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Abstract 

 The availability of full genome sequences for many organisms has greatly 

increased the reach of bioinformatics.   In my research, I have used a variety of 

techniques to leverage the information carried in mouse, human, and viral genomes to 

address a diverse set of challenges.   

One challenge was to devise a set of sequences to detect various strains of Human 

Papillomavirus (HPV).  Chapter I describes the method by which I designed probe 

sequences common to multiple genomes to efficiently isolate HPV DNA from human 

tissue samples and probe sequences unique to each HPV genome to differentiate between 

viral strains for the purpose of diagnosing infections.  

Chapter II depicts my role in developing the prototype International Gene Trap 

Consortium web resource, which presents information about embryonic stem cell lines 

carrying single gene knockouts to the public.  Much of this work involved the creation of 

a new web site and a multi-path process for identification of gene trap sequence tags.  

Chapter III describes work that developed out of the transition from an mRNA transcript-

based sequence tag annotation method to a process that combines transcript matching 

with localization to the mouse genome.  To understand better the localization of gene trap 

sequence tags to the mouse genome, I compared stand-alone versions of the common 

genome alignment programs BLAT, SSAHA, and MegaBLAST.   
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Chapter IV details a method to detect splice variation in different tissues.  I 

developed a process to combine information about splice variants gained by aligning 

expressed-sequence tags (ESTs) with full-length gene transcripts with microarray 

analysis to detect splice variants in high-throughput expression data.  This method 

utilized data from pre-existing microarray expression experiments, and so had the 

potential for large-scale academic and industry use.  
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Introduction 
 
 

The availability of full genome sequences for many organisms has opened new 

avenues of research in many fields [1-3].   Researchers seeking to understand the 

complexities that underlie the process by which information encoded in genes transitions 

to functioning proteins can use the intronic and flanking sequences that surround coding 

regions to search for splice sites, transcription factor binding sites, or other elements that 

control transcription and translation [4, 5].  Alignments between RNA transcripts and 

their source genome can be used to aid in gene annotation and the prediction of 

alternative splicing [6].  Alignment of different genomes can illustrate conserved 

elements involved in important gene functions or indicate sequences that can be used to 

differentiate between similar organisms [7].  These are but a few examples of the wide 

range of practices making use of genomic sequence to address biological questions.  In 

my research, I have used some of these techniques to address a varied set of biological 

questions.   

One such biological question that I used genomic information to tackle involved 

detection of the Human Papillomavirus (HPV) for the purpose of diagnosing infections in 

human tissue.  There are 105 HPV genomes that have been sequenced to date, of which 

23 HPV genomes are known to be associated with genital warts or cervical cancer [8].  

Although there is currently a vaccine for four types of HPV [9], detection methods for all 

HPV types will continue to be useful for strains not covered by the vaccine and for 

populations that already have HPV.  Chapter I describes the method by which I devised a 

set of sequences common to multiple genomes to efficiently isolate HPV DNA from 
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human tissue samples, as well as probe sequences unique to each HPV genome to 

differentiate between viral strains.  

My work with the gene trapping group BayGenomics [10] allowed me to use 

genomic analysis to aid gene annotation.  Chapter II depicts my role in assisting the 

BayGenomics group and helping to develop the prototype International Gene Trap 

Consortium web resource [11].  Part of my role was to design a genomic localization 

based protocol for identification of gene trap sequence tags. To understand better the 

localization of gene trap sequence tags to the mouse genome, I compared stand-alone 

versions of the genome alignment programs in use at three major genome browser web 

sites.  Chapter III consists of a manuscript summarizing this research and presenting the 

pitfalls of aligning short, poor quality sequence such as gene trap sequence tags to the 

mouse genome.   

An interest in alternative splicing led me to combine two whole-genome 

approaches, microarray expression analysis and multiple alignment of expressed-

sequence tags (ESTs) with mRNA sequences, to better predict splice variation.  Chapter 

IV details a method I developed to detect splice variants in pre-existing microarray data.  

This method takes advantage of the fact that microarrays contain many probes for a 

single gene, and attempts to use differences in fluorescent signal across the length of a 

gene to detect the presence of a known splice variant.  The known splice variants were 

generated by alignment of ESTs and mRNAs in the Unigene database [12].  This method 

had potential for widespread use, given the large amount of microarray expression data 

generated for other purposes that could be secondarily mined for splice variant 

information. 
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Primer Design for HPV Genomes 
 

Introduction 
 

Human papillomavirus (HPV) is a member of the Papillomaviridae family of 

DNA viruses.  Papillomaviridae viruses live within a host, infecting the epithelial cells, 

and are shed through mucosal membranes.  Many animal species are known to carry 

different strains of HPV, although each strain is infectious only within a single species.  

There are at least 105 distinct genomes identified that infect humans, numbered in the 

order they were discovered, with no two genomes sharing greater than 90% sequence 

identity in coding regions [1].  

HPV sequences mutate rarely, and so the sequences of an HPV genome can be 

expected to remain stable throughout the duration of an infection, with the exception of 

breakage in the HPV genome surrounding the site at which the circular genome is 

cleaved prior to integration into the human genome.  This stability of HPV genomes is 

inferred from a phylogenetic study which clustered HPV genomes and their homologs in 

various animals by the sequence of the L1 gene.  The presence of both HPV and animal 

sequences in the same clusters indicates that individual HPV genomes share more 

sequence similarity with the homologous genomes in other species than with other HPV 

genomes [2].   

HPV infection is the most common sexually transmitted disease in the United 

States.  There are approximately 5.5 million new cases each year [3], and it is estimated 

that 50% - 80% of women will acquire one or more types of HPV during their lifetime [4, 
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5].  HPV is shed through mucosal membranes, and can be transmitted through oral and 

anal sex as well as vaginal intercourse.  Condom use has not proven to be effective in 

preventing transmission of the HPV virus [6], although it may offer partial protection 

with vigilant use [7]. 

Most HPV infections are asymptomatic and carry no long-term risk, but some 

infections lead to genital warts, cervical cancer, and more rarely other cancers, such as 

penile or anal cancer.  HPV causes 99% of cervical cancer, the second most common 

cancer in women [8].  The virus causes cancer by expressing genes that interact with cell-

cycle controls to allow viral replication and release.  These protein interactions can lead 

to over-proliferation of cells and prevention of apoptosis. 

Cervical cancer can be detected in the early stages by Papanicolaou (Pap) testing, 

where epithelial cells gathered from a patient’s cervix are visually observed for evidence 

of dysplasia or cell abnormality.  The Pap smear can detect precancerous lesions before 

they develop into cancer, but this procedure is only ~80% accurate for dysplasia 

diagnosis.  Further steps are required in response to an abnormal Pap smear, including 

additional Pap smears to confirm the initial dysplasia result and extensive procedures to 

determine if a high risk or a low risk type is present.  This is a costly and lengthy process, 

but treatment for the early stages of cervical cancer is highly effective in preventing 

mortality, so Pap testing is considered a necessary part of basic women’s health care.   

A collaborator at the University of California Santa Barbara, Dr. Norbert Reich, 

has proposed methods of detecting and typing HPV infections in human tissue.  The 

technology developed in his laboratory relies on probes that will hybridize with and 

amplify the signal of HPV DNA sequences unique to a single HPV genome, allowing the 
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direct identification of any known HPV type from a clinical sample.  This technology has 

seeded a biotechnology start-up company called Tamarisc Diagnostics, Inc.  Their goal is 

to develop an assay for use by physicians that is inexpensive compared to Pap testing and 

fast enough to be completed in a single patient appointment.  In order to accomplish this 

goal, Tamarisc Diagnostics, Inc. required two sets of probes to be designed by a 

bioinformaticist.  In collaboration with the Reich Lab and Tamarisc Diagnostics, Inc., I 

developed these probes.  The first set would be used to capture HPV sequence in a 

clinical sample through DNA-RNA hybridization.  The second set would be used to 

determine which type of HPV sequence is present in a clinical sample. 

 

 

 

Methods 
 

Experimental Overview 
 

A general overview of the HPV detection method developed by Tamarisc 

Diagnostics, Inc. is shown in Figure 1.  Initially, a swab sample is taken from a patient, 

and the sample is transferred to an apparatus containing all of the necessary reagents to 

perform the detection assay.  Cells contained in the sample are lysed and the DNA they 

contain is cut with a restriction enzyme to yield a mixture of fragments of human 

genomic DNA, HPV sequence that has integrated into the human genome, and circular 

HPV DNA that remains separate from the human genome.  Linear and circular HPV 
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DNA are separated from human genomic DNA by hybridization with probes specific to 

HPV sequences.  After this purification step, probes specific for individual HPV genomes 

are added.  These RNA probes hybridize to complementary DNA, displacing the DNA 

already present and disrupting the double helix.  An enzyme is then added that detects 

this disruption and activates a fluorescent marker in response to the RNA-DNA duplex.  

This fluorescence is then measured, indicating the presence or absence of a specific strain 

of HPV in the patient sample.   



 8 

 

 
Figure 2.1 
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Bioinformatics Overview 
 

 

The bioinformatics effort for Tamarisc Diagnostics, Inc. was centered on probe 

design.  The aim was to find all known HPV genomes and devise a minimal set of 

capture probes to purify HPV genomic sequence from clinical samples and one or a small 

set of detection probes for each HPV genome that will uniquely identify a sample 

infected with that strain of HPV.  As HPV genomes are relatively stable, it is not 

expected that primer sequences will need to change very often.  

 

Genomes 
 

All HPV genomes were collected from the HPV databases at Los Alamos 

National Laboratory (http://hpv-web.lanl.gov) and the National Center for Biotechnology 

Information (http://www.ncbi.nlm.nih.gov).  These sequences represent HPV genomes 1 

through 106, excluding 46, 64, 78, 79, 85, 88, 98, 99, 104 and 105, for which full 

genomic sequences were not available.  The probe sequences generated represent 23 

HPV genomes that represent risk to a patient; 1 genome associated with both genital 

warts and cervical cancer, 5 genomes associated with genital warts, and 17 genomes 

associated with cervical cancer, including HPV 16 and HPV 18. 

 

Restriction Enzyme Optimization 
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Before probe design began, a restriction enzyme had to be chosen to remove the human 

genome from the cellular extract.  This step is necessary to minimize the chance that 

signal from incomplete or inexact hybridization between the probes and the human 

genome would swamp real signal due to the tremendous size of the human genome, 

which contains approximately 3 billion base pairs, compared with HPV genomes, which 

average 8000 base pairs.  This step also allows the probe design steps that follow to avoid 

selection of probes containing cuts sites for the chosen restriction enzyme.  The first step 

in isolating HPV sequences is to cut the human genome into smaller pieces with a 

restriction enzyme while leaving HPV DNA relatively intact.  Sixty-two commercially 

available enzymes were tested for their cutting frequency in both human and HPV 

genomes.  It was determined that although BztZI and EagI cut only three HPV genomes 

once and the remaining HPV genomes not at all, they do not cut the human genome 

frequently and are methylation sensitive, making them inappropriate for experimental 

conditions.  Instead, BglII was chosen because it is methylation-insensitive and cuts only 

eight HPV genomes while cutting the human genome frequently. 

 

General Probe Design Parameters 
 

The design of the capture probes and the detection probes contained many of the 

same steps, since both involve single-strand RNA probes that will form hetero-duplexes 

with viral DNA.  These factors that required consideration included the length of the 

probe, the melting temperature (Tm) of the probe, the uniqueness of the probe, any 

potential to form a stable secondary structure or self-hybridize, whether the chosen 
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restriction enzyme would cut at the same site at which the probe would hybridize, and 

whether the probe is likely to hybridize to sequences other than the target sequence.  

The probes must be sufficiently long that the cumulative stabilization energy from 

each hybridized base pair is sufficient to maintain the hetero-duplex long enough for 

RNaseH to degrade the RNA portion of the probe.  Hetero-duplex formation occurs as an 

equilibrium reaction, with nucleotides binding to and dissociating from each other at rates 

that are dependent on temperature, concentration of the sequences in solution, and 

whether neighboring nucleotides are already hybridized.  Lower temperatures and higher 

concentrations of probe and target sequences generally favor hetero-duplex formation.  

