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INTRODUCTION
This series of papers will present a survey of equilibrium config-
urations of rotating charged or gravitating liquid masses.

The theory of'rotating homogeneous masses as idealized represénta-

~ tions of planets, stars, and nebulae goes back to Newton's invéstigations

on the figure of the earth. In the past two and'a‘half centuries the
theory has been developed by many illustrious mathematicians, among them
Maclauri@ Jacobi, Riemann, Poincare, Liapouhéff, Jeans, DérWin, Cértang
Appell, and Lyttelton. In the laét decade the subject was taken‘up anew
by S. Chandrésekhar'and N. Lebovitz and Brought to a rare degree of
perfection in Chandrasekhar's monumental work on "Ellipsoidal Figures of
Equilibrium;”l" | |
Thg theary of a rotating liquid mass endowedeith‘a surface

tension but no gravitational forces was stimulated by Plateau's eiperi-

ments 100 years ago with globes of o0il suspended in a liquid of the same

density{ The experiments were discuésed in connection with Lapiace’s
nebﬁlar hypothesis of the origin of the solar system. An account of the
earlier investigations is given in Appell's "Mécanique Rationnelle™
(Vol. L, ch. IX).

The theory of rotating liquid masses with a surface tension and

a uniform electric charge arose in nuclear physics in connection with the

.study of nuclei endowed withvlafge angular momenta. The major part of the

binding energy of a nucleus is well represenﬁéd by the model of & uniformly
charged liquid drop with a sufface tension, and the addition of a
rotational energy to the conventional volume, surféce, and electrostatic

energies of the liquid drop model constitutes and interésting generalization.
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A number of authors, among them Pik-Pichak,j'.Beringer,and Knox,l’L Hiskes,5

Sperber,6 _Cai'lson and Pau Lu,.7 Cohen, Plasil and Sw,izsmtecki,\8 Chta,ndrza.sekhar',_9
Rosenkilde,lo Mollenauer and Wheelerll have addressed themselves to ﬁhis-
problem in ﬁhe past 15 years.

It was pointed out in Refs. 7 and 8 that the nuclear problem of
a rotating chargedrdrop may be made to go over sﬁoqthly into the |
astronomical problem of an idealized rotating gravitating mass by imagining
the electrostatic energy of the drop to be gradually decreasedlin magnitude,
to go through Zero, and to continue on to negative'values, at which stage
it becomes the energy of attractive;Newtonian gravitation. In this way a
continuous formal connection is established between the classic equilibrium
configurations of idealized rotating.astronomical masses, the flattened
globes oflfiateau, and the various equilibrium configurations of an
idealized nucleus.

Thus a problem of irresistible scope ;resepts itself: +to discuss
Vin a unified manner the equilibrium shapes of rotating masses representing
at one extreme idealized atomic nuclei and at the other idealized heavenly
bodies. The present series of papers 1is an attempt in this direction.

The study of stable and unstable configufations of equilibrium of
a mechanical system, i.e., of the configurations where the potential
energy is,etatienary with respect to all infiniteeimal displacements, is
a prerequisite to a8 full dynamical discussion ofvthe system. This is
rooted in the circumstance that ever since the rationalization of mechanics
that is associated with the names qf lagrange and Hamilton, the theoretical
. description of any system may be formulated in a standard way. First the

number and nature of the degrees of freedom of the system are defined,

L]
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“after which a key function of these degrees of freedom, the lagrangean or

Hamiltonian is specified. One part of the Hamiltonian is the potential
energy of the system, the other is its kinetic energy. The mapping out

of the potential energy as a function of the degrees.pf freedém is a

first step in understanding the properties of the system, and the location
of the stationary points in these maps (minima, maxima, and saddle-point
passes with various degrees. of instability) is thé_first step in a survey
of such maps. (We may remark parenthetically that this standard procedure
has, in the main, survived the revolutionary replaéement of classical
mechanics by quantum meéhanics. The writing down of a Lagrangean or
Hamiltonian function and the mapping of a potential:energy as a function .
of the degrees of freedom, is a step common to classical and quantal
treatments of a problem; the distinction arises at the stage when the

dynamical equations of motion are written down, classical in one case and

quantal in the other.) The listing of the points where the potential
energy is stationary in the many-dimensional configuration space provides

a survey of the equilibrium shapes of the system. The hature of the
stationary points (as given by the number of degrees of freedom with
respect to which the energy is & minimum or a maximum) provides information
regarding the stability or instability of the equilibrium shape in question.

In the case of static (nonrotating) systems the relation between

" the nature of the stationary points and the stability or instability of a

system is simple and direct: a maximum in one or more degrees of freedom
indicates instability. In the case of systems in uniform rotation (i.e.
gyrostatic systems) the configuration of gyrostatic equilibrium may still

be 1ocated by making stationary an effective potential energy (the
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) potential energy augmented‘by a centrifugal poténtial), but the relationv
between the nature of the stationary points (maxima, minima or saddles)
and the stability or‘instability of the systém is more subtle. The =
conventional view is that a maximum in one or more degrees of freedom

indicates instabllity of motion in the presence of dissipative forces

(secular instability) but not necessarily otherwise. (See, for example,

Ref. 12, p.vl5f) In any case the firét step in a listing of the
configurations. for which the-potentidl enérgy or efféctive pqtential

energy is staﬁionary, together with an iﬁdication of the number of

'~ degrees of freedom with respect to which the energy is a maximum.

(We shall call this number the degree of secular instability of the

configuration. )

-
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II. FORMULATION OF THE PROBLEM
Consider a configuration of a rotating incompressible gfavitating
or uniformlyvcharged fluid enddwad with a surface tension, whose sharp
boundary (which may or may not be simply-connected) is specified by a
number of degrees of freedom (which may be infinite).
The effective potential energy, from which configurations of

equilibrium may be deduced by differentiation, is given by |

E:ES+EC+ER, _ (1)

where ES is the surface energy, EC the electrostatic or gravitational
energy, and E, is the rotational energy (Ref. 12, p. 26 ).
The surface energy ES is equal to the surface area of the

configuration in question, times the surface energy coefficient 7y :

Y o . | (2)

The quantity EC is the sum of interactions between pairs of
volume elements dTl. and drg interacting according to an inverse-

distance potential:

A ax, ac
B, = (constant) % j/fj[ -—2'71—2—-—2— . (3)

The 'consfant' is equal to the square of the (uniform) charge density
in the electrostatic case, or to minus the square of the mass densitxr
timés the constant of gravitation, in the gravitétional case.

The rotational energy will be taken as the‘square of the angular

momentum I = divided by twice the moment of inertia of the configuration

in question
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Here r is the perpendicular distance of the volume elemenht drt from

A
the axis‘of rotation (passing through the center of mass of the system).

In Eq. (4) the moment of inertia is taken to be that of a rigid
body. This is because the present paper will be confined strictly to
configurations of gyrostatic equilibrium in which the only time-dependence
of the motion of all fluid elements is a uniform rotation abéut a common
axis with a common angular velocity. Other types bf'motion, where the
boundary of the fluid rotates as a whole but fluid elements inside it
execute nongyrostatic motions, are also of great interest (Ref. l),
but will be excluded from the present éurvey. This limitatlion is to a
certain extent é natural one insofar as disslipative effects associated
with relative motions of neighboring fluid elements (e.g. viscosity) tend
to convert nongyrostatic to gyrostatic motions. Thus gyrostatic motions
may be considered as governing the ultimate fate of a system after a
éufficiently long lapse of time., One should bear in mind, however, that
this tiﬁe_may in certain cases be very long, or even tend to infinity as the
relevant dissipative effects tend to zero.*

iEqpations (1) - (4) describe the effective potential energy of the

system and the problem to which we shall address ourselves is now defined:

to discuss the configurations of equilibrium given by the condition that

8E = O for all infinitesimal variations of the degress of freedom specifying

the system.

Let us denote by ES(O), EC(O), ER(O), and E(o) the surface,

electrostatic (or gravitational), rotational and total energies of the

spherical configuration. We may then write the deformation energy,

1
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Special caution should be éxércised in this respéct in the case of
disconnected systems, e.g., Darwin's binary star system or the
Roche problem of a satellite. In these cases the relevant
dissipative effects may enter only thfough tidal couplings between
the two bodies, and these may be very small. Ne&ertheless these

small couplings may make all the difference between stability

“and secular instability, and their neglect has in some cases led

to apparent contradictions regarding the stability of such

configurations as inferred by different authors.
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measured with respect to the energy of the sphere and'expressed in units
of the surface energy of the sphere, in the following dimensionless form,

familiar in the literature of nuclear fission:

E - E(o) . E, - E (o) E,-E (o), Ep - ER(O)

£ = =
(o) - (o)
Eq . Eq

1

+

(Bg - 1) + 2x(B, -1) + y(Bg -1). (5)

Here BS is the surface energy of the configuration in question,
expressed in units of the surface energy of the sphére. It is a dimen-
sionless function (strictly speaking a functional) of the shape of the
drop, and assumes the value 1 for the spherical configuration. Similarly
BC and BR are dimensionless functionals specifying the rafios of the

electrostatic (graVitational) and rotational energies to their wvalues for -

the sphere. Thus

| B (shape) = ES/ES(O) .

