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In 1999, the National Research Council’s
Committee on Hormonally Active Agents in
the Environment concluded that “in human
populations suspected of being affected by
hormonally active agents, prospective and
cross-sectional studies using cohorts tracked
from conception through adulthood are par-
ticularly needed” (National Research Council
1999). Subsequently, as part of the conference
“Endocrine Disruptors and Children’s Health:
A Workshop to Examine the Effects of
Endocrine Disruptors on Child Development
for a National Longitudinal Study,” held
16–17 March 2000 (New York, NY), the
authors jointly presented material for a session
titled “Epidemiology and Assessment of
Outcomes.” The objective of the session was
to develop recommendations on how to
design and execute a national longitudinal
study of childhood development that incorpo-
rates the latest information on the potential
impact of endocrine disruptors on human
development. The longitudinal study referred
to in the workshop has since been named the
National Children’s Study (NCS).

We assume that the NCS will be a multi-
center study of at least 100,000 children
followed from before birth. Because the pri-
mary hypotheses motivating the study (core
hypotheses) are still under discussion, the pre-
cise design of the study has not yet been speci-
fied. Nonetheless, a comprehensive study of
the determinants of health and development is
envisioned. As the NCS is still being designed,
the role that investigation of endocrine disrup-
tors might play in the rationale and design is

very much a salient issue. A more complete
description of the proposed study appears else-
where (Branum et al. 2003).

In this paper we consider the importance
of assessing endocrine disruption in the NCS.
First, we briefly review the evidence that alter-
ations of the early, normal endocrine environ-
ment has adverse effects and the evidence that
endocrine disruption is a potentially important
hypothesis for human studies. We then weigh
the need for assessment of endocrine disrup-
tion in the NCS. Next, we note the salient fea-
tures of earlier, similar cohort studies that serve
as reference points for the design of the NCS.
Finally, we discuss features of the NCS that
would allow assessment of endocrine disrup-
tion, even if endocrine disruption were not a
primary hypothesis motivating the study.

Long-term Effects of the
Endocrine Environment during
Pregnancy and Early Life
In this section, we consider primarily exoge-
nous effects of the endocrine environment,
apart from those associated with normal differ-
entiation and function. In humans, major
alterations in the endocrine environment dur-
ing pregnancy are known to have adverse con-
sequences in offspring. The classic example is
maternal diethylstilbestrol use causing adeno-
carcinoma of the vagina in daughters (National
Research Council 1999). Other examples are
type 1 diabetes in pregnancy causing birth
defects in offspring (Becerra et al. 1990) and
hypothyroidism during pregnancy causing
mental retardation in offspring (Haddow et

al. 1999). Lesser degrees of maternal hypothy-
roidism may also adversely affect the cognitive
function of offspring (Haddow et al. 1999).

That very small differences in hormone
exposures during a critical period can affect an
animal’s development is demonstrated by the
intrauterine position phenomenon. Female
mice adjacent to two male mice in utero, com-
pared with those adjacent to two females, differ
in terms of anogenital distance, activity level,
body weight, estrous cycle length, age at sexual
maturity, and other factors (vom Saal 1989).
Similarly, among human females some evi-
dence suggests that modestly higher in utero
androgen exposure has detectable effects. A
female dizygotic twin with a twin brother,
compared with a female dizygotic twin with a
twin sister, has fewer spontaneous otoacoustic
emissions (clicking sounds generated by the
ear) (McFadden 1993) and less craniofacial
symmetry (Boklage 1985), and exhibits more
risk-taking behavior (Resnick et al. 1993). The
association with risk-taking behavior was
found in a twin study designed to compare
males with females; thus, biased observations
depending on the sex of the co-twin seem
unlikely, although other reasons besides an in
utero androgen effect accounting for the associ-
ation cannot be excluded. In another type of
study, stored maternal pregnancy serum was
analyzed for sex hormone–binding globulin
and total testosterone, and the female off-
spring, as adults, completed questionnaires
about masculine and feminine behavior before
their blood was analyzed (Udry et al. 1995).
Lower sex hormone–binding globulin levels
(implying higher free testosterone) were associ-
ated with less femininity. Nonetheless, whether
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in humans very small differences in hormone
exposures in utero have any measurable, long-
term effects remains to be established. We
know that in childhood, small increases in
plasma concentrations of endogenous estradiol
at very low concentrations (nanograms per
liter) increase prepubertal growth rates
(Brucker-Davis et al. 2001).

