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Abstract 
In this work we present a methodology to evaluate the accuracy of methods used to quantify the 

uncertainty in estimated total energy savings. We focus on savings measurement and verification 

(M&V) approaches that use a baseline model to characterize energy use, and that forward-project 

the model for a counterfactual to determine avoided energy use. These approaches are common to 

the International Performance Measurement and Verification Protocol’s (IPMVP’s) Option C and 

Option B. This methodology can be used to evaluate the uncertainty in savings estimates that are 

due to model error. It has been applied to evaluate two uncertainty estimation methods, including 

the industry standard ASHRAE Guideline 14 approach. The evaluation used data from 69 

commercial buildings and four different baseline models that span daily and hourly granularity, as 

well as linear and non-linear/non-parametric forms. The findings of this work indicate that the 

standard methods that are widely used by the M&V community for estimating the total savings 

uncertainty over the post-installation period tend to underestimate the uncertainty. The tendency 

to underestimate the uncertainty is stronger for hourly models than for daily models, due to 

stronger autocorrelation in model residuals at the hourly time scale.   

 

Introduction 

In 2012, commercial buildings in the US consumed nearly 7 quadrillion Btu in site energy [EIA 

2016]. Utility demand side management programs are the primary vehicle to deliver energy 

efficiency in the US building stock, representing investments of $8B (CEE 2017). Energy service 

companies (ESCOs) also represent a large share of the efficiency market, with $5B in revenue as 

of 2014 (Stuart et al. 2016). In these industries, reliable measurement and verification (M&V) of 

energy savings is critical, as it serves as the foundation financial settlement. 

 

To date, the most commonly applied M&V approaches have relied upon engineering calculations 

and stipulated or deemed estimates of savings. In these cases, savings are treated as point values 

with no explicit assessment of uncertainty. Although M&V references such as ASHRAE 

Guideline 14 (ASHRAE 2014) address savings uncertainty due to model error, in practice, 

uncertainty analysis is most often applied in utility program impact evaluations as a means of 

ensuring that sampling plans appropriately reflect the program population.  

 

Two trends are driving increased interest in meter-based whole-building level savings estimation, 

and in the uncertainty associated with those estimates – particularly in utility program 
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applications. These savings approaches are referred to as Option C in the International 

Performance Measurement and Verification Protocol (EVO 2012). First is a push to look beyond 

lighting and equipment replacement to identify the next generation of measures and program 

designs that will continue to deliver savings as more traditional measures begin to saturate. Of 

particular promise are operational, behavioral and retrocommissioning measures, strategic energy 

management, and multi-measure whole-building retrofits. These strategies offer deeper savings 

potential, are difficult to deem or calculate, and often involve multiple interactive effects, making 

them well suited to a whole-building meter-based approach. Similarly, pay for performance 

program designs that incentivize customers or implementers based on achieved savings are also 

well aligned with facility-level meter based savings estimation approaches.     

 

Second, energy analytics technologies and the availability of smart meter data have converged to 

bring data science to the building energy efficiency industry. New techniques for building load 

prediction are increasingly being applied to diagnostic and control problems (Afram and Janabi-

Sharifi 2014, Mamidi et al. 2012, Najafi et al. 2012), with extensions to savings estimation. 

Today’s analytics technologies and advanced energy modeling applications are moving beyond 

the linear and piecewise linear approaches that have been used in the buildings industry for 

decades (Kissock et al. 2002, Fels  1989). More complex machine learning solutions that are 

based on higher frequency smart meter data (hourly or 15-minute) are beginning to be explored 

for their promise in increasing predictive accuracy (Granderson et al. 2016, Ahmad et al. 2017, 

Araya et al. 2017, Touzani et al. 2018). In addition, higher frequency data affords new 

opportunity to link efficiency to grid considerations, by opening the door to time-dependent and 

location-resolved savings valuation. 

 

Within the context of these trends, there is renewed interest in the ability to assess the uncertainty 

in a savings estimate that is due to model error. This uncertainty can be a useful risk management 

tool to ensure that whole-building level savings estimates are robust enough to use as the basis of 

financial settlement. It can also provide a means of assessing tradeoffs between depth of savings 

and model goodness of fit in cases where signal-to-noise concerns may bring facility-level 

savings measures into question. And in a general sense, the use of uncertainty due to model error 

may prove beneficial for verifying that proprietary algorithms provide acceptable results. 

 

In the M&V context the focus is on total estimated energy savings over the post period, as 

opposed to the estimated savings at each time step over the post period; therefore, the uncertainty 

of the total energy savings is the uncertainty parameter of interest. The energy savings estimate 

provides a single point value that describes the performance of the implemented measure in the 

project, however the usage of this unique value raises a question of how accurate it is? The 

uncertainty can be seen as an interval of doubt surrounding the estimated value of energy savings 

- the true value of the savings is expected to be within this interval at some level of confidence.  

 

ASHRAE Guideline 14 (ASHRAE 2014) provides analytical formulas (Reddy and Claridge 

2010) to calculate the savings estimates uncertainty. Several variations of the ASHRAE 

Guideline 14 formulas that have been introduced in the literature, and a brief review of these 

alternative versions can be found in Koran 2017 and Koran et al. 2017. While the uncertainty 

quantification is well defined for the classical monthly linear model, there is no guidance for 

accurately quantifying the uncertainty when a high frequency or non-linear/non-parametrical 

model is used; similarly, it is unknown the extent to which the uncertainty formulations break 

down if applied to anything other than monthly linear models. Several savings uncertainty 

estimation methods have been introduced in the literature for non-linear/non-parametric baseline 

models, however these approaches have been developed to provide uncertainty estimates at each 

time step (over the post period) and not the uncertainty of the total energy savings (Subbarao and 
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Reddy 2011, Heo and Zavala 2012), or are purely qualitative (Walter et al. 2014). Accordingly, 

this work addresses the research question: What is a methodology and key metrics required to 

evaluate algorithms that estimate savings uncertainty due to baseline model error?  

 

To answer this question, two approaches to estimating savings uncertainty are evaluated and 

compared: K-fold cross validation and the method presented in ASHRAE Guideline 14. The 

effectiveness of these approaches on different model types (high frequency, linear, and non-

linear/non-parametric) was assessed using four different baseline models that span daily and 

hourly granularity, as well as linear and non-linear/non-parametric forms. The impact on the 

results of two different training periods is also analyzed - 12 months and 6 months. Note that 

concurrently to our work, Koran et al. 2017 proposed a study that aims to provide a comparison 

of different savings estimates uncertainty approaches:  ASHRAE Guideline 14 formula, a revised 

version of the ASHRAE formula, an exact algebraic approach for ordinary least squares 

regression and a bootstrap approach. Their works differs from ours mainly on the fact that their 

analysis focused on comparing the different methods, whereas we are analyzing the accuracy of 

the uncertainty estimates. 