B, (shape) EC/EC(O) ,

/sy

i

BR(shabe)
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where
ES(O) = LxR7y
(0) 3 gi 3 Mo o '
EC = 5 R or -5 '—"—R (6)
ER(O) = __L.f.._ - 1. 1°
2 & 2 %Mf

In the above R is thé radius of the spherical cénfiguration, 5?0
its moment of inertia, » is the surface tension coefficient (i.e.,
the surface energy pef unit area), Q is thetomal‘charge on the drop,
M its total méss, L -its angular momentum and G 1is the constant of
gravitation.

The two dimensionless parameters x and y in Eg. (5) specify
the ratios of electrostatic (gravitational) and rotaﬁional energies of

the sphere to the surface energy of the sphere:

(0) 2
E." (Charge)
X = = ’
QES(O) 10 (Volume) (Surface Tension Coefficient)
2
- G (Mass) ‘
or 3

10 (Volume) (Surface Tension Coefficient)

r Momentum
(0) 5 , (Angular Momentum)®
y = = “
E (0] 16n  (Mass) (R:a.clius))+ (Surface Tension Coefficient)

(7)
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The pérameter v 1is a measure of (the square of) the angular
momentum and thus of the size of thé disruptive centrifugal forces
compared to the cohesive surface tension forces. Thé parameter x is
the conventional 'fissility parameter' of nuclear physics. For positive
values of x it is a measﬁre of the disruptive electrostatic férces and
for negative wvalues iﬁ is a measure of the cohesive gravitational forces,
compared to the surface tension forces. We qote that.the surface energy
of a spherical drop is*eqpal to its gravitational eﬁergy when X = -‘% .
“or a liquid with the density and surface tension of water, for example,

the radius of a spherical globe for which the two ehergies are equal 1s

given by

y  21/3 ‘

R = (57/ 3" Gp~) = 10 meters, approximately.

Thus the region of x wvalues around minus one half would correspohd
to ligquid globés (e.g. molten asteroids) with dimensions of this general
order of magnitude.

If we wish to consider the conventional idealized astronomical
problem of a gravitating fluid for which the surface energy is negligible,
we have to.také the 1imit where both -x and y +tend to infinity. It
is then convenient to introduce the ratio of the rotational enérgy of a
sphere to the magnitude of its gravitational energy, which ratio we shall

denote by t

(0)
. . R _ ¥y _ o _1°_
g (0] 2% 2 5g 0

s
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The quantity £ in Eq. (5)vrepresents the deformation energy
with respect to the energy of a rotating rigid sphere. It is sometimes
more convenient to consider the deformation energy with respect to a
nonrotating sphere; we write this as ¢ , where

5.5 (0 g

S C

= = (B
: £ )

g - 1) + 2x(BC - 1) + yBg = &+ .

When the deformation energy is expressed in units of the gravitational

(0) (0)

energy, i.e., in units of -E instead of E , we shall use in

C S
place of ( the quantity 1n , defined as
5 -5, (©) 5 () N
n o= @) = (-2x)"7(Bg - 1) + (1 - By) + tB; .
- E
C

In the astronomical case this reduces to

N - (1 - B,) + tB »

In the literature on the astronomical problem the amount of rotation
in relation to the gravitational energy is usual}y described in one of
three ways: by the dimensionless measure of the square of the angular

velocity  w, hamely
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a?/én Go (denoted by Appell by h), by the dimensionless measure of the

kinetic energy, %&&?, namely % gwg/((} b«@/R ) (Lyttelton's T,
Chandrasekhar's [T]), or by the dimensionless measure of the angular
momentum IL/(G R Mj)l/é (Chandrasekhar's [M], ILyttelton's H, Jeans' M,

Darwin's u). We note the relations

T = %6((3/&0)}1’

{where (§/2§l) is the relevant momenﬁﬂof‘inertia‘of the figure in
question in units of Cé%cy the moment of inertia of a sphere) and, in

particular,

Thus our parameter t or y/(—2x) is two and one-twelfth times the
square of the conventional astronomical measure of angular moﬁentum.

The specification of the two numbers x and y defines, through
Fgs. (1 - h),‘the energy characteristics of the system we are dealing
with, and theiequilibrium éonfigurations may then be

B

determined (if the functionals B and B, are known). If we

g’ c’
imagine this done for a pair of values of x and y and we subsequently

Vary x and 'y, we generate two-parameter families of equilibrium

<\
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configurafions. The caée in which one parameter at a time is varied

corresponds to the familiar situation of 'linear series of equilibrium
configurations.' (See Refs. 2, 12.) The classic examples are the
sequences of equilibrium shapes of rotating astronomical masses
considered as functions of the amount of rotation. (Maclaurin'spheroids,

- Jacobi ellipsoids, Poincare pears, etc.) The systematic discussion of
suchvfamilies of equilibrium configurations and theif Stability leads to
the notions of a 'point of bifurcation' (where two linear series.cross
when plotted as functions of the variable parameter) and to a 'limiting
point' or 'turning point', where a family of equilibrium shapes doubles
back on itself. These notions may be generalized to the present case
where two parameters, x and y, are varied. A linear series of
equilibrium shapes becomes & two-parameter 'sheet' of configuratioms.

A crossing of tﬁo series becomes & crossing of two sheets along a
'pifurcation curve', and a limiting or turning point becomes a limiting
or turning curve, where a sheet of solutions doubles back on itself.

One of the advantages of ordering families of equilibrium configurations
according to linear series or sheets is that formal connections may be

‘established between differeﬁt configurations that at first seem unrelated.
A typical example 1is the case of a family of stable configurations and a
family of saddle-point configurafions between which a connection may be
established. This may occur by way of a point or curve of bifurcation
where the families cross and have a common member, or by way of a limiting
point or limifing‘curve where 6ne family is:actually a smooth continuatibn
of the other. We shall pay particular attention to the relations to one

another of the various nuclear and astronomical families of equilibrium
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configurétions. We found considerable satisfaction in discovering
continuous cbnneétions betweén, for example, the Pbincafé-Liapounoff
pears and théﬁnuclear Businaro-Gallone asymmetrié duﬁb-bélls, or between
the Bohr-Wheeier éaddle-point shapes and Darwin's binary star system!
Besides their'éntertainment value such connections can be useful in
increasing one's understanding of the physical significance of various
equilibrium shapes. Our study of the equilibrium configurations of
rotating masses has been guilded by the wish to establish all the relations
iﬁ X-y space between the more important astronomical and nuclear
families. \

Owing to difficulties associated with the calculation of the
electrostatic energy of nonaxially symmetric configurations we have
succeeded only partially in making such a survey. In some cases we have
been forced to compromise by ihtroducihg an approximation that treats -
certain shapes as axially symmetric whén, in fact, they are not. Even
though we believe our survey to be correct in its essential features,

We are planning further calculations free of the above approximation.
Since this may take some time we have decided to publish our work in a
series of papers of which the first will describe principally results
of immédiate interest in applications to nuclear phsyics, where the
imperfectioné of the‘présent calculations have to be 5alanCed against

their practical relevance for current research.
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ITT. SURVEY OF RESULTS

Qur survey of equilibrium configurations will be made in terms
of diagrams in X, y space: for any given x (a giveh charge'or
intensity of gravitation) we shall describe the sequence of equilibrium
shapes as y - (the amount of rotatign) is increaséd. The range of x-
values in these diagrams (Figs. 28,b,c) is from -1 to +1. (The value
x = 1 represents the maximum amount of charge that a droplet's surface
tension can support. Forb x>1 no stable_undisintegrated configurations
exist.) The range.in y that we shall considef is from O to +oo.
FTor the sake of completeness we shall eventually consider families of
equilibrium for x < -1, x >1 and for y < 0. (The latter case
correéponds to negative rotational energies--a negative centrifugal
force!--and is of some interest.) In the present paper, however, the
stress will be on nuclear applications, with x between O and 1, and

y 7 O.

(a) Stable Undisintegrated Configurations

For Smali amounts of rotation the originally spherical drop is
flattened by the centrifugal force into an oblate spheroid, independently
df the value of x , i.e., independently of whether we discuss a
gravitating liquid mass with or without surface tension, or & charged
nuclear drop;et. For finite values of y the equilibrium configurations
are no longer.exact sphéroids and we shall refer to these shapes as
pseudospheroids or Hiskes shapes»(Fig. 5).7 In the astronomical limit of
zero surface tension the oblate shapes of equilibrium do happen to be
exact spherolds: they ére the Maclaurin spheroids. The spheroids or

pseudospheroids continue to flatten with increasing rotation and they remain
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" stable until a cert;in critical value of y, denoted by s which is a
function‘of x. At this point the pseudospheroids become secularly

. unstable and a qualitative change takes place. The nature of the change
depends on whether x 1is below or above a certain Qritical value X,
which is today not yet determined exactly, but apﬁears to be in the
neighborhood of x = 0.81 (see last reference under.(j)). This
corresponds to heavy nuclei towards the end of the periodic table.