Endocrine Disruption as a
Hypothesis in Human Studies
Endocrine disruption, expressed as a general
hypothesis, suggests that environmental chemi-
cals have effects on health that are mediated by
the endocrine system (Harrison 2001). The
significance of endocrine mediation lies in the
biologic plausibility that low-level exposures
can have effects. Because some environmental
chemicals can act like hormones (for example,
by binding with a receptor), effects of low-dose
exposures are biologically plausible. The conse-
quences of low-dose exposures to certain
chemicals has recently come under greater
scrutiny (National Toxicology Program 2001).
Whether natural, hormonally active constituents
of food, including alcohol, or nonchemical
agents such as light should be considered poten-
tial endocrine disruptors is unclear. For the pur-
poses of this discussion, we consider these
outside the scope of endocrine disruption.

Recognition that environmental con-
taminants can have adverse effects on human
health dates back at least to the time of
Paracelsus (Haeublein 1982). London’s coal
smoke–induced lethal smog in the winter of
1952 showed dramatically the importance of
environmental contamination (Bell and Davis
2001). Subsequently, we realized that less
obvious pollutants or pollutants at lower con-
centrations can have insidious untoward con-
sequences. An example in wildlife is the
recognition in 1962 of the effects of dichloro-
diphenyltrichloroethane (DDT) on reproduc-
tion (Carson 1962); an example in humans is
the discovery of the effect of methyl mercury
on neurodevelopment, primarily in the late
1950s (Nishigaki and Harada 1975), and the
effect of lead on neurodevelopment in the
1970s (Landrigan et al. 1975; Needleman et al.
1979). Advances in analytical chemistry have
made it increasingly clear that the general pop-
ulation is exposed to hundreds of man-made
chemicals at low doses [Centers for Disease
Control and Prevention (CDC) 2001].

Some have voiced concern recently that
low-level exposure to certain chemicals can lead
to effects on the endocrine system (Colborn et
al. 1996). This concern stems in part from tem-
poral trends involving end points in humans
that imply endocrine-mediated mechanisms:
decreasing age at menarche (Kaplowitz et al.
2001), decreasing semen quality (Auger et al.
1995), decreasing male-to-female sex ratio at
birth (Davis et al. 1998), and increasing rates of

hypospadias (Paulozzi 1999) and testicular can-
cer (McKiernan et al. 1999). Also contributing
to this heightened concern is the increasing
body of knowledge about the toxicologic prop-
erties of the compounds to which people are
exposed and about developmental biology.

As noted above (CDC 2001), measurable
levels of a host of environmental chemicals are
present in the general U.S. population, includ-
ing pregnant women. Several of these com-
pounds are known to interact with the
endocrine system in animal and in vitro experi-
ments (Andersson et al. 2000; Hester and
Harrison 1999), with periods of special vulner-
ability occurring during development (Bigsby
et al. 1999). Some of these chemicals have
estrogenic, antiestrogenic, antiandrogenic, thy-
roid-depleting, and hyperglycemic effects
(Andersson et al. 2000). Furthermore, animal
research suggests that some of the neurobehav-
ioral and developmental effects of endocrine
disruptors may be amplified over successive
generations (Crews et al. 2000). That is,
endocrine disruptors transmitted from the
mother not only influence the morphologic and
physiologic development of the offspring, but
also the reproductive behavior of the offspring
as adults (Meaney 2001). These altered behav-
iors accentuate the effects of contaminants on
the sexual development of their young.

Whether any endocrine disruptor, with the
possible exception of dioxins, affects human
health is controversial—because effects have
not been studied in humans, because epidemi-
ologic results are equivocal, or because expo-
sure–outcome relations are not necessarily
endocrine mediated. To illustrate these latter
points, in the remainder of this section we
briefly discuss selected evidence regarding some
of the compounds frequently implicated as
endocrine disruptors and consider whether this
evidence suggests that further study be a focus
of the NCS.

