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Abstract

The availability of full genome sequences for many organisms has greatly
increased the reach of bioinformatics. In my research, I have used a variety of
techniques to leverage the information carried in mouse, human, and viral genomes to

address a diverse set of challenges.

One challenge was to devise a set of sequences to detect various strains of Human
Papillomavirus (HPV). Chapter I describes the method by which I designed probe
sequences common to multiple genomes to efficiently isolate HPV DNA from human
tissue samples and probe sequences unique to each HPV genome to differentiate between

viral strains for the purpose of diagnosing infections.

Chapter II depicts my role in developing the prototype International Gene Trap
Consortium web resource, which presents information about embryonic stem cell lines
carrying single gene knockouts to the public. Much of this work involved the creation of
a new web site and a multi-path process for identification of gene trap sequence tags.
Chapter III describes work that developed out of the transition from an mRNA transcript-
based sequence tag annotation method to a process that combines transcript matching
with localization to the mouse genome. To understand better the localization of gene trap
sequence tags to the mouse genome, I compared stand-alone versions of the common

genome alignment programs BLAT, SSAHA, and MegaBLAST.
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Chapter IV details a method to detect splice variation in different tissues. I
developed a process to combine information about splice variants gained by aligning
expressed-sequence tags (ESTs) with full-length gene transcripts with microarray
analysis to detect splice variants in high-throughput expression data. This method
utilized data from pre-existing microarray expression experiments, and so had the

potential for large-scale academic and industry use.
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Introduction

The availability of full genome sequences for many organisms has opened new
avenues of research in many fields [1-3]. Researchers seeking to understand the
complexities that underlie the process by which information encoded in genes transitions
to functioning proteins can use the intronic and flanking sequences that surround coding
regions to search for splice sites, transcription factor binding sites, or other elements that
control transcription and translation [4, 5]. Alignments between RNA transcripts and
their source genome can be used to aid in gene annotation and the prediction of
alternative splicing [6]. Alignment of different genomes can illustrate conserved
elements involved in important gene functions or indicate sequences that can be used to
differentiate between similar organisms [7]. These are but a few examples of the wide
range of practices making use of genomic sequence to address biological questions. In
my research, I have used some of these techniques to address a varied set of biological
questions.

One such biological question that I used genomic information to tackle involved
detection of the Human Papillomavirus (HPV) for the purpose of diagnosing infections in
human tissue. There are 105 HPV genomes that have been sequenced to date, of which
23 HPV genomes are known to be associated with genital warts or cervical cancer [8].
Although there is currently a vaccine for four types of HPV [9], detection methods for all
HPV types will continue to be useful for strains not covered by the vaccine and for
populations that already have HPV. Chapter I describes the method by which I devised a

set of sequences common to multiple genomes to efficiently isolate HPV DNA from



human tissue samples, as well as probe sequences unique to each HPV genome to
differentiate between viral strains.

My work with the gene trapping group BayGenomics [10] allowed me to use
genomic analysis to aid gene annotation. Chapter II depicts my role in assisting the
BayGenomics group and helping to develop the prototype International Gene Trap
Consortium web resource [11]. Part of my role was to design a genomic localization
based protocol for identification of gene trap sequence tags. To understand better the
localization of gene trap sequence tags to the mouse genome, I compared stand-alone
versions of the genome alignment programs in use at three major genome browser web
sites. Chapter III consists of a manuscript summarizing this research and presenting the
pitfalls of aligning short, poor quality sequence such as gene trap sequence tags to the
mouse genome.

An interest in alternative splicing led me to combine two whole-genome
approaches, microarray expression analysis and multiple alignment of expressed-
sequence tags (ESTs) with mRNA sequences, to better predict splice variation. Chapter
IV details a method I developed to detect splice variants in pre-existing microarray data.
This method takes advantage of the fact that microarrays contain many probes for a
single gene, and attempts to use differences in fluorescent signal across the length of a
gene to detect the presence of a known splice variant. The known splice variants were
generated by alignment of ESTs and mRNAs in the Unigene database [12]. This method
had potential for widespread use, given the large amount of microarray expression data
generated for other purposes that could be secondarily mined for splice variant

information.
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Primer Design for HPV Genomes

Introduction

Human papillomavirus (HPV) is a member of the Papillomaviridae family of
DNA viruses. Papillomaviridae viruses live within a host, infecting the epithelial cells,
and are shed through mucosal membranes. Many animal species are known to carry
different strains of HPV, although each strain is infectious only within a single species.
There are at least 105 distinct genomes identified that infect humans, numbered in the
order they were discovered, with no two genomes sharing greater than 90% sequence
identity in coding regions [1].

HPV sequences mutate rarely, and so the sequences of an HPV genome can be
expected to remain stable throughout the duration of an infection, with the exception of
breakage in the HPV genome surrounding the site at which the circular genome is
cleaved prior to integration into the human genome. This stability of HPV genomes is
inferred from a phylogenetic study which clustered HPV genomes and their homologs in
various animals by the sequence of the L1 gene. The presence of both HPV and animal
sequences in the same clusters indicates that individual HPV genomes share more
sequence similarity with the homologous genomes in other species than with other HPV
genomes [2].

HPV infection is the most common sexually transmitted disease in the United
States. There are approximately 5.5 million new cases each year [3], and it is estimated

that 50% - 80% of women will acquire one or more types of HPV during their lifetime [4,



5]. HPV is shed through mucosal membranes, and can be transmitted through oral and
anal sex as well as vaginal intercourse. Condom use has not proven to be effective in
preventing transmission of the HPV virus [6], although it may offer partial protection
with vigilant use [7].

Most HPV infections are asymptomatic and carry no long-term risk, but some
infections lead to genital warts, cervical cancer, and more rarely other cancers, such as
penile or anal cancer. HPV causes 99% of cervical cancer, the second most common
cancer in women [8]. The virus causes cancer by expressing genes that interact with cell-
cycle controls to allow viral replication and release. These protein interactions can lead
to over-proliferation of cells and prevention of apoptosis.

Cervical cancer can be detected in the early stages by Papanicolaou (Pap) testing,
where epithelial cells gathered from a patient’s cervix are visually observed for evidence
of dysplasia or cell abnormality. The Pap smear can detect precancerous lesions before
they develop into cancer, but this procedure is only ~80% accurate for dysplasia
diagnosis. Further steps are required in response to an abnormal Pap smear, including
additional Pap smears to confirm the initial dysplasia result and extensive procedures to
determine if a high risk or a low risk type is present. This is a costly and lengthy process,
but treatment for the early stages of cervical cancer is highly effective in preventing
mortality, so Pap testing is considered a necessary part of basic women’s health care.

A collaborator at the University of California Santa Barbara, Dr. Norbert Reich,
has proposed methods of detecting and typing HPV infections in human tissue. The
technology developed in his laboratory relies on probes that will hybridize with and

amplify the signal of HPV DNA sequences unique to a single HPV genome, allowing the



direct identification of any known HPV type from a clinical sample. This technology has
seeded a biotechnology start-up company called Tamarisc Diagnostics, Inc. Their goal is
to develop an assay for use by physicians that is inexpensive compared to Pap testing and
fast enough to be completed in a single patient appointment. In order to accomplish this
goal, Tamarisc Diagnostics, Inc. required two sets of probes to be designed by a
bioinformaticist. In collaboration with the Reich Lab and Tamarisc Diagnostics, Inc., I
developed these probes. The first set would be used to capture HPV sequence in a
clinical sample through DNA-RNA hybridization. The second set would be used to

determine which type of HPV sequence is present in a clinical sample.

Methods

Experimental Overview

A general overview of the HPV detection method developed by Tamarisc
Diagnostics, Inc. is shown in Figure 1. Initially, a swab sample is taken from a patient,
and the sample is transferred to an apparatus containing all of the necessary reagents to
perform the detection assay. Cells contained in the sample are lysed and the DNA they
contain is cut with a restriction enzyme to yield a mixture of fragments of human
genomic DNA, HPV sequence that has integrated into the human genome, and circular

HPV DNA that remains separate from the human genome. Linear and circular HPV



DNA are separated from human genomic DNA by hybridization with probes specific to
HPV sequences. After this purification step, probes specific for individual HPV genomes
are added. These RNA probes hybridize to complementary DNA, displacing the DNA
already present and disrupting the double helix. An enzyme is then added that detects
this disruption and activates a fluorescent marker in response to the RNA-DNA duplex.
This fluorescence is then measured, indicating the presence or absence of a specific strain

of HPV in the patient sample.



Tame Zaple Hudwd Call Hregrad
Lyza HPW

Figure 1. {Adapted from a diagram created by Dr. Norbert Reich and Dr. August Estabrook.) An everview of the HPV
detection method, with steps involving the work described in this chapter listed in orange.



Bioinformatics Overview

The bioinformatics effort for Tamarisc Diagnostics, Inc. was centered on probe
design. The aim was to find all known HPV genomes and devise a minimal set of
capture probes to purify HPV genomic sequence from clinical samples and one or a small
set of detection probes for each HPV genome that will uniquely identify a sample
infected with that strain of HPV. As HPV genomes are relatively stable, it is not

expected that primer sequences will need to change very often.

Genomes

All HPV genomes were collected from the HPV databases at Los Alamos
National Laboratory (http://hpv-web.lanl.gov) and the National Center for Biotechnology
Information (http://www.ncbi.nlm.nih.gov). These sequences represent HPV genomes 1
through 106, excluding 46, 64, 78, 79, 85, 88, 98, 99, 104 and 105, for which full
genomic sequences were not available. The probe sequences generated represent 23
HPV genomes that represent risk to a patient; 1 genome associated with both genital
warts and cervical cancer, 5 genomes associated with genital warts, and 17 genomes

associated with cervical cancer, including HPV 16 and HPV 18.

Restriction Enzyme Optimization



Before probe design began, a restriction enzyme had to be chosen to remove the human
genome from the cellular extract. This step is necessary to minimize the chance that
signal from incomplete or inexact hybridization between the probes and the human
genome would swamp real signal due to the tremendous size of the human genome,
which contains approximately 3 billion base pairs, compared with HPV genomes, which
average 8000 base pairs. This step also allows the probe design steps that follow to avoid
selection of probes containing cuts sites for the chosen restriction enzyme. The first step
in isolating HPV sequences is to cut the human genome into smaller pieces with a
restriction enzyme while leaving HPV DNA relatively intact. Sixty-two commercially
available enzymes were tested for their cutting frequency in both human and HPV
genomes. It was determined that although BztZI and Eagl cut only three HPV genomes
once and the remaining HPV genomes not at all, they do not cut the human genome
frequently and are methylation sensitive, making them inappropriate for experimental
conditions. Instead, BglIl was chosen because it is methylation-insensitive and cuts only

eight HPV genomes while cutting the human genome frequently.

General Probe Design Parameters

The design of the capture probes and the detection probes contained many of the
same steps, since both involve single-strand RNA probes that will form hetero-duplexes
with viral DNA. These factors that required consideration included the length of the
probe, the melting temperature (Tm) of the probe, the uniqueness of the probe, any

potential to form a stable secondary structure or self-hybridize, whether the chosen

10



restriction enzyme would cut at the same site at which the probe would hybridize, and
whether the probe is likely to hybridize to sequences other than the target sequence.

The probes must be sufficiently long that the cumulative stabilization energy from
each hybridized base pair is sufficient to maintain the hetero-duplex long enough for
RNaseH to degrade the RNA portion of the probe. Hetero-duplex formation occurs as an
equilibrium reaction, with nucleotides binding to and dissociating from each other at rates
that are dependent on temperature, concentration of the sequences in solution, and
whether neighboring nucleotides are already hybridized. Lower temperatures and higher
concentrations of probe and target sequences generally favor hetero-duplex formation.
Once hybridization has begun, further binding is favored, as the effective concentration
of unhybridized nucleotides is greatly increased by being tethered to hybridized
sequence. This can pose a problem in terms of probe specificity. With short probes, any
hetero-duplexes formed between a probe and a sequence that does not exactly match the
target sequence will dissociate too rapidly to be degraded by RNaseH, simply because
there are not enough matching nucleotides to create a sufficient binding strength.
However, long probes may allow hetero-duplexes containing one or more mismatches to
remain hybridized long enough for the probe to be degraded. Initially, test probes
between 20 and 30 nucleotides in length were created, but probes of differing lengths can
rapidly generated should it become necessary.

In order to minimize signal produced by hetero-duplexes containing mismatches,
the reactions will be performed at a temperature that is slightly lower than the melting
temperature (Tm) of each probe, which is the temperature at which dissociation and

hybridization of the probe and the target sequence are equally favored. An acceptable

11



Tm range for probes with 20 to 30 nucleotides was set from 60°C - 90°C, a temperature
range that is compatible with thermostable RNaseH activity [9]. The goal is then to
maximize the difference between the Tm of the probe-target hetero-duplex and the Tm of
any hetero-duplexes formed between the probe and non-target sequence. Requiring a
short probe length, so that mismatches have a proportionally larger affect on binding
strength, is helpful. Even more effective is limiting the number of consecutive matching
nucleotides between a probe sequence and a non-target sequence. In this case, non-target
sequence would be any DNA purified from a patient sample, most likely other HPV
strains or viral genomes. A maximum of 11 consecutive matches was allowed between a
probe and genomic sequence. This threshold is short enough to be easily differentiable
from a correct hybridization of 20 or more nucleotides by the difference in Tm.

Additionally, it is beneficial to choose probe sequences that will not self-hybridize
or form stable secondary structure. It is nearly impossible to design probes that will not
form small hairpins, but large regions of complementarity should be avoided. A
threshold of 11 nucleotides was set as the maximum consecutive complimentary
nucleotides allowed between two copies of a probe, or within a single probe. More
complex secondary structure is more difficult to predict, especially given that non-
nucleotide compounds are bound to either end of the probe with the HET technology.
Predicting probes that will form secondary structure beyond hairpins or helices was not a
priority, since such probe sequences will not cause a false-positive signal, although they
will not participate in hetero-duplexes while they are non-linear, thus somewhat

dampening a true signal.
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Finally, all probes that contain a cut site for the BglII restriction enzyme must be

excluded, as that enzyme will be used in a step prior to the probe hybridization step.

Detection Probes

Several probe-design programs were evaluated to determine if an existing
program would be able to meet all of the probe design parameters detailed above. No
single program has all the functionality required, but the publicly available program
OligoPicker [10] does have many useful features. OligoPicker allows a user to create
probes of a given length, screen for matches to a small set of non-target sequences, tests
for self-complementarity, and calculates a predicted Tm for each probe. However, the
OligoPicker program does not meet several requirements, including identification of
many potential non-target matches, elimination of repetitive nucleotides from probes, and
setting of minimal Tm. Most perplexingly, it only generates a maximum of 5 probes per
run. To supplement its capabilities, OligoPicker was run from within a program written
using the Python programming language to exhaustively search each risk-associated HPV
genome for probes that met length, Tm, maximal matching region, exclusion of BglII cut
sites, and self-hybridization criteria. Table 1 shows the number of probes for each HPV
genome that met these initial selection criteria.

Although the majority of HPV DNA takes the form of a circular, double-stranded
genome, HPV sequences are known to integrate into the human genome. While the
Tamarisc Diagnostics, Inc. technology was developed for the identification of discrete

HPV sequences, steps have been taken to generate probes that would be equally useful
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for the detection of integrated sequences. The human genome contains approximately 3
billion base pairs, vastly increasing the likelihood that a 20-30 nucleotide RNA probe will
hybridize at least partially to some region of the human genome, creating the potential for
a false positive reading. In fact, all probes partially or fully match at least one
chromosomal sequence. Additionally, other genomes, such as those associated with
sexually transmitted diseases (STDs), may be present in a tissue sample and contain
sequence that will hybridize with a probe.