If x> xc the flat pseudospheroids become.secularly unstable
towérds’disintegration, by way of a triaxial deformation.

If x < X, and this includes the rest of the periodic table as
well as uncharged droplets, molten asteroids and astronomical gravitating
masses, the flat pseudospheroid becomes secularly unstabie towards
conversion into a nonaxially symmetric configuration of equilibrium,
which branches off the pseudospheroids at the critical wvalue Y1 (see
Figs. Zé,b,c). This new configuration has the symmetry of an ellipsoid
with three unequal axes and rotates about its shorﬁest axis., The other
two axes are at first almost equal (when y exceeds the critical value
by an infinitesimal amount and the equilibrium configuration is almost
axially symmetric). Iater these two axes become rapidly unequal, one of
them becoming longer and longer as y increases, and the other tending
to approximate equallity with the shortest axis about which the rotation
is taking place. The general appearance of these configurations is thét
of flattened cylinders with rounded ends and a somewhat elliptic cross
section. In the astronomicael limit of large negative x these config-
urations are exact ellipsoids (the Jacobi ellipsoids); otherwise the tips

of the figure are more rounded. For certain values of x (in the



neighborhood of 0) there is.éﬁen-a suggestion of a duﬁb-bell_or hourglass
shape. We sﬁall refer to these configurdtions as pseudo?eiliésﬁids, or as
Beringer -Knox sﬁapeé. | | ‘
As:the angular momentum is inqreased beyond the fifst critical
value ¥q the pseudo-ellipsoids whiéh exist for x.< X, becqme mofe and
mdre elongated under the influence of the centrifugal force until a second
critical value‘of y 1is reached, denoted by Y1 - At this value of ¥y
. thevfamiiy‘of'triaxial pseudo-ellipsoids comes to an end by way of loss
of equilibrium towards a reflection symmetric disintegrétion mode. If x
is greater‘than a second critical value of x, denoted by Xoo (and equal
tovaboutv;o.h), fhe pseudo-~ellipsoids ére stable shapes up to the critical
value Y12 when they cease to exist. If, however,. x < X, o2 thé pseudo-
ellipsoids lose stability against a reflection asymmeﬁric disintegration
mode along the dashed part of the critical curve denoted by YITT in
Fig. 2. Tﬁis occurs before the disappearance of the pseudo-ellipsoids at
Yyq» SO that in the case of x < xcc the pseudo;ellipsoids exist but are
unstable against asymmetry in the region between yIiI and yII.V
We may sﬁmmarize the situation as follows: A sufficient amount
of rotation will always disintegrate a fluid mass, be it gravitating or
charged. The critical amount of rotation is, naturally, a decreasing
function.of X, being given by the curve yI(x) for 0.81 <x <1,

by yII(x) for -0.4 <x <0.81 eand by (x) for - <x < -0.h

Y111
The disintegration occurs by way of a loss of stability against a

triaxial mode in the first case, by way of a loss of ggpilibrium'against

a reflection symmetric mode in the second case, and by way of loss of

stability against a reflection asymmetric mode in the third case. Note



-18-

the distinction between loss of stability and loss of equilibrium. Loss

of stability in a famiiy of equilibrium shapes means that for a parameter

(e.g. y) in excess of a critical value an equilibriuﬁ shape exists but
has changed_from stable to unstable, i.e., the second derivative of the
energy has changed sign. Loss of equilibrium meéns that the family of
equilibrium shapes has ceased to exist: with the parameter in excess of
the critical value the condition for equilibrium, SE = O, cannot be
satisfied,‘i;e._the condition of the vanishing of the first derivative
of the eneigy has no (real) solutions. As noted before, when we say
"instable" we mean "secularly unstable".

Finally a note about the astronomical limit x = -wm, or
xY = 0. The situation is similar to the case of -oo < x < x,, in that
increasing éngular momentum leads to & loss of stability against a
reflection asymmetric mode (at t = 0.316). Nevertheless the case of
zero surface tension (x”l = 0) is a special case, different from the
case of a finite surfacé tension, however small, in that for x-l =0
the Jacobi ellipsoids are shapes 6f equilibrium for any wvalue of Vs
even exceéding yrre In this (astronomical) case ‘yII does not mark
the end of the ellipsoids (a loss of equilibrium) but merely a loss of
stability against a reflection symmetric disintegfation mode. We

reserve a detailed discussion of the subtle diffefence between a small

surface tension and no surface tension for a future occasion.

(b) Saddle-Point Configurations
The stability of an undisintegrated configuration of equilibrium
is ensured by the existence of a potential energy barrier and of an

associated saddle-point shape (Fig. 1). In what follows we shall describe

e e e e e e e A
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the appearance of these saddle-point configurations, which are responsible
for the stability of the undisintegrated configurations discussed in the
preceding section, and which coincide with them at the moment when

stability or equilibrium are lost along the critical curves Yy or

11

Y111°

These equilibrium shapes are well known for a ﬂonrotating charged
drop, i.e., for y = 0. They resemble axially symmetric cylinders with
rounded ends for x between about 2/3 and 1 (tending to a sphere at
1), and symmetric dumb-bells or hourglass figureé for x between about
2/3 and zerob(tending to two equal tangent spheres at x = 0). (See
Ref. 13, p. 416.) On the other hand, when the amount of rotation is equal
to the critical value for the disintegration of the liqﬁid mass, the
saddle-~-point shapes coincide with the undisintegrated shapes. The effect
of rotation on the saddle-point shapes.is a contraction of the cylinders
and a filling up of the neck of the dumb-bells. The physical reason for

this is that the unstable saddle-shapes must become more compact in order

to be'able’to balance the centrifugal force.

Rotating saddle-point shapes are, in general, triaxial, and for

x & -0.4 they are also asymmetric (pear-shaped). In practice, however,

two of the three axes are usually approximately equal. They are, of
ééurse, exactly equal when the amount of rotation is zero, but even for
larger amounts of rotation, up to the critical value yyr o©f yIIi’ they
remain aprroximately equal provided only x 1is not too close to x,
(given by X, 3 0.81). For x > 0.81 the saddle shapes may have three

substantially unequal axes, approximate axial symmetry about a direction

perpendicular to the angular momentum for small y being replaced by

axial symmetry about the angular momentum (at y = yI),
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But even for x > X, saddle shapes are substantially triaxial only when
y. is not too close either to y =0 or y = yI. We shall refer to the
triaxial saddle shapes as the Pik-Pichak configurations.

(¢) Disintegrated Configurations

On the far side of a saddle pass in the effective potential energy
there exist one or more disintegrated configurations of equilibrium (see
Fig. 1). ‘The first problem here is to find, among the several such
configurations, the one corresponding to an Absolute Minimum in the energy.
We note that for any value of x , positive or negative, ana for any y ,
a configuration of n equal spherical fragments at infinity, rotating
infinitely slowly about the common center of mass, makes the effective
potential energy stationary. Thus the moment of inertia of infinitely
separated fragments is infinite and so the rotational>energy is zero for
.any finite angular momentum. The interaction between the fragments is
also zero and the fragments are ﬁhﬁs in (neutral) equilibrium as regards
changes in their separation coordinates.* I1f, moréoVer, the fragments

¥
The equilibrium is neutral in the sense that infinitesimal changes

in the large (infinite) separations leave the energy unchanged.
Finite changes--in fact changes sufficiently large to convert the large
(infinite) separation into a finite separation--increase the energy if

X 1s positive and decrease it if x 1is negative.
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are all equai, the energy'will, by symmetry, be stationary with respect
to changes in their relative sizes.

Here we should point out that we take the nqtion of equilibrium
in the strict formal seﬁsé of a condition wherein the (effective)
potentiai energy E of HEgq. (l) is stétionary with respect to all
degrees of‘freedom describing the configuration. In particular the
degrees of freedom with respect to which we shall demand equilibrium
always include the relative sizes of the fragments, even if the fragments
are separated and fhere is no communication between them through a neck
of matter. We regard the discussion’of the ph&sical transfer of matter
from one fragment to another (whether in the case of fission‘fragments'
or stars),as.a separate problem. It is beyond the scope of the present
investigation, which is confined strictly to static aspects, i.e., to
the formal mapping of the potential energy as a function of all £he
degrees of freedom, and the listing of configurations that make the
energy stationary.