2,3,7,8-Tetrachlorodibenzo-p-dioxin
(TCDD), the most potent of the dioxins and a
recognized human carcinogen [International
Agency for Research on Cancer (IARC)
Working Group on the Evaluation of
Carcinogenic Risks to Humans 1997], has
been associated with at least one endocrine-
related malignancy—breast cancer. In experi-
mental data, TCDD had antiestrogenic effects
(IARC Working Group on the Evaluation of
Carcinogenic Risks to Humans 1997); thus, an
endocrine-based mechanism by which TCDD
might cause human breast cancer is not obvi-
ous. The association with breast cancer has
been seen in occupationally exposed popula-
tions (Flesch Janys et al. 1999; Kogevinas et al.
1997; Manz et al. 1991) and in residential
populations in Chapaesk, Russia, and Seveso,
Italy, who received high-level TCDD exposure
(Revich et al. 2001; Warner et al. 2002). High-
level TCDD exposure has also been associated

with a dose-related change in the sex ratio
(Mocarelli et al. 2000; Ryan et al. 2002),
which appeared to be mediated through pater-
nal exposure. TCDD exposure has been associ-
ated with endometriosis in the monkey (Rier et
al. 1993), and there is some, albeit inconsis-
tent, evidence for the same in humans
(Eskenazi et al. 2002a; Mayani et al. 1997;
Pauwals et al. 2001). A relation between
TCDD exposure and type 2 diabetes has also
been reported in some studies, among both
those with high- and background-level expo-
sure (Longnecker and Daniels 2001). By back-
ground-level exposure for TCDD, we mean
exposure experienced by the general public,
resulting primarily from normal diet, not from
unusual circumstances of occupation or acci-
dent. A mechanism by which TCDD might
cause diabetes is that binding of TCDD with
its receptor could antagonize the action of
another nuclear receptor, peroxisome-prolifer-
ating activator gamma, which in turn has
antidiabetic actions (Remillard and Bunce
2002). Although dioxins may well have
endocrine-mediated effects on health, evidence
for such effects at background levels of expo-
sure is weak. Furthermore, if trends in the
United States are like those in other devel-
oped countries, level of exposure to dioxins
in the general population is decreasing
(IARC Working Group on the Evaluation of
Carcinogenic Risks to Humans 1997), ren-
dering studies of their effects in the NCS
even less compelling as core hypotheses.

Levels of polychlorinated biphenyls
(PCBs) have been examined in relation to
thyroid hormones in at least seven studies
(Hagmar et al. 2001; Longnecker et al. 2003a;
Persky et al. 2001). No consistent associations
with a specific thyroid hormone have been
observed, although positive results of some
sort have been found in several studies
(Hagmar et al. 2001; Koopman-Esseboom et
al. 1994; Osius et al. 1999; Persky et al.
2001). In animal experiments, PCBs decrease
serum levels of thyroxine (Brouwer et al.
1999). Many investigators have reported asso-
ciations of PCBs with neurodevelopmental
delays (Gladen et al. 1988; Jacobson and
Jacobson 1996; Longnecker et al. 2003a,
2003b; Patandin et al. 1999), although rela-
tions were not present in all such studies
(Daniels et al. 2003; Grandjean et al. 2001). In
other epidemiologic studies where exposure to
PCBs was associated with adverse outcomes,
whether the relations were endocrine mediated
was unclear. For example, PCBs have also been
related to reduced growth (Patandin et al.
1998) and reduced weight (Blanck et al. 2002;
Jacobson et al. 1990), though, again, results
vary. In animals, PCBs have some effects that
are not endocrine mediated (Seegal 1996).
Levels of PCBs are falling in the United States
(Longnecker et al. 2003b).
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The DDT metabolite dichlorodiphenyl-
dichloroethene (DDE) has been associated
with another outcome that, at face, appears to
be caused by an endocrine mechanism. In
two studies, maternal DDE levels were related
to a shorter duration of lactation (Gladen and
Rogan 1995; Rogan et al. 1987). Whether the
association is causal remains unresolved.
Associations of DDE with assorted other out-
comes are less clearly endocrine mediated. For
example, associations of DDE with impaired
immunity (Dewailly et al. 2000), decreased
height (Karmaus et al. 2002), increased body
mass index (Gladen et al. 2000), and preterm
birth (Longnecker et al. 2001b) have been
reported, although these relations are also not
established. As with PCBs, levels of DDE are
falling in the United States (Smith 1999).

