite amount of cancer attractors produced by

the complex network of the cell, and thus finite number of phenotype.

The theory of epigenetic landscape is gaining momentum and started to be

accepted by mainstream biologist, as recently demonstrated by the stem cell re-

search. [FK12]
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2.6 External and internal perturbation

Under the framework of epgenetic ladscape, we can then define the influence of

external and internal perturbation clearly. External perturbations are forces that

directly cause the system to move from one point to another in the state space

by doing work. So, we can categorize the temporal inhibition of drug molecule

as an external perturbation, as the action is reversible and the circuitry of the

network remains untarnished after the administration of the inhibition. We can

also categorize the genetic lesions, caused by drug or by random process as internal

perturbation as they change the circuitry directly. Notice, however, the genetic

lesion does not directly cause the network to move from one state by perturbing

the state, but by changing the epigenetic landscape of the system and thereby

alter the accessibility of certain network states.

2.6.1 Trade-off of information, limitations

In systems biology approach, the parameter space that is required to described

the dynamics is huge, and the availability of the parameters is a huge challenge

to create the model. Even if the parameters were estimated to be the optimal set

that fits the data, it still beg the question of the explanatory power of the model

on whether the data is being simulated or memorized in the model. [Gun10]

Under the current stage of development of the omics technology, it is still out of

hand to try to simulate the dynamics of the entire cellular network of human. In

essense, we need to consider the available data to us and select the ones that can

be obtained economically.

Currently, the protein-protein interaction network is available, containing around

22,000 nodes and 1 million linkages. However, detailed parameters is still lacking,

and false positives still prevalant in the network, prohibiting a systems biology

approach to model the dynamics of the whole network. We therefore choose to
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work with static systems which only concern the end state of the network. End

point measurement is a convenient choice, as the most common phenotypic ex-

periment data is the dose-response curve, the end point measurement of drug

screening experiment. The dose response curve present a simplified expeirmental

model system, which exclude the microenvironment in the organism, but preserve

the context of network dynamics and the external stimuli from drugs. The dose

response has been historically used as an effective screening experimental model.

Recent data shows that most of the novel targets were discovered through phe-

notypic type of screening, as opposed to the much anticipated molecular target

screening approach. [ZTM13]

2.6.2 Network diffusion to mimic the convergence of cancer attractor

The goal for our model fitting is to have all perturbations available to our knowl-

edge mapped to drug sensitivity.

Supposed that similar disease phenotype will result from different set of muta-

tions, there must be some similar changes of functions in the network that causes

the same phenotype. We thus hypothesize that it is the disruption of the states in

the functional module in the network that causes the resulting phenotype. Now

the question is how do you measure the disruption of states in a functional mod-

ule? It will becomes clearer if you look at the information spread in the network.

Molecular machinary in a cell rarely carry out a function by itself. Rather, the

function is a manifestation of the interaction between the molecules, starting from

the molecules that were disturbed and then propergate throughout the entire net-

work. If the disruption of state is measured as probability density that goes from

one node to the other, you can quantitatively evaluate the probability that cer-

tain nodes got disrupted by the original perturbation, either external or internal.

In later chapter of graph theory, we will go into the diffusion of probability in

detail. The conclusion from the diffusion study is that the information spread can

28



(a) (b)

Figure 2.1: Difference between gene centric and network centric predictors. (a)

mutation-based predictors, the features is usually represented by a boolean vector

where the mutated genes are marked as 1 and others 0. This type of representation

implies the mendilian view of genetics where genes are discretized blocks and each

gene serve a specific function. (b)network-diffusion-based predictors. The result

of network diffusion will correlate with the local network structure, and the part

high lighted by dash boxes shows the distribution of probability density hovers

around the local clusters, demonstrating that the diffusion scheme can find out

local functional groups in the network.

mimic the diruption of modules in the network, as the propagation of probability

in the network has the property that the local probability will be higher in a local

module. [VMR10, KBH08] This property of localization can be used to explain

why different sets of mutations could have similar phenotypes because they share

similar pattern of information propagation in the network.

2.6.3 Navigating the cancer attractors

Now that we translate the signature of perturbation from a limited set of nodes

to the information spread in the entire network, we can then repose the problem

of model finding cancer attractors.

Now we turn our attention to using these network signatures to make pre-

dictions about the drug sensitivity. What does the model tell us exactly? We
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mapped the disease genes onto a protein-protein network, and then through dif-

fusion we find the functional modules that causes the disease and gave cancer cell

the growth advantage. The diffusion process is a method to help us approximate

the influence of rewiring on functional modules which are better signatures to

predict the basins of the epigenetic landscape and the phenotype of the cell.

We also mapped the drug targets onto the protein-protein network and finds

the diffusion pattern in the network. In this case, however, the diffusion shows the

perturbation of the state of each module. So, essentially, the model we created is

a road map in which we can find the sensitivity of the cell line given the location

of the basin and direction of perturbation. Finally, we can use this model and

apply optimization technique, and we can find the best set of perturbations that

can lead the cells to the desired phenotype.
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CHAPTER 3

Framework of PROPHECY

3.1 Systems overview

The current PROPHECY platform is a predictive model of combinatorial drug

sensitivity that is capable of making prediction based on the list of drug targets

and disease genes. We reason that the disease phenotype is a result of series

of interaction of proteins that propagate from the initial perturbation of several

disease genes to the entire network. Similar process also applied to the response of

drug perturbation. Unlike most of the existing models which only take the initial

perturbations into account, we want to include the effect of all other genes into

the picture.

Therefore, in order to measure quantitatively the propagation of information

onto every protein in the interactome, we use random walker scheme or equiva-

lently network diffusion to determine a probability signature that measures quan-

titatively the proximity of every proteins and the perturbed nodes in the net-

work. The signature is central to the information gain and the quality of the

PROPHECY model because the signature encodes information of the structure

of the network and functional modules. We then feed a large data set of informa-

tion pattern and example drug sensitivity to a machine learning algorithm, which

in essence will determine how each piece of perturbation of one protein, and the

interaction of these perturbation will contribute to the drug sensitivity. Equipped

with the learned knowledge of how the network signature of perturbation will af-
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Figure 3.1: Predictive Module of PROPHECY.
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fect the sensitivity, the model was able to make accurate predictions. The model

can even predict unseen drugs or combinations, due to the fact that the model

learned interaction of perturbation signature instead of memorizing the effect of

each drug.

Notice that the PROPHECY is a general conceptual framework that is not

limited to prediction of drug sensitivity, and can be easily generalized to pre-

dict other phenotype as well, such as the expression level of certain gene, or the

categorical outcome of certain genetic disease.

The PROPHECY method consist of 4 integral components, the training databases,

the network model, predictor filter, and the predictive module. All of the com-

ponents are essential to the success of the prediction. We reviewed in detail the

data source of each component, the mathematical structures that defined the

components, and how these components are linked in this chapter.

3.2 Screening database

The drug screening database contains the experience universe of the predictive

machine. If we were to compare the predictive machine to a medical doctor, the

screening database will be equivalant to the doctors first exposure to an unknown

disease. For the predictive machine to learn how to treat the disease, the machine

has to be exposed to enough training cases in order for the machine to find pat-

terns inside. In the machine learning literature, a rule of thumb is that for every

predictor, there has to be at least 5 data points in order to have a reasonable fit.

The most publicly available drug screening dataset to our knowledge is COSMIC,

so we used COSMIC to train PROPHECY. [SHS10]

COSMIC contains the drug screening data of 150 cancer drugs across 900 cell

lines, adding up to around 40,000 data points. The sensitivity data is supplied in

multiple formats, including the fitted sensitivity, and ICx data, and parameters

33



of the fitted curve. However, the raw fluorescent data from the screening is not

available.

The most common way of quantitatively expressing the effect of the treatment

is through the dose response curve, where the x axis is the log of the concentration

of the single drug being used in the study and y axis the viability of the cells or the

optical density in the raw read out. In COSMIC, every compound was screened at

9 concentrations with a 2-fold serial dilution, which spans a 256-fold range of the

drug. The cells were incubated for 72 hours and treated with fluorescence-based

assay for the measurement of viability. The same procedure was slightly modified

and then adapted to our subsequent study on combination drugs.

Bayesian sigmoid model for the dose-response curve Notice that the raw

data is rarely directly used for the interpretation of sensitivity. Usually the raw

read out is contaminated with noise from the optical instrumentation and also

from experiment, so it is desirable to do a curve fitting in order to filter out the

effect of the noise and secondly incorporate our prior knowledge of the model. In

COSMIC and our study, we used Bayesian sigmoid model to fit the dose response

curve, in which biochemically the cells naturally follows when subjected to stimuli

from external chemicals [CT84]. A generalized sigmoidal curve is fitted as follows.

The mean intensity XIC is

E(xIC) = Imin +
Imax − Imin

(1 + eβ(IC−α))f
(3.1)

where Imax and Imin are the mean intensities of the positive and negative controls,

α and β are the scale and gradient response, f is a shape factor, and IC is the

log concentration of the drug. We assume that xIC follows a gamma distribution,

as the optical density in the reading must be non-negative. So, it follows that

p(xIC) =
BE(xIC/B)

Γ(E(xIC/B))
x
E(xIC)/B−1
IC e−BxIC (3.2)
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Curve-fitting algorithm The major point of the curve fitting algorithm is to

determine the coefficients presented in the sigmoidal curve, and to estimate the

variance of the curve. According to Bayesian parameter inference, the posterior

probability of the parameters given the data points is

p(w|X,y, θ) =
p(y|w,X)p(w|θ)

p(y|X, θ)
(3.3)

where w is the vector of coefficients in the model, X the input design matrix,

y the output vector, and θ the hyper parameters used in the prior distribution

of the parameters and noise model. Since the hyper parameters also has its own

distribution. We also have to infer this by marginalize out the information in w.

We have

p(θ|X,y) =
p(y|θ,X)p(θ)

p(y|X)
, (3.4)

where we define the likelihood function here as

L(θ) = p(y|θ,X) =

∫
p(y|w,X)p(w|θ)dw (3.5)

When the distribution has a single mode, maximum likelihood solution is usually

a good approximation to the posterior mean model. However, when the distri-

bution has multiple modes, we will have to calculate the posterior mean to be

representative of all possibility. We can use a stochastic optimization solver to

calculate the maximum likelyhood solution of the hyper parameter.

We can calculate the likelihood function as

p(y|w, x) =
9∏
i=1

Γ(
1

1 + eβ(xi−α)
, B) (3.6)

where Γ(., .) represent gamma distribution.

Maximum likelihood solution of hyper parameters While a cell line is

sensitive to one drug, the viability of the cell line will drop sharply at low dosage,

and appears to stay constant for a drug resistant cell. So, an intuitive way to
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define sensitivity is to use one minus the area under curve (AUC) of the dose

response curve. The AUC is defined as the integral of the sigmoid curve and

normalized by the range of concentration applied, so the maximum possible value

of AUC is one and the minimum is zero.

The way the data is processed in COSMIC allows the sensitivity to be ex-

pressed in a single numeric value, and this value can be compared across cell lines

and drugs, making it suitable for machine learning purpose.

3.3 Drug Database

In the framework of PROPHECY, the dose response of a cell is interpreted as the

response of a complex network to external stimuli. So, unlike traditional analysis

where only the main drug target is considered, we include all known interactions

between a drug and gene/proteins in our subsequent analysis. Actually, there are

many studies that points to the fact that the off target effect or the non-specificity

of the drugs ultimately determines the efficacy of the drug as mentioned in chapter

1. [ACP05, Cse04, CAP05, CKK13]

The data mining of all possible linkage between gene and proteins to drugs is

a major undertaking itself. Fortunately, there are a number of databases that can

be used for this purpose. We choose to use STITCH, a comprehensive database

that documented over 300,000 small molecules and 2.6 million proteins from across

1133 organisms. [KSP14, KSF12, KSF10, KMC08] In order to maximize the in-

formation of known chemical-protein binding, STITCH integrates the following

data source for chemical protein interactions. Experimental evidence of direct

chemical-protein binding is obtained from the PDSP Ki Database and the pro-

tein data bank (PDB). Interactions between metabolites and proteins are selected

from pathway databases including KEGG, Reactome, and NCI-Nature Pathway

Interaction Database, and drug-target interactions from DrugBank and MATA-
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DOR. Text mining is also performed on MEDLINE and OMIM to yield additional

evidence by co-occurrence or natural language processing. The confidence score is

then assigned to each interaction based on the level of significance and certainty

of the interaction.