Potential hetero-duplexes between probe and non-target sequences were
determined by using the BLAST program [11] to search for partially or fully
complementary sequence in a screening set of the human genome and sequences from
Chlamydia, herpes, adenovirus, trichomonas, gonorrhea, HIV, and any HPV genome
other than the target of a particular probe. BLAST was chosen because it is capable, with
the right parameter settings, of rapidly detecting very distant matches, some of which
boast as little as 60% sequence identity with a search probe. In order to detect short
partial matches, the BLAST gap opening and gap extension penalties were set to -1, the
mismatch penalty was set to -1, and the expect value was set to 10,000. In order to deal
with the tremendous number of matches returned by such a lenient search, a Python script
was written to automatically parse the results for alignments with 11 or more matching
nucleotides, which could be sufficient to result in hybridization between a probe and non-
target sequence. All probes had matches to non-target sequences that exceeded 11
nucleotides over the length of the probe.

In order to determine which probes are least likely to create a fluorescent signal in

the presence of non-target DNA, the predicted Tm of each probe-non-target hetero-

14



duplex was compared to the predicted Tm of the probe-target hetero-duplex. The results
were ranked by Tm difference, and a threshold of 10 °C minimum difference was chosen
to balance the need for a large temperature range in which to experimentally optimize
detection and the need to retain enough acceptable probe sequences to provide
replacements for probes that fail. The number of probes for each genome that meet this
criterion are listed in Table 1.

As Table 1 demonstrates, after rigorous selection criteria for single-strand RNA
probes were met, a sizeable number of probe options remained for each HPV genome.
The process used to generate these probes has been largely automated, so the addition of
new HPV genomes or screening sequences would not present a problem in terms of
probe-design. Additionally, all data generated during the probe-design process have been
retained, so altering a particular selection threshold does not necessitate running the

programs anew.

Capture Probes

To purify HPV genomic sequence from clinical samples, a set of probes was

needed that would hybridize with all HPV genomes while avoiding hybridization with
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# probes meeting # probes with Tm

HPV genome number Risk type initial selection 10°C higher than

and accession

criteria closest mismatch

HPV-6b 9626053 High, Low 1410 78
HPV-11 M14119 Low 1501 99
HPV-16 9627100 High 1446 *7
HPV-18 9626069 High 1407 86
HPV-31J04353 High 1535 155
HPV-33 M12732 High 1208 153
HPV-35 X74477 High 1446 123
HPV-39 M62849 High 1272 130
HPV-40 X74478 Low 1591 228
HPV-42 M73236 Low 1711 202
HPV-43 40804474 Low 1396 159
HPV-44 U31788 Low 450 39
HPV-45 X74479 High 1467 73
HPV-51 M62877 High 1261 148
HPV-52 X74481 High 1591 200
HPV-56 X74483 High 1066 92
HPV-58 D90400 High 1323 85
HPV-59 X77858 High 1737 203
HPV-66 U31794 High 1167 78
HPV-68a 71726685 High 1258 70
HPV-70 U21941 High 1344 133
HPV-73 X94165 High 1146 105
HPV-82 6970427 High 1301 64

Total number of probes 31034 2703

Table 2.1 The number of probes generated for each risk-associated HPV genome. The
middle column contains the number of probes for a given HPV genome that met the
initial selection criteria: length of 20-30 nucleotides, predicted Tm of 60°C - 90°C, and
no subsequence greater than 11 nucleotides matching to another HPV genome, viral
sequence, self-probe copy, BglII cut site, or internal match. The rightmost column
contains the number of probes that, in addition to meeting selection criteria, do not match
any sequence in the human genome closely enough to have a predicted Tm of a probe-
non-target hetero-duplex within 10°C of the predicted Tm of the probe-target hetero-
duplex. * If the Tm difference threshold is lowered to 8 °C for HPV-16, 34 probes meet
this criterion.
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human genomic or STD sequences. A minimal set was desired in order to reduce the
occurrence of non-target hybridization that could result in the purification of non-HPV
sequences. At this point, only capture probes for high- and low-risk HPV genomes have
been created, although the process can be repeated with more genomes should that be
desired. An overview of the capture probe design process is shown in Figure 2.

To determine which probes would be useful in such a probe set, every possible
probe of a given length was generated from each HPV genome, resulting in probes tiled
over the length of the genome. These probes were filtered to remove duplicate sequences
within a genome, probes containing strings of five or more identical consecutive
nucleotides, probes predicted to form hairpin structures, probes containing BglII
recognition sequences, and probes with a predicted Tm of less than 60°C. The remaining
probes were aligned with the same set human genomic and STD sequences used to create
the detection probes. This comparison was performed with BLAST using gap opening
and extension penalties of -1, a mismatch penalty of -1, and an expect value of 10,000.
Probes with fewer than five contiguous mismatches or 7 mismatches over the length of
the probe were removed from consideration.

To find a minimum set of capture probes, all probes remaining after filtering for
general probe parameters and similarity to human and STD sequences were tested for
presence in multiple genomes. The probes were rank-ordered by the number of HPV
genomes containing the probe sequence. The top 20 probes were used to seed minimal

probe sets. After the first sequence of each minimal
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Figure 2.2. Overview of the capture probe creation process. A) Every sequence of a
given length was extracted from an HPV genome, excluding duplicate probes and probes
that did not meet required parameters. B) This process was repeated for all HPV
genomes, resulting in a list of probes for each HPV strain. C) Each probe was tested for
presence in multiple genomes. D) Probes present in the most genomes were used to seed
minimal probe sets. When a single genome was missing, a detection probe was used.
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set was chosen, the next sequence was determined by selecting from all remaining probes
the sequence that matched the greatest number of genomes previously unmatched. Each
minimal set was completed when all genomes were matched by at least one probe. This
process does not guarantee the smallest minimum set possible, but is far more efficient
than a full optimization.

Every minimal set of capture probes contained at least one probe that only
matched a single HPV genome not previously matched by another probe in that set. In
these cases, a detection probe was substituted for the last probe chosen for the minimal
set. Using a detection probe to match the missing genome is preferable to using another
probe that matches multiple genomes because it allows for optimization of experimental
protocols around one sequence instead of two. It also provides some redundancy in the
detection method, ensuring that for that HPV genome, any signal detected at the capture
stage would be reflected at the detection stage.

Three of the 20 minimum sets contained ten probes that could collectively
hybridize with the 23 risk-associated HPV genomes. The remaining minimum sets
contained more sequences. Of the three smallest minimum sets, the one with the greatest

redundancy in matches was chosen as the candidate capture probe set.

Current Status

Tamarisc Diagnostics, Inc. is currently using a set of one capture probe and two

detection probes for the HPV-16 and HPV-18 genomes to determine the appropriate
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experimental conditions. Once the process has been optimized sufficiently, sequences
from further HPV genomes will be tested and those that work may be used for the

development of an HPV detection kit.
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Gene trap Resource Development

Introduction

Studies of the inactivation of genes in a model organism such as mouse can result
in great insights into gene function and show the involvement of genes in common
diseases. High-throughput, untargeted interruption of genes can be used to create an
invaluable resource for scientists without requiring the extensive background knowledge
of a gene and considerable input of time needed for targeted gene inactivation. Gene
trapping is a method of randomly generating embryonic stem cells with a single
interrupted gene. In this method, a gene trap vector construct is inserted into an intronic
or coding region of the genome. The vector constructs contains a reporter tag that can be
used to identify cell lines where the vector has inserted into a genic region, preventing
that gene from being normally transcribed and translated into a functional protein. Since
gene trapping is a random process, it allows for the disruption of novel as well as known
genes. Gene trapping has proven to be a very reliable process, creating knockouts with
phenotypes equivalent to targeted knockouts of the gene in 91% of test cases[1], and
taking up to two orders of magnitude less time than a targeted knockout.

BayGenomics is a large undertaking to create and analyze thousands of gene
trapping events, and to provide information and cell lines to the public [2]. BayGenomics
is part of the Program in Genomics Applications (PGA) funded by the National Heart,
Lung, and Blood Institute [3]. BayGenomics member laboratories are currently creating
knockout stem cells and mice, determining the phenotype caused by interrupted genes,

and studying the expression of mouse genes during development using in situ
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hybridization. I participated in the bioinformatics component of BayGenomics, which is
charged with bioinformatic analysis and interpretation of many of these data, as well as
presenting this information through an online interface.

My primary role with the BayGenomics bioinformatics group was as a mediator
between end users and the computer scientists who created the BayGenomics web
resource. I attended bi-weekly meetings and gave my opinion on various issues having to
do with the gene annotation process and usability of the web site. In addition to this, I
took on projects such as creating a glossary of terms used on the BayGenomics web site,
manually annotating unidentified gene trap sequence tags, or tracking down causes of
misannotation. I took an active role in the teaching component, serving as an assistant
for several of the bioinformatics training courses offered by BayGenomics, and adapting
Prof. Patsy Babbitt’s lecture on sequence analysis for a PGA conference. Some of the
results of these activities are presented in the following manuscript:

Stryke D, Kawamoto M, Huang CC, Johns SJ, King LA, Harper CA,

Meng EC, Lee RE, Yee A, L'lItalien L, Chuang PT, Young SG, Skarnes

WC, Babbitt PC, Ferrin TE: BayGenomics: a resource of insertional

mutations in mouse embryonic stem cells. Nucleic Acids Res 2003,

31(1):278-281.

When the time came to expand BayGenomics from a national resource to an
international consortium of laboratories performing gene trapping in mice, I was offered
a rare opportunity for a graduate student: the chance to lead a group project. I worked
with Alex Nord, who was the principal interactor between the different gene trapping
laboratories, to design a prototype web resource for the newly created International Gene

Trap Consortium (IGTC) [4]. We were tasked with overseeing the initial development of

the IGTC web site www.genetrap.org in preparation for a conference being organized by
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Professors Ferrin and Babbitt to gather international leaders in gene trap research. Mr.
Nord’s and my objective was to have a functional database and web interface for gene
trap data available by the time of the conference that would incorporate data from the

laboratories of the attending gene trap researchers.

Methods

A number of objectives had to be achieved in order to develop a web resource
representative of the direction we wanted to head with the IGTC. We planned to use the
BayGenomics database and web site as a template to design the IGTC resource, with
significant alterations. Some of these changes included modification of the data
collection protocols and database setup, the website content and design, and the sequence
tag identification protocol.

Members of the BayGenomics bioinformatics group were recruited for the IGTC
development group to help design and execute these necessary changes. In addition to
Mr. Nord and I, Prof. Conrad Huang, Michiko Kawamoto and Doug Stryke worked to
create the prototype IGTC web resource, with Susan Johns working in parallel to create
sequence tag alignment representations that would be incorporated into the IGTC gene
and cell line web pages. Doug Stryke was in charge of creating the IGTC database and
populating it with data from BayGenomics and other resources. Conrad Huang wrote
programs to ensure that the IGTC could process new data and update annotations on a
regular basis. Michiko Kawamoto took responsibility for much of the HTML coding of

the website, including providing database access tools and designing the IGTC logo.
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During a series of meetings I organized, the IGTC development group combined
their detailed knowledge of the resources available at US organizations such as the
National Center for Biotechnology Information (NCBI) [5] and the Mouse Genome
Database [6] with Mr. Nord’s experience with Ensembl to devise a data-flow pathway
from acquisition of raw sequence data to presentation of annotated cell line information
to end users. The mockup of his initial design is shown in Figure 1.

I took responsibility for designing the web pages associated with gene and
sequence tag annotations generated by the IGTC. Initial mockups of these pages are
shown in Figure 2 and Figure 3. From these designs, Michiko developed the HTML code
for the majority of the web pages available at the IGTC web site. The purpose of these
web pages is to present scientists with a central source of information about knockouts of
their gene of interest. As well as providing useful information, these annotation elements
allow users to search for a gene or cell line using a wide range of peripheral information.
Additionally, Mr. Nord and I created a set of web pages to illustrate the gene trapping
process and to explain how to use the IGTC resource. Current versions of these tutorials
are available at www.genetrap.org/tutorials, and versions from June 2007 are shown in
Figures 4 and 5.

The chief reason for altering the sequence tag annotation protocol was to
incorporate the best parts of the identification methods used by the different members of
the IGTC. Two sequence tag identification protocols were considered especially useful:
Autoldent, a gene transcript-based protocol developed for BayGenomics primarily by
Prof. Huang, and MapTag [7], a genomic localization protocol developed for Ensembl

[8]. Autoldent had been in use for three years at the time, and had been thoroughly
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IGTC Website/Database Flow Chart
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Figure 3.1. Alex Nord’s design for data flow through the IGTC web site. Elements
outside of the IGTC pipeline are shown in grey text, whereas constituents of the IGTC
resource are shown in black text.
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Sequence Tag Report
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Figure 3.2. Graphic representation of the proposed IGTC sequence tag annotation web
page.
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Figure 3.3. Graphic representation of the proposed IGTC gene annotation web page.



validated [2]. MapTag was developed more recently, and was undergoing significant
changes that would not result in a stable build in the near future. Therefore, we agreed
that the most sensible method of merging the protocols was to use Autoldent in parallel
with a genomic localization protocol of our own design, and to reconcile the results of
each identification path. I performed a great deal of research was to determine which
localization program would be best suited for localizing the IGTC sequence tags to the
mouse genome. This research is detailed in Chapter 4. 1 concluded that the best solution
was to use the Blast-like Alignment Tool (BLAT) available at UC Santa Cruz [9] to
perform the genomic localization of sequence tags, and wrote a script to do so that was
run in parallel to Autoldent. As matches to gene transcripts and genomic localization are
orthogonal data, although both based on sequence alignment, using both annotation
protocols adds a level of confidence to sequence tags yielding equivalent results with
both programs. Doug Stryke developed a reconciliation process based upon finding
correspondence between the genomic localization of sequence tags and the genomic

localizations of any matching full-length transcripts.

Conclusions

The prototype web resource was successfully presented at the inaugural IGTC
conference on April 15, 2005. The initial version of the database contained over 33,000
cell lines collected from researchers in six countries. Most of the steps involved in the
data collection protocols were successfully completed by the time of the conference, and

those that were not had pre-computed data inserted in their place. The sequence tag
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identification protocol and website content were discussed, with minor changes made
where necessary. After incorporation of these changes, Alex Nord drafted a manuscript
detailing the IGTC resource:

Nord AS, Chang PJ, Conklin BR, Cox AV, Harper CA, Hicks GG, Huang

CC, Johns SJ, Kawamoto M, Liu S, Meng EC, Morris JH, Rossant J, Ruiz

P, Skarnes WC, Soriano P, Stanford WL, Stryke D, von Melchner H,

Wurst W, Yamamura K, Young SG, Babbitt PC, Ferrin TE: The

International Gene Trap Consortium Website: a portal to all publicly

available gene trap cell lines in mouse. Nucleic Acids Res 2006,

34(Database issue):D642-648.

The current version of the IGTC web resource presents more than double the
original number of cell lines and contains far more information about the trapped genes

available, but retains much of the structure developed for the prototype used at the

conference.
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Figure 3.4. The following 4 pages contain the contents of the IGTC Overview Tutorial,
which displays information about gene trapping. Below is the first page of the tutorial.