Once hybridization has begun, further binding is favored, as the effective concentration 

of unhybridized nucleotides is greatly increased by being tethered to hybridized 

sequence.  This can pose a problem in terms of probe specificity.  With short probes, any 

hetero-duplexes formed between a probe and a sequence that does not exactly match the 

target sequence will dissociate too rapidly to be degraded by RNaseH, simply because 

there are not enough matching nucleotides to create a sufficient binding strength.  

However, long probes may allow hetero-duplexes containing one or more mismatches to 

remain hybridized long enough for the probe to be degraded. Initially, test probes 

between 20 and 30 nucleotides in length were created, but probes of differing lengths can 

rapidly generated should it become necessary. 

In order to minimize signal produced by hetero-duplexes containing mismatches, 

the reactions will be performed at a temperature that is slightly lower than the melting 

temperature (Tm) of each probe, which is the temperature at which dissociation and 

hybridization of the probe and the target sequence are equally favored.  An acceptable 
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Tm range for probes with 20 to 30 nucleotides was set from 60°C - 90°C, a temperature 

range that is compatible with thermostable RNaseH activity [9].  The goal is then to 

maximize the difference between the Tm of the probe-target hetero-duplex and the Tm of 

any hetero-duplexes formed between the probe and non-target sequence. Requiring a 

short probe length, so that mismatches have a proportionally larger affect on binding 

strength, is helpful.  Even more effective is limiting the number of consecutive matching 

nucleotides between a probe sequence and a non-target sequence. In this case, non-target 

sequence would be any DNA purified from a patient sample, most likely other HPV 

strains or viral genomes.  A maximum of 11 consecutive matches was allowed between a 

probe and genomic sequence.  This threshold is short enough to be easily differentiable 

from a correct hybridization of 20 or more nucleotides by the difference in Tm.   

Additionally, it is beneficial to choose probe sequences that will not self-hybridize 

or form stable secondary structure.  It is nearly impossible to design probes that will not 

form small hairpins, but large regions of complementarity should be avoided.  A 

threshold of 11 nucleotides was set as the maximum consecutive complimentary 

nucleotides allowed between two copies of a probe, or within a single probe.  More 

complex secondary structure is more difficult to predict, especially given that non-

nucleotide compounds are bound to either end of the probe with the HET technology.  

Predicting probes that will form secondary structure beyond hairpins or helices was not a 

priority, since such probe sequences will not cause a false-positive signal, although they 

will not participate in hetero-duplexes while they are non-linear, thus somewhat 

dampening a true signal.  
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Finally, all probes that contain a cut site for the BglII restriction enzyme must be 

excluded, as that enzyme will be used in a step prior to the probe hybridization step. 

 

Detection Probes 
 

Several probe-design programs were evaluated to determine if an existing 

program would be able to meet all of the probe design parameters detailed above.  No 

single program has all the functionality required, but the publicly available program 

OligoPicker [10] does have many useful features.  OligoPicker allows a user to create 

probes of a given length, screen for matches to a small set of non-target sequences, tests 

for self-complementarity, and calculates a predicted Tm for each probe.  However, the 

OligoPicker program does not meet several requirements, including identification of 

many potential non-target matches, elimination of repetitive nucleotides from probes, and 

setting of minimal Tm.  Most perplexingly, it only generates a maximum of 5 probes per 

run.  To supplement its capabilities, OligoPicker was run from within a program written 

using the Python programming language to exhaustively search each risk-associated HPV 

genome for probes that met length, Tm, maximal matching region, exclusion of BglII cut 

sites, and self-hybridization criteria.  Table 1 shows the number of probes for each HPV 

genome that met these initial selection criteria.  

Although the majority of HPV DNA takes the form of a circular, double-stranded 

genome, HPV sequences are known to integrate into the human genome.  While the 

Tamarisc Diagnostics, Inc. technology was developed for the identification of discrete 

HPV sequences, steps have been taken to generate probes that would be equally useful 
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for the detection of integrated sequences.  The human genome contains approximately 3 

billion base pairs, vastly increasing the likelihood that a 20-30 nucleotide RNA probe will 

hybridize at least partially to some region of the human genome, creating the potential for 

a false positive reading.  In fact, all probes partially or fully match at least one 

chromosomal sequence.   Additionally, other genomes, such as those associated with 

sexually transmitted diseases (STDs), may be present in a tissue sample and contain 

sequence that will hybridize with a probe. 

Potential hetero-duplexes between probe and non-target sequences were 

determined by using the BLAST program [11] to search for partially or fully 

complementary sequence in a screening set of the human genome and sequences from 

Chlamydia, herpes, adenovirus, trichomonas, gonorrhea, HIV, and any HPV genome 

other than the target of a particular probe.  BLAST was chosen because it is capable, with 

the right parameter settings, of rapidly detecting very distant matches, some of which 

boast as little as 60% sequence identity with a search probe.  In order to detect short 

partial matches, the BLAST gap opening and gap extension penalties were set to -1, the 

mismatch penalty was set to -1, and the expect value was set to 10,000.  In order to deal 

with the tremendous number of matches returned by such a lenient search, a Python script 

was written to automatically parse the results for alignments with 11 or more matching 

nucleotides, which could be sufficient to result in hybridization between a probe and non-

target sequence.  All probes had matches to non-target sequences that exceeded 11 

nucleotides over the length of the probe. 

In order to determine which probes are least likely to create a fluorescent signal in 

the presence of non-target DNA, the predicted Tm of each probe-non-target hetero-
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duplex was compared to the predicted Tm of the probe-target hetero-duplex.  The results 

were ranked by Tm difference, and a threshold of 10 °C minimum difference was chosen 

to balance the need for a large temperature range in which to experimentally optimize 

detection and the need to retain enough acceptable probe sequences to provide 

replacements for probes that fail.  The number of probes for each genome that meet this 

criterion are listed in Table 1. 

As Table 1 demonstrates, after rigorous selection criteria for single-strand RNA 

probes were met, a sizeable number of probe options remained for each HPV genome. 

The process used to generate these probes has been largely automated, so the addition of 

new HPV genomes or screening sequences would not present a problem in terms of 

probe-design.  Additionally, all data generated during the probe-design process have been 

retained, so altering a particular selection threshold does not necessitate running the 

programs anew.   

 

Capture Probes 
 

To purify HPV genomic sequence from clinical samples, a set of probes was 

needed that would hybridize with all HPV genomes while avoiding hybridization with  
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HPV genome number 
and accession Risk type 

# probes meeting 
initial selection 
criteria 

# probes with Tm 
10°C higher than 
closest mismatch 

HPV-6b 9626053 High, Low 1410 78 
HPV-11 M14119 Low 1501 99 
HPV-16 9627100 High 1446 *7 
HPV-18 9626069 High 1407 86 
HPV-31 J04353 High 1535 155 
HPV-33 M12732 High 1208 153 
HPV-35 X74477 High 1446 123 
HPV-39 M62849 High 1272 130 
HPV-40 X74478 Low 1591 228 
HPV-42 M73236 Low 1711 202 
HPV-43 40804474 Low 1396 159 
HPV-44 U31788 Low 450 39 
HPV-45 X74479 High 1467 73 
HPV-51 M62877 High 1261 148 
HPV-52 X74481 High 1591 200 
HPV-56 X74483 High 1066 92 
HPV-58 D90400 High 1323 85 
HPV-59 X77858 High 1737 203 
HPV-66 U31794 High 1167 78 
HPV-68a 71726685 High 1258 70 
HPV-70 U21941 High 1344 133 
HPV-73 X94165 High 1146 105 
HPV-82 6970427 High 1301 64 

Total number of probes 31034 2703 
 

 

Table 2.1   The number of probes generated for each risk-associated HPV genome.  The 
middle column contains the number of probes for a given HPV genome that met the 
initial selection criteria: length of 20-30 nucleotides, predicted Tm of 60°C - 90°C, and 
no subsequence greater than 11 nucleotides matching to another HPV genome, viral 
sequence, self-probe copy, BglII cut site, or internal match.  The rightmost column 
contains the number of probes that, in addition to meeting selection criteria, do not match 
any sequence in the human genome closely enough to have a predicted Tm of a probe-
non-target hetero-duplex within 10°C of the predicted Tm of the probe-target hetero-
duplex.  * If the Tm difference threshold is lowered to 8 °C for HPV-16, 34 probes meet 
this criterion. 
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human genomic or STD sequences.   A minimal set was desired in order to reduce the 

occurrence of non-target hybridization that could result in the purification of non-HPV 

sequences.  At this point, only capture probes for high- and low-risk HPV genomes have 

been created, although the process can be repeated with more genomes should that be 

desired.  An overview of the capture probe design process is shown in Figure 2. 

To determine which probes would be useful in such a probe set, every possible 

probe of a given length was generated from each HPV genome, resulting in probes tiled 

over the length of the genome.  These probes were filtered to remove duplicate sequences 

within a genome, probes containing strings of five or more identical consecutive 

nucleotides, probes predicted to form hairpin structures, probes containing BglII 

recognition sequences, and probes with a predicted Tm of less than 60°C.  The remaining 

probes were aligned with the same set human genomic and STD sequences used to create 

the detection probes.  This comparison was performed with BLAST using gap opening 

and extension penalties of -1, a mismatch penalty of -1, and an expect value of 10,000.  

Probes with fewer than five contiguous mismatches or 7 mismatches over the length of 

the probe were removed from consideration.    

To find a minimum set of capture probes, all probes remaining after filtering for 

general probe parameters and similarity to human and STD sequences were tested for 

presence in multiple genomes.  The probes were rank-ordered by the number of HPV 

genomes containing the probe sequence.  The top 20 probes were used to seed minimal 

probe sets.  After the first sequence of each minimal  
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Figure 2.2.  Overview of the capture probe creation process.  A) Every sequence of a 
given length was extracted from an HPV genome, excluding duplicate probes and probes 
that did not meet required parameters.  B) This process was repeated for all HPV 
genomes, resulting in a list of probes for each HPV strain.  C) Each probe was tested for 
presence in multiple genomes.  D) Probes present in the most genomes were used to seed 
minimal probe sets.  When a single genome was missing, a detection probe was used. 
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set was chosen, the next sequence was determined by selecting from all remaining probes 

the sequence that matched the greatest number of genomes previously unmatched.  Each 

minimal set was completed when all genomes were matched by at least one probe.  This 

process does not guarantee the smallest minimum set possible, but is far more efficient 

than a full optimization. 

Every minimal set of capture probes contained at least one probe that only 

matched a single HPV genome not previously matched by another probe in that set.  In 

these cases, a detection probe was substituted for the last probe chosen for the minimal 

set.  Using a detection probe to match the missing genome is preferable to using another 

probe that matches multiple genomes because it allows for optimization of experimental 

protocols around one sequence instead of two.  It also provides some redundancy in the 

detection method, ensuring that for that HPV genome, any signal detected at the capture 

stage would be reflected at the detection stage. 

Three of the 20 minimum sets contained ten probes that could collectively 

hybridize with the 23 risk-associated HPV genomes.  The remaining minimum sets 

contained more sequences.  Of the three smallest minimum sets, the one with the greatest 

redundancy in matches was chosen as the candidate capture probe set. 

 

 

Current Status 
 

Tamarisc Diagnostics, Inc. is currently using a set of one capture probe and two 

detection probes for the HPV-16 and HPV-18 genomes to determine the appropriate 
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experimental conditions.  Once the process has been optimized sufficiently, sequences 

from further HPV genomes will be tested and those that work may be used for the 

development of an HPV detection kit. 
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Gene trap Resource Development 
 

Introduction 
 

Studies of the inactivation of genes in a model organism such as mouse can result 

in great insights into gene function and show the involvement of genes in common 

diseases.  High-throughput, untargeted interruption of genes can be used to create an 

invaluable resource for scientists without requiring the extensive background knowledge 

of a gene and considerable input of time needed for targeted gene inactivation.  Gene 

trapping is a method of randomly generating embryonic stem cells with a single 

interrupted gene.  In this method, a gene trap vector construct is inserted into an intronic 

or coding region of the genome. The vector constructs contains a reporter tag that can be 

used to identify cell lines where the vector has inserted into a genic region, preventing 

that gene from being normally transcribed and translated into a functional protein. Since 

gene trapping is a random process, it allows for the disruption of novel as well as known 

genes.  Gene trapping has proven to be a very reliable process, creating knockouts with 

phenotypes equivalent to targeted knockouts of the gene in 91% of test cases [1], and 

taking up to two orders of magnitude less time than a targeted knockout. 