The energy of n equal fragments at infinity is given by the sum

of surface and electrostatic (or gravitational) energies (see Refs. 13, 15):

£ = (nl/5 -1) + ’z'x(n'g/5 - 1) | (8)
ne A2 el v a e, (Ga)

The first term represents the surface energy: each of the n fragments
has an area equal to n_e/5 times the area of the ariginal sphere, so,

for n fragments, the total area, in units of the area of the standard

-2/5), 1/3

sphere, is n(n or n . Similarly the second term-represents the
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electrostatic or gravitational self-energies, which scale as the inverse

n—s/3 for & single fragment, and

2/3

fifth power of the radius, i.e., as
which thus add up to n(n_5/5) i.e.,vto n- times the self-energy of
the sﬁandard sphere. . |

The rotational energy does not appear in the above equations since
it is zero for two or more fragments at infinity. It is important to
note, however, ﬁhat even for one 'fragment', i.e.,, for n =1, the
rotational energy may be made zero if an infinitesimal sateilite, which
does not sensibly modify the surface or electrostatic (gravitational)
energies, is detached from the rotating mass and plaéed at infinity.
Thus, if the relative orders of infinity in the distance and smallness of
the satellite are chosen suitably, the moment of inertia of the whole
configuration may be made infinite (despite the smallness of the
satellite). The rotational enérgy is then zero for any finite angular
momentum. This means that we may use Egs. (8) and (8a), including the
case n =1, to select the Absolute Minimum in the effective potential
energy for any value of x. ,By comparing £ or 7 for differeﬁt values
of n .we readily find that for -m < x < 0.55121 a single sphere (with
an infinitésimal satellite at infinity) has the lowest energy, for
0.35121 < x < 0.61098 two equal fragments at infinite separation have
least energy, for 0.61098 < x < 0.86502 three fragments, for
0.86502 < x < 1.11726 four, etc. (see Ref. 15, p. 248).

It was pointed out in Ref. 14 that the ranges of x in which a
given number of fragments represents an Absolute Minimum of the energy,

are related to the tendency to form the most strongly bound fragments.

In the case of nuclei, represented by the liquid drop model, the strongest

e ae ! - )
binding occurs when x = T (Ref. 14, p. 131). This corresponds to the

o

K
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region of the periqdic table in the vicinity of iron. Nﬁclei in this
region aré indeed among the relatively more abundant eléments in nature.
In the astronomical case the Absolute Minimum of energy is approached by

a system consisting of a small satellite (or satellites) revolving at a
large distance about a slowly rotating mass, the satellite(s) carrying
most of the angular momentum. This is a situation somewhat reminiscent

of the solar system or of the earth-moon system. It is an amusing thought
that the same elementary considerations expressed by Eq. (8) or (8a),
which sugéest the relatively large abundance of medium weight elements in
nature, shouid also suggest a relatively large abundance of very unequal
binary or satellite systems in the domain of astronomy.

| In addition to the disintegrated configurations of equilibrium
consisting of n equal fragments at infinity (of which one; for any x,
represents an Absolute Minimum) there are other disintegrated configurations
of equilibrium possible. For example, if x > % , two unequal fragments
at infinity may have a stationary energy if their relative sizes are
adjusted suitably. (See Ref. 15, p. 256 and Ref. 1L, Fig. 39.)

These configurations are sometimes of interest, and a general
survey of many such configurations and of thé relations between them will
be given on é future occasion. For the present we return to the
description of equilibrium shapes of more immediate practical intérest,
namely equilibrium shapes of idealized rotating nuclei: stable equilibrium
Shapes representing their gfound states (deformed by the centrifugal force),
and unstable saddle-point shapes associated with the barrier against

disintegration.
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IV. GRAPHS AND FIGURES

(a) FExamples of Shapes

In Fig. 3 we show a series of mefidian sections of axially
.symmetric shapes of equilibrium for x = 0 and y ranging from O to
2.25. For y < 0.2829 these figures are ground state equilibrium shapes,
but for y > 0.2829 they are all secularly unstable with respect to
triaxial deformations for which the equator of the figure becomes elliptic
and the figure acqu;res three unequal axes.

Figures 4 - 9 illustrate ground states.and saddle shapes for
various values of X and vy.

Figure ba refers to x = 0, y = O. There is no rotation and so
the ground state is a sphere and the saddle shape is the configuration
of two tangent spheres (Ref. 13). As the rotation is increased to
v = 0.28 (Fig. Ub) the sphere is seen to flatten into an axially symmetric
(Hiskes) shape. (At this y-value it is about to lose stability against a
triaxial deformation.) The saddle shape (Pik-Pichak shape) has become
an hourglass figure with a thin neck. The true hourglass figure has a
somewhat elliptic cross section; the one illustrated in Fig. &b was
obtained from a calculation in which the cross section was restricted to
be circular.. The curve in Fig. Ub represents therefore a mean longitudinal
section éf the hourglass figure. The same will be true of other triaxial
shapes in the following figures.

In Fig. 4c the rotation has been increased to y = 0.64. The
ground state shape is now a triaxial (Beringer-Knox) shape, whose mean
longitudinal section is the less indented of the two shapes in Fig. kc.

The other curve is the mean longitudinal section of the Pik-Pichak

saddle shape.
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Figures Ha-d éhow é similar sequence for x = 0.3. For y =0
and y = 0.16 the ground state is an axially symmetric Hiskes shape, for
y = 0.2k and y = 0.4 it is a triaxial Beringer-Knox shape, whose mean
section is shown. We may note that for x = 0.3 the value y = 0.4 is
quite_close»to the‘éritical value Y11 where the fission barrier
’ Qanishes (yII = 0.4%) and as & result the Beringer-Knox ground state and

they

the Pik-Pichak saddle are quite close in appearance. (At Yy = V11

coalesce. )

Figures 6a,b,c show a similar sequence for x = 0.6, Figs. Ta,b
do this for x = 0.7, and Figs. 8a,brefer to x = 0.8. A very small amount
rotation is now sufficient to cause disintegration.

Figure Q9a shows a set of x,y wvalues chosen to be very close to
the critical line Yr1° The solid line is the mean longitudinal section
of the Beringer-Knox shape and the dashed line gives an indication of the
mode of deformation with respect to which loss of equilibrium occurs at
the critical point y .. (A necking-in and elongation of the figure.)

Figure 9b shows the same thing for x = 0.5, 7y = 0.18.

(b) Principal Axes and Moments of Inertia

Plots of the equilibrium shapes for all pairs of x and y values
of interest would take up an inordinate amount of.space.» In Figs. 10 and
11 wé-attempt to give the most important features of these shapes (the
principal axes and the ﬁrincipal moments of inertia) in the form of graphs
with x as the sbscissa and y as labels on the curves.

| In Fig. 10 consider for examplevthe family of curves labeled with
the number 0.16. 'These‘curves give, as functions of x, the axes (in
units of R) of the ground and saddle shapes of drops rotating with a

y-value of 0.16. Thus the curve CD gives the minor axis and the curve
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AB gives the two (equal) major axes of the oblate, axially symmetric
Hiskes pseudo spheroid corresponding to the stable gfound state
equilibrium configuration; Figure lOvshows that at én-x-value of about
0.356, at the'circled points, a pair of new curves branches off at B,
and a new'curve starts at D. The former two curves (BG and BF) give

the major and ﬁedian.axes, and the latter curve (DF) gives the minor axis
of the Beringer-Knox pseudo-ellipsoid which, for x > 0.356, is the
stable rotating ground state. At a value of X near 0.525 the family of
triaxial stable shapes comes to an end. The méjor'axis bends back at G
and the median and minor axes bend back at F. Beyond the bend (i.e.

at values of x decreasing below 0.523) these curves giye now the major,
median and minor axes of the rotatiné Pik-Pichak saddle-point shape for
y = 0.16. Thus the whole set of curves with the label 0.16 enables one

R of the axially symmetric

to estimate the three axes R, R _,
ma.x med” min

oblate shape, of the triaxial ground state (when it exists) and of the
triaxial saddle-point shape. As an illustratidn let us read off the

y = 0.16 curves at x = O.4. We find that for the oblate pseudospheroid::

' = = 1.118 - o. .
Romx = Fpeq = 1-118R, Rogy = O-TTSR ;

for the triaxial ground state:

0.7hR;

R

min

R, ~ 1.358, R _, % O0.9IR, R

and for the triaxial saddle shape:

Y Y . x
Rmax 2.1R, Rmed Rmin 0.31R.

(For the more elongated saddle shapes the two lesser axes are close in

magnitude and only a single curve is used to indicate their mean value. )
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The axeé of the various équilibrium shapes:may be similarly
estimated for other values of. x and_ y. For x 2‘0.81 the situation
is somewhat different in that the triaxial ground state pseudo-ellipsoids
do not exiét. (For practical purposes théy may be disregarded already
for x:ELCL7.) For example thé set of curves labeled 0.0l gives the
axes of the ground statevspheroids (at&dn#g values of Rmax/R = 1.0k and
Rmin/R = 0.2 at x = 6.9 --the circled'pbints) and of the saddle shape
whose ﬁajor and median axes branch off the circled point.at I and
whose ﬁinor axis Jjoins the circled point at J.

