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Abstract

Some Case Studies in Algebra Motivated by Abstract Problems of Language
by
Lawrence Vincent Valby
Doctor of Philosophy in Logic and the Methodology of Science
University of California, Berkeley

Professor Thomas Scanlon, Chair

This thesis concerns three different topics. The first has to do with axiomatizing the
universal theory of certain classes of multisorted algebras arising from intersection, union,
and other first order operations on relations. The second has to do with axiomatizing certain
classes of actions arising from intersection and union, and axiomatizing certain classes of
posets arising from actions arising from intersection. The third has to do with understanding
under what conditions morphisms between two structures can be finitely determined.
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Chapter 1

Introduction

1.1 Overview of Results

There are three different parts to this thesis. The first two parts both have to do with
axiomatizing certain naturally arising classes of algebras, while the third part investigates
conditions under which knowing finitely many values of a morphism determines all its val-
ues. The motivation for looking at each of these three situations lies for me ultimately in
understanding language. Each situation deals implicitly with a particular model of some
issue in language, and the results of the thesis help us to understand this model and its
mathematical properties. Chapter 2 has to do with logical connectives like “and”, “or”, and
“there exists”. We model these as operations on relations. For example,“and” corresponds
to intersection. Chapter 3 has to do with how the state of a conversation changes as sen-
tences are asserted. The states are modeled as sets, and the assertion of a sentence amounts
to intersecting and/or unioning this set with others corresponding to the sentence. Finally
Chapter 4 has to do with acquiring only finitely much information yet managing to still
learn a language and comprehend its infinitely many sentences. In this chapter we take as a
starting point the view the that if a structure A represents the syntax of the language and
a structure B in the same signature represents the semantics, then a morphism f: A — B
is a way of compositionally assigning meaning (elements of B) to the sentences (elements of
A). In each part of the thesis we are thus approaching an abstract problem of language by
looking at mathematical questions about relevant models.

Having understood something of the general motivation for the investigations of this
thesis, we now proceed to summarize the novel mathematical results. Chapter 2 gives an
axiomatization of the universal theory of certain classes of multisorted algebras arising from
intersection, union, and other first order operations on relations. A reasonable axiomatization
of the Horn clause theory of these classes was already known [3]. In Section 2.3 we introduce
an axiom (axiom (0)) which spells the difference between the Horn clause theory and the
universal theory. Theorems 18, 22, 25, and 26 establish an axiomatization of the universal
theory for various situations depending on which first order operations are included in the
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signature. The material for this chapter is based on my paper [17].

Chapter 3 has to do with axiomatizing certain classes of actions arising from intersection
and union, and axiomatizing certain classes of posets arising from actions arising from in-
tersection. The material having to do with actions comes from the paper [12] which is joint
work with Alex Kruckman, while the material having to do with posets does not. An action
is a pair of sets, C' and S, and a function f: C' x S — (. Rothschild and Yalcin gave a
simple axiomatic characterization of those actions arising from set intersection, i.e. for which
the elements of C' and S can be identified with sets in such a way that elements of S act
on elements of C' by intersection [14]. These actions give rise to posets in a natural way
(essentially put cs < ¢), and Section 3.5 presents a reasonable second order characterization
of these posets, and shows that there is no first order axiomatization. Meanwhile, Theorems
47 and 54 axiomatically characterize two natural classes of actions which arise from both
intersection and union. In the first class, the f]-actions, each element of S is identified with
a pair of sets (s7, s1), which act on a set ¢ by intersection with s~ and union with s*. In the
second class, the {]-biactions, each element of S is labeled as an intersection or a union, and
acts accordingly on C. The class of 1]-actions is closely related to a class of single-sorted
algebras, which was previously treated by Margolis, Saliola, and Steinberg, albeit in another
guise (hyperplane arrangements), and we note this connection [13].

Chapter 4 has to do with understanding under what conditions morphisms between two
structures can be finitely determined. A pair of structures (A, B) is finitely determined when
there is a finite subset Ay of A so that if f and ¢ are two morphisms from A to B that
agree on Ag, then they agree on all of A. We examine a few related conditions and note
their interrelationships in Proposition 92. We also introduce some questions concerned with
generalizing finitely determined to a couple situations involving free monoids.

1.2 Background Information

We now present some general and background information that is relevant to the chapters
that follow. The material here is generally speaking well known.

Chapters 2 and 3 involve finding axiomatizations for certain natural classes of structures.
Suppose we are interested in a class of structures K. Then we have an aziomatization
problem: Find a set of axioms T (generally of a specified form) which characterizes the
structures in K up to isomorphism. Having selected a candidate set of axioms 7', we are
faced with a representation problem: Show that every “abstract” model of T is isomorphic
to one of the “concrete” structures in K. Familiar examples include Cayley’s theorem, which
says that every abstract group is isomorphic to a subgroup of the full permutation group on
some set, and Stone’s theorem, which says that every abstract Boolean algebra is isomorphic
to an algebra of sets. In this thesis we will be presenting more examples. However, let’s
first familiarize ourselves with the different kinds of axioms we’ll be concerned with. We will
review universal, Horn clause, and equational theories. We will examine fields as an example
of how these theories differ in strength. In this introductory section it is also appropriate to
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review distributive lattices and Boolean algebras and give a version of Stone’s result. Finally,
we will examine one particular way natural classes of structures arise that’s relevant to the
N -actions and f]-biactions of Chapter 3.

Universal, Horn Clause, and Equational Theories

In this subsection we review some well-known definitions and facts concerning universal,
Horn clause, and equational theories.

For us signatures may contain relation and function symbols (including constants) of
various finite arities. Sometimes we restrict attention to just relational signatures, and
sometimes just functional signatures, which we call algebraic signatures.

A universal sentence is one of the form VZy(Z) where ¢ is quantifier-free. A universal
theory is a collection of universal sentences. It’s obvious that universal theories are closed
under substructures, in the sense that any substructure of a model of a universal theory is
again a model. In fact, there is a close relationship between the universal theory of a class
of structures K and S(K), the class of substructures of structures in K. We now proceed to
examine this relationship in a bit more detail.

If you have a class K of structures (in some signature), and you are able to universally
axiomatize S(K), then this also axiomatizes the universal theory of K. The converse to this
is true if you assume K is a pseudo-elementary class. It isn’t true generally.

Definition 1. Let L be a signature. Let K be a class of L-structures. K is a pseudo-
elementary class means that there is some signature L™ O L and some (first order) LT-
theory Tt such that {M [ L | M =T"} = K, i.e. K is the set of reducts of the models of
TT.

Proposition 2. Let K be a pseudo-elementary class of L-structures. Let Ty consist of the
universal L-sentences true of every member of K. Then Ty axiomatizes S(K).

Proof. 1t A € S(K), then of course A = Ty.

Let A &= Ty. Because K is pseudo-elementary, there are LT and Tt such that L is a
subsignature of L™ and T is an L*-theory whose class of L-reducts is K. Consider the L*-
theory U := T" U diag; (A), where diag;(A) denotes the quantifier-free theory of A where
there is a new constant for each element of A. This theory is satisfiable lest T" | VZ—o(T)
with p(a) € diag;(A). So A embeds into a structure of K. O

Corollary 3. A pseudo-elementary class of structures is closed under substructures iff it is
universally ariomatizable.

Proposition 4. [t is possible to have a class K of structures such that Ty does not axiomatize

S(K).

Proof. Let K consist of all the finite structures in the language with just equality. Then
S(K) = K and by the compactness theorem no first order theory, let alone universal theory,
can axiomatize the class of finite structures. O
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The following proposition will be used in Chapter 3.

Proposition 5. Let K be a pseudo-elementary class which is closed under substructures,
and let T be a universal theory. If every finitely generated model of T is in K, then every
model of T is in K.

Proof. By Corollary 3, K is elementary, axiomatized by a universal theory Tx. Given a
model A =T, we need to show that A = Tk.

Let ¢ € Tk, written as VT ¢(T), with ¢ quantifier-free, and let @ be from A. Let By
be the substructure of A generated by a@. Then B; |= T, since T' is universal, and hence
Bz € K, since it is finitely generated. So B |= 1, Bz = ¢(@), and since ¢ is quantifier-free,

AE o(@). O

Now we turn to Horn clauses. A Horn clause is a formula of the form
(AiAN---NA,) =B

where the A; and B are atomic formulas. We allow the case where n = 0, which just gives
the atomic formula B. We often identify Horn clauses with the corresponding universal
sentences. Of course Horn clause theories are closed under substructures (being universal),
but Horn clause theories are also closed under products. To understand this, imagine you
have a bunch of structures that satisfy an if-then Horn clause and they all satisfy the premises
at some location, then they all must satisfy the conclusion too. For comparison, consider a
formula of the form AV B. You could have a bunch of structures that each satisfy this, but
different structures may make different choices as to which of A or B they satisfy.

Whereas universal theories are associated with S(K'), Horn clause theories are associated
with SP(K), the substructures of the products of members of K. (Of course in general,
P(K) denotes the class consisting of the products of members of K.) If K is a class of
structures and you have a Horn clause axiomatization of SP(K), then this also axiomatizes
the Horn clause theory of K. Once again, for the converse we want some kind of additional
information about K.

Proposition 6. Assume that K is a class of structures such that P(K) is pseudo-elementary.
Let Ty be the set of Horn clauses true in all members of K. Then Ty aziomatizes SP(K).

Proof. If M € SP(K), then of course M | Ty.

Let M |= Ty. Let Ty be the universal theory of P(K), which axiomatizes SP(K) by
Proposition 2. Assume to get a contradiction that there is some formula Vz6(z) € T, with
M = —6(m) for some tuple m from M. We may assume that 6(z) has the form

—Ay(Z)V - VaA(Z)V Bi(Z) V-V B(T)
where the A; and the B; are atomic, and so

ME A (M)A ANA(m) A=By(m) A -+« A =B(m)
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Since VZ /\f:1 A;(z) <» Bj(z) is a Horn clause for each j = 1,...,l, and M doesn’t satisfy
them, there are structures M, ..., M; in K which don’t satisfy these clauses. The product
Hé’:l M; of these structures doesn’t satisfy Vz6(z), a contradiction. O

Corollary 7. A pseudo-elementary class of structures is closed under products and substruc-
tures iff 1t 1s Horn clause axiomatizable.

The class SP(K) is the smallest class containing K and closed under S and P. (The
only thing to really check here is that PSP(K) = SP(K).) This may be contrasted with
PS(K), which is not necessarily closed under S (e.g. let K be all the finite structures in
the signature of just equality — then S(K) = K, and PS(K) contains infinite sets but no
countably infinite sets).

We may (vaguely) summarize the above propositions by saying that universal theories
correspond to closure under substructures, and Horn clause theories correspond to closure
under substructures and products. However, Horn clauses are further useful in defining the
notion “recursively enumerable”. There are other ways to define recursively enumerable, but
this way seems particularly natural to the author.

Definition 8. Let 7 be a finite algebraic signature (i.e. a signature with just function (and
constant) symbols). Let F; be the 7-term algebra, i.e. the free T-algebra generated by just
the constants of the signature. Then a relation r C F is recursively enumerable iff there is a
finite Horn clause theory T in some signature (expanding 7 and containing relation symbols)
with a designated n-ary relation symbol R such that for all £ € F we have

THR({) < ter

In fact, as is shown in [2], the signature of the finite Horn clause theory can even be
assumed to be a relational expansion of 7 and we still arrive at the same notion of recursively
enumerable (which agrees with one given through say Turing machines).

Intuitively, recursively enumerable means that we may algorithmically list the elements of
the relation, being sure we will eventually list everything that is actually in the relation and
not list anything that is not. Given the finite Horn clause theory 7" we may start listing all
the proofs of atomic sentences using 7" as axioms (these proofs are particularly simple, just
being trees where atomic sentence nodes are justified by their successors using a substitution
instance of a Horn clause in T'), and in this way obtain a list of the relation r. Other notions
of algorithms to list relations tend to be easy to simulate by the finite Horn clause theories.

Finally, we turn to equations. An equation is an atomic formula whose relation symbol is
the equality symbol in a signature with equality. That is, something of the form ¢; = t, where
t; and t, are terms. We often identify equations with the corresponding universal sentences.
Equational theories are closed under substructures and products, being Horn clauses after
all, and further they are closed under homomorphic images. Let K be a class of structures.
If you have an equational axiomatization of HSP(K) — H stands for homomorphic images
— then you also have an axiomatization of the equational theory of K. In fact, the converse
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is also true without any additional assumptions. This is essentially Birkhoff’s HSP theorem.
For a reference, one may look at the textbook [4] Theorem 11.9, p. 83.

A motto to remember about equational theories is that they are the ones closed under
substructures, products, and homomorphic images.

An Example: Fields

For some classes of structures K the universal, Horn clause, and equational theories are all
equivalent. For example, this happens with Boolean algebras. For some classes, only some
are equivalent. For example, the first order algebras we’ll consider later have equivalent Horn
clause and equational theories, but these are different from the universal theory. To better
understand the difference between the universal, Horn clause, and equational theories, let’s
look at a (hopefully familiar) example where they all are inequivalent. Let K be the class
of fields, in the signature (0, —, +, 1, -). Fields are commutative rings with identity (which I
call rings) with the property that nonzero elements have multiplicative inverses.

The universal theory of fields (in this signature) is the theory of integral domains. Integral
domains are rings that also satisfy:

Ve, y(ey =0 = (z=0Vy=0))

Note that this is not a Horn clause. Since this is universal and true of fields, this is also true
of all subalgebras of fields (and the ring axioms are all universal too). Conversely, given an
integral domain, we may form its field of fractions, which the integral domain embeds into.
Thus, we have universally axiomatized the class S(Fields), and so we have found (as pointed
out in the previous section) the universal theory of fields.

The Horn clause theory of fields (in this signature) is the theory of reduced rings, which
are rings with no nilpotents. In other words, rings plus the following axioms:

Ve(z" =0 = 2=0) (n>1)

Since this is a Horn clause true of fields, it is true of SP(Fields). Conversely, suppose that
we have a ring R with no nilpotents (other than 0). We wish to find an embedding of R into
a product of fields. It suffices to find for each distinct pair r # s € R a morphism ¢ from R
to a field with ¢(r) # ¢(s). Since integral domains embed into fields, it is actually sufficient
to find a morphism ¢ from R to an integral domain with ¢(r) # ¢(s).

Any quotient of a ring by a prime ideal is an integral domain. So we’re done if we can
find a prime ideal P of R such that r —s & P. Let t denote the nonzero element r — s. Let I
consist of the ideals I of R such that " ¢ I for n > 0. Then I is nonempty because I = {0}
is in it. As I is closed under unions of chains, by Zorn’s lemma there is a maximal element P
of I. We claim P is in fact prime. Assume to get a contradiction that we have xy € P with
x,y & P. Let A:={z|xz € P}. Then A is an ideal containing P, but also y ¢ P, so there
is an n such that t" € A. Next let B := {2z | t"z € P}. Then B is an ideal containing P, but
also x € P, so there is an m such that t™ € B. Thus, t"t™ = t"*™ € P, a contradiction.
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Finally, the equational theory of fields is rings. To see this it suffices to show that
HSP(Fields) is the class of rings. Of course everything in HSP(Fields) is a ring because
the ring axioms are equational. To show the other direction, we need only show that every
ring is a homomorphic image of a reduced ring, in view of our above result. But this is easy
because the free rings have no nilpotents.

Distributive Lattices

Now we turn to a class of structures more closely related to the algebras of Chapter 2.
Consider the propositional formula ¢ with two proposition letters P and @) given by PA—Q).
We can think of such a formula ¢ as giving rise to an operation on subsets of a set. If p
and ¢ are subsets of some set W, then ¢(p,q) := pN (W — q) is also a subset of W. This
function ¢: P(W)xP(W) — P(W) accepts as input two subsets of W and outputs a subset.
Indeed, every propositional formula gives rise to a finitary operation P(W)" — P(W). In
this way we arrive at a functional signature 7 where there is a function symbol of arity n
for every propositional formula involving n proposition letters, and we have for every set W
a T-algebra we call a powerset algebra.! Of course, we do not work in practice with the full
signature 7, but rather we isolate just some of the operations which compositionally generate
all the others in the class of algebras of interest. One convenient choice is 0, 1, V, A, = where
0 and 1 are the constants interpreted by () and W in the powerset algebra determined by
W. 1If instead of all propositional formulas we want to focus on the positive propositional
formulas, then one convenient choice is 0,1, V, A.

In this section we start by considering the structures (P(W); 0, W, U, N) where W is any
set, the powerset algebras (in the positive signature). We will find that the universal theory
is axiomatized by distributive lattices (some straightforward equations). If we add comple-
mentation, then the universal theory is axiomatized by Boolean algebras. This motivates
interest in trying to do the same thing in more expressive logics involving relations of higher
arity. Furthermore, it turns out this result (Proposition 10) is not only used in the more gen-
eral case, but it also serves as a model for other arguments. So it is crucial to understanding
the general argument.

Definition 9. A distributive lattice is an algebra in the signature (0, 1,V, A) that satisfies
the following axioms.

1. V and A are both idempotent, commutative, and associative (so that they each define
a partial order: 7 <, s <= rAs=randr <, s < rVs=s)

2. V and A satisfy “absorption”, i.e. r A (rVs) =7 and rV (r As) = r (so that the partial
orders they define are the same; A gives the meets and V gives the joins)

3. 0<r<1

1By “algebra” I mean a structure in a signature with only function symbols (including constants)
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4. Distributivity: 7V (s At) = (rVs) A (rVt) (in fact A distributing over V follows from
this, as we’ll see)

If we’re able to show that every distributive lattice embeds into a powerset algebra, then
we will have found an equational axiomatization of the subalgebras of powersets algebras,
because of course the distributive lattice axioms are true in powersets.

Proposition 10. Fvery distributive lattice embeds into a powerset algebra.

The class of powerset algebras is closed under products, because P (|t W;) = [[ P(W;).
So it suffices to show that for any two distinct points r # s in a distributive lattice L, there
is a morphism ¢ from L to some powerset algebra with ¢(r) # ¢(s). The following lemma
gives us a way to achieve this.

Definition 11. A filter is a subset of a distributive lattice that is closed under A, upward-
closed, contains 1, and doesn’t contain 0. A prime filter is a filter ' which satisfies rvs € F
implies r € F or s € F.

Here is an example of a filter which is not a prime filter. Let W be a set containing at
least two distinct elements x and y. Let F be the subsets of W which contain both z and
y. Then F is a filter of P(IW). However, it is not prime: {x} U {y} € F but neither {z} nor
{y} isin F.