Three environmental chemicals in particu-
lar have generated much recent concern: phtha-
lates, polybrominated diphenyl ethers (PBDEs),
and bisphenol A. Di(2-ethylhexyl)phthalate
(DEHP) and dibutylphthalate (DBP) are high-
volume production chemicals used primarily
as plasticizers, and 75% or more of the U.S.
population have detectable levels in their urine
(Blount et al. 2000). Both compounds have
antiandrogenic effects and cause hypospadias in
laboratory animals (Gray et al. 2000). Of the
phthalate esters known to be antiandrogenic
(Mylchreest et al. 2002), such as DEHP and
DBP, exposure to DBP appears to be the high-
est in the United States (Blount et al. 2000).
However, even the highest estimated exposure
in U.S. women of childbearing age (Kohn et al.
2000) “is more than two orders of magnitude
lower than the lowest no observable adverse
effect level of DBP from animal studies”
(Mylchreest et al. 2002). In the absence of ani-
mal data showing abnormalities in male off-
spring, such as hypospadias, at doses typically
experienced in humans, and with no human
data to support that low-dose effects exist, the
hypothesis that phthalates have adverse effects
on male offspring in humans seems too weak to
serve as a core rationale for the NCS.

PBDEs are manufactured primarily as
flame retardants and are used in plastics and
foam rubber (Darnerud et al. 2001). These are
persistent organic pollutants, and levels in the
environment and in human tissues are rising
exponentially. The PBDE chemical structure
resembles that of thyroid hormone, and PBDEs
interfere with thyroid metabolism (Hallgren et
al. 2001; Zhou et al. 2001). Although levels of
PBDEs are increasing rapidly in this country
(Hale et al. 2001), levels are still 1–2 orders of
magnitude lower than those of PCBs. PBDEs,
especially those present in people at highest
concentration, appear to be less potent thyroid
disruptors than are PCBs, though toxicity via
other mechanisms cannot be excluded.

Bisphenol A is another high production vol-
ume chemical, used in a variety of applications

including manufacturing of flame retardants,
resins, and plastics. Bisphenol A is a weak estro-
gen (Pottenger et al. 2000). Human exposure
arises, e.g., when foods are contaminated by
heated plastics. New data show that blood lev-
els of bisphenol A in pregnant women
(Schonfelder et al. 2002) are similar to those
found in pregnant rats that give birth to off-
spring with bisphenol A–induced reproductive
toxicity (Howdeshell et al. 1999; Pottenger et
al. 2000; Rubin et al. 2001). None of the ani-
mal experiments showing low-dose endocrine
toxicity from bisphenol A, however, have been
replicated (Ashby J. Personal communication);
thus, the importance of investigating effects of
low doses on humans is debatable.

The Role of Endocrine-
Disruption Studies in the NCS
Although the theoretical possibility of endo-
crine disruption in humans is based on an
excellent scientific rationale, the importance of
searching for low-dose endocrine-mediated
effects of environmental contaminants in
humans remains arguable (Neubert 1997; Safe
2000; Safe et al. 1997). Via diet, humans are
exposed to a huge variety of xenobiotics, many
of which are endocrine active, and our bodies
may be well equipped to handle routinely
encountered doses of endocrine-active com-
pounds whether from natural or anthropogenic
sources (Safe et al. 1997). Although specific
human studies of endocrine disruption may be
well justified, overall the evidence supporting
endocrine disruption in humans is not suffi-
ciently strong that endocrine disruption studies
should be a primary motivating factor for the
NCS. Nonetheless, although the NCS (if it is
ever realized) is likely to be justified on the
basis of core hypotheses that are not centered
on endocrine disruption, if properly designed
the NCS could serve as an excellent resource
for investigating hypotheses regarding
endocrine disruption in the future.

Some Earlier Cohort Studies 
of Children’s Health
The two largest cohort studies of children’s
health in the United States were the Child
Health and Development Studies (CHDS), a
single cohort, providing the setting for multi-
ple studies, which enrolled more than 20,000
pregnant women from 1959 to 1966, and the
Collaborative Perinatal Project (CPP), which
enrolled more than 55,000 pregnant women
from 1959 to 1965 (Broman 1984; van den
Berg et al. 1988). The CHDS focused on
women delivering at primarily one facility of
the Kaiser Permanente Medical Center in
Oakland, California, whereas the CPP recruited
women from 12 medical centers at various loca-
tions across the country. Both studies had
comprehensive follow-up during childhood
(to age 5 years in the CHDS and to age 7

years in the CPP), with additional assessments
among subgroups at later ages, including ado-
lescence and adulthood in some instances.
Both studies also collected blood specimens at
multiple times during pregnancy.