As y tends to zero»the major axls becomes_the down-gloping
curve labeled 0.0 and the median and minor axes coalesce and become the
upward-sloping cﬁrve labeled O;O.v These curves correspond to the major
and minor axes gf‘nonrotating saddle-point shapes. (Compare Ref. 13, Fig. 2.)
The.axes of the rotatihg.oblate grodnd-st#te pseudospheroids tend, in
the limit y ~ O, to the horizontal line R/R = 1.0 corresponding to a
sphere.

The principal moments of inertia éf the rotating equilibrium
shapes may be estimated from Fig.ll ih a similar manner. Taking again
the set of curves labeled 0.16 as aﬁ example, a vertical line at x = 0.k
cuts this set at &‘/@O = 0.51, 0.75, 0.945, 1.265, 1.33, 1.46 and
h.26.. Theseinumbers correspond to.the f6llowing estimates: |

For the oblate bpseudo;pheroids

C?max' - CQmed - l'265303’. g9minh = 0'9!‘6&0’.' '.
for the triaxial gfound stéte: |

g a,- l'll'é@O’ | @'med * l'55(790" ; gmin 2’0‘755503

max
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for the triaxial saddle shape: ‘ . o

g max #‘26%’- vcamed ~ @min ~ Q'51q90 .
In the above é?b is the moment of inertia of a rigid sphere. Note that
éanwk is the moment of inertia taken about the shortest axis (about

which the rotation is taking place), <;7 the moment about the median

o med
axis and ($7min the moment about the longest'axis. Again, for elongated
saddle shapes, only one mean value is shown for the approximately equal

quantities C?max and é?med'

(c) Energies

The energies of the ground states and saddle shapes described above
may be deduced from Figs. 12a,b,c and 13a,b. TFigure 12a shows the energies

(in unites of E (O))_ of the rotating shapes, as functions of x and

S
for different values of y. For each value of y the energy is given
with respect to the energy of the rigid sphere rqtating Vith the same
angular momentum. The more nearly horizontal curves give the energies of
the oblate Hiskes shapes, the more steeply diving curves which start at
the circled points refer to the Beringer-Knox shapes, and the very steep
curves joining the latter in a sharp cusp are the energies of the Pik-
Pichak saddle shapes. Let us once again'use ﬁhe cése of y = 0.16 as

an example. For x = 0 Fig. 12a gives for its energy ¢ = -0.0131,

which means that the enérgy of an uncharged.rotatinglsphe;e with surface
tensionv Es<0) (and with an initial rotational engrgy ER(O) = 0.16 ES(O))
goes down by 0.0151ES(O) when the sphere is allowéd to deform into its
equilibrium Hiskes shape. If the sphere is chargea (i.e. if the x-value

is finite) this energy relief increases as shown by the trend of the
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curve labeled 0.16 in Fig. 12a. (This is because the stiffness of the
drop against deformations is softened by the electric charge. )

At the circled point {for x = 0.358) the H.iske_s configuration
becomes secularly unstable with respect to convefsion_into a triaxial
Beringer-XKnox shape, whose energy is lower and rapidly decreases further
with increasing x. Eveﬁ so the energy of the Fik-Pichak séddlg point
decreases even faster with x (the almost linear steep curve) and the
energy difference between the two curves (which is the fission barrier)
vanishes at x = 0.528. At this point their common-energy is given by
£ = -0.0367, i.e. it is  0.0367 ES(O) units below the ene;gy of a
rotating rigid sphefe._

As usual, for x 2 0.81,4#he Beringer-Knox shapes are absent
'and the vanishing of the barrier against fission occurs directly by the
osculation of the Pik-Pichak and Hiskes curves at the circled points.

Figure 12b is similar to 12a butAcovers a larger range of y-values.
Figure 12¢ gives an expanded view of the high x range.

Figures l13%a,b give the energy differences between the ground state
(a Hiskes or Beringer-Knox shape, whichever is lower ) and the Pik-Pichak
saddle. Thus they give directly the height of the fission barrier (in

(0)
5 )

units of E in its dependence on x and y. They may also be used
to deduce the energy of the Pik-Pichak shapes (for which Figs. 12a,b,c

are generally inadeqpate) by adding the barrier to the ground state, i.e.,

£ S

Pik-Pichak Ground * EBarrier :

In Fig. 1%a the circled points connected by a short-dashed line indicate

where the ground state changes from a Hiskes to a Beringer-Knox shape
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(Hiskes shape above the line,.Beringer-Khox below){ 'The loné;dashed
line indicates that to the left of it the Pik_’-ﬁéhak saddles are unstable
against deviations from reflecﬁioﬁ symmetry. (Caution should then be
exercised in interpreting the energy difference betweén the reflection
symmetric Pik-fichak shape and the ground state as a fission barrier--
see Ref. 13, p. 416). Figure 13b gives an expanded view of the high x
end of the range. |

dne comment should be made_abogt the expected.accuracy'of the
graphs in Figs. 10 to 13. For the axially sym@etric Hiéﬁés shapes all
results are essentially exact; on the other hand for fhe triaxial shapes
~there are substantial inaccuracies, especially in the plots of the axes
and moments of inertia. Without going into the details of the
approximations underlying the calculations of the triaxial figures we may
say that we cdnsider the graphs as adequate semi-quantitative guides for
the discussion of those shapes, but that calculations of their properties
with controiled and high accuracy is still a project faor thg future on

which we hope to report at a later date.
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V; APPLICATIONS TO NUCLEI

In this.sectionvwe shall illustrate s6me applications to nuclear
problems--especiaily'heavy ion phyéics--of the results described above.
The applications Viil deal with practical estimates of critical angular
momenta, the stability against fission of rotating nuclei and some
estimates of limits to compound nucleus formation in heavy ion collisions.
The possibility of producing highly deforﬁed triaxial nuclear shapés will
be mentioned. For definiteness of the discussion we shall use the case

1
of Ag-OT

bombarded with Ne_eO ions as an illustration of the use of the
graphs.

(a) Units and Critical Values

(o)
ES |
energy of the spherical drop, the first step is to calculate this

Since all energies are given in units of , the surface

quantity. We use the formula for the nuclear surface energy from Ref. 16,
according to which

ES(O) = hﬂng = e A2/5

where

0
]

17.9439 (1 - KIQ) MeV

1.7806.

X
il

Here I is the relative neutron excess, i.e. I = (N - 2)/A, where

N,Z2,A are the neutron, proton and mass numbers of the nucleus.

7

For the case of the compound nucleus IalQ-, corresponding to an
amalgamation of Ne-C and Ag !, this gives ES(O) = Ll .89 MeV.
Similarly the Coulomb energy expression necessary for the calculation of

the fissility parameter x , is given by Ref. 16 as
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- 2
. Z _ §
CE, = 0.7053 ;i73 MeV = 455.89 MeVVf

121 estimated according to

Note that this is not the Coulomb energy of Ia
Ref. 16, but what the Coulomb would be if the charge distribution were
sharp rather than diffuse. It is this quantiﬁy which is relevant for the

definition of x (see Ref. 17, p. 58) and thus

g (0

o - 1 P

X —_ . - -
(0)

. 2Eg

'50.883(1 - 1.7826 12),   A :

0.5124 for ’La127.

In order to calculate the y-value for a given nucleus with angular

momentum L (=hZ) we use the following formula for - ER(O)

£ % T
MR Mo rO A :

a(l\)<

»
5 -

ST
Ul

The mass M of the nucleus was written as MOA- and its radius as
1 L
rOA /3, where ,Mo

radius constant. We_took for M

-is a pminal mean nucleon mass and. r, & nominal

0]

o the avérage between the mass of a
neutron and the mass of a hydrogen atom (MO = 939.15 MeV). TFor T,

we took 1.2249 F, the value that goes with the Coﬁiomb energy
coeffiéient:of 0.7053 MeV in the mass formula of Ref. 16. (Since the
purposé of this section is to iilustrate the use_éf.the graphs and
fdrmulae and not to discuss the most realistic way of estimating nuclear

sizes and moments of inertia, we do not attempt any refinements on such

nominal values of nuclear perameters. )
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Thus we find
(o) _ £
ER . = 34,540 1:57:5; MeV ,
and
- % fF ' 32_
- 2 /3
MO ro c2 A
' 2
1.9249 L ) | (9)

(1 - 1.78261°) A"/3

(As very rough, easily remembered formulae, we have

2

1z
A

50

x ~

For any nucleus specified by A, Z and _z we are now in a
position to célculate ¥ and y and thus use the earlier figures
described. For example, from Fig. 2b we deduce that for Iao! (with
x = 0.5124) the two critical values of y are yp = 0.1112 and y , = 0.175.