We extracted all drugs that were included in our screening database, and the

corresponding drug targets that can be mapped to the human protein-protein

network. The set of drugs Ω is represented as

Ω = {di ∈ Rn×1| i = 1, · · · , Nd} (3.7)

, where n is the number of proteins in the protein-protein network, di is a vector

with nonzero entries being the confidence score associated with the drug targets

of drug i. Nd is the number of drugs in the library of chemicals.

Notice that after the data processing of STITCH, we still cannot have ex-

act information of all protein-chemical interaction. There are a number of error

sources, including false positives, and false negatives in the databases, the incon-

sistency in the normalization scheme used in integrating multiple databases. Also,

the databases derived from in vitro protein binding experiment such as protein

array experiments might over estimate some interaction that might not have ex-

isted due to compartmentalization in cells. We can see in the later section that

PROPHECY can actually reduce the presence of these noise sources indirectly

by a couple of built in mechanism. First, the PageRank used to calculate the

diffusion of information, is insensitive in terms of the starting probability and also

the false positives linkages in the network. Secondly, the learning procedure in

the machine learning, in analogous to regularization in regression, will reduce the

effect associated with unimportant predictors.
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3.4 Disease Gene Database

For the disease gene database, our goal is to source a comprehensive collection

of causal mutations in the genome of the cell lines involved. Gene expression

level is not considered due to the following reasons. First, the network model we

used is partially derived from gene coexpression studies, so the gene expression

level information can be argued to be already contained in the network linkage.

Secondly, gene expression level is a transient snap shot of the current state of the

cell, so even the same cell at different cell cycle might express different amount

of genes and also might express differently when subjected to the same chemical

stimuli. However, for genetic variant, the genome is well defined for every cell

line, and remains stable during culturing or even treatment. The stability of the

genome is the main reason that cell lines became standard choice as the in vitro

model for disease. [VK04, BCS12]

If we consider the problem of drug response in terms of dynamical system and

epigenetic landscape, the genomic profile of the cancer cells define the epigenetic

landscape, and the subsequent terrain neighboring the state where the therapy

is intended to drive it. [Hua12, BE10, CSE12, HEK09] So, the landscape itself

should contain most of the information that is required to determine the driving

force that needs to direct the cell to certain state. In this view, the network

provides the prototype of the shape of the landscape, and the mutation profile

gives the modification on the landscape.

Currently, the most comprehensive and consistent public database for genetic

profile of cell lines is the Cancer Cell Line Encyclopedia (CCLE), which encom-

passes 947 human cancer cell lines and span 36 tumor lineages. [BCS12] We

included the mutation profile of the cell lines which were determined by targeted

massively parallel sequencing on ¿1,600 genes, 392 genes that effect 33 known

cancer genes were collected by mass spectrometric genotyping, and DNA copy
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number was measured using high-density single nucleotide polymorphism arrays.

We then map all of the causal genes on to the protein-protein network, excluding

the mutations of introns that do not effect the transcription or the gene product.

We represent diseases models as the set of cell lines, Γ, as

Γ = {gi ∈ Rn×1| i = 1, · · · , Nc}, (3.8)

where gi denotes a vector where the non zero entries are the confidence score of

disease gene and zero elsewhere. The confidence score reflects the type of mutation

the gene causes. Currently, we treated the disease gene vector as a Boolean vector

so each entry is a logical representing whether the gene is mutated or not.

3.5 Network Model

Our intuition is that the interactions between nodes collectively will dictate most

of the response of a cell to a treatment. Not only do drug targets need to be

considered, but also the location of disease nodes. What we need then is a language

to describe the level of impact when some nodes are affected, either by target nodes

or disease nodes. While the states of cells do vary between cells or individuals,

the network structure is almost invariant between cells or individuals, so we chose

network as the universal language for the description of the response model.

The p-p network can be represented by a graph G(V,E), where V denotes the

set of nodes and E denotes the set of edges. There are n nodes and k edges in G.

We can represent a undirected network with an adjacency matrix, A, in which

Aij =

 aij if {i, j} ∈ E,

0 else.
, aij ∈ (1, 0), (3.9)

where aij represent a confidence score which link to evidence on this interaction.

39



3.6 Predictor Filter

The predictor filter is the component where In the predictor filter, the predictors

of drug targets are assembled, and both the disease genes and drug targets are

transformed to encode the information of the network.

3.7 Transformation of dependent variable

The range of sensitivity lies between zero and one. When doing any form of

regression analysis, it is more nature to assume the range is unbound, or between

(−∞,∞). In order to change the range, it is customary in machine learning to

apply the logit transformation to transform sensitivity s to another measurement

s′. The logit transformation is written as

s′ = logit(s) =
1

(1 + e−αs)f
(3.10)

Notice the difference between the logit transformation here and the sigmoidal

transformation we used to fit the dose response curve. We do not need to include

a β factor in our calculation here. However, a shape factor, f , is still included, as

this shape factor will influence the distribution of the sensitivity and potentially

the effect the machine catches.

3.8 Decomposition in machine learning

The cells’ response to external stimuli is determined largely by the topology of

the network, as demonstrated in the network pharmacology studies [Hop08]. Our

current invention is intended to mine the global structural information encoded by

the biological network. Specifically, We want to see whether knowing a given set of

disease genes and their position on a biological network will lead to a predictable
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Figure 3.2: The block diagram of PROPHECY.

result of drug screening experiments.

We introduce Predictive Optimization of Pharmaceutical Efficacy, PROPHECY,

to link the network properties of drugs and the genetic profile of a subject to the

efficacy of a drug combination. The overall structure of PROPHECY is shown in

figure 3.2. A high level overview will be provided in this section, while details will

be given in later sections.

The training data for PROPHECY consists of four components, the screen-

ing database, drug database, disease gene database, and network database. The

screening database contains the actual experimental data, which includes the ex-

perimental condition used, and results. There is no limitation for the experimental

results chosen as long as it is related to drug efficacy. For example, area under

curve (AUC) of drug sensitivity assay can be used as an indicator for drug efficacy.

The efficacy of all experiments should all be represented in the same format in

order for the fitting to work. The experimental data will eventually guide the

program to find the interactions between network nodes. The purpose of the drug

database is to link a drug to its targets. Similarly, the disease gene database

relates a subject, which can be a cell line or the primary cells of a patient, to
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its genetic profile. We then select the mutations that cause physical changes to

the network and map the mutations of the subject to the protein-protein network

used. The network databases we included are protein-protein interaction networks

(PPI) that link molecular interactions in a undirected graph format. Note that the

framework proposed in PROPHECY can be used not only in PPI, but also other

biological network, including genetic network and signal transduction network.

We chose PPI for the edge of the network is a representation of physical interac-

tion, so is less prone to unexpected interactions stem from the interpretations of

different dataset as occur in genetic network.

All databases are incorporated into a network model, and the network model

will produce a preliminary input training set for the predictive module. The inputs

encodes network as well as bioactivity information. At this point, the data will be

too large for realistic prediction, so the input is passed through a predictor filter

to filter out low information content data. Finally, the filtered input is send into

predictive module to generate model for efficacy prediction.
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CHAPTER 4

Graphs and Network diffusion

Graph theory is a branch of mathematics that deals with graph, which is consist

of nodes and edges. Many modern computer science or engineering problems

can be abstracted and recast as a graph problem. We applied the same type of

abstraction in our method, in which the dynamics of interactions between elements

in the molecular circuitry is simplified and reformulated into information spread

in the network. As such, we are freed from the necessity to collect a large set

of parameters used in the dynamical model and can still gain insight into the

network interaction quantitatively by using the structure of the network.

In this chapter, we first reviewed the idea of network centrality, which can be

seen as the first step towards understanding of how structural information of a

network can be summarized in a nodal numerical value. Some pioneering work in

terms of the relationship between network centrality and its biological relevance

also inspired some of the works in this dissertation. We then introduced diffusion

in the network, which we applied in PROPHECY as a measurement for modular

excitation and information spread. Finally, we discussed spectral clustering as a

powerful way for classification of cellular populations.

4.1 Network metrics

Network metrics are nodal scores that reflect characteristics of a node in relation

to the geometry of the network. For instance, degree centrality is the nodal score
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that shows how connected a particular node is. It has been proven that network

metrics encodes rich information related to the response of the cell to external

stimuli. Previous study showed that degree centrality, betweenness centrality,

bridging centrality, can be related to how good a node can be used as a drug

target.

Our intuition is that the interactions between nodes collectively will dictate

most of the response of a cell to a treatment. Not only does drug targets needs

to be considered, but also the location of disease nodes. What we need then is a

language to describe the level of impact when some nodes are affected, either by

target nodes or disease nodes. While the states of cells do vary between cells or

individuals, the network structure is almost invariant between cells or individuals,

so we chose network as the universal language for the description of the response

model. The p-p network can be represented by a graph G(V,E), where V denotes

the set of nodes and E denotes the set of edges. There are n nodes and k edges in

G. We can represent a undirected network with an adjacency matrix, A, in which

Aij =

 aij if {i, j} ∈ E,

0 else.
, aij ∈ (1, 0), (4.1)

where aij represent a confidence score which link to evidence on this interaction.

In the following paragraphs, we review some of the most highly studied central-

ities, and demonstrate that there is a strong relationship between the topological

features of a network with functionality of the nodes.

4.1.1 Degree centrality

The degree of a node, v, is simply the number of edges which are connected to v.

The degree for a node,v, denoted degv, satisfies

n∑
i=1

deg(vi) = 2E (4.2)
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Degree is the very first network centrality (or network metric) that had been

extensively studied. At the beginning, the research direction was focused on

using degree to find the organizational principle of biological network. [JTA00]

Through the distribution of degree centralities, it is found that it follows power

law distribution, meaning that the higher the degree a node has, the less probable

it will occor in the network. It is also shown that high degree nodes are often

essential genes, and thus the inhibitions of these nodes are highly toxic. [JMB01]

4.1.2 Betweenness centrality

Betweenness centrality measures the number of non-redundant pathways that pass

through a node. So, a node with a high betweeness centrality can be regarded as

the ”bottleneck” in the network. The betweenness centrality of a node v is given

by the following expression:

Φ(v) =
∑
s 6=v 6=t

σst(v)

σst
, (4.3)

where σst is the total number of shortest paths from node s to node t and σst(v) is

the number of those paths that pass through v. Joy et al. found that yeast network

contains a large number of nodes with high betweenness centrality, and the number

is higher than that could be explained by a scale free network. [JBI05] The

unusually high betweenness can be explained by the high modularity in the yeast

network, in which the function of high betweenness nodes is to pass information

between modules. Yu et al. studied the dynamics of gene expression in regulatory

network, and found that high betweenness centrality nodes are more likely to be

essential in the network than high degree nodes. [YKS07]

4.1.3 Bridging centrality

Bridging centrality measures of a node’s ability to connect modular subregions in

the graph and its betweenness within these modules. The calculation of bridging
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centrality is the product of the bridging coefficient and the betweenness central-

ity. A node with high bridging centrality would locate between more modules

in the network and holds the global position of connecting nodes. The bridging

coefficient of a node v can be expressed as

Ψ(v) =
1

d(v)

∑
i∈N(v),d(i)>1

δ(i)

d(i)− 1
, (4.4)

where d(·) is the degree function, N(·) is a function that returns the set of neigh-

bors of a node, and δ(i) is the number of edges that leaves the direct neighbor

node i. Then, the bridging centrality is defined as

CBr(v) = RPsi(v) ·RPhi(v), (4.5)

where RPsi(v) and RPhi(v) is the ranking of node v in terms of its betweenness

centrality and bridging coefficient in the network respectively.