BayGenomics is a large undertaking to create and analyze thousands of gene 

trapping events, and to provide information and cell lines to the public [2].  BayGenomics 

is part of the Program in Genomics Applications (PGA) funded by the National Heart, 

Lung, and Blood Institute [3]. BayGenomics member laboratories are currently creating 

knockout stem cells and mice, determining the phenotype caused by interrupted genes, 

and studying the expression of mouse genes during development using in situ 
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hybridization.  I participated in the bioinformatics component of BayGenomics, which is 

charged with bioinformatic analysis and interpretation of many of these data, as well as 

presenting this information through an online interface.   

My primary role with the BayGenomics bioinformatics group was as a mediator 

between end users and the computer scientists who created the BayGenomics web 

resource.  I attended bi-weekly meetings and gave my opinion on various issues having to 

do with the gene annotation process and usability of the web site.  In addition to this, I 

took on projects such as creating a glossary of terms used on the BayGenomics web site, 

manually annotating unidentified gene trap sequence tags, or tracking down causes of 

misannotation.  I took an active role in the teaching component, serving as an assistant 

for several of the bioinformatics training courses offered by BayGenomics, and adapting 

Prof. Patsy Babbitt’s lecture on sequence analysis for a PGA conference.  Some of the 

results of these activities are presented in the following manuscript: 

Stryke D, Kawamoto M, Huang CC, Johns SJ, King LA, Harper CA, 
Meng EC, Lee RE, Yee A, L'Italien L, Chuang PT, Young SG, Skarnes 
WC, Babbitt PC, Ferrin TE: BayGenomics: a resource of insertional 
mutations in mouse embryonic stem cells. Nucleic Acids Res 2003, 
31(1):278-281. 
 
 
When the time came to expand BayGenomics from a national resource to an 

international consortium of laboratories performing gene trapping in mice, I was offered 

a rare opportunity for a graduate student: the chance to lead a group project.  I worked 

with Alex Nord, who was the principal interactor between the different gene trapping 

laboratories, to design a prototype web resource for the newly created International Gene 

Trap Consortium (IGTC) [4].  We were tasked with overseeing the initial development of 

the IGTC web site www.genetrap.org in preparation for a conference being organized by 
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Professors Ferrin and Babbitt to gather international leaders in gene trap research.  Mr. 

Nord’s and my objective was to have a functional database and web interface for gene 

trap data available by the time of the conference that would incorporate data from the 

laboratories of the attending gene trap researchers. 

 

Methods 
 

A number of objectives had to be achieved in order to develop a web resource 

representative of the direction we wanted to head with the IGTC.  We planned to use the 

BayGenomics database and web site as a template to design the IGTC resource, with 

significant alterations.  Some of these changes included modification of the data 

collection protocols and database setup, the website content and design, and the sequence 

tag identification protocol.   

Members of the BayGenomics bioinformatics group were recruited for the IGTC 

development group to help design and execute these necessary changes.  In addition to 

Mr. Nord and I, Prof. Conrad Huang, Michiko Kawamoto and Doug Stryke worked to 

create the prototype IGTC web resource, with Susan Johns working in parallel to create 

sequence tag alignment representations that would be incorporated into the IGTC gene 

and cell line web pages.  Doug Stryke was in charge of creating the IGTC database and 

populating it with data from BayGenomics and other resources.  Conrad Huang wrote 

programs to ensure that the IGTC could process new data and update annotations on a 

regular basis.  Michiko Kawamoto took responsibility for much of the HTML coding of 

the website, including providing database access tools and designing the IGTC logo.   
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During a series of meetings I organized, the IGTC development group combined 

their detailed knowledge of the resources available at US organizations such as the 

National Center for Biotechnology Information (NCBI) [5] and the Mouse Genome 

Database [6] with Mr. Nord’s experience with Ensembl to devise a data-flow pathway 

from acquisition of raw sequence data to presentation of annotated cell line information 

to end users.  The mockup of his initial design is shown in Figure 1.  

I took responsibility for designing the web pages associated with gene and 

sequence tag annotations generated by the IGTC.  Initial mockups of these pages are 

shown in Figure 2 and Figure 3.  From these designs, Michiko developed the HTML code 

for the majority of the web pages available at the IGTC web site.  The purpose of these 

web pages is to present scientists with a central source of information about knockouts of 

their gene of interest.  As well as providing useful information, these annotation elements 

allow users to search for a gene or cell line using a wide range of peripheral information.  

Additionally, Mr. Nord and I created a set of web pages to illustrate the gene trapping 

process and to explain how to use the IGTC resource.  Current versions of these tutorials 

are available at www.genetrap.org/tutorials, and versions from June 2007 are shown in 

Figures 4 and 5. 

The chief reason for altering the sequence tag annotation protocol was to 

incorporate the best parts of the identification methods used by the different members of 

the IGTC.  Two sequence tag identification protocols were considered especially useful: 

AutoIdent, a gene transcript-based protocol developed for BayGenomics primarily by 

Prof. Huang, and MapTag [7], a genomic localization protocol developed for Ensembl 

[8].  AutoIdent had been in use for three years at the time, and had been thoroughly  
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Figure 3.1.  Alex Nord’s design for data flow through the IGTC web site.  Elements 
outside of the IGTC pipeline are shown in grey text, whereas constituents of the IGTC 
resource are shown in black text.
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Figure 3.2. Graphic representation of the proposed IGTC sequence tag annotation web 
page. 
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Figure 3.3.  Graphic representation of the proposed IGTC gene annotation web page. 
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validated [2].  MapTag was developed more recently, and was undergoing significant 

changes that would not result in a stable build in the near future.  Therefore, we agreed 

that the most sensible method of merging the protocols was to use AutoIdent in parallel 

with a genomic localization protocol of our own design, and to reconcile the results of 

each identification path. I performed a great deal of research was to determine which 

localization program would be best suited for localizing the IGTC sequence tags to the 

mouse genome.  This research is detailed in Chapter 4.  I concluded that the best solution 

was to use the Blast-like Alignment Tool (BLAT) available at UC Santa Cruz [9] to 

perform the genomic localization of sequence tags, and wrote a script to do so that was 

run in parallel to AutoIdent.  As matches to gene transcripts and genomic localization are 

orthogonal data, although both based on sequence alignment, using both annotation 

protocols adds a level of confidence to sequence tags yielding equivalent results with 

both programs.  Doug Stryke developed a reconciliation process based upon finding 

correspondence between the genomic localization of sequence tags and the genomic 

localizations of any matching full-length transcripts.   

 

Conclusions 
 

The prototype web resource was successfully presented at the inaugural IGTC 

conference on April 15, 2005.  The initial version of the database contained over 33,000 

cell lines collected from researchers in six countries. Most of the steps involved in the 

data collection protocols were successfully completed by the time of the conference, and 

those that were not had pre-computed data inserted in their place.  The sequence tag 
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identification protocol and website content were discussed, with minor changes made 

where necessary.  After incorporation of these changes, Alex Nord drafted a manuscript 

detailing the IGTC resource: 

Nord AS, Chang PJ, Conklin BR, Cox AV, Harper CA, Hicks GG, Huang 
CC, Johns SJ, Kawamoto M, Liu S, Meng EC, Morris JH, Rossant J, Ruiz 
P, Skarnes WC, Soriano P, Stanford WL, Stryke D, von Melchner H, 
Wurst W, Yamamura K, Young SG, Babbitt PC, Ferrin TE: The 
International Gene Trap Consortium Website: a portal to all publicly 
available gene trap cell lines in mouse. Nucleic Acids Res 2006, 
34(Database issue):D642-648. 

 
 

The current version of the IGTC web resource presents more than double the 

original number of cell lines and contains far more information about the trapped genes 

available, but retains much of the structure developed for the prototype used at the 

conference.   
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Figure 3.4.  The following 4 pages contain the contents of the IGTC Overview Tutorial, 
which displays information about gene trapping.  Below is the first page of the tutorial. 
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Figure 3.4.  Page 2 of the IGTC Overview Tutorial web page. 
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Figure 3.4.  Page 3 of the IGTC Overview Tutorial web page. 
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Figure 3.4.  Page 4 of the IGTC Overview Tutorial web page. 
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Figure 3.5.  The following 14 pages contain the contents of the IGTC Search Tutorial, 
which displays information about gene trapping.  Below is the first page of the tutorial. 
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Figure 3.5.  Page 2 of the IGTC Search Tutorial web page. 
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Figure 3.5.  Page 3 of the IGTC Search Tutorial web page. 
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Figure 3.5.  Page 4 of the IGTC Search Tutorial web page. 
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Figure 3.5.  Page 5 of the IGTC Search Tutorial web page. 
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Figure 3.5.  Page 6 of the IGTC Search Tutorial web page. 
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Figure 3.5.  Page 7 of the IGTC Search Tutorial web page. 
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Figure 3.5.  Page 8 of the IGTC Search Tutorial web page. 
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Figure 3.5.  Page 9 of the IGTC Search Tutorial web page. 
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Figure 3.5.  Page 10 of the IGTC Search Tutorial web page. 
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Figure 3.5.  Page 11 of the IGTC Search Tutorial web page. 
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Figure 3.5.  Page 12 of the IGTC Search Tutorial web page. 
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Figure 3.5.  Page 13 of the IGTC Search Tutorial web page. 
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Figure 3.5.  Page 14 of the IGTC Search Tutorial web page[10]. 
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Introduction to the manuscript  

“Comparison of methods for genomic localization of gene trap 
sequences” 

 
 
 

One of the top priorities of the IGTC development team was to develop a 

sequence identification protocol that incorporated the best parts of the identification 

methods used by the different gene trap researchers joining the IGTC.  After concluding 

that a two-path identification protocol would be used to identify sequence tags by 

alignment with gene transcripts and alignment with the mouse genome, a genomic 

localization method was needed.  In order to determine which genomic localization 

program would be best suited for localizing the IGTC sequence tags to the mouse 

genome, I compared the performance of programs in use at the major genome browser 

web sites.  The other members of the IGTC development team, Conrad Huang, Doug 

Stryke, Michiko Kawamoto, Thomas Ferrin, and Patricia Babbitt, also made 

contributions to this research.  We produced some interesting conclusions that merited 

publication in BMC Genomics.  The published manuscript below is presented in the 

following chapter.   

Harper CA, Huang CC, Stryke D, Kawamoto M, Ferrin TE, Babbitt PC: 
Comparison of methods for genomic localization of gene trap 
sequences. BMC Genomics 2006, 7:236. 
 
 
The nucleotide sequences used in this analysis are available from the BMC 

Genomics web site (http://www.biomedcentral.com/bmcgenomics) in association with 

this manuscript.  The titles of these files, and their contents, are as follows: 

 



 51 

Title: Sequence tags 
File format: FASTA 
Description: A file of sequence tags aligning to known genes that were used in 
“Comparison of methods for genomic localization of gene trap sequences”.  This is a 
smaller set of sequences than is contained in the International Gene Trap Consortium 
database (http://www.genetrap.org). 
 
Title: Genes   
File format: FASTA 
Description: A file of full-length genes aligning to the sequence tags that were used in 
“Comparison of methods for genomic localization of gene trap sequences”.  
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Abstract 

Background 

            Gene knockouts in a model organism such as mouse provide a valuable resource 

for the study of basic biology and human disease.  Determining which gene has been 

inactivated by an untargeted gene trapping event poses a challenging annotation problem 

because gene trap sequence tags, which represent sequence near the vector insertion site 

of a trapped gene, are typically short and often contain unresolved residues.  To 

understand better the localization of these sequences on the mouse genome, we compared 

stand-alone versions of the alignment programs BLAT, SSAHA, and MegaBLAST.  A 

set of 3,369 sequence tags was aligned to build 34 of the mouse genome using default 

parameters for each algorithm.  Known genome coordinates for the cognate set of full-

length genes (1,659 sequences) were used to evaluate localization results.  