These previous cohort studies have pro-
vided extremely valuable prospective informa-
tion on pregnancy and children’s health. They
were constructed to allow a broad range of
research questions to be investigated, many of
which were not originally envisioned. Recently,
the stored serum specimens have been analyzed
to examine exposure to tobacco (English et al.
1994), caffeine (Klebanoff et al. 1999), PCBs
(Longnecker et al. 2001a), organochlorine pes-
ticides (Longnecker et al. 2002), hormone lev-
els (Udry et al. 1995), and antibodies to herpes
simplex type 2 (Buka et al. 2001) in relation to
a broad range of outcomes. Thus, these studies
provide a useful benchmark for designing the
proposed NCS; the NCS, however, should be
charged with improving upon the design of
these earlier studies.

NCS Features Allowing
Assessment of Endocrine
Disruption
Although a broad-based cohort along the lines
of prior investigations is recommended for the
NCS, the prior studies can be improved upon
in significant ways. Five specific improvements
especially pertinent to investigation of endo-
crine disruptors include better assessment of
societal context, the use of an intergenerational
design, linkage to other data sources, addition
of selected exposure and outcome measures,
and use of genomics and proteomics. Rapid
advances in genomics and proteomics offer
great promise for evaluating low-level effects
on the hormonal axes during development,
and have been recently discussed in detail
(Henry et al. 2002). The specimens to be col-
lected from subjects that will facilitate genomic
and proteomic analyses will be addressed in the
section on addition of selected exposure and
outcome measures. While vital to the investiga-
tion of endocrine disruptors, these five
improvements would be equally beneficial for
the study of many other exposure–outcome
relations.

Societal context. One way in which previ-
ous longitudinal cohort studies can be
improved upon is in the comprehensiveness of
the model of child development used in evalu-
ating the health impact of a chemical exposure.
Many of the end points being considered, par-
ticularly neurobehavioral and cognitive, are
final common pathways for the expression of
influences at many levels. Sociodemographic
and economic factors affect academic perfor-
mance, IQ, and cognitive development
(Duncan et al. 1994; Sameroff et al. 1993;
Schonkoff and Phillips 2000). Overall, past
studies have done a reasonably good job in
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characterizing sociodemographic and eco-
nomic factors that can be considered proximal
to the child (e.g., those pertaining to the
immediate home environment). However,
improvement is required in characterizing
these proximal sociodemographic and eco-
nomic factors and those of the community in
which the child lives. Although these latter fac-
tors are more distal to the child, recent work in
epidemiology suggests that they are likely to be
important aspects of a child’s ecology and can
improve models of child development
(Leventhal and Brooks-Gunn 2000; Sampson
et al. 1997). These factors include physical,
socioeconomic, and cultural aspects of the
neighborhood and the broader cultural com-
munity in which a child grows up, such as the
school and day care experiences (Schonkoff
and Phillips 2000).

The need to capture such features of a
child’s world can be inferred from the results
of previous studies. In studies of continuously
distributed end points such as IQ, multiple
regression models rarely account for more than
40–50% of the variance, and often much less
(10–15%), even in populations that are reason-
ably heterogeneous in terms of conventional
indices of socioeconomic status (Bellinger et al.
1992; Cooney et al. 1989; Wasserman et al.
1994). Some of the unexplained variance
undoubtedly reflects genetic factors, but a por-
tion of the variance is likely due to aspects of
the broader social and cultural context that
have generally been neglected. It will be partic-
ularly important to pay attention to these fac-
tors if the population sampled for inclusion in
a longitudinal study is ethnically and culturally
diverse, or if particular groups are targeted for
inclusion by virtue of some notable exposure
(e.g., children of migrant farmworkers exposed
to pesticides).

Several benefits will follow if the NCS is
able to characterize these aspects of a child’s
environment more completely. One is that it
may reduce the amount of unexplained vari-
ability in an outcome, thereby increasing the
statistical power of tests of the association
between the outcome and the chemical of
interest. This is particularly important when
trying to detect subtle effects, which, based on
our past experience with other chemical expo-
sures, is likely to be the case. Another is that it
will provide the ability to control more effec-
tively for potential confounders. Perhaps most
important, it will advance the field by creat-
ing new opportunities to identify effect modi-
fication (e.g., factors that increase a child’s
vulnerability to a chemical exposure and fac-
tors that are protective). Currently little is
known about what makes some children
more resilient than others to insults. The type
and breadth of community supports available
to the child and family may be particularly
important in this regard.