Hwang et al. showed that nodes with high bridging centrality could be nice

candidate of drug targets, as these nodes has low lethality and can modulate the

network quite effectively. [HZR08] The main contribution of this work is to show

that the application of network topology can be applied to reveal the functionality

of nodes and how these properties of the nodes can be an indicator for drug target

selection.

4.2 Diffusion of information in the network

The centralities of a network were interesting metrics that linked the topological

features to nodal function. As the literature shows that nodes have unusual cen-

tralities usually has unique function, our first thought was to use these centralities

as predictors for a sensitivity model. However, the centralities itself does not pro-

vide extra information if we were to treat them as predictors in a predictive model

because a two value input of zero and a centrality score is equivalent to zero and

1 in a regression model. We thus turn our attention into searching for a network
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metric which depends on your initial nodal selection, and also encode modular

information. In complex disease, the diseased phenotype is seldom the product

of the loss of function in a single gene. Even for Mendelian disease, which has

only one causal mutation, the phenotype is the product of the malfunction of the

causal gene propagated through the network. As mentioned in the tumor biology

chapter, the information propagated from the causal genes to the local modules

and then to the entire network can be a powerful predictor to the phenotype.

Here, we discribed two methods that quantitatively evaluate the propagation of

information, namely, the diffusion kernel and PageRank.

4.2.1 Diffusion kernel

Diffusion kernel is a form of lazy random walk and was used to prioritize unkown

disease genes. [KBH08] We can define the diffusion kernel, K of a graph G as

K = e−βL (4.6)

where β can be thought of as a rate constant that controls the magnitude of

diffusion, and the matrix L is the laplacian of G, which is defined as

L = D−A (4.7)

where D is a diagonal matrix with the diagonal terms holding the degrees of the

nodes. By using K, the nodes j can be ranked by the score defined by

score(j) =
∑

i∈genetic lesion

Kij (4.8)

4.2.2 PageRank

We represent diseases models as the set of cell lines, Γ, as Γ = {gi ∈ Rn×1| i =

1, · · · , Nc}, where gi denotes a vector where the non zero entries are the confidence

score of disease gene and zero elsewhere. The confidence score reflects the type of
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mutation the gene causes. Nc is the number of cell lines in the library of cell lines.

Similarly, the set of drugs Ω is represented as Ω = {di ∈ Rn×1| i = 1, · · · , Nd}

, where di is a vector with nonzero entries being the confidence score associated

with the drug targets of drug i. Nd is the number of drugs in the library of

chemicals.

The first thing we want to do with the network is to find the propagation of

information from drug targets and disease genes. Due to lack of detailed network

directionality and reaction constants, we do not have the complete picture on how

the actual dynamics of the network state will shift due to intervention of drugs and

disease genes. What we do have is the linkage between nodes, and the fact that

the state of the neighbors of the drugged (or mutated) nodes will be distorted.

Therefore, we use random walker starting from the drugged (or mutated nodes) to

model the propagation of information. The assumption is that we can see the most

affected nodes by looking at the steady state distribution after the random walker

was presented in the network for a long time. However, one thing worth notice

is that the propagation of random walker will always reach a single steady state

regardless of the starting nodes, as predicted by the Perron Frobenius Theorem.

The theorem says the stationary distribution of the random walker will always

converge to the eigenvector which has eigenvalue equals to 1. Therefore, in order

to make the starting nodes matter, we will use random walk with restart. By

putting the random walker back to the original nodes, the converged distribution

will be analogous to the so called personalized PageRank [PBM99].

To model the random walk, we first define the state tansition matrix W as

W ≡ D−1A, (4.9)

where D is the degree matrix.

To evaluate the effect of mutated nodes on the network, we do a random walk
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where the initial distribution is

p0
g,i =

gi
|gi|1

, (4.10)

and the same normalization with taxicab norm can be applied to drugged nodes,

di. For any initial distribution, p0, we can model the random walk process as

pt+1 = (1− r)Wpt + rp0, (4.11)

where r is the teleportation constant. The steady state probability p∞ is an

evaluation of how one subset of nodes affect the nodes in the whole network. Note

that the steady state probability, p∞, is the solution of

p∞ = (1− r)Wp∞ + rp0. (4.12)

So, the solution of the PageRank for a given initial distribution is

p∞ = r(I− (1− r)W)−1p0. (4.13)

We can use this to calculate the information propagation for a given initial prob-

ability distribution such as p0
g,i and p0

d,i. In the later fitting stage, we will not use

the initial distribution, but only the steady state distribution. Thus, we will drop

the superscript ∞ and use pg,i and pd,i to denote the steady state distribution.

Transformation of graph The original network model has to be transformed

to take into account the dangling nodes, which are the nodes that has only one

incoming edge. Otherwise, the dangling nodes will absorb most of the random

walk probability and the probability at these nodes be over amplified after infinite

iterations. The way for transformation is to add outgoing edges from the dangling

nodes to all other nodes.

Combination drugs One of the main advantage of expressing a drug as a

vector d is that a drug combination can be expressed as the exact same format.
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In fact, the program has no knowledge whether a given drug is a single drug or

a combination; it just takes it as a set of drug targets. The only problem now

is the case when there are overlaps between drugs, which are common between a

family of drugs or non-specific drugs such as cytotoxic drugs. We combine a set

of m drugs, {d1,d2, ...,dm}, by the following.

d = 1−
∏
i

(1− di). (4.14)

Now, we can drop the dependence of subscript, i, on single drugs. From now on,

all drugs including drug combinations will be denoted as di, where i denotes the

internal bookkeeping of the drug/drug combination, but not the indexing of single

drugs.

4.3 Spectral clustering of data points in different sets of

feature space

Spectral clustering is a clustering method to classify populations distributed in

a multidimensional feature space, and the method is particularly useful when

the distribution of the population is unknown or is highly complex. Traditional

clustering methods such as k-mean clustering use elliptical metrics to group the

population of data points, so they do not work well when the group of data is

non-convex. For example, if the population forms donut shapes in the feature

space, traditional methods will be ineffective in separating the population. On

the other hand, spectral clustering does not make assumption on the distribution

of population, and in this sense the method is closely related to multidimensional

scaling. Since we want to compare the distribution of cell lines residing in different

feature space, and we have no prior knowledge on how the distribution might

look like, we chose spectral clustering as the default method. Usually, clustering

is introduced under unsupervised learning which is related to machine learning

algorithm. Since spectral clustering is closely related to graph partition problem,
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we insert this topic in the graph theory chapter.

4.4 Spectral clustering

The spectral clustering of N data points, X = {x1, ..., xN}, begins with a N by

N similarity matrix S, in which Sij is the pairwise similarity between points i and

j. The similarity can be measured by various metric. One popular choice is the

radial-kernel gram matrix, in which

Sij = exp(−|xi − xj|
2
2

c
), (4.15)

where c is a scale parameter that measures the length scale of the problem. With

the similarity matrix, we can then construct an N by N adjacency matrix W of

a similarity graph G =< V,E >. W is constructed so that we set up a threshold

η, within which Wij = Sij, and zero else where. Now the problem for clustering is

recast into a graph-partitioning problem, as can be seen that neighbors will form

a local cluster or modules in the graph.

Lastly, we calculate the graph Laplacian L as

L = G−W, (4.16)

where G is a diagonal matrix of nodal degree with Gii =
∑

j∈N(i) Wij. Then

spectral clustering is the clustering of a matrix ZN×m, in which the columns

corresponds to the eigenvectors which has the m smallest eigenvalues of L. For

a detailed explanation why spectral clustering works, readers are encouraged to

read [HTF09].

In spectral clustering, the free parameters candη need to be determined, as well

as the number of clusters. To avoid the bias in selecting the number of clusters,

we use hierarchical clustering to look at the distribution at all possible number of

clusters.
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4.4.1 Comparing the similarity of two hierarchical clusters

We introduced spectral clustering as a way to group cell lines without knowing

how their distributions look like in a feature space. Cell lines which have similar

therapeutic profiles will certainly cluster together if measured by a feature space

of drug sensitivities. What if the drug sensitivity is not available? So, our goal is

to find another feature space, which can be the cell lines feature of gene expression

level or the personalized PageRank of gene mutations, so that the clustering of

groups can be similar to the clusters that generated by drug sensitivity.

So in here, we introduced a method that can compare the similarity of clusters

in two trees which was introduced by Fowlkes et al. [FM83] to compare the

similarity between the hierarchical clusters generated by using different metrics.

Let us assume that we have two hierarchical clusters of the same number of objects,

n, which we label A1 and A2. We can then cut each tree at a particular cluster

strength to produce k = 2, ..., n− 1 clusters for each tree. Since we have no prior

knowledge how the clusters in the two tree should map to each other, we may label

the clusters of A1 and A2 arbitrarily from one to k. From this random labeling,

we can calculate the similarity matrix

M = [mij], (i = 1, ..., k; j = 1, ..., k), (4.17)

where mij is the number of common objects between the ith cluster of A1 and

the jth cluster of A2. Note that most of the similarity measure developed exploit

the concept of similarity matrix. [HA85, Bak74, Ran71] We followed the measure

score proposed by Fowlkes et al. and define our measurement of similarity as

Bk = Tk/
√
PkQk (4.18)

where
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Tk =
k∑
i=1

k∑
j=1

m2
ij − n, (4.19)

mi. =
k∑
j=1

mij, (4.20)

m.j =
k∑
i=1

mij, (4.21)

m.. = n =
k∑
i=1

k∑
j=1

mij, (4.22)

Pk =
k∑
i=1

m2
i. − n, (4.23)

Qk =
k∑
j=1

m2
.j − n. (4.24)

For every value of k, Bk is calculated, and the similarity of the two trees can be

given by plotting Bk versus k. When all of the clusters in each trees correspond

completely, there will be exactly k nonempty elements in M , so Bk = 1. When

all pair of objects appear in the same cluster in A1 is assigned to different clusters

in A2, mij will be 0 or 1, so Bk = 0. The result of the clustering was shown in

the chapter of result and discussion.
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CHAPTER 5

Regression Methods

Classification and regression consistute the two pillars of supervised learning in

machine learning. Classification concerns the mapping from a set of predictors

to a discrete label, while regression maps predictors to a continuous number.

Generalization from a single number to a vector of number is trivial.

5.1 Assemblage of design matrix from network metrices

Suppose we have n traning data, in which each one of them contain p observables,

that can be used for model fitting. In the machine learning or statistics literature,

we often organize the n training data into a p by n matrix X, which we calld the

design matrix. In many fitting algorithm, design matrix is a convenient construct

which allows us to calculate the objectives with simple matrix algebra.

We assemble the predictors we collected, namely the PageRank of oncogenes

and drug targets, into a design matrix from a set of n data points as

X =


pTg,1 pTd,1 1

pTg,2 pTd,2 1
...

...
...

pTg,n pTd,n 1

 , (5.1)

where pTg,1 is the transpose of the PageRank of oncogene from the first datapoint

of cell line, and pTd,1 is the transpose of the PageRank of drug targets from the

first datapoint of drugs. The column of 1 is introduced for the fitting of intercept
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at the later regression step, which is required for most of the kernel methods.