IGTC International Gene Trap Consortium \,/

INFORMATION DATA ACCTSS TUTORIALS REQUEST £S5 CELL LineSs
1 1
Overview
Gene Trap Overview

This tuterial grves a bed overviam of gune trap luchnalegy, reviems gen trap vecter types and function, and dacusses «xperimental agperntunt s
available to gene trap cul line usars. For infarmation en how te locate a gene trap cdl line en the [GTC wed site, pluase see cur search tutonal.

® [ntreduction to Gene Trapping
® Vector Types and Function
® Experimental Opportunities

Intreduction to Gene Trapping

Gane lrappng o & =athed of randomly gunerating embrycnc stam cdls with wel character ded imertonal mutatcns. The sutation is rated by
inserting & gune lrap vectar construct inte an rkronic or codnr regen of gencmic DNA. The gene trap vedor coratructs comain sebectatie raporter
togs used Lo identdy cell inks whare the vector bas suczesafully interusted o gune Thiee reporter tags can olso be useful fer furthar
wxpunmantation in cels and mick. Gene rap sequences are derved fram cONA or genomic DNA from e ragped ocus using premer secuences
frem weddce unds, and the sequunces are used to identfy and annclate the trapped germ. Gene trap call Ines reliably contritute to the germ line,
praduting very uselul sutant meuse strair for the funcbena charactunzatien of genes. Althcugh the nsartion of the vedtar comtnuet in & genc
regen tyscaly resulls in complte inactivation of thw “trapped” germ (2 nul ale), this & not guaranesd. In Soma comes veclor insarton <an fail to
inactivate a gune, lwad to hypomerphic gene function, o resull in a dominant rugotive pranatyse. Gerally, vector nsartion dase to the 5" end of
a gene, bt downstresss of the untramilsted region before thw it wean, & mee bkdy to cruste a mudl allde than irmertion nesr the 37 end.

The [nternational Gene Trap Consortium wabsile represnts ol pubidy avaiable gune trap cull ines, which are datrituted on a nonecclabarative
basis far nominal handling fess. 3y using germ trap call bnes found an the [GTC site, ressardiars can save the time and wxpense of Largeting a gune
for knockout. Rewarchers can find trapped genas of inturest on the IGTC website {sew tutcria on finding gene trap cdl lines of ntereat), and have
the ol lines sunt to ther lab for the generalion of mutant mice Urough blastocyst injection.

Vector Types and Function

Gane Lrap vectons aru dusigrmd 1o neert inle gename sequence and inerupt trasmcnpton of the rapsed gene. Trure are & varnaety of dilfarent
gune trap wector types, and wach will produce cdl Ines mith diferent charactenatics and ressarch cppartunibes. fesearchars are advaed Lo arn
the charactermtics of the dfferent veclors weed Lo create cdl ines avalatie for o particular gune o locus of interest. This infarmation is availabie an
the IGTC site o0 the cul Ine annctation page and cn 1GTC mumber mebaites. For a more detaled review of gene trap technalogy see:

Stenderd, WA, Cobn, LB A Cordes, SP
Gunetrap mutagunees! Pasl, prasent and bepond
Noture Ruviens Canetics 2 768 (2001)

Figure & shows how genes arw noemally tramcnbed and sphiced inte mRNA products. Gene trepping Lakes advantage of thw splang spperatus by
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pelyadenylation sgnal ot the 3' and that causes the 4 and nan funct

Figure 1. An endogenous promoter drives transcription of
a gene, which is followed by normal splicing.

promaser
§ ¥

The basic traits of & gune trap vecter are shown m fquu 2 b-bw The splice aczuptor interrupts normal splong and couees Uw dcmuuum mnc
guence 1o be tramscnbed. The gene trap v ef sl and reporter cormiructs and is fels d by a

wgnal, which causas & stop in trasalaticn. Polyd wectars wk n o diferant manner, using a pramoter and a spiice denar Lo trap the 3‘ nnds of ung
shown in more detal loter.
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Figure 2, Schematic of a standard
gene trap vector.
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Figure 3.4. Page 2 of the IGTC Overview Tutorial web page.
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Figure 4, PolyA gene trap vectors
1. Random insertion of a gene trap vector into a genomic locus
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recombinaticn, see:

Branda, C.5. & Dymeck, S M.
Talking about @ reveldton: Tre impact of stespecfic recambinmees on genubc analyses in mcs
Cwrnlop=antal Cel 6, 7:28 (2004)

Figure 3.4. Page 3 of the IGTC Overview Tutorial web page.
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Figure 5. Insertion of a gene trap vector with recombination sites that
allow excision of the vector, restoring wild-type expression.
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Figure S shows the integration of a vecter containng st fi wbicn stes, rep d by the pirk and bive arrows. Twe systuma are
whonn, the CreLoo® syatam and thw Flp FRT systes, homever thers are other stret n Ui desk Lrwesa Lo d of Cru causas the LexP

oles Lo bLirm wioch tha wectce This resclts in reverscn of Uhe gena trap cul ine to wikd type wipresion of the pravcusly
trapped gers.

Figure 6. Creation of a conditional mutant through vector inversion.
e trag abede (rut)

Figure € shows & mare complicated stratugy imvelving drectional stespecifc recasbination sites that mil mvert the gene trap cassatte. The first
e creates o revertant alek veng Cre by nvertng the vector coxietle 10 a nonfunctioning sate. The secend step returm the loous to the null
allle using Flp 10 reirvert the vector seguence. These recambination stepe can be divected in a tumporally and spatially spedafic manner.

Users arw advised Lo karn the detais about U vector Lsed, and to aleo confrm that the irdertion occurred at the lated locus. fa gune trap
sequences can be short and imparfet and handing erors do cocur, U identification and annatation provided at the JGTC ste sheukd be validated

wxpuneantaly. For prctocls en the use and handing of gena trap <l inks, visil U webaite of the IGTC mamber that produced the cull lne of
inbureet.

CONTACT

Eat (4 008, IN0m MR &

- TH ST L8 e el

Figure 3.4. Page 4 of the IGTC Overview Tutorial web page.
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Figure 3.5. The following 14 pages contain the contents of the IGTC Search Tutorial,
which displays information about gene trapping. Below is the first page of the tutorial.

IGTC International Gene Trap Consortium \,/

INFORMATION DATA ACCTSS TUTORIALS REQUEST £5 CELL LINES
[ [

Tutorials: Locating A Cell Line

Locating a gene trap cell line in a gene/locus of interest

This tutenal dumonstrates how to locste a gune trap ol line in a geneflocus of interest. For infermation cn the gune trapaing process, dlese see
our overvien Lutcoal.

The best way 1o determine f the [GTC has tragped your gune o locus of interest is 1o use the BLAST search function to align your seguence te cur
database of tropped gunes and cedl line segquences. Il you do net know the sequence of your gene, you may perfarm searches based on keymards or
wxpraasion profile, of romee hw contents of the IGTC database

" BLAST Search

® Browse the 1GTC

® Search the 1GTC

® Browse Bislogical Pathways or Gene Ontology categories

® Scarch expression data

® Hrowse Ensembl or UCSC Genome Browsers

Te begin & search, sedect Dala Acoess in the menu bar at the top of the page. Scral down Lo sedect the type of seardh you wish ta perfors.

IGTC International Gene Trap Consortium

m DATA ACCESS TUTORIALS REQUEST E8 CELL UNES
-

| Keyword/1D Search
ADOUL IG|  Blast Search
Expression Search
Gens trappird o . proach that is used to ntroduce niertonsl
mutatons a2 X £ ecnbeyonic stem (ES) cells. In addton to
genarating & Biological Patmays lielas, newer Qena trap vectors offer a vanety of
pOst-Ansernonad Modication strategies for the gensr ation of Othwe sxperimentsl allakes

BLAST Search

Sequence searching with BLAST o the best way 1o find matchws in the 1GTC dotabase. The ELAST results will lind ol matchms mth signficant sequence
wemilority, regardhess of annctation.

Te stert your BLAST search, seluct tha B aul Search opticn frem U Data Acceks manu kocated ca the menu bar. It wil take you to the fellkewing BLAST
farm:
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Blast

A local BLASTN seach will be run on the IGTC databases using NOBI's BLAST server software
Choose the database to search:

cell lne tags &

Enter sequence below n 4574 format

m_x«.;aa {Mikch) a~
GTCTAACTACCAGAGCCOOTOGAMCACTACACTCTGCTICTTICTIGCTCTIGGGTTIITIN |
A AT AT S e TS Ot T LI COACG S T CAGCT CCITCASAAGASCCAGOSTIATT
TR AAT ST CCAT GoACACASAAGCT GCAGAA ST CCT SCT GRAGAGGAGAGGIT STEGAS!
GCTCAACAEACCCARGTTCCT CAACACACTGAGTCTGAATATGAT COBACAGATCTATCC)
AR AR AR LT A CACAT T CCTCAT CAT CAT ARACSOACCOCCOALCARRLCOT w
3 ‘ >

A Quick search Is run with the default settings listed below.

The guery sequence o fliered for lowm complexity regions by default.
Nter [F) Low complexty

Expect| 1D v

@ Cracheal e Agement view | Pairmise -
fa

Descriptions | 50 | Aignments 50 88|

Sample search resuts are avaiable,

This nterface was created by Seqge Shavinn at the National Center for Biotechnology Informaton.

Entur your the sequence of your gune of inturest in Fawta format and dick an the Quick Search tution. Muliphe seguences can be searched
smultanecusly, wih results appairing in the same order the sequencies were entered in the search fied.

Yeu can change the suttings of your BLAST search § you do not wish to use Uhw delaul seltngs. You can tum on o off low complusxity litering, mhch
prevants matches to regom mith hghly repetitve sequenie. You can incresse of detresse the masimum allomeble expect value, & term inversaly
cor relat et lot'nuqufmdl match, with the st deating the best matchas. To dlter the prasertation of the resulks, you can turn
on o off the graghucal overvam, increase of decrease the number of duscriptom and alignmunts shown, of change the alignment view. Ses the
NCE] BLAST Handocck ar FAQ poge for furthar detaits. Onca you have made Uhe adjusteants 1o the settings, dick on the Search button.

The duladt BLAST search for the AN_14610€ sequence yiwlds the falomng resull: {alignments not sactured)

Figure 3.5. Page 2 of the IGTC Search Tutorial web page.
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ch Results | BLAST]

TLASTH 2.2.5% [Wew-16-2002]

Reference:

Altachul, Sctepten F., Thomas L. Madden, Alejandro A, Schatffer,

Jinghui Ihang, Theng Ihang, Webb Niller, and David J. Lipman (1597),
"Gapped BLAST and PSI-BLAST: a new gensration of protein databsse search
prograza®, Nuclele Acids Res, 25:3389-3402.

Database: )gtc_cell::ne
32,701 sequences; 8,518,844 total lettera

Query= NE_146108 (Hiboh)
(1720 letters)

Mousze-over to show define and scores. Cick o show slgnments
Color Key for Rlignment Scores
[ ____as-50 IEEETE TR TEUUEES

lelil,
L] S00 1000 1 1500
Scoce 4
Bequences prodwoing significant aligusents: Ibics) Valwe

1006 0,0
3 1.2
31 9.6
ADSTAOL 21 4.6
XL244  (BO) 31 4.6
XE401  (BG) St q.¢
4.5
1.4
31 4.4
(FECRC) 31 4.6
31 1.4
ADS4401  |GGTC) 31 4.6
NOS3IA02 31 4.6
31 4.
21 4.6

. -

The cul kne RRS545 is the bet IGTC match 1o AN _145108 [the gene of irterwil for this exasple). Recard the cul ine number. Search the IOTC for

the cal lirnm 1o get additional nformaten fram the <l Ine annatation page

Browse the 1GT1C

Yeu can browss the IGTC database for your guneds) of interest. You can abio browss through the available 1GTC cell linwas. Sedect Bromin from the
Duta Access manu Lo ftant browsng the [GTC databese.

® Qrowsiag by Gase

Te sant rowiing by gene, ek the crde nest 10 Geane The form will then give you optcns Lo sort the daglay of the available trapaed Qunes:

Figure 3.5. Page 3 of the IGTC Search Tutorial web page.
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Browse

Browse Form
Category: * Gene ' Cell Line
Sort By Gene Neme M |
et { WA - =
Source

Emnes Per Page:

You can sort the genes &y

° Gane - order by gere 6 12 NGL I 2 gere descripnce & a3t avadiable from MGL, the gene descoption |k retriesed from ekther
Eavez Gerw or Cruery)

© Gene Symbal - Aptabetical order by WA gere wymbel
© Chromssome - Oxdersd 3 chromosans nurber

You can ok choc how mary entries you want to show per page: 1,000, 5000, or al ertnes. Once you have selected your perameters, dick
cn trw Browse button to start bromsing.

* Growwe by Coll Line

Te stant browang by 2wl line, cick the drcie next to Cell Line. The form will then give you options to sort the display of the avalable IGTC ol
lirwes:

Browse

Browse Form
Category: © Gene * Cell Line
Sort By: Cellive ™
Status Al =
Source: I
Entries Per Page 1,000 W

Yeu can sort the ol bnas by
© Coll Line - Alzhatetical orter by cal bae nama
© Source - Aphabetical order by gene trap resasrce
© Chromssome - Oxdarsd 3) chromosans nurbe

° Gane - order by gere 6 12 MGL I & gere descripnce & 53t avadiable from MGL, the gene descoption |k retriesed from ether
Eavez Gerw or Cruere)

© Gase Symbel- Aphasescal order by W jere symbel
© States - Alzhatetical by Certifcation statis (e beka)

You can absa limit the broweng by the status of the cul line and the scurce of thw cudl line.
Te limt the col lines by idantification status, sebect cne of the feliowing status terma:

© Locallzed - Shans all cell ines atere » tiagle genomi kous hae beer KerciSed 3 drect gename kacalzation af the sequerce tag Sertsad fom the cell bae, genare
localzazce of 8 Naldergth FNA tramcopt elatag 12 ™ cell bre, or ba In agrseman:.

© Conllict - Shann all cell baae whare the gercrrk foc Kertifed 3y saquence g local aaton arg trarecr pt Scalation €o rot seerlap

© Galecallzed - Showe all el Kras whaw thew i no genomic kces found for sthar the cell |ne seqaerce or Ay trancript sscce Btad with the cell lre seqeerce Atbough
there it ro locakzation, there may be mENA trarecrpts iMeatfied far ar Uniccaiosd cell ine

Te imit the Srowaing by gene lrap rescurce, seect coe of the falomng genelrep rescurces from the =enu:
© 8G - BaySancmics
© CHMD - Cuntur for Medeling Human Disesse
© ESOB - Emlbryorsc Stam Cell Databess

© BNCRC - Frect Hutchirmon Cancer fasaarch Centuer

0 GGTC - Gurman Gene Trap Consertium

Figure 3.5. Page 4 of the IGTC Search Tutorial web page.
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O S$IGTR - Sargur Imlitute Gerw Trap fescurcs
© TIGEM-IRAN - Teluthon brutntute of Germbes and Mudicre - Blituto de Ricerche & Biglogua Mowcolars

Yeou can also chocee how mary entnes you want to shew par page: 1,000, 5000, or al ertnes. Once you have seected your parameters, dick
cn Lrw Browse button 1o start bromsing.