To achieve a solid integration of societal-
level factors in the design, it will be necessary
to bring in collaborators from fields not usually
included in environmental epidemiology and
toxicology studies, such as sociologists and cul-
tural anthropologists. These collaborators will
be essential in determining how to measure
these macrofactors. Their participation in the
design of the NCS will strengthen the validity
and deepen the interpretation of the findings.

Intergenerational design. The results of
experiments in animals, described earlier, sug-
gest that it may be important to study the
effects of endocrine disruptors over more than
one generation. Thus, if measures of endocrine
disruptors and sex hormones are taken during
pregnancy of the women in the NCS, long-
term follow-up of their children would be illu-
minating in determining risks for future
generations. In addition, if maternal pregnancy
serum is sufficient for measuring exposure,
then children from previous studies such as the
CHDS and the CPP who are now adults can
be recruited and followed (Buka et al. 2001;
Cohn et al. 2001; Hardy et al. 1997; Udry et
al. 1995). Studying intergenerational effects
would be a significant advance on prior studies,
reflecting the knowledge we have gained from
animal studies in recent decades. Although
studying intergenerational effects would be
ideal, such long-term planning may not be 
feasible at this point.

Linkage to other data sources. When con-
sidering data needs and management in the
development of long-term follow-up studies, it
is important to incorporate methods that will
make the study as flexible as possible for future
unanticipated uses. Many studies do not reach
their potential because of ineffective linkage to
other data sources and inaccessibility of the
data. Addressing these issues will be increas-
ingly important in coming years because of
increasing technological ability to collect differ-
ent types of data and to access and share data.

This design feature can be accomplished
by a) devising the study database so it can be
linked easily to other data sets in the future to
explore new hypotheses, b) developing tools
and documentation to make the data easy to
use and understand, and c) making the data
easily accessible to other researchers.

An especially important example of an
emerging technology relevant to epidemiol-
ogy is geographical information systems
(Dent et al. 2000). Many environmental con-
taminants of interest are spatially distributed,
and the ability to link and analyze data sets
spatially is growing.

Many examples in the environmental epi-
demiology literature demonstrate opportunistic
uses of survey data collected for other purposes
to explore relationships between health and
environmental exposures. For example, in the
field of air pollution epidemiology, a very

important study evaluating the long-term
effects of particulate matter air pollution on
total and cardiovascular mortality used data col-
lected by the American Cancer Society (Pope et
al. 1995). The American Cancer Society cohort
is an ongoing prospective mortality study of
approximately 1 million adults since 1982,
intended primarily for studies of cancer.

Addition of selected exposure and outcome
measures. To measure exposure to potential
endocrine disruptors and their effects in the
NCS, some specific assessments are needed
that might not otherwise be part of a modern,
general-purpose cohort study of children’s
health. Much of what would be needed, how-
ever, would likely be collected regardless of
hypotheses about endocrine disruption.

Exposure. The CPP and CHDS restricted
specimen collection to blood from pregnancy,
stored at –20°C. Laboratory technology has
evolved, allowing for the detection of many
environmental agents in other media. To test
other (non–endocrine disruption) hypotheses,
the NCS is likely to collect from the mother
multiple samples of urine and blood during
pregnancy (Branum et al. 2003). Collection of
urine and blood specimens during pregnancy
would be especially interesting because it
would allow assessment of exposure effects
during organogenesis and neurodevelopment.
Urine samples would allow assessment of
exposure to some quickly excreted xenobiotics,
such as phthalate esters, bisphenol A, and
organophosphate metabolites. The utility of
these samples for assessment of exposure to the
specified agents, however, would depend on
the frequency of collection, half-life, and expo-
sure pattern. Advances in toxicokinetics could
add to understanding of the dose to the fetus
during critical windows of susceptibility. Pilot
work may be needed to determine the utility
of collected specimens and inform decisions
regarding the optimal frequency of collection.
Collection of a breast milk sample is likely to
be part of the NCS protocol, for reasons other
than endocrine disruption, and would allow
assessment of exposure to persistent organic
pollutants present at extremely low levels (e.g.,
TCDD, PBDEs). Similar considerations hold
for the specimens from children, for whom
other hypotheses will require cord blood,
urine, bloodspots at birth, and blood collec-
tion during infancy and childhood. Collection
of meconium or amniotic fluid, when avail-
able, may be useful for measuring exposures,
although additional developmental work is
needed (Foster et al. 2000; Whyatt and Barr
2001). Environmental samples obtained in the
NCS—for example, to allow assessment of
asthma-inducing agents—may also provide
material useful in assessing exposure to poten-
tial endocrine disruptors.