Results 

            In general, all three programs performed well in terms of localizing sequences to a 

general region of the genome, with only relatively subtle errors identified for a small 

proportion of the sequence tags.  However, large differences in performance were noted 

with regard to correctly identifying exon boundaries.  BLAT correctly identified the vast 

majority of exon boundaries, while SSAHA and MegaBLAST missed the majority of 

exon boundaries. SSAHA consistently reported the fewest false positives and is the 

fastest algorithm.  MegaBLAST was comparable to BLAT in speed, but was the most 

susceptible to localizing sequence tags incorrectly to pseudogenes.   
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Conclusions 

            The differences in performance for sequence tags and full-length reference 

sequences were surprisingly small.  Characteristic variations in localization results for 

each program were noted that affect the localization of sequence at exon boundaries, in 

particular. 

 

Background 
 

High-throughput gene interruption projects have greatly increased the number of 

loss-of-function knockout genes available for study [1].  Correct identification of these 

genes provides a necessary foundation for their use for biomedical discovery, including 

minimizing the number of time-consuming phenotype experiments that need to be 

undertaken.  Until recently, interrupted knockout genes have been identified primarily 

using the alignment program BLAST [2] to match gene trap sequence tags, which 

represent the region of an interrupted gene near the site of disruption, with gene 

transcripts.  While transcript identification can generally provide high confidence gene 

annotation information for over 75% of such knockouts [3], transcript databases do not 

provide full coverage of the genome, limiting the number of genes that can be identified.  

Redundancy in transcript databases also makes it difficult to obtain a unique 

identification for sequence tags, which are relatively short.  

Sequence quality can also be an issue with gene trap sequence tags, since the 

prevalent method of generating these tags often results in relatively low-quality sequence.  

BayGenomics [3] and other members of the International Gene Trap Consortium (IGTC) 
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[4, 5] typically use 5’ RACE [6], a common method for amplifying sequence from gene 

insertion events.  This method generates sequence from only one strand of DNA, and 

often generates only relatively short sequences, with sequencing errors accumulating 

especially towards the 3’ end.  To obtain sequence tags that are sufficiently long to 

uniquely identify most genes, BayGenomics, for example, uses a limit for the acceptable 

quality of a base call that is lower than the generally accepted threshold (a Phred [7] 

minimum score of 14.6 rather than the default score of 30) [3].   The consequence of 

using such a low threshold is that nucleotides are assigned incorrectly somewhat more 

often than with the default threshold value.  This problem can interfere with annotation.  

[see Additional Figure 1 for an example.]  Additionally, sequence tags generated by 5’ 

RACE occasionally have non-templated nucleotides at their termini [8].  In one large-

scale 5’ RACE experiment, only 57% of clones generated sequences that were 

sufficiently long and unambiguous to be identified by alignment with a gene transcript 

[9].  

As curation of the mouse genome has improved, direct localization has become 

the strategy of choice for associating sequence tags with specific genes. This has an 

advantage in minimizing imprecise and confusing annotations arising from redundancy in 

mRNA databases.  Moreover, this approach reflects the biological reality of the insertion 

of a reporter gene into genomic sequence and provides a more context-based view of the 

gene by associating it with the many types of information available at the genome 

browser Web sites.   
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Additional Figure 4.1.  An example of errors associated with low signal strength in a 5’ 
RACE sequence.  (A) Alignment of trace files for the sequence tags BG-XE342 and BG-
XH675, both sequenced with 5’ RACE, which localize to protein kinase C binding 
protein 1 (NCBI accession NM_027230).  Black arrows indicate the point of vector 
insertion.  The intensity of the signal diminishes towards the 3’ end of each sequence.  
(B) Enlargement of the green-highlighted regions in A.  The reverse complement of the 
trace sequence, which corresponds to the sequence of the inactivated gene, is listed below 
the expanded trace plots.  The low intensity of the signal in this region of the BG-XH675 
trace plot results in two nucleotide assignments, circled in pink, that differ from both 
genomic sequence from chromosome 2 and the associated mRNA sequence for this gene.  
In contrast, the corresponding nucleotide assignments in the relatively higher quality BG-
XE342 trace plot, also circled in pink, agree with the genomic and mRNA sequences.   
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The choice of alignment program is a major consideration in localizing sequences 

on the genome.  BLAST, which was developed for comparison of evolutionarily diverged 

sequences, is prohibitively slow in this application.  Several newer algorithms have been 

developed to rapidly align nearly identical sequences.  Implementations in common use 

are MegaBLAST [10], the Sequence Search and Alignment by Hashing Algorithm 

(SSAHA) [11], and the BLAST-like Alignment Tool (BLAT) [12].  Each is currently in 

use at one of the primary genome browser sites and, in addition, each is available for 

stand-alone use. MegaBLAST is used at the National Center for Biotechnology 

Information (NCBI) [13], SSAHA is used at Ensembl [14], and BLAT is used at the 

University of California Santa Cruz (UCSC) [15].  While all of these algorithms have 

been individually benchmarked for the genome browsers with which they are used, their 

performance with sequence tags has not been established, nor have the results from the 

stand-alone versions of these programs been compared with the gene annotations 

available at the genome browser sites.  Establishing the effect of low quality and short 

sequence length on gene localization protocols is beneficial to research groups that work 

with gene tag and similar sequences, including other types of expressed sequence tags 

(ESTs) or genomic tags.   

MegaBLAST is similar to BLAST in that it splits a query sequence into non-

overlapping fragments and searches for exact matches to the genome to find the regions 

of highest identity. These perfect matches are then expanded to align the longest region 

of significant similarity.  MegaBLAST uses a greedy algorithm that incorporates 

simplified gap and insertion/deletion penalties relative to BLAST and limits the number 

of alignments to be explored in extending the alignment beyond a perfect match seed.  
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These alterations are justified because of the high levels of similarity expected between 

query and database sequences and the expectation that the alignment will not contain 

many mismatches or gaps.  For sequences with greater than 97% identity, MegaBLAST 

is an order of magnitude faster than BLAST without any loss of alignment accuracy [10].   

SSAHA uses a different approach to take advantage of the high similarity 

expected between a query sequence and the genome.  An index of all non-overlapping 

fragments of a set length (k) is created from the genome sequence and stored with the 

associated positions.  The query sequence and its reverse complement are broken into all 

possible fragments of length k, including overlapping fragments, and compared with the 

genome index to identify exact matches. Matches are sorted to find contiguous matching 

segments that are reported if they exceed a threshold, set by default to 2k.  SSAHA is 

extremely fast, but due to the need to store the genome index and fragment locations, has 

relatively large memory requirements. 

BLAT uses a multi-stage algorithm which searches for regions of similarity, 

aligns those regions, aggregates aligned regions in close proximity, and adjusts the 

boundaries of aligned regions to correspond with canonical splice sites.  The initial search 

stage operates in a manner very similar to SSAHA.  The genome database is broken into 

non-overlapping fragments of length k, then all k-length fragments of the query sequence 

and its reverse complement are associated with matching locations in the genome.  The 

matches are sorted and grouped by proximity and those regions of the genome with a 

minimum of 2k contiguous matches are aligned with the query sequence.  The alignment 

stage extends matching regions as far as possible, merges overlapping matches, links 

matches that fall in order on the genome into a single alignment, and fills in regions of 
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the alignment corresponding to gaps of identical length in the query and genome 

sequences.  Positions of gaps in the alignment, which may correspond to introns, are 

matched to the consensus splice site GT/AG whenever possible.   

The work reported here provides a comparison of the performance of the stand-

alone versions of SSAHA, MegaBLAST, and BLAT for a set of mouse gene trap 

sequence tags.  The sequence tags were generated through untargeted gene trap 

experiments, which detect instances where the insertion vector interrupts an intron of a 

gene expressed in embryonic stem cells [1].  As the genome coordinates of our sequence 

tags are not known, the localizations of their cognate genes were used as a proxy.  These 

genes were identified by using the BLAST program to align the sequence tags with gene 

transcripts (see Methods for details). 

The genome coordinates of many genes in the mouse genome are defined 

differently depending on which genome browser site provides the information. This is 

because each browser uses a different combination of localization programs, sequence 

analysis tools, and manual curation to arrive at their final annotations.  Additionally, the 

localization program used in the annotation protocol may differ from the localization 

program provided to users of the genome browser. For example, Ensembl uses the 

exonerate program [16] to generate localization coordinates reported at their site.  

However, when a user seeks to localize a gene at the Ensembl site, the SSAHA algorithm 

is used to perform that task. This differs from NCBI and UCSC, where the localization 

algorithms used to generate annotations for the genome, MegaBLAST and BLAT 

respectively, are also used by the genome browser to localize sequences input by users.  

In order to provide a fair comparison between the algorithms, only sequence tags 
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matched with genes having exactly the same coordinates at Ensembl, NCBI, and UCSC 

were used in this study.  To determine whether errors in the localization of sequence tags 

using the stand-alone versions of these programs was due to the nature of the sequence 

tags themselves or to differences in how the stand-alone programs perform relative to the 

protocol in which they are used to localize full-length genes at each browser site, we also 

localized the set of gene transcripts matched with sequence tags as a control.  Our 

sequence set consisted of 3369 sequence tags associated with 1659 genes with uniformly 

assigned coordinates on the mouse genome.  

 

 

Results and Discussion 
 

Our results show differences in the localization performance with respect to recall 

and precision at each of three levels of granularity investigated, gene, exon, and 

nucleotide (Figure 1).  The recall score indicates the percentage of true positives that 

were detected.  Precision indicates the percentage of matches reported which correspond 

to true positives. 

 

Localization to the correct gene  
 

With respect to recall, our study shows that researchers who wish to link a 

sequence with information associated with the genome may confidently use any of the 

three localization programs considered in this study.  SSAHA, MegaBLAST, and BLAT 

successfully localize each of the 1659 full-length genes in the test set to a genomic region 
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Figure 4.1.  Recall and precision for each localization algorithm.   
Results for SSAHA are shown in red, MegaBLAST in blue, and BLAT in green.  The 
first column represents the recall obtained with full-length gene query sequences.  The 
second column shows the recall obtained with sequence tag queries.  The third and fourth 
columns display the precision of each algorithm when used to localize full-length genes 
and sequence tags, respectively.  (A) Recall and precision at the level of the gene, as 
measured by overlap of at least one nucleotide between a set of localizations by an 
algorithm and the region of the genome containing the gene.  Cyan lines indicate the 
recall and precision achieved when only the top hit is considered.  (B) Exon recall and 
precision, as measured by an overlap of at least one nucleotide between the known 
localization of an exon and a match.  Sequence tags are shorter than full-length genes and 
therefore typically contain sufficient sequence information to match only a few exons of 
any gene, leading to low recall at the exon and nucleotide levels.  This does not indicate 
failure by the localization programs.  (C) Nucleotide recall and precision, as measured by 
a match between a nucleotide in the known localization of a gene and a nucleotide from a 
query sequence localization.   
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that fully or partially matches the known coordinates of the corresponding gene (Figure 

1A).  Sequence tags fare nearly as well, with all programs reporting localization to the 

correct region of the genome for >98% of the 3369 sequence tags used in this study.   

Repeat-masking of the genome accounts for the majority of the small number of 

failures in localizing sequence tags to the correct genes.  Online localization is performed 

against masked genomic sequence by default as this ensures that results are returned 

quickly and that relatively few correct localizations are missed, despite the fact that as 

much as 50% of the genome consists of repeated elements [17].  In this study, less than 

2% of sequence tags in the test set returned no localization results with one or more 

programs because they overlap fully or partially with regions removed by masking.  

Additionally, five sequence tags that localize to repeat regions have erroneous matches 

that exceed the minimum score required by each program, and so are localized 

incorrectly.  In contrast, use of an unmasked version of the genome results in 100% recall 

for the test set of sequence tags, but increases the number of incorrect localizations by as 

much as ten-fold.  Moreover, using an unmasked version of the genome increases 

computation time substantially (Table 1).     