Search the 1GTC

Yeu can search the [GTC database for a partcuar gune o cll ine. Sebect uywerd/ID Seacch from the Deta Access manu to start searching the
1GTC database.

® Seasch by Gase
Te stat searching by gune, cick on the orde next to Gene. This mll gromgt the fors 1o grve you aptions to define U parameters for your

search by gena:
Search
Search Form
Category: * Gene ' Cell Lime

Search Feld: [-Z-Nnrﬂ Q[
|

Search Teem

Chremosome: v“ ';
Sort By [ Gene u---.- =l
Status
Source
Entres Per Pape l 200 &

You can search for & gune by
© Neywerd - Ary wzre, ghrsea, idenzfar, or namider in a1y Said of the database
© Accessbon - The MO scceetion nambar (e NM_OOE25S or AXDOS015)

© Gase Dascription - A Layazre search of the nime o descrigzon ol & gene. (6.3, ADP-boesarginre bpdrolae’ woukd e found wish & ful-rame seach o¢ Tyerolase’,
TADV, T, etz )

© Gese Sywdol - The MGI gave syrebel (o3 Afarrdd or Caag)

© MGIID - The MGJ gere dertfNer (o MGI:1345LE0)

© Eatrez 3D - The NIHI Oreoex gere dectfer. [0.3. 277920

© Casmmbl ID - The Daceril gere Certiter (o g DMSM USGO000002 50e4)

© Micrasrray - A ksyword search can be performed agal net the namws of ™e aocbe mtx n the [GTC datatase. Hoaever, ¥ pse 45 rot brow the rarre of e arcbeset, it ie
batter to ute the ‘Scarch expression data’ ol

© Phenstype - A weywand search of gherctype rfonmation for & gera This nformatize & setrieved iz Se Mocss Genome [nfonmatics wed e

© Geane Ostology - A begacr sanch of Gase Omoiogy tarmme senociased with the gere. Fumher Gase Omalogy can be d utiag e b
lloh.kal Pathways or Gene Ontology categories’ ol

Cnew you sedect haw you woukd lie te search for your gune, antar thw sesrch tares in the bax lsbekad “Search Turm".

"

You can limit your search by chy , by 2 a <h n the Ch e

You can 8o set your search by

© Gane order by gere 12 NGL ¥ 8 gere descriptaen & 23t avadable from MGL, the gene descoption |k retriessd from either
ez Gor or Enuarebd

© Gase Symbal - Aphabetical order by WA gere wymbel
© Chromssome - Oxdarsd 3y chromosans nurber

Chocsae bow many entries you wart 1o show per page: 1,000, 5,000, or all umtres. Cnce you have sefected your parameters, dick on the
Search button 1o dart your gene search.

* Search by Coll Lae

Te Mant searchng by 2wl line, dick on the crde nast to Call Line. The farm wil give you agtcns o define the parasaters for your search by
cell ine:

Figure 3.5. Page 5 of the IGTC Search Tutorial web page.
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Search

Search Form
Catagary: © Gene ® Colt Line

Sewsrch Neld; Cel Line v

Seerch Term: {

Chromosome:
Sen By:
Status:
Source!

Irtres Per Fage:

You can search for o cdl line by
© Coll Une - T™ha coll lre narme (o 5. OWD-GT_BSAR-J or KSTCIL)

© Gese Dascription - A Leyazre search of the name or descrigion ol a gere. [0, ADP-rbceparginre bpdrolae’ woukd Be found wim & full-rarre search or Tyerolase’.
'ADV, T, etz )

© Gase Sywdcl - The MGl gase symbel (e g Afarrld or Caae)

Oncw you sedect how you woukd like 1o search for your cull line, entar U search turs in the bax labaked “Search Turm".

Yeu can limit your search by chromosame, by selecting a ¢h n the Ch fiwd.
You can sert your search by

© Coll Linn - Alzhatetical crter by cal ke nama

© Source - Aphabetical order by gene trap reesd wros

© Chromssome - Oxdersd 3 chromesons nurber

© Gase order by ger 12 NGL. ¥ 5 gere descripzoe & 2ot avaliable from MGL, the gene descmption s retriesed from ether
ez Gane or Enearrbl

© Gase Symbal- Aphadescal order by MR jers pymiel

O States - Alzhatetical by Certification statis (oee beka)
You can abio ket tha search by the status of the cull ink and the scurce of the cddl line.
Te limt tr ool lines by iantification status, selct U one of the foliowing status termra:

© Locallzed - Shann all cell inee Abere & tiagle genomic kaus hae bean Kertited 3y drect gename localaatize af the sequerce tag Serisad from the cell kae, gename
localzazarn of 8 faldength eRNA traecrpt related 12 2 coll bre, or bamh ir agteamant

© Conflict - Shann ol cell baar whare the gercmrk oo L1 g lecad are €0 rot seariap

© Salecalized - Showe all ool hras wham thew k no genomic kcse found for sthar the cel lre or sy
there it ro locakzation, there may be mENA trarecrpts ieatfied for ar Uniccaloed cell ine

13 with the cell Ire seqaerca Attough

Te imit the trowaing by gene trap rescurce, select coe of the falomng genatrep rescurces from the =enu:
© 8G - JayCancmics
© CHMND - Cuntur for Modaling *uman Diseese
© ESOB - Embryoric Stem Cell Databese
© BHCRC - Fraed Hutchirmon Cancwr Resaarch Cuntar
© GEYC - Curman Gene Trap Comsartium
© SIGTR - Sargur Imilitute Gurw Trap fescurcs
© TIGEM-IREN - Telethor Irtitule of Garmbes and Medicne « Blituto de Ricarche & Biologia Mawcclars

Choces bom many entrss you wart 1o show per page: 1,000, 5,000, cr all antrus Once pou have seected your parameters, dick cn the
Search tutton to stat your cell lne seardh.

Browse Bislogical Pathways or Gene Ontology categories

The 1GTC, n collaboration mith CunMAPP crg, has magped gune trap dete Lo ldt of bdeqml pattways and GO terms. You can trowse e MAPPS
(Map Anneulm and Pathmay Prefiler) and Gene Ontalegy (Cers Cntology) P by g Bclogeal Pathways from the Data Aczuss menu.

Onow you sdect “Biglogical Pathrmays®, you have a choce 1o vam wthwr MAFPS o Germ O Path Sl g MAFPs will allewm you o view
trapped genes in bidogesl patfrmays. Sebcting Go Pathmays will alce you 1o view gunes nnuu-d with GO tems.

Whan you lock at trw patfrvays, f & gene trap wxists for @ particular gune, the name of the ol line sppesrs next to the germ. For wxample, in tha
petion of the Germ Ontology Tem ol cycue MAPP, you can see the name of the gene trap (if avaiable) sppesrs next to the gune name. The colars
indicate hem many gune traps wxist for thet particular germ. See the legund for more detailed information.

Figure 3.5. Page 6 of the IGTC Search Tutorial web page.
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COnew yeu fnd the gene that pou are rtersted n, dick cn the gune name 1o gut men ifarmation. The gers amclaticn page wil duglay
infermaticn from MGI, Swafret, Ensamdd, ANy matrix, UniCune, RefSes, Entruz Gene, and Gene Ontalogy. It will also have expresion profile
infermaticn. The Expresacn Profie section luts all the gene traps sociated mith the gene.

Whan you find the gems trap you modd ke o arder, record the nase. Search U IOTC for the il bne to get additional nformaticn frem the el
line annclaben pege.

Secarch Expression Data
You can use the IGTC wabsite to search for rapped Qunis that uh!:« & d-:ud e peafle in fie mouse tissues. The st supports two
kincks of sasrches. The firsk is a search for gunes that are upreg. «d i & particular taaue The second is & sardh for that

have 8 speafic expreasion kel in a single basoe. Emnum deta is prevded hy the GAF SymAtles projed, and the search = desgn
relatve companscns of eapresacn s, rathur than analyus of stabatical sgnificance.

Te bugn b search of wipreascn data, seud Exprusscn Search from the Dote Accssas =anu Lo start seerching the IGTC database.
Whan the Search Form loack, n the Category held, select withar ‘Genae’ o ‘'Call Lina'. A 'Gena’' ssarch will retum genes sssccated nl.h any
with

wxgruksion dota that mesls your search crterie. Selecting ‘Call Ling’ will retumn <l bnes that have been =apoed 1o gunes !
wxgrassion dota that mesls pour search enteria.

MNext, choase the type of search you wish Lo perfores
Scarching for upregulated / downregulated genes

Searching for genes that are wpcegulated/dowarugdated in 8 basos alcws the user Lo select the mouse tissue of interest, and the dusired exprassion
luwel for thae trapped gerss. The exparession s ca ted by comparng the exprassion vl of aach gene in the sdected tusue with e median
wxprussion for Urw Qune acrcaa all basoss. All gunes that match the rleria ore ed. By using tha search, usars can find tragped gunes
that are wipressed in @ lssueapeafic mannar.

Te perform a sesrch for up \ {domeguiated genes, st “Upcegulated/demnregulsted” frem the exgreision search poge.
Secarching by expression level

Yeu can also search for ol Qunes that match a desired luvel in 8 snghe lissue. Ths search compare gune capresecn luvels n the tissue of interest
Lo e median wxpresacn for ol Qune in the selected basue. Tha search is usefd for indng Qunis expreised of net expressed n 8 sedected Lasoe
Again, the analyss is baeed on relative exprassion and is not mueant te be statisteslly signficant.

Te purfarm a search by exprassion luvel, seect “Expressed at a set kvl from the search tyse menu.

Search Expression Data

Search Form
Category: * Gene © Cell Line
Sesrch Type: ru;:e;ul:}e‘dy‘-!cw-veg.w.zq v
Tissue sdpose Sesue !
Cxprassion Lavel ,!bw' vl » Medan
Sert By: Gens Name -
ErAnes Par Page 1,000 Ml

Nent, sedect & Lssue Lo seards. Kaep in mind that, although the mcroarray dala o wxtensive, not all genes heve been tealed in all basoes

Then, chm- an exgrassion peafle lc- which 1o search. In order 1o narmalze acrosa dfferent microarray dats sets, al wrpreaicon kves are

perison o the hevd for @ Ladue of gune. Chocsing ‘Abowe’ will retumn any germs wxpraaed at a kvd above the
number vcu input times the median luvel for the tissue or Qenu. Likuwise, chocsing Balow’ wil retum genes expressed ot o luvel lcmer than your
input number Lirms e median. The npul number con be any positive real number.

Firally, chocse how you modd ke tha rauts 1o be sorted, and seect U fusber of reaults per page 1o be returned.

As an wnample, a search has been performed for gunes that are upregulated of domnregulated ot 20 times the medan uvel in dersal rect gangia
taaue, with the reedts sorted by ger desaription.

Figure 3.5. Page 7 of the IGTC Search Tutorial web page.
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Search Expression Data

Search Form
Category: * Gene  Cell Line
Search Tepe Uzregulated/downregu sted (W
ue dorsal raot ganglis v
Exprassion Lavel shove 1| 20 & Madkan
Sart By: | Gere Name W
Emnes Per Page 1,000 |

This search returned 13 genes in the IGTC databese. The genis are arganized by gene name or descriplion, symbel and chromosame
Viewing trapped genes that match the expression search criteria

Click cn & gene name in the resuls, in the case of cur exasple, “Nbreblast growth factor 1% Tha will conmect you to the 1GTC Gens Annctabon page
for thw apprepriale gene.

Browse Genes With Expression Data

darsyl roat gangha: above 30 x medun
Showing 1 - 13 ot of 13 pene records
amplod beats (Ad) precursar-ike proten i Apipl 7
colapsn responss medistar proten | Crmrpl 5
DNA sagmant, Chr 5, Brgham & Woman's Genstics 0080 wrpressed DIBwmglatiw s
ELAY (embryanc lethal, shnormal vaos, Oroscphela)-like 2 (Me artgen B) Clavi 4
fascicudatun and slongatian protein zets L (2ygin 1) Fezl 9
Ghroilai oross factar 3 fofa 18
meegen scty sted proten bnase 8 interacting erotein 3 Mephiipd 1
reticulon 1 Rond 12
Rho GOP dssocistion indtetar (GDI) pamma arhgdg 17
RIKEN cONA E1I001IN0% gore E1300LINDSRIK 2
stathmen-lke 2 Stmnd 3
synaptotagmn 131 Syl J
tubdn, bets 3 Tusbd L}

Toggding the arrcms beude the Alfysatrix Probe Sets and GNF Probesats (or selecting “Show Al under Addbenal Infarmation) will daplay the
Affymetrin o Novarts microarray chigh containing the selected gene

Figure 3.5. Page 8 of the IGTC Search Tutorial web page.
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Gene Annotation

Gear
MGE Symbol: Fgll
Name! fitrodiast grown factor &
Synenyms: Fam, Fgfa, Dffrx, Fgf-1, Ntrodiest growth factor L (sadu)
Entrez: 14164 ChrAB(-)1 39202129-35761640
rnsembt: ENSMUSGIOOD00MSS Che 18-} I5202120-39361049
Additional Infermation

Show AN (%) / Hide AN (V)
b Accessions

¥ Protein

PubMed

«

<«

Hemology
¥ Gene Ontelogy
v ointerfre
v Protein Family
U MGE Phesotype
V' Affymetrin Probesets
GeneChip Array: MG_UMAV2
Probe Set [Ds 100454 ot
Lenelhep Array: Moused J0A_2
Probe Set ID: 1450065 o
GeneChap Array: Moused o 2
Probe Set ID: 1427100 »
GeneChip Arcay! Mullvsuba
Probe Set ID: 27010 0w
' GNF Probesets
fimi 1
¥ cell Line

Sequeace Alignment Image

Akgrmerk image 1 nat currertly avaladle

Cicking on tha probe et name mil connect you to the Affymetnx o Novarts webte aisccsted wih that gers. As an wxamgle, the probe sat
"gnfim11939_ot" has bewn chosen, with the resuting Novartis page shown belcw. Plesse soe the Novartis Freguently fAsked Queshion page for
dulais regarding the use cof the ute

Figure 3.5. Page 9 of the IGTC Search Tutorial web page.
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Viewlle Annot Tebie ' — - .
Honne SexmchExpression | FAQ | Terms of Use l Abhowe | > Geaomics Instituts of the
— | B— | CEERLT Novartis Research
Options | Download
Seamch GNF SymAtlas vi.1.1 S Foundation
[
Render | Honz BarChan M/ | popy | pasager: | Mouse Geneatias GNFIM gcAMA % | Go | Repones: | {a v
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Figure 3.5. Page 10 of the IGTC Search Tutorial web page.
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Figure 3.5. Page 11 of the IGTC Search Tutorial web page.

45




e.’ 2 Mouse ContigView

e~ Eang ¢ Phafiew o Taclewis o [atse

V& Maslewin 4 Ggorian 4 Qeerns) & AiTee

B Chromosome 13

Fird 28 . EEDTID [+ g. CAARDI03TE4 1 13719, CA 1.11720) Q.