The idea behind prime filters is that they are the possible types of an element. (Let me
explain more formally what I mean: If we have a distributive lattice L which is a subalgebra
of a powerset algebra P (W) then the collection of things in L containing some fixed element
x € W (the “type” of z) forms a prime filter and conversely given a prime filter F' of some
distributive lattice L C P(W) we may add a new element x to W forming W’ and get a
distributive lattice L' C P(W’) isomorphic to L for which F is determined in this way by
x.) Filters are an approximation to prime filters, useful in building prime filters with certain
properties.

Lemma 12. Let F' be a prime filter for some distributive lattice L. Let W = {F}. Then
the function ¢: L — P(W) defined by

Feyplr) < reF
18 a morphism.
Proof. 1. F € p(0)iff 0 € F, so ¢(0) = 0.
2. Fep(l)iff 1 € F,s0 (1) =W.
3. Fep(rns)iffranse Fiffrise Fiff F € o(r)Ne(s)

4. Fep(rvs)iffrvse Fiff r € For s € F (because F is prime) iff F' € o(r) U ¢(s)
[
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Proof of Proposition 10

From the above lemma, we see that it is enough to find, given two distinct elements
r # s € L, a prime filter F' containing one but not the other. Without loss of generality, let
s 2 r. We will find a prime filter F' with » € F and s ¢ F. Let I consist of the filters on
L that contain r and don’t contain s. This is nonempty because {t € L | t > r} is such a
filter. As FF is closed under unions of chains, there is a maximal element F'. We claim that
F'is prime. Let t; Vi € F.

I claim that if s 2* t; A f for every f € F, then in fact ¢; € F. To see this, let
Ft:={ueL|3f € Fwithu>tA f}. Then F'* is a filter containing F', ¢;, and not s, so
FtceFandinfactt, € Ft = F.

So suppose that we have fi, fo € F' such that s > t; A f; and s > t5 A fy in order to get
a contradiction. We get

S Z (tl /\f1> V (tg/\fg)
=t Vi) AtV 2)A(fiVE)A(fLV f2)
cF

And so s € F', a contradiction.
End of Proof of Proposition 10

We may easily modify the above argument so as to include negation. The only part
that needs extra work is in the lemma. We need to make sure the function defined by
F € p(r) < r € F satisfies p(—r) = —p(r). Le., we want it to be the case that —r € F' iff
r & F. We can accomplish this by adding to the distributive lattice axioms two additional
axioms: 7V —r = 1 and r A =r = 0. The resulting theory is called the theory of Boolean
algebras.

We used Zorn’s lemma to prove Proposition 10. However, it is known that the reverse
implication (modulo ZF) is not true [7]. Proposition 10 is also known to be independent of
ZF [6].This proposition has a few equivalent reformulations that we’ll make use of in what
follows. These are: (i) the compactness theorem for first order logic, (ii) the fact that there
are prime filters extending filters in any distributive lattice, and similarly (iii) when we have
a filter disjoint from an ideal in a distributive lattice, there is a prime filter extending the
filter and not containing anything from the ideal. Proposition 10 and each of (i), (ii), and
(iii) are known to be equivalent [8].

Turning Disjoint Unions Into Products

In the examples of Cayley’s theorem and Stone’s theorem, as well as in the first order algebras
of Chapter 2 and the f-actions and 1]-biactions of Chapter 3, the class K to be axiomatized
is the class of substructures of some “full” structures. Then the representation problem
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becomes the problem of embedding each model of T', the candidate axioms, into one of these
full structures.

When the full structures are obtained from sets by a construction which turns disjoint
unions of sets into products of structures (e.g. in the case of Boolean algebras, but not in
the case of groups), the class K is controlled by the full structure on the one element set, in
a way we will now make precise.

Let L be a signature. Fix an operation F’ associating to each set X an L-structure F'(X),
such that

1. If there is a bijection between X and Y, then there is an isomorphism between F'(X)
and F(Y), and

2. F turns disjoint unions of sets into products of structures, i.e.

F (]_[ Xi) ~ [[F(x)).

iel i€l

Call the structures in the image of F full, and let K be the class of (structures isomorphic
to) substructures of full structures.

Proposition 13. Let ' and K be as defined above, and let 1 be the one element set {x}.
1. The class K 1is closed under substructure and product.

2. If K 1is pseudo-elementary, then it is elementary, ariomatized by the Horn clause theory
of the structure F(1).

Proof. (1): K is closed under substructure by definition. If {4;};c; is a collection of struc-
tures in K, then each A; embeds in some full structure F'(X;). Then [],.; A; embeds in
HI F(Xz) = F(HI Xz); SO HI Al isin K.

(2): Any pseudo-elementary class closed under substructure and product is axiomatizable
by a Horn clause theory, by Corollary 7. Observe that for all X, X can be expressed as an
X-indexed disjoint union of copies of 1: X = [[. o 1. So F(X) = F([[,ex 1) =[x F(1).
Hence every structure A in K embeds into a product of copies of F'(1). Let ¢ be a Horn
clause. If ¢ is true in every structure in K, then clearly it is true of F(1). Conversely, if
@ is true of F'(1), then since every A in K is isomorphic to a substructure of a product of

copies of F(1), and Horn clauses are preserved under substructures and products, ¢ is true
of A. O

iel

This proposition does not apply to the first order algebras of Chapter 2 but it will apply
to the f-actions and the {|-biactions considered in Chapter 3.
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Chapter 2

First Order Algebras and Various
Reducts

In this chapter we investigate logical connectives like “and” (A), “or” (V), “not” (), and
“there exists” (3) in an algebraic way. We regard logical connectives as operations on rela-
tions. For example “and” corresponds to intersection of relations. Our goal is to understand
better how these operations relate to each other. An example of one well-known fact about
the connectives is that (R A S) = =RV —S. But many other facts are true too, and so we
are in fact interested in finding some axioms from which all such facts follow. This was done
in the case of the propositional connectives (and, or, not) by Stone in 1936 [16]. Our main
topic of first order connectives has been studied too. Our formalism of choice for discussing
this topic is a multisorted one. We will be dealing with first order algebras, to be defined
in the next section, which are multisorted algebras of relations with the possible arities of
the relations being the sorts. Schwartz [15] and Bérner [3] have studied these structures,
but they focused on the Horn clause theory of them: we shall be axiomatizing the universal
theory.

Cylindric algebras provide another formalism for investigating first order operations on
relations. The locally finite regular cylindric set algebras, in symbols Cs_® N Lf,,, roughly
correspond to our multisorted algebras. There is a characterization of their universal theory,
due to Andréka and Németi, findable in the second volume of Cylindric Algebras (Thm 4.1.48,
p. 127 and 129) [9]. However, it’s not clear how to translate between the two formalisms,
and the axiomatizations and proofs seem different. Also, these results have all the first order
operations present, while the argument here explicitly addresses various reducts as well.

2.1 Definition of First Order Algebras

Instead of having an operation for every propositional formula, as was discussed in the
Distributive Lattices portion of Section 1.2, let us have an operation for every first order
formula in a finite relational signature. For example, if 0 is the formula Jy[R; (z, y) ARa(x, y)],
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then as an operation on relations € accepts as input two binary relations r,7, € W? and
outputs the unary relation {x € W | 3y[ri(z,y) A ra(x,y)]} which is a projection of their
intersection. For the next example it is important to note that we consider a formula to come
specifically equipped with a wvariable context that contains the free variables of the formula
but could contain variables otherwise not explicitly occurring in the formula. Let 6 now be
the formula R(x,y) in the variable context (z,y, z). Then as an operation # accepts as input
a binary relation » C T2 and outputs the 3-ary relation {(z,y, z) € W3 | (x,y) € r}. We will
be calling such an operation a cylindrification. More generally, let ¢ be the finite relational
signature consisting of the relation symbols Ry,..., R, of arities mq, ..., m, respectively.
Let 6(z) be a first order o-formula in the variable context z1,...,x;. Let W be any set.
Then 6 induces a function on relations 8: P(W™) x --- x P(W™) — P(W*) defined by

O(r, ..., 1) == {T € WF | (W,r1,....r0) = 0(7)}

where (W,ry,...,r,) denotes the o-structure where each relation symbol R; is interpreted
as r; and |= denotes the usual notion of satisfaction.

We see that the operations arising from first order formulas are a little bit different from
those arising from propositional formulas in that now there are different sorts P(W?°), P(W1),
P(W?), etc. Instead of a single-sorted algebraic signature, the first order formulas naturally
give rise to a multisorted algebraic signature where there is a sort for each natural number.
Every set W gives rise to a multisorted algebra in this signature, with the operations as
defined above. We call the algebras that arise in this way first order algebras.

Instead of dealing with a signature where there is a function symbol for every first order
formula, it suffices to deal with a subsignature which will compositionally generate all the
operations of interest. There is of course some degree of choice here, and we have generally
chosen so as to make our axioms and arguments to follow more conveniently stated. Below
is the (largest) signature we will use. Note the convention that “x: A” indicates z is a
constant of sort A, and “xr: A — B” indicates that x is a function symbol with domain A
and codomain B — in this case A may be a sort or a product of sorts.

Definition 14. The multisorted signature of first order algebras (with equality) is given
as follows.

e We have a sort n for each natural number n € {0,1,2,...}. The sort n is intended to
consist of n-ary relations on some set.

e For each function a: {1,...,n} — {1,...,k} we have a function symbol a: n — k.
These are called substitutions and will correspond to the operations arising from
atomic formulas.

e For each n we have a constant symbol 0" belonging to sort n, which we may write as
0™: n. Likewise we have constant symbols 1": n and function symbols V": n x n — n,
A":n xn — n, and =": n — n. We usually omit the superscript and write simply
0,1,V, A\, —, leaving the arity implicit to the context.
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e For each n we have a function symbol 4": n + 1 — n, which we will generally write 3.
This will correspond to projection or existential quantification of the last coordinate.

e For each n with 1 < 4,57 < n we have a constant A7;: n. These will correspond to
equality of various coordinates.

Before going further, let us introduce some notation involving the substitutions. A
function a: {1,...,n} — {1,...,k} can also be described as a sequence of length n with
repetition allowed taken from a k-element set. Thus, « gives a way of transforming any
k-tuple into an n-tuple. Let W be a set. Define af™°: W* — W" to be the obvious
function induced on tuples. In detail, a"™P°(z1, ..., z4) := (Ta@)s- - -, Ta(m)). This function
on tuples in turn induces a function on relations of particular interest, the inverse image.
Le., define arelation: P(Wn) — P(WF) by arlation(r) .= {7 | a'"Pl*(z) € r}. An atomic
formula like R(x,z,y,z) in the variable context (z,y,z) corresponds to the substitution
atPle(y g 2) = (x,z,y,2). Both give rise to the same operation on relations which accepts
as input a 4-ary relation r and outputs a 3-ary relation {(x,y, 2) | (z,z,y,x) € r}. We gener-
ally use lower case Greek letters near the beginning of the alphabet to denote substitutions,

e.g. a, 57 -

Definition 15. We say a cylindrification is a substitution where the function a: {1,...,n} —
{1,...,k} is increasing. In other words, as a tuple of symbols a'"P(zy, ..., x;) is a subtuple
of (z1,...,x). We often use lowercase ¢ to denote cylindrifications. A collection ¢y, ..., ¢y,
of cylindrifications are called partitioning cylindrifications when they take the form
czuple(:fl, -+, %) = ;. Le., we have ¢;: k; — n where n = ky + --- + k,,, and the function
cii{1l,... ki} = {1,...,n} is given by ¢;(I) = + Z;;ll k;.

Here is an example of some partitioning cylindrifications: ¢\™°(xz,y) = z and ;™ (x,y) =
y, so that ¢ (r) = {(z,y) | x € r} and & (s) = {(2,y) | y € s}.

We use id to denote the identity substitution id: n — n for each n. Let a: n — k and
B: k — m be two composable substitutions. Note that (3 o q/)relation = grelation o yrelation =,
be able to say this axiomatically, we need different notation for the two compositions. We
shall use (5 o «)(r) for the former and f(a(r)) for the latter.

Now we define the classes of algebras of interest to us (in our leaner signature).

Definition 16. A first order algebra (with equality) is an algebra in the multisorted
signature specified in Defintion 14 that arises from some set W in the following way:

e The interpretation of the sort n is P(W"), the collection of all n-ary relations on W.
e The interpretation of a substitution a: n — k is
arelation: P(Wn) — P(wk)

as defined above.
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e The Boolean operations 0, 1, V, A, = are interpreted as usual on each sort.

e Projection 3": n + 1 — n is interpreted as expected. In detail,
F(r) ={(x1,...,zn) | Iy(z1,...,20,y) €7)}
e The constant A7, : n is interpreted as
Al =, m) | 1= 2y}

We will have occasion to look at various reducts of our signature, and the corresponding
reducts of the first order algebras are given appropriate names. E.g., the positive existen-
tial algebras (without equality) are the reducts of the first order algebras to the signature
not containing negation (for any sort), and not containing the constants for equality, but
otherwise containing all the symbols. The positive quantifier-free algebras (without
equality) are when we restrict attention to just the substitutions and the lattice operations
0,1, V, A for each sort.

Just as all first order formulas can be constructed from the atomic formulas using the
Boolean connectives and existential quantification, so too is every operation on relations
arising from a first order formula equivalent to a term in our signature when looking at the
first order algebras. Similarly, there are terms for every positive existential formula in the
positive existential algebras, etc.

2.2 Completeness Theorem and Horn Clause Theory

In this section we point out a well known connection between the completeness theorem
for first order logic and the first order algebras introduced in the previous section. An-
other way to understand the completeness theorem for first order logic is as a (reasonable)
axiomatization of the Horn clause theory of first order algebras.

It’s important for this section to realize that terms in the first order algebra signature
are essentially the same as the usual (relational) first order formulas.

Consider a completeness theorem which says that ¥ = ¢ iff ¥ F ¢ where ¥ is a finite
collection of first order formulas and ¢ is a first order formula, = is inductively given the
usual meaning, and F is defined via some proof calculus. We assume that there is some
(recursively enumerable) collection of axioms and some (recursively enumerable) collection
of proof rules (e.g. modus ponens) yielding the definition of . ¥ = ¢ iff there is a (finite)
tree with the property that each leaf is an axiom or among ¥, and each non-leaf is justified
by its predecessors using a proof rule.

Given such a completeness theorem, we may obtain an axiomatization of the Horn clause
theory of first order algebras as follows. First of all, we write down two Horn clause axioms

r=s <= (res)=1
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Here r <+ s is an abbreviation for (r As) V (=r A —s) because recall technically we don’t have
“+” in our signature. Next we write down

(or=1)A-AN(op,=1) = =1

whenever
{o1,...,0n}F o

This is a Horn clause axiomatization of the Horn clause theory of first order algebras. First
observe that these are both true of first order algebras: If {oy,...,0,} F ¢, then by assump-
tion {o1,...,0,} = ¢, which is the same as the corresponding Horn clause being true in first
order algebras. Let

/\(Ui:Ti) — =X
be in the Horn clause theory. Then

/\((UiHTi)Zl) — (pey) =1

i.e.
{oie it Eeex

and so by our assumption of a completeness theorem we get a - proof of this. So

N(oi o 7)=1) = (peox) =1

is among our Horn clause axioms, and we thus get a proof of

/\(Uz’ZTz‘) — P=X

Conversely, given a (recursively enumerable) Horn clause axiomatization 7" of the Horn
clause theory of first order algebras, we may get a completeness theorem for first order logic
as follows. Given an atomic Horn clause axiom ¢ = x, we write an axiom ¢ <> x. Given
a proper non-atomic Horn clause axiom A,(0; = 7;) = ¢ = x, we write a proof rule
“From o; <> 7; obtain ¢ <> x”. For both of these we allow substitution instances. We
also add in proof rules to go between 6 <> 1 and # and also rules essentially saying <> is
a congruence relation. The resulting proof system is certainly sound. If oq,...,0, E ¢,
then A(0; = 1) = ¢ =1 is in the Horn clause theory, and so the Horn clause axioms T
imply it by our assumption that 7" axiomatizes the Horn clause theory of first order algebras.
An easy to verify “Horn clause completeness theorem” (for a reference see, e.g., [10]) then
yields a nice proof thereof consisting of a tree whose root is ¢ = 1, whose leaves are o; = 1
or instances of atomic Horn clauses in 7', and whose interior nodes are justified by their
predecessors using an instance of a Horn clause in T' or justified by the fact that = is a
congruence relation. This proof is also a “proof calculus” proof of ¢ <+ 1 from o; <+ 1, and
so we get a proof of ¢ from the o; as well.
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2.3 Positive Quantifier-free Algebras

The core of our argument about the first order algebras and various reducts can already be
illustrated with the positive quantifier-free algebras, where our signature is restricted to the
substitutions and the lattice operations 0,1, V, A for each sort. The kind of operations an
relations you can get in this situation is limited; for example, you can’t express composition
of binary relations. We begin by presenting the universal axioms which we will see axiomatize
the subalgebras of the positive quantifier-free algebras — this is our goal in this section. Note
that I have placed a list of all the axioms considered in this chapter (for the various reducts)
at the end of the chapter for ease of reference. Also note that each of these “axioms” is
actually an axiom schema.

The Positive Quantifier-free Axioms

(0) When ¢4, ..., ¢, are partitioning cylindrifications of arities ¢;: k; — (k1 + -+ + k) we
have the axiom: For all r{, s1: ki, and all 9, s9: ko, ..., and all r,,, s,,: k,, we have
If \/ci(si) > /\cl-(n-), then s; > r; for some 1 =1,...,m.
i=1 i=1

Note that by y > x we actually mean x = x A y or equivalently (in the presence of the
next axiom) y = x V y.

(1) 0,1,V,A form a (bounded) distributive lattice in each sort. In particular, each sort
comes with a partial order < defined by r < s just in case r = r A s or equivalently
s=rVs.

(2) Substitutions preserve 0,1,V,A. E.g., when a: kK — n we write: For all r,s: k we have
a(r AFs) = alr) A" afs).

(3) When a: k — n and 3: n — m we have the axiom: For all r: k we have
(Boa)(r) = Bla(r)).

Recall that by “8 o a” we mean the function symbol which is the composition of these
two substitution function symbols, while («(e)) is the usual composition within the
algebra.

(4) For each identity substitution id: n — n we have the axiom: For all r: n we have
id(r) =r.