In the case of Y1 the following formulae may'be used:

b

yp = 0.2829 - 0.3475x - 0.0016x° + 0.0501x

Vo o= L1 -x0P - k5660 (1 - x)? + 6,75 (1 - %),
for 0.75 £ x £ 1.0. |

These formulae have the correct behavior at x = 0 and for x — 1,

represent the graphical values satisfactorily and are joined smoothly at

x = 0.75. From the equation relating y and £ (Eq. (9)) we deduce that
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the critical angular momenta ‘EI and 'EII corresponding to Y1 and

yrp are L = 67.79 and gII = 85.05. Thus up to an angular momentum
corresponding to about 68 units of #% . an idealized drop representing
127

la would have an axially symmetric oblate equilibrium shape, whereas

between about 68 and 85 units the predicted equilibrium shape has three
unequal axes.

(b) FEnergies

‘The way in which the barrier against fission, B goes down

f ’
with increasing angular momentum may be deduced from Fig. 13. For example

at the critical value y; (zI = 67.79) we find from Fig. 13a that

| £ = 0.0175 and consequently B_ = (0.0175)(444.89) = 7.79 MeV. This

f
may be contrasted with the value £ = 0.090, B_ = 40.0 MeV for the case

f
of zero angular momentum (y = 0). The ground state energy of 127 with

the critical angular momentum £ may be deduced from Fig. léa. Thus

I
at x = O.512h we estimate ¢ to be -0.0116 (the ground state is on

the verge of changing from a Hiskes to a Beringer-Knox shape, and is thus
on a curve that may be imagined as joining the circled points in Fig. 12a).
Hence the ground state energy is (-0.0116)(4L4L4.89) = -5.16 MeV. The
cnergy of the Pik-Pichak saddle point is then deduced as

EPP = -0.0116 + 0.0175 = 0.0059, which converté to 2.62 MeV. These

energies are all with respect to a rotating rigid sphere with the same

2(0) (0)
s

angular momentum. This energy is ER , equal ﬁo E y, which in the
case considered is thus. (444.89)(0.1112) = 49.47 MeV. Hence with respect
to the energy of a nonrotating sphere (i.e. with resbect to what is a
commonly used baseline--the energy of a spherical liguid drop taken from

Ref. 16) we deduce the following energy values:
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Energy of nonrotating sphere 0 MeV
Energy of nonrotating saddle 40.0 MeV
- Energy of rotating rigid sphere ' h9.h7MeV
Energy of rotating ground state ’ Lk, 31MeV

Energy of rotating saddle - - 52.10MeV.

"(e¢) Cross Sections

In a two-body collision there is a simple proportionality between
the angular momentum L(=#Af¢) and the impact parameter b of the
colliding bodies (the perpendicular distance between the initial direction
of the center of mass of the projeétile and the center of mass of the
térget). The ares wb° of the "impactvcircle" is the cross section for
processes wifh éngular momente less than the anguwlar momentum associated
with b. As a result it is possible to translate our calculations
regarding angular momenta (fqr example the critical éngﬁlar momenta ﬁI
and vle) into statements about cross sections.

The relation between the angular momentum L. and the impact

parameter b in a collision between two masses MTARGEE and

MmogecrIre 1S
L =b® 2ECM Mred
or _
o)
RN R U SR SR
e Mea Eem oMy Ap Ap By
2 -
A y 2
= 20.7293 : (fermi)
Ap Ap By/MeV
or .
2
2 A £
7 = 651.23 : mb.
AL Ay ECM/MeV
Here ECM is the center of mass energy, Mréd is the reduced mass
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MTMP/(MT + MP) ;A and A, are the mass gumbers of the target an
2
projectile and A 1is their sum. If we wish to write b in terms of

v rather than E? we recall that the definition of y is:

(0)
;- Brot 1 1 1
- {0) P (0) °
L ‘%MR2 Eq

Elimination of L2 between this expression and that for b2 gives a

relation between b? and y which may be written as

2 2 2 A ' ‘
- = RS = . ———4[(—7 . , (10)
0 AT AP E ' :

0
CM/ES

1}

338,32 (1 - 1.782612)A10/3y/ATAPECM millibarns,

with E in MeV. TFor a given angular momentum (a given y)' this .

M

2
may be considered as a relation between the cross section xb and

the cénter'of mass bombarding energy E Using again the case of

127

oM

Ne20 + Aglo7 = Ia as an example e find the numerical relation

2

b

i

2
£ .
38,65 ECM TR millibarns.

Taking this time for £ the critical value £ associated with the

11
vanishing of the fission barrier (&I = 85.05) we get
2
— [} . 3 °
Mo = 27955L/ECM mb, where E, 1is in MeV. This curve is the
curve labeled B, = O 4in Fig. 14. It divides the B° Vs Ey Plane

into two regions: above this curve the angular momentum of the

colliding system is too large to be supported by the nucleus La127.

127

Below this curve the rotating nucleus Ia would still have a

finite fission barrier.
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We may use our graphs to calculate the locus in ﬂb2 Vs ECM

space corresponding to any given‘ﬁalue of the fission Barrier. Let us

p = 11 MeV (the reaéonrfor this choice will
aﬁpear presently). In units of’ Eéo)
£ = 11/(444.89) = o.deu72. Using Fig. 13a we estimate that at x = 0.512h

take for example the case B

this corresponds to

a rotation corresponding to ¥y 0.098% would have this &-value. This

i

value of y corresponds to £ '= 63.74 (Eq. 9) and hence the corresponding

nb2 is given by:
2
" = 157030/ECM mb (from Eg. 10).

11 in Fig. 1k.

i

f

It is instructive to plot in the same figure an‘estimated'contact

This 1s the curve marked B

cross-section curve, i.e. the impact parameﬁer (or its square timés T )
at which, for a given energy, the two nuclei come into contact. From
conservation of energy and momentum it readily follows that the minimum
distance of approach rm in the collision of two bodies starting with

impact parameter b and center-of-mass énergy 'E

oM is related to the

potential V(r) acting between them by
2 V(rm)

b
(=) =1 - —
rm ECM

When the minimum distance of approach is of the order of the sum of the
\

radii of the two nuclei contact takes place in the sense that nuclear

forces begin to come into play. More precisely we may set rm for

contact to be the sum of the radii Rl + RQ’ auvgmented by a distance 4,

which allows fér the diffuseness of the nuclear surfaces and the finite»

range of nuclear forces. This quantity is expected to be of the order

of a couple of fermis and approximately the same for all pairs of nuclei.
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We may thus write for the cross section for contact

v

S = xR, +R,+ad)FQ - =2),
c 1 2 E
: oM
where o)
2.7, e 1.4400 2.2
Vo= VR Ry v a) R phEea = g e,
¢ s 17 %2 T

whére Rl + R2 + d is in fermis. In the last expression we have inserted
as én estimate of the interaction energy at contact the electrostatic
energy of two spherical nuclei. (We do not consider refinements to this
estimate arising from nuclear deformations or the contribution of nuclear
forces at contact.)

In Fig. 1k we show two cohtact cross-section curves based on the
above formula with d =2F and 4 = 1.5 F, respectively. Such choices
of d, when used in conjunction with a radius parameter T, equal to
1.2249 F, reproduce in a fair manner experimental contact cross sections
and contact erergies. (Related to what are usually called "reaction
cross sections” and Coulomb barriers”.) Choices of d below the range
l% - 2 F would correspond to progressively harder contact between the
nuclei, in which more than just the extreme fringes of the nuclear
densities and force fields come into play.

The significance of the plot in Fig. 14 is as follows (see also
Refs. 8 and 18). 1In the area marked X , & compound nucleué is not
possible since there isbho potential energy barrier to prevent an immediate
re-disintegration of the system. In the area Y + 72 sﬁch a barrier is
present--a potential energy hollow exists in the configuration space of

the system. In this case a compound nucleus may or may not be formed

depending'on the dynamics of the collision after the moment of tangency.
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Depending on many factors the dynamics may be such that the system
misses the potential energy hoilow altogethér, or that it passes through
it without being captured, or that it is capfuréd. We would like to
suggest the name "composite nucleus" for the state of the composite
system consistihg of the mére or less amalgamated target andvprojectiie,
tracing out a dynamical path in configuration space between the moment of
contaét and either‘capture into the compound nucleus staté.or re- |
disintegr#tionq The expression ﬁcompound nucleus”'Shouid be reserved
for the description of the system after capture in the potential energy
hollow. The expression 'composite nucleus” then takes care of a system
that may well correspond to an intimate contact or even transient
émalgamation of target and projectile but without capture‘iﬁto a compound
system (either because the system misses the hollow or passes through it,
or because the hollow isn't there at all).