2. Methodology 

2.1 Baseline models 

 

The baseline models used in whole building M&V are empirical models that relate energy usage 

to parameters such as outdoor air temperature, humidity, or building operating schedule. These 

models are developed using consumption data before an efficiency measure was implemented 

(i.e., pre period). The models are projected into the post period to estimate what the energy use 

would have been if the measure had not been implemented. The difference between the estimated 

and the metered energy consumption is taken as the avoided energy use or energy savings (Figure 

1). Statistical/machine learning regression methods are a standard approach used for developing 

baseline models that aim to model the relationship between the response y, which is the pre-

retrofit whole-building energy use and a set of independent variables (also known as explanatory 

variables) 𝒙 = (𝑥(1), … , 𝑥(𝑑)), where d is the number of independent variables. For example, the 

input variables can be time of the week and the outdoor air temperature. Mathematically the 

regression problem can be represented for a given observation set {(x1,y1),…, (xn,yn)}, as 

 

𝑦𝑖 = 𝑓(𝒙𝑖) +  𝜀𝑖 ,           𝜀 𝑖~ 𝑁(0, 𝜎𝜀
2)      (1) 

  

where 𝒙𝑖 = (𝑥(1), … , 𝑥(𝑑)),  𝑖 = 1, … , 𝑛  are d dimensional vectors of inputs variables,  𝜀 𝑖 is 

independent Gaussian noise with mean 0 and variance 𝜎𝜀
2. Building a baseline model consists of 

approximating the function 𝑓(𝒙) given a set of observation {(x1,y1),…, (xn,yn)}. 
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Figure 1. Actual and model-predicted energy data, overlaid with outside air temperature, for a 12-

month pre-installation period (training period) and 12-month post-installation period (prediction 

period). 

 

 

In recent years, several baseline energy modeling approaches that use interval meter data have 

been introduced in the academic literature and in the industry. These methods are based on 

traditional linear regression, nonlinear regression, and machine learning regression methods. In 

this study four different baseline models are used, and described in the following. These models 

were chosen in part, because they represent a cross-section of linear, non-linear/non-parametric, 

and daily and hourly frequency that allow a thorough investigation of conductions under which 

uncertainty estimates may break down.    

 

Time-of-Week-and-Temperature model (TOWT) 
The TOWT model (Mathieu et al. 2011) is a baseline model that includes time of the week (i.e., 

hour of the week), and piecewise-linear temperature response with fixed change points that were 

set to 45, 55, 65, 75 and 85˚F. In addition, different regression models are fitted for occupied and 

unoccupied periods of the day that were determined using the following procedure:  a linear 

regression model is fitted using two independent variables that are defined using the outside air 

temperature as number of degrees below 50˚F for the first one and number of degrees above 65 ˚F 

for the second one. The time step is defined as occupied if most of residuals from this simple 

model where positive, which means that the building is using more energy than it was predicted, 

otherwise the time step is defined as unoccupied. The choice of the TOWT model was motivated 

by the fact that it has been shown in previous study (Granderson et al. 2016) to be highly 

accurate. In this work, we used the implementation of the TOWT model that is available within 

the RMV2.0 R package (Touzani and Granderson 2017). Note that this version of the TOWT 

model has a hyperparameter, which correspond to a weighting factor that gives more 

statistical weight to days that are nearby to the day being predicted (the default value has 

been used, i.e., 15).  
 

 

Bayesian additive regression trees (BART) 

Using the BART algorithm as the regression method, this model characterizes energy 

consumption using the following independent variables: the time of the week (i.e., hour of the 

week), hourly outdoor air temperature and a dummy variable that is equal to 1 if the considered 

day is a holiday and 0 if not. BART is a Bayesian nonparametric regression model, which can be 

used to estimate the energy consumption as the sum of several regression trees (i.e., decision 

trees), and can be seen as a Bayesian version of ensemble methods such as random forest and 

gradient boosting machine. BART differs from other ensembles of regression tree algorithms in 
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that it is fully Bayesian model-based, and as such it consists of several prior distributions for all 

unknown parameters that characterize the regression trees. The posterior is computed using 

Markov Chain Monte Carlo algorithm (Kapelner and Bleich 2016). One of the most important 

advantages of BART over more traditional ensemble regression trees algorithms (i.e., random 

forest and gradient boosting machine) is that it is less sensitive to the choice of the hyper-

parameters that define the priors, making it easier to use by a non-expert in machine learning. 

Chipman et al. (2010) provided default settings for these hyper-parameters that simultaneously 

produce good fit and avoids over-fitting the training data. In this work we have used the proposed 

default values (Chipman et al. 2010) to build the baseline models, however it is important to note 

that it is possible to increase the prediction accuracy of the models, at some significant 

computational cost, by using some standard hyperparameters tuning methods (e.g., search grid 

and cross validation). The BART algorithm was included in this analysis because it is among the 

state of the art in machine learning algorithms, and is similar to gradient boosting machine 

algorithm that has shown good accuracy in predicting commercial buildings energy consumption 

(Touzani et al. 2018). Additionally, use of the default hyperparameters from Chipman et al. 

(2010) speeds its computation time with respect to the gradient boosting machine. The 

implementation of the BART algorithm used in this work is available within the bartmachine R 

package (Kapelner and Bleich 2013)  

 

Bayesian additive regression trees Daily model (BART_Daily) 
The BART_Daily model characterizes energy consumption using the BART algorithm and the 

following independent variables: day of the week (e.g., 1 for Monday and 7 for Sunday), the daily 

average outside air temperature, the standard deviation of the daily outside air temperature and a 

dummy variable that is equal to 1 if the considered day is a holiday and 0 if not. 

 

Daily linear model (LM_Daily) 

Using the same independent variables as BART_Daily model, this daily energy consumption 

model is fit using the ordinary least squares (OLS) regression algorithm. Note that unlike the 

BART_Daily model the days of the week are considered as a dummy variable, which means that 

for each day of the week a variable is created that is equal to 1 if the data point corresponds to the 

considered day and 0 if not. The mathematical form of the model is defined as follow 

 

𝐸𝑖 =  𝛼0 + 𝛼1 𝑇̅𝑖 + 𝛼2𝑠𝑑( 𝑇𝑖) + 𝛼4𝐻 + ∑ 𝛼𝑑𝐷𝑑𝑑  (2) 

 

where 𝑇̅𝑖 is the daily average outside air temperature,  𝑠𝑑( 𝑇𝑖) is the standard deviation of the 

daily outside air temperature, 𝐷𝑑 are binary variable (dummy variable) corresponding to the day 

of the week and 𝐻 is a dummy variable that is equal to 1 if the considered day is a holiday and 0 

if not. This model was chosen as a representative example an OLS model that the uncertainty 

formulation in ASHRAE Guideline 14 was originally designed for. 