In contrast to the near-perfect recall exhibited by the localization programs, the 

precision of the programs suffers from a substantial incidence of false positives (Figure 

1A).  At the genic level, 46% of all reported full-length gene localizations and 16% of 

sequence tag localizations by SSAHA do not overlap with the known gene localization.  

For MegaBLAST, 43% of reported gene localizations and 15% of sequence tag 

localizations are false positives.  BLAT shows similar performance, with 38% of reported 

gene localizations and 15% of sequence tag localizations falling outside the region of the  
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Table 4.1.  Computation times in seconds for each algorithm.   
  Computation Time in seconds 

 # of Sequences MegaBLAST SSAHAa BLATa 

Full-length Genes 3320 1767 (40578)b 361 (29895) 1434 (204331) 

Sequence Tags 7043 223 (1025) 38  (5806) 276 (854) 

 

a Reported computation times for SSAHA and BLAT do not include pre-indexing of the 
genome (see text). 
b Results using the repeat-masked genome are listed first, followed by results from the 
unmasked genome in parenthesis. 
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known gene.  Generally, the false positives score significantly lower than the true 

positives. 

False positives at the level of the gene may not be problematic, however, since the 

most common method of interpreting localization results is to accept the highest-scoring 

match as correct rather than analyzing all returned matches.  Correct localizations 

generally exhibit long, high percent-identity matches, which contribute to higher scores 

compared with incorrect matches, which are generally short or contain mismatches.  The 

strategy of taking the top hit is largely successful with both full-length gene queries and 

sequence tag queries (Figure 1A).  The SSAHA localization with the highest score is 

almost always correct, as it overlaps with the known localization of a gene for 99% of 

full-length gene queries and 98% of sequence tag queries.  The MegaBLAST localization 

with the highest score is correct for 93% of full-length gene queries, and 95% of 

sequence tag queries.  The BLAT localization with the highest score is correct for 99% of 

full-length gene queries and 99% of sequence tag queries.   

Erroneous matches are also less likely to group together on a chromosome than 

correct matches, which track with exon ordering.  While all three programs report 

matches grouped by chromosome, only the BLAT algorithm incorporates matches in 

close proximity into a single multi-part alignment, which is given a score that combines 

the scores of the individual matches in the alignment.  This ensures that the top-scoring 

match is a composite of all matches likely to be exons of the same gene.  Another 

consequence of this grouping is that the scores of correct and incorrect matches are more 

widely separated than with SSAHA or MegaBLAST. 
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Pseudogenes  
 

The presence of pseudogenes can confound rules for separating correct from 

incorrect matches at the genic level for both full-length genes and sequence tags.  

Pseudogenes are regions of the genome that are very similar in sequence to known genes, 

but are usually rendered non-functional by mutations or missing elements that prevent 

transcription or translation.  About 80% of pseudogenes are processed pseudogenes, 

which resemble partial or full-length mRNA sequences that have been integrated into the 

genome [18].  These are caused by the retrotransposition of double-stranded DNA, read 

off of single-stranded RNA, into the genome.  As processed pseudogenes lack introns, 

alignments can be constructed between pseudogenes and query sequences that are longer 

than individual exons.  Such alignments may be sufficiently long that penalties accrued 

for mismatches are more than offset by this longer match length, allowing them to 

outscore correct matches to exons.  In the case of our sequence tags, these alignments are 

invariably incorrect, since with our method of gene trapping, disruption of a gene is only 

detected when the vector is inserted into an intron [1].  Figure 2 gives an example that 

illustrates the difficulty in distinguishing localization to a processed pseudogene from 

localization to a true gene.  More rarely, pseudogenes can be caused by duplications of 

chromosome segments.  These unprocessed pseudogenes contain introns and are 

therefore less likely to result in high-scoring (but incorrect) matches based on alignment 

length alone.  In addition, a recent duplication can result in a pseudogene with so few 

mutations that it may be difficult to distinguish it from the coding gene.  Although it is 

possible for a gene trapping vector to insert into an unprocessed pseudogene containing  
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Figure 4.2. An example of localization to a pseudogene.   
Localization results for the full-length gene encoding mitotic arrest deficient 1-like 1 
(Mad1l1), GenBank accession NM_010752.  All representations of alignments between 
query sequences and build 34 of the mouse genome were made using the UCSC Genome 
Browser Custom Tracks feature.  Slight alterations have been made to the 
representations, including the removal of graphical elements to improve the clarity of the 
figure, but no changes were made to the alignments.  (A) The coordinates of the known 
gene on the genome are listed at the top, and positions of exons are represented by 
colored blocks.  A region of chromosome 5 is shown containing the known localization 
of NM_010752 (the Known Genes track at bottom) and the alignments of exons for 
NM_010752 to the genome by SSAHA, MegaBLAST, and BLAT.  (B) A region of 
chromosome 9 containing a pseudogene related to NM_010752 is shown on the same 
scale as (A).  Below this, the segment of chromosome 9 containing the pseudogene is 
enlarged.  The highest-scoring MegaBLAST match, circled in cyan, localizes to this 
pseudogene rather than the real gene.  The highest scoring matches returned by SSAHA 
and BLAT are located on chromosome 5 and overlap with the correct localization. 
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introns, none were detected in our data set, and thus all localizations to pseudogenes were 

considered false positives. 

As shown in Figure 2, genic localization is compromised by the presence of 

pseudogenes to varying degrees.  SSAHA identifies only exact matches, rather than very 

similar matches, lending the algorithm a distinct advantage in terms of distinguishing 

correct matches from pseudogene matches.  BLAT alignments can contain mismatches 

accrued during the alignment extension stage, which increases the likelihood of a high-

scoring match to a pseudogene.  However, the BLAT score reflects all matches in a 

region of the genome so that short perfect or near-perfect exon matches in aggregate are 

likely to outscore longer imperfect matches to pseudogenes.  MegaBLAST is the most 

susceptible to pseudogene matches, as it is relatively tolerant of mismatches and does not 

have a mechanism for favoring short perfect matches over long imperfect ones.   

In this study, pseudogenes may have been the cause of over 100 top-scoring 

matches that are incorrect, despite high sequence identity between the query sequences 

and the genome.  It is difficult to determine the exact number of incorrect localizations to 

pseudogenes as relatively few mouse pseudogenes have been annotated.  As many as 

4000 mouse pseudogenes are predicted to exist [19], and in the closely related human 

genome, a careful study of an early build of chromosome 22 revealed that 19% of 

sequences defined as coding likely belong to pseudogenes instead [20].  The distribution 

of pseudogene matches among the programs varies as might be expected from their 

algorithmic differences.  SSAHA reports a top-scoring match to a region annotated as a 

probable pseudogene for 17 full-length genes and 60 sequence tags, while BLAT 

incorrectly localizes 7 genes and 45 sequence tags to probable pseudogenes.  
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MegaBLAST reports top-scoring matches to probable pseudogenes for 116 genes and 

162 sequence tags. 

Localization to the correct exon 
 

With respect to recall, all three algorithms perform similarly well in localizing 

query sequences to the exons of their corresponding genes.  For full-length gene queries, 

SSAHA, MegaBLAST, and BLAT all have exon recall of about 99% (Figure 1B).  The 

sequence tags used in this study are generally substantially shorter than the full-length 

genes, averaging 255 nucleotides in length, versus 3611 nucleotides for genes, and it is 

rare that all exons of a gene will be matched in a sequence tag alignment.  Thus, exon and 

nucleotide recall for sequence tag queries should be viewed in a comparative manner, 

rather than as a direct measure of the accuracy of each algorithm.  SSAHA detects 22% 

of control exons, MegaBLAST detects 22% of control exons, and BLAT detects 23% of 

control exons.   

Many of the exons that are not detected overlap with regions of the genome 

removed from the search space by repeat masking.  Two examples of the effect of repeat 

masking on exon localization are illustrated in Figure 3, which depicts the genome 

alignment of the full-length gene encoding chromatin assembly factor 1, subunit A 

(Chaf1a), NCBI accession NM_013733, and the sequence tag BG-RRR265.  Each 

program localizes NM_013733 to the left-most exon shown in Figure 3B by detecting 

perfect matches on either side of the repeat mask region.  BLAT connects these matches 

because its default parameter settings allow alignments adjacent to a masked region to be 

extended into the masked sequence while SSAHA and MegaBLAST, whose default  
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Figure 4.3.  A representative genome alignment of a full-length gene and a sequence tag.   
The full-length gene encoding chromatin assembly factor 1, subunit A (Chaf1a), NCBI 
accession NM_013733, and the sequence tag BG-RRR265 align to a region of 
chromosome 17.  (A) Overview showing the full region of the genome spanned by 
Chaf1a.  Segments enlarged in the parts B-C are marked above the genome position.  (B) 
Regions of genome that have been removed from the search space by repeat masking are 
shown in yellow, superimposed on the known gene track.  The removal of these regions 
prevents correct localization of the full-length gene and sequence tag for these exons.  (C) 
Magnification of the exon from region C illustrates differences between the alignment 
programs in aligning sequence to the edges of exons.  
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settings do not allow alignment to masked regions (see Methods), show the masked 

region as a gap.  The middle exon in Figure 3B does not contain enough unmasked 

sequence for any algorithm to seed a match, and is thus entirely undetected.   

Precision in exon localization is similar for full-length genes and sequence tags, 

despite the discrepancy in the number of exons matched by the two query types (Figure 

1B).  This indicates that although the short sequence tags do not contain regions matching 

all exons of their cognate genes, those with adequate length to be associated with a 

unique transcript generally contain sufficient information to be localized with high 

precision.  For genes, 78% of SSAHA localization results overlap with known exons, 

compared with 85% for sequence tags.  MegaBLAST has exon precision of 86% for 

genes, and 87% for sequence tags.  BLAT has exon precision of 75% for genes, and 76% 

for sequence tags.  Very rarely, the coding region of a gene contains an intron so short 

that MegaBLAST will align through it, including the intron in the alignment.  This results 

in errors for four genes in the control set which contain introns of either 9 or 12 

nucleotides in the upstream untranslated region.  As a source of error, this had only a 

minimal effect on the overall precision for MegaBLAST and had no effect on the results 

for BLAT and SSAHA. 

An interesting result that is not reflected by measures of recall and precision is 

that each program occasionally returns multiple correct localizations to the same exon.  

The full-length genes used in this analysis average 12.9 exons, but each program 

averages more than 13 correct localizations per gene.  SSAHA returns 19.5 localizations 

per gene, with each localization corresponding to an exon or a false positive.  On average, 

15.2 of these aligned segments overlap with 12.8 exons.  MegaBLAST returns 15.6 
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localizations per gene, with 13.5 of them correctly identifying 12.8 exons.  BLAT returns 

20.8 localizations per gene, with of them 15.6 correctly identifying 12.9 exons.  Multiple 

localizations to a single exon can occur because masking or mismatches within exons can 

split what should be one long matched segment into two or more smaller alignments.  In 

addition, BLAT can generate more than one localization to the exact same region of the 

genome, as illustrated in Figure 3C.  This is a known idiosyncrasy of the BLAT program, 

and is resolved at the UCSC genome browser Web site by removing such repeat matches 

[21].  This problem results in no appreciable increase in exon or gene recall compared to 

SSAHA and MegaBLAST, and also no great loss in precision, as most duplications 

appear to provide a correct localization (Figure 1).  Although we cannot ascertain with 

certainty how many exons and partial exons each sequence tag spans, we expect that they 

too generate multiple localizations to a single exon. 

 

Localization to the correct nucleotide 
 

As expected, the greatest variation in the localization results reported by the three 

programs is at the nucleotide level (Figure 1C).  Recall is diminished for SSAHA and 

MegaBLAST, but remains high for BLAT.  SSAHA detects 77% of control nucleotides 

for gene queries and 7% for sequence tag queries, MegaBLAST detects 89% of control 

nucleotides for gene queries and 9% for sequence tag queries, and BLAT localizations 

detect 93% of control nucleotides for gene queries and 9% for sequence tag queries 

(Figure 1C).  Again, recall for sequence tags is so low only because these represent short 

fragments of genes and so do not contain sufficient information to allow matching a large 

proportion of the nucleotides comprising the cognate genes.     
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Diminished recall at the level of individual nucleotides reflects several types of 

problems, including failure to match to very short exons, misalignment over gaps, and 

errors in either the query or the genome sequence.  The principal cause, however, is 

difficulty in aligning sequence, using either genes or sequence tags as queries, at the 

edges of exons. Although failure to accurately align a query to genomic sequence at the 

edges of exons only slightly lowers the recall levels for each program, each of the three 

algorithms compared in this study exhibits characteristic problems in localization at the 

edges of exons, as illustrated in Figure 3C.  Figure 4 provides a summary of the 

performance of each algorithm in exactly matching exon boundaries. 