Unfortunately, we will include too many predictors by doing so. So, we will intro-

duce a cutoff probability, to discard those columns where there is no probability

larger than cutoff, and use it as the new training matrix, X. For the output

y, it also requires transfomation in order to gain better fitting. Originally, the

range of y is within [0, 1], and needs to be transformed to [−∞,∞]. A sigmoidal

transformation is introduced, such that

y =
1

(1 + exp (−ŷ))γ
, (5.2)

where ŷ is the transformed output and γ is a shape factor that describe the

signoidal curve. The transformed output will be assembled as a output training

vector as

y = [ŷ1, ŷ2, . . . , ŷm]T . (5.3)

5.2 Gaussian process

Gaussian process is a statistical distribution that describe the distribution of a

function, in which every point in the function is jointly Gaussian. It is uniquely

specified by its mean function m and covariance function k.

m(x) = E[f(x)], (5.4)

k(x,x′) = E[(f(x)−m(x))(f(x′)−m(x′))], (5.5)

and the Gaussian process can be written as

f(x) ∼ GP(m(x), k(x,x′)). (5.6)

5.2.1 Prediction with noisy observations

Here, we begin to construct the model of drug sensitivity. Suppose yi is the logit

transformed sensitivity of the ith dose response curve, and xi the corresponding
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features, xi = (pTg,i,p
T
d,i, 1)T . To account for the random error that arised from

screening experiment, We assume the transformed sensitivity to be

yi = f(xi) + εi, (5.7)

where εi ∼ N(0, σ2), and σ is the standard deviation of the error of transformed

sensitivity. Under these model assumption, we can write the dataset as D =

{X,y}, where y = (y1, ..., yn)T ∈ Rn, and X = (x1, ...,xn) ∈ Rn×d. d is the

dimension of pg, pd combined plus one. The likelihood of the output is then

p(y|f) = N(f , σ2I) (5.8)

where f = (f(x1), ..., f(xn))T , and the error terms (ε1, ..., εn) are assumed to be

independent and identically distributed.

We assumed that the model follows a Gaussian process prior. Since all points

in the function will be jointly Gaussian, we can write the probability distribution

of the collection of data output y and the prediction f∗ asy

f∗

 ∼ N
0,

K(X,X) + σ2
nI K(X,X∗)

K(X∗, X) K(X∗, X∗)

 (5.9)

As many of the growth advantage and cell toxicity of drugs are additive and

coupled with interactions between several genes, we described the model using a

polynomial kernel, which is defined as

k(x,x′) = (x · x′ + σ2
0)p (5.10)

Alternatively, we also tried to used squared exponential kernel because it poses

less restrictions on the expressiveness of the functional space it includes. Actually,

the function space encoded by exponential kernel is infinite dimensional. However,

in our later numerical experiment. The exponential kernel perform suboptimally

compared with polynomial kernel, presumablly due to the strong additive effect

of certain genes.
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To simplify the expression, we introduce a shorthand K(X∗, X), a matrix

where the i, jth element is k(x∗,i,xj) We can compute the conditional probability

of f∗ given the data, by applying the Bayes’ Law, we have

f∗ | X,y, X∗ ∼ N (f̄∗, cov(f∗)), (5.11)

where the posterior mean of f∗, f̄∗, can be calculated as

f̄∗ , E[(f∗) | X,y, X∗] = K(X∗, X)[K(X,X) + σ2
nI]−1y, (5.12)

, and the point-wise covariance as

cov(f∗) = K(X∗, X∗)−K(X∗, X)[K(X,X) + σ2
nI]−1K(X,X∗). (5.13)

f̄∗ denotes the predictive mean, and cov(f∗) is the covariance matrix of the

prediction. In the case of a single test point x∗, we can write the mean and

variance as

f̄∗ = K(x∗, X)[K(X,X) + σ2
nI]−1y (5.14)

V[f∗] = k(x∗, x∗)−K(x∗, X)(K(X,X) + σ2
nI)−1K(X, x∗) (5.15)

5.3 Transformation for better fitting

5.3.1 The mean and variance of prediction

In order to find out the mean and variance of prediction, it is better to consider

the inference as random variables. The prediction is a transformation from the

logit sensitivity X to the sensitivity Y , where y = g(x), and the sigmoid function

g is

y = g(x) =
1

1 + e−fx
, (5.16)
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where f is the shape factor. The sigmoidal function has the following inverse, the

logit function

x = g−1(y) = − 1

f
ln(

1− y
y

) (5.17)

The function of random variable is also a random variable. For a differentiable and

increasing function, the differential and inverse are guaranteed to exist. Because

g maps all x ≤ s ≤ x+ ∆x to y ≤ t ≤ y + ∆y:∫ x+∆x

x

fX(s) ds =

∫ y+∆y

y

fY (t) dt (5.18)

It follows that

fY (y) = fX(x)
dx

dy
=
fX(x)

g′(x)
=
fX(g−1(y))

g′(g−1(y))
(5.19)

We can find the derivative of g for equation 5.16 as

d g(x)

d x
=

fe−fx

(1 + e−fx)2
(5.20)

From the previous equations, we can derive the probability deisity of the trans-

formation given x ∼ N(µ, σ).

fY (y) =
1√

2πfy(y − 1)σ
exp{−

fµ+ ln (1−y
y

)

2f 2σ2
} (5.21)

However, this equation does not have closed form solution for its mean and vari-

ance. Therefore, we need to calculate the approximate mean and variance with

numerical simulation. For example, we can use a Metropolis-Hasting Algorithm

to sample the pdf. Note that, a numerical integration for mean and variance does

not work well here, since a large x usually generate excessively high probability

density, making the numerical integration incorrect.
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CHAPTER 6

Integration of Databases

In this chapter, we will review all the public databases that were used in generating

predictions of PROPHECY, including STRING, STITCH, CCLE and COSMIC.

For every database, we will first explain how the data we used from the database is

constructed. Secondly, we will review the function of the dataset in PROPHECY.

Finally, since most of the databases have different naming convention for the

identification of genes and chemicals, we explained in detail about how the data

from different databases was integrated.

6.1 STRING

STRING is a online public database that host a wealth of information related

to the protein-protein interaction network in various organisms.[SLB00, VHJ03,

VJS05, VJK07, JKS09, SFK11, FSF13] The protein-protein interaction included

in STRING emcompass not only direct physical interaction, but also functional

and predicted interaction. Indeed, direct physical interactions between proteins

only account for less than 1% of the total possible interactions between proteins.

Proteins can interact in various different ways. For example, several proteins can

join together in a larger functional complex, in which two protein in the complex

might not directly interact, to accomplish one modular function. Protein can also

regulate another protein’s transcription event, thereby influence the expression

level of another protein. Some protein when activated can serve as a catalyst in

the biocheimcal reaction triggered by other proteins. Therefore, including all of
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the possible interactions, both physical and indirect, are crucial for comprehensive

understanding on a systemic level.

Figure 6.1: Sample query of the P53 gene from the STRING database. The color

of the linkages shows the confidence score of association calculated from different

type of data collection methods.

The major dataset we extracted from STRING is the homosepian protein

protein interaction netwrok, which includes around 22,000 proteins and 1.5 million

interactions. We downloaded the entire database and the schema of STRING and

hosted the database on a PostgreSQL server. We relabeled the proteins with

an internal numerical ID and stored in a dictionary file for the gene names and

protein IDs.
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For the edges in the network graph, we extract the confidence scores and

store the scores in a sparse adjacency matrix. The confidence score is retained

instead of using a boolean representation, as the weight fo the edges effects the

information diffusion in the network, and is a valuable extra piece of information.

The confidence score in STRING is a likelyhood score that is associated with the

probability of two proteins having linkage by any one of the methods they used to

mine data. Many datamining methods were used by STRING including genomic

context, direct experimental result from high throughput protein binding assay,

coexpression from microarray data, and text mining from the literature. A high,

median, and low score for an edge is 700, 400, and 150. The score s is calculated

from

s = 1−
∏
i

(1− si), (6.1)

where si is the ith type of score. Interestingly, we also apply this scoring scheme

when combining drugs, and this shows to be very effective in evaluating the in-

teraction when two drugs is applied on the same protein target.

6.2 STITCH

STITCH is a protein-chemical interaction database, which includes 390,000 chem-

icals and 3.6 million proteins from across 1133 organisms. [KMC08, KSF10,

KSF12, KSP14] There were 367,000 high confidence level protein-chemical inter-

actions in STITCH. The interaction data from STITCH is derived from sources

including large scale expeirmental databases, manually curated database of inter-

action evidence with text mining from literature and predicted linkage.
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6.3 Cancer Cell Line Encyclopedia (CCLE)

Cancer Cell Line Encyclopedia (CCLE) is a database of cancer cell line genome.

[BCS12] It includes information of detailed genetic variation of 947 human cancer

cell line which span 36 tumor subsypes. Mutational status of ¿1600 cells are

determined by massive parallel sequencing, and germline mutations are removed.

We gathered from CCLE the mutation status of 392 recurrent mutations of 33

cancer genes, and the copy number variations. We also obtained the messenger

RNA expression data of each cell line from CCLE, in order to compare the disease

gene mutation with gene expression. We mapped each genetic signatures onto the

PPI network. Before mapping, silent and intron mutations are removed from the

gene mutation list, since they do not effect the phenotype.

6.4 Genomics of Drug Sensitivity in Cancer (GDSC) of

the COSMIC database

The Genomics of Drug Sensitivity in Cancer (GDSC) database is the largest

database of cancer cell line drug sensitivity.[YSG13] The database host data of

around 75,000 drug screening experiments, representing the therapeutic profile

of 138 anticancer drugs, chemo or targeted therapy, across around 700 cell lines.

Additionally, the database also offer data analysis for biomaker discovery purpose.

The screening experiment was designed following the same protocol. First the

cell lines is seeded in microtiter plates, and incubated for 24 hours, and a serial

dilution of drugs is applied to wells followed by another incubation of 72 hours.

After 72 hours, fluorescent marker of cell viability is measured, and the intensity

will be normalized to control and background to obtain the viability and the

dose response curve. GDSC provided the dose response in terms of several fitted

parameters. They use a home brewed parametric model of Bayesian smoothing,

62



which was reviewed in previous chapters in this dissertation. ICx was provided

along with other sigmoidal parameters including α, β, f , and B. The integrated

sensitivity data from the dose response curve is also provided. In PROPHECY,

every initial data point is consist of a drug name, a cell line name and a sensitivity.

The data from GDSC uses different format in terms of the identification of

drugs or cell lines from other databases that we gathered, so additional mapping

steps must be done in order to use the data. The drugs needs to be identified pre-

cisely to match the chemical formula for the purpose of integration with STITCH,

from which the drug targets can be queried. We first matched the drug names

from DrugBank, a database that houses information of FDA approved drugs and

experimental drugs, to get the pubchem ID. Through the pubchem ID we can

map the drugs from GDSC to STITCH. From all of the 138 drugs in GDSC, we

were able to retrieve 100 drugs and find matches in STITCH.

For cell lines, due to the fact that CCLE holds more up to date and compre-

hensive data on the genetic variation in cell lines compared with COSMIC, the

parent database of GDSC, we need to map the name of the cell ine to CCLE.

Among the 700 cell lines in GDSC and the 947 cell lines in CCLE, we found an

overlap of 400 cell lines.

6.5 Mapping of data across databases

Format of STRING Most of the mapping for genes and proteins goes back to

STRING, which was the most comprehensive in terms of the scale of the genes

and proteins included. In STRING, each protein has an interger ID, ENSG ID,

and the Hugo Symbol of the gene (which is the same as the preferred name of the

gene).
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Format of STITCH STITCH comes from the same group which developed

STRING and has the same protein naming convention, so the drugs in STITCH

can be easily matched to their target proteins in STRING. In STITCH, the chem-

ical IDs were given the form “CIDXXXXXXXXX”, where the “’XXXXXXXXX’

part is the PubChem compound ID.

Format of CCLE The cell line information in CCLE has the format name lineage,

e.g. MDAMB231 BREAST. The disease genes in CCLE are identified by Hugo

Symbol. The genes in CCLE are matched to STRING’s proteins by first match-

ing the gene name directly. For those genes that remained unmatched, we used

the HUGO Gene Nomenclature COmmittee (HGNC) Biomart to convert the gene

names of CCLE into an ENSG ID, and match to the ENSG in STRING. For a few

genes that remained unmatched, we checked if the ENSG ID can be found manu-

ally at ENsembl or STRING or HGNC’s website, then match the query result to

the ENSGs in STRING.

Format of GDSC The cell lines in GDSC has the format name with dashes,

e.g. MDA-MB-231. These are matched to the cell lines in CCLE by removing the

lineage from CCLE’s names and the dashes from GDSC’s names so the name of

the cell lines can be matched.