 

 

 

2.2 Uncertainty estimation 

 

2.2.1 Uncertainty estimation background 

 

In addition to approximating the true regression function 𝑓(𝒙) (see equation 1) by an estimated 

function 𝑓(𝒙) (i.e., baseline model), it is highly desirable for the M&V application to have a 

measure of confidence in the prediction provided by the model.  The confidence is measured by 

quantifying the uncertainty surrounding the predictions. However, there are two types of 
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prediction uncertainty. The first is linked to the accuracy of the estimate 𝑓(𝒙) in comparison to 

the true regression function 𝑓(𝒙), which corresponds to the distribution of the quantity 𝑓(𝒙) −

𝑓(𝒙). In the regression literature this component of the uncertainty is known as the confidence 

interval (CI). The second type of the prediction uncertainty is linked to the accuracy of the 

estimate 𝑓(𝒙) in comparison to the response y, which corresponds to the distribution of prediction 

error 𝑦 − 𝑓(𝒙). This type of uncertainty is called the prediction interval (PI). For M&V 

applications the PI is of more practical use than the confidence interval since it estimates the 

accuracy with which the baseline model predicts the observed response 𝑦, and not just the 

accuracy of the approximation of the true regression function 𝑓(𝒙). Note that the PI is wider than 

the CI since the prediction error can be defined as: 

 

𝑦𝑖 − 𝑓(𝒙𝑖) = [𝑓(𝒙𝑖) − 𝑓(𝒙𝑖)] +  𝜀𝑖   (3) 

 

Assuming that the two error components in (3) are statistically independent, the variance of the 

prediction error  𝜎𝑦
2 can be expressed as 

𝜎𝑦
2(𝒙𝑖) = 𝜎𝑓̂

2(𝒙𝑖) +  𝜎𝜀
2    (4) 

 

where 𝜎𝑓̂
2 is the variance of the model error around the true regression function 𝑓(𝒙). 

 

Thus, given a confidence level CL of  100(1 − 𝛼)% the PI of the response 𝑦𝑖 corresponds to the 

interval that can be defined as  𝐼𝑦
𝛼(𝒙𝑖) =  [𝐿𝑦

𝛼(𝒙𝑖), 𝑈𝑦
𝛼(𝒙𝑖)], where 𝐿𝑦

𝛼(𝒙𝑖) is the lower bound and 

𝑈𝑦
𝛼(𝒙𝑖) the upper bound, which can be defined as  

 

𝐿𝑦
𝛼(𝒙𝑖) = 𝑓(𝒙𝑖) − 𝑡1−𝛼/2,𝑑𝑓√𝜎𝑦

2(𝒙𝑖)  (5) 

𝑈𝑦
𝛼(𝒙𝑖) = 𝑓(𝒙𝑖) + 𝑡1−𝛼/2,𝑑𝑓√𝜎𝑦

2(𝒙𝑖)  (6) 

 

where 𝑡1−𝛼/2,𝑑𝑓 is the 1 − 𝛼/2 quantile of a cumulative t-distribution function with 𝑑𝑓 degrees of 

freedom. This statistical metric is also known as the t-score, or critical point of the t-distribution 

with 𝑑𝑓 degrees of freedom. When the degrees of freedom exceeds 100, which roughly speaking 

corresponds to a number of pre period observations higher than 100, the 𝑡1−𝛼/2,𝑑𝑓 metric 

converges to the 𝑧1−𝛼/2, which is the 1 − 𝛼/2 quantile of a cumulative standard normal 

distribution (also known as z-score). 

 

For example, using the assumption that underlie the ASHRAE Guideline 14 savings uncertainty 

quantification formula, and which is: the only input variable that is considered for the regression 

is the outside air temperature T and that 𝑓(𝑇𝑖) is estimated by a linear regression model using the 

ordinary least squares method (OLS), the 𝜎𝑦
2(𝑇𝑖) is estimated by 

 

𝜎̂𝑦
2(𝑇𝑖) = 𝑠2 (1 +

1

𝑛
+

(𝑇𝑖−𝑇̅)2

∑ (𝑇𝑗−𝑇̅)
2𝑛

𝑗=1

)  (7) 

 

where 𝑇̅ is the sample mean and 𝑠2 is an unbiased estimate of 𝜎𝜀
2 given by the mean squared 

error: 

 

𝑠2 = 𝑀𝑆𝐸 =
1

𝑛−2
∑ (𝑦𝑖 − 𝑓(𝑇𝑖))2𝑛

𝑖=1   (8) 
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2.2.2 Uncertainty estimation approaches 
 

Two different approaches to quantify the uncertainty in savings estimates due to model error were 

evaluated in this work. The first is the M&V practitioners’ standard defined in ASHRAE 

Guideline 14. The second is based on the cross validation method used by the statistics and 

machine learning communities to estimate the prediction accuracy of machine learning models.  

 
ASHRAE Guideline 14 approach 

 

ASHRAE Guideline 14 provides an equation to estimate the baseline model uncertainty of the 

savings estimates; that is, it provides a formulation to estimate the prediction interval surrounding 

the total savings over the post-installation period. This formulation was originally introduced by 

Reddy and Claridge (2000), and it is derived from the definition of the variance of the prediction 

error  𝜎𝑦
2  for an OLS based baseline model with outside air temperature as independent variable 

(Equation 7). More specifically the ASHRAE Guideline 14 equation is an approximation of the 

aggregation of the variance of the prediction errors  𝜎𝑦
2 (Equation 7) over m prediction points of 

the post period: 

   

∆𝐸𝑠𝑎𝑣𝑒
𝐴𝑆𝐻𝑅𝐴𝐸 = 1.26 𝑡1−𝛼/2,𝑑𝑓

𝐸̂𝑝𝑜𝑠𝑡

𝑚𝐸̅𝑝𝑟𝑒
√𝑀𝑆𝐸(1 +

2

𝑛
)𝑚  (9) 

 

where  ∆𝐸𝑠𝑎𝑣𝑒
𝐴𝑆𝐻𝑅𝐴𝐸 is the uncertainty in the aggregated savings,  n is the number of  observations 

(data points) in the pre period, m is the number of observations in the post period, 𝐸̅𝑝𝑟𝑒 is the 

mean of the actual energy consumption in the pre period, 𝐸̂𝑝𝑜𝑠𝑡 is the estimated energy 

consumption in the post period, 1.26 is an empirical factor of approximation provided by Reddy 

and Claridge (2000) in order to avoid the matrix algebra of the original equation of the aggregated 

uncertainties, MSE is the mean squared error of the baseline regression model defined as 

𝑀𝑆𝐸 =  
1

𝑛
∙ ∑ (𝐸𝑖

𝑝𝑟𝑒
− 𝐸̂𝑖

𝑝𝑟𝑒
)

2𝑛
𝑖=1 with 𝐸𝑖

𝑝𝑟𝑒
 is the actual energy consumption is the pre-installation 

period, 𝐸̂𝑖
𝑝𝑟𝑒

 is the estimated energy consumption in the pre-installation period, 𝑡1−
𝛼

2
,𝑛−𝑘 is the t-

statistic value with 𝛼 the confidence level and 𝑑𝑓 the degree of freedom. Note that typically 

within the M&V framework the ASHRAE formula (equation 9) is normalized by the savings 

estimate, this form of presenting the uncertainty is called fractional savings (ASHRAE 2014). 