Remark 17. Here are some notes on the axioms, and intuitive explanations.
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e Intuitively, axiom (0) says that if you have a union of “orthogonal cylinders” covering
a “rectangle”, then one of the cylinders has width larger than the width of the cor-
responding side of the rectangle. Note that the instances of axiom (0) are not Horn
clauses (they are universal implications where the conclusion is a disjunction of atomic
formulas).

e Axioms (1)-(4), which are equations, axiomatize the Horn clause theory of positive
quantifier-free algebras. When axiomatizing the algebras of larger signatures, we will
see that the difference between the universal and the Horn clause theories is still just
axiom (0).

e Axiom (4) is redundant in the context of axioms (0), (1), and (3). However, I include
it because we will have occasion to omit axiom (0) when considering the Horn clause
theory. To see this redundancy, note that id: n — n just by itself is trivially a parti-
tioning cylindrification. Thus by axiom (0) we have id(s) > id(r) implies s > r. But
axiom (3) gives id(id(¢)) = id(¢), and so we can get id(t) = t.

o [t is straightforward to check that the axioms are all true in positive quantifier-free
algebras. For illustration, let us verify axiom (0). Suppose that s; 2 r; for each
i=1,...,m. Then there are 7; € 7, — s;, and s0 (T - - - Tp,,) € N\, ci(r:) — V, ci(si).

e [t follows from axioms (0), (1), and (3) that everything in sort zero is either 0 or 1. To
see this, note that c;,c: 0 — 0 are partitioning cylindrifications, where ¢; = ¢o = id.
Then given any element r of sort zero, we have

c(r)Ve(0)=rVO>1ATr=c (1) Acar)
So either r > 1 (and hence r = 1) or 0 > r (and hence r = 0).

e We may consider 0 # 1 in sort zero to be a special case of axiom (0), because the
empty collection of cylindrifications trivially forms a partitioning cylindrification (of
sort zero). The right hand side of the axiom in this case becomes an empty disjunction
and therefore is considered as FALSE. If this offends the reader’s sensibilities, then
they may specifically add an axiom asserting that 0 2 1 in sort zero. Taken together
with the previous remark, we see that an algebra satisfying axioms (0), (1), and (3)
will have exactly two elements in sort zero.

The main result of this chapter will be the following theorem.

Theorem 18. Azioms (0)-(4) axiomatize the subalgebras of the positive quantifier-free al-
gebras.

A basic step in our proof of Theorem 18 will be the observation that if L is an abstract
algebra that satisfies the axioms above then a prime filter on any one of the sorts of L gives
rise to a morphism from L to a concrete positive quantifier-free algebra.! If you think of

LAxiom (1) ensures that each sort is a distributive lattice, and so it makes sense to speak of a prime
filter on a sort.
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the abstract algebra as a theory, and the morphism to a concrete algebra as a model of this
theory, then intuitively Lemma 19 says that any prime filter F' on sort n is the type of an
n-tuple F' = (F},...,F,) in some model. In fact, we can take the model to just consist of
this n-tuple. Lemma 21 will allow us to realize finitely many types at once, and so then by
the compactness theorem we will be able to realize all types at once, yielding an embedding.

Lemma 19. Let F be a prime filter on sort n of some algebra L satisfying the axioms (1),
(2), and (3). Let Fi,...,F, be distinct symbols. Let W = {Fy,...,F,}. Let A(W) denote
the positive quantifier-free algebra of relations on the set W. Define a function (on each
sort) p: L — A(W) by putting, for each r in sort k of L and each substitution a: k — n,

o(r) = {a™°(F, ..., F,) | a(r) € F}

Then ¢ is a morphism.
Proof. Note that
QPR E) €p(r) <= alr)eF

because every tuple (of any length) from W can be expressed as a'"P(F) for a unique
substitution . We now proceed to check that ¢ is a morphism. First observe that ¢
preserves 0, i.e. ¢(0) = ) for each sort, because a(0) = 0 ¢ F by axiom (2). Similarly,
©(1) = W* because a(1) =1 € F.
The preservation of V and A also follow from axiom (2) via the following calculations:
a"P(F) € p(r)U p(s) <= a(r) € Fora(s) € F
< a(rvs)eF
— a"P(F) € o(rVs)

and
a"Pe(F) € p(r) Np(s) <= alr) € F and a(s) € F
<~ a(rAs)er
= a"(F) € o(rAs)

Finally, we check the preservation of substitutions using axiom (3):

atuple(F) c ﬂrelation<g0(’f’)) — Btuple( tuple( )) <,0( )
= (a0 f)"(F ) € ¢(r)
> (aof)(r) €

— a(f(r) e F

= a"™E(F) € p(B(r))
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Proposition 20. Azioms (1)-(4) axiomatize the class of subalgebras of products of positive
quantifier-free algebras. Thus, we have found an equational axiomatization of the Horn clause
theory of positive quantifier-free algebras.

Proof. Let L be an algebra satisfying axioms (1)-(4). We want to find an embedding of L into
a product of positive quantifier-free algebras. Using axiom (4), we can make sure to separate
any two distinct points using a morphism from Lemma 19: Let r # s in the same sort. Then
there is a prime filter F' containing, say, r and not s.2 Let ¢ be the morphism obtained from
Lemma 19. Then F = id(F) € ¢(r) — ¢(s) because id(r) = r € F and id(s) = s € F, by
axiom (4). Taking a product of a bunch of such morphisms, we actually get an embedding
of an algebra satsifying axioms (1)-(4) into a product of positive quantifier-free algebras. [

Observe that this does not automatically give us the universal theory, because the positive
quantifier-free algebras are not closed under products (even just look at the zero sort and
observe that there must be exactly two elements in it). Note that while P(l§ W;) = [[ P(W;)
it is not the case that P((l§ W;)") = [[P(W/).

In order to have an embedding into an actual positive quantifier-free algebra instead of
a product of them, we show that we can deal with all the prime filters at once by showing a
certain first order theory is satisfiable.

First Part of Proof of Theorem 18. Given an algebra L that satisfies axioms (0)-(4), let us
introduce a relation symbol r of arity n for each element r of L of each sort n. We also
introduce constants Fi, ..., F,, for each prime filter I’ of L on sort n. Let T be the first order
theory in this language with the following axiom schemata:

(A) 7(F) when r € F and —r(F) when r € F
(B) The morphic conditions, i.e.

(i) Yz —0(z). We have such a sentence for the 0 of each sort.

(ii) vz 1(x)

(i) Yz (rVs)(Z) <= (r(z) or s(x)). Note that in (rV s)(Z) the “V” is an operation
of the algebra, while in (7(Z) or s(z)) the “or” is a logical symbol of the ambient
first order logic. We have such a sentence for every pair (r, s) of elements from the
same sort.

(iv) VZ (rAs)(z) < (r(z) and s(z))

(v) VZ (a(r))(Z) <= r(a'™(z)). We have such a sentence for every substitution
a: k — n and element r in L of sort k.

It is straightforward to verify that a model of the morphic conditions of T is (essentially)
the same thing as a morphism from the algebra L to a positive quantifier-free algebra. Item

2Recall we have taken the Boolean prime ideal theorem as an assumption.



CHAPTER 2. FIRST ORDER ALGEBRAS AND VARIOUS REDUCTS 20

(A) of T ensures that this morphism is 1-1 (on each sort). To show that this theory is
satisfiable, we show that the theory is finitely satisfiable and then use the compactness
theorem. Thus, it suffices to find a model satisfying all of item (B) but the instances of item
(A) involving only finitely many prime filters F*, ..., F™. (We use superscript here to avoid
confusion of the prime filters with the constants associated to each of them.)

End of First Part of Proof of Theorem 18

The key idea for how to proceed is to assemble these finitely many prime filters into one
master prime filter on a larger sort. We formalize this in the following lemma.

Lemma 21. Let L be an algebra that satisfies axioms (0), (1), and (2). Let ky+- - -+ky, = n.
Let ¢;: ki — n be partitioning cylindrifications. Let F* be prime filters on sort k; respectively.
Then there is a prime filter G on sort n such that for each i = 1,...,m, for all v in L of
sort k; we have ¢;(r) € G if and only if r € F".

Proof. Let A be the distributive lattice which is sort n of L. Define

Gp:={z€A|z> /\ci(ri) for some r; € F'}

i=1
and

Gr:={z€A| \/cl-(sl-) > 2 for some s; ¢ F'}
i=1
We claim that Gp is a filter, G; is an ideal, and they are disjoint. First we show they
are disjoint. Suppose, to get a contradiction, that \/, ¢;(s;) > z > A, ¢i(r;) where s; ¢ F*
and r; € F*. Then s; > r; for some i by axiom (0), implying that s; € F* because F* is
upward-closed, but as noted s; € F?, and we have a contradiction.

Next, observe that 1 € Gp since 1 € F" for each ¢ and 1 > A, ¢;(1). Similarly 0 € G;. It
follows at once that 0 ¢ G and 1 € G because G and G are disjoint.

It is obvious from the definitions that G is upward-closed and G is downward closed.

Finally, suppose z, 2" € Gp. Let 2 > A, ¢;(r;) and 2’ > A, ¢;(r}) where r;, 7} € F*. Then
zNZ' > N, ¢i(riAr}) by axiom (2), and r; A} € F* for each i. So zA 2" € Gp. The argument
that z, 2" € G; implies z V 2’ € (G is similar.

Because G and G are disjoint, there is a prime filter G such that Gp C G and G N
G; = 0. This G is a prime filter satisfying the desired property. If r € F? then ¢;(r) =
ci(r) ANz ¢i(1) € Gp, and so ¢;(r) € G. If r & F', then ¢;(r) = ci(r) V V, 4 ¢;(0) € Gy,
and so ¢;(r) € G. O

Continuation of Proof of Theorem 18. Armed with this lemma, we may return to showing

that the theory T is finitely satisfiable. Given our finitely many prime filters F ... F™,
there is by Lemma 21 a prime filter G such that

ci(r) €G < reF’
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for each 7. Introduce distinct symbols Gy, ..., G, where n = ky + --- + k,;,, the sum of the
arities of the F*. Let W = {Gy,...,G,}. We will interpret the constants corresponding to
each prime filter F* by ¢""°(G) respectively. By Lemma 19 we know that ¢: L — A(W)
defined by

™G € p(r) <= alr) eq
is a morphism. Further,

tuple
¢

(G)ep(r) <= c(r)eG < recF’

as desired. So ¢ yields the desired model of the small portion of T we gave ourselves.
End of Proof of Theorem 18

Unlike powerset algebras which have equivalent equational, Horn clause, and universal
theories, the positive quantifier-free algebras (and other first order algebra reducts considered
below) have only equivalent equational and Horn clause theories.

2.4 Adding Negation, Projection, Equality

Negation

It is relatively easy to extend the results of Section 2.3 to algebras with negation, yielding
an axiomatization of the subalgebras of the quantifier-free algebras.

Theorem 22. Azioms (0)-(6) axiomatize the subalgebras of the quantifier-free algebras.
(Azioms (5) and (6) are given below.)

Examining the argument of Section 2.3, the only place where there needs to be significant
change is for Lemma 19, where we need to now also verify that the function defined is morphic
for negation. In other words, we want ¢(—r) = —p(r). Le., we want a(—r) € F < «(r) &
F. One way to accomplish this is to add the following two equational axiom schemata to
our list:

Axioms for Negation
(5) When a: k — n is a substitution we have the axiom: For all r: k we have
a(—r) = —a(r).
(6) For each sort n, we have the axiom: For all r: n we have
rV-r=>1andrA-r=0.

It is easy to check that these axioms are true in quantifier-free algebras.
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Lemma 23. Let F' be a prime filter in sort n of some algebra L satisfying the axioms (1)-
(3), and (5)-(6). Let Fi,...,F, be distinct symbols. Let W = {Fy,...,F,}. Let A(W)
denote the quantifier-free algebra of relations on the set W. Define a function (on each sort)
o: L — A(W) by putting

Q"M (F) € o(r) <= alr) e F

Then ¢ is a morphism.

Proof. The proof is the same as that for Lemma 19, except now we must also check that
o(—r) = =p(r). Axiom (6) ensures that for any prime filter F', —r € F if and only if
r ¢ F. Then using axiom (5) we have a(—r) € F if and only if —a(r) € F if and only if
a(r) € F. O

As before we get the following proposition:

Proposition 24. Azioms (1)-(6) axiomatize the class of subalgebras of products of quantifier-
free algebras. Thus, we have found an equational axiomatization of the Horn clause theory
of quantifier-free algebras.

Proof. This follows from Lemma 23 in the same way that Proposition 20 follows from
Lemma 19. 0

Proof of Theorem 22. The proof is the same as that for Theorem 18, except that the theory
T used in that proof changes in a very minor way: we must add preservation of negation to
the morphic conditions. In detail, we add the following sentences to 71"

(B) (vi) V& (=r)(z) <= —(r(2))

The addition of this to the theory 7' does not change the rest of the argument because
Lemma 23 handles negation. Note that Lemma 21 remains unchanged by an expansion of
the signature.

End of Proof of Theorem 22

Projection

Adding projection takes more work than adding negation. As in the quantifier-free case,
our argument below works whether negation is present or not, and so we will obtain the
following two theorems. (The new axioms (7)-(10) are presented later in this section.)

Theorem 25. Azioms (0)-(4) and (7)-(10) azxiomatize the subalgebras of the positive exis-
tential algebras.

Theorem 26. Azioms (0)-(10) azxiomatize the subalgebras of the first order algebras.
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The proofs of these two theorems are essentially the same, and so for convenience we
will focus attention on the positive existential case, i.e. Theorem 25. The signature under
consideration thus includes the substitutions, the lattice operations, and the projections,
but not negation. Our general approach is to find a 1-1 function from the abstract algebra
satisfying the axioms to a concrete positive existential algebra which is not quite a morphism
because there are not enough witnesses, but then we modify the function to obtain an actual
embedding by adding witnesses.

Often when dealing with a projection 3: n+ 1 — n we wish to also speak of the associ-
ated cylindrification c¢: n — n+ 1 given by ¢(i) = 1, i.e. ¢(Zy) = Z. The operations 3 and
¢ form a Galois connection, which is a special case of how direct image and inverse image
form a Galois connection. However, we present the situation equationally with the following
axioms, which imply more than just this Galois connection.

Axioms for Projection

(7) 3 preserves 0 and V

(8) For each projection 3: (n + 1) — n and associated cylindrification ¢: n — (n + 1) we
have the axiom: For all 7: (n + 1) we have

r < ¢(3(r))

(9) For each projection 3: (n + 1) — n and associated cylindrification ¢: n — (n + 1) we
have the axiom: For all 7: (n + 1) and all s: n we have

A(r Ae(s)) =3(r) As.

(10) Let ay: k; — m be substitutions for i = 1,...,n. Let 8;: (k; +1) — (m + n) be the
substitutions defined by S"™°(Zy; - - - yn) = o4(Z)y;. Then we have the axiom: For all
ri:ki+1,...,and all r,: k, + 1 we have

N B(r) = N es3(r)

where 3™ means we apply projection n times.

Remark 27. Here are some notes on the axioms for projection, and intuitive explanations.

e [t is straightforward to check that these axioms are all true in the positive existential
algebras. For illustration, consider axiom (10). Intuitively, this axiom says that casting
an ensemble for a theatrical production involving n roles is equivalent to finding a good
actor for each role, as long as you do not care about how the team works together.
A tuple 7 is in I (A, B;(r;)) if and only if there are yy, ..., ¥, such that for each
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i =1,...,n we have o"™(Z)y; = B"°(zg) € r;. However, since each y; occurs on
its own, thls is equivalent to saying that for each ¢ = 1,...,n there is some y; with
tuple

;" (Z)y; € r;, which is to say 7 is in A, oy (3(ry)).

2

e Note that r < s implies 3(r) < 3(s) follows from axiom (7). Of course the substitutions
are also increasing in this way because of axiom (2).

e It might appear that, by taking » = 1 in axiom (9), we could conclude that 3(c(s)) = s.
This is usually correct, but not always. If we consider the algebra of relations on the
empty set, and s = 1 in sort zero, then ¢(s) = 1 = 0 in sort one, and J(c(s)) = 0 #
1 =s. On the other hand, we do always have 3(c¢(s)) < s.

Definition 28. Let L be an algebra in the positive existential signature, and let A(W) be
the positive existential algebra of relations on some set W. An almost morphism is a
function (on each sort) ¢: L — A(W) such that

1. ¢ is morphic for the substitutions and the lattice operations

2. I(p(r)) C p(3(r))

L.e., an almost morphism is a morphism except for the possibility it might not satisfy

() 2 ¢(3(r)).
The modified version of Lemma 19 is as follows.

Lemma 29. Let F' be a prime filter in sort n of some algebra L satisfying the axioms (1),
(2), (3), and (8). Let Fi,...,F, be distinct symbols. Let W = {Fy,...,F,}. Let A(W)
denote the positive existential algebra of relations on the set W. Define a function (on each
sort) ¢: L — A(W) by pulting

a"Pe(F) € p(r) <= a(r) € F
Then o is an almost morphism.

Proof. The new thing we need to verify is that 3(¢(r)) € ¢(3(r)). Let o"™°(F) € 3(¢p(r)).
There is a substitution 3 such that ¢"P¢(F"Pl°(F)) = o"P*(F) and §™P*(F) € o(r). Thus,
B(r) € F. We want to check that ¢™Ple(gPle(F)) € o(3(r)), ie. (Boc)(3(r)) € F. Well,

(80c)(3(r)) = H(c(3(r)))
()

m v

B
F
O

Lemma 29 does not immediately yield an axiomatization of the Horn clause theory, but
rather the following lemma.
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Lemma 30. Let L be an algebra satisfying axioms (1)-(4) and (8). Let r # s be two
distinct elements in the same sort. Then there is an almost morphism ¢ from L to a positive
existential algebra such that o(r) # ¢(s).

Proof. Follows from Lemma 29 in the same way that (a portion of) Proposition 20 follows
from Lemma 19. O

Similarly, the argument in the proof of Theorem 18 applied to this situation does not
immediately yield Theorem 25, but rather the following lemma.

Lemma 31. Let L be an algebra satisfying axioms (0)-(4), and (8). Then there is a 1-1
almost morphism from L to some positive existential algebra.

Proof. The proof is the same as that for Theorem 18, except that the morphic conditions
of the theory T become the almost morphic conditions. That is, instead of adding
Vz (—-r)(z) <= —(r(z)) as we did in the proof of Theorem 22, we add

(B) (vi) Vz,y (r(zy) = (3(r))(7))
O

To go further, we need a way of turning an almost morphism into an actual morphism.
The following lemmas help us accomplish this.

Lemma 32. Let L be an algebra that satisfies the axioms (1), (2), (7), and (9). Let F be
some prime filter on sort n and let r be an element in sort n + 1 such that I(r) € F'. Then
there is some prime filter G on sort n + 1 such that r € G and for all u in sort n we have
c(u) € G if and only if u € F.