SSAHA correctly matches only 6% of exon boundaries, and only 0.5% of exons 

(98 of 21,464 total exons) are perfectly matched at both exon edges.  The reason for this 

is that the algorithm splits the genome into non-overlapping fragments that may or may 

not correlate with exon boundaries.  If the edge of an exon does not overlap with an 

indexed fragment of the genome with a length sufficient to meet the threshold for 

reporting a match, that fragment will not be included in the match that is returned.  Thus, 

in Figure 3C, SSAHA fails to align 9 nucleotides of both the full-length gene and the 

sequence tag BG-RRR265 at the 3’ edge of the exon because the match does not meet the 

minimum length of 10 nucleotides.  Similarly, small gaps or mismatches that often occur 

at the ends of sequence tags can interrupt a match, resulting in a minimum loss of 10 

nucleotides in the match alignment.  (The developers of SSAHA have implemented a 

new version, SSAHA2 [22], which combines the original SSAHA searching algorithm  
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Figure 4.4.  A summary of the alignments by each program to the edges of exons.   

A representation of an exon is shown at top, with a representation of the three possible 
match outcomes below, i.e., an exact match to the exon boundary, a match that ends 
before the exon boundary, and a match that extends beyond the exon boundary.  The 
percentage of all matches by each program that fall into those categories are depicted as 
bar graphs. Left: Percentage of matches correctly aligned to either exon boundary. 
Middle and right: Percentage of matches incorrectly aligned to an exon boundary, with 
the match ending before or extending beyond a boundary, respectively.      
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with a more sensitive alignment program.  The changes incorporated in the new version 

make it likely that SSAHA2 will behave differently from SSAHA.  Additionally, 

associated programs, such as ssahaEST, combine the search and alignment stages of 

SSAHA2 with several splice site models to increase detection of exon boundaries.  

SSAHA2 and its associated programs were not included in this analysis as benchmarking 

and full documentation has not yet been published, although binaries are now available 

for download from Ensembl.) 

In contrast to SSAHA, MegaBLAST often extends alignments beyond the edges 

of exons.  MegaBLAST localizations align up to, but not beyond, exon boundaries in 

35% of attempts, with only 11% of exons receiving perfect alignments at both edges. 

Moreover, the algorithm generates the longest alignments possible, making no attempt to 

ensure that each nucleotide in the query sequence is matched only once.  Thus, 

MegaBLAST may extend a match beyond the edge of an exon whenever the adjacent 

intronic sequence coincidentally matches the query sequence (Figure 3C).  

BLAT localizations are the most likely to correctly match exon edges, due to the 

extra steps the algorithm takes to compute correct exon splice sites and match each 

nucleotide in the query sequence only once.  BLAT localizations match exon edges in 

87% of attempts, with 79% of exons perfectly aligned at both edges.  It is possible that 

these rates are slightly inflated by counting multiple overlapping correct localizations that 

occurred in our automated analysis (see Figure 3C for an example).  Even so, BLAT has 

a clear advantage over SSAHA and MegaBLAST in regard to correct identification of 

exon boundaries. 



 75 

With respect to precision at the nucleotide level, SSAHA performs the best, 

achieving the correct localization 92% of the time for both genes and sequence tags.  

Precision for MegaBLAST and BLAT is also high, with 85% of both sequence tag and 

full-length gene localizations matching control nucleotides. 

 

Algorithm speed 
 

Computation times were collected for each localization run.  All sequence tags or 

full-length genes were passed to the localization program as a single file in Fasta format 

[23] (Table 1).  Localizations performed with the unmasked genome were not used in the 

preceding analysis as this had generally only a small negative effect on recall, but had a 

large negative impact on precision and analysis speed.  (See Figure 3B and associated 

text for an exception.)  SSAHA was the fastest program by about five-fold.  MegaBLAST 

and BLAT were comparable in speed, with BLAT showing an advantage in aligning 

longer sequences, and MegaBLAST performing more quickly with shorter sequences.  

Not shown in the Table is the time required for genome indexing, required by both 

SSAHA and BLAT.  This step requires 895.5 seconds for SSAHA, and 399.1 seconds for 

BLAT, but needs only be run once per genome build. 

 

Conclusions 
 

Overall, analysis of stand-alone versions of the three localization algorithms, 

SSAHA, MegaBLAST and BLAT, show that all perform well in localizing both full-

length genes and sequence tags to the mouse genome. The differences in performance for 



 76 

sequence tags and full-length reference sequences were surprisingly small, with no 

program exhibiting significantly diminished performance with sequence tags, despite 

their generally low quality when compared with full-length reference sequences.  While 

recall and precision performance differ minimally among the programs at the level of 

gene and exon localization, at a more detailed level, and focusing especially on 

nucleotide recall, greater variations are found, with different types of characteristic errors 

associated with each program.  Therefore, the choice of the appropriate localization 

program depends on the specific purpose of the researcher.   

As localization to a general region of the genome is performed equally well by all 

three programs, considerations such as the ease of use of the program and computational 

speed may become important considerations in choosing which program to use.  SSAHA 

is the fastest program and has the simplest output, so it would seem to be a natural choice 

for localizing large data sets for general purposes.  For automated applications requiring 

correct localization at the nucleotide level, such as SNP detection or evaluation of 

alternative splicing, BLAT is currently the best option, as it is distinctly better at aligning 

the edges of exons.  Additionally, the process by which BLAT groups together proximal 

matches improves the separation between the scores of correct and incorrect matches, 

increasing confidence in the result.  These advantages come at a cost of speed, with 

BLAT being significantly slower than SSAHA, though comparable in speed with 

MegaBLAST.  For our purpose of localizing gene trap sequence tags to the mouse 

genome, BLAT was chosen as the program to incorporate into our local annotation 

pipeline, although use of multiple programs may eventually be implemented to ensure the 

highest levels of recall and precision. 
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Methods 

Sequences 
 

A set of sequence tags for which the localization of the full-length genes are 

known was used in this study.  The sequence tags were derived from knockout 

experiments performed by members of the IGTC.  Initially, 34,138 sequence tags were 

annotated by using BLAST to search the GenBank non-redundant database [24] for 

matching gene transcripts.  Only those sequence tags that matched a single transcript with 

at least 95% identity over a contiguous region of at least 90% of the length of the 

sequence tag, or matched at least 60 contiguous bases at the 3' end of the sequence tag 

were considered in our analysis.  This eliminated the shortest sequence tags, those that 

matched with multiple genes or genes with multiple differing transcripts, those that 

matched genes not yet contained in the GenBank non-redundant database, those that did 

not match a gene, and all sequence tags generated by trapping processes designed to 

capture introns rather than exons.  Additionally, sequence tags were filtered by requiring 

that their associated gene transcripts be present at each of the major mouse genome 

browsers, i.e., Ensembl, NCBI, and UCSC.   After filtering, a total of 7,043 sequence tags 

and 3,320 associated gene transcripts remained [see “Sequence tags” and “Genes” files 

available from BMC Genomics in association with this manuscript].  Half of the 

localizations were not consistent between all genome browsers, leaving a set of 3369 

sequence tags associated with 1659 genes all assigned exactly the same coordinates on 

the mouse genome.  The sequence tags range from 32 to 1023 nucleotides in length 

(mean 255, median 202) and the genes range from 290 to 64,931 nucleotides in length 

(mean 3611, median 2485).   
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Sequence tags and their cognate full-length genes were localized in NCBI Mouse 

Genome Build 34, the fourth major genome build for the mouse [19].  Build 34 is a 

composite of high quality high-throughput genome sequence and whole-genome shotgun 

sequence.  Localizations were performed with both an unmasked version of the genome 

and a version with repeat and low-complexity regions removed by RepeatMasker 

database version 20050112 [17], which uses RepBase update 9.11 [25].   Except as 

indicated, the results described below were obtained by searching the masked version of 

the genome, which is the default practice. 

 

Computation 
 

Alignments were performed on a Hewlett-Packard (HP) AlphaServer GS1280 

system, using a single 1.15 GHz processor.   

 Local versions of online algorithms BLAT, MegaBLAST, and SSAHA were 

obtained from the genome browser web sites at UCSC, NCBI, and Ensembl, respectively.  

The most recent versions were chosen, with the exception of BLAT version 26 (February 

2004), which was selected because it is the version used to localize BayGenomics 

sequence tags. SSAHA version 3.1 and MegaBLAST version 2.2.10 represent the most 

current releases available on July 2005.  To approximate the online localization process, 

parameters were set to match the default parameters employed by the online programs.  

The three programs do not share the same types of parameters, however, and where the 

parameters are the same or similar, the values assigned to them are not necessarily 

consistent.  Of particular importance in this study is the default “word length”, i.e., the 

length of indexed genome fragments.  A decrease in word length increases the capacity to 
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detect short but real matches, but also increases the number of erroneous matches.  Word 

length was set to 10 nucleotides for SSAHA, and 11 nucleotides for BLAT, with a 

minimum of two contiguous “words” required to seed a match.  Similarly, MegaBLAST 

requires a minimum of 28 contiguous matches to generate an alignment.  How each 

algorithm deals with repeat masking is also important.  None of the algorithms seed 

alignments in masked regions, but BLAT and MegaBLAST can be set to allow 

alignments to be extended into regions masked by the RepeatMasker algorithm.  By 

default BLAT is set to allow such alignment extensions, but MegaBLAST is not, 

resulting in the type of differences between alignments presented in Figure 3B.  [see 

Table 2 for a full list of the parameters used for each program.]  

A comparison algorithm was devised to demonstrate the accuracy of the 

localization programs at three levels of granularity relevant for biological inquiry: gene, 

exon, and nucleotide.  At the genic level, any overlap between a localization reported by 

a program and a known coordinate for a gene was considered a true positive, even if the 

overlap consisted of a single nucleotide.  Similarly, for each exon, only a single 

nucleotide match was required for a true positive.  At the nucleotide level, only an exact 

match at a single nucleotide position was counted as a true positive.  Thus, each level of 

granularity imposes a different stringency in this analysis.  Results are represented by 

recall and precision scores for each algorithm.     