 

 

 
k-fold cross validation approach 

 

In a more general case where no assumption is made on the type of baseline model used, one can 

estimate the prediction error 𝜎𝑦
2, using k-fold cross validation (k-fold CV). The k-fold cross 

validation method consists of randomly splitting the training dataset (i.e., pre period) into k 

subsamples, called folds, of roughly equal size. In the first iteration, the baseline model is created 

using k-1 folds as a training dataset and the held-out fold (prediction set) is used to calculate the 

first iteration estimation of the prediction error  𝜎𝑦
2; this uncertainty is estimated using the mean 

squared error of the held-out fold (𝑀𝑆𝐸𝑖). This procedure is repeated k times, and at each time a 

different fold is used as a test set. Figure 2 depicts an example of the k-folds CV approach, where 

k = 5. The final k-fold CV estimate of the 𝑀𝑆𝐸 is the average of the MSEi across each of the k 

iterations: 
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(𝜎̂𝑦
2)𝐶𝑉 ≈ MSE𝐶𝑉 =

1

𝑘
∑ 𝑀𝑆𝐸𝑖

𝑘
𝑖=1    (10) 

 

where 𝑀𝑆𝐸𝑖 =
1

𝑛𝑖
∑ (𝐸𝑗

𝑝𝑟𝑒
− 𝐸̂𝑗

𝑝𝑟𝑒
)2𝑛𝑖

𝑗  and 𝑛𝑖 number of data points in the i-th held-out fold.  

 

 
Figure 2. A k-fold cross validation, where k = 5. The blue boxes represent the training sets, 

 and the white boxes represent the held-out sets used to estimate the MSE. 

 

 

The advantage of using the k-folds CV to estimate the 𝜎𝑦
2 versus the standard MSE calculation, 

which is the goodness of fit metric, is that the k-fold CV MSE version is computed using data 

points that were not included in the baseline model training process; as such, k-fold CV MSE 

should provide a better indication of the actual prediction uncertainty of the model and 

consequently a better estimate of the variance of the prediction error 𝜎𝑦
2  (Equation 4). A 

modification of the traditional k-fold was applied, that defined the hold-out periods in a way that 

minimizes the effects of serial correlation at the borders of the training and test periods, and 

prevents inappropriate differences between the training and test periods (such as might occur if 

training on summer data).   

 

Traditionally, in the time series forecasting literature, the out-of-sample evaluation method is 

used instead of the k-folds CV, where a block of data at the end of the time series is held out for 

testing. However, this can be problematic because the error can be completely misestimated if the 

statistical properties of the time series of the test set are different from the training data. To 

account for these issues, a modified version of the k-folds CV was used. This method consists in 

randomly selecting blocks of data points rather than randomly selecting unique observation (i.e., 

time step), when the k splitting is performed. More precisely, calendar weeks are considered as 

definition of a block. Thus, in the case where k=5, at each step of the 5-folds algorithm one fifth 

of available calendar weeks are selected as test sample and in addition in order to exclude the 

autocorrelation that may occur at the border (early hours of Mondays and late hours of Sundays) 

the Sundays preceding the test weeks and the Mondays following the test weeks are excluded 

from the training period. For example, in the case where 50 baseline weeks were available, at 

each iteration of the k-folds CV algorithm 10 weeks will be randomly chosen as held-out fold 

(prediction set) and the remain 40 weeks, not including the days that surround the held-out weeks, 

will be used to train the baseline model. 

 

Although, there is no formal rule to choose the value of k, in practice k = 5 or k = 10 is used 

(James et al. 2013). As the value of k increases, the computational demands also increase. 

Therefore, to decrease the required computational time k =5 was applied in this work. 

 

Test Set 1

Test Set 2

Test Set 3

Test Set 4

Test Set 5
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Following similar assumptions to ASHRAE Guideline 14, namely that the errors are independent 

and normally distributed, the uncertainty of the cumulative savings (i.e., error propagation 

definition, when the errors are independent and normally distributed) using the k-fold CV method 

can be estimated as: 

 

∆𝐸𝑠𝑎𝑣𝑒
𝐶𝑉 = 𝑧1−𝛼/2√𝑚 𝑀𝑆𝐸𝐶𝑉   (11) 

 

where m is the number of data points in the post-installation period.  

 

One of the major differences between the k-fold CV method (Equation 11) and the ASHRAE 

formulation (Equation 9) is that the k-fold CV approach provides a non-deterministic estimate of 

the uncertainty, while the ASHRAE approach is deterministic. Thus, different trials will produce 

different estimates of  𝑀𝑆𝐸𝐶𝑉. In this work, we are reporting only one trial estimate  𝑀𝑆𝐸𝐶𝑉. 

Note that it is often advocated to repeat the k-fold cross validation and to average the results. 

However, as it is argued in (Vanwinckelen and Blockeel 2012) repeated cross validation does not 

necessarily provide much more accurate estimate of the model accuracy. 

 

 

 
Adjustment for autocorrelation 
 

When high resolution meter data is used (e.g., 15-min, hourly or daily) autocorrelated model 

errors arise. In other words, the time series of the errors is not random in time, and the 

information in each error observation is not totally separate from the information in other error 

observations. Consequently, the number of independent error observations is fewer than n (the 

number of observations in the pre period).  The presence of the autocorrelation is usually induced 

by the omission of time dependent variables from the baseline model. These may be unknown, or 

not easily or cost-effectively measured. For example, occupancy is a variable that is known to 

have a significant impact on the energy use of a building and it is usually time dependent in 

commercial buildings, however it is very uncommon to have access to time-resolved measures of 

building occupancy levels.   

 

The reduction in number of independent observations has implications on the uncertainty 

estimation such that the formulas 9 and 11 are no longer adequate. For positive autocorrelation, 

which is generally the case for commercial building energy use data, the MSE estimate of the 

errors variance will underestimate the true variance, and therefore underestimate the uncertainty 

in the savings estimate. ASHRAE’s Guideline 14 introduced a version of ∆𝐸𝑠𝑎𝑣𝑒
𝐴𝑆𝐻𝑅𝐴𝐸 that corrects 

for autocorrelation by adjusting the number of observations in the pre-installation period. The true 

number of pre-installation period observations n is replaced by a quantity known as the effective 

number of observations n’ (also called the number of independent observations). This correction 

is deterministic, based on the assumption that the autocorrelation in the time series is first-order 

autocorrelation, meaning that it is characterized by lag 1 or that autocorrelation is present only 

between consecutive values in the time series. The computation of the effective number of 

observations requires only the number of pre period observations and the lag 1 autocorrelation 

coefficient of the baseline model errors: 

 

𝑛′ = 𝑛 ∙
1−𝜌

1+𝜌
  (12) 

 

The corrected version of the uncertainty in the aggregated savings, defined in ASHRAE 

Guideline 14,  is expressed as 
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∆𝐸𝑠𝑎𝑣𝑒
𝐴𝑆𝐻𝑅𝐴𝐸 = 1.26 𝑡1−𝛼/2,𝑑𝑓

𝐸̂𝑝𝑜𝑠𝑡

𝑚𝐸̅𝑝𝑟𝑒
√𝑀𝑆𝐸

𝑛

𝑛′
(1 +

2

𝑛′
)𝑚   (13) 

 

In order to account for autocorrelation of lag 1, the same deterministic method as use in the 

ASHRAE Guideline is applied to the k-fold cross validation approach. Thus, the corrected 

version of (11) is expressed as 

 

∆𝐸𝑠𝑎𝑣𝑒
𝐶𝑉 = 𝑧1−𝛼/2√𝑚

𝑛

𝑛′
 𝑀𝑆𝐸𝐶𝑉   (14) 

 

 

 

2.3 Method to evaluate uncertainty estimation approaches 

 

The methodology that was developed to evaluate uncertainty estimation approaches is similar to 

the procedure that was used in Granderson and Price (2014), Granderson et al (2015) and 

Granderson et al (2016) to evaluate predictive accuracy of baseline models. This 4-step 

methodology is defined as follows: 

1) Collect a dataset that comprises interval meter data and independent variable data, which 

is outside air temperature, for several hundred buildings. These buildings are “untreated” 

in terms of efficiency interventions. That is, they are not known to have implemented 

major efficiency measures. 