In cases where a hollow exists (i.e. below the curve labeled
Bf =0 in-Fig. 14) and a compound nucleus'is forméd;vthere is still the
question whether it will decay by particle emission (emission of neutrons,
protons, alpha particles etc.) or by fission into comparable parts. Which
of the two is more likely to happen depends on the relative sizes of the
barriers for particle émisSion and fission. The cufve labeled Bf = 11
| in Fig. 1k shows the locus where the fission barrier is 11 MeV, which fér

tm]ﬁm7

nucleus in‘qpéstion is about the value of the neutron'binding
energy. (Emission of neutrons is often--but by no means always--the
dominant modé of particle decay.) The Bf = 11 cﬁrve is thus expected
to be, roughly, the dividing line between deéay by fission (above the

curve) and by particle emission (below). We expect then that even if a
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‘compound nucleus is formed in a givén collision between Nego and Ag
it would,not survive during the'de-excitation_proceés if the conditions
of the collision correspond to points above a curve rdughly like the
curve BC in'Fig. 14, The degree to which the expectations based on
Fig. 14 are borne out experimentally is discussed in Ref. 19. In
particular a curve like ABC does seem to account for the formation énd

survival of the compound system in the reactions Neao + Aglo7

o6+ m?7.

and

On.the other hand a recent article by Zebelman and Miller (Ref.
20) appears to give clear evidence that in other reactions a lower
limiting angular mémentum than that given by a curve such as ABC in
Fig. 14 sets a bound on the formation and survival of a compound system.

| r g
Thus in three reactions (BY* + Tbi 7, 012_+ ca™°, ot Sml5b')

designed to lead to the same compound nucleus YblYO (and the same
exitation eﬁergy for a given angular momentum), the experimental cross
sections for formation ahd survival of the compound nucleus fall below
the prediction based on a curve like ABC. The deviation becomes
progressively more pronounced for the reactions induced by the lighter
ions. A possible explanation may be that for a light ion to bring in the
same angular momentum as a heavy one it must in general be traveling
faster and/br'at a larger impact parameter. This, coupled with the fact
that the cohesion (i.e. the total binding energy as well as the barrier
against disintegration) of a light ion is smaller, leads to the expecta-
tion that in many cases it may be too much to ask of a light ion to bring

in a large angular momentum: the ion is traveling too fast and/or too

nearly in a peripheral trajectory to amalgamate with the target. In such
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collisions the light projectile will often disinﬁegfate,.its outer parts
being sheared off. Thus, for a‘rangefof impect parameters below even a
so0lid contact curve, and in' some cases even below a curve like BC in
ig. 14, a compound nucleus may not be formed because of unfavorable
initial conditions at the moment'of tangency. In suéh cases even though
a deep hollow exists in the potential energy surface in configuration
space the initial conditions are such that the.syétem is not given a

chance to be captured in the hollow to form a compound nucleus.

(d) A Limiting Nuclear Angular Momentum

An interesting prediction of our calculations is that no nucleus
can support more than a limiting angular momentum Qf about 100 units of
% . Figure 15 shows what happens when the plot from'Fig. 2 of the
critical value in(x) (where the fissioﬁ barrier vanishes) is converted

into a plot of ¢ by means of Eq.v(9). The plot is against the mass

II
number A for nuclei taken along Green's smooth approximation to the

valley of beta stability:

Mg o O.lA
200 + A °

We see that neither iigh£ nor heavy nuclei can supﬁort many units of
angulér momentum (the former simply because of tﬁeir small size, ﬁhe
latter because of their reduced stébiiity caused by the Coulomb energy).
The nuclei able to support the ﬁiéhest angular momenta occur near A = 130
in Fig. lS,Ibut even in.thafvcase 97 units of h will make fheir fission
barriers vanish. | B o -

The dashed cufve in Fig. 15 shows the angulaf moﬁéﬁtum required

to lower the fission barrier of a nucleus to 8 MeV (a figure taken as
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representaﬁivevof the neutrdn'binding eﬁgrgy of nuclei aiong thé valléy
of‘beta staBility). This curve gives.an indicatiqnibf the maximum

amount qf anéular momentum that a compoundvnuéleus could support and

still survive the risk of fission in the de-exditation process (by getting
#id of its excitation energy through particle emission). The maximum

angular_mohehtum in this case is about 77 units for A = 1LO.

V(e) Super-Deformed Nuclei |

" Our calculations predict that for anguwlar momente greater then a
critical aﬁount corresponding to Y1 the stable equilibrium shape becomes
a tfiaxial'configuration, with often a rather large deformation. For
exahple;:for a nucieus with a fissility parameter x equal to 0.45 and

y equal to 0.16, Fig. 10 predicts an equilibriqm,shape with Rmax ~

'1.52 R, R . ® Ry, ¥ 0-75 R, i.e. a ratio of axes of about 2:1. From

med i
Fig. 11 the moment of inertia about the axis of rotation is about 1.7
times thefmomént of inértia of a rigid sphere. Nuclei wiﬁh such extreme
deformations would be interesting quects to study experimentally if
they could be jroduced. Of the several conditions that have to be
satisfied to make such a study feasible the‘first'is.that one should be
~able to.for@ (aﬁd ensure the survival of) a compoun& system with an
'angulaf ﬁomentum in ekcess of tI . Figure 15 shows that there exists a
range of light and medium beta-stable nuclei up to A % 145 where fission
ba:riers in excess of 8 MeV are expected even With angular momenta

greater than 4 . anure 16 shows the calculated fission barriers for

I
nuclei along Green's valley of beta stability and with angular momenta
Jjust equal to the critical ﬁalue £I' It is séen_that for very light

or for heavy nuclei the fission barrier is 1ikely'tb be less than the
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neutron binding energy, and the cross sections for the survival of such
nuclei would be small. On the other hand, for an optimum choice of the
system, in the region of medium weight nuclei with A & 66, fission
barriers as high as 18 MeV are expected at the angular momentum just
sufficient to produce triaxial shapes. However, invqrder to produce a
triaxial shape with a considerable elongation, of the order of a 2:1
ratio of axes, an angular momentum in excess of the critical wvalue tI
would be required, and the fission barrier would decrease below the curve
displayed in Fig. 16.

We shall illustrate the above considerations by five reactions

aimed to form compound systems with masses in the range from A = 105

down to A = 24 and ratios of axes of about 2:1.

20 8 105
1. Neio + Rb57 = Agu7

05

Using our graphs and formulae we find for Agl the following

parameters:

x = 0.4217, ¥p = 0.1398, L= 60.86, = 0.275, ;o= 85.36.

Y11

If as an example we pick a y-value equal to 0.16 (i.e. ¢ = 65.11) the

i X 1. ~ 0.8
three axes of the rotating nucleus are RmaX/P. 1.k2, Rmed/R 0.05,
Rmin/R X 0.72. The moment of inertia about the axis of rotation is
[ 3,’ ~ . . . . - . . .
a)max/m,o 1.58 and the fission barrier is B, = 9.20 MeV. The binding
energies of the first two neutrons that might be emitted from Aglo5
are estimated as Bn(105) = 10.86 MeV, Bn(lou) = 9,04 MeV. (In

1
estimating these binding energies we use the Lysekil mass formula

without shell effects and without corrections for the rotation of the Ag
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nucleus). The least center-of-mass bombarding energy needed to produce

nuclear reactions with an angular momentum ¢ = 65.11 1is given by

(min)
ECM where
(min) 2 A 1
- = 2 .
ECM VC 20.7293 IR

T8 (R, + R, + a)

2

(min)
CM

take a bombarding energy 10 MeV higher than this minimum, i.e.

Using d = 1.5 F we find Vc = 52.18 MeV, E = 104.2k MeV. If we

= 114.24 MeV (E = 141.12 MeV) we find for the internal excitation

By LAB
energy of the rotating Aglo5 nucleus with £ = 65.11 the following

result:

) (0) N
E, = W+ Eoy - Eq (y + gGr) = 57.39 MeV.

In the above equation W (-2.42 MeV) is the mass difference between the
sum of the masses of target and projectile and the mass of the non-

> (the latter as given by the Liquid Drop part of the

rotating Aglo
| Lysekil mass formula), and ES(O)(y + &Gr) is the rotational and

deformation energy of the rotating equilibrium configuration, whose
dimensionless energy gGr is read off as -0.021 from Fig. 12b. The
excitation energy of 57.39 MeV could be dissipated for example by the

emission of four or five neutrons. A nucleus which managed to survive

fission in this de-excitation process would still have an angular

momentum close to £ = 65.11 and a mass number only a little less than

A = 105. Its energy with respect to the nonrotating liquid drop ground state
would be approximately ES(O) (y + EGr) which is 5k.43 MeV in our case. An erergy

of about this megnitude and an &angular momentum of about 65.11 units would
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have to be released in a cascade of electromagnetic tranciticns.

4o 65 105
2. Mg+ O = Agy

105

The same compound nucleus Ag with ¢ = 65.11 might be

formed using Aruo ions, the advantage being a lower excitation energy

in the compound system. Thus we find V_ = 70.82 MeV, Eéﬁln) = 102. 32

MeV. Again taking a center mass energy 10 MeV higher, i.e.

