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Abstract®

A technique is described whereby the output of ACME, a
localist constraint satisfaction model of analogical
mapping (Holyoak & Thagard, 1989) is used to constrain
the distributed representations of domain objects
developed by Hinton's (1986) multilayer model of
propositional learning. In a series of computational
experiments, the ability of Hinton's network to transfer
knowledge from a source domain to a target domain is
systematically examined by first training the model on the
full set of propositions representing a source domain
together with a subset of propositions representing an
isomorphic target domain, and then testing the network
on the untrained target propositions. Without additional
constraints, basic gradient descent can recover only a
negligible proportion of the untrained propositions.
Comparison of simulation results using various
combinations of the distributed mapping technique and
weight decay, indicate that general purpose network
optimization techniques may go some ways towards
improving the transfer performance of distributed network
models. However, performance can be improved
substantially more when optimization techniques are
combined with the distributed representation mapping
technique.

Introduction
Theoretical accounts of analogy posit at least two
central stages in the process of analogizing: mapping,
the establishment of systematic correspondences
between objects and relations of a source domain and a
target domain, and transfer, the importation of
knowledge from the source domain into the target
domain based on the correspondences established by the
mapping phase. Numerous models of analogical
transfer have been proposed, each of which explicitly
implements the mapping and transfer phases, usually
employing traditional techniques of symbolic
processing (Hall, 1989; Falkenhainer, Forbus &
Gentner, 1989; Holyoak, Novick & Melz, 1992).
With the advent of distributed connectionist models,
there appears to be some promise for eliminating the
cumbersome symbolic machinery of traditional models
of analogy. Using a single general purpose learning
technique such as backpropagation (Rumelhart, Hinton
& Williams, 1986), it may be possible to simply train
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a model on a set of propositions representing some
domain of knowledge, and exploit the generalization
capabilities of the network in order to generate useful
inferences based on the knowledge the network has
obtained.

This paper explores the ability of supervised
gradient descent learning to (a) form representations of
correspondences between two domains, and (b) use
these representations to perform analogical transfer, I
first demonstrate that without additional constraints on
the learning procedure, gradient descent does not form
representations that are optimal for the task of
analogical transfer. I then examine two mechanisms
which can induce the network to form optimal
representations: (1) simple weight decay, and (2)
"programming” the network with correspondenceds
derived from a connectionist model of analogical
mapping. In the next section, I describe the network
and domain with which the rest of this paper is
conemned.

Hinton's (1986) Family Tree Problem
Hinton (1986) describes a network that learns
relationships between people in two isomorphic family
trees. The family trees, shown in Fig. 1 can be
represented by two sets of 52 propositions of the form
objl rel obj2, where objl and obj2 are two relatives,
and rel is the relationship between objl and 0bj2
(which may be one of the following: has_husband,
has_wife, has_son, has _daughter, has_mother,
has_father, has_brother, has sister, has_uncle,
has_aunt, has_nephew, and has_niece). For example,
the fact that Christopher is married to Penelope is
represented by the proposition Christopher has wife
Penelope. The family tree which contains the English
people will henceforth be referred to as the source
domain, and the Italian family tree will be referred to as
the target domain.

The network which learns the relationships is
shown in Fig. 2. The input layer is composed of
localist representations of the 24 domain objects (12
English people, and 12 Italians) that can fill the objl
slot, and the localist representations of the 12
relationships listed above. The second layer converts
the localist representations of the objects and the
relations to distributed representations, and the third
layer combines these two distributed representations
into a distributed representation of the proposition.
This layer is transformed into a distributed
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representation of obj2 (the penultimate layer), which is
finally converted into a localist representation of obj2
(again consisting of 24 units representing the domain
objects). The network is trained by the clamping the
appropriate objl and rel nodes on the input layer and
obj2 nodes on the output layer for each proposition,
and performing backpropagation.

Chistopher = Perelope  Andrew = Clrstine

Margaret = Arthur Vicora = James Jermifer = Charles

I

Colin Charlotie

Roberto = Maria Pemo = Francesea
| |
| | I
Gima = Emdio Lucia = Marco Angels = Tomaso
|
Alfonso Sophua

Figure 1: Two 1somorphic family trees. The symbol "=" means
“married to". (From Hinton, 1986)

To probe the analogical capacity of the network, we
train the network on the full set of source propositions
and a subset of target propositions. If the network has
developed internal representations which allow it to
utilize the similarity between the two domains of
knowledge, it should be able to activate the correct obj2
unit on the layer when the obj! and rel units of an
untrained proposition are clamped on the input layer.
Of course, success of the network in generating new
target propositions does not licence the claim that the
network is referring to specific propositions in the
source domain. The network may, for example, be
using mechanisms more closely related to rule-based
inference. For example, if the network has learned that
the sister of a person x is a female about the same age
as x, it might be able to correctly infer that Sophia is
the sister of Alfonso, even without reference to the fact
that Charlotte is Colin's sister. However, we can
reasonably claim that failure of the network in
recreating untrained target propositions indicates that
the network is not doing analogy. The point is that
analogy is a sufficient but not necessary mechanism to
make inferences within this problem domain.