2) The data for each building is divided into hypothetical training periods and prediction 

periods, and meter data from the prediction period is “hidden” from the model. For this 

study 6-month and 12-month training periods were considered. 

3) For the set of baseline models and uncertainty methods described in Sections 2 and 3, 

train the baseline models using the training period data and generate predictions (𝐸̂) using 

the prediction period data; also, estimate the corresponding uncertainty (∆) in the 

prediction at the 95% confidence level. 

4) To evaluate the performance of each uncertainty method, compare the actual total energy 

consumption in the prediction period (E) to determine whether it falls within 𝐸̂ +/- ∆. If it 

does, the uncertainty estimate is informative.   

 

To evaluate the absolute accuracy of a given uncertainty quantification approach, we define the 

error uncertainty ratio (EUR), that characterizes whether the actual total energy consumption 

during the prediction period lies within the uncertainty range of the predicted consumption. That 

is, the EUR evaluates the quality of the prediction interval of the predicted total energy 

consumption of the post-installation period. If EUR is within the range [-1,1] then the estimated 

value of the total energy consumption is within the range of the uncertainty (i.e., prediction 

interval). If the EUR is outside the range [-1,1] then the uncertainty is underestimated. The EUR 

is defined as:  

 

𝐸𝑈𝑅 =  
𝐸𝑡𝑜𝑡𝑎𝑙−𝐸̂𝑡𝑜𝑡𝑎𝑙

Δ
  (15) 

 

where 𝐸𝑡𝑜𝑡𝑎𝑙 is the actual value of the total energy consumption during the prediction period, 

𝐸̂𝑡𝑜𝑡𝑎𝑙 is the predicted value and Δ is the estimated uncertainty. 

 

Analyzing the EUR metric over a large set of buildings provides good insight as to the accuracy 

of the uncertainty estimate. We complement this with an additional metric that quantifies the 
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percentage of buildings in the data set for which the actual total energy consumption is within the 

uncertainty range. In other words, UICF represents how often (the frequency) the observed total 

energy consumption falls within the uncertainty interval. This metric is referred to as uncertainty 

interval coverage factor (UICF). 

 

𝑈𝐼𝐶𝐹 = 100
1

𝑁
∑ 𝐼(𝐸𝑡𝑜𝑡𝑎𝑙)𝑁

𝑖=1   (16) 

where 

𝐼(𝐸𝑡𝑜𝑡𝑎𝑙) = {
1 𝑖𝑓 𝐸𝑡𝑜𝑡𝑎𝑙  𝑖𝑠 𝑤𝑖𝑡ℎ𝑖𝑛 𝑡ℎ𝑒 𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 
0 𝑒𝑙𝑠𝑒

 

 

In the equation N is the number of buildings in the test dataset. If 𝑈𝐼𝐶𝐹 is close to the nominal 

confidence level, for instance 95%, then the uncertainty method provides an informative 

uncertainty estimate. If UICF is much lower than the nominal confidence level, then the 

uncertainty method provides poorly informative estimates. If the UICF is equal to 1 it is 

important to analyze the EUR metric in order to check that the uncertainty estimation method is 

not overestimating the uncertainty. 

 

2.4 Test datasets 

 

To answer the research question posed in this work regarding the uncertainty estimation, we use a 

dataset that comprises interval meter data of buildings that are “untreated” in terms of efficiency 

interventions. That is, they are not known to have implemented major efficiency measures. The 

dataset is divided into two intervals, a hypothetical baseline (i.e. model training) period, and a 

hypothetical performance, or measure ‘post’ (i.e. prediction) period. Using this type of dataset 

allows us to perform an evaluation of the how well the uncertainty in ‘post’, or prediction period 

consumption, and therefore in the savings, is being estimated; this is because the actual metered 

consumption is known in the prediction period. 

 

The baseline models and uncertainty estimation approaches were used with a dataset that 

comprises 15-minute metered whole-building electricity data gathered from 69 commercial 

buildings. The buildings are located in Northern and Central California (n = 54) and Washington, 

D.C. (n = 15). All buildings from the dataset had 24 months of electricity consumption and 

outside air temperature data; missing data was present in some of the time series but amounted to 

less than one percent of the total number of observations. A visual inspection showed no 

anomalous changes in energy use that would confound model fitness predictions.  

 

To decrease the computational time of the analysis and to align with the hourly frequency of the 

outside air temperature data, the 15-minute meter data were aggregated to hourly intervals. In 

addition, since daily baseline models were used in this study, the data were also converted to 

daily interval format. The outdoor air temperature data were acquired using the ZIP code of each 

building and the closest weather station from the Weather Underground service (wunderground 

2017). 

 

For each building, the time series data were split into a hypothetical training period and prediction 

period. The prediction period was defined as the most recent 12 months of the available data. A 

12-month prediction period (post-period) is generally the standard for whole-building M&V of 

energy savings. The models were trained using the 12 months and 6 months worth of data that 

immediately preceded the prediction period.  

 

3. Results  
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3.1 Baseline model accuracy 

 
First, we assessed the overall predictive accuracy of the models in order to verify that the 

considered baseline models provide reliable predictions of the post period. As in the assessment 

of uncertainty approaches, and as described in Granderson et al (2015) and Granderson et al 

(2016) the models were trained using either 12 or 6 months of data, and run to predict energy 

consumption for a 12 month period. The predictive accuracy was evaluated using two different 

statistical metrics, which are the coefficient of variation of the root mean squared error 

(CV(RMSE)), and the normalized mean bias error (NMBE). These two metrics provide 

complementary views of model performance for M&V applications, and they are also well 

adapted to assess relative model-to-model comparisons across the test dataset. A more extensive 

description of these metrics in addition to the summary table of all the following figures are 

provided in the appendix. 

 

Figure 3 summarizes the CV(RMSE) results across the full population of buildings in the test 

dataset. In these box-and-whisker plots, the right end of each ‘whisker’ represents the CV(RMSE) 

for the 90
th
 percentile in the population of test buildings, and the left end represents the 10

th
 

percentile. The right and left ends of each box represent the 75
th
 and 25

th
 percentiles, respectively, 

and the vertical line in each box marks the median, or 50
th
 percentile. The most accurate results 

were obtained by the daily models, especially by the BART_Daily model that produced baseline 

models with CV(RMSE) smaller that 10% for more than 75% of test buildings. When the training 

period was reduced from 12 months to 6 months the performance decreased just slightly. 