= 112.32 MeV (L = 181.44 MeV), we find E = 42.36 MeV.

o TAB
(W= -1L4.52 MeV in this case.) Thus 3 or 4 neutrons could carry away

this excitation. All the other estimates are as before.

18 48 66
5. 0g~ + Tig, Zngg

Here x = 0.2720, y = 0.1893, !cI = 41.30, = 0.453,

Y11
tr = 65.89. Taking y = 0.24 we find ¢ = U46.50, RmaX/R ~ 1.51,
Rmed/R ~ (.83, Rmin/R % 0.70, @ Wjo % 1.71, B, = 10.85 MeV,
Bn(66) = 11.26 MeV, Bn(65) = 9.05 MeV, V_ = 27.66 MeV, W= 20.31 MeV.

The minimum energy to produce reactions with ¢ = 46.50 1is

(min) _ X
B = 68.46 MeV. Using B

would require the emission of about 3 neutrons. The energy to be

= 78.46 we find E = 40.38 MeV, which

released by gamma rays would be about 58.38 MeV.

16 27 43
b oy + An.l5 =S¢,

0.538,

]
1

Here x = 0.2017, yp = 0.2132, 1 26.77, Y11

I
to = k.53, Taking y = 0.28 we find ¢ = 30.68, Rmax/R x 1.5h,
R /R %08, R, /R %O0.68, q9max/‘§9o N 1.73, B, = 9.46 Me,

Bn(l@) = 13.75 MeV, Bn(uz) = 11.22 MeV, V_ = 18.13 MeV, W= 16.05 MeV.
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The minimum energy to produce reactions with L= 30.68 is

(min) . .
= . . = . = . M
ey 46.59 MeV. Using B 56.59 (E B 90.12 MeV) we find
Ex = 21.37 MeV. After de-excitation the nuclei surviving fission would

have to emit about 51.27 MeV in gamma rays.

The above is one of the few reactions for which there is
experimental evidence that a compound system with an angular momentum
close to or even in excess of 11 was formed and survived fission. Thus
in Ref. 21 it is estimated that at a bombarding energy of 105 MeV nuclei

with angular momenta up to about 35 units are formed and survive.

12 12 2k
0. Cg * Cg = Mgy,

Here x = 0.1179, y; = 0.2k20, £_ = 1h.L5, = 0.640,

I Y11
{rp =23.50. Taking y = 0.32 we find ? = 16.62, RmaX/R X 1.56,

/R % 0.8, R. /R %0.68, Q‘?/(ﬁo ¥ 1.76, B, = 7.82 MeV,

Rmed

: _ (min)
Bn(22+) = 14.48 MevV, vV, = T.29 MeV, E,

= 36,18 MeV (ELAB = 72.36 MeV) we find E, = 8. 65 MeV. Such an

= 26.18 MeV. Using
Eeom
excitation is below the neutron emission threshold and de-excitatién
would have to proceed by gamma emission (or fission). Nuclei that
survived fission would still have an energy of 39.71 MeV to be emitted

as electromagnetic radiation.

To summarize, the above estimates suggest that it should be
possible to form super-deformed nuclei fbr a range of projectile and -
target combinations. Compoﬁnd nuclei with masses in the range of about
.hO to 100 should easily survive the risk of fission when the angular
momentum is only just sufficient to produce triaxial shapes. TFor angular

momenta necessary to produce shapes with a ratio of axes of about 2:1



-47-

it seems that in general the fission barrier:is reduced to about the
neutron binding energy. Loss of cross section due to fission is then to
be expected, though it need nof be catastrophic, and cou;d be reduced
somewhat by working with neutron-rich projectiles and targets (which
Would>1ead to cbmpound nuclei with lower neutron binding energies).

The outstanding problem is to devise methods that would identify
the presence of such super-deformed nuclei which in some existing
experiments21 may already have been produced without being detected.
These methods would preéumably'be based on the analysis of the electro-
magnetic radiations emitted by such systems, but we shall not go into

these questions here.
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FIGURE CAPTIONS
Fig. 1. Sketch of a two-dimensional potential energy surface illustrating
different types of equilibrium points. The hollow A 1is a meta-
‘ stabie minimum, separated from the Absolute Minimum C by a
: saddie-point B, with one degree of instability. The mountain
top: D has two degrees of instability.
Fig. 2a. Various critical rotational parameters y in their dependence
on the fissility parameter: x. Triaxial shapes appear between
1 and yp- Saddle shapes are stable against reflection
asymmetric distortions to the right of the dot-dashed portion
of Yrrr Triaxial;shapes are unstable against asymmetry
between the dashed portion of y ;; and ‘yII. The critical

curves and Yy .will be discussed in future installments

Y1v
of this series of papers.

Fig. 2b. A portion of Fig. 2a on an enlarged scale.

Fig. 2c. A portion of Fig. 2b on an enlarged sclae.

Fig. 3. Meridian sections of rotating equilibrium shapes for x = 0O
and y between O and 2.25.

' Fig. 4. Groﬁnd states (heavier lines) and saddle shapes (lighter lines)

for x =0 and various values of y. In all figures H

refers to "Hiskes”, BK to "Beringer-Knox" énd PP to '"Pik-

Pichak'". Hiskes shapes have axial symmetry about the axis of

rotation (vertical axis). The Beringer-Knox and Pik-Pichak

shapes shown have approximate symmetry about the horizontal

axis and only a mean transverse section is displayed for these

shapes. (For x =0, y = O the saddle shape is two spheres in

contact. )
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Similar to Fig. 4 but for x = 0.3.

0.6.

Similar to Fig. 4 but for x
Simiiar tb Fig. 4 but for x = 0.7

Similar to Fig. 4 but for «x =_O.8.

Two Befinger-Knox gfound state shapes on the verge of loosing
equilibrium against a symmetric division mode, indicated by
the dashed line. Only mean transverse sections of fhe some -
what triaxial shapes are shown. o

The principal axes of families of equilibrium.figures as
functions of the fissility parameter x, for different values
of the rotation parameter y (given as labels on the curves).
See text for an explanation of the plot.

The principal moments of inertia (in units of §§2’ the

moment of inertia of a rigid sphere) plotted against x . The
labels refer to the rotational ﬁar&meter ¥y - The momentsof
inertia about the axis of rotation are always greater than 1.
See text for an explanation of the plot.

Ground state and saddle-point energies (with-respect to the
energy of a rotating rigid sphere, and in units of its surface

energy E(

SO) ) plotted against the fissility parameter x for

’diffefent_values of the rotation parameter y. The most nearly

horizontal curves refer to Hiskes shapes, the steeper curves
to the right of the circled points to Beringer-Knox shapes, and

the very steep curves to Pik-Pichak shapes.
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Fig., 12b. Similar to 12a butvfor a different range of x andv y values.
| .For y 2 0.28 the ground stafes shown are all Beringer-Knox

shapes. |

Fig. 12c. -Similar to 12a buf for x values close to 1. The ground
states are all Hiskes shapes, joined at the circled points
Bj_Pik-Pichak shapes. |

Fig. 13a. The difference between the energy of thé Pik-Pichak saddles and
the ground states (in ﬁnits of the surface energy of the éphere)
plotted versus: x .for different values of y- To the right
of the long-dashea curve the Pik-Pichak saddles are stable
against reflection asymmetric distortions and the curves are
then barriers for symmetric fission. The ground states are
Hiskes shapes above the short-dashed curve and Beringer-Knox
shapes below. Fission barriers are obtained from these plots.

Fig. 13b. Similar to 13%a but for x close to 1.

Fig. 14, A ”collision‘diagram" of the square of the impact parameter

b (times =) versus the center-of-mass energy E for

0

CM}

107 2 .
the bombardment of Ag by Ne ~. The diagram shows a
division into distant and close colliSions, with a band of
intermediate collision in between. The line labeled Bf =0
shows where the fission barrier of a compound nucleus would
vanish and the line B, = 11 where it would be 11 MeV.
Under certain assumptions the curve ABC would give

aprroximately the cross section for the formation and

survivai of the compound nucleus.
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Fig. 15. The curve EII is the angular momentum at which the fission
barrier of a beta-stable nucleus with mass numbér A is
predicted to vanish. In thé range of.angular momenta between
EI and EII the ground state is predictéd to be a triaxial
Beringer-Knox shape. Below the dashed curve the fission
barriers for the rotating beta-stable nuclei considered are
highter than 8 MeV. |

Fig. 16. A plot of the fission barrier in MeV for nuclei along the
Qalley of stability with angular momenta just sufficilent to

produce  triaxial Beringer-Knox ground states.
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LEGAL NOTICE

This report was prepared as an-account of work sponsored by the
United States Government. Neither the United States nor the United
States Atomic Energy Commission, nor any of their employees, nor
any of their contractors, subcontractors, or their employees, makes
any warranty, express or implied, or assumes any legal liability or
responsibility for the accuracy, completeness or usefulness of any
information, apparatus, product or process disclosed, or represents
that its use would not infringe privately owned rights. ‘
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