[=om

B Overview

Mo nohewy T

Fesumiv Companw DAS Souscery Swpmtiv Cecontorsy Bpety Aoplae mage snw

WA Rsiae sk M.
Lrgeh
Soow em
DO wwe
Corgagen chia
] DoTS vt
Evevd C05
] Braevdl Trracrgn
Lomipre Fownd ond pary

Gewlug

1] Moss SPG pedctices

| o sty SSNS
(o sty
Ow. 2 v 1
o - nen wmw .- "o - e m T "t - b
O icartiger
ke beake  hin =™ -
' — -
PO—— - — omet (== .
| g ——— - — —-—— P——
= Detalled view
\
ST 10 fegeon 13 bp @IS |5 =
“e il - - = = |

Froteiw ] Moume geewd predetnm
MA Goare e it
] MO0 BaCy
o ez NOO tep s Cene - -
] PetSeg ==
PO e . 06 —
=] Vega Treecrygs
STT T . ] canED -
e UL bunet e m
e Siwets vy | = ol
G WAL WA LM MRILee MM WO WA
oc whmen il
R 1 — [ — b e
Torw wn peeert iy 05 Graie suinhedt 140 e Ve s Seey M seen Sr Sew Shaes

E Basepair view

o Nese wilsbe

LT

Simaos | SLAhE | RAATE e Wi M SLaAoe | WAL Wk e
Lreh e
. e
g —_—_— e
e
e ————
S . _
-_—mm—m—m—mm—-
e —————————————— e
amipve fr—————
e —
—_—-—
—_—
Noaw wiiea S ———"|

257 trem

il veu -

- [ ..
A F BB RS RS C L EERS L e lwim
AT . o L]

R
- e T D L SRS ¢ SRS L L L SR R SRR ¢
. A BRSNS ¢ MRS L ' EEE e BRI e e e

R
ez e o

Figure 3.5. Page 12 of the IGTC Search Tutorial web page.
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Introduction to the manuscript

“Comparison of methods for genomic localization of gene trap
sequences”

One of the top priorities of the IGTC development team was to develop a
sequence identification protocol that incorporated the best parts of the identification
methods used by the different gene trap researchers joining the IGTC. After concluding
that a two-path identification protocol would be used to identify sequence tags by
alignment with gene transcripts and alignment with the mouse genome, a genomic
localization method was needed. In order to determine which genomic localization
program would be best suited for localizing the IGTC sequence tags to the mouse
genome, I compared the performance of programs in use at the major genome browser
web sites. The other members of the IGTC development team, Conrad Huang, Doug
Stryke, Michiko Kawamoto, Thomas Ferrin, and Patricia Babbitt, also made
contributions to this research. We produced some interesting conclusions that merited
publication in BMC Genomics. The published manuscript below is presented in the
following chapter.

Harper CA, Huang CC, Stryke D, Kawamoto M, Ferrin TE, Babbitt PC:

Comparison of methods for genomic localization of gene trap

sequences. BMC Genomics 2006, 7:236.

The nucleotide sequences used in this analysis are available from the BMC
Genomics web site (http://www.biomedcentral.com/bmcgenomics) in association with

this manuscript. The titles of these files, and their contents, are as follows:
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Title: Sequence tags

File format: FASTA

Description: A file of sequence tags aligning to known genes that were used in
“Comparison of methods for genomic localization of gene trap sequences”. This is a
smaller set of sequences than is contained in the International Gene Trap Consortium
database (http://www.genetrap.org).

Title: Genes

File format: FASTA

Description: A file of full-length genes aligning to the sequence tags that were used in
“Comparison of methods for genomic localization of gene trap sequences”.
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Abstract

Background

Gene knockouts in a model organism such as mouse provide a valuable resource
for the study of basic biology and human disease. Determining which gene has been
inactivated by an untargeted gene trapping event poses a challenging annotation problem
because gene trap sequence tags, which represent sequence near the vector insertion site
of a trapped gene, are typically short and often contain unresolved residues. To
understand better the localization of these sequences on the mouse genome, we compared
stand-alone versions of the alignment programs BLAT, SSAHA, and MegaBLAST. A
set of 3,369 sequence tags was aligned to build 34 of the mouse genome using default
parameters for each algorithm. Known genome coordinates for the cognate set of full-

length genes (1,659 sequences) were used to evaluate localization results.

Results

In general, all three programs performed well in terms of localizing sequences to a
general region of the genome, with only relatively subtle errors identified for a small
proportion of the sequence tags. However, large differences in performance were noted
with regard to correctly identifying exon boundaries. BLAT correctly identified the vast
majority of exon boundaries, while SSAHA and MegaBLAST missed the majority of
exon boundaries. SSAHA consistently reported the fewest false positives and is the
fastest algorithm. MegaBLAST was comparable to BLAT in speed, but was the most

susceptible to localizing sequence tags incorrectly to pseudogenes.
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Conclusions

The differences in performance for sequence tags and full-length reference
sequences were surprisingly small. Characteristic variations in localization results for
each program were noted that affect the localization of sequence at exon boundaries, in

particular.

Background

High-throughput gene interruption projects have greatly increased the number of
loss-of-function knockout genes available for study [1]. Correct identification of these
genes provides a necessary foundation for their use for biomedical discovery, including
minimizing the number of time-consuming phenotype experiments that need to be
undertaken. Until recently, interrupted knockout genes have been identified primarily
using the alignment program BLAST [2] to match gene trap sequence tags, which
represent the region of an interrupted gene near the site of disruption, with gene
transcripts. While transcript identification can generally provide high confidence gene
annotation information for over 75% of such knockouts [3], transcript databases do not
provide full coverage of the genome, limiting the number of genes that can be identified.
Redundancy in transcript databases also makes it difficult to obtain a unique
identification for sequence tags, which are relatively short.

Sequence quality can also be an issue with gene trap sequence tags, since the
prevalent method of generating these tags often results in relatively low-quality sequence.

BayGenomics [3] and other members of the International Gene Trap Consortium (IGTC)
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[4, 5] typically use 5 RACE [6], a common method for amplifying sequence from gene
insertion events. This method generates sequence from only one strand of DNA, and
often generates only relatively short sequences, with sequencing errors accumulating
especially towards the 3’ end. To obtain sequence tags that are sufficiently long to
uniquely identify most genes, BayGenomics, for example, uses a limit for the acceptable
quality of a base call that is lower than the generally accepted threshold (a Phred [7]
minimum score of 14.6 rather than the default score of 30) [3]. The consequence of
using such a low threshold is that nucleotides are assigned incorrectly somewhat more
often than with the default threshold value. This problem can interfere with annotation.
[see Additional Figure 1 for an example.] Additionally, sequence tags generated by 5’
RACE occasionally have non-templated nucleotides at their termini [8]. In one large-
scale 5> RACE experiment, only 57% of clones generated sequences that were
sufficiently long and unambiguous to be identified by alignment with a gene transcript
[9].

As curation of the mouse genome has improved, direct localization has become
the strategy of choice for associating sequence tags with specific genes. This has an
advantage in minimizing imprecise and confusing annotations arising from redundancy in
mRNA databases. Moreover, this approach reflects the biological reality of the insertion
of a reporter gene into genomic sequence and provides a more context-based view of the
gene by associating it with the many types of information available at the genome

browser Web sites.
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Additional Figure 4.1. An example of errors associated with low signal strength in a 5’
RACE sequence. (A) Alignment of trace files for the sequence tags BG-XE342 and BG-
XH675, both sequenced with 5> RACE, which localize to protein kinase C binding
protein 1 (NCBI accession NM_027230). Black arrows indicate the point of vector
insertion. The intensity of the signal diminishes towards the 3 end of each sequence.

(B) Enlargement of the green-highlighted regions in A. The reverse complement of the
trace sequence, which corresponds to the sequence of the inactivated gene, is listed below
the expanded trace plots. The low intensity of the signal in this region of the BG-XH675
trace plot results in two nucleotide assignments, circled in pink, that differ from both
genomic sequence from chromosome 2 and the associated mRNA sequence for this gene.
In contrast, the corresponding nucleotide assignments in the relatively higher quality BG-
XE342 trace plot, also circled in pink, agree with the genomic and mRNA sequences.
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The choice of alignment program is a major consideration in localizing sequences
on the genome. BLAST, which was developed for comparison of evolutionarily diverged
sequences, is prohibitively slow in this application. Several newer algorithms have been
developed to rapidly align nearly identical sequences. Implementations in common use
are MegaBLAST [10], the Sequence Search and Alignment by Hashing Algorithm
(SSAHA) [11], and the BLAST-like Alignment Tool (BLAT) [12]. Each is currently in
use at one of the primary genome browser sites and, in addition, each is available for
stand-alone use. MegaBLAST is used at the National Center for Biotechnology
Information (NCBI) [13], SSAHA is used at Ensembl [14], and BLAT is used at the
University of California Santa Cruz (UCSC) [15]. While all of these algorithms have
been individually benchmarked for the genome browsers with which they are used, their
performance with sequence tags has not been established, nor have the results from the
stand-alone versions of these programs been compared with the gene annotations
available at the genome browser sites. Establishing the effect of low quality and short
sequence length on gene localization protocols is beneficial to research groups that work
with gene tag and similar sequences, including other types of expressed sequence tags
(ESTs) or genomic tags.

MegaBLAST is similar to BLAST in that it splits a query sequence into non-
overlapping fragments and searches for exact matches to the genome to find the regions
of highest identity. These perfect matches are then expanded to align the longest region
of significant similarity. MegaBLAST uses a greedy algorithm that incorporates
simplified gap and insertion/deletion penalties relative to BLAST and limits the number

of alignments to be explored in extending the alignment beyond a perfect match seed.
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These alterations are justified because of the high levels of similarity expected between
query and database sequences and the expectation that the alignment will not contain
many mismatches or gaps. For sequences with greater than 97% identity, MegaBLAST
is an order of magnitude faster than BLAST without any loss of alignment accuracy [10].

SSAHA uses a different approach to take advantage of the high similarity
expected between a query sequence and the genome. An index of all non-overlapping
fragments of a set length (k) is created from the genome sequence and stored with the
associated positions. The query sequence and its reverse complement are broken into all
possible fragments of length £, including overlapping fragments, and compared with the
genome index to identify exact matches. Matches are sorted to find contiguous matching
segments that are reported if they exceed a threshold, set by default to 2k. SSAHA is
extremely fast, but due to the need to store the genome index and fragment locations, has
relatively large memory requirements.

BLAT uses a multi-stage algorithm which searches for regions of similarity,
aligns those regions, aggregates aligned regions in close proximity, and adjusts the
boundaries of aligned regions to correspond with canonical splice sites. The initial search
stage operates in a manner very similar to SSAHA. The genome database is broken into
non-overlapping fragments of length £, then all k-length fragments of the query sequence
and its reverse complement are associated with matching locations in the genome. The
matches are sorted and grouped by proximity and those regions of the genome with a
minimum of 2k contiguous matches are aligned with the query sequence. The alignment
stage extends matching regions as far as possible, merges overlapping matches, links

matches that fall in order on the genome into a single alignment, and fills in regions of
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the alignment corresponding to gaps of identical length in the query and genome
sequences. Positions of gaps in the alignment, which may correspond to introns, are
matched to the consensus splice site GT/AG whenever possible.

The work reported here provides a comparison of the performance of the stand-
alone versions of SSAHA, MegaBLAST, and BLAT for a set of mouse gene trap
sequence tags. The sequence tags were generated through untargeted gene trap
experiments, which detect instances where the insertion vector interrupts an intron of a
gene expressed in embryonic stem cells [1]. As the genome coordinates of our sequence
tags are not known, the localizations of their cognate genes were used as a proxy. These
genes were identified by using the BLAST program to align the sequence tags with gene
transcripts (see Methods for details).

The genome coordinates of many genes in the mouse genome are defined
differently depending on which genome browser site provides the information. This is
because each browser uses a different combination of localization programs, sequence
analysis tools, and manual curation to arrive at their final annotations. Additionally, the
localization program used in the annotation protocol may differ from the localization
program provided to users of the genome browser. For example, Ensembl uses the
exonerate program [ 16] to generate localization coordinates reported at their site.
However, when a user seeks to localize a gene at the Ensembl site, the SSAHA algorithm
is used to perform that task. This differs from NCBI and UCSC, where the localization
algorithms used to generate annotations for the genome, MegaBLAST and BLAT
respectively, are also used by the genome browser to localize sequences input by users.

In order to provide a fair comparison between the algorithms, only sequence tags
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matched with genes having exactly the same coordinates at Ensembl, NCBI, and UCSC
were used in this study. To determine whether errors in the localization of sequence tags
using the stand-alone versions of these programs was due to the nature of the sequence
tags themselves or to differences in how the stand-alone programs perform relative to the
protocol in which they are used to localize full-length genes at each browser site, we also
localized the set of gene transcripts matched with sequence tags as a control. Our
sequence set consisted of 3369 sequence tags associated with 1659 genes with uniformly

assigned coordinates on the mouse genome.

Results and Discussion

Our results show differences in the localization performance with respect to recall
and precision at each of three levels of granularity investigated, gene, exon, and
nucleotide (Figure 1). The recall score indicates the percentage of true positives that
were detected. Precision indicates the percentage of matches reported which correspond

to true positives.

Localization to the correct gene

With respect to recall, our study shows that researchers who wish to link a
sequence with information associated with the genome may confidently use any of the
three localization programs considered in this study. SSAHA, MegaBLAST, and BLAT

successfully localize each of the 1659 full-length genes in the test set to a genomic region
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Figure 4.1. Recall and precision for each localization algorithm.

Results for SSAHA are shown in red, MegaBLAST in blue, and BLAT in green. The
first column represents the recall obtained with full-length gene query sequences. The
second column shows the recall obtained with sequence tag queries. The third and fourth
columns display the precision of each algorithm when used to localize full-length genes
and sequence tags, respectively. (A) Recall and precision at the level of the gene, as
measured by overlap of at least one nucleotide between a set of localizations by an
algorithm and the region of the genome containing the gene. Cyan lines indicate the
recall and precision achieved when only the top hit is considered. (B) Exon recall and
precision, as measured by an overlap of at least one nucleotide between the known
localization of an exon and a match. Sequence tags are shorter than full-length genes and
therefore typically contain sufficient sequence information to match only a few exons of
any gene, leading to low recall at the exon and nucleotide levels. This does not indicate
failure by the localization programs. (C) Nucleotide recall and precision, as measured by
a match between a nucleotide in the known localization of a gene and a nucleotide from a
query sequence localization.
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that fully or partially matches the known coordinates of the corresponding gene (Figure
1A). Sequence tags fare nearly as well, with all programs reporting localization to the
correct region of the genome for >98% of the 3369 sequence tags used in this study.

Repeat-masking of the genome accounts for the majority of the small number of
failures in localizing sequence tags to the correct genes. Online localization is performed
against masked genomic sequence by default as this ensures that results are returned
quickly and that relatively few correct localizations are missed, despite the fact that as
much as 50% of the genome consists of repeated elements [17]. In this study, less than
2% of sequence tags in the test set returned no localization results with one or more
programs because they overlap fully or partially with regions removed by masking.
Additionally, five sequence tags that localize to repeat regions have erroneous matches
that exceed the minimum score required by each program, and so are localized
incorrectly. In contrast, use of an unmasked version of the genome results in 100% recall
for the test set of sequence tags, but increases the number of incorrect localizations by as
much as ten-fold. Moreover, using an unmasked version of the genome increases
computation time substantially (Table 1).

In contrast to the near-perfect recall exhibited by the localization programs, the
precision of the programs suffers from a substantial incidence of false positives (Figure
1A). At the genic level, 46% of all reported full-length gene localizations and 16% of
sequence tag localizations by SSAHA do not overlap with the known gene localization.
For MegaBLAST, 43% of reported gene localizations and 15% of sequence tag
localizations are false positives. BLAT shows similar performance, with 38% of reported

gene localizations and 15% of sequence tag localizations falling outside the region of the
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Table 4.1. Computation times in seconds for each algorithm.