 

 
Figure 3.  Distribution of CV(RMSE) metrics for each model, for 12-months prediction period, and 

12-months and 6-months training period. 

 

 

Figure 4 displays the distribution of NMBE across the test dataset, where the vertical red dashed 

line represents NMBE equal to 0. For the majority of cases there was a tendency of a bias toward 

over-predicting the energy consumption (NMBE negative). The results show that the differences 

in performance across the baseline models are modest. When the training period was reduced 

from 12 months to 6 months the performance of these models decreased.  
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Figure 4.  Distribution of NMBE metrics for each model, for 12-months prediction period, and 12-

months and 6-months training period. 

 

 

3.2 Uncertainty methods performance evaluation 

 

To evaluate the absolute performance of each uncertainty quantification approach the error 

uncertainty ratio (EUR) across the full population of buildings in the test dataset is computed for 

each model and each uncertainty method. Thus, we analyze eight configurations of baseline 

model and uncertainty quantification method. The results of this analysis are shown in Figure 5. 

In the plots, CV stands for the k-fold CV uncertainty method. The vertical dashed red lines 

correspond to EUR equal to -1 and 1 and delimit the interval outside of which the estimated 

uncertainty is underestimated. The results show that the smallest deviation from the [-1;1] interval 

is obtained when LM_Daily baseline model is used. The second smallest deviation from the [-

1;1] interval was obtained using another daily model (i.e., BART_Daily). The results obtained 

using hourly models  (i.e., TOWT and BART) shows a significant deviation from the [-1;1] 

interval, which means that the estimated uncertainties are poorly informative.  

  

 
Figure 5.  Distribution of EUR metrics for each combination of baseline model and uncertainty 

method, evaluated using the 12-months prediction period, and 12-months and 6-months training 

period. 
 

Figure 6 summarizes the results of the computation of uncertainty interval coverage factor 

(UICF) for all combinations of baseline models and uncertainty methods and for both training 
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periods. The key finding is that the maximum UICP is obtained using the LM_Daily model, 

where the UICP using the ASHRAE uncertainty method is ~71% and using the k-folds CV 

method is ~64%. This means that for more than two thirds of buildings in the data set, the actual 

value of the annual energy consumption was within the estimated uncertainty interval. 

Meanwhile, for hourly models, the uncertainty methods provided an informative uncertainty 

interval for more than ~40% or fewer of the test buildings. However, these results are 

significantly below the expected 95%, which correspond to the 95% confidence level at which the 

uncertainties were computed.  

 
Figure 6. UICF metrics (in percentage) for each combination of baseline model and uncertainty 

method, evaluated using the 12-months prediction period, and 12-months (left plot) and 6-months 

(right plot) training period. 

 

 
 

 

 

 

 

 

 

 

4. Discussion 

 

The results indicate that the approaches that were tested were not able to consistently provide 

informative estimates of the uncertainty in savings due to model error, when applied to higher 

frequency and non-linear models. The impact of higher frequency was more severe than that of 

using non-linear/non-parametric models, likely due to insufficient ability to correct for 

autocorrelation. The presence of the high degrees of autocorrelation in the model residuals (i.e., 

the differences between model predictions and actual data), violate the assumptions that underlie 

the uncertainty quantification approaches that were evaluated, and lead to underestimation of the 

uncertainty. The simple deterministic autocorrelations correction used in this work, and proposed 

in ASHRAE Guideline 14, is limited to correct autocorrelations of lag 1 and did not prove 

sufficient for either daily or hourly models, for the majority of buildings tested. In reality, the 

structure of the autocorrelation of the residuals is more complex than the lag 1 assumption, 

particularly for the residuals associated with hourly baseline models.  

 

The ASHRAE approach used in combination with a daily linear model did stand out as providing 

the most informative uncertainty estimate. This was expected, as the ASHRAE Guideline 14 

uncertainty formulation was designed for use with linear OLS approach. However, at its best, the 
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ASHRAE estimate was correct for 71% of the buildings analyzed, where the expected value was 

95% (due to the 95% confidence level that was applied). In general, the k-folds cross validation 

approach underestimated the uncertainty with respect to the ASHRAE approach. When the 

duration of the training period was reduced from 12 months to six months, the number of correct 

estimates decreased significantly.  

5. Conclusions  

In this work we proposed and applied a methodology to evaluate uncertainty approaches that can 

be used to quantify the uncertainty of energy savings estimates, including the current industry 

standard approach defined in ASHRAE Guideline 14. While the ASHRAE approach was derived 

from first principles combined with simplifications that are valid for linear models with low serial 

correlation, one of the key contributions of this work was the development of a methodology to 

empirically test alternative uncertainty estimation approaches and their efficacy for different 

modeling techniques. The methods that were tested tend to underestimate the uncertainty. The 

tendency to underestimate the uncertainty is stronger for hourly models than for daily models, 

due to stronger autocorrelation in model residuals at the hourly time scale. The correction for 

autocorrelation that is proposed in ASHRAE Guideline 14, did not prove sufficient for either 

daily or hourly models, for the majority of buildings tested. 

 

In conclusion, we note that savings uncertainty quantification is presented in the literature and in 

industry M&V references as a useful method to understand the impact of model error on the 

savings estimate. At the same time, higher frequency baseline models are being recognized as 

powerful approaches to quantify more resolved savings estimates, and to better characterize 

commercial building load profiles. Similarly, as solutions from the machine learning and data 

science fields are integrated into the building energy domain, more complex modeling approaches 

are increasingly being explored. With these trends as grounding context, recommendations from 

the results of this work, and prior research findings, is: where higher frequency meter data is 

available (daily or hourly, as opposed to monthly), it can be leveraged to improve load and energy 

use predictions. Metrics such as R
2
, CV(RMSE), MSE, and NMBE are sound measures of model 

error, and therefore appropriate to assess model suitability for conducting savings measurement 

and verification. The most effective methods of quantifying these metrics are those that use cross 

validation, as opposed to simple goodness of fit, and are therefore more robust in estimating 

prediction accuracy.   

 

In order to improve the accuracy of the post-installation period savings estimates and the 

corresponding uncertainty quantification, it is important that the M&V engineering and research 

community develop better methods to address the baseline models’ errors autocorrelation. A 

potential solution, is to use autoregressive models to remove the autocorrelation, however, the 

existing autoregressive models are not directly applicable to the M&V problem of producing post 

savings estimates because these methods have been mostly developed for time series forecasting, 

which involves the usage of observations of previous timesteps to predict the value of the next 

time step. Thus, since there is generally a significant delay between the end of the baseline period 

and the beginning of the post-installation period, which correspond to the period of time where 

the measure is implemented in the building, it is impossible to use the previous timesteps to 

predict the energy use in the post period. This challenging research problem need to be resolved 

in order to use the potential of the autoregressive models to address the autocorrelation in the 

baseline models’ errors.   