The drug names need to be matched to STITCH’s drugs by using the drug’s

PubChem compound ID, since our attempts to query by drug name did not work

well. We manually searched the PubChem ID for each of the 140 drugs in GDSC.

We ethen convert the integers formated PubChem IDs into the format of the

STITCH chemical IDs and match to STITCH.
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Figure 6.2: Sample query of doxorubicin from the STITCH database. Stronger as-

sociations are represented by thicker lines. Protein-protein interactions are shown

in blue, chemical-protein interactions in green and interactions between chemicals

in red.
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CHAPTER 7

Result and Discussion

The main goal of this chapter was to give a summary of the evidence which sup-

ported the quality of predictions given by PROPHECY. We first demonstrated

that the network diffusion signature of gene mutations is a powerful classification

method that is capable of showing the drug resistance profile of cell lines by a

comparative clustering analysis. Next, we compare the quality between the pre-

dictors and different regression method by various standard methods, and proved

that PROPHECY has superior predictive power in every measure. Finally, a set

of two drug combination experiment is performed to demonstrate the predictive

power of PROPHECY on drug combinations. We showed that PROPHECY can

predict the drug sensitivity with high accuracy even though it is never trained by

combination drug data. The panel of 6 cell lines tested by the experiment also

proved that PROPHECY is applicable to a wide range of genetic profiles. A set of

high performing two drug combinations are identified by PROPHECY and then

experimentally verified. The combinations discovered include novel drug combi-

nations that have relavant biological indications, and approved combination that

further confirm the strenghthen of the predictions.

The chapter were divided into sections representing major hypothesis made in

the project. In each section, we first addressed the central questions we wanted to

answer to prove the predictability, and then the rational behind the hypothesis.

We provided the detailed numerical methods for simulations, data analysis and/or

physical experiment performed to verify the hypothesis. Conclusion and discussion
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were given at the end of each section.

7.1 Spectral clustering showed network diffusion signature

as a powerful observable for classification

Clustering is a method used widely in biology to elucidate structures within a

spectrum of populations without prior knowledge of how the population should

be classified, or, in the terms of machine learning, the data points is unlabeled.

For example, in a typical biomarker study, the vectors of gene expression level

of several genes from different cell lines at regular culture condition can be used

to classify the cell lines by clustering the cells. Clustering of cells often result

in unexpected classification which is otherwise non-obvious without the aid of

biomarkers. Many studies have found that lineages of cell lines are often less than

optimal predictors compare to genetic profile or gene expression profile.

The purpose for clustering analysis is to prove that network diffusion is a good

way for the classification of cell lines. Contemporary classifications of disease are

often based on the pathology of the patient, and it had been proven ineffective

by modern molecular diagnostic tools. [BGL11] Now that we have shown in a

theoretical perspective that network diffusion can highlight the functional modules

being affected by the disease. Can PageRank be further extended to search for cells

that have similar response to therapy? If cell lines which have similar therapeutic

profile can be clustered in the feature space, it can prove that the features are

good indicators for classifying disease.

The major hypothesis we made is that the clustering made by PageRank would

be more similar to that of therapeutic profile compared with clustering by other

biomarkers. As introduced in chapter 4, we can measure the similarity between

drug treatment and biomarker by the Bk score. Notice that we will select hier-

archical clustering as the clustering method, as this method does not require the
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user to determine the number of clusters k.

The first step toward the comparison is to perform hierarchical clustering of

cell lines based on the drug response. We need a NCL by Ndrug design matrix to

compute the cluster. For the drug response, however, not all of the drugs have

complete data for all of the available drugs, so we need to fill in the missing data

first with PROPHECY. 430 cell lines were matched to our database to have both

genetic profile and dose response data. In total, 100 drugs were tested on the

cell lines, so in total need 43,000 data points to assemble the design matrix. We

only had 31,170 data points of sensitivity. So, excluding also the duplicated data

points which same drugs and cell lines are used multiple times, another 12163

data points were to be generated from PROPHECY. After filling the data with

PCA regression, the similarity matrix is completely filled.

Usually, hierarchical clustering is accomplished by directly calculating the dis-

tance in terms of the observations. This type of methods often uses spherical or

elliptical metric to group data points, so they do not work well when the clusters

in the feature space is non-convex. [HTF09] For example, if one group of data

forms a donut structure in the multidimensional space, while another group sitting

in the center of the hyper donut, the traditional clustering will not resolve this

problem. So, instead, we use a method that closely related to spectral clustering,

that is, we use the NCL by NCL similarity matrix to measure the distance for each

observation as their relative distance to every other observations. By doing so,

the hierarchical clustering can reveal the global structure of the grouping between

observations.

In drug response case, the similarity matrix is computed based on the Pearson

correlation of 100 drugs’ response of cell line pairs. After the similarity matrix

is computed, we use the matrices to cluster each case by average method. The

resulting clustergram of drug response was illustrated in figure 7.1.

In the gene expression level case, we take the z score of all genes, and compute
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Figure 7.1: Hierarchical clustering of cell lines based on the similarity matrix of the

Euclidean distance between cell lines in the feature space of drug sensitivity. We

found that the clustergram forms clear checkerboard structure, indicating there

is a clear distinction between group of cell lines. Also, lineages of cell lines are

clearly not the major determinant in the grouping, many different lineages of cell

lines were grouped together due to sharing of similar responses to treatments.
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Figure 7.2: Hierarchical clustering of cell lines based on the Euclidean distance of

cell lines in the feature space of gene expression level.
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Figure 7.3: Hierarchical clustering of cell lines based on the Euclidean distance in

the feature space of PageRank.

the Euclidean distance between the gene expression level vector of pairs of cell

lines. The transformation to zscore is cutomary for the data analysis of gene

expression level. The resulting clustergram of gene expression was illusterted in

figure 7.2.

In the PageRank case, the similarity matrix is computed based on the Eu-

clidean distance between the PageRank of pairs of cell lines, and the result is

shown in figure 7.3. On the surface, we can check the similarity by looking at the

checkerboard pattern of each clustergram. The shading produced by PageRank
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Figure 7.4: Bk versus the number of clusters, k. PageRank showed better perfor-

mance than gene expression in multiple ranges of k.

appears to be closer to that of the drug response than the gene expression. How-

ever, this type of visual discrimination can be misleading at times, so we must use

a more quantitative way to measure the similarity of two clustering.

In order to compare the quality of the clustering, we use the method mentioned

in the paper, ”a method for comparing two hierarchical clusterings” to calculate

the similarity score Bk corresponding to each number of clusters k. [FM83] We

treat the drug profile clustering as the gold standard clustering, and compare

PageRank and gene expression against it. We found that the PageRank is more

similar to drug response clustering at low k, and similar to gene expression at

middle k (10 - 150) demonstrating that PageRank is a good measure for the drug
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sensitivity. Given that measuring mutation is cheaper than measuring gene ex-

pression with current technology, we propose that PageRank of cell line mutation

profile is an excellent candidate for both preclinical and clinical diagnostics.

7.2 Analysis of the quality of the sensitivity model

The central function of PROPHECY is to predict the sensitivity of the cell line

based on the genetic profile of the cell and the drug target association. The sen-

sitivity is a continuous number in the range [0, 1], and hence a regression analysis

is appropriate. The central question we want to answer is whether the prediction

made by the regression is close enough to the true value. How do we measure the

closeness? How do we get testing examples? There are several metric we can use

to determine the quality of certain regression analysis. The first one is the Pearson

correlation between the prediction and the experimental result. Usually, whether

certain value of the Pearson correlation is good or bad depends on the system

under investigation. Other measurement of the quality of regression algorithm is

usually relative, which means that the performance of the algorithm needs to be

compare to other methods judging by certain benchmark functions.

7.2.1 Cross validation on the single drug dataset

Cross validation is a technique widely used to determine the quality of the fitting

of regression. [Bis06, Ras06] In cross validation, we divide all of the available data

points in to training set and testing set. The training set is used for model fitting,

and then the testing set will be compared against the training set to measure the

Pearson correlation between the prediction and the testing set. Due to the fact

that the testing set is disjoint from the training set and the regression had never

seen the testing set before, the predictability of the method itself can be measured

quite accurately. There are several versions of cross validation, depending on how
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the data set is divided. Leave one out cross validation is suitable in the cases when

the training data is expensive or hard to obtain, so all of the data are used to

train the model except for one testing case is left out. The model is then trained

N times and the data collected to analyze the Pearson correlation. However,

in our case, we have around 30,000 data points and we are computing a highly

nonlinear kernel function, so leave one out cross validation is too expensive to

compute. Instead, we resort to k fold cross validation, in which the data points

are randomized and then divided into k disjoint subsets. Each time, one subset is

used as testing set while all of the other training set.

We computed a 3 fold cross validation for the single drug case from the COS-

MIC database. We can then collect all of the predictions and the test cases,

essentially the whole dataset, and plot the correlation plot as in figure 7.5. The

correlation coefficient is 76% in the case of Gaussian process regressor with PageR-

ank predictor, which is 20% higher compared with the average of 50% that is

reported in the literature by using elastic net regression and genetic signature as

predictors. [BCS12]

7.2.2 Compare information gain by predictors: PageRank vs Gene

scores

To figure out whether it is the machine learning model or the difference in predic-

tor which contributed to the higher correlation (and thus a better learning), we

did a 3 fold cross validation on the Gaussian process model with both the gene

score predictors and PageRank predictors. Our rational is that the epistasis of

the predictors should be important, so only a machine learning with polynomial

kernel has the capability to take interaction terms into account. The result of the

comparison is demonstrated in a box plot as shown in figure 7.6. It is shown that

by switching to PageRank there was a 20% information gain in the system, which

translates significantly when applied the algorithm for drug selection.
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Figure 7.5: Correlation plot of the result of 3 fold cross validation of the Gaussian

process predictor on 40,000 entries of sensitivity data. The total predicted sen-

sitivity showed 76 % correlation with experimental data, which exceed the best

prediction reported in the literature. [BCS12] The histogram of experiment and

model showed similar trend, indicating that the model is capturing the underlying

mechanisms.
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Figure 7.6: Box plot of the Pearson correlation coefficient of the result of cross

validation from the PageRank model and the gene score model.
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7.2.3 Learning rate of PROPHECY

The learning rate of a regression method is also an important measure of the per-

formance. We are only training the machines with single drug data for preliminary

test. However, the space of combination drugs is supposedly much larger than that

of the single drug. For the regression method to perform well in predicting unseen

combinations, it must pick up the epistasis of the PageRank very quickly. So,

in order to see the learning rate, we plot the number of training points against

the Pearson correlation coefficient, the result is shown in figure 7.7. We can see

that the machine learning algorithm quickly learned the interactions between the

PageRank predictor, and saturated at around 5000 data points, which comprises

around 12% of the total possible training points.

To see the how the trend of the curve compare to exponential growth, we

further plot the curve on a semilog scale, the result can be seen on figure 7.8.

We can see that the learning rate grew exponentially at first and then saturated

afterward.

7.2.4 Compare the intragroup correlation between regression methods

There are two major use of prediction in terms of therapeutic purpose. One way

is to use it to predict the therapeutic response of different genetic signature, or

different cell populations, given a particular drug. The second way is to select the

best drug or combination of drugs given a particular genetic profile. In order to

see the characteristics of PROPHECY in terms of both task, we collect the data

of correlation coefficient by separating the training set into group of cell lines but

different drugs or groups of drugs but different cell lines. We built the model with

all training data, and then made prediction for one drug with a panel of cell lines,

and calculate the Pearson correlation coefficient. We first plot the result from

Gaussian process regression and from PCA regression, which is shown in figure
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Figure 7.7: Number of randomized training point, Nt vs the Pearson correlation

coefficient, R. This can demonstrate the learning speed of PROPHECY. This

is PROPHECY trained with PageRank as independent variable and Gaussian

process with polynomial kernel where p = 3.
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Figure 7.8: Number of randomized training point, Nt vs the Pearson correlation

coefficient, R on a semilog scale. This can demonstrate at which point does the

learning speed of PROPHECY follows exponential growth. This is PROPHECY

trained with PageRank as independent variable and Gaussian process with poly-

nomial kernel where p = 3.
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Figure 7.9: Histogram of correlation coefficient as separated by cell lines with

PCA regression. The average correlation coefficient is 38%.