Computation Time in seconds
# of Sequences | MegaBLAST | SSAHA® BLAT®
Full-length Genes | 3320 1767 (40578)° | 361 (29895) | 1434 (204331)
Sequence Tags 7043 223 (1025) 38 (5806) | 276 (854)

* Reported computation times for SSAHA and BLAT do not include pre-indexing of the
genome (see text).

® Results using the repeat-masked genome are listed first, followed by results from the
unmasked genome in parenthesis.
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known gene. Generally, the false positives score significantly lower than the true
positives.

False positives at the level of the gene may not be problematic, however, since the
most common method of interpreting localization results is to accept the highest-scoring
match as correct rather than analyzing all returned matches. Correct localizations
generally exhibit long, high percent-identity matches, which contribute to higher scores
compared with incorrect matches, which are generally short or contain mismatches. The
strategy of taking the top hit is largely successful with both full-length gene queries and
sequence tag queries (Figure 1A). The SSAHA localization with the highest score is
almost always correct, as it overlaps with the known localization of a gene for 99% of
full-length gene queries and 98% of sequence tag queries. The MegaBLAST localization
with the highest score is correct for 93% of full-length gene queries, and 95% of
sequence tag queries. The BLAT localization with the highest score is correct for 99% of
full-length gene queries and 99% of sequence tag queries.

Erroneous matches are also less likely to group together on a chromosome than
correct matches, which track with exon ordering. While all three programs report
matches grouped by chromosome, only the BLAT algorithm incorporates matches in
close proximity into a single multi-part alignment, which is given a score that combines
the scores of the individual matches in the alignment. This ensures that the top-scoring
match is a composite of all matches likely to be exons of the same gene. Another
consequence of this grouping is that the scores of correct and incorrect matches are more

widely separated than with SSAHA or MegaBLAST.
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Pseudogenes

The presence of pseudogenes can confound rules for separating correct from
incorrect matches at the genic level for both full-length genes and sequence tags.
Pseudogenes are regions of the genome that are very similar in sequence to known genes,
but are usually rendered non-functional by mutations or missing elements that prevent
transcription or translation. About 80% of pseudogenes are processed pseudogenes,
which resemble partial or full-length mRNA sequences that have been integrated into the
genome [18]. These are caused by the retrotransposition of double-stranded DNA, read
off of single-stranded RNA, into the genome. As processed pseudogenes lack introns,
alignments can be constructed between pseudogenes and query sequences that are longer
than individual exons. Such alignments may be sufficiently long that penalties accrued
for mismatches are more than offset by this longer match length, allowing them to
outscore correct matches to exons. In the case of our sequence tags, these alignments are
invariably incorrect, since with our method of gene trapping, disruption of a gene is only
detected when the vector is inserted into an intron [1]. Figure 2 gives an example that
illustrates the difficulty in distinguishing localization to a processed pseudogene from
localization to a true gene. More rarely, pseudogenes can be caused by duplications of
chromosome segments. These unprocessed pseudogenes contain introns and are
therefore less likely to result in high-scoring (but incorrect) matches based on alignment
length alone. In addition, a recent duplication can result in a pseudogene with so few
mutations that it may be difficult to distinguish it from the coding gene. Although it is

possible for a gene trapping vector to insert into an unprocessed pseudogene containing
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Figure 4.2. An example of localization to a pseudogene.

Localization results for the full-length gene encoding mitotic arrest deficient 1-like 1

(Mad111), GenBank accession NM_010752. All representations of alignments between
query sequences and build 34 of the mouse genome were made using the UCSC Genome

Browser Custom Tracks feature. Slight alterations have been made to the

representations, including the removal of graphical elements to improve the clarity of the
figure, but no changes were made to the alignments. (A) The coordinates of the known

gene on the genome are listed at the top, and positions of exons are represented by

colored blocks. A region of chromosome 5 is shown containing the known localization

of NM_010752 (the Known Genes track at bottom) and the alignments of exons for
NM 010752 to the genome by SSAHA, MegaBLAST, and BLAT. (B) A region of
chromosome 9 containing a pseudogene related to NM_010752 is shown on the same
scale as (A). Below this, the segment of chromosome 9 containing the pseudogene is
enlarged. The highest-scoring MegaBLAST match, circled in cyan, localizes to this

pseudogene rather than the real gene. The highest scoring matches returned by SSAHA

and BLAT are located on chromosome 5 and overlap with the correct localization.
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introns, none were detected in our data set, and thus all localizations to pseudogenes were
considered false positives.

As shown in Figure 2, genic localization is compromised by the presence of
pseudogenes to varying degrees. SSAHA identifies only exact matches, rather than very
similar matches, lending the algorithm a distinct advantage in terms of distinguishing
correct matches from pseudogene matches. BLAT alignments can contain mismatches
accrued during the alignment extension stage, which increases the likelihood of a high-
scoring match to a pseudogene. However, the BLAT score reflects all matches in a
region of the genome so that short perfect or near-perfect exon matches in aggregate are
likely to outscore longer imperfect matches to pseudogenes. MegaBLAST is the most
susceptible to pseudogene matches, as it is relatively tolerant of mismatches and does not
have a mechanism for favoring short perfect matches over long imperfect ones.

In this study, pseudogenes may have been the cause of over 100 top-scoring
matches that are incorrect, despite high sequence identity between the query sequences
and the genome. It is difficult to determine the exact number of incorrect localizations to
pseudogenes as relatively few mouse pseudogenes have been annotated. As many as
4000 mouse pseudogenes are predicted to exist [19], and in the closely related human
genome, a careful study of an early build of chromosome 22 revealed that 19% of
sequences defined as coding likely belong to pseudogenes instead [20]. The distribution
of pseudogene matches among the programs varies as might be expected from their
algorithmic differences. SSAHA reports a top-scoring match to a region annotated as a
probable pseudogene for 17 full-length genes and 60 sequence tags, while BLAT

incorrectly localizes 7 genes and 45 sequence tags to probable pseudogenes.
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MegaBLAST reports top-scoring matches to probable pseudogenes for 116 genes and

162 sequence tags.

Localization to the correct exon

With respect to recall, all three algorithms perform similarly well in localizing
query sequences to the exons of their corresponding genes. For full-length gene queries,
SSAHA, MegaBLAST, and BLAT all have exon recall of about 99% (Figure 1B). The
sequence tags used in this study are generally substantially shorter than the full-length
genes, averaging 255 nucleotides in length, versus 3611 nucleotides for genes, and it is
rare that all exons of a gene will be matched in a sequence tag alignment. Thus, exon and
nucleotide recall for sequence tag queries should be viewed in a comparative manner,
rather than as a direct measure of the accuracy of each algorithm. SSAHA detects 22%
of control exons, MegaBLAST detects 22% of control exons, and BLAT detects 23% of
control exons.

Many of the exons that are not detected overlap with regions of the genome
removed from the search space by repeat masking. Two examples of the effect of repeat
masking on exon localization are illustrated in Figure 3, which depicts the genome
alignment of the full-length gene encoding chromatin assembly factor 1, subunit A
(Chafla), NCBI accession NM 013733, and the sequence tag BG-RRR265. Each
program localizes NM_013733 to the left-most exon shown in Figure 3B by detecting
perfect matches on either side of the repeat mask region. BLAT connects these matches
because its default parameter settings allow alignments adjacent to a masked region to be

extended into the masked sequence while SSAHA and MegaBLAST, whose default

68



A B C

—— L]
.| Chr.17 Position I $3685000] $36 | 3695000 s3700000] $3705000]
| SSAMA-NM_013733 | | = [ || | it n
| MegaB.-NM_013733 || | = [ I it m
BLAT-NM_013733 | | T | 1 I it m ||
SSAMA--BG-RRR26S I
MegaB . -BG-RRR26S |l
BLAT-BG-RRR26S I
UCSC Known Genes (June, 05) Based on Unifrot, RefSeq, and GenBank mRNA
_l Known Genes ¢ + = +——H :

B

| Chr .17 PosiTion s3696000| 3496800 S3857000] £3697%00|
SSAHA-NM_013733 =] H =
| MegaB.-NM_013733 - . =

BLAT-NM_9013733

| E— -
UCSC Known Genes (June, 0S) Based on UniFrot, RefSea, and GenBank mRNA
Known Genes — e

| |
[ O P e T TG C e
ssAnA-t_013733
 vesas 6137
CRUSECIERESY
ey
N ey ]
e

| St o S i S e s S o |
UCSC Known Genes (June, 0S) Based on UniProt, RefSeq, and GenBank mRNA
_l Known Genes

Figure 4.3. A representative genome alignment of a full-length gene and a sequence tag.

The full-length gene encoding chromatin assembly factor 1, subunit A (Chafla), NCBI
accession NM 013733, and the sequence tag BG-RRR265 align to a region of
chromosome 17. (A) Overview showing the full region of the genome spanned by
Chafla. Segments enlarged in the parts B-C are marked above the genome position. (B)
Regions of genome that have been removed from the search space by repeat masking are
shown in yellow, superimposed on the known gene track. The removal of these regions
prevents correct localization of the full-length gene and sequence tag for these exons. (C)
Magnification of the exon from region C illustrates differences between the alignment
programs in aligning sequence to the edges of exons.
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settings do not allow alignment to masked regions (see Methods), show the masked
region as a gap. The middle exon in Figure 3B does not contain enough unmasked
sequence for any algorithm to seed a match, and is thus entirely undetected.

Precision in exon localization is similar for full-length genes and sequence tags,
despite the discrepancy in the number of exons matched by the two query types (Figure
1B). This indicates that although the short sequence tags do not contain regions matching
all exons of their cognate genes, those with adequate length to be associated with a
unique transcript generally contain sufficient information to be localized with high
precision. For genes, 78% of SSAHA localization results overlap with known exons,
compared with 85% for sequence tags. MegaBLAST has exon precision of 86% for
genes, and 87% for sequence tags. BLAT has exon precision of 75% for genes, and 76%
for sequence tags. Very rarely, the coding region of a gene contains an intron so short
that MegaBLAST will align through it, including the intron in the alignment. This results
in errors for four genes in the control set which contain introns of either 9 or 12
nucleotides in the upstream untranslated region. As a source of error, this had only a
minimal effect on the overall precision for MegaBLAST and had no effect on the results
for BLAT and SSAHA.

An interesting result that is not reflected by measures of recall and precision is
that each program occasionally returns multiple correct localizations to the same exon.
The full-length genes used in this analysis average 12.9 exons, but each program
averages more than 13 correct localizations per gene. SSAHA returns 19.5 localizations
per gene, with each localization corresponding to an exon or a false positive. On average,

15.2 of these aligned segments overlap with 12.8 exons. MegaBLAST returns 15.6
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localizations per gene, with 13.5 of them correctly identifying 12.8 exons. BLAT returns
20.8 localizations per gene, with of them 15.6 correctly identifying 12.9 exons. Multiple
localizations to a single exon can occur because masking or mismatches within exons can
split what should be one long matched segment into two or more smaller alignments. In
addition, BLAT can generate more than one localization to the exact same region of the
genome, as illustrated in Figure 3C. This is a known idiosyncrasy of the BLAT program,
and is resolved at the UCSC genome browser Web site by removing such repeat matches
[21]. This problem results in no appreciable increase in exon or gene recall compared to
SSAHA and MegaBLAST, and also no great loss in precision, as most duplications
appear to provide a correct localization (Figure 1). Although we cannot ascertain with
certainty how many exons and partial exons each sequence tag spans, we expect that they

too generate multiple localizations to a single exon.

Localization to the correct nucleotide

As expected, the greatest variation in the localization results reported by the three
programs is at the nucleotide level (Figure 1C). Recall is diminished for SSAHA and
MegaBLAST, but remains high for BLAT. SSAHA detects 77% of control nucleotides
for gene queries and 7% for sequence tag queries, MegaBLAST detects 89% of control
nucleotides for gene queries and 9% for sequence tag queries, and BLAT localizations
detect 93% of control nucleotides for gene queries and 9% for sequence tag queries
(Figure 1C). Again, recall for sequence tags is so low only because these represent short
fragments of genes and so do not contain sufficient information to allow matching a large

proportion of the nucleotides comprising the cognate genes.
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Diminished recall at the level of individual nucleotides reflects several types of
problems, including failure to match to very short exons, misalignment over gaps, and
errors in either the query or the genome sequence. The principal cause, however, is
difficulty in aligning sequence, using either genes or sequence tags as queries, at the
edges of exons. Although failure to accurately align a query to genomic sequence at the
edges of exons only slightly lowers the recall levels for each program, each of the three
algorithms compared in this study exhibits characteristic problems in localization at the
edges of exons, as illustrated in Figure 3C. Figure 4 provides a summary of the
performance of each algorithm in exactly matching exon boundaries.

SSAHA correctly matches only 6% of exon boundaries, and only 0.5% of exons
(98 of 21,464 total exons) are perfectly matched at both exon edges. The reason for this
is that the algorithm splits the genome into non-overlapping fragments that may or may
not correlate with exon boundaries. If the edge of an exon does not overlap with an
indexed fragment of the genome with a length sufficient to meet the threshold for
reporting a match, that fragment will not be included in the match that is returned. Thus,
in Figure 3C, SSAHA fails to align 9 nucleotides of both the full-length gene and the
sequence tag BG-RRR265 at the 3’ edge of the exon because the match does not meet the
minimum length of 10 nucleotides. Similarly, small gaps or mismatches that often occur
at the ends of sequence tags can interrupt a match, resulting in a minimum loss of 10
nucleotides in the match alignment. (The developers of SSAHA have implemented a

new version, SSAHA2 [22], which combines the original SSAHA searching algorithm
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Figure 4.4. A summary of the alignments by each program to the edges of exons.

A representation of an exon is shown at top, with a representation of the three possible
match outcomes below, i.e., an exact match to the exon boundary, a match that ends
before the exon boundary, and a match that extends beyond the exon boundary. The
percentage of all matches by each program that fall into those categories are depicted as
bar graphs. Left: Percentage of matches correctly aligned to either exon boundary.
Middle and right: Percentage of matches incorrectly aligned to an exon boundary, with
the match ending before or extending beyond a boundary, respectively.
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with a more sensitive alignment program. The changes incorporated in the new version
make it likely that SSAHA?2 will behave differently from SSAHA. Additionally,
associated programs, such as ssahaEST, combine the search and alignment stages of
SSAHAZ2 with several splice site models to increase detection of exon boundaries.
SSAHAZ? and its associated programs were not included in this analysis as benchmarking
and full documentation has not yet been published, although binaries are now available
for download from Ensembl.)

In contrast to SSAHA, MegaBLAST often extends alignments beyond the edges
of exons. MegaBLAST localizations align up to, but not beyond, exon boundaries in
35% of attempts, with only 11% of exons receiving perfect alignments at both edges.
Moreover, the algorithm generates the longest alignments possible, making no attempt to
ensure that each nucleotide in the query sequence is matched only once. Thus,
MegaBLAST may extend a match beyond the edge of an exon whenever the adjacent
intronic sequence coincidentally matches the query sequence (Figure 3C).