 

  



 

15 

Acknowledgment 
 

This work described in this report was funded by the Pacific Gas and Electric Company. 

Lawrence Berkeley National Laboratory’s contributions were also supported by the U.S. 

Department of Energy under Contract No. DE-AC02-05CH11231. This project was developed as 

part of Pacific Gas and Electric Company’s Emerging Technology – Technology Development 

Support program under internal project number: ET12PGE5312. 

 

References 

 
Afram, A. and Janabi-Sharifi, F., 2014. Theory and applications of HVAC control systems–A 

review of model predictive control (MPC). Building and Environment, 72, pp.343-355. 

 

Ahmad, M.W., Mourshed, M. and Rezgui, Y., 2017. Trees vs Neurons: Comparison between 

random forest and ANN for high-resolution prediction of building energy consumption. Energy 

and Buildings, 147, pp.77-89. 

 

Araya, D.B., Grolinger, K., ElYamany, H.F., Capretz, M.A. and Bitsuamlak, G., 2017. An 

ensemble learning framework for anomaly detection in building energy consumption. Energy and 

Buildings, 144, pp.191-206. 

 

ASHRAE Guideline 14 (2014). ASHRAE Guideline 14-2014 for Measurement of Energy and 

Demand Savings. American Society of Heating, Refrigeration and Air Conditioning Engineers, 

Atlanta, Georgia. 

 

Chipman, H.A., George, E.I. and McCulloch, R.E., 1998. Bayesian CART model search. Journal 

of the American Statistical Association, 93(443), pp.935-948. 

 

Chipman, H.A., George, E.I. and McCulloch, R.E., 2010. BART: Bayesian additive regression 

trees. The Annals of Applied Statistics, 4(1), pp.266-298. 

 

Consortium for Energy Efficiency (CEE). State of the efficiency program industry: Budgets, 

expenditures, and impacts. March 2017, Consortium for Energy Efficiency. 

 

Coulston, J.W., Blinn, C.E., Thomas, V.A. and Wynne, R.H., 2016. Approximating prediction 

uncertainty for random forest regression models. Photogrammetric Engineering & Remote 

Sensing, 82(3), pp.189-197. 

 

Efron, B. and Tibshirani, R.J., 1994. An introduction to the bootstrap. CRC press. 

 

Energy Information Administration (EIA). Commercial Buildings Energy Consumption Survey 

(CBECS): 2012 CBECS Survey Data. Energy Information Administration, May 2016. Available 

from: http://www.eia.gov/consumption/commercial/reports/2012/energyusage/index.cfm; 

accessed November 14, 2017.  

 

EVO, 2016 Efficiency Valuation Organization (EVO) International Performance Measurement 

and Verification Protocol: Concepts and Options for Determining Energy and Water Savings, vol. 

1, EVO (2016) 10000–1:2016 

 

Fels, M.F., 1986. PRISM: an introduction. Energy and Buildings, 9(1), pp.5-18. 



 

16 

 

Granderson, J. and Price, P.N., 2014. Development and application of a statistical methodology to 

evaluate the predictive accuracy of building energy baseline models. Energy, 66, pp.981-990. 

 

Granderson, J., P. N. Price, D. Jump, N. Addy, and M. D. Sohn. 2015. “Automated measurement 

and verification: Performance of public domain whole-building electric baseline 

models.” Applied Energy, 144, pp.106–113. 

 

Granderson, J., S. Touzani, C. Custodio, M. D. Sohn, D. Jump, and S. Fernandes. 2016. 

“Accuracy of automated measurement and verification (M&V) techniques for energy savings in 

commercial buildings.” Applied Energy, 173, pp.296–308. 

 

Granderson, J., Touzani, S., Fernandes, S. and Taylor, C., 2017. “Application of automated 

measurement and verification to utility energy efficiency program data”. Energy and 

Buildings, 142, pp.191-199. 

 

Granderson, J. and Fernandes, S., 2017. The state of advanced measurement and verification 

technology and industry application. The Electricity Journal, 30(8), pp.8-16. 

 

Heo, Y. and Zavala, V.M., 2012. Gaussian process modeling for measurement and verification of 

building energy savings. Energy and Buildings, 53, pp.7-18. 

 

James, G., Witten, D., Hastie, T. and Tibshirani, R., 2013. An introduction to statistical 

learning (Vol. 112, p. 18). New York: springer. 

 

Kapelner, A. and Bleich, J., 2013. bartmachine: Machine learning with Bayesian additive 

regression trees. arXiv preprint arXiv:1312.2171. 

 

Kissock, J.K., Haberl, J.S. and Claridge, D.E., 2002. Development of a Toolkit for Calculating 

Linear, Change-Point Linear and Multiple-Linear Inverse Building Energy Analysis Models, 

ASHRAE Research Project 1050-RP, Final Report. Energy Systems Laboratory, Texas A&M 

University. 

 

Koran, W. E. 2017. Uncertainty Approaches and Analyses for Regression Models and ECAM, 

Bonneville Power Administration. Available from: https://www.bpa.gov/EE/Utility/research-

archive/Documents/Evaluation/UncertaintyMethodsComparisonsFinal.pdf; accessed on 

December 12, 2017. 

 

Koran, B., Boyer, E., Khawaja, S., Rushton, J., and Stewart, J, 2017. A Comparison of 

Approaches to Estimating the Time-Aggregated Uncertainty of Savings Estimated from Meter 

Data. IEPEC Proceedings, 2017. 

 

Mamidi, S., Chang, Y.H. and Maheswaran, R., 2012, June. Improving building energy efficiency 

with a network of sensing, learning and prediction agents. In Proceedings of the 11th 

International Conference on Autonomous Agents and Multiagent Systems-Volume 1 (pp. 45-52).  

 

Mathieu, J. L., P. N. Price, S. Kiliccote, and M. A. Piette. 2011. “Quantifying changes in building 

electricity use, with application to demand response.” IEEE Transactions on Smart Grid, 2(3), 

pp. 507–518. 

 



 

17 

Najafi, M., Auslander, D.M., Bartlett, P.L., Haves, P. and Sohn, M.D., 2012. Application of 

machine learning in the fault diagnostics of air handling units. Applied energy, 96, pp. 347-358. 

 

Reddy, T.A. and Claridge, D.E., 2000. Uncertainty of “measured” energy savings from statistical 

baseline models. HVAC&R Research, 6(1), pp.3-20. 

 

Stuart, E., Larsen, P.H., Carvallo, J.P., Goldman, C, and Gilligan, D. U.S. Energy service 

company (ESCO) industry: Recent market trends. October 2016, Lawrence Berkeley National 

Laboratory, LBNL Report #1006343. 

 

Subbarao, K., Lei, Y. and Reddy, T.A., 2011. The Nearest Neighborhood Method to Improve 

Uncertainty Estimates in Statistical Building Energy Models. ASHRAE Transactions, 117(2). 

 

Touzani, S., Granderson, J. and Fernandes, S., 2018. Gradient boosting machine for modeling the 

energy consumption of commercial buildings. Energy and Buildings, 158, pp.1533-1543. 