The simulations reported throughout paper use
Fahlman's (1988) quickprop algorithm, which is
essentially a faster version of backpropagation. In
standard backpropagation, each weight is adjusted in
direct proportion to the magnitude of the partial
derivative of the network's cost function with respect to
the weight. In contrast, quickprop makes the
simplifying assumption that the surface of the cost
function is quadratic, and at each epoch, weights are set
to the minimum value of the idealized surface by
computing the curvature of the cost surface at the
current point in weight space. In practical terms, this
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means that while backprop generally takes small steps
in weight space, quickprop is capable of taking large
leaps in weight space, which can greatly improve the
overall learning times. For example, when the model
was trained on all propositions in both domains, 4 runs
of backprop using Hinton's (1986) parameters took an
average of approximately 15,000 epochs to reduce the
cost function to a value below 1.01, while 4 runs of
quickprop took an average of approximately 500 epochs
to meet the same criteria.

Dbjz]f- . ® & & & & & 5 & s 8
’ - @ ¢ ® F " 9 " @ "0
obiz .
propd.r‘ [- ® 8 5 89 88 P e e I
objl d.r. rel dr.
bl 1 ® " 8 0 " 98 " 80 - * 8 " 9 8
@8] e e e 0 0 e 8 0 0 00 * e oo e rel Lr.
Figure 2: Hinton's (1986) model of propositional
learning.

While the specific implementation details of the
algorithms are not terribly important with respect to
our present concems, it is important to note that
backprop and quickprop are fundamentally similar in
that they both implement gradient descent on a cost
function. Hence, we can reasonably expect that the
internal representations that each algorithm develops
will be qualitatively similar, although there may be
slight differences as a side effect of the different
implementations. The extent to which such differences
exist remains an empirical issue, and is not explored
further in this paper.

The parameters used for all simulations reported in
this paper were i = 1.75, € = .01 and momentum = 0.9
(see Fahlman 1988 for further explanation of the
parameters and the algorithm). Weight decay was set
either to 0.0 or 0.0005, depending on the set of
simulations. Target values for the output were .8 if
the output unit should be on, and .2 if the output
should be off. The following cost function was used:

C = Ep E‘, (fp_o'op'a)z + lﬂlsz"z,
where p is an index over the training patterns, o is an
index over the output units, / is an index over the
weights, ¢, , denotes the target value for unit ¢ on
pattem p, 0, , denotes the output value produced by unit
o on pattern p, and A is a weight decay parameter. In
addition, one minor modification suggested by Hinton
(1986) was implemented: if the network produces

I Note that the backprop training times significantly
differ from those reported by Hinton. Hinton (personal
communication, 1992) confirms that the training times
reported in his paper are probably erroneous.



output values more extreme than the target values, the
error for that unit is taken to be 0 rather than (,,,-0,,,)%
When testing a training pattern, a liberal criterion is
used: a case is considered to have "passed" if all units
that should be off have activation values less than 4,
and all units that should be on have activations values
above .6.

For the first transfer test, the weight decay parameter
was set to 0, and the network was trained on all source
propositions and all but four randomly chosen target
propositions. In the test phase, the network passed on
all of the trained propositions, but failed on all of the
untrained propositions. A principal components
analysis of the distributed representations for objl and
obj2 (i.e., the activations patterns on second and
penultimate layers, respectively) yields some insight
into the poor performance of the network (Fig. 3). The
organization the network develops for the objl
representation is fairly sloppy: although the network
seems to loosely separate the English people from the
Italians, there is no rigid structure apparent within each
domain, and the symmetry between the two domains is
weak. The network appears to have "memorized" each
person without significantly taking into account the
relationships people participate in or correspondences
between the source and target domains. Likewise, the
representations of obj2 appear to be randomly
distributed in activation space. There is little, if any
similarity between the organization of the English and
the Italian representations. Also, multiple instances of
each person seem to be diffusely scattered in the
representation space. Ideally, we would like the
network to develop a unitary representation for each
person, so that the need for a many-to-one mapping
between the distributed representation on the
penultimate layer and the localist representation on the
output layer is obviated. Such many-to-one mappings
are bound to degrade the generalization of the network,
as we shall see later.
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Clearly, without additional constraints on the

development of the network's internal representations,
we can expect generalization to be poor. In the next

two sections, I examine how the network can be
induced to form sensible distributed representations,
first by using knowledge of the domain derived from a
connectionist model of analogical mapping, and
secondly by employing domain- independent network
oplimization techniques.
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Figure 3: Principal components analysis of (a) obj! and
(b) obj2 for basic gradient descent learning. Each instance
of obj2 is indexed by the order of occurence in the training
set. English people are in plain text, and Italians are in
italiacs.