Proof. We use the same approach as in the proof of Lemma 21. Let A be the distributive
lattice which is sort n + 1 of L. Define

Grp:={2z€ A|z>rAc(u) for some u € F}

and
Gr:={z€ A|c(u) > z for some u ¢ F'}

Then as in Lemma 21 we have that G is a filter, G is an ideal, and they are disjoint. These
things are easy to check, and we here only deal with disjointness for illustration. Suppose,
to get a contradiction, that c(u) > z > r Ac(t) where t € F' and u ¢ F. Then by axioms (7)
and (9) we get

> 3(r Ac(t))
=3(r)At
er

u > I(e(u))
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putting u € F, a contradiction.
So there is a prime filter G extending G and disjoint from G;. This works. O

Given a prime filter G on sort n + 1, note that ¢ }(G) := {u | c(u) € G} is always a
prime filter on sort n such that u € ¢7'(G) if and only if ¢c(u) € G. The above lemma asserts
that given any prime filter F' on sort n and element r with 3(r) € F, there is some prime
filter G such that r € G and ¢ '(G) = F.

Recall that when L is an algebra in the positive existential signature, an almost morphism
from L to a positive existential algebra is (essentially) the same thing as a model of the
almost morphic conditions. Note that every tuple (a4, ..., a,) from a model M of the almost
morphic conditions gives rise to a prime filter p(a) := {r | M = r(a)} of L on sort n.

Definition 33. If M; and M, are models of the almost morphic conditions (associated to
some algebra L in the positive existential signature), then we say that M, has witnesses
over M, when M is a substructure of M, written M; C M, and whenever (aq, ..., a,)
is a tuple from M; and G is a prime filter of L on sort n + 1 with ¢7'(G) = p(a), then
there is some element b in M, such that ab weakly realizes G, i.e. My |= r(ab) for every

r € GG. Note that [ say “weakly realizes” instead of “realizes” because we do not require that
M, = —r(ab) when r ¢ G.

Lemma 34. Let L be an algebra that satisfies axioms (1)-(3), (7)-(10). Let M, be a model
of the almost morphic conditions. Then there is some model My O My of the almost morphic
conditions which has witnesses over M.

Proof. Consider the following first order theory U, the signature for which contains a relation
symbol for each element of L with arity corresponding to its sort, and also some constants
as indicated below:

(A) The almost morphic conditions.

(B) The literal diagram of M;. lLe. for every tuple a from M; and every r in L we write
r(a) when M, = r(a) and —r(a) when M; = —r(a)

(C) For each prime filter G in sort n+1 of L, and each n-tuple a from M, with p(a) = ¢ (G),
we introduce a new constant y¢ z, and then for each r € G, we write

T<(_1?JG,&)

Items (A) and (B) of the theory ensure that a model satisfies the almost morphic conditions
and is a superstructure of M;. Item (C) ensures that a model will have witnesses over M.
By the compactness theorem, we’ll thus be done if we can find a model of any given finite
amount of items (A), (B), and (C).

Let U~ be consist of finitely many sentences from items (B) and (C). Only finitely many
elements of M; appear in U~. Collect them together in one big tuple a, say of length m,
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without duplicates. We will be satistying all of item (A). Let (G1,a1),...,(Gn,ay) be the
tuple/prime filter pairs that occur in U~ and item (C). We may assume n > 1 (otherwise
we can let My = M;). Finitely many of the elements r € G; will occur, but we will
actually be ensuring things work for all 7 € G;, for each i. We have ¢ }(G;) = p(a;) where
azu"le(&) = a,; for some substitution «;. Let k; denote the length of @;. Define substitutions
VP (G - yy) = @ and BMP(ag) = agy; for 1 < i < n.
Now I claim that there is a prime filter H on sort m + n such that

(I) For all r in sort m we have fy(r) € H if and only if r € p(a), and
(IT) For each i =1,...,n, for each r in sort k; + 1 we have r € G; implies 3;(r) € H.

Suppose for now that there is such a prime filter. Then we define a model M, with underlying
set {Hi,..., Hyin} as follows:

My Er(y(H)) <= ~(r) e H

We interpret the constants ay, ..., a, by Hi,..., H,, and the constants y¢, a,, - - -, YG,.,a, OY
Hpyiay ooy Hypyn. Of course item (A) is satisfied by Lemma 29. Now consider the sentences
in U~ and item (C). Let r € G;. We want My E r(aye,a), i-e. Bi(r) € H (because
BUP(G7) = @y;). But this is implied by r € Gy, according to (II).

Finally consider the sentences in U~ and item (B). We show that for any tuple v***'¢(a)
assembled from @, and for any r of the appropriate sort, we have My = r(y"**'(a)) if and

only if M, = r(7*""*(a@)). Note that

7P (a) = 7P (Bo(ay)) = (Bo © 7)™ (ay)

and so by the definition of M, , we have M, | r(y™P*(a)) if and only if By(y(r)) =
(Booy)(r) € H. By (I), this is equivalent to v(r) € p(a), i.e. My = (v(r))(a). Since M; itself
satisfies the almost morphic conditions, this is equivalent to M; = r(y™P°(a)), as desired.

Now we show that we can get such an H. We use an argument similar to that of Lemma 21
or Lemma 32. Let A be the distributive lattice which is sort m +n of L. Define

Hp:={z€ A|z2> B(r)A /\B,(r,) for some r € p(a) and r; € G;}

=1
and
Hy = {z € A| Bo(r) > = for some r ¢ p(a)}

Then Hp is a filter, Hy is an ideal, and they are disjoint. The main thing to check is the
disjointness. Suppose, to get a contradiction, that

n

Bols) >z > Bo(r) A N\ Biri)

=1
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where s & p(a), r € p(a), and r; € G, for each i. Observe that ¢™ = 3y, and so by repeated
use of the facts that 3(c(f)) <t and 3 is increasing, we get

s > 3™ (By(s)) > 3™ (Bo(r) A /n\@'(?“z'))
i=1
By repeated use of axiom (9), the right hand side becomes
PRI B
i=1
Putting this all together with axiom (10), we see that
s>rA /n\ai(El(ri))
i=1

To get that s € p(a), a contradiction, we will show that «;(3(r;)) € p(a) for each i. By axiom
(8), c(3(r;)) > r; € Gy, 80 A(r;) € p(a;) (recall that ¢™1(G;) = p(a;) by assumption). Then, as
M; satisfies the almost morphic conditions, and o!"”*(@) = a;, we get that oy (3(r;)) € p(a).

A prime filter H which extends Hp and is disjoint from H; is as desired. O]

If f: A — B is a function, we use ker(f) to denote the relation {(a,a’) € A? | f(a) =
fd)}.

Lemma 35. Let L be an algebra that satisfies azioms (1)-(3) and (7)-(10). Let ¢ be an
almost morphism from L to some positive existential algebra. Then there is a morphism o+
from L to some positive existential algebra such that ker(p™) C ker(p). In particular, if ¢
is 1-1, then @™ is an embedding.

Proof. The almost morphism ¢ gives rise to a model M; which satisfies the almost morphic
conditions. By Lemma 34 there is a model My O M of the almost morphic conditions which
has witnesses over M;. Continuing in this way, we get a sequence

M, € My C Mz C---

of length w where M, has witnesses over M,,. Let M be the union of this chain of models.
Since the almost morphic conditions are of a form preserved by unions of chains, we get that
M models them too.

Further, if M+ | (3(r))(a), then M, = (3(r))(a) for some n. By Lemma 32, there is
a prime filter G such that p(a) = ¢*'(G) and r € G. Since M, ; has witnesses over M,
there is some element b € M, such that M, = r(ab). Thus, M* |= r(ab). In summary.
M+ = (3(r))(@) implies M+ = Jy(r(ay)). Thus, the function given by ¢t (r) == rM" is
a morphism from L to the positive existential algebra of relations on the underlying set of
M.

Finally, suppose ¢*(r) = ¢*(s). We show that ¢(r) = ¢(s). If there were a from M,
with @ € ¢(r) — ¢(s), then a € p*(r) — T (s) as well, because M; C M. O
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From Lemma 30 and Lemma 35 we get the following proposition:

Proposition 36. Azioms (1)-(4) and (7)-(10) equationally axiomatize the subalgebras of
products of the positive existential algebras.

Theorem 25 follows immediately from Lemma 31 and Lemma 35.

Equality

If we wish to add equality, we may do so (modularly) with the following axioms. In this
section we do not provide a detailed analysis, but rather just indicate briefly how the above
argument changes.

Axioms for Equality
(11) a) A}, =1

b) A} = Af,
c) AZ]‘ A A;ﬁk < Aﬁk

(12) When a, 5: k — n are substitutions of matching arities we have the axiom:

k
a(r) A N\ Al sw = B0r) AN\ Ay

I=1 =1
(13) For each substitution a: k — n we have the axiom:
kN _ AN
a(A7;) = Abi).al)

It is straightforward to check that these equational axioms are all true in the concrete
algebras where A7, is interpreted as the n-ary relation which holds of an n-tuple if and only
if the i'" and j coordinates are equal. Axiom (11) corresponds to the usual properties of
an equivalence relation. Axiom (12) is algebraically saying the obvious fact that

{j} | atuple<j:) cr and atuple(i,> — Btuple(i,>} — {i’ | 6tuple<j) € r and Oétuple(i,) — 6tuple(i,>}

Finally, to make sense of axiom (13), recall that the i"* coordinate of a™P(z) is 2. So,
attPle(z) € Af’j if and only if x4y = Ta(j)-

Let F' be a prime filter on sort n. Our basic strategy is the same — get a modified version
of Lemma 19 by having F' correspond to a tuple (Fi, ..., F,) — except that now we may have
to identify certain of the F;. By axiom (11), we may put

Fi=F; < A, €F
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That is, the relation {(i,7) | A;; € F'} is an equivalence relation. In detail, it is reflexive
by axiom (11) part (a). It is symmetric by axiom (11) part (b). And it is transitive by
axiom (11) part (c). But then we may have a''P¢(F) = gtuple( ) for distinct substitutions
a and 3. The upshot of axiom (12) is that this won’t matter: If o*"P'*(F) = g'le([') then
a(r) € F <= p(r) € F. To see this, observe that

a"P(F) = BMP(F) <= F,) = Fpg foreach I =1,....k

— /\A o0 € F

=1

So if a(r) € F and ot™e(F) = gtPle([) then we get

B(r) = B(r) A )\ Dy s

and so 5(r) € F

Now we are in a position to obtain the with-equality version of Lemma 19, using axiom
(13) for the preservation of the A};. For definiteness, we state the lemma for positive
quantifier-free algebras with equality.

Lemma 37. Let L be an algebra that satisfies axioms (1)-(3), (11)-(13). Let F' be a prime
filter on sort n. Let Fy,..., F, be symbols such that F; = Fj if and only if A7, € F. Let
W = {F,...,F,}. Let A(W) be the positive quantifier- free algebra with equalzty on the
relations of W. Then ¢: L — A(W) defined by

a"Pe(F) € o(r) <= alr) e F
s a morphism.

Proof. As observed above, this definition of ¢ is unambiguous by axiom (12).
The new thing we have to check is that

Q(AF;) = {a"P(F) | Fay = Fai)}
Well,
(AY) = {a™(F) | a(A);) € F}
= {atuple( ) | Anz ),a(j) € F}
= {a"*(F) | Fay = Fagp}
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2.5 Theories

We now consider how formulas and theories may be understood in the context of our mul-
tisorted algebraic approach. Thinking about first order theories in an algebraic way is not
new, and it was discussed even in our multisorted formalism by Boérner in Section 3.7 of [3].
However, our discussion here will help explain the value of axiom (0) in letting us have a
uniform argument for the various reducts.

Let us say a first order formula in some relational signature o is an element of the free
algebra (in the first order algebra signature) generated by the symbols of o (which are relation
symbols of various fixed finite arities). Let us use the notation F}, to refer to this free algebra.
Positive existential formulas, quantifier-free formulas, etc. are defined correspondingly. For
an example, let o consist of a unary relation symbol R and a binary relation symbol S. Let
a: 2 — 2 be the substitution a'*'°(z,y) = (y,x). Then

R, S, a(5), I(a(S)), RAI«a(S))

are some formulas.

This way of viewing formulas does away with bound/free variables and the associated
“alphabetic variants”, but of course a formula up to logical equivalence may have more
than one syntactic representation in this formalism as well (e.g. a(a(5)) and S are logically
equivalent). Also note that the variable context has now become an intrinsic part of the
formula (its arity).

A first order o-structure is a morphism from F, to some first order algebra M. This
is the same as a function which assigns to every relation symbol of o a relation on the
underlying set of M. Let us use K to denote the class of concrete algebras for the kind of
logic under consideration (i.e. K could be the first order algebras, or the positive existential
algebras, etc.). Then a o-structure for whatever logic is under consideration is a morphism
from F, to an algebra M € K.

Given any collection 7" of identities of formulas (i.e. pairs of formulas from the same sort),
the statement that a structure f: F, — M is a model of T" means that f(r) = f(s) for each
pair (r,s) € T. A (partial) theory T is an “implicationally closed” collection of identities in
the sense that if every model f of T satisfies f(r) = f(s), then also (r,s) € T. Every theory
is in particular a congruence relation on F,. Thus, we have an associated quotient F, /T,
which could be called the theory too. A morphism F,/T — M € K is the same thing as a
model of T'. The algebras that arise as quotients in this way (i.e., are of the form F,/T for
some signature o and some o-theory T') are exactly the subalgebras of the products of the
concrete algebras, i.e. SP(K).

We include the easy verification of this fact for illustrative purposes. First let Q = F, /T
be such a quotient. We now prove that () must satisfy the equational theory of K (which is
equivalent to the Horn clause theory for the K of present interest). Let ¢(7) = x(7) be an
equation true in all members of K. Let 7 be some tuple from (). Then let f: Q — M € K
be any model of T. Of course we must have ¢(f7) = x(f7). Since f is a morphism, this
yields f(¢(7)) = f(x(7)). This works for any model f, and so by the assumption that T is
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implicationally closed, we get that @ = ¢(7) = x(F) too. Since @ satisfies the equational
theory of K, by Proposition 20 or its analogue, we get that @) € SP(K).

Conversely, let Q € SP(K). Specifically let @ C [],.; M; where the M; are in K.
Introduce a signature o with a symbol for each element of (). Then F,/T = @ for some
congruence T'. We claim T is a theory, i.e. is implicationally closed. Suppose 7, s € ) with
f(r) = f(s) for all morphisms f: @ — M € K. Then in particular for the projections
mi: Q@ — M; (i € I) we have m;(r) = m;(s). Sor =s.

We may thus say that theories are simply subalgebras of products of the concrete al-
gebras in question (with specified generators). The usual notion of first order theory is an
(implicationally closed) collection of sentences (identities of the form ¢ = 1 in sort zero).
In the first order case, where universal quantification and the biconditional are present, this
agrees with the notion of theory described above, essentially because r = s in a first order
algebra if and only if V(") (r <+ s) = 1 (where r and s are in sort n). Intuitively speaking, in
the first order signature, the zero sort controls all the sorts. For the reducts this is not true.
To illustrate this point, and to help explain the value of axiom (0), we now show that first
order theories with exactly two elements in sort zero are the ones in S(K), but importantly
that this characterization does not hold for the reducts.

When considered as a collection of sentences, a first order theory is said to be complete
when every sentence or its negation (but not both) is in the theory. Translating this to the
quotient view of theories, this says that there are exactly two elements in sort zero. Of course
any subalgebra of a first order algebra is going to be a theory with exactly two elements of
sort zero. But the converse is true as well, when negation and projection are present. We
check that axiom (0) follows from the Horn clause theory of first order algebras together
with the assumption that there are exactly two elements of sort zero.

First we observe that in any algebra satisfying the Horn clause theory of first order
algebras, for any element ¢ of sort k we have t = 0 <= 3% (¢) = 0, because the two
directions of this bi-implication are both Horn clauses true of first order algebras (let us say
are “true Horn clauses”). If additionally we have an algebra with exactly two elements in
sort zero (0 and 1), then ¢ # 0 if and only if 3®)(¢) = 1.

We now prove axiom (0) in contrapositive form. Let s; 2 r; for each i = 1,...,m,
where r;, s;: k;, and let ¢;: k; — (k1 + -+ - + k) = n be partitioning cylindrifications. Since
tA—-u=0 = wu >tis a true Horn clause, we get that r; A =s; # 0 for each i. Thus,
3 (r; A =s;) = 1. Another true Horn clause is

m m

A" () =1 = 3™ Nets) =1

i=1 i=1

Thus, we get in our case
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So

m
Ao nos) #0
=1

m

which simplifies to 7\ ci(ri) A= \/ ci(s;) #0. So /\ ci(ri) £ \/ ci(8;).

i=1 i=1 i=1
So, we could have presented an axiomatization of the unlversal theory of first order

algebras by just taking the Horn clause theory and adding to it the axiom that there are
exactly two elements in sort zero. However, this would not have yielded results uniformly
for the reducts as well. There is a model of the Horn clause theory of positive existential
algebras which has exactly two elements of sort zero, but fails to satisfy axiom (0). To
see this, consider the (partial) first order theory (presently we will be taking a positive
existential reduct) in a language with three unary relation symbols R, A, and B generated
by the following sentences:

(i) 3(A(x) A B())
(i) Vz(R(z) <= A(x)) VVz(R(z) < B(x))

Let @ be the associated subalgebra of a product of first order algebras. Consider the positive
existential reduct of (), and then consider the subalgebra generated by R, A, and B. Call
it QQp, and note that (), is itself a subalgebra of a product of positive existential algebras.
Note that X € Qg if and only if there is some positive existential formula ¢ such that
¢(R,A,B) = X. Because we're dealing with unary relation symbols, and projections of
conjunctions of some of R, A, B are predictably 1, we in fact may assume that ¢ is positive
quantifier-free. Every element of sort zero in () is obtained by projecting an element of sort
one. One can check the only possible values are 0 and 1 (and 0 # 1 because our theory
has a model). On the other hand, letting ¢\"™°(z,y) = z and ¢;™°(z,y) = y, we have
c1(A) N ea(B) < ¢1(R) V eo(R) (ie. A(z) A B(y) = R(z) V R(y)), but AL Rand B LR,
violating axiom (0).

It is easy to give a theory in the quantifier-free signature which does not satisfy axiom
(0) and still has exactly two elements in sort zero, because there are no functions going from
the higher sorts to sort zero in this case. So any violation of axiom (0) not involving sort
zero yields an example. For instance, consider the quantifier-free algebra A(W) of relations
on a set W of one element. Then the product L := A(W) x A(W) has a “diamond” for each
sort. Let us use 0, a, b, and 1 to denote the elements of L in sort one. Let ¢;""*(z,y) = = and
A" (z, ) = y be partitioning cylindrifications. Then ¢1(a) A ¢5(b) is the bottom element in
sort two. Thus, ¢1(b) V ¢2(0) > ¢1(a) A ca(b). However, b 2 a and 0 2 b, violating axiom (0).

2.6 Dealing with Function Symbols

We briefly indicate how to deal with function symbols. Let 7 be a fixed functional signature.
We have terms a(xyq,. .., z,) defined as usual (elements of the free 7(z)-algebra where the &
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are extra constant symbols). From these we obtain “term-tuples”

a(z) = (a1 (), ..., ax(T))

where each «a;(Z) is a term.