 

Touzani, S., and Granderson, J., 2017. R Package for Measurement and Verification 2.0 for 

Commercial Buildings (RMV2.0) v1.0. LBNL 2018-001. Available from: 

https://github.com/LBNL-ETA/RMV2.0 

 

Vanwinckelen, G. and Blockeel, H., 2012, May. On estimating model accuracy with repeated 

cross-validation. In Proceedings of the 21st Belgian-Dutch Conference on Machine Learning (pp. 

39-44). 

 

Walter, T., Price, P.N. and Sohn, M.D., 2014. Uncertainty estimation improves energy 

measurement and verification procedures. Applied Energy, 130, pp.230-236.  

 

wunderground. The Weather Channel LLC. 2017. Weather Underground. Available at: 

http://wunderground.com  



 

18 

Appendix  
 

 

 
Statistical Metrics to Assess Model Accuracy 
To evaluate the effectiveness of a baseline model, several statistical metrics can be used, and 

these different metrics provide different insights into aspects of accuracy measurement. Relying 

on just one metric is usually not sufficient to fully understand the weakness and strengths of a 

specific baseline model. The two metrics that are used in this work are the normalized mean bias 

error (NMBE); and the coefficient of variation of the root mean squared error (CV(RMSE)).  

 

The NMBE is the mean of the error in the predictions divided by the mean of the actual energy 

use. In other words, it gives a sense of the total difference between model predicted energy 

consumption, and actual metered energy use, with intuitive implications for the accuracy of 

avoided energy use calculations. If the value of NMBE is positive, it means that the prediction of 

the total energy used during the entire prediction period is lower than the measured value. A 

negative NMBE means that the prediction is higher. The NMBE is defined in the following 

equation, where 𝑦̅ is the average of 𝑦𝑖.  

 

𝑁𝑀𝐵𝐸 =  

1
𝑛

∑ (𝑦𝑖 − 𝑦̂𝑖)𝑛
𝑖

𝑦̅
× 100 

 

The value of NMBE is independent of the timescale for which it is evaluated, which means that 

the value of the metric will be the same if the timescale is 15-minute, hourly, or daily. 

 

The CV(RMSE) is the root mean square error normalized by the mean of the measured values, 

which provides a quantification of the typical size of the error relative to the mean of the 

observations. This metric also gives an indication of the model’s ability to predict the overall 

energy use shape that is reflected in the data. CV(RMSE) is also familiar to practitioners, and is 

prominent in resources such as ASHRAE Guideline 14. The CV(RMSE) is defined by the 

equations below, where 𝑦𝑖 is the actual metered value, 𝑦̂𝑖 is the predicted value, 𝑦̅ is the average 

of the 𝑦𝑖, and n is the total number of data points.  

 

𝐶𝑉(𝑅𝑀𝑆𝐸) =
√1

𝑛
∑ (𝑦𝑖 − 𝑦̂𝑖)2𝑛

𝑖

𝑦̅
× 100 

 
In contrast to the NMBE, CV(RMSE) quantify the predictive accuracy at the timescale of the data 

and prediction; in other words, if the predictions and measured data apply to hourly timescales, 

then this metric summarizes the accuracy in hourly predictions. 
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Results Summary Tables 

 

 

Model P10 P25 P50 P75 P90 

BART 6.3 11 14 18 25 

BART_Daily 4.1 6.2 7.8 10 16 

LM_Daily 4.2 6.2 8.9 14 23 

TOWT 6 11 14 19 25 

Table A-1.  Percentiles of CV(RMSE) metrics for each baseline model, evaluated using the 12-months 

prediction period, and 6-months training period. 
 

 

Model P10 P25 P50 P75 P90 

BART 6.5 11 13 17 26 

BART_Daily 4.1 5.7 7.4 9.6 16 

LM_Daily 4.4 6 8 11 20 

TOWT 6.2 11 14 19 25 

Table A-2.  Percentiles of CV(RMSE) metrics for each baseline model, evaluated using the 12-months 

prediction period, and 12-months training period. 
 

 

Model P10 P25 P50 P75 P90 

BART -4.4 -2.9 -0.62 0.8 2.1 

BART_Daily -4.8 -2.8 -0.63 0.49 2 

LM_Daily -5.9 -3 -0.99 0.22 2.2 

TOWT -3.4 -2.2 -0.51 0.71 2.1 

Table A-3.  Percentiles of NMBE metrics for each baseline model, evaluated using the 12-months 

prediction period, and 6-months training period. 
 

 

Model P10 P25 P50 P75 P90 

BART -3.4 -2.1 -0.83 -0.1 0.61 

BART_Daily -3.4 -2.1 -0.85 0.03 0.64 

LM_Daily -4 -2.6 -0.93 -0.31 0.55 

TOWT -2.6 -1.6 -0.7 0.46 1.3 

Table A-4.  Percentiles of NMBE metrics for each baseline model, evaluated using the 12-months 

prediction period, and 12-months training period. 
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Method P10 P25 P50 P75 P90 

BART_ASHRAE -6.4 -4.7 -1.3 1.7 3.8 

BART_CV -6.4 -4.6 -1.3 1.9 3.8 

BART_Daily_ASHRAE -5 -3.4 -0.92 0.69 2.9 

BART_Daily_CV -3.6 -2.8 -0.72 0.66 2.3 

LM_Daily_ASHRAE -2.7 -1.3 -0.53 0.16 1.7 

LM_Daily_CV -3.2 -1.6 -0.7 0.2 2.1 

TOWT_ASHRAE -3.8 -2.4 -0.52 1.2 2.3 

TOWT_CV -4.3 -2.6 -0.57 1.2 2.4 

Table A-5.  Percentiles of EUR metrics for each combination of baseline model and uncertainty 

method, evaluated using the 12-months prediction period, and 6-months training period. 
 

 

Method P10 P25 P50 P75 P90 

BART_ASHRAE -4.2 -2.4 -0.92 -0.11 1.2 

BART_CV -4.6 -2.6 -1 -0.12 1.3 

BART_Daily_ASHRAE -2.8 -1.9 -0.72 0.029 0.9 

BART_Daily_CV -2.9 -1.7 -0.66 0.028 0.84 

LM_Daily_ASHRAE -1.8 -1 -0.47 -0.14 0.4 

LM_Daily_CV -2.2 -1.3 -0.59 -0.18 0.48 

TOWT_ASHRAE -2.7 -1.7 -0.55 0.61 1.9 

TOWT_CV -3 -1.9 -0.6 0.69 1.9 

Table A-6.  Percentiles of EUR metrics for each combination of baseline model and uncertainty 

method, evaluated using the 12-months prediction period, and 12-months training period. 

 

 

 
Model ASHRAE k-folds CV 

12 months 6 months 12 months 6 months 

BART 40.6 20,3 33.3 21.7 

BART_Daily 49.3 27.5 49.3 33.3 

TOWT 40.6 26.1 37.7 24.6 

LM_Daily 71 36.2 63.7 31.9 

Table A-7. UICF metrics (in percentage) for each combination of baseline model and uncertainty 

method, evaluated using the 12-months prediction period, and 12-months (left plot) and 6-months 

(right plot) training period. 

 