Mapping Distributed Representations

Having entertained a couple of probable causes of
the network’s poor generalization performance, the
path to improved generalization seems clear. We would
like to be able to "program" the distributed
representations to (1) reflect similarity between similar
objects and (2) develop singular representations of
multiple instances of each object. In this section, I
describe how the first requirement can be met by
making use of object correspondences produced by a
connectionist model of analogical mapping.

In cases where regularities of the training
environment are known a priori, hidden units can be
"hardwired" to reflect the structure of the domain. For
example, Rumelhart et al (1986) describe a network
which develops translation-invariant "receptive fields"
by constraining the weights of each hidden unit to take
equal increments on each epoch. In general, however,
it is desirable to do as little handcrafting of the network
as is necessary; ideally we would like the network to
be capable of flexibly extracting regularities from the
environment using general purpose mechanisms. In
the domain with which the present paper is concerned
with (and in many other domains), analogy is one such
mechanism which can assist in defining regularities.

By establishing correspondences between items in
the source domain and target domain, we can pressure
the network to form similar distributed representations



for the mapped objects. However, we can't simply
force representations of mapped objects to be identical;
some representation of the domain must be present in
the representation of each object in order for the
network to be able to distinguish objects between
domains. Hence, two components of each distributed
representation are necessary: a domain-invariant
component which represents the common aspects of
objects between domains, and a domain-specific
component which encodes the particular domain to
which an object belongs. The domain-invariant
component of the distributed representation will
facilitate transfer between domains, while the domain-
specific component will serve as a type of context
indicator which will facilitiate specific modes of
knowledge processing within each domain.

To create such representations, we first feed the
propositional representations of the source and the
(possibly incomplete) target domain into ACME
(Holyoak & Thagard, 1989), a connectionist model of
analogical mapping. ACME sets up a constraint-
satisfaction network of mapping hypotheses based on
structural, semantic, and pragmatic constraints, and
produces a set of object and relation mappings by
relaxing the network and returning the hypotheses with
the highest activations (see Holyoak & Thagard, 1989,
for further details). The object mappings produced by
ACME are used to determine corresponding nodes on
the input and output layers of Hinton's network (e.g.,
node 1, the localist representation of Christopher may
correspond to node 13, the localist representation of
Roberto). Before training the model, we randomize all
weights in the network to values between -.3 and .3,
with the following restrictions. Weights from
corresponding nodes on the input layer projecting to all
but one node in the obj! distributed representation layer
are constrained to be equal. These nodes in the
distributed representation layer will represent the
domain-invariant component of objl. The remaining
second-layer node will encode the domain-specfic
component: weights to this node from all source
objects are set to +10.0, and weights to this node from
all target objects are set to -10.0. Similarly, weights
to all corresponding nodes on the output layer from all
but one obj2 distributed representation layer node are
constrained to be equal, and the remaining node has
weights of +10.0 to source objects, and weights of
-10.0 to target objects. During training, weights that
were set 10 be equal before training are constrained to
stay equal by averaging the weight-error derivatives of
the corresponding weights before each weight update.
Weights that were set to £10.0 are frozen at these
values throughout training.

Note that while this scheme forces the network to
form distributed representations of objl that are
"mapped", the distributed representations of obj2 are
only pressured to be mapped, since it is the weights
feeding out of, rather than into, the penultimate layer
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that are constrained. Hence, it might be possible for the
network to develop disparate representations of the
source and target obj2s, although empirically this
doesn't seem to occur. Figure 4 shows the distributed
representations of objl and obj2 developed by training
the network on the same training set as was used
previously (i.e., the entire set of source propositions,
and all but 4 target propositions) plotted against the
two principal components derived from a principal
components analysis. Unsurprisingly, the source and
target representations developed for obj! are perfectly
symmetric. More significantly, the obj2
representations are also symmetric: the representation
of each instance of each English person is adjacent to
the corresponding Italian instance, although the
instances are still scattered uniformly in representation
space. The result of these constraints is a significant
improvement in generalization: all four of the untrained
target propositions were correctly constructed by the
network.
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Figure 4: Principal components analysis of (a) objl and
(b) 0bj2 using the distributed representation mapping
technique.

The distributed-representation mapping technique
successfuly fulfills our first condition for improved
generalization: the network develops representations

=)



which reflect similarity between the source and target
domains. However, our second condition remains
unfulfilled: the network has failed to develop singular
representations for multiple instances of objects. To
induce the network to develop parsimonious
representations, general-purpose network optimization
techniques may be successfully employed.