The term-tuples induce operations on tuples of a m-algebra W in the obvious way. Given
a tuple 7 € W", we get a(z) = (1 (7),...,ax(T)) € Wk. The inverse images of these are
operations on relations going in the reverse direction ac: P(W*) — P(W™). The substitutions
are obtained as a special case for any signature 7w, and when 7 is the empty signature, they
are the only term-tuples. The multisorted signature of interest to us now has an operation
of arity a: k — n for each such term-tuple, and the concrete algebras of interest are the ones
that arise from considering the relations on a mw-algebra.

With respect to axiomatization, if equality is not present, we need only change axioms
(2), (3), and (5) by expanding their scope to include all term-tuples (not just substitutions).

As for equality, let us have a constant A, g of sort n for each pair of term-tuples o, : k —
n. The intended interpretation is A, 5 := {Z | a(z) = 5(Z)}. In the special case a(z) = x;
and (%) = x;, we get Ay 5 = A7}

)

Then we rewrite axioms (11)-(13) as follows:

° - Aga =1
AN AV IS
’ Aa,ﬂ A ABKY < Aow

® 04(7”) AN Aa,/j = 5(7”) N Aaﬂ

* Y(Aa5) = Asoa,yop

To these we also add
o A= /\f:1 A, p; where o = (aq,..., o) and = (b1, .., Bk)
* Ay < Agoy oy

So how do the proofs get modified? The only essential change is with the analogues of
Lemma 19. We want to have a prime filter F' on sort n of an abstract algebra satisfying the
axioms give rise to a morphism to a concrete algebra. When equality isn’t present, instead
of letting W = {Fy,..., F,,}, we let W be the free mw-algebra with Fy,..., F,, as generators.
In the special case where we have no function symbols, i.e. 7 is empty, we get back the old
W. We define the morphism as before: a(F) € ¢(r) <= a(r) € F, except that now «
may range over all the term-tuples, not just the substitutions.

When equality is present, we additionally identify certain elements of this free algebra by
saying o(F) = B(F) if and only if A, 5 € F. The additional axioms ensure that this makes
sense and in fact gives a congruence relation.

Finally, the fixed functional signature 7 can also be taken to be multisorted, with only

minor modifications to our argument.
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2.7 The Axioms

For ease of reference, here is a list of the main axioms considered:

(0) When ¢, ..., ¢, are partitioning cylindrifications we have the axiom:
m m
\/ ci(s;) /\ , then s; > r; for some i =1,...,m.
=1 =1

1) 0,1,V, A form a (bounded) distributive lattice in each sort.

2) Substitutions preserve 0,1, V, A

(Boa)(r) = B(alr))
id(r) =

3
4
a(=r) = —a(r)
6

Var=1rA-r=0

7 preserves 0 and V

8) r < c(3(r))
9) 3(rAc(s)=3(r)A
(10) Let a;(Z) be substitutions for ¢ = 1,...,n. Define 5;(Zy; -+ yn) = a;(¥)y;. Then we

have the axiom . .
3N Bi(ri)) = )\ a(3(r:))
i=1 i=1

where 3™ means we apply projection n times.
(11) a) A}, =1
b) Af; = Al

(1)
(2)
(3)
(4)
(5)
(6)
(7) 3
(8) r
(9)
)

(12) When «, f: k — n are substitutions of matching arities we have the axiom:

k
) A /\ At .sa) = B(r) A /\ ALw.80
=1

(13) For each substitution a: k& — n we have the axiom:

k _ n
a(Ai,j) = Ba(i),a()
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Chapter 3

Actions Arising from Intersection and
Union

In this chapter we investigate actions arising from intersection and union and posets arising
from actions arising from intersection. All sections in this chapter except Section 3.5 are
joint work with Alex Kruckman ([12]).

3.1 Introduction

An action (of S on C on the right) is a pair of sets, C' and S, and a function f: C' x S — C.
We denote by S* the set of words in S (i.e. finite sequences of elements of S, including the
empty sequence). For brevity, we write f(c, s) as ¢s, and similarly given ¢ € C' and w € S*,
cw is an element of C'.

One intuitive interpretation of actions has been given by philosophers studying conver-
sational dynamics (as in [14], for example). Given an action (C, S), we can think of C' as the
contexts that a conversation can have, and S as the sentences which, when asserted, change
the context. A natural class of concrete models can be described by taking both the contexts
¢ € (' and the sentences s € S to be sets of possible worlds. Then asserting s in context ¢
corresponds to cutting down the set of possible worlds by intersection ¢ N s.

With this motivation, Rothschild and Yalcin pointed out in [14] that the actions which
can be expressed using set intersection in this way are exactly the idempotent, commutative
actions. In detail, an action (C, 5) is called idempotent when css = ¢s and commutative when
c$189 = €S381 (for convenience we have the convention that when we assert equations we
mean them to be universally quantified, unless it is clear from context that we are discussing
particular elements). When the elements of C' and S can be identified with subsets of some
set in such a way that cs = cN s, then we say that the action is a |-action. The idea behind
the name — to be read “down-action” —is that going from ¢ to c¢s involves taking some things
away from c. Later we will introduce f{-actions (“up-down actions”) which will allow for
both taking things away and adding things in.
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Theorem 38 (Rothschild and Yalcin). An action is a |-action if and only if it is idempotent
and commutative.

Proof. 1t is easy to check that any action expressible using set intersection is idempotent
and commutative. To see the other direction, one may identify an element ¢ € C' with
O(c) = {cw | w € S*}, the orbit of ¢, and identify s € S with F(s) = {c | cs = ¢} U {s},
the fixed points of s together with the tag “s” to ensure F' is 1-1. From idempotence and
commutativity it follows that if w € S* and dw = ¢, then every element of O(c) is fixed by w.
We claim that O is 1-1. If O(c) = O(d) then d € O(c) and ¢ € O(d) and so there is w € S*
with dw = ¢. By our earlier observation it follows that d is fixed by w, so d = dw = c.
Finally we can check that O(cs) = O(c) N F(s). Let csw € O(es) (where w: S*). Of course
csw € O(c). Further csws = cssw = csw, so csw € F(s). Now let cw € O(c) N F(s) (where
again w: S*). Then cws = cw, and so csw = cw. So cw € O(cs). O

Because of the duality between N and U, J-actions could equally be called -actions, but
we use J because of the linguistic motivation for these actions given above.

Seeing that such a tidy characterization came about looking at intersection, a natural
question arises: What happens if we also throw union into the mix? From the conversational
dynamics perspective described above, in the purely intersective case, sentences can only rule
out possibilities. Allowing union could capture situations in which some sentences rule out
possibilities, while others rule possibilities back in.

We address this question in two ways. First, in Section 3.2, we consider actions in which
each element of S acts by both intersection and union. We say an action (C, S) is an f}.-action
if each element of C' can be identified with a set, and each element of S can be identified
with a pair of sets (s7,sT), such that s* C s7, in such a way that the action of s on ¢ is
given by (cNs™)Ust.

An alternative way of adding in union is to label each element of S as an intersection
element or a union element. In this setup, sentences can no longer rule out and rule in
possibilities simultaneously; instead, each sentence can only do one or the other. In Sec-
tion 3.3, we introduce the class of 1} -biactions, so named because they are 3-sorted algebras
(C,S~,S") with an action of S~ on C' by intersection and an action of S on C' by union.

The main results of Sections 3.2 and 3.3, Theorem 47 and Theorem 54, are axiomatiza-
tions of the classes of 1]-actions and 1]-biactions. Unlike in the case of actions expressed
using set intersection, these classes do not admit equational axiomatizations. However, each
class is a quasivariety, axiomatized by finitely many equational axioms (which give the equa-
tional theory of the class - see Propositions 43 and 49) together with a single infinite Horn
clause schema. The axioms will be explained later on in the chapter, but we will write them
down here for reference.

The 1-actions are axiomatized by idempotence (I), previous redundant (PR), and the
strong links axioms (SL). Below, ¢, d, and the a; are variables of sort C', s and ¢ are variables
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of sort S, and the w; are words of sort S* (arbitrary sequences of variables from 5.

(I)  c¢ss=cs
(PR)  csts = cts

(SL) ((/\cwi:dwi>/\c:ao/\d:an/\

=1

</\ Qi W; = Qi1 N\ a;w; = al-) > — (C = d)

=1

The f}-biactions are axiomatized by idempotence (I), previous redundant (PR), commu-
tativity (C) in ST and S™, and the subset axioms (S). Below, ¢, d, and e are variables of
sort C, s and u are variables of sort S—, ¢t and v are variables of sort ST, and w is a word of
sort (ST UST)* (an arbitrary sequence of variables from S~ and S™).

(I) css=cs ctt=ct
(PR) csts=cts ctst =cst
)

)

(C
(S

CcSU = cus ctv = cut

(csw = dsw A ctw = dtw A esw = etw) — (cw = dw)

The class of f]-actions is closely related to a certain class of single-sorted algebras we call
set bands, which we discuss in Section 3.4. It turns out that the class of set bands is exactly
the quasivariety generated by a certain 3-element semigroup. This quasivariety was studied
and axiomatized in [13], but with the motivation coming from hyperplane arrangements. The
connection to f]-actions provides an additional motivation for studying this quasivariety.

Our solution to the f]-action axiomatization problem was obtained after observing the
connection with the single-sorted set bands axiomatization problem, and adapting the solu-
tion of Margolis et al. in [13] to the action case. The argument in the case of f-biactions is
different than in the case of fJ-actions, but it shares the same basic structure.

The last section of this chapter has to do with posets that arise from |-actions. When
(C,S) is a |-action, for ¢,d € C we put ¢ < d iff there is some finite sequence of elements
S1,...,8, of S such that ds;---s, = c. We give a reasonable second order characterization
of these posets, and show that they are not first order axiomatizable. Along the way we give
some necessary, and some sufficient, first order conditions.

3.2 1{-actions

We begin by reviewing our notational conventions for actions. We view an action (C,S) as
an algebra in a two-sorted signature with a single function symbol f: C' x S — C. When ¢
and s are elements or variables of sorts C' and S, respectively, we write cs for f(c,s). We
denote by S* the set of words in S. Given ¢ € C' and w € S*, cw is an element of sort C.
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For all w € S*, let f,,: C' = C be the function ¢ — cw. We say w is an identity operation if
fw is the identity function, and w is a constant operation (with value d) if f,, is the constant
function f,(c) =d for all ¢ € C.

Given a set X, we form an action F'(X) called the full f-action on X by setting

C={c|lcC X}
S={(s",s")|s,sTC X and s Cs}
fle,(s7,sT))=(cns)Us™.

An action is a f}-action if it is isomorphic to a subalgebra of the full 1}-action on some set X.
In other words, a f}-action is an action (C,S) where each element of C' can be identified with
a subset ¢ of some set X and each element of S can be identified with a pair s = (s7,s) of
subsets of X with s* C s7, such that the action of s on ¢ is given by intersection with s~
and union with s*.

Note that the condition that s C s~ implies that (cNs™)Us+ = (¢cUsT)Ns™, so the
order of operations in the definition doesn’t matter. This restriction is convenient but not
important; in Proposition 48 below, we show that if we allow all pairs of subsets of X in the
S sort, we get the same class of algebras up to isomorphism.

Proposition 39. The class of 1.-actions is pseudo-elementary.

Proof. Expand the signature by an additional sort W and additional binary relations €: W x
C,e :W xS, and €": W x S. Then let T be the theory which asserts extensionality:

(Ve,d: C)(Vw: Ww ec+wed) —c=d)

and
(Vs,t: S)(Vw: W(we sewe HA(weT s wert)) = s=t),

the subset condition on S:
(Vs:S)Vw: W (w et s 5w e s)),
and the way S acts on C:
(Vw : W)(Ve:C)(Vs: S)(wees+ ((weEcAhweE™ s)Vw e s)).

Now, every f]-action can clearly be expanded to become a model of T. Conversely, given a
model of T', we may embed its reduct into the full {]-action on W by associating to ¢ € C'
the set {w € W | w € ¢} and to s € S the pair ({w € W |w €™ s},{w e W | w €™ s}).
This is 1-1 by extensionality and is a homomorphism by the fourth sentence in 7. So T’
witnesses that the class of f-actions is pseudo-elementary. O

It is straightforward to verify that the operation I which takes a set X to the full 1|-
action on X turns disjoint unions of sets into products of algebras. Thus Proposition 13
applies and we have:
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Corollary 40. The class of {-actions is axiomatized by the Horn clause theory of F(1).

It’s worth writing down F(1) explicitly: F(1) = (C(1),S(1)), where, naming 0 = 0,
we have C'(1) = {0,1} and S(1) = {(1,0),(0,0),(1,1)}. On C, (1,0) acts as an identity
operation, (0,0) as a constant operation with value 0, and (1,1) as a constant operation
with value 1.

Now our goal is to characterize the class of f|-actions by conditions which translate to
Horn clause axioms.

Recall that an action is idempotent if css = c¢s for all c € C' and s € S. We say an action
is previous redundant if csts = cts for all ¢ € C and s,t € S. Further, an action is fully
previous redundant if csws = cws for c € C; s € S, and w € S*. Previous redundant is so
called because from the point of view of the second s, the previous s is redundant and can
be removed.

Lemma 41. Any action which is idempotent and previous redundant is fully previous re-
dundant.

Proof. By induction on the length of the word w € S*. The cases when w has length 0 and
1 are covered by idempotence and previous redundance.

Now suppose that the length of w is n+1 > 2, and write w as w't, where w’ is a word of
length n. Then csws = (csw')ts = (esw')sts by previous redundant. Applying the induction
hypothesis to csw'’s, this is equal to cw’sts = cw'ts = cws, by another application of previous
redundant. O]

An n-step link between ¢ and d is a sequence ¢ = ag, ay, ..., G,_1, G, = d of elements
of C' and a sequence wy, ..., w, of words in S* such that for each ¢ = 1,...,n, a;_1 and q;
are fixed points of w;, i.e. a;_jw; = a;_1 and aq;w; = a;. A strong link between ¢ and d is
an n-step link, for some n > 0, such that additionally cw; = dw; for all i = 1,...,n. Every
¢ € C is trivially strongly linked to itself (by a O-step link). A strong link between ¢ and d
is nontrivial if ¢ # d.

Note that there is a 1-step link between any two elements ¢ and d, taking w; to be the
empty word (or any identity operation). However, any nontrivial strong link must be at
least two steps. Indeed, a 1-step link between ¢ and d is witnessed by w € S* such that
cw = ¢ and dw = d. But if this link is strong, then ¢ = cw = dw = d. Similarly, no identity
operation can appear in a nontrivial strong link.

The condition that all strong links are trivial is expressed by infinitely many Horn clauses,
obtained by varying the natural number n (the length of the n-step link) and the lengths of
the sequences of variables w; of sort S in the schema below.

n
<c:a0/\d:an/\ (/\cwi:dwi/\ai1wi:ai1/\aiwi:ai>> — (¢ =4d)

i=1

We can now establish one half of our characterization.
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Proposition 42. The action F(1) is idempotent, previous redundant, and has no nontrivial
strong links. By Corollary 40, these conditions are true in every 1-action.

Proof. Idempotence is clear, since each element of S acts as an identity or a constant op-
eration on C. To check previous redundant, let ¢ € C, s,t € S. If s = (1,0), then
csts = ct = cts, since s acts as an identity on C. If s = (0,0), then csts = 0 = cts, and if
s = (1,1), then csts = 1 = cts.

To check that all strong links are trivial, we just need to see that 0 and 1 are not strongly
linked in F'(1). If they were, then in particular there would be a 1-step strong link between
them, but we have already seen that all 1-step strong links are trivial. O

Next, we pin down the equational theory of 1}-actions.

Proposition 43. The idempotent and previous redundant equations axiomatize the equa-
tional theory of N-actions.

Proof. That the 1]-actions are idempotent and previous redundant follows from Proposi-
tion 42.

In the other direction, first note that the only terms in sort .S are single variables, and
since there are f]-actions in which |S| > 1, the only equation in sort .S which is universally
true on fl-actions is the tautology s = s.

So let ¢sy s, = dt;---t,, be some equation in sort C' that is universally true in 71-
actions. First we note that ¢ must be the same variable as d. Otherwise, in F(1), put ¢ =0,
d =1, and put all S-variables equal to (1,0). Then the two sides are different.

By repeatedly applying idempotence and previous redundant on each side, we may assume
that among the s; each variable occurs only once, and similarly for the ¢;.

Next, we observe that the two sides must have the same S-variables and hence the same
length. Otherwise, without loss of generality, let s; be a variable that doesn’t occur among
the ¢;. Again in F(1), put s; = (0,0), put all other S-variables equal to (1,0), and put
¢ =d = 1. Then the two sides are different.

So we are looking at an equation like ¢sy - --s, = cty---t,. We now show that s, = t,,
then s,,_1 = t,_1, and so on down to s; = t;.

If s, # t,, then we could put s, = (0,0) and ¢, = (1,1) and the two sides would
be different. By induction, assume s; = t; for ¢ > k, and suppose for contradiction that
sk # tg. We can put s; = t; = (1,0) for i > k and put s, = (0,0) and ¢, = (1,1). Then
cs1 Sy, =0F 1L =cty-tp,.

Hence the equation c¢sy - - - s, = dt; - - - t,, is a tautology, from which the original equation
follows by applications of idempotence and previous redundant. O

Unlike actions expressed using set intersection (Theorem 38), the class of f-actions does
not have an equational axiomatization. This is demonstrated by the following example,
which shows that the condition that all strong links are trivial does not follow from the
equational theory.
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Ezample 44. Let C = {c,d,e}, let S = {s,t}, and put ¢s = ds = ¢, ¢t = dt = d, and
es = et = e. Letting ag = ¢, a; = e, ap = d, and w; = s, wy =t we get a 2-step link between
c and d, and in fact this is a nontrivial strong link, since ¢s = ds and ¢t = dt. Hence (C, S)
is not an f-action.

To see that this action is fully previous redundant, consider the equation zywy = rwy
withx € C, y € S, and w € S*. If x = e, then both sides are e. Otherwise, both sides are ¢
or d in accordance with whether y is t or s.

In the proof of Theorem 47, we will use two auxiliary actions, (C,S*), and (C, S), con-
structed from an action (C,95).

Recall that S* is the set of words in S. Note that there is a natural action of S* on C,
and that the action (C,S) embeds into the action (C, S*).

Lemma 45. If (C,S) is an idempotent and previous redundant action in which all strong
links are trivial, then so is (C,S*).

Proof. Any word w € (S*)* is equivalent to a word w’ € S*. Then any pair of elements in C'
which are strongly linked in (C,S*) are also strongly linked in (C,S), and hence all strong
links are trivial in (C, S™).