BLAT localizations are the most likely to correctly match exon edges, due to the
extra steps the algorithm takes to compute correct exon splice sites and match each
nucleotide in the query sequence only once. BLAT localizations match exon edges in
87% of attempts, with 79% of exons perfectly aligned at both edges. It is possible that
these rates are slightly inflated by counting multiple overlapping correct localizations that
occurred in our automated analysis (see Figure 3C for an example). Even so, BLAT has
a clear advantage over SSAHA and MegaBLAST in regard to correct identification of

exon boundaries.
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With respect to precision at the nucleotide level, SSAHA performs the best,
achieving the correct localization 92% of the time for both genes and sequence tags.
Precision for MegaBLAST and BLAT is also high, with 85% of both sequence tag and

full-length gene localizations matching control nucleotides.

Algorithm speed

Computation times were collected for each localization run. All sequence tags or
full-length genes were passed to the localization program as a single file in Fasta format
[23] (Table 1). Localizations performed with the unmasked genome were not used in the
preceding analysis as this had generally only a small negative effect on recall, but had a
large negative impact on precision and analysis speed. (See Figure 3B and associated
text for an exception.) SSAHA was the fastest program by about five-fold. MegaBLAST
and BLAT were comparable in speed, with BLAT showing an advantage in aligning
longer sequences, and MegaBLAST performing more quickly with shorter sequences.
Not shown in the Table is the time required for genome indexing, required by both
SSAHA and BLAT. This step requires 895.5 seconds for SSAHA, and 399.1 seconds for

BLAT, but needs only be run once per genome build.

Conclusions

Overall, analysis of stand-alone versions of the three localization algorithms,
SSAHA, MegaBLAST and BLAT, show that all perform well in localizing both full-

length genes and sequence tags to the mouse genome. The differences in performance for
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sequence tags and full-length reference sequences were surprisingly small, with no
program exhibiting significantly diminished performance with sequence tags, despite
their generally low quality when compared with full-length reference sequences. While
recall and precision performance differ minimally among the programs at the level of
gene and exon localization, at a more detailed level, and focusing especially on
nucleotide recall, greater variations are found, with different types of characteristic errors
associated with each program. Therefore, the choice of the appropriate localization
program depends on the specific purpose of the researcher.

As localization to a general region of the genome is performed equally well by all
three programs, considerations such as the ease of use of the program and computational
speed may become important considerations in choosing which program to use. SSAHA
is the fastest program and has the simplest output, so it would seem to be a natural choice
for localizing large data sets for general purposes. For automated applications requiring
correct localization at the nucleotide level, such as SNP detection or evaluation of
alternative splicing, BLAT is currently the best option, as it is distinctly better at aligning
the edges of exons. Additionally, the process by which BLAT groups together proximal
matches improves the separation between the scores of correct and incorrect matches,
increasing confidence in the result. These advantages come at a cost of speed, with
BLAT being significantly slower than SSAHA, though comparable in speed with
MegaBLAST. For our purpose of localizing gene trap sequence tags to the mouse
genome, BLAT was chosen as the program to incorporate into our local annotation
pipeline, although use of multiple programs may eventually be implemented to ensure the

highest levels of recall and precision.
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Methods

Sequences

A set of sequence tags for which the localization of the full-length genes are
known was used in this study. The sequence tags were derived from knockout
experiments performed by members of the IGTC. Initially, 34,138 sequence tags were
annotated by using BLAST to search the GenBank non-redundant database [24] for
matching gene transcripts. Only those sequence tags that matched a single transcript with
at least 95% identity over a contiguous region of at least 90% of the length of the
sequence tag, or matched at least 60 contiguous bases at the 3' end of the sequence tag
were considered in our analysis. This eliminated the shortest sequence tags, those that
matched with multiple genes or genes with multiple differing transcripts, those that
matched genes not yet contained in the GenBank non-redundant database, those that did
not match a gene, and all sequence tags generated by trapping processes designed to
capture introns rather than exons. Additionally, sequence tags were filtered by requiring
that their associated gene transcripts be present at each of the major mouse genome
browsers, i.e., Ensembl, NCBI, and UCSC. After filtering, a total of 7,043 sequence tags
and 3,320 associated gene transcripts remained [see “Sequence tags” and “Genes” files
available from BMC Genomics in association with this manuscript]. Half of the
localizations were not consistent between all genome browsers, leaving a set of 3369
sequence tags associated with 1659 genes all assigned exactly the same coordinates on
the mouse genome. The sequence tags range from 32 to 1023 nucleotides in length
(mean 255, median 202) and the genes range from 290 to 64,931 nucleotides in length

(mean 3611, median 2485).
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Sequence tags and their cognate full-length genes were localized in NCBI Mouse
Genome Build 34, the fourth major genome build for the mouse [19]. Build 34 isa
composite of high quality high-throughput genome sequence and whole-genome shotgun
sequence. Localizations were performed with both an unmasked version of the genome
and a version with repeat and low-complexity regions removed by RepeatMasker
database version 20050112 [17], which uses RepBase update 9.11 [25]. Except as
indicated, the results described below were obtained by searching the masked version of

the genome, which is the default practice.

Computation

Alignments were performed on a Hewlett-Packard (HP) AlphaServer GS1280
system, using a single 1.15 GHz processor.

Local versions of online algorithms BLAT, MegaBLAST, and SSAHA were
obtained from the genome browser web sites at UCSC, NCBI, and Ensembl, respectively.
The most recent versions were chosen, with the exception of BLAT version 26 (February
2004), which was selected because it is the version used to localize BayGenomics
sequence tags. SSAHA version 3.1 and MegaBLAST version 2.2.10 represent the most
current releases available on July 2005. To approximate the online localization process,
parameters were set to match the default parameters employed by the online programs.
The three programs do not share the same types of parameters, however, and where the
parameters are the same or similar, the values assigned to them are not necessarily
consistent. Of particular importance in this study is the default “word length”, i.e., the

length of indexed genome fragments. A decrease in word length increases the capacity to
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detect short but real matches, but also increases the number of erroneous matches. Word
length was set to 10 nucleotides for SSAHA, and 11 nucleotides for BLAT, with a
minimum of two contiguous “words” required to seed a match. Similarly, MegaBLAST
requires a minimum of 28 contiguous matches to generate an alignment. How each
algorithm deals with repeat masking is also important. None of the algorithms seed
alignments in masked regions, but BLAT and MegaBLAST can be set to allow
alignments to be extended into regions masked by the RepeatMasker algorithm. By
default BLAT is set to allow such alignment extensions, but MegaBLAST is not,
resulting in the type of differences between alignments presented in Figure 3B. [see
Table 2 for a full list of the parameters used for each program.]

A comparison algorithm was devised to demonstrate the accuracy of the
localization programs at three levels of granularity relevant for biological inquiry: gene,
exon, and nucleotide. At the genic level, any overlap between a localization reported by
a program and a known coordinate for a gene was considered a true positive, even if the
overlap consisted of a single nucleotide. Similarly, for each exon, only a single
nucleotide match was required for a true positive. At the nucleotide level, only an exact
match at a single nucleotide position was counted as a true positive. Thus, each level of
granularity imposes a different stringency in this analysis. Results are represented by

recall and precision scores for each algorithm.
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MegaBLAST parameters

-d Database = goldenpath_ucsc_mouse masked.fa (mouse genome build 34, Fasta file)
-¢ Maximum allowed expectation value = 1000000.0 (actual maximum was 0.003)
-m alignment view = tabular

-F Filter query sequence = False

-X X dropoff value for gapped alignment (in bits) = 20

-I Show GI's in deflines = False

-q Penalty for a nucleotide mismatch = -3

-r Reward for a nucleotide match = 1

-v Number of database sequences to show one-line descriptions for = 500

-b Number of database sequence to show alignments for = 0

-D Type of output = tab-delimited one line format

-a Number of processors to use = 1

-M Maximal total length of queries for a single search = 20000000

-W Word size (length of best perfect match) = 28

-z Effective length of the database (use zero for the real size) = 0

-P Maximal number of positions for a hash value (set to 0 to ignore) = 0

-S Query strands to search against database = both

-T Produce HTML output = False

-G Cost to open a gap (zero invokes default behavior) =0

-E Cost to extend a gap (zero invokes default behavior) =0

-s Minimal hit score to report (0 for default behavior) =0

-f Show full IDs in the output (default - only GIs or accessions) = False

-U Use lower case filtering of FASTA sequence = False

-R Report the log information at the end of output = False

-p Identity percentage cut-off =0

-A Multiple Hits window size =0

-y X dropoff value for ungapped extension = 10

-Z X dropoff value for dynamic programming gapped extension = 50

-t Length of a discontiguous word template (contiguous word if 0) =0

-g Generate words for every base of the database (default is every 4th base) = False
-n Use non-greedy (dynamic programming) extension for affine gap scores = False
-N Type of a discontiguous word template = coding

-H Maximal number of HSPs to save per database sequence = unlimited

SSAHA parameters

-queryFormat = fasta file
-subjectFormat = fasta file: goldenpath ucsc_mouse masked.fa (mouse genome build 34, Fasta file)
-queryType = DNA
-subjectType = DNA
-parserFriendly = pf ~ Show one match per line as a set of tab delimited fields:
match direction: F forward, R reverse
query name
query start
query end
subject name
subject start
subject end
number of matching bases
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percentage identity
-logMode  -Im Controls the output of log information
cerr - send to standard error
-packHits  -ph Store position of each word in a "packed"
format comprising 32 bits per word. This halves
the size of the .body file at the expense of a
slight decrease in search speed.
-wordLength =10
-maxGap =0 Maximum gap allowed between successive hits for
them to count as part of the same match.
-maxInsert =0 Maximum number of insertions/deletions allowed
between successive hits for them to count as part
of the same match.
-maxStore = 10000 Largest number of times that a word may occur in
the hash table for it to be used for matching
expressed as a multiple of the number of
occurrences per word that would be expected
for a random database of the same size as the
subject database.
-numRepeats = 0 Maximum size of tandem repeating motif that can be
detected in the query sequence. This option may
produce faster and better matches when dealing
with data containing tandem repeats.
-minPrint=1 The minimum number of matching bases or residues
that must be found in the query and subject
sequences before they are considered as a match
and thus printed.
-queryStart = 1 Specifies the number of the first query sequence to
be matched with the subject sequences (numbering of
both the query and subject sequences starts at 1).
-queryEnd = not specified Specifies the number of the last query sequence to
be matched with the subject sequences. If not
specified, continues until the end of the query
sequence data is reached.
-reverseQuery = yes When matching the reverse strand of a query,
convert the positions of any matches found
into the coordinate frame of the forward strand.
Has no effect if queryType is set to protein.
-sortMatches = 0 Output only the top n matches for each query,
sorted by number of matching bases, then by
subject name, then by start position in the
query sequence.
Default value is zero, which outputs all matches
for each query and does no sorting.
-stepLength = 10 Number of base pairs gap between words used to
produce hash table. Ignored if a precomputed
hash table is being used. Default value is
equal to wordLength.
-queryReplace = default Specifies behaviour upon encountering unexpected
alphanumeric characters in query sequences:
Default: replace with 'A' for DNA, 'X' for protein
-subjectReplace =tag Specifies behaviour upon encountering unexpected
alphanumeric characters in subject sequences:
tag - “tag' the word so that it is not put
into the hash table.
-substituteWords = no Look for single base/amino mismatches in words
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that occur less than this many times more often
than would be expected for a random database of
the same size as the subject database.
-bandExtension = 0 Specify size of the band to use for banded dynamic
programming, when producing a graphical alignment.
0 - diagonal only

BLAT parameters

-t Database type = dna: goldenpath_ucsc_mouse masked.fa (mouse genome build 34, Fasta file)
-q Query type = dna - DNA sequence

-ooc Use overused tile file = 11.00c

-tileSize sets the size of match that triggers an alignment = 11

-oneOff Mismatches allowed in tile =0

-minMatch sets the number of tile matches = 2

-minScore This is twice the matches minus the mismatches minus some sort of gap penalty = 30
-minldentity Sets minimum sequence identity (in percent) = 90

-maxGap sets the size of maximum gap between tiles in a clump =2

-repMatch sets the number of repetitions of a tile allowed before it is marked as overused = 1024
-minRepDivergence minimum percent divergence of repeats to allow them to be unmasked = 15
-out output file format = psl (Tab separated format without actual sequence)

Table 4.2. Parameters for each program used. Descriptions of the parameters have been
adapted from the accompanying documentation for the MegaBLAST, SSAHA, and
BLAT stand-alone programs.
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Analysis of Alternative Splicing Utilizing Microarray
Experiments

Introduction

Alternative splicing research was in its infancy in 2001, when the research
detailed here was performed. At that time, only a few large-scale studies of the
prevalence of splice variation had been performed, and most mammalian genomes had
not been sequenced, although compete sequences had recently been made available for
the human and mouse genomes. Similarly, microarray expression experiments and high-
throughput proteomics methods were recent additions to the genomic research toolbox,
and had not been perfected to the extent that they have been today. The novelty of the
field of alternative splicing research provided great opportunities to develop new methods

to detect splice variation with these exciting new tools.

Background

Alternative splicing occurs during the intron removal process when an exon is
skipped, inserted, or spliced at a different site than in the reference mRNA. It allows
multiple transcripts to be generated from the same gene, which increases the potential
range of proteins that can be produced by a genome. Alternative splicing has also been

found to be a regulatory mechanism in certain eukaryotic cell growth processes and to
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play a role in tissue differentiation [1]. Alternative splicing is also known to affect the
working of drugs and to play a role in some human diseases [2]. A few simple examples
of alternative splicing are shown in Figure 1.

Alternative splicing is thought to be a primary mechanism by which cells produce
a more varied set of proteins than they have genes. This hypothesis is supported by
evidence that a large percentage of human genes give rise to multiple mRNA transcripts.
In 2001, estimates of the percentage of human genes that undergo alternative splicing at
the mRNA level ranged from 35% [3, 4] to 55% [5]. Today, the percentage is estimated
to be greater than 60% [6]. Other eukaryotes show prevalent alternative splicing, with
rates in mouse [1] and rat approaching that of humans. Some alternative splice sites are
conserved between species [6].

When I began this research, the only method in use for systematic detection of
splice variants was the alignment of expressed sequence tags (ESTs) to full-length
mRNAs, or to genomic sequence. Splice variants are apparent in alignments with
unmatched sequence flanked by multiply aligned sequence. This remains the primary
method used today. Several databases house information about splice variants that has
been generated in this manner. The Putative Alternative Splice Database (PALS) [7]
contained over 14,000 human genes and 8,000 mouse genes in which alternative splicing
had been detected in 2001, approximately half the genes it contains today. The
Alternative Splicing Database (ASDB) [8] contained splice variants for six different
organisms in 2001, and 181 presently. The Human Alternative Splicing Database [9]

contained over 6,000 splice variants in 2001, and has almost 22,000 now.
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Figure 5.1. The three types of alternative splicing analyzed in this research. Adapted
from Huang, et al. 2002 [7].
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Detection of splice variation using EST sequences has a few drawbacks.
Databases containing ESTs are not complete, and are not guaranteed to have a set of
sequences that represent transcripts of all genes. ESTs are also of generally lower
sequence quality than full-length mRNA sequences, although the quality has been
improving as sequencing technology becomes more advanced. This can create problems
with the alignments used to predict the presence of splice variants. Finally, alignments of
ESTs to mRNA sequences can indicate the existence of a splice variant, but not the
prevalence of that transcript or its variance in different environmental or developmental
conditions.