Network Optimization Techniques

Numerous techniques for optimizing the performance
of backpropagation have been proposed in the
connectionist literature, including weight decay (e.g.
Plaut, Nowlan & Hinton 1986; Weigend, Huberman &
Rumelhart, 1990; Hanson & Pratt, 1989), eliminating
weights (Chauvin, 1989), excising or attenuating
hidden units (Kruschke, 1988, Mozer & Smolensky,
1989), limiting the total amount of hidden unit
activation (LeCun, 1989), reducing the dimensionality
spanned by the hidden weight vectors

representation mapping technique). However, the
symmetry between the structure of the source and target
domains is still imperfect; hence we should not be
surprised that knowledge transfer between domains is
imperfect. In the next section, I describe a set of
computational experiments which systematically test
the efficacy of weight decay and the distributed
representation mapping technique in improving transfer
performance.

Transfer Tests

Four sets of simulations were run, in which the
weight decay parameter was set to either 0 or .0005,
and the distributed mapping technique was either used
or not used. Within each set of simulations, three
different amounts of target propositions were omitted
from the training set: 4 (8% of the target propositions),
13 (25%), and 26 (50%). Learning was halted when the
first term of the cost function dropped below 0.1, or
4000 epochs had elapsed.
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Figure 5: Principal components analysis of obj2 using
weight decay.

(Kruschke, 1988), and forcing hidden layer
representations to have uncorrelated node activations
(Kruschke & Movellan, 1990). Most of these
techniques pressure backprop to make economical use
of network resources such as weights, nodes or hidden-
unit activation. For example, the second term in eq. 1
(1 2AZw?) implements weight decay by pressuring
the network to minimize the sum of the squares of all
the weights.

Figure 5 shows the results of a principal
components analysis of the obj2 representations when
the network was trained on the same set of propositions
as in the previous examples, and a weight-decay value
of A= .0005 was used. As expected, multiple
instances of each obj2 are tightly clustered together.
The effect of this clustering is a substantial
improvement in transfer performance over basic
gradient descent: 3 out of the 4 deleted propositions
were correctly recovered (compared with recovery levels
of 0 for basic gradient descent and 4 for the distributed

FIi gure 6: Recovery of Deleted Propositions. "GD"
iQdicates gradient descent, "WD" indicates weight decay,
and "Map" indicates the use of the distributed mapping
technique.
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Figure 7: Learning times. Labels are the same as in the
previous graph. The second GD run was stuck in a local
minimum (2 of the training cases were unlearned at cycle
4000).

The transfer test results (Fig. 6) show that while
basic gradient descent is incapable of recovering more
than the tiniest fraction of deleted propositions, the
distributed representation mapping technique and weight
decay both substantially improve transfer, although

, Map, WD



performance is degraded at higher levels of deletion.
The most significant result is that when weight decay
is coupled with the distributed representation mapping
technique, nearly all of the deleted propositions are
recovered, even at the highest level of deletion. This
result is obtained because the two conditions of good
generalization performance earlier positied are satisified
by the two respective techniques: weight decay forms
unitary representations of the objects, while the
distributed representation mapping technique ensures
that similar objects have similar representations.

The order of learning times (Fig. 7) is roughly GD
< GD+Map < GD+WD = GD+Map+WD Intuitively,
these results are quite sensible: basic gradient descent is
the quickest to reach the stopping criteria since it can
arive at the closest possible solution without
"worrying" about additional solution constraints.
Gradient descent with weight decay takes longer to learn
than gradient descent with the distributed representation
mapping technique because in the case of weight decay,
the network must satisfy the conflicting pressures of
predicting the training set and driving all weights to 0.
In contrast, the distributed representation mapping
technique presents two harmonious pressures in the
network: the two goals of training set prediction and
object representation correspondences can be achieved
without conflict.

Additional evidence supports the hypothesis that
weight decay and the mapping technique perform
complementary optimization functions. For example,
computation of the average euclidian distance between
each instance (e.g. emiliol) in the penultimate layer
and the instance's class (e.g. emilio) reveals that
instances are relatively diffuse when weight decay is not
employed. Another important fact is that increasing
the weight decay parameter does not substantially
improve the generalization performance: as A is
increased, performance on the training set deterioriates
as well as performance on the generalization set.

Conclusion

A technique has been described in which high-level
domain knowledge produced by a connectionist model
of analogical mapping guides the formation of
distributed representations of domain objects formed by
Hinton's (1986) multilayer model of propositional
learning. Simulation results indicate that the use of
this technique in isolation can produce substantial
improvement in the generalization performance of
Hinton's network, and use of this technique in
conjunction with weight decay can produce nearly
perfect transfer performance. More generally, this paper
demonstrates the usefulness, and perhaps even the
necessity, of the influence of high level knowledge
processing mechanisms on low level subsymbolic
learning mechanisms.
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