For the other axioms, we show that (C, S*) is fully previous redundant. If c € C| s,t € S*,
then csts = cts by n applications of fully previous redundant in (C,S), where n is the length
of the word s. O

Define a binary relation ~ on C' by ¢ ~ d if and only if there exists s € S such that s
is not an identity operation and ¢ = ¢s and d = ds. When the action is idempotent, this is
equivalent to putting ¢ ~ d when both ¢ and d are in the image of a common non-identity
operation. ~ is a symmetric relation, so its reflexive and transitive closure = is an equivalence
relation. Explicitly, we have ¢ ~ d if and only if for some n > 0 there exist ag,...,a, € C
and non-identity operations si,...,s, € S such that ¢ = ag, d = a,, a;_15; = a;,_1, and
a;si=a; fori=1,...,n. Let C = C/ ~.

This definition is very similar to the definition of an n-step link, but here we require the
witnesses s; to be in S, not S*, and we exclude identity operations.

Lemma 46. For any fully previous redundant actionLC’, S), & is a congruence on C, i.e.
(C,S) inherits the structure of an action. Moreover, (C,S) is an f.-action.

Proof. We must check that for all ¢,d € C and s € S, if ¢ =~ d, then ¢cs ~ ds. If s is an
identity operation, then ¢s = ¢ &~ d = ds. If s is not an identity operation, then in fact
cs ~ ds by idempotence.

To show that (C, S) is an f}-action, we embed it in an f]-action. Note that for all s € S,
s is either an identity operation or a constant operation on C. Indeed, if s is an identity
operation on C, then the same is true on C. If s is not an identity operation on C, then for
all a,b € C, as ~ bs by idempotence, so as = bs in C, and s is a constant operation on C.
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We define an embedding ¢: (C,S) — F(C]]S) as follows:

c— {c}ifceC
(CU{s},0) if s € S and s is an identity operation
({d,s},{d}) if s € S and s is a constant operation with value d

This map is clearly injective on C, and the dummy element s is included in v (s) for all
s to ensure that it is injective on S.

Now if ¢ € C'and s € S is an identity operation, then 1 (c)y(s) = ({c} N (CU{s}))uUD
{c} = ¥(c) = ¢¥(es). If s € S is a constant operation with value d, then ¥(c)y(s) =

({e} N {d, s}) U{d} = {d} = ¥(d) = ¢(cs). B

Theorem 47. An action is an f-action if and only if it is idempotent and previous redundant
and all strong links are trivial.

Proof. We established in Proposition 42 that all {/-actions are idempotent and previous
redundant and have no nontrivial strong links. It remains to show the converse.

By Propositions 39 and 5, it suffices to consider finitely generated actions. But any
finitely generated fully previous redundant action is actually finite, because any term in the
generators is equivalent to one in which no generator appears more than once. We may thus
proceed by induction on |C.

Our plan is to embed (C,S) into a product of 1]-actions, from which it follows by
Proposition 13 that it is an t]-action. To do this, we observe that if, for every pair of
distinct elements in the same sort of (C,S), there is a homomorphism to some 1-action
separating these elements, then the product of all these maps is an injective map to the
product of these 1{-actions.

To separate elements of the S sort, define a map ¢: (C,S) — F(S) by ¢ — () for all
ce C and s — ({s},0) for all s € S. Then for all c € C and s € S, p(c)p(s) =0 = ¢(cs),
so ¢ is a homomorphism, and ¢ is injective on S.

In the base case, when |C| = 1, the map described above is injective on all of (C, S), and
we're done. So let |C] > 1 and let ¢ # d in C' be two elements to separate.

Case 1: There exists t € S such that ct # dt, and t is not an identity operation.

We define a map ¢: (C,S) = (C,S*) by ¢ ct for ¢ € C and s — st for s € S. This is
a homomorphism, since for all ¢ € C' and s € S, ¢(c)p(s) = ctst = cst = ¢(cs) by previous
redundant. Since ct # dt, ¢(c) # ¢(d).

By Lemma 45, (C, S*) is a previous redundant action in which all strong links are trivial,
and the image of ¢ is a subalgebra (Ct, St) C (C,S*), so the same is true of (Ct, St).

We claim that |Ct| < |C]. Then we are done by induction, since (Ct, St) is an f}-action.
By definition Ct C C'. Suppose for contradiction it were all of C'. Then for all c € C', ¢ = dt
for some d € C', so ct = dtt = dt = ¢, and t is an identity operation on C, contradiction.

Case 2: For all t € S, either ¢t = dt, or t is an identity operation.
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By Lemma 46, the map ¢: (C,S) — (C, S) is a homomorphism to an f}-action. We'll be
done if we show that ¢ separates ¢ and d, i.e. that ¢ % d.

Suppose for contradiction that ¢ ~ d. This is witnessed by sequences ¢ = ag, ay, ..., a, =
din C' and sy, ..., s, in S such that for all 7, a;_1s; = a;_1, a;s; = a;, and s; is not an identity
operation. But then cs; = ds;, so this data would also witness that ¢ and d are strongly
linked, contradicting the assumption that (C,S) has no nontrivial strong links. O

We conclude this section by considering the question of what changes if, in the definition
of the full f-action, the requirement that s* C s~ is dropped. Formally, we have a new
construction F’ of actions from sets, defined by F'(X) = (C’, S") where

C'={c|cC X}
S ={(s",s")|s,st C X}
fle,(s7,sT))=(cns)uUs™.

Say an action is a f/-action if it is isomorphic to a subalgebra of F”(X) for some set X.
It is easy to check once again that the class of 1'-actions is pseudo-elementary and that F’
turns disjoint unions of sets into products of algebras, so Proposition 13 applies.

Intuitively, if an element x is in s™, it doesn’t matter whether it is in s7: if intersection
with s~ removes it, it will just get added in again by union with s™. So in moving from F(X)
to F'(X), we haven’t made a substantial change; we have only added some extra elements
of the S sort of F’(X) which have the same action on C' as elements that were already in
F(X). The following proposition makes this precise.

Proposition 48. Every Y|'-action is a Y -action, and vice versa.

Proof. By Proposition 13, the f}-actions and {}/-actions are the classes of structures generated
under product and substructure by F(1) and F'(1), respectively, so it suffices to show that
F(1) is an #/-action and F”(1) is an f{-action.
We have F'(1) = (C,S) and F'(1) = (C", 5"), where
C=C"={0,1}
S = {(1’ O)’ (07 0)7 (17 1)}
S'= {<17 0)7 (07 0)7 (17 1)7 (07 1>}
Now clearly F'(1) is an f}/-action, since it embeds in F’(1). In the other direction, since
(0,1) and (1,1) act on C in the same way, we can embed F'(1) into an f|-action in a way

that separates them with a dummy element x. Define a map F'(1) — F(1 U {x}) which is
the identity on C and acts as follows on S’:

(1,0) — (1,0)
(0,0) — (0,0)
(1,1) = (1,1)
(0,1) =~ (1U{z},1) O
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3.3 1-biactions

A biaction (C,S~,ST) is a pair of functions f: C'x S~ — C and g: C' x ST — C. We write
f(c,s) as ¢s and g(c,t) as ct.

Given a set X, we form a biaction F'(X) called the full T|-biaction on X by setting
C=8"=St=P(X),andforce C,s€ S ,and t € ST, we put cs = cNs and ¢t = cUt.

A biaction is an 1| -biaction if it is isomorphic to a subalgebra of the full 1{-biaction on
some set X. In other words, an f|-biaction is a biaction where the elements of C, S™, and
St can be identified with sets in such a way that ¢s = ¢Ns when s € S~ and ¢t = cUt
when ¢t € ST.

Every 1/-biaction gives rise to an 1|-action by combining S~ and S* into one sort.
Formally, if (C,S™,S™) is a subalgebra of the full 1)-biaction on X, we can identify the
element s € S~ with (s,0)) and ¢ € ST with (X, ¢) in the full f}-action on X. However, we
can not in general go the other direction. That is, given an f}-action (C,S) we can not in
general divide S into two parts S~ and ST so as to have an f)-biaction (see Example 50).
In this sense there are more 1}-actions than f-biactions.

We now present axioms for {]-biactions. First we note that f{-biactions are commutative
in both the S~ and S* sorts in the sense that cst = cts whenever s and ¢ are both in S~
or both in S*. This is obvious from the definition of 1]-biactions because intersection and
union are associative and commutative. Of course, elements of S~ do not commute with
elements of S* in general.

Next we note that f|-biactions are idempotent and previous redundant. That is, for all
ce(C,se S andt e ST, we have css = cs, ctt = ct, csts = cts, and ctst = cst. This
is because the action obtained by combining S~ and ST into one sort is an f{-action, and
we've already observed that 1}-actions are idempotent and previous redundant.

We have only stated previous redundant for variables s and ¢ of different sorts. This
is because if s and ¢ are in the same sort, csts = cts follows from commutativity and
idempotence. Just as in Lemma 41, idempotence and previous redundant are enough to
imply fully previous redundant: for all ¢ € C, s € (S~ U ST), and w € (S~ U ST)*,
CSWS = Cws.

We have already introduced enough axioms to describe the equational theory of 1J-
biactions.

Proposition 49. The equations expressing idempotence, previous redundant, and commu-
tativity in S~ and ST aziomatize the equational theory of N.-biactions.

Proof. Similar to the proof of Proposition 43. O
With the equational theory under our belt, we may now more easily present an example

of an f{-action which can’t be reinterpreted as an 1}-biaction.

Ezample 50. Let C' = {c,d, e} where ¢ = {1}, d = {2}, and e = {3}. Let S = {s., 54, S}
where s. = ({1},{1}), sa = ({2},{2}), and s. = ({3},{3}). Each s, acts as the constant
function with value z. Clearly (C,S) is an T/-action. The question under consideration
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is whether we can divide S into two parts ST and S~ so that the resulting biaction is
an TJ]-biaction. Any way of doing this will involve putting two elements of S into the
same sort, say s, and s, (where z # y). If we indeed have an f|-biaction we should have
Y = €538y = €SyS; = ¥, which is a contradiction.

Once again, the equational theory is not enough to axiomatize the class in question, as
the following example illustrates.

Ezample 51. Let C' = {c,d}, S™ = {s}, and ST = {t}. Define ¢s = ¢t = ds = dt = d. This
biaction is idempotent, previous redundant, and commutative in S~ and S*. However, it
can’t be an f}-biaction because we can’t go from c¢ to d by subtracting elements by s on the
one hand and adding elements by ¢ on the other (cs = d implies d C ¢ and ¢t = d implies
c Cd).

So we need to add Horn clause axioms to supplement our equational ones. The first
axiom is called the basic subset axiom. Let s € S~ and t € S*. If ¢s = ds and ¢t = dt and
es = et, then ¢ = d. Let’s see why this axiom is true for the 1]-biactions. First note that
tCet=es Cs, and sot C s. Next, cs = ds implies ¢ and d agree inside s, and ct = dt
implies ¢ and d agree outside ¢. Since t is a subset of s, we get that ¢ and d agree everywhere.

Next we add a series of modified versions of the basic subset axiom. For each word w
consisting of variables of sorts S~ and ST, we add w to the end of each term that occurs in
the Subset axiom to form a new axiom. That is, we get an axiom

csw = dsw N ctw = dtw N esw = etw — cw = dw

for each word w. Let’s call all these axioms the extra subset azioms.
Let’s check that the extra subset axioms are true in 1]-biactions. We will do this by
induction as follows. Suppose that we have a Horn clause

(*) (xl :yl/\"'/\xn:yn) — (xn-i-l :yn—i-l)a

where z;,y; are terms, which is universally true in f|-biactions. Let s be a variable of sort
S~ or ST. We wish to show that

(x18 =Y1S A ATpS = YnS) = (Tp11S = Ynt19)

is also universally true in f|-biactions. This will be enough, since each extra subset axiom
can be built up from the basic subset axiom adding one variable at a time. Consider an
H-biaction (C,S~,S™) and assignment of variables so that z;s = y;s for all 1 <i < n.

In the case s is of sort S™, form a new f|-biaction (C'Ns, S~ N s, ST N s) which is the
restriction of the original f-biaction to s. In detail, CNs = {cnNs|ce C}, S Ns =
{tns|teS },and STNs={tNs|te ST} Thereis an obvious homomorphism ¢ from
the original to the restriction given by intersection by s on each sort. Since ¢(x1) = z1s and
©(y1) = 18 and so on, we have by assumption

(1) = o) A Ao(@n) = 0(yn)
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and, since ¢ is a homomorphism, these equations are an instance of the premises of (x)
in the restriction. Since the restriction is an 1J-biaction, we get the conclusion of (%),
O(n11) = ©(Yns1). Hence 2,418 = ypp1s in (C,S7,57), as desired.

In the case s is of sort ST, we form a new f|-biaction (C'U s, S~ U s, ST U s), which is
essentially the restriction of the original biaction to the complement of s. The argument
goes just as in the S~ case. Alternatively, this case follows from the duality of 1}-biactions.

Ezxample 52. We provide an example showing that the extra subset axioms do not follow
from previous redundant, commutativity in S~ and S, and the basic subset axiom.

Consider the 1}-biaction given by the diagram below. Here, s,u € S~ and t € S*. If
there is no arrow out of a node labeled by an element of ST or S~, then that node is fixed
by that element. For example, cu = c.

To see that this is an 1{-biaction, it suffices to check that is is the subalgebra of the full
1-biaction on three elements {1,2, 3} generated by ¢ = {1} in C', v = {1,2} and s = {2} in
S, and t = {2,3} in ST,

Now we replace the element ¢ with two elements, ¢ and d, obtaining the following biaction:

t
/\ u
d c— ot e

S S
S
t
eI
t

Since there are no arrows into ¢ and d from any vertices other than themselves, it is easy
to see that this biaction is still idempotent, previous redundant, and commutative in S~ and
S*. Moreover, since no element is sent to the same place by both s and ¢t or both u and ¢,
there are no instances of the basic subset axiom to check. However, we have csu = dsu and
ctu = dtu and esu = etu, but cu = ¢ # d = du, so this biaction fails to satisfy the extra
subset axioms.

Lemma 53. Let B = (C,S,S™) be a biaction satisfying the axioms (idempotence, previous
redundant, commutativity in S~ and ST, and the (basic and extra) subset axioms). Let t be
an element of S~ or ST. Define a biaction By = (Cy, S;,S;") by putting

Ct:{Ct€C|CEC}
Sr ="
S =S,
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and the action is defined as follows. Given s € S; or s € S;", and ¢ € Cy we define the
Bi-action of s on ¢ to be cst. Then By also satisfies the axioms.

Proof. The equational axioms are easy to check. For example, let ¢ € Cy, and s,u € S7t.
Then commutativity of s and u on ¢ in B; amounts to the equation cstut = cutst in B,
which is equivalent to csut = cust in B by previous redundant, and this last equation is true
by commutativity in B.
It remains to check B, satisfies the subset axioms. Let one of the subset axioms be given,
written as
(x) (=g A ATy = Yn) = (Tpgr = Yngr)-

Suppose variables are given assignments in such a way that 1 = y1,...,2, = y, in B;.
Then, applying previous redundant to remove all intermediate t’s, we have x;t = y;t in B
for all 1 <14 < n. And so we may cite the extra subset axiom obtained from (x) by adding ¢
to every term to conclude that x,.1t = y, 1t in B, i.e. T,11 = yYpy1 in By O

Theorem 54. A biaction is an N .-biaction if and only if it is idempotent, previous redundant,
and commutative in S~ and ST, and it satisfies the (basic and extra) subset axioms.

Proof. When introducing the axioms, we proved that 1]-biactions satisfy these axioms. So
it remains to show that a biaction satisfying these axioms is an |-biaction.

We can do the same tricks we did in the case of f]-actions: f|-biactions form a pseudo-
elementary class by essentially the same argument as in Proposition 39 for f}-actions. Also,
1l-biactions are the subalgebras of full 1|-biactions of the form F(X), and F is a function
which turns disjoint unions of sets into products of algebras, so the class of {|-biactions is
closed under substructure and product (Proposition 13). So given a biaction B = (C,S~, S™)
satisfying the axioms, it suffices to find, for each pair of distinct elements in the same sort,
a homomorphism to an f-biaction separating these two elements.

Our axioms are universal (in fact they are Horn clauses) and so by Proposition 5, we need
only check that every finitely generated model of the axioms is an {}-biaction. But, once
again, fully previous redundant implies that every finitely generated model is finite, and we
can do induction on |C|.

First we show that no matter what the size of C, we can separate elements in sort S—
and in sort S*. Let’s consider S™. Define a map ¢: (C,S7,57) — F(S™) by ¢ — 0 for all
ceC, s {s}forall s € S, and t — () for all t € S*. It’s easy to check that ¢ is a
homomorphism and it is injective on S~. ST works dually.

We turn now to C. In the base case, when |C| = 1, there is no pair of distinct elements
to separate in sort C', and so we're done. So let |C| > 1 and let ¢ # d in C.

Case 1: Thereisat € S~ orat € ST such that ¢t # dt and t is not an identity operation.
Consider the biaction B; = (C;, S;, S;") defined as in Lemma 53.

We will show that |Cy| < |C] and that B; satisfies the axioms, and so by induction we can
conclude that By is an f|-biaction. Consider the map ¢: B — B, defined by ¢(c) = ct for
c € C and p(s) = s for s in either S~ or ST. This is a homomorphism, since ¢(cs) = cst =
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ctst = p(c)p(s), and it has ¢(c) # ¢(d) by assumption. Hence we’ve found a separating
homomorphism to an f}-biaction.

Of course |Cy| < |C]. If |Cy] = |C], then for every ¢ € C there is d € C such that
dt = c. Then ct = dtt = dt = ¢ by idempotence and so ¢ is an identity operation, contrary
to assumption.

Case 2: For every t € S~ U ST, either ¢t = dt or t is an identity operation.

We form a quotient B = (C,S~,ST) of B = (C,S5~,S7) as follows. For a,b € C, we put
a ~ bwhen as = a and bt = b for some non-identity operations s, € S~ or some non-identity
operations s,t € ST, or a = b. In other words, we identify all the elements of C' which are
fixed by any non-identity operation in S™, and similarly we identify all the elements of C
which are fixed by any non-identity operation in S*. To show this is transitive, it suffices
to show that there is no element which is fixed by both a non-identity operation in S~ and
a non-identity operation in S*. Suppose that for some e € C, es = e = et where s € S~
and t € ST and s and ¢ are not identity operations. Then also ¢s = ds and ¢t = dt by
assumption, and so the premises of the basic subset axiom are satisfied. We conclude that
¢ = d, which is a contradiction.

Now let’s check that & is a congruence. If a ~ b and s is in S~ or ST, then as ~ bs
because either s is an identity operation and as = a &~ b = bs, or ass = as and bss = bs
witness that as ~ bs.