A method with the potential to overcome some of these problems is the use of
microarray expression data to detect alternative splicing. As illustrated in Figure 2, in
gene expression experiments, RNA is extracted from a tissue sample, labeled with a
fluorescent marker, and washed over a microarray. Microarrays are chips carrying
hundreds or thousands of probes that are complementary to the sequence of a gene of
interest, most often with several probes to represent each gene. The probes hybridize
with the RNA sequences, and retain fluorescent signal after the excess labeled-RNA is
washed away. This signal is used to show the presence and prevalence of a known set of
genes. As splice variant transcripts have missing or alternative sequence as compared
with canonical gene sequences, probes designed to detect these differences may be able
to indicate occurrences of alternative splicing.

The most unambiguous way to determine whether alternative splicing can be
detected by comparing differences in fluorescent signal, or hybridization value, between

probes from a single gene would involve testing a tissue sample in which the splice
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variants present were known. One way to approach this would be to create an EST
library for a tissue, use that library to find a set of genes that produce splice variants,
produce a microarray carrying splice variant-specific probes for these genes, hybridize
RNA from the original tissue sample to this microarray, and find what proportion of
splice variants detected by EST alignment are also detected with the expression data.
This approach was feasible in 2001, but would have been expensive, as microarray
printing was not as prevalent or economical as it is today.

A faster and free approach would be to approximate known splice variants in a
tissue with all known splice variants for an organism and utilize pre-existing expression
data that contains genes associated with these splice variants. While it would not be
expected that all splice variants are be expressed at all times, using data from a variety of
test samples in different environments would increase the likelihood of capturing
conditions under which at least some splice variants are present at detectable levels.
Similarly, whereas microarrays designed specifically for an experiment are ideal, the
practice of spreading probes over an extended region of a gene suggests that even
microarrays not designed to detect splice variants will contain probes that align to regions
of a gene that are present in only some variants.

The magnitude of the fluorescent signal for each probe depends on the number of
RNA molecules that hybridize with that sequence. Therefore, in genes that produce
multiple mRNA transcripts, some of which are missing a fragment of sequence it would
be expected that hybridization values would vary across the length of the gene and would
be lessened in regions not present in all transcripts. Certain types of splice variation

result in such transcripts. In particular, exon skipping (Figure 1), which is the most
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common type of alternative splicing, results in transcripts missing one or more exons. It
should be possible to detect splice variants by investigating clusters of probes with lower
hybridization values than probes situated elsewhere in a gene, as shown in Figure 3. An
advantage of this method would be wide applicability to many expression data sets,
which could be re-analyzed for new findings vis-a-vis alternative splicing.

The use of microarray expression data is limited by the fact that genes must be
known in order to design probes that will hybridize to their transcribed mRNA sequences.
However, even in the early days of microarray design, scientists foresaw the possibility
of detecting novel genes by designing microarrays with probes designed over the length
of entire genomes [10]. Transcription of a novel gene would lead to mRNA with the
potential to bind any probes located in the coding regions of that gene. Similarly, these
probes might show variability in hybridization values as a result of splice variation that

affects the makeup of mRNA produced by a gene.

Methods

This analysis required a large and diverse set of expression data, the set of known
splice variants associated with the genes represented on the microarrays, and a method

for determining positive and negative results.
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Figure 5.3. Graphical representation of perfect match and mismatch probes aligned to
two transcripts, the first a splice variant missing an exon, and the second the full-length
transcript of a gene. Lower hybridization values would be expected from probes that

hybridize to regions of a gene that are not present in all transcripts. (Adapted from Hu, et
al. 2001 [11]).
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Expression Data Set

In order to increase the chances of detecting splice variants, I chose one of the
most comprehensive sets of microarrays available, the mouse Mu6500 Gene Chips
developed by Affymetrix (Santa Clara, CA). This set of four microarrays represented
nearly all of the mouse genes known at that time, as well as a great number of EST
sequences thought to represent genes that had yet to be fully sequenced.

Prof. Bruce Conklin, a frequent collaborator with the Babbitt Lab, used the
Mu6500 Gene Chips to assess expression differences in mouse tissue as a result of
cardiovascular insult. One large data set, created by Dr. Kam Dahlquist, contained
expression data from each of the four Mu6500 Gene Chips for 30 mice representing one
of four experimental conditions: control mouse heart tissue, heart samples from mice
after two weeks of increased G protein expression, eight weeks of increased G protein
expression, and mice in recovery [12]. This data is available from the PNAS web site
(http://www.pnas.org/). This data set was ideal for my purposes, as it contained not only
data from wild-type mice, but would also allow for the detection of changes in the
prevalence of splice variants due to experimental conditions, should the detection method
prove successful.

In total, the Mu6500 Gene Chips contain 6,519 sets of probe sequences. In
addition to the series of 200 control probes among the four chips, there are 6,319 “full
sequences” listed by GenBank accession, 3,281 of which were linked to known genes and
3,038 of which were linked to ESTs. Since ESTs can be of poor sequence quality and

contamination from other species is a known problem, a filtering step was taken to ensure
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that the “full sequences” were actually mouse transcripts. In order to be considered for
this study, the GenBank accession was required to be present in a Unigene cluster [13],
which is multiple alignment of mRNA and EST sequences that indicate similarity
presumed to stem from the presence of a single gene sequence. Of the 6,319 GenBank
accessions, 4,651 were found in Unigene clusters.

In performing this filtering step, it became apparent that duplicated and out-of-
date sequences were represented on the MU6500 Gene Chips. Due to the continual
merging by GenBank of accessions representing identical sequences, accessions for 126
“full sequences” had been replaced with accessions already represented on a microarray.
Additionally, 643 accessions mapped to Unigene clusters already present in the dataset,
indicating that sequences with different GenBank accessions but corresponding to the
same gene were mistakenly considered unique genes in creating the microarrays.
Furthermore, GenBank accessions for 388 of the genes were listed as ‘withdrawn’ at the
GenBank web site, and were thus excluded from analysis. These problems were not
unexpected, since many mouse genes had yet to be annotated and the mouse genome was
in a less complete state at the time of this analysis (July 11, 2001). After removing these

sequences from consideration, 3,494 accessions remained for splice variant detection.

Association with Splice Variants

Although there are dozens of types of splice variation that can produce different
mRNA sequences from a given genic region, only alternative splicing which results in

transcripts that are missing an internal fragment of sequence when compared with the
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canonical transcript were used in the first pass of this detection method. These types of
alternative splicing are shown in Figure 1. Splice variants missing sequence at the 3° or
5’ end were not used, as it could not be determined if these were true splice variants or
incomplete sequences.

To determine which genes present on the microarrays had known splice variants, I
intersected the GenBank accessions associated with the Mu6500 Gene Chips with the
GenBank accessions present in the PALS database, which was the largest source of splice
variants available at the time. Of the 3,494 GenBank accessions remaining after filtering,
1,327 were present in the PALS database, which contains both mRNA and EST
sequences. Information extracted from individual PALS database entries regarding splice
variation type was used to filter out sequences not associated with splice variants missing
an internal fragment of sequence.

The final filtering steps involved associating the probes themselves with the gene
sequences they represented. Not all genes with evidence of the types of splice variants
shown in Figure 1 had probes that were located in the appropriate position to detect those
variants. Some did not have probes that aligned with exons present in only a portion of
transcripts, or only had probes that aligned to those occasionally missing exons. As the
point was in intragenic comparison of hybridization values, these genes were not used in
the experiment. However, these sequences and their associated information were
retained, for they would be interesting to study if a correlation with hybridization values
was noted in the principal experiment.

Not all probes associated with the 584 remaining gene sequences were used in the

analysis. Approximately 20% of the probes did not align perfectly to both the mouse
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genome and the mRNA or EST sequence they were designed to match. The mismatches
are presumably due to alterations in the sequences contained in the GenBank database
since the production of the Mu6500 Gene Chips and the fact that the mouse genome was
not available when these microarrays were designed. These probes were excluded from
the analysis, but in all cases sufficient probes remained to retain their associated gene in
the analysis. Probes that aligned over a splice junction involved in splice variation were
also excluded from the set, although they were kept aside for possible future analysis.
All remaining probes were assigned to one of two groups: probes matching conserved
regions present in all known transcripts of a gene, and probes matching variant regions
which are missing in one or more mRNAs or ESTs. In total, the 584 gene sequences
were represented by 4,887 variant region probes and 5,305 conserved region probes, and
over the 30 experiments yielded 17,520 hybridization value comparisons. A breakdown

of this information by Mu6500 Gene Chip is given in Table 1.

Splice Variant Detection Method

To test for a general effect of alternative splicing on microarray expression
experiments, the hybridization values for all variant region probes were compared with
the hybridization values for all conserved region probes. Hybridization values were
collected using GeneChip 3.1 automated analysis software provided by Affymetrix ([12],
supplemental data). Inter-array hybridization values were scaled by setting the total

fluorescence intensity of each array, excluding the highest and lowest 2% of readings, to
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Chip | Genes | # Variant | # Conserved | Avg. Variant Avg. Avg. Hyb.
Region Region Region Hyb. Conserved Difference
Probes Probes Value Region Hyb.
Value
A 149 1203 1267 1240.8 1333.0 +92.2
B 142 1020 1337 1076.8 1122.9 +46.1
C 136 1339 1252 1194.1 1262.5 +68.4
D 157 1325 1449 1062.5 1073.6 +11.1

Table 5.1. A breakdown of the experimental results by Affymetrix MU6500 Gene Chip.
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a fixed value. Within each array, hybridization values were normalized by subtracting
from the fluorescence intensity of each perfect-match probe the intensity of it’s paired
mismatch sequence.

To identify data that support individual alternative splicing predictions, probe sets
for each of the 584 genes in consideration were searched for patterns consistent with
known splice variants. A positive result for an individual gene required the hybridization
values of no less than 80% of the variant region probes to be lower than the hybridization
values of the surrounding conserved region probes. Instances where between 50% and
80% of the hybridization values of variant region probes were lower than the minimum
hybridization value for a conserved region probe were considered a negative result, but

were put aside for possible detailed analysis in the future.

Results

Alternative splicing appears to have a small general effect on the hybridization
values obtained with microarray experiments. As shown in Table 1., differences between
the hybridization values of probes aligning to conserved and variant regions of genes
were cumulatively positive, indicating that transcripts containing variant region sequence
were slightly less prevalent than their associated full-length gene transcripts. However,
these differences were small in comparison to the hybridization values themselves, and
varied widely by gene and across microarray experiments (Figure 4). Another indication

of the relative insignificance of the lower prevalence of variant transcripts is that the
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distributions of hybridization values for conserved and variant region probes are not
significantly different, as shown in Figure 5.

To investigate whether the small overall effect was due to strong effects from
individual genes with prevalent alternative splicing, results for each gene were examined
for patterns supporting the presence known splice variants. Probe sets in which >80% of
probes in variant regions had lower hybridization values than probes in conserved regions
were considered to support the hypothesis that alternative splicing had occurred in that
gene in under the associated experimental conditions. Out of 17,520 comparisons, 1,050
showed patterns supporting alternative splicing. These were associated with 93 of the
584 genes examined. This proportion is not out of line with the portion of genes that
would be expected to have hybridization patterns consistent with a positive result by
chance.

In order to determine whether the results that support alternative splicing were
obtained by chance or the presence of splice variants, a control data set was gathered by
selecting probe sets in which >80% of probes in conserved regions had lower
hybridization values than probes in variant regions. There were 1,423 such probe sets
associated with 99 genes. This data is referred to as ‘opposing’ data because not because
it negates the presence of splice variants, but because it is taken from randomly
distributed data and is thus a control for the hypothesis that the ‘supporting” data
indicates the presence of splice variants in the mouse tissue samples. Differences
between the supporting and opposing probe sets would indicate that the supporting data
represents more than statistical noise, whereas similarities between the probe sets belies

that proposal. Figure 6 gives a graphical representation of the supporting data, opposing
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Figure 5.5. Distribution of hybridization values for probes present in all transcripts and
probes absent in those transcripts that have been alternatively spliced.
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Average Hybridization Values of Supporting and Opposing Data
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Figure 5.6. Mapping of 17,520 probe sets by the average hybridization value of probes
in conserved and variant regions. Probe sets in which >80% of variant region probes
have lower hybridization values than probes in conserved regions are indicated in red
triangles. Probe sets with the inverse values, in which >80% of conserved region probes
have lower hybridization values than probes in variant regions are shown in blue circles.
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data, and all 17,520 probe sets by the average hybridization values of their conserved and
variant region probes. A comparison of the number of probes in the supporting and
opposing probe sets that lie in conserved or variant regions is shown in Figure 7. The
cumulative distribution of the differences in average hybridization values for conserved
and variant region probes is given in Figure 8. These metrics clearly show that the sets of
probes that seem to support the presence of splice variants are not different than the sets
of probes with inverse values. Therefore, the small difference in overall hybridization
values is best attributed to chance, and patterns consistent with alternative splicing are
most likely the result of the random variation common to microarray hybridization

values.

Conclusions

Factors that may explain why splice variant transcripts cannot be reliably detected
in microarray data involve the quality and quantity of splice variant data available and the
true prevalence of splice variant transcripts.

It is not known what portion of alternative splicing is represented in current EST
databases. The rapid rise in the number of EST-predicted splice variants since 2001 is an
indication that the number is likely to increase along with the size of sequence databases.
It is possible that alternative splicing is even more prevalent than currently predicted, and
that the probes that are predicted not to be excised in currently known variants are

actually missing in splice variants that have not yet been identified.
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Number of Probes in Data Supporting and Opposing the Splice Variant Predictions

20 °
a
18 a o
a a
16 - A o
g e a -
E‘J 14 - a a : glp:posm.g Data
?f a ° o pporting Data
.§ 12 A A
S . A
E 10 - A A A A
2 A A A A
£
b 8 a A a a °
5 ° A A o
'g 6 - ° A A ° A A ° A
Z ° A [} [ ] [ ] [ ] L]
4 - A & A o A A a A
° ° e o o o a a o °
24 2 A ' a A o a o a a 8
a A A& & a & e a e A & o a A A e a a a
0
0 2 4 6 8 10 12 14 16 18 20

Number of Probes in Conserved Regions

Figure 5.7. The number of probes in conserved and variant regions for each probe set.
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Distribution of Hybridization Value Differences Between Variant and Conserved Region Probes
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Figure 5.8. Cumulative distribution of hybridization value differences between variant
and conserved region probes for opposing and supporting probe sets.
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Additionally, alternative splicing supported by only a single EST may be
incorrectly predicted, due to chimerism in ESTs, contamination with DNA from other
species, and poor EST sequence quality. As the quality and quantity of sequence
available continues to improve, the set of known splice variants will become more
reliable, and thus more useful in transcript prediction.

It is also possible that alternative splicing represents a very small portion of total
mRNA splicing. Microarray data is noisy — possibly at a level that would mask real
differences in hybridization levels between spliced out and retained regions. The results
detailed in this study might be expected if only a small percentage of transcripts undergo
the alternative splicing in question.

More recently, more reliable methods have been developed to utilize microarray
experiments to detect alternative splicing. Analysis of hybridization patterns of rat
mRNA to microarray probes across a single gene has been used to predict splice variants,
three of which were confirmed by sequencing transcripts [11]. Similarly, known
alternatively spliced regions can be detected using mRNA microarray chips with splice
site-specific probes [14]. Alternative splicing has been detected by polymerase colony
technology, whereby solid-phase templates of individual RNA molecules give rise to
colonies of amplification products [15]. These methods offer more precision than using
pre-existing data to predict splice variation, and are being successfully used to increase
the amount of information available in regards to alternative splicing that is available to

the scientific community.
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