 80 

 

 
MegaBLAST parameters  
 
  -d  Database = goldenpath_ucsc_mouse_masked.fa (mouse genome build 34, Fasta file) 
  -e  Maximum allowed expectation value = 1000000.0 (actual maximum was 0.003) 
  -m  alignment view = tabular 
  -F  Filter query sequence = False 
  -X  X dropoff value for gapped alignment (in bits) = 20 
  -I  Show GI's in deflines = False 
  -q  Penalty for a nucleotide mismatch = -3 
  -r  Reward for a nucleotide match = 1 
  -v  Number of database sequences to show one-line descriptions for = 500 
  -b  Number of database sequence to show alignments for = 0 
  -D  Type of output = tab-delimited one line format  
  -a  Number of processors to use = 1 
  -M  Maximal total length of queries for a single search = 20000000 
  -W  Word size (length of best perfect match) = 28 
  -z  Effective length of the database (use zero for the real size) = 0 
  -P  Maximal number of positions for a hash value (set to 0 to ignore) = 0 
  -S  Query strands to search against database = both 
  -T  Produce HTML output = False 
  -G  Cost to open a gap (zero invokes default behavior) = 0 
  -E  Cost to extend a gap (zero invokes default behavior) = 0 
  -s  Minimal hit score to report (0 for default behavior) = 0 
  -f  Show full IDs in the output (default - only GIs or accessions) = False 
  -U  Use lower case filtering of FASTA sequence = False 
  -R  Report the log information at the end of output = False 
  -p  Identity percentage cut-off = 0 
  -A  Multiple Hits window size = 0 
  -y  X dropoff value for ungapped extension = 10 
  -Z  X dropoff value for dynamic programming gapped extension = 50 
  -t  Length of a discontiguous word template (contiguous word if 0) = 0 
  -g  Generate words for every base of the database (default is every 4th base) = False 
  -n  Use non-greedy (dynamic programming) extension for affine gap scores = False 
  -N  Type of a discontiguous word template = coding 
  -H  Maximal number of HSPs to save per database sequence = unlimited 
 
 
SSAHA parameters 
 
-queryFormat = fasta file 
-subjectFormat = fasta file: goldenpath_ucsc_mouse_masked.fa (mouse genome build 34, Fasta file) 
-queryType = DNA 
-subjectType = DNA  
-parserFriendly = pf       Show one match per line as a set of tab delimited fields: 
                          match direction: F forward, R reverse 
                          query name 
                          query start 
                          query end 
                          subject name 
                          subject start 
                          subject end 
                          number of matching bases 
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                          percentage identity 
-logMode       -lm        Controls the output of log information 
                          cerr - send to standard error 
-packHits      -ph        Store position of each word in a "packed" 
                          format comprising 32 bits per word. This halves 
                          the size of the .body file at the expense of a 
                          slight decrease in search speed. 
-wordLength  = 10 
-maxGap = 0     Maximum gap allowed between successive hits for 
                          them to count as part of the same match. 
-maxInsert = 0   Maximum number of insertions/deletions allowed 
                          between successive hits for them to count as part 
                          of the same match. 
-maxStore = 10000        Largest number of times that a word may occur in 
                          the hash table for it to be used for matching 
                          expressed as a multiple of the number of 
                          occurrences per word that would be expected 
                          for a random database of the same size as the 
                          subject database. 
-numRepeats = 0        Maximum size of tandem repeating motif that can be 
                          detected in the query sequence. This option may 
                          produce faster and better matches when dealing 
                          with data containing tandem repeats. 
-minPrint = 1     The minimum number of matching bases or residues 
                          that must be found in the query and subject 
                          sequences before they are considered as a match 
                          and thus printed. 
-queryStart = 1  Specifies the number of the first query sequence to 
                          be matched with the subject sequences (numbering of 
                          both the query and subject sequences starts at 1). 
-queryEnd = not specified Specifies the number of the last query sequence to 
                          be matched with the subject sequences. If not 
                          specified, continues until the end of the query 
                          sequence data is reached. 
-reverseQuery = yes         When matching the reverse strand of a query, 
                          convert the positions of any matches found 
                          into the coordinate frame of the forward strand. 
                          Has no effect if queryType is set to protein. 
-sortMatches = 0           Output only the top n matches for each query, 
                          sorted by number of matching bases, then by 
                          subject name, then by start position in the 
                          query sequence. 
                          Default value is zero, which outputs all matches 
                          for each query and does no sorting. 
-stepLength = 10               Number of base pairs gap between words used to  
                          produce hash table. Ignored if a precomputed  
                          hash table is being used. Default value is  
                          equal to wordLength. 
-queryReplace = default    Specifies behaviour upon encountering unexpected 
                          alphanumeric characters in query sequences: 
  Default: replace with 'A' for DNA, 'X' for protein 
-subjectReplace =tag         Specifies behaviour upon encountering unexpected 
                          alphanumeric characters in subject sequences: 
  tag - `tag' the word so that it is not put 
                           into the hash table. 
-substituteWords = no        Look for single base/amino mismatches in words 
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                          that occur less than this many times more often 
                          than would be expected for a random database of 
                          the same size as the subject database. 
-bandExtension = 0        Specify size of the band to use for banded dynamic 
                          programming, when producing a graphical alignment. 
                          0 - diagonal only 

 
BLAT parameters  
 
   -t  Database type = dna: goldenpath_ucsc_mouse_masked.fa (mouse genome build 34, Fasta file) 
   -q  Query type =  dna - DNA sequence 
   -ooc  Use overused tile file = 11.ooc  
   -tileSize  sets the size of match that triggers an alignment = 11 
   -oneOff  Mismatches allowed in tile = 0 
   -minMatch  sets the number of tile matches = 2  
   -minScore  This is twice the matches minus the mismatches minus some sort of gap penalty = 30 
   -minIdentity  Sets minimum sequence identity (in percent) = 90   
   -maxGap  sets the size of maximum gap between tiles in a clump = 2 
   -repMatch  sets the number of repetitions of a tile allowed before it is marked as overused = 1024          
   -minRepDivergence  minimum percent divergence of repeats to allow them to be unmasked = 15 
   -out  output file format = psl (Tab separated format without actual sequence) 
 

 

Table 4.2.  Parameters for each program used.  Descriptions of the parameters have been 
adapted from the accompanying documentation for the MegaBLAST, SSAHA, and 
BLAT stand-alone programs. 
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Analysis of Alternative Splicing Utilizing Microarray 
Experiments 

 

Introduction 
 

Alternative splicing research was in its infancy in 2001, when the research 

detailed here was performed. At that time, only a few large-scale studies of the 

prevalence of splice variation had been performed, and most mammalian genomes had 

not been sequenced, although compete sequences had recently been made available for 

the human and mouse genomes. Similarly, microarray expression experiments and high-

throughput proteomics methods were recent additions to the genomic research toolbox, 

and had not been perfected to the extent that they have been today.  The novelty of the 

field of alternative splicing research provided great opportunities to develop new methods 

to detect splice variation with these exciting new tools.   

 

 

Background 
 

Alternative splicing occurs during the intron removal process when an exon is 

skipped, inserted, or spliced at a different site than in the reference mRNA. It allows 

multiple transcripts to be generated from the same gene, which increases the potential 

range of proteins that can be produced by a genome.  Alternative splicing has also been 

found to be a regulatory mechanism in certain eukaryotic cell growth processes and to 
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play a role in tissue differentiation [1]. Alternative splicing is also known to affect the 

working of drugs and to play a role in some human diseases [2].  A few simple examples 

of alternative splicing are shown in Figure 1. 

Alternative splicing is thought to be a primary mechanism by which cells produce 

a more varied set of proteins than they have genes.  This hypothesis is supported by 

evidence that a large percentage of human genes give rise to multiple mRNA transcripts.  

In 2001, estimates of the percentage of human genes that undergo alternative splicing at 

the mRNA level ranged from 35% [3, 4] to 55% [5].  Today, the percentage is estimated 

to be greater than 60% [6].  Other eukaryotes show prevalent alternative splicing, with 

rates in mouse [1] and rat approaching that of humans.  Some alternative splice sites are 

conserved between species [6]. 

When I began this research, the only method in use for systematic detection of 

splice variants was the alignment of expressed sequence tags (ESTs) to full-length 

mRNAs, or to genomic sequence.  Splice variants are apparent in alignments with 

unmatched sequence flanked by multiply aligned sequence.  This remains the primary 

method used today.  Several databases house information about splice variants that has 

been generated in this manner.  The Putative Alternative Splice Database (PALS) [7] 

contained over 14,000 human genes and 8,000 mouse genes in which alternative splicing 

had been detected in 2001, approximately half the genes it contains today.  The 

Alternative Splicing Database (ASDB) [8] contained splice variants for six different 

organisms in 2001, and 181 presently.  The Human Alternative Splicing Database [9] 

contained over 6,000 splice variants in 2001, and has almost 22,000 now.  



 88 

 
 
 
 
 
 
 
 
 
 
 
Figure 5.1.  The three types of alternative splicing analyzed in this research. Adapted 
from Huang, et al. 2002 [7]. 
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Detection of splice variation using EST sequences has a few drawbacks.  

Databases containing ESTs are not complete, and are not guaranteed to have a set of 

sequences that represent transcripts of all genes.  ESTs are also of generally lower 

sequence quality than full-length mRNA sequences, although the quality has been 

improving as sequencing technology becomes more advanced.  This can create problems 

with the alignments used to predict the presence of splice variants.  Finally, alignments of 

ESTs to mRNA sequences can indicate the existence of a splice variant, but not the 

prevalence of that transcript or its variance in different environmental or developmental 

conditions.   

A method with the potential to overcome some of these problems is the use of 

microarray expression data to detect alternative splicing.  As illustrated in Figure 2, in 

gene expression experiments, RNA is extracted from a tissue sample, labeled with a 

fluorescent marker, and washed over a microarray.  Microarrays are chips carrying 

hundreds or thousands of probes that are complementary to the sequence of a gene of 

interest, most often with several probes to represent each gene.  The probes hybridize 

with the RNA sequences, and retain fluorescent signal after the excess labeled-RNA is 

washed away.  This signal is used to show the presence and prevalence of a known set of 

genes.  As splice variant transcripts have missing or alternative sequence as compared 

with canonical gene sequences, probes designed to detect these differences may be able 

to indicate occurrences of alternative splicing. 

The most unambiguous way to determine whether alternative splicing can be 

detected by comparing differences in fluorescent signal, or hybridization value, between 

probes from a single gene would involve testing a tissue sample in which the splice  
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Figure 5.2.  Overview of the microarray experimental process.   
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variants present were known.  One way to approach this would be to create an EST 

library for a tissue, use that library to find a set of genes that produce splice variants, 

produce a microarray carrying splice variant-specific probes for these genes, hybridize 

RNA from the original tissue sample to this microarray, and find what proportion of 

splice variants detected by EST alignment are also detected with the expression data.  

This approach was feasible in 2001, but would have been expensive, as microarray 

printing was not as prevalent or economical as it is today. 

A faster and free approach would be to approximate known splice variants in a 

tissue with all known splice variants for an organism and utilize pre-existing expression 

data that contains genes associated with these splice variants.  While it would not be 

expected that all splice variants are be expressed at all times, using data from a variety of 

test samples in different environments would increase the likelihood of capturing 

conditions under which at least some splice variants are present at detectable levels.  

Similarly, whereas microarrays designed specifically for an experiment are ideal, the 

practice of spreading probes over an extended region of a gene suggests that even 

microarrays not designed to detect splice variants will contain probes that align to regions 

of a gene that are present in only some variants.  

The magnitude of the fluorescent signal for each probe depends on the number of 

RNA molecules that hybridize with that sequence.  Therefore, in genes that produce 

multiple mRNA transcripts, some of which are missing a fragment of sequence it would 

be expected that hybridization values would vary across the length of the gene and would 

be lessened in regions not present in all transcripts.  Certain types of splice variation 

result in such transcripts.  In particular, exon skipping (Figure 1), which is the most 
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common type of alternative splicing, results in transcripts missing one or more exons.  It 

should be possible to detect splice variants by investigating clusters of probes with lower 

hybridization values than probes situated elsewhere in a gene, as shown in Figure 3.  An 

advantage of this method would be wide applicability to many expression data sets, 

which could be re-analyzed for new findings vis-à-vis alternative splicing. 

The use of microarray expression data is limited by the fact that genes must be 

known in order to design probes that will hybridize to their transcribed mRNA sequences.  

However, even in the early days of microarray design, scientists foresaw the possibility 

of detecting novel genes by designing microarrays with probes designed over the length 

of entire genomes [10].  Transcription of a novel gene would lead to mRNA with the 

potential to bind any probes located in the coding regions of that gene.  Similarly, these 

probes might show variability in hybridization values as a result of splice variation that 

affects the makeup of mRNA produced by a gene. 

 

 

 

Methods 
   

This analysis required a large and diverse set of expression data, the set of known 

splice variants associated with the genes represented on the microarrays, and a method 

for determining positive and negative results.   
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Figure 5.3.  Graphical representation of perfect match and mismatch probes aligned to 
two transcripts, the first a splice variant missing an exon, and the second the full-length 
transcript of a gene.  Lower hybridization values would be expected from probes that 
hybridize to regions of a gene that are not present in all transcripts.  (Adapted from Hu, et 
al. 2001 [11]). 
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Expression Data Set 
 

In order to increase the chances of detecting splice variants, I chose one of the 

most comprehensive sets of microarrays available, the mouse Mu6500 Gene Chips 

developed by Affymetrix (Santa Clara, CA).  This set of four microarrays represented 

nearly all of the mouse genes known at that time, as well as a great number of EST 

sequences thought to represent genes that had yet to be fully sequenced.   