Next we show ¢ % d. Suppose for contradiction that ¢ ~ d, and suppose that this
is witnessed by s,t € S~ non-identity operations such that ¢s = ¢ and dt = d (the case
s,t € ST is the same). By our assumptions, we get ¢ = ¢s = ds and d = dt = ct. But then
c=ds = cts = cst = ¢t = d, a contradiction.

So the quotient map is a homomorphism from B to B that separates ¢ and d. It remains
to show that B is an 1]-biaction. Observe that every non-identity operation s € S~ is a
constant operation with the same constant in each case, since if a,b € C' and s,t € S~ are
non-identity operations, ass = as and btt = bt witnesses that as ~ bt. The same is true for
S*. The argument for transitivity above showed also that these constants must be different.
Let’s call them a_ and a,. We define a map ¢: B — F(C U S~ U S*) as follows.

{a}UST ifa#a_,ay
a— ¢St ifa=a_
cCusSt ifa=a,
e CuU{sjust ?f s ?s an identity
{s}usSt if s is constant

N {_s} if s is an identity
CU{s} if sis constant

It is easily checked that this is a homomorphism and it is 1-1 on each sort. O
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One question for further study is to understand what kind of biactions you get if instead
of starting with distributive lattices (powersets) you started with some other kind of lattice.

3.4 Set bands

Let (C,S) be the full 1}-action on some set. What product - can we put on S so that
(es)t = c(s-t)? The following calculation gives an answer. Let s = (s7,s%) and t = (¢t7,t7).
Then,

(ecnsT)Ust) Nt )utt

Ns Nt )U(stT Nt )utt
NNt ) U(entHu(stnt)utt
N((sNt)UtH))u((stnt)uth).

This motivates the following definition. Given a set X, we form an algebra (F(X),-),
called the full set band on X, by setting

F(X)={(s",s")|s,s"C X and s* Cs}
(s7,sT)-(t, ") = ((s- Nt )utt, (stnt)uth)

In general, an algebra is called a set band if it isomorphic to a subalgebra of the full set band
on some set X.

Set bands are indeed bands (idempotent semigroups), and their definition involves in-
tersection and union, hence the name “set bands”. Further, set bands are right regular
(ryr = yx). One way to check this is to observe that every set band is the semigroup
of operations for some f}-action (C,S), i.e. the semigroup of functions on C' generated by
{fs: C — C'| s € S}, and right regularity follows from previous redundant. That conversely
every semigroup of operations of an f}-action (which is, a priori, a quotient of a set band) is
a set band follows from Theorem 56.

We state down without proof (due to the similarity with 1|-actions) a few facts about
set bands.

Proposition 55. Associativity, idempotence, and right reqularity axiomatize the equational
theory of set bands.

The class of set bands is pseudo-elementary, and F' turns disjoint unions into products,
and so the set bands are the subalgebras of the products of the algebra F'(1) and admit a
Horn clause axiomatization.

In [13], Margolis et al. study the class of subsemigroups of the “hyperplane face monoids”,
which they identify as the quasivariety of algebras generated (under subalgebra and product)
by a certain three-element algebra. This algebra is essentially F'(1), with the superficial
difference that the order of multiplication is reversed (e.g. it is left regular instead of right
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regular), and so their algebras are exactly the set bands, after reversing the multiplication.
They show that this quasivariety is axiomatized by associativity, idempotence, left regularity,
and a schema of Horn clauses which is called (CC) in [13], and which is very similar to our
condition on f}-actions that all strong links are trivial. Their method led directly to the
proof of Theorem 47, and inspired the proof of Theorem 54. We think it is interesting that
the same class of algebras arose in these two ways, with such different motivations.

For completeness, we’ll state a version of the theorem characterizing set bands, adapted
to our vocabulary. We say that two elements ¢, d of an algebra (S, -) are strongly linked when
for some natural number n there exist aq,...,a, and s1, ..., s, in S such that ¢ = ag, d = a,,
and fori=1,...,n, a;_18; = a;_1, a;8; = a;, and cs; = ds;, and we say that the strong link
between ¢ and d is trivial when ¢ = d.

Theorem 56. Set bands are axiomatized by associativity, idempotence, right regularity, and
the condition that all strong links are trivial.

3.5 Orders from Intersection

Let us return again to the situation where we only allow intersection. That is, we look at
l-actions. Now, each |-action f: C'x .S — C gives rise to a partial order <; on C as follows.
We put ¢ <; d iff c € O(d) := {ds | s € S*}. Intuitively, ¢ < d when you can be led from d
to ¢ by asserting some number of sentences. It’s easy to check this is reflexive and transitive,
and we already checked it’s antisymmetric in the proof of Theorem 38, so it is indeed a
partial order. Let’s call a poset that arises in this way a |-poset.

Our goal in this section is to give a reasonable second order characterization of the class
of |-posets, and show that this class is not first order axiomatizable. Along the way we will
give some necessary first order conditions, and some sufficient first order conditions.

Before we move forward to some axioms, let me point out a minor simplification. Observe
that the J-actions (C, S) and (C, S*) give rise to the same partial order on C'. Thus, a poset
(C, <) is a |-poset iff there is some set S and some idempotent and commutative action
f:C xS — C such that (C, <) = (C,<;) and ¢ <; d iff there is an s € S with ds = ¢,
where <; is defined as above.

Another alternative definition of |-poset, for the reader’s reference and comparison, are
the posets that arise in the following way. Let S be a semilattice with identity that acts on
a set C. For ¢,d € C, put ¢ < d iff there is some s € S such that ds = c.

Common Upper Bound Implies Meet

First we note that not every partial order is a |-poset. For example, consider Figure 3.1.
This poset fails to satisfy a necessary property of |-posets given in the following proposition.

Proposition 57. If (C, <) is a }-poset, then for all y,a € C, if there isb € C with b > a,y,
then y N\ a exists.
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Figure 3.1: A poset which is not a |-poset

Proof. According to our simplification, there is some set S and some idempotent and com-
mutative action f: C' x § — C such that (C, <) = (C,<f) and ¢ <; d iff there is an s € S
with ds = ¢. Let s, € S such that bs = a and bs’ = y. Then we claim bss’ = y A a. Of
course bss' < a,y. Let x < a,y. We want to show bss’ > x. Let at = x = yt’. Then

bss'tt' = bsts't'
= ats't’
= zs't’
= bs't's't
= bs't!

=z
n

So if C' is a |-poset, then there must be certain meets. In fact, if all meets exist, then C'
must be |-poset.

Proposition 58. If C is a meet semilattice, i.e. C is a partial order with finite meets, then
C is a |-poset.

Proof. Note that A: C' x C' — (' is idempotent and commutative. We claim that <=<,.
If c < dthen dA\c=candsoc<,d Ifc<,dthen thereis (s;---s,) € C* such that
dANSsi AN+ Ns, =candsoc<d. O

Not all |-posets are meet semilattices. For example, the poset in Figure 3.2 lacks meets
but is a |-poset. Of course, any time two elements have a common upper bound then there
is a meet.

A Further Necessary Condition

A poset satisfying the condition “common upper bounds implies meets” is not enough to
ensure that it is a |-poset. For example, consider Figure 3.3. The issue with Figure 3.3 is
that it doesn’t satisfy a more complicated necessary condition explained by the following
proposition. There must exist a sort of “relative meet”.
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Figure 3.2: A |-poset which is not a meet semilattice

Figure 3.3: Not a |-poset but satisfies “common upper bound implies meet”

/]
Y

53
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Figure 3.4: Not quite a |-poset

Proposition 59. If C is a |-poset and y,a,b € C with b > a then there is a y° € C such
that

1 yo <y
2. For alln < y,a we have n <y’
3. For all w < y,b we have y> Aw < a (y°,w <y so y° Aw must exist by Proposition 57)

Proof. By our minor simplification mentioned at the beginning of this section, there is a set
S and an idempotent, commutative action f: C' x S — C such that (C,<) = (C,<y) and
c <; d iff there is an s € S with ds = c. As b > a there is an s € S such that bs = a. We
claim that ys works for y2. Of course ys < y. Let n < y,a. Since n < bs = a, it follows that
n is fixed by s. Let ys’ = n. Then n = ys's = yss’ < ys.

Now let w < 9,b. Let z = ys A w. We wish to show that z < a. Since z < ys, it follows
that z is fixed by s. Since z < w and w < b, it follows that z < b and so z = zs < bs = a as
desired. O

We now have a stronger necessary condition, but still what we have is not sufficient. An
example is given in Figure 3.4, but it will become clear only later (with Proposition 62)
exactly why it doesn’t work. Of course, one can check that it does satisfy what we have so
far.

Selector Functions

We begin by observing how in the case where C' is finite, the foregoing proposition (Propo-
sition 59) actually can yield something a bit stronger.

Proposition 60. Suppose C is a finite |-poset. Let y,a € C. Then there is an element
Yo € C such that
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1 ya <y
2. For alln < y,a we have n < y,
3. For all b > a and all w < y,b we have y, Nw < a

Proof. For each b > a, there is a 3° as in the previous proposition. Then we set

Ya = /\3/2

b>a

This works as long as it exists, and since A is finite and all the 3° are below y, it does
exist. 0

Example 61. The above proposition is not true if we forego the finiteness assumption, as this
example shows. Let C' consist of the following sets:

e n=1{0,1,...,n— 1}, for each n € N.
e a = NU{A} where A is a new symbol.
o w, =nU{W,} where W, is a new symbol, for each n € N.
o b, =NU{A W,}, for each n € N.
o up = NU{W, |i¢& F}, for each finite F' C N.
Let S consist of the following sets:
e n, for each n € N.
o NU{A}U{W,; |i#n}, for n € N.
e nU{W,} , forneN.

One can check that for any ¢ € C' and any s € S we have cN's € C. Hence, S induces a
J-poset on C'. However, this |-poset does not satisfy the conclusion of Proposition 60. Let
y = up. Now, if y, exists, it must be above all the natural numbers because the natural
numbers are below both y and a. ¥y, must also be below (or equal to) y. This leaves as
possibilities the ug. So let y, = up for some finite ¥ C N to get a contradiction. Then let n
be some natural not in F', so that W,, € ug. Then up A w, = w, £ a yet w, <y, b,.

In the finite case we can understand the existence of the y, as the existence for each
a € C of a certain function h,: C — C (i.e. ho(y) = y,). But since we are interested in the
infinite |-posets as well, let’s consider functions h,,: C' — C' that exist for each pair a < b in
C, according to Proposition 59. Such a function can also be assumed to cohere in a certain
way, as explained in the following proposition.
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Proposition 62. Let C' be a |-poset. Then for every pair a,b € C with a < b there is a
function hy,: C — C such that

1. For ally € C, we have ha(y) <y

2. For alln < y,a we have n < hgy(y)

3. For all w < y,b we have hgy(y) ANw < a

4. (coherence) For all y,y',x € C with x <y, hap(y') we have x < hg(y)
Such a function hga, shall be called a “selector” function for a <b.

Proof. Let a < b be given. We already know how to get a function that satisfies the first
three items. That is, in Proposition 59 we let bs = a and put he(y) = ys. We just need to
check the fourth. Let z < y,vy's. We want to show x < ys. Since x < 3/s, we get that x is
fixed by s, and so from x <y we get z = xs < ys. So x < ys. m

Let’s return to Figure 3.4 and check that it is not a |-poset. Observe that hq,(y') must
equal ¢’ (e.g. apply Proposition 62 item (2) with n being the two nodes immediately below
a). Also note that hg(y) cannot be y because of w. Finally, as x,2" < y, ha(y') we have
x,x" < ha(y), a contradiction.

We may simplify these four assumptions as follows.

Proposition 63. Let C' be a poset. In the definition of selector function hy,: C — C for
a < bin C (see Proposition 62) we may replace the second and third assumptions by the
assumption that we have hqa(b) = a. Le., hgy is a selector function iff the following three
conditions hold:

1. For ally € C, we have hap(y) <y
2. hab(b) = a
3. (coherence) For all y,y',x € C with x <y, hap(y") we have x < hap(y)

Proof. Suppose first that hy, is a selector function according to the original definition. Then
b < b,b and so we have hg(b) A b < a by the old third condition. By the first condition we
have hgp(b) < b 50 hap(b) Ab = hap(b). Thus hey(b) < a. Also, we have by the old second
condition a < hg(b) since a < b,a. Thus he(b) = a.

Now suppose hg, is a selector function in the new sense. First we check the old second
condition. Let n < y,a. Then n < y, he(b) = a and applying coherence we obtain n <
hav(y)-

Finally let’s check the old third condition. Let w < y,b. We want to show hq,(y) Aw < a.
First we explain that hq,(y) Aw exists: hgy(w) < w, and hgp(w) < hep(y) because of coherence
applied to hg(w) < y, hap(w). Also, if © < w, hap(y), then z < hg(w) exactly by coherence.
Now back to the main verification. Since hgp(y) A w < b, hay(y), we have by the coherence
condition that h.(y) A w < he(b) = a. O
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The existence of a selector function for each pair a < b is a second order characterization
of |-posets.

Proposition 64. Any poset (C, <) with a selector function hg, for each pair a < b in C is
a l-poset.

Proof. Let S = {(a,b) € C? | a < b}. Define h: C' x S — C by h(y, (a,b)) = ha(y). We
check that h is idempotent, commutative, and gives rise to the same order, i.e. <=<,,.

Idempotence says that hap(hes(y)) = he(y) for all a, b,y € C with a < b. Well, hg(y) <
hap(¥), hap(y) so we have hap(y) < hap(hap(y)) by coherence. Also, hap(hap(y)) < hap(y) by
the first condition on a selector function.

Commutativity says that hap(hay (Y)) = haw(ha(y)). By symmetry it suffices to show
that hap(haw(y)) < haw(ha(y)). By coherence, then, it suffices to show hgp(haw(y)) <
hav(Y), harw (y). Of course hap(haw (y)) < how(y) (by the first condition on a selector func-
tion). To show hap(haw (¥)) < hap(y) it suffices, by coherence again, to show that hep(hay (y)) <
Y, hap(ha (v)), which is true by the first condition.

Now we check that a < b iff @ <, b. Let a < b. Then hg(b) = a by the second
condition on a selector function given in Proposition 63. So a <; b. Now let a <; b, i.e. let
S1y...,8, € S with bsy ---s, = a. Then by repeated application of the first condition on a
selector function, we have a < b. O

Theorem 65. A poset (C, <) is a |-poset iff for every pair a < b in C there is a function
h: C"— C such that

e h(b)=a
e For ally € C we have h(y) <y
e Forall z,y,z € C we have x <y, h(z) implies x < h(y)
Proof. This theorem is just a summary of Propositions 62, 63, and 64. O]

The condition on a function A from a poset (C, <) to itself that it satisfy the latter two
conditions in the above theorem (namely h(y) < y, and = < y, h(z) implies z < h(y)) can
be re-expressed as the conjunction of the following three conditions:

® h(y) <y
o x <y implies h(z) < h(y)
o = < h(y) implies h(x) =z

Let’s call a function that satisfies these three conditions a |-function. George Bergman
pointed out the following way of thinking about Theorem 65. Omne can check that the
collection of |-functions on any poset form a semilattice with identity (under composition).
So a poset is a |-poset iff there are “enough” |-functions in the sense that if ¢ < d then
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there is some J-function h with h(d) = ¢. Furthermore, every poset has a canonical |-poset
“sitting inside” it. In detail, if (C, <) is a poset, and ¢,d € C, then we put ¢ <’ d iff there
is some |-function h with h(d) = c¢. It follows that (C,<’) is a J-poset, (<') C (<), and
(<) = (L) when (C, <) is already a |-poset. It is natural to wonder about the relationship
between <’ and <, and here are a few initial observations. <’ is not necessarily the largest
subset of < which makes C' into a |-poset. For example, the only |-function on the poset
in Figure 3.1 is the identity function. So <’ will just be the diagonal binary relation. But
alternatively just removing one of the line segments in the figure results in a |-poset as well.
Another observation is that although every <-|-function will be a <’-|-function, the reverse
is not true. An example is given by taking the poset of Figure 3.1 — let’s specifically call
the elements a, b, x with a < x > b — and adding elements o’ < 2’/ > ¥/, and putting a’ > a,
2’ > x, and b > b. One can check that the only <-|-functions are the identity and the
function determined by o' +— a, 2’ — x, and ¥’ — b. This makes the <’ poset into three
disconnected line segments, and so there are eight <’-|-functions.

Instead of thinking about |-functions, one can also think about |-sets. Let’s call a subset
H of a poset (C, <) a |-set when H is downward-closed (i.e. # <yandy € H imply z € H)
and for every element x € C' there is a largest element y in H which has y < z. There
is a 1-1 correspondence between |-functions and |-sets. Given a |-function, its image is a
J-set. The inverse of this operation is as follows. Given a J-set H, we obtain a |-function
by sending z € C' to the largest element y in H which has y < z.

For finite posets, we can express the existence of selector functions in a first order way
using the following theory. For each n =1,2,3, ..., put ¢, equal to the first order sentence
which asserts:

Va < bVy; -+ - yp,321 - - - 2, such that

o z; <y fori=1,...,n
o ify;=bthen z; =afori=1,...,n
e for all z < y;, z; we have x < z;, for 4,7 among 1,...,n

Put T'={¢, | n=1,2,...}. A finite poset models 7" iff it has selector functions (iff it is a
l-poset). Every infinite |-poset satisfies T" as well, but not every infinite poset modeling T
is a |-poset.

The theory T is not finitely axiomatizable. Let me cursorily describe for every n > 2 a
poset which satisfies {¢1, ..., .} but not ¢,,1. The elements of the poset shall be

Y, - -+ Yn—1

/ /
$1,[E1,...,$n_1,$n_1
0,1,...,n—1

w7q7’27a?b



CHAPTER 3. ACTIONS ARISING FROM INTERSECTION AND UNION 59

Figure 3.5: Examples showing T is not finitely axiomatizable

We stipulate that vy, > z1, 2], w, that y; > @, 2}, x;—y,2,_, for i > 1, that x;, 2} > 4, that
i+ 1 >4, that w,q > 0, that 2 > x,_1,2/,_,,q, that a > n — 1, ¢, and finally that b > a,w.
Then we take the partial order generated by these stipulations (there’s no loop in the above).
See Figure 3.5 for an illustration. It can be checked it doesn’t satisfy ¢, 1 because there is no
partial selector function for a < b that works for yi,...,y,_1, 2,0, by an iterated argument
similar to that involved in showing Figure 3.4 was not a |-poset. On the other hand, if
one of the y;’s or z or b is not present in the list of elements the partial selector function is
supposed to deal with, then a partial selector function can be found. Also, selector functions
for the pairs other than a < b can be found. (The details here are omitted, because they are
similar to the ideas used in the next section to show non-first order axiomatizability.) Thus,
the poset satisfies ¢q, ..., @,.