7.10 and figure 7.9.

We then plot the histogram of Pearson correlation coefficient of each cell lines

with a spectrum of drugs. The resulting histogram is shown in figure 7.11. We

found that the performance seems much higher in average compare with seperation

by drugs. The reason is that the algorithm has better knowledge of the efficacy

of the drugs, since each drug is trained with around 400 examples while for each

cell line it is trained with only around 70 example of drugs. So, depending on

the quality of the dataset we have, it will also affect the predictive power of the

regression model.
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Figure 7.10: Histogram of correlation coefficient as separated by cell lines with

Gaussian Process regression. The average correlation coefficient is 54.4%. It has

in average higher correlation than PCA regression, but some drugs has less than

optimum performance. We reason that it is due to those cell lines which have ge-

netic profile separated far away from other cell lines, as shown by multidimensional

scaling study of the cell lines.
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Figure 7.11: Histogram of correlation coefficient for each cell line as calculated

with a profile of drugs by Gaussian Process regression.
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7.2.5 Reciever operating characteristics curves by different predictors

One other way to compare the predictability of two learner is to plot the receiver

operating characteristics curve (ROC curve). In a classification setting, the learner

divides the population of all training set into two populations. The population is

determined by comparing the prediction with a threshold value. If the prediction

is higher than threshold, the data point is accepted, and vice versa. We can then

calculate the sensitivity or true positive rate of the model prediction as

TPR =
TP

P
=

TP

TP + FN
(7.1)

where TPR, TP , P , and FN denotes true positive rate, true positives, positive

cases, and false negatives. Also, we can calculate the fall-out or false positive rate

as

FPR =
FP

N
=

FP

FP + TN
(7.2)

where FPR, FP , N and TN denotes false positive rate, false positives, negative

cases, and true negative.

The ROC curve compare the false positive rate of a regressor against the true

positive rate with respect to different threshold value. When subjected to random

guesses, the ROC curve will appears to be a straight line across the diagonal;

any classifier better than random guess will result in a curve on the upper left

of the diagonal. The better the predictor the closer the curve will be to the top

left corner, as it shows that the predictor will have very little false positives while

having very high true positives.

The result of the calculated ROC curve with the threshold α, in this case the

sensitivity, is shown in figure 7.12. We compare the ROC curve of the PageRank

and gene score predictors both trained with Gaussian process regression with

polynomial kernel with p = 3. Clearly, PageRank outperforms the genetic profile.
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Figure 7.12: The reciever operating characteristics curve (ROC curve) with dif-

ferent predictors trained by the Gaussian process model.

7.3 Experimental verification of PROPHECY, a two drug

combination verification

In order to demonstrate that PROPHECY can accurately predict drug sensitivity

of a diverse spectrum of cell lines, we performed a combination serial dilution

experiment with 3 lineages of 6 cell lines, including MDA-MB-231(breast), MDA-

MB-468(breast), KG1(hematopoietic and lymphoid tissue), K562(hematopoietic

and lymphoid tissue), A549(lung), and NCI-H522(lung). We trained the PROPHECY

model with 30,000 data points of single drugs, and use the model to predict the

result of all 2 way combinations possible for the given 100 drug library for each

cell line, resulting in 29,700 sensitivity scores. We then separate the sensitivity

of each cell line into groups of high, medium, and low sensitivity, and randomly

pick 2 combinations from each group. Each combination was assembled from the

highest concentration used in COSMIC and then serial diluted, added to assay

plates. We then measured the sensitivity by integrating the dose response curve
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of the combinations.

In this experiment, we then select a initial drug library of 30 drugs, which

include a spectrum of drug from low activity to high activity, to demonstrate that

PROPHECY can not only predict useful result, but also low sensitivity result.

We then use the program to generate the projected sensitivity of the 435 drugs,

by using the model trained with all 30,000 cosmic drug sensitivity dataset. Note

that the program was never trained by any drug combination before.

7.3.1 Design of experiment

All cell culture is done as specified in the ATCC guideline. We harvest the cells one

day before plating the drugs onto microtiter plates. We seeded 10,000 cells along

with 75 µl of medium into each well of a 96 well plate, and incubated for 24 hours.

The 96 well plates we used is with dark wells and transparent bottom to prevent

interference while reading the plates in a spectrophotometer. We then prepared

the combination drugs using a Hamilton STARLet system liquid handling robot.

We set all the ratio of the 2 way drug combinations to be the ratio of the

maximum concentration of the single drugs. Each drug combinations is 2 fold

serial diluted with 9 stages plus one medium only stage. We plated the wells

of the edges of the 96 well plate with medium only, and those wells serve as

background control. Each row contains one combination drug, from the highest

dosage to the lowest, while the last column contains the blank control. After 24

hours of seeding cells, we then plate the prepared drugs each well with 25 µl of

medium mixed with appropriate amount of drugs. The cells are then incubated

for 72 hours for the drugs to take effect. After 72 hours, we added resazurine to

determine the viability of the cells. After 4 hours of extra incubation, we place

the plates in a spectrophotometer to measure the fluorescence of the reduced form

of resazurine, resorufin.

85



7.3.2 Result of the two drug experiment

After the experiment, we use the standard 1 dimensional dose-response curve

of experimental data to calculate the sensitivity. We found that the calculated

experimental sensitivity produced a 70% correlation with the model prediction

provided by PROPHECY. This demonstrate that the model actually learned the

contribution of sensitivity from drug target, and that is why the model can ac-

curately predict useful result even though it has never seen combination before.

Nevertheless, it is worth to note that there might be unexpected interactions gen-

erated from feature pairs that is never seen by the program. So, the program

and experiment can be executed iteratively, in order to allow discovery of unex-

pected interactions, and PROPHECY will have a net gain in network interaction

knowledge.

Interestingly, we also did experiment corresponding to different ratio mix of

the 2 way drug combinations. However, the correlation of the prediction drops

slightly. We hypothesize that it is due to the fact that the ratio change requires

a nonlinear transformation in the logit space, so the effect of ratio needs to be

further investigated to have a better theory.

The 2 way drug experiment has identified multiple drug combinations that

has been under investigation, proving that PROPHECY is predictive. For KG1

cell line, we identified the combination etoposide and vorinostat to be the most

potent, as shown in figure 7.15, and this combination is currently under preclinical

investigation. [SNT09] For K562 cell, as shown in figure 7.16, we found the com-

bination of parthenolide and vinblastine to be effective, agreeing with the study of

Dai et al.. [DGC10] We also found out novel combinations for K562 cells such as

the combination of DMOG, a hypoxia inducible factor, and vinblastine. We found

that the addition of DMOG will sensitize the cell toward vinblastine. Other novel

combinations include 17-AAG and thapsigargin for K562 cells, AZD6244 and Dox-
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Figure 7.13: Bargraph comparison of 2 drug combination experiment of MDA-MB-

231. The y axis is the zscore of the logit transformed sensitivity, which is a way

of normalizing the data to compare sensitivities that had slightly different scales.

For the experiment cases, the zscore is calculated from all 36 experiment done.

For Prophecy prediction, the zscore is calculated based on predictions generated

from all possible 2 drug combinations.
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Figure 7.14: Bargraph comparison of 2 drug combination experiment of MDA-

MB-468.

Figure 7.15: Bargraph comparison of 2 drug combination experiment of KG1.
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Figure 7.16: Bargraph comparison of 2 drug combination experiment of K562.

Figure 7.17: Bargraph comparison of 2 drug combination experiment of A549.
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Figure 7.18: Bargraph comparison of 2 drug combination experiment of NCIH522.

orubicin for A549 cells (shown in figure 7.17). Furthermore, we found that the

combination of imatinib and thapsigargin, which is found to be effective toward

gastrointestinal cancer, will be effective toward NCI H522 cells, a lung cancer cell

(shown in figure 7.18). [JNT06]
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Figure 7.19: Correlation plot of the prediction versus output of 2 drug combination

experiment.
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Table 7.1: 2 drug combinations applied on breast cancer cell lines.

Cell Line Drug 1 Drug 2 Sensitivity STD

1 KG1 DMOG Vinblastine 0.048957224 0.027832123

2 KG1 DMOG 17-AAG 0.104813468 0.060189363

3 KG1 Etoposide Vorinostat 0.125463138 0.020248064

4 KG1 AZD6244 Camptothecin 0.009357624 0.001126763

5 KG1 AZD6244 Vorinostat 0.033632856 0.01663079

6 KG1 Bortezomib CHIR-99021 0.000645865 6.42E-05

7 K562 Shikonin Vinblastine 0.462886938 0.035620256

8 K562 NVP-BEZ235 Vorinostat 0.277815199 0.0578719

9 K562 17-AAG Vinblastine 0.510909812 0.060077231

10 K562 AG-014699 Thapsigargin 0.499621278 0.040552218

11 K562 AZD-0530 Doxorubicin 0.5196122 0.047307594

12 K562 AZD-0530 Cyclopamine 0.04338182 0.006651824
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Table 7.2: 2 drug combinations applied on leukemia cell lines.

Cell Line Drug 1 Drug 2 Sensitivity STD

1 KG1 DMOG Vinblastine 0.048957224 0.027832123

2 KG1 DMOG 17-AAG 0.104813468 0.060189363

3 KG1 Etoposide Vorinostat 0.125463138 0.020248064

4 KG1 AZD6244 Camptothecin 0.009357624 0.001126763

5 KG1 AZD6244 Vorinostat 0.033632856 0.01663079

6 KG1 Bortezomib CHIR-99021 0.000645865 6.42E-05

7 K562 Shikonin Vinblastine 0.462886938 0.035620256

8 K562 NVP-BEZ235 Vorinostat 0.277815199 0.0578719

9 K562 17-AAG Vinblastine 0.510909812 0.060077231

10 K562 AG-014699 Thapsigargin 0.499621278 0.040552218

11 K562 AZD-0530 Doxorubicin 0.5196122 0.047307594

12 K562 AZD-0530 Cyclopamine 0.04338182 0.006651824

93



Table 7.3: 2 drug combinations applied on lung cancer cell lines.

Cell Line Drug 1 Drug 2 Sensitivity STD

1 A549 NVP-BEZ235 Thapsigargin 0.11964675 0.024164239

2 A549 Camptothecin Doxorubicin 0.251544057 0.021385915

3 A549 17-AAG Etoposide 0.096486438 0.003286385

4 A549 AZD6244 Doxorubicin 0.466886718 0.029986987

5 A549 Bortezomib NSC-87877 0.104816587 0.019624957

6 A549 Cyclopamine Nilotinib 0.001926323 0.001479996

7 NCIH522 NVP-BEZ235 Thapsigargin 0.125578921 0.016641796

8 NCIH522 DMOG Camptothecin 0.038271644 0.014182584

9 NCIH522 17-AAG Vorinostat 0.035324179 0.003688548

10 NCIH522 AICAR Camptothecin 0.102978529 0.009278063

11 NCIH522 Imatinib Thapsigargin 0.467363766 0.059965251

12 NCIH522 Imatinib Lapatinib 0 0.000312229
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APPENDIX A

Dose response of the 2 drug combinations

experiment

The 2 drug combination experiment is carried out on a platform of 6 cell lines.