Whenever possible, any study of children
should include the father and an assessment of
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his exposures, including biologic specimens
and their metabolites. The contribution of
paternal exposures, which may affect mutation
rates in the sperm line or contribute directly to
exposure of the offspring (Eskenazi et al.
2002b; Hales et al. 1986; Malaspina et al.
2001; Robbins et al. 1997; Wyrobeck 1983),
has often been overlooked in past studies.

Outcomes. The outcomes of greatest inter-
est will be those that can be assessed with at least
reasonable statistical power in the NCS. Even
with a cohort of 100,000 subjects, studies of rare
diseases such as childhood cancer and testicular
carcinoma would be underpowered. However,
useful information could be gained even from
assessments of less-common outcomes.

Potentially useful measures of hormone-
sensitive end points are standardized examina-
tions for supernumerary nipples, size of breast
buds, hypospadias, cryptorchidism, prostate
size, anogenital distance and related measures,
tooth mineralization, sexual development,
gynecomastia, detailed neurologic examina-
tions, and neurodevelopmental assessment of
motor development, language, and cognition
(Alaluusua et al. 1999; Bigsby et al. 1999;
Blanck et al. 2000; Grandjean et al. 2001;
Gray et al. 2001; Hannon et al. 1987;
Krasnegor et al. 1994; Longnecker et al. 2002;
Rogan et al. 1986). Endocrinologic evaluation
based on blood specimens would include thy-
roid function tests, gonadotropins, sex hor-
mones and related measures, insulin resistance
and glucose levels, and immunologic assess-
ment of allergy and immune response and
markers (lymphocyte subtypes) (Brouwer et al.
1999; Cranmer et al. 2000; Egeland et al.
1994; Longnecker and Daniels 2001;
Weisglas-Kuperus et al. 2000). Measures of
gendered behavior, such as toy preference, may
be sensitive to some endocrine disruptors and
appropriate for selected hypotheses (Doering et
al. 1989; Udry et al. 1995; Vreugdenhil et al.
2002). Examination of semen might be appro-
priate as the cohort ages.

Some of the end points we propose for
endocrine disruption are subclinical, but may
be worthy of study nonetheless. For example,
neonatal hypothyroidism is associated with
lower IQ. Suppose that PCBs slightly disrupt
thyroid homeostasis, decreasing the popula-
tion mean IQ by a few points. A small decline
in IQ may not have any noticeable impact for
an individual, but a small decline in mean IQ
for an entire population could mean a large
increase in the number of people who are
learning impaired (Needleman and Bellinger
1991). In addition, studying subclinical end
points could provide clues regarding mecha-
nisms and suggest clinical outcomes worthy
of additional scrutiny.

Furthermore, for those rare, dichotomous
outcomes such as congenital anomalies, evalu-
ation of all NCS children would be needed to

obtain reasonable statistical power for study.
However, most other outcomes evaluated in
the context of endocrine disruption are con-
tinuous in nature, and thus measurement in
subsets of subjects might be sufficient to allow
hypothesis testing.

Conclusion

Endocrine-mediated health effects in humans
from exposure to low levels of environmental
chemicals are biologically plausible. Given the
prevalence of low-level exposure and changing
patterns in endocrine-sensitive end points in
the population, the extent of endocrine dis-
ruption in humans needs to be determined.
However, evidence that supports any given
specific endocrine disruption hypotheses in
humans is weak (Safe 2000). The importance
of human endocrine-disruption investigations
may thus be subject to debate and influenced
largely by one’s judgment of whether effects
seen in animals, usually at relatively high
doses, are worth looking for in humans, who
normally experience much lower exposures
(Neubert 1997).

At this point we believe that if the NCS
can be justified, it will be by virtue of core
hypotheses not necessarily related to endocrine
disruption. At the same time, as our under-
standing of endocrine disruption grows, we also
believe it is highly likely that excellent hypothe-
ses about human endocrine disruption will
arise, and that the NCS should be designed to
accommodate as many such possibilities as is
feasible. Furthermore, evaluation of societal
context and allowance for linkage to other
data sources will facilitate examination of not
only endocrine disruption but also many other
hypotheses. Finally, building on the NCS to
follow the next generation may allow greater
sensitivity for detecting endocrine disruption
than heretofore possible in human studies.
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