Prof. Bruce Conklin, a frequent collaborator with the Babbitt Lab, used the 

Mu6500 Gene Chips to assess expression differences in mouse tissue as a result of 

cardiovascular insult.  One large data set, created by Dr. Kam Dahlquist, contained 

expression data from each of the four Mu6500 Gene Chips for 30 mice representing one 

of four experimental conditions: control mouse heart tissue, heart samples from mice 

after two weeks of increased G protein expression, eight weeks of increased G protein 

expression, and mice in recovery [12].  This data is available from the PNAS web site 

(http://www.pnas.org/).  This data set was ideal for my purposes, as it contained not only 

data from wild-type mice, but would also allow for the detection of changes in the 

prevalence of splice variants due to experimental conditions, should the detection method 

prove successful. 

In total, the Mu6500 Gene Chips contain 6,519 sets of probe sequences.  In 

addition to the series of 200 control probes among the four chips, there are 6,319 “full 

sequences” listed by GenBank accession, 3,281 of which were linked to known genes and 

3,038 of which were linked to ESTs.  Since ESTs can be of poor sequence quality and 

contamination from other species is a known problem, a filtering step was taken to ensure 
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that the “full sequences” were actually mouse transcripts.  In order to be considered for 

this study, the GenBank accession was required to be present in a Unigene cluster [13], 

which is multiple alignment of mRNA and EST sequences that indicate similarity 

presumed to stem from the presence of a single gene sequence.  Of the 6,319 GenBank 

accessions, 4,651 were found in Unigene clusters.   

In performing this filtering step, it became apparent that duplicated and out-of-

date sequences were represented on the MU6500 Gene Chips.  Due to the continual 

merging by GenBank of accessions representing identical sequences, accessions for 126 

“full sequences” had been replaced with accessions already represented on a microarray.  

Additionally, 643 accessions mapped to Unigene clusters already present in the dataset, 

indicating that sequences with different GenBank accessions but corresponding to the 

same gene were mistakenly considered unique genes in creating the microarrays.  

Furthermore, GenBank accessions for 388 of the genes were listed as ‘withdrawn’ at the 

GenBank web site, and were thus excluded from analysis.  These problems were not 

unexpected, since many mouse genes had yet to be annotated and the mouse genome was 

in a less complete state at the time of this analysis (July 11, 2001).  After removing these 

sequences from consideration, 3,494 accessions remained for splice variant detection. 

 

Association with Splice Variants 
 

Although there are dozens of types of splice variation that can produce different 

mRNA sequences from a given genic region, only alternative splicing which results in 

transcripts that are missing an internal fragment of sequence when compared with the 
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canonical transcript were used in the first pass of this detection method.  These types of 

alternative splicing are shown in Figure 1.  Splice variants missing sequence at the 3’ or 

5’ end were not used, as it could not be determined if these were true splice variants or 

incomplete sequences.   

To determine which genes present on the microarrays had known splice variants, I 

intersected the GenBank accessions associated with the Mu6500 Gene Chips with the 

GenBank accessions present in the PALS database, which was the largest source of splice 

variants available at the time.  Of the 3,494 GenBank accessions remaining after filtering, 

1,327 were present in the PALS database, which contains both mRNA and EST 

sequences.  Information extracted from individual PALS database entries regarding splice 

variation type was used to filter out sequences not associated with splice variants missing 

an internal fragment of sequence.  

The final filtering steps involved associating the probes themselves with the gene 

sequences they represented.  Not all genes with evidence of the types of splice variants 

shown in Figure 1 had probes that were located in the appropriate position to detect those 

variants.  Some did not have probes that aligned with exons present in only a portion of 

transcripts, or only had probes that aligned to those occasionally missing exons.  As the 

point was in intragenic comparison of hybridization values, these genes were not used in 

the experiment.  However, these sequences and their associated information were 

retained, for they would be interesting to study if a correlation with hybridization values 

was noted in the principal experiment.  

Not all probes associated with the 584 remaining gene sequences were used in the 

analysis.  Approximately 20% of the probes did not align perfectly to both the mouse 
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genome and the mRNA or EST sequence they were designed to match.  The mismatches 

are presumably due to alterations in the sequences contained in the GenBank database 

since the production of the Mu6500 Gene Chips and the fact that the mouse genome was 

not available when these microarrays were designed.  These probes were excluded from 

the analysis, but in all cases sufficient probes remained to retain their associated gene in 

the analysis.  Probes that aligned over a splice junction involved in splice variation were 

also excluded from the set, although they were kept aside for possible future analysis.  

All remaining probes were assigned to one of two groups: probes matching conserved 

regions present in all known transcripts of a gene, and probes matching variant regions 

which are missing in one or more mRNAs or ESTs.  In total, the 584 gene sequences 

were represented by 4,887 variant region probes and 5,305 conserved region probes, and 

over the 30 experiments yielded 17,520 hybridization value comparisons.  A breakdown 

of this information by Mu6500 Gene Chip is given in Table 1. 

 

 

Splice Variant Detection Method 
 

 To test for a general effect of alternative splicing on microarray expression 

experiments, the hybridization values for all variant region probes were compared with 

the hybridization values for all conserved region probes.  Hybridization values were 

collected using GeneChip 3.1 automated analysis software provided by Affymetrix ([12], 

supplemental data).   Inter-array hybridization values were scaled by setting the total 

fluorescence intensity of each array, excluding the highest and lowest 2% of readings, to  
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Chip Genes # Variant 

Region 
Probes 

# Conserved 
Region 
Probes 

Avg. Variant 
Region Hyb. 

Value 

Avg. 
Conserved 

Region Hyb. 
Value 

Avg. Hyb. 
Difference 

A 149 1203 1267 1240.8 1333.0 +92.2 
B 142 1020 1337 1076.8 1122.9 +46.1 
C 136 1339 1252 1194.1 1262.5 +68.4 
D 157 1325 1449 1062.5 1073.6 +11.1 

 
Table 5.1.  A breakdown of the experimental results by Affymetrix MU6500 Gene Chip. 
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a fixed value.  Within each array, hybridization values were normalized by subtracting 

from the fluorescence intensity of each perfect-match probe the intensity of it’s paired 

mismatch sequence. 

To identify data that support individual alternative splicing predictions, probe sets 

for each of the 584 genes in consideration were searched for patterns consistent with 

known splice variants.  A positive result for an individual gene required the hybridization 

values of no less than 80% of the variant region probes to be lower than the hybridization 

values of the surrounding conserved region probes.  Instances where between 50% and 

80% of the hybridization values of variant region probes were lower than the minimum 

hybridization value for a conserved region probe were considered a negative result, but 

were put aside for possible detailed analysis in the future.   

 

 

Results 
 

 Alternative splicing appears to have a small general effect on the hybridization 

values obtained with microarray experiments.  As shown in Table 1., differences between 

the hybridization values of probes aligning to conserved and variant regions of genes 

were cumulatively positive, indicating that transcripts containing variant region sequence 

were slightly less prevalent than their associated full-length gene transcripts.  However, 

these differences were small in comparison to the hybridization values themselves, and 

varied widely by gene and across microarray experiments (Figure 4).  Another indication 

of the relative insignificance of the lower prevalence of variant transcripts is that the  
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Figure 5.4.  Intragenic hybridization value differences between conserved region probes 
and variant region probes for all probe sets on each of four Mu6500 Gene Chips. 
 



 101 

distributions of hybridization values for conserved and variant region probes are not 

significantly different, as shown in Figure 5. 

To investigate whether the small overall effect was due to strong effects from 

individual genes with prevalent alternative splicing, results for each gene were examined 

for patterns supporting the presence known splice variants.   Probe sets in which >80% of 

probes in variant regions had lower hybridization values than probes in conserved regions 

were considered to support the hypothesis that alternative splicing had occurred in that 

gene in under the associated experimental conditions.  Out of 17,520 comparisons, 1,050 

showed patterns supporting alternative splicing.  These were associated with 93 of the 

584 genes examined.  This proportion is not out of line with the portion of genes that 

would be expected to have hybridization patterns consistent with a positive result by 

chance.   

In order to determine whether the results that support alternative splicing were 

obtained by chance or the presence of splice variants, a control data set was gathered by 

selecting probe sets in which >80% of probes in conserved regions had lower 

hybridization values than probes in variant regions.  There were 1,423 such probe sets 

associated with 99 genes.  This data is referred to as ‘opposing’ data because not because 

it negates the presence of splice variants, but because it is taken from randomly 

distributed data and is thus a control for the hypothesis that the ‘supporting’ data 

indicates the presence of splice variants in the mouse tissue samples.  Differences 

between the supporting and opposing probe sets would indicate that the supporting data 

represents more than statistical noise, whereas similarities between the probe sets belies 

that proposal.  Figure 6 gives a graphical representation of the supporting data, opposing  
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Figure 5.5.  Distribution of hybridization values for probes present in all transcripts and 
probes absent in those transcripts that have been alternatively spliced. 
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Figure 5.6.  Mapping of 17,520 probe sets by the average hybridization value of probes 
in conserved and variant regions.  Probe sets in which >80% of variant region probes 
have lower hybridization values than probes in conserved regions are indicated in red 
triangles.  Probe sets with the inverse values, in which >80% of conserved region probes 
have lower hybridization values than probes in variant regions are shown in blue circles.   
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data, and all 17,520 probe sets by the average hybridization values of their conserved and 

variant region probes.  A comparison of the number of probes in the supporting and 

opposing probe sets that lie in conserved or variant regions is shown in Figure 7.  The 

cumulative distribution of the differences in average hybridization values for conserved 

and variant region probes is given in Figure 8.  These metrics clearly show that the sets of 

probes that seem to support the presence of splice variants are not different than the sets 

of probes with inverse values.  Therefore, the small difference in overall hybridization 

values is best attributed to chance, and patterns consistent with alternative splicing are 

most likely the result of the random variation common to microarray hybridization 

values.   

 

 

Conclusions 
 

 Factors that may explain why splice variant transcripts cannot be reliably detected 

in microarray data involve the quality and quantity of splice variant data available and the 

true prevalence of splice variant transcripts.   

It is not known what portion of alternative splicing is represented in current EST 

databases.  The rapid rise in the number of EST-predicted splice variants since 2001 is an 

indication that the number is likely to increase along with the size of sequence databases.  

It is possible that alternative splicing is even more prevalent than currently predicted, and 

that the probes that are predicted not to be excised in currently known variants are 

actually missing in splice variants that have not yet been identified.  
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Figure 5.7.  The number of probes in conserved and variant regions for each probe set.  
Probe sets for the 93 genes in which some experiments support the presence of splice 
variants are shown by red triangles.  Probe sets for the 99 genes with values inverse to the 
supporting data are shown by blue circles.   
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Figure 5.8.  Cumulative distribution of hybridization value differences between variant 
and conserved region probes for opposing and supporting probe sets. 
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Additionally, alternative splicing supported by only a single EST may be 

incorrectly predicted, due to chimerism in ESTs, contamination with DNA from other 

species, and poor EST sequence quality.  As the quality and quantity of sequence 

available continues to improve, the set of known splice variants will become more 

reliable, and thus more useful in transcript prediction. 

It is also possible that alternative splicing represents a very small portion of total 

mRNA splicing.  Microarray data is noisy – possibly at a level that would mask real 

differences in hybridization levels between spliced out and retained regions.  The results 

detailed in this study might be expected if only a small percentage of transcripts undergo 

the alternative splicing in question.  

More recently, more reliable methods have been developed to utilize microarray 

experiments to detect alternative splicing.  Analysis of hybridization patterns of rat 

mRNA to microarray probes across a single gene has been used to predict splice variants, 

three of which were confirmed by sequencing transcripts [11].  Similarly, known 

alternatively spliced regions can be detected using mRNA microarray chips with splice 

site-specific probes [14].  Alternative splicing has been detected by polymerase colony 

technology, whereby solid-phase templates of individual RNA molecules give rise to 

colonies of amplification products [15].  These methods offer more precision than using 

pre-existing data to predict splice variation, and are being successfully used to increase 

the amount of information available in regards to alternative splicing that is available to 

the scientific community. 
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