Cell lines were cultured individually in the medium specified by ATCC for at least

3 passages before running the dose response. Cells were tripsinized one day before

plating drugs and seeded into 96 well plate format by Hamilton STARlet. The

wells on the edges of the 96 well plate were added with 100 µl of medium to serve

as backgroun control group, while only the internal 60 wells were used for assay

purpose. Each well contains 75 µl of medium and 10,000 cells. On the 2nd day,

25 µl of drugs disolved in medium with appropriate concentrations were added

into each well. The 2 drugs were mixed in a well of a 48 well plate, and then

serial diluted to 9 different concentrations plus one medium only well. The drugs

are then transfered to the 96 well plate of cells, with which each raw contains one

drug combination with 9 concentrations and 1 blank control well. After 72 hours

of incubation, 20 µl of 1 mM resazurin solution were added to all wells in the 96

well plates, and the fluorescent intensity is measured after 4 hours of incubation,

with excitation 560 nm and emission 590 nm.

Due to limitation on the experiment capacity, each datapoint is only gathered

once, and data is analyzed with bayesian regression to fit to a sigmoidal curve

as described in [BCS12]. The resulting curve is shown in figure A.1 and onward,

where the dots are experimental data points and the solid lines are the fitted func-

tion. The sensitivity can be integrated from the resulting posterior mean curve.
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Figure A.1: Dose response of MDA-MB-231.

The noise level of the sensitivity can be determined by sampling the posterior

distribution, do integrations on each curve and take the standard deviation of the

samples. The results were shown in figure 7.13 and onward.
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Figure A.2: Dose response of MDA-MB-468.
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Figure A.3: Dose response of KG1.
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Figure A.4: Dose response of K562.
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Figure A.5: Dose response of A549.
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Figure A.6: Dose response of H522.

101



APPENDIX B

Specifications in Prophecy

Table B.1: List of cell lines trained in Prophecy

Index Cell Line

1 22RV1 PROSTATE

2 2313287 STOMACH

3 5637 URINARY TRACT

4 639V URINARY TRACT

5 647V URINARY TRACT

6 697 HAEMATOPOIETIC AND LYMPHOID TISSUE

7 769P KIDNEY

8 8305C THYROID

9 8505C THYROID

10 8MGBA CENTRAL NERVOUS SYSTEM

11 A101D SKIN

12 A172 CENTRAL NERVOUS SYSTEM

13 A204 SOFT TISSUE

14 A2058 SKIN

15 A253 SALIVARY GLAND

16 A2780 OVARY

17 A375 SKIN

18 A3KAW HAEMATOPOIETIC AND LYMPHOID TISSUE

Continued on next page
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Table B.1 – Continued from previous page

Index Cell Line

19 A498 KIDNEY

20 A4FUK HAEMATOPOIETIC AND LYMPHOID TISSUE

21 A549 LUNG

22 A673 BONE

23 A704 KIDNEY

24 ABC1 LUNG

25 ACHN KIDNEY

26 AGS STOMACH

27 AM38 CENTRAL NERVOUS SYSTEM

28 AN3CA ENDOMETRIUM

29 ASPC1 PANCREAS

30 AU565 BREAST

31 BCPAP THYROID

32 BECKER CENTRAL NERVOUS SYSTEM

33 BEN LUNG

34 BFTC905 URINARY TRACT

35 BFTC909 KIDNEY

36 BHY UPPER AERODIGESTIVE TRACT

37 BL41 HAEMATOPOIETIC AND LYMPHOID TISSUE

38 BL70 HAEMATOPOIETIC AND LYMPHOID TISSUE

39 BT20 BREAST

40 BT474 BREAST

41 BT549 BREAST

42 BV173 HAEMATOPOIETIC AND LYMPHOID TISSUE

43 BXPC3 PANCREAS

Continued on next page
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Table B.1 – Continued from previous page

Index Cell Line

44 C2BBE1 LARGE INTESTINE

45 C32 SKIN

46 C3A LIVER

47 CA46 HAEMATOPOIETIC AND LYMPHOID TISSUE

48 CAKI1 KIDNEY

49 CAL120 BREAST

50 CAL12T LUNG

51 CAL148 BREAST

52 CAL27 UPPER AERODIGESTIVE TRACT

53 CAL33 UPPER AERODIGESTIVE TRACT

54 CAL51 BREAST

55 CAL54 KIDNEY

56 CAL62 THYROID

57 CAL851 BREAST

58 CALU1 LUNG

59 CALU3 LUNG

60 CALU6 LUNG

61 CAMA1 BREAST

62 CAOV3 OVARY

63 CAOV4 OVARY

64 CAPAN1 PANCREAS

65 CAPAN2 PANCREAS

66 CAS1 CENTRAL NERVOUS SYSTEM

67 CCFSTTG1 CENTRAL NERVOUS SYSTEM

68 CFPAC1 PANCREAS

Continued on next page
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Table B.1 – Continued from previous page

Index Cell Line

69 CGTHW1 THYROID

70 CHAGOK1 LUNG

71 CHL1 SKIN

72 CHP212 AUTONOMIC GANGLIA

73 CMK115 HAEMATOPOIETIC AND LYMPHOID TISSUE

74 COLO205 LARGE INTESTINE

75 COLO668 LUNG

76 COLO679 SKIN

77 COLO680N OESOPHAGUS

78 COLO684 ENDOMETRIUM

79 COLO741 SKIN

80 COLO792 SKIN

81 COLO829 SKIN

82 CORL23 LUNG

83 CORL279 LUNG

84 CORL88 LUNG

85 CPCN LUNG

86 CW2 LARGE INTESTINE

87 DAOY CENTRAL NERVOUS SYSTEM

88 DAUDI HAEMATOPOIETIC AND LYMPHOID TISSUE

89 DB HAEMATOPOIETIC AND LYMPHOID TISSUE

90 DBTRG05MG CENTRAL NERVOUS SYSTEM

91 DEL HAEMATOPOIETIC AND LYMPHOID TISSUE

92 DETROIT562 UPPER AERODIGESTIVE TRACT

93 DKMG CENTRAL NERVOUS SYSTEM

Continued on next page
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Table B.1 – Continued from previous page

Index Cell Line

94 DMS114 LUNG

95 DMS153 LUNG

96 DMS273 LUNG

97 DMS53 LUNG

98 DMS79 LUNG

99 DOHH2 HAEMATOPOIETIC AND LYMPHOID TISSUE

100 DU145 PROSTATE

101 DU4475 BREAST

102 DV90 LUNG

103 EB2 HAEMATOPOIETIC AND LYMPHOID TISSUE

104 ECC10 STOMACH

105 ECC12 STOMACH

106 ECGI10 OESOPHAGUS

107 EFE184 ENDOMETRIUM

108 EFM192A BREAST

109 EFO21 OVARY

110 EFO27 OVARY

111 EHEB HAEMATOPOIETIC AND LYMPHOID TISSUE

112 EM2 HAEMATOPOIETIC AND LYMPHOID TISSUE

113 EPLC272H LUNG

114 ESS1 ENDOMETRIUM

115 EVSAT BREAST

116 FADU UPPER AERODIGESTIVE TRACT

117 FTC133 THYROID

118 G361 SKIN

Continued on next page
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Table B.1 – Continued from previous page

Index Cell Line

119 G401 SOFT TISSUE

120 G402 SOFT TISSUE

121 GAMG CENTRAL NERVOUS SYSTEM

122 GCIY STOMACH

123 GCT SOFT TISSUE

124 GDM1 HAEMATOPOIETIC AND LYMPHOID TISSUE

125 GI1 CENTRAL NERVOUS SYSTEM

126 GMS10 CENTRAL NERVOUS SYSTEM

127 H4 CENTRAL NERVOUS SYSTEM

128 HCC1143 BREAST

129 HCC1187 BREAST

130 HCC1395 BREAST

131 HCC1419 BREAST

132 HCC1500 BREAST

133 HCC1588 LUNG

134 HCC1806 BREAST

135 HCC1954 BREAST

136 HCC2157 BREAST

137 HCC2218 BREAST

138 HCC38 BREAST

139 HCC70 BREAST

140 HCT116 LARGE INTESTINE

141 HCT15 LARGE INTESTINE

142 HDLM2 HAEMATOPOIETIC AND LYMPHOID TISSUE

143 HDMYZ HAEMATOPOIETIC AND LYMPHOID TISSUE

Continued on next page
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Table B.1 – Continued from previous page

Index Cell Line

144 HEL9217 HAEMATOPOIETIC AND LYMPHOID TISSUE

145 HGC27 STOMACH

146 HH HAEMATOPOIETIC AND LYMPHOID TISSUE

147 HOS BONE

148 HPAFII PANCREAS

149 HS578T BREAST

150 HSC2 UPPER AERODIGESTIVE TRACT

151 HSC3 UPPER AERODIGESTIVE TRACT

152 HSC4 UPPER AERODIGESTIVE TRACT

153 HT HAEMATOPOIETIC AND LYMPHOID TISSUE

154 HT115 LARGE INTESTINE

155 HT1376 URINARY TRACT

156 HT144 SKIN

157 HT29 LARGE INTESTINE

158 HTK HAEMATOPOIETIC AND LYMPHOID TISSUE

159 HUCCT1 BILIARY TRACT

160 HUH7 LIVER

161 HUPT3 PANCREAS

162 HUPT4 PANCREAS

163 IALM LUNG

164 IGROV1 OVARY

165 IPC298 SKIN

166 ISTMES1 PLEURA

167 J82 URINARY TRACT

168 JVM2 HAEMATOPOIETIC AND LYMPHOID TISSUE

Continued on next page
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Table B.1 – Continued from previous page

Index Cell Line

169 JVM3 HAEMATOPOIETIC AND LYMPHOID TISSUE

170 K562 HAEMATOPOIETIC AND LYMPHOID TISSUE

171 KALS1 CENTRAL NERVOUS SYSTEM

172 KARPAS299 HAEMATOPOIETIC AND LYMPHOID TISSUE

173 KASUMI1 HAEMATOPOIETIC AND LYMPHOID TISSUE

174 KE37 HAEMATOPOIETIC AND LYMPHOID TISSUE

175 KG1 HAEMATOPOIETIC AND LYMPHOID TISSUE

176 KLE ENDOMETRIUM

177 KM12 LARGE INTESTINE

178 KMH2 HAEMATOPOIETIC AND LYMPHOID TISSUE

179 KNS42 CENTRAL NERVOUS SYSTEM

180 KNS62 LUNG

181 KP4 PANCREAS

182 KPNRTBM1 AUTONOMIC GANGLIA

183 KPNYN AUTONOMIC GANGLIA

184 KS1 CENTRAL NERVOUS SYSTEM

185 KU1919 URINARY TRACT

186 KU812 HAEMATOPOIETIC AND LYMPHOID TISSUE

187 KURAMOCHI OVARY

188 KYSE140 OESOPHAGUS

189 KYSE150 OESOPHAGUS

190 KYSE180 OESOPHAGUS

191 KYSE270 OESOPHAGUS

192 KYSE410 OESOPHAGUS

193 KYSE450 OESOPHAGUS

Continued on next page
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Table B.1 – Continued from previous page

Index Cell Line

194 KYSE510 OESOPHAGUS

195 KYSE520 OESOPHAGUS

196 KYSE70 OESOPHAGUS

197 L363 HAEMATOPOIETIC AND LYMPHOID TISSUE

198 L428 HAEMATOPOIETIC AND LYMPHOID TISSUE

199 L540 HAEMATOPOIETIC AND LYMPHOID TISSUE

200 LC1F LUNG

201 LCLC103H LUNG

202 LCLC97TM1 LUNG

203 LK2 LUNG

204 LNCAPCLONEFGC PROSTATE

205 LOUCY HAEMATOPOIETIC AND LYMPHOID TISSUE

206 LOVO LARGE INTESTINE

207 LOXIMVI SKIN

208 LP1 HAEMATOPOIETIC AND LYMPHOID TISSUE

209 LS1034 LARGE INTESTINE

210 LS123 LARGE INTESTINE

211 LS411N LARGE INTESTINE

212 LS513 LARGE INTESTINE

213 LU65 LUNG

214 LXF289 LUNG

215 MC116 HAEMATOPOIETIC AND LYMPHOID TISSUE

216 MCF7 BREAST

217 MDAMB134VI BREAST

218 MDAMB231 BREAST

Continued on next page
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Table B.1 – Continued from previous page

Index Cell Line

219 MDAMB361 BREAST

220 MDAMB415 BREAST

221 MDAMB453 BREAST

222 MDAMB468 BREAST

223 MEG01 HAEMATOPOIETIC AND LYMPHOID TISSUE

224 MELHO SKIN

225 MELJUSO SKIN

226 MEWO SKIN

227 MFE280 ENDOMETRIUM

228 MFE296 ENDOMETRIUM

229 MG63 BONE

230 MHHCALL2 HAEMATOPOIETIC AND LYMPHOID TISSUE

231 MHHES1 BONE

232 MHHNB11 AUTONOMIC GANGLIA

233 MIAPACA2 PANCREAS

234 MKN1 STOMACH

235 MKN74 STOMACH

236 MOLT13 HAEMATOPOIETIC AND LYMPHOID TISSUE

237 MOLT16 HAEMATOPOIETIC AND LYMPHOID TISSUE

238 MONOMAC6 HAEMATOPOIETIC AND LYMPHOID TISSUE

239 MPP89 PLEURA

240 MSTO211H PLEURA

241 MV411 HAEMATOPOIETIC AND LYMPHOID TISSUE

242 NALM6 HAEMATOPOIETIC AND LYMPHOID TISSUE

243 NB1 AUTONOMIC GANGLIA

Continued on next page
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Table B.1 – Continued from previous page

Index Cell Line

244 NCIH1048 LUNG

245 NCIH1092 LUNG

246 NCIH1299 LUNG

247 NCIH1355 LUNG

248 NCIH1436 LUNG

249 NCIH1437 LUNG

250 NCIH1563 LUNG

251 NCIH1573 LUNG

252 NCIH1581 LUNG

253 NCIH1618 LUNG

254 NCIH1623 LUNG

255 NCIH1648 LUNG

256 NCIH1650 LUNG

257 NCIH1651 LUNG

258 NCIH1666 LUNG

259 NCIH1693 LUNG

260 NCIH1694 LUNG

261 NCIH1703 LUNG

262 NCIH1734 LUNG

263 NCIH1755 LUNG

264 NCIH1792 LUNG

265 NCIH1793 LUNG

266 NCIH1838 LUNG

267 NCIH196 LUNG

268 NCIH1975 LUNG

Continued on next page
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Table B.1 – Continued from previous page

Index Cell Line

269 NCIH2009 LUNG

270 NCIH2029 LUNG

271 NCIH2030 LUNG

272 NCIH2052 PLEURA

273 NCIH2081 LUNG

274 NCIH2087 LUNG

275 NCIH209 LUNG

276 NCIH2122 LUNG

277 NCIH2126 LUNG

278 NCIH2141 LUNG

279 NCIH2170 LUNG

280 NCIH2171 LUNG

281 NCIH2196 LUNG

282 NCIH2227 LUNG

283 NCIH2228 LUNG

284 NCIH226 LUNG

285 NCIH2291 LUNG

286 NCIH23 LUNG

287 NCIH2342 LUNG

288 NCIH2347 LUNG

289 NCIH2405 LUNG

290 NCIH2452 PLEURA

291 NCIH358 LUNG

292 NCIH441 LUNG

293 NCIH446 LUNG

Continued on next page
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Table B.1 – Continued from previous page

Index Cell Line

294 NCIH460 LUNG

295 NCIH520 LUNG

296 NCIH522 LUNG

297 NCIH524 LUNG

298 NCIH526 LUNG

299 NCIH596 LUNG

300 NCIH650 LUNG

301 NCIH661 LUNG

302 NCIH69 LUNG

303 NCIH716 LARGE INTESTINE

304 NCIH727 LUNG

305 NCIH747 LARGE INTESTINE

306 NCIH810 LUNG

307 NCIH82 LUNG

308 NCIH838 LUNG

309 NCIH889 LUNG

310 NCIN87 STOMACH

311 NMCG1 CENTRAL NERVOUS SYSTEM

312 NUGC3 STOMACH

313 OAW28 OVARY

314 OAW42 OVARY

315 OCIAML2 HAEMATOPOIETIC AND LYMPHOID TISSUE

316 OE19 OESOPHAGUS

317 OE33 OESOPHAGUS

318 ONS76 CENTRAL NERVOUS SYSTEM

Continued on next page

114



Table B.1 – Continued from previous page

Index Cell Line

319 OPM2 HAEMATOPOIETIC AND LYMPHOID TISSUE

320 OSRC2 KIDNEY

321 OVCAR4 OVARY

322 OVCAR8 OVARY

323 P12ICHIKAWA HAEMATOPOIETIC AND LYMPHOID TISSUE

324 P31FUJ HAEMATOPOIETIC AND LYMPHOID TISSUE

325 PANC0327 PANCREAS

326 PANC0813 PANCREAS

327 PANC1005 PANCREAS

328 PC14 LUNG

329 PC3 PROSTATE

330 PF382 HAEMATOPOIETIC AND LYMPHOID TISSUE

331 PSN1 PANCREAS

332 RAJI HAEMATOPOIETIC AND LYMPHOID TISSUE

333 RCC10RGB KIDNEY

334 RCM1 LARGE INTESTINE

335 RD SOFT TISSUE

336 REH HAEMATOPOIETIC AND LYMPHOID TISSUE

337 RERFLCMS LUNG

338 RKO LARGE INTESTINE

339 RL HAEMATOPOIETIC AND LYMPHOID TISSUE

340 RL952 ENDOMETRIUM

341 RMGI OVARY

342 RPMI7951 SKIN

343 RPMI8226 HAEMATOPOIETIC AND LYMPHOID TISSUE

Continued on next page
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Table B.1 – Continued from previous page

Index Cell Line

344 RPMI8402 HAEMATOPOIETIC AND LYMPHOID TISSUE

345 RS411 HAEMATOPOIETIC AND LYMPHOID TISSUE

346 RT11284 URINARY TRACT

347 RT4 URINARY TRACT

348 S117 SOFT TISSUE

349 SAOS2 BONE

350 SBC5 LUNG

351 SCC15 UPPER AERODIGESTIVE TRACT

352 SCC25 UPPER AERODIGESTIVE TRACT

353 SCC4 UPPER AERODIGESTIVE TRACT

354 SCC9 UPPER AERODIGESTIVE TRACT

355 SCLC21H LUNG

356 SF126 CENTRAL NERVOUS SYSTEM

357 SF295 CENTRAL NERVOUS SYSTEM

358 SH4 SKIN

359 SHP77 LUNG

360 SIGM5 HAEMATOPOIETIC AND LYMPHOID TISSUE

361 SIMA AUTONOMIC GANGLIA

362 SJRH30 SOFT TISSUE

363 SJSA1 BONE

364 SKCO1 LARGE INTESTINE

365 SKHEP1 LIVER

366 SKLMS1 SOFT TISSUE

367 SKLU1 LUNG

368 SKM1 HAEMATOPOIETIC AND LYMPHOID TISSUE

Continued on next page
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Index Cell Line

369 SKMEL1 SKIN

370 SKMEL2 SKIN

371 SKMEL24 SKIN

372 SKMEL28 SKIN

373 SKMEL3 SKIN

374 SKMEL30 SKIN

375 SKMEL5 SKIN

376 SKMES1 LUNG

377 SKNAS AUTONOMIC GANGLIA

378 SKNDZ AUTONOMIC GANGLIA

379 SKNFI AUTONOMIC GANGLIA

380 SKOV3 OVARY

381 SKUT1 SOFT TISSUE

382 SNGM ENDOMETRIUM

383 SNU387 LIVER

384 SNU423 LIVER

385 SNU449 LIVER

386 SNU475 LIVER

387 ST486 HAEMATOPOIETIC AND LYMPHOID TISSUE

388 SUDHL10 HAEMATOPOIETIC AND LYMPHOID TISSUE

389 SW1088 CENTRAL NERVOUS SYSTEM

390 SW1116 LARGE INTESTINE

391 SW1417 LARGE INTESTINE

392 SW1463 LARGE INTESTINE

393 SW1573 LUNG

Continued on next page
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Index Cell Line

394 SW1710 URINARY TRACT

395 SW1783 CENTRAL NERVOUS SYSTEM

396 SW1990 PANCREAS

397 SW480 LARGE INTESTINE

398 SW620 LARGE INTESTINE

399 SW780 URINARY TRACT

400 SW837 LARGE INTESTINE

401 SW900 LUNG

402 SW948 LARGE INTESTINE

403 T47D BREAST

404 T84 LARGE INTESTINE

405 T98G CENTRAL NERVOUS SYSTEM

406 TE1 OESOPHAGUS

407 TE10 OESOPHAGUS

408 TE159T SOFT TISSUE

409 TE4 OESOPHAGUS

410 TE5 OESOPHAGUS

411 TE617T SOFT TISSUE

412 TE8 OESOPHAGUS

413 TE9 OESOPHAGUS

414 TGBC11TKB STOMACH

415 THP1 HAEMATOPOIETIC AND LYMPHOID TISSUE

416 TYKNU OVARY

417 U2OS BONE

418 U87MG CENTRAL NERVOUS SYSTEM

Continued on next page
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Index Cell Line

419 UACC257 SKIN

420 UACC62 SKIN

421 UACC812 BREAST

422 UACC893 BREAST

423 UMUC3 URINARY TRACT

424 VMCUB1 URINARY TRACT

425 VMRCRCZ KIDNEY

426 WM115 SKIN

427 YAPC PANCREAS

428 YH13 CENTRAL NERVOUS SYSTEM

429 YKG1 CENTRAL NERVOUS SYSTEM

430 ZR7530 BREAST

Table B.2: List of drugs trained in Prophecy

Index Drug

1 PD-173074

2 Bicalutamide

3 Embelin

4 Metformin

5 MS-275

6 Pyrimethamine

7 Shikonin

8 Imatinib

9 Vorinostat

10 MitomycinC

Continued on next page
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Index Cell Line

11 Doxorubicin

12 Paclitaxel

13 Etoposide

14 AICAR

15 S-Trityl-L-cysteine

16 Bexarotene

17 Cisplatin

18 Camptothecin

19 Gefitinib

20 CEP-701

21 Methotrexate

22 BIRB0796

23 Tipifarnib

24 Roscovitine

25 SB216763

26 Erlotinib

27 Lapatinib

28 Sorafenib

29 Lenalidomide

30 Elesclomol

31 Bortezomib

32 Cyclopamine

33 ATRA

34 Thapsigargin

35 EpothiloneB

Continued on next page
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Index Cell Line

36 MG-132

37 DMOG

38 CGP-60474

39 Nilotinib

40 Dasatinib

41 KU-55933

42 Rapamycin

43 GNF-2

44 Bosutinib

45 Sunitinib

46 PD-0332991

47 Parthenolide

48 NSC-87877

49 Bleomycin

50 VX-680

51 Axitinib

52 17-AAG

53 Vinblastine

54 PAC-1

55 Temsirolimus

56 CI-1040

57 A-770041

58 LFM-A13

59 PD-0325901

60 ZM-447439

Continued on next page
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Index Cell Line

61 AG-014699

62 CHIR-99021

63 BX-795

64 AUY922

65 Pazopanib

66 AZD6244

67 A-443654

68 BIBW2992

69 AZD-0530

70 VX-702

71 BMS-536924

72 PHA-665752

73 SB590885

74 NU-7441

75 BI-2536

76 Nutlin-3a

77 TW37

78 JNKInhibitorVIII

79 OSI-906

80 AMG-706

81 PF-562271

82 WH-4-023

83 ABT-888

84 NVP-BEZ235

85 NVP-TAE684

Continued on next page
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Index Cell Line

86 GSK269962A

87 Z-LLNle-CHO

88 GDC0941

89 AZD-2281

90 PLX4720

91 Midostaurin

92 GDC-0449

93 BMS-754807

94 AP-24534

95 MK-2206

96 ABT-263

97 GSK-650394

98 BI-D1870

99 RDEA119

100 RO-3306
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