It is unclear to me at present whether there is a first order sentence 6 such that a finite
poset satisfies 0 iff it is a |-poset. It is also not clear to me whether there is a polynomial
time algorithm to decide whether a finite poset is a |-poset. (There is a non-deterministic
polynomial time algorithm because we have essentially given an existential second order
sentence characterizing |-posets. For a reference on logical characterizations of complexity
classes, see [11].)

The theory T does not axiomatize |-posets. Indeed, no first order theory can (as we show
in the next section), but we give here an extra example of how T fails (for possible future
reference). Let the poset M consist of the elements a, b, w,y,q, n for each natural number
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Figure 3.6: Poset modeling 7" which is not a |-poset

n € N, and z, for each n > 1. We declare the usual ordering on N, and we put 0 < w,q,
and 1,¢ < a, and a,w < b, and w < y, and n < y for each n, and ¢,n < z, for each n > 1,
and we take the reflexive, transitive closure to get the poset (M, <). See Figure 3.6 for an
illustration. This is not a |-poset because hg(y) would have to be less than y because of
w, but he(y) > n for each n because of z,. At the same time, it can be checked that M
satisfies T'.

Not First Order Axiomatizable

Theorem 66. The class of |-posets is not first order axiomatizable.

Proof. We give an example of a poset M which is not a |-poset, but such that any Ni-
saturated elementary extension of M is on the other hand a |-poset. The elements of M
include all the natural numbers, which are ordered in the usual way, as well as elements
a,b,w,y,q, which satisty 0 < w,q, and 1,¢g < a < b, and w < y,b, and n < y for all
n. For each n > 2 there are also additional elements w,1, Un2, ..., Unn, Tni, Tno, -
X, gy ..l and z,. For each n > 2 we put n, z,1, 20, < 1, and ¢, Ty, 2, < z,, and
1 < Tpiy @455 Ti(i), x’n(iﬂ) < Upgiqr) for i =1,2,...,n — 1. We take the reflexive, transitive
closure of all of these stipulations to get the poset (M, <). (It can be checked that there’s
no loop in the stipulations.) See Figure 3.7 for an illustration.

A 7$nna
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Figure 3.7: Example showing |-posets are not first order axiomatizable

This poset M is not a J-poset for the following reason. If it were, then there would be
a selector function h for the pair a < b. Since 1 and ¢ are both below a and z, but the
only thing below z, and above both 1 and ¢ is z, itself, we have h(z,) = z,. From this it
follows that h(x,,) = x,, and h(x),) = «/,. From this it follows that h(un,) > xpn, 20,
and so h(Up,) = Up,. Similar reasoning shows that for each i = n,n —1,...,2,1 we have
h(tni) = up;, and so in fact h(n) = n. This implies that h(y) > n for each n, and so h(y) = y.
But then h(w) = w, and this contradicts the fact that w < b and w £ a.

Let M™ be any Nj-saturated elementary extension of M. We will show that M™ is a
J-poset, and so the class of |-posets is not first order axiomatizable. We will show that for
every pair of elements ¢ < d in M* there is a selector function h: M+ — M™ for them.
Note that if ¢ is a maximal element, then we can take h to be the identity function, and if ¢
has a meet with every other element in the poset, then we can take h(y) = cAy. We observe
that every element of M is either a, or maximal, or has meets with every other element.
This can be expressed in a first order way, and so the same is true of M. Thus, in order to
check that every pair ¢ < d has a selector function, we need only check for c = a. If d = a
then again we can let h be the identity function, so we need only find a selector function for
the pair a < b. As M is Ny-saturated, there is an element N < y for which n < N for all
natural numbers n. We define h(b) = a, h(w) =0, h(c) = N if ¢ > N, h(c) = 1 if there is a
finite sequence of elements

N<c >c<cz ¢y
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with n > 2 and ¢; £ y and ¢ = ¢, # ¢; (we will refer to this condition by saying that c is
“connected” to N), and finally h is the identity function elsewhere. We now verify that this
defines a selector function. Of course h(b) = a by definition. To check that h(c) < ¢, we
need only verify that if N <c¢; > ¢ <c3---¢, and n > 2 and ¢; £ y then ¢, > 1. Observe
that in the structure M we have:

For all d,dy,ds,...,d,,ifd>nandd<yand d<d; >dy <ds---d, and d; £ y for each
i1=1,...,nthend, >1

This is first order, and so is true in M™* and so ¢, > 1 as desired.

Now we check the condition that ¢ < d, h(e) implies ¢ < h(d). We need only concern
ourselves with d for which h(d) < d. Such d are: w, b, those bigger than N, and those
“connected” to N. Recall that we put h(w) = 0. The only things above w in M are y and
b, and the only thing below w is 0, and so this is true in M+ too. To check the condition
for d = w, we just need to check that w £ h(e) for any e. Since h(e) < e and we have put
h(b) = a and h(y) = N # b,y,w, this is true. Now consider the condition for d = b. The
elements in M7 less than b are b, a, w, ¢, 1, and 0 (because this is true in M). Each of these
is less than h(b) = a except for b and w. But neither of these is less than some h(e), as was
already observed.

Now we check the condition for d > N. Recall we put h(d) = N. Note that the elements
other than w less than y form a linearly ordered set (in M and so tooin MT). I N <d <y
then ¢ < d implies that ¢ < N or ¢ > N. The case ¢ < N = h(d) is no problem. In the case
¢> N, if ¢ < h(e), then N < ¢ < e too and so h(e) = N and thus ¢ < N, a contradiction.
Now let N < d £ y. Let ¢ < d. If ¢ = d, then observe that ¢ is maximal (because it’s true
in M that any element ¢ which has m < ¢ £ y for some m with 1 < m < y is maximal)
and observe that ¢ £ h(c) = N so ¢ £ h(e) for any e. If ¢ < d and ¢ < y, then ¢ # w
and so ¢ < N or ¢ > N (again using first order properties of M). We already dealt with
this situation. If ¢ < d and ¢ £ y, then any element e above ¢ also has e £ y (a first order
property of M) and so we get h(e) = 1 because such an e is “connected” to N (including
the case e = ¢) unless e = d and then h(e) = N. We know that c £ 1 <y and ¢ £ N < y.
Nowlet N <d=y. lfc<d=ythenc=worc<Norc>N. We've dealt with these
cases already.

Finally, suppose that d is “connected” to N. Let N < ¢; > ¢o---¢, with ¢; £ y and
¢, = d # ¢1. Let ¢ < d. Then either ¢ < 1 or ¢ £ y (a first order property of M). In the
latter case it follows (again a first order property of M) that ¢ is “connected” to N and in
fact that everything above ¢, except possibly ¢; (which has h(c;) = N), is “connected” to
N. So ¢ £ h(e) for any e. O
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Chapter 4

Finitely Determined Morphisms

In this chapter we investigate under what conditions morphisms may be pinned down by
knowing finitely many of their values. We introduce a few related definitions. Proposition 92
summarizes some facts about how these definitions relate to each other. We end with some
questions about generalizing the concept of finitely determined to other situations. This
chapter is motivated by the observation that if we think of a structure A as the possible sen-
tences of some language, and another structure B as the possible meanings, then a morphism
f: A — B is a way of compositionally assigning meanings to sentences.

Definition 67. Let A and B be structures in the same signature. We say (A, B) is finitely
determined (FD) when there is a finite subset Ay of A such that for all morphisms f,g: A —
B we have f [ Ay = g | Ap implies f = g. We say that (A, B, f: A — B) is relatively
finitely determined when there is a finite subset Ay of A such that for all g: A — B we
have f | Ag = g | Ap implies f = g. We say that (A, B) is always relatively finitely
determined (ARFD) when (A, B, f) is relatively finitely determined for each f.

In terms of the intuition that f: A — B assigns meanings to sentences, if (A, B, f) is
relatively finitely determined, then f has a shot of being learnable by a finite agent.

Ezample 68. Let A = (Z, S), the integers with the usual successor funciton, and let B also be
the integers with successor except that B has an extra copy of the negative integers, so that
there are two predecessors of 0. Now, (A, B) is not finitely determined, because for any finite
subset Ay of A we can find a function f such that f(Ap) is contained in the non-negative
integers, and so there are two different functions that match f’s behavior on Ay depending on
where its tail is. On the other hand, (A, B) is always relatively finitely determined (ARFD):
given f: A — B, let Ay = f~'({—1,(—=1)'}). If we change B to (2<%, S), where S(0)) = 0,
S(1011) = 101, etc., then (A, B) also isn’t ARFD. The idea of course is that now a morphism
A — B has to make infinitely many choices. The intuitive moral of this example is that we
expect a morphism to be relatively finitely determined when it only has to make “finitely
many decisions”.
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Let’s investigate under what kinds of conditions we have (A, B) finitely determined.
One simple observation is that if A is finitely generated then (A, B) is finitely determined.
However, the converse is not true.

Ezample 69. Let A= B = (Q”Y,+). Note A is not finitely generated. Let Ay C;, A and
let b < min(Ag) with b € A. Then b ¢ (Ap). However, (A, B) is finitely determined by
Ag = {1}. Note that for all b € A there are terms t;(x) and t5(y) such that ¢;(b) = to(1)
and t;: B — B is 1-1. In detail, if b = * then

@+...+[2:1_|_..._|_11
n times m?i?nes

As the following proposition shows, it follows that (A, B) is finitely determined.

Proposition 70. Let A and B be structures. Let a be finitely many elements from A such
that for all b € A there are terms ti(x) and to(y) with t,: B — B 1-1 and t,(b) = t2(a).
Then (A, B) is finitely determined.

Proof. Let f,g: A — B be morphisms that agree on a. Then for any b € A we can, by
assumption, choose terms t; and t5 as in the statement of this proposition. Then

t1(fd) = t2(fa)
= ty(ga)
= t1(gb)

and so fb = gb. O

However, this weakening of finitely generated is not necessary either. Recall that a

formula is said to be positive existential if it is atomic or built up from atomic formulas by
means of V, A, and/or 3. We may also call such a formula 3] or morphic. It’s easy to check
that every positive existential formula is preserved by morphisms. In fact, one can prove
that every formula preserved by all morphisms is logically equivalent to a positive existential
formula (see e.g. Exercise 5.2.6 in [5]). T'll use tp™(b/Ag) to denote the positive existential
type of b over parameters Ag. If p(y) is a type with parameters from A and f: A — B then
f«p(y) is a type with parameters from B where we replace each parameter a € A appearing
in p by f(a) € B.
Ezample 71. Let A = B = (R”% +). There are continuum many elements b in A, but only
countably many pairs of terms (¢;(z),t2(y)). So, if (A, B) satisfied the hypotheses of the
previous proposition, then there would be two elements b, 0 € A assigned to the same pair
(in fact continuum many assigned to some pair). Then ¢1(b) = to(a) = t1(b'), but ¢; was
supposed to be 1-1 on B (which is also A in this case). However, (A, B) is nevertheless
finitely determined. Let Ag = {1}. Let b € A. Let p(y) be the positive existential type of
b/Ap. This includes:

{acy>q7a |q€@>0,b>q}U{“y<q” |q€@>0;b<Q}
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where “y > ¢” really means, writing ¢ = *,
Jrdg(ng=mlAqg+z =y)

and similarly for y < g. As for any morphism f: A — B we have qf(1) = f(q), at least the
following formulas (or their equivalents) are in f.p(y):

{y>falqeQb>qtU{y< fqlqe Q™ b<q}

Then since f(Q>) is dense in R™Y, we get fb as the unique realization of f.p(y). To see
that f(Q°) is dense, let ¢,d € R>? with ¢ < d. Let T <a< % with ¢ € Q> as this is
dense in R*%. Then ¢ < f(1)qg = f(q) < d. Finally, if w were another realization of f.p(y),
WLOG w < fb, then by denseness there is fq with w < fq < fb. It follows that b > ¢ and
so y > fqis in f.p(y), a contradiction. The next proposition shows that (A, B) must be
finitely determined.

Definition 72. Let A and B be structures. (A, B) is said to have the strong morphic
types property when there is Ay Cy;, A so that for all morphisms f: A — Bandallbe A
only fb realizes f,tp*(b/Ap). For the weak morphic types property we just change the

type to tp* (fb/fAo).

Proposition 73. If (A, B) has the strong morphic types property, then (A, B) is finitely
determined.

Proof. Let Ag be the finite subset of A guaranteed to exist in the definition of the strong
morphic types property. Let f,g: A — B be morphisms with f [ Ag =g [ Ag. Let b € A.
Then fb and gb both realize f, tp™(b/Ag) = g. tp™(b/Ag) and so fb = gb. O

The reader should be careful to note the distinction between the strong and weak morphic
types property. It is true that f, tpT(b/Ag) C tp™(fb/fAp) but in general equality doesn’t
hold. As a simple example, consider the morphism f from (N, S) to the trivial unary algebra
with one element. Let b € N and let Ay = (). Then S(y) = y is not in f, tp™(b) yet it is
in tp™(fb). More positive existential things can become true as we pass to the codomain.
The adjectives strong and weak make sense because in the morphic types properties we are
asking that there be a unique realization of the type. If p and ¢ are two types with p C g,
and there is at most one realization of p, then of course there is at most one realization of q.

The next example shows that the weak morphic types property does not imply the strong,
nor does it imply finitely determined.

Example 74. Let the signature 7 consist of w-many unary relation symbols Ry, Ri, Ra, .. ..
Let A be the free 7-structure on w-many generators. Of course this means that the R; are
all empty. Let B be the natural numbers, and let R? := {i}. I claim (A, B) has the weak
morphic types property. Define Ay = (). Let f: A — B be a morphism. Let b € A. Only fb
realizes tp*(fb) because this type includes Ryg,(y). However, because A is a free structure
on infinitely many generators, (A, B) cannot be finitely determined, and hence also does not
have the strong morphic types property.
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Though as we saw, the strong morphic types property implies finitely determined, the
converse is not true, as the following example shows. This example further shows that finitely
determined does not even imply the weak morphic types property.

Example 75. Let A be (Z,S). We define B as follows. First, A C B. To A we add an
additional predecessor w of 0. And before w we add a “fan” of finite chains of increasing
length. ILe. for each n € w we add a distinct chain x11, Z9,, ..., Tn, Where S(zin) = T(it1)n
and S(z,,) = w. Now, (A, B) is finitely determined by Ay = {0}. However, (A, B) does not
have the weak morphic types property. Given a finite subset Ay of A, there is a morphism
f:A— B with f(Ag) > 0. Let b € A with fo = —1. I claim that w realizes tp™(fb/fAp).
It suffices to show that there is an elementary extension B’ of B and an endomorphism
a: B" — B’ which fixes fAy and sends —1 to w. Let B’ be an w'-saturated elementary
extension of B. Since the type p(y;,i € w) :={S(yiy1) = vi | i € w}U{S(yo) = w} is finitely
realizable, there are such elements y; in B’. Then define an endomorphism to be constant
everywhere except on the negative integers. Send —1 to w, —2 to yp, —3 to y;, and so on.
It can be checked this is a morphism.

Since finitely determined doesn’t imply the strong morphic types property, we might try
to weaken this property a bit.

Definition 76. We say that (A, B) is type determined if there exists a finite subset Ay of
A so that the following ordinal-indexed sequence of increasing subsets of A converges to A:

Ay ::UAi

<A

Ay ={a€ A|Vf: A— Bonly farealizes f.tp*(a/A;)}
Proposition 77. If (A, B) is type determined, then (A, B) is finitely determined.

Proof. Let f,g: A — B with f | Ag =g | Ap. By induction we can show that for each i, if
a € A;, then fa = ga. This is obvious for limit steps. As for the successor step, we know
that f.tp™(a/A;) = g.tpT(a/A;) and as fa and ga are both the unique thing that realizes
this type, we have fa = ga. O

However, once again, we have a condition which implies but is not implied by finitely
determined. Example 75 above is not type determined. Given any finite subset Aq of the
integers, A, = [min(Ag),oc0) in that example. However, as the following example shows,
type determined is in general a bit weaker than the strong morphic types property.

Ezample 78. Let A and B be the multisorted structure (N, P(N), PP(N), S0, €,¢). S and
0 are the usual successor and 0 of the natural numbers. € is the usual “is an element of”
relation for N x P(N) and P(N) x PP(N) (if you like we could have two different relations),
and ¢ is the usual “is not an element of” relation. (A, B) is trivially finitely determined
because there is only one morphism from A to B. Of course, by the presence of S and 0, a

morphism f: A — B must fix N. Given X € P(N),andn e N, n € X iff n = f(n) € f(X),
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by the presence of € and ¢, and so X = f(X). Now knowing that P(N) is fixed, the same
argument gives that PP (N) is fixed. If desired, we could attach another sort to allow more
than one morphism, yet still keeping finitely determined. Earlier we saw an example where
(A, B) is finitely determined, and both sets had size continuum. Here the sizes are Jy. It
should be clear that we could modify the example to make the sets even bigger. This example
also shows how the strong morphic types property and type determined come apart. (A, B)
can’t have the strong morphic types property, because there just aren’t enough types. Given
a finite subset Ag of A, the number of positive existential types over Ay is at most continuum
because the language is countable. But there are more than continuum many elements in
A = B, and so there must exist some fb = b # fc = c realizing the same positive existential
type over fAg = Ap. (A, B) doesn’t even have the weak morphic types property. On the
other hand, letting Ay = (), we get A1 O NUP(N), and so Ay = A. Thus, (A, B) is type
determined.

One might object to Example 75 as a counterexample to the idea that finitely deter-
mined implies type determined, because of some seemingly peculiar properties of B. In that
example, —1 and w have the same positive existential type, yet there’s no endomorphism of
B sending —1 to w. This motivates the following definition.

Definition 79. Let M be a structure and « a cardinal. M is said to be a-endo-homogenous
when for every pair of tuples a@,b of length less than «, if tp™(a) C tp™(b), then there is an
endomorphism of M sending a to b.

Ezample 80. The structure (N,S) is w-endo-homogenous. If tpT(a) C tp*(b), then the
relative positions between the elements of @ match the relative positions between the elements
of b. Further, min(a) < min(b) because we can say J2(S™™@(z) = min(a)). It follows that
there is an endomorphism taking @ to b because any forward translation is an endomorphism.

Proposition 81. If B is w-endo-homogenous and (A, B) is finitely determined, then (A, B)
has the weak morphic types property.

Proof. Let Ay be a finite subset of A that separates morphisms from A to B. Let a € A
and let f: A — B be a morphism. Suppose w realizes tp*(fa/fAg). Then there is an
endomorphism e: B — B fixing fAq and sending fa to w, by the w-endo-homogenity of
B. Then define g: A - B by g:=eof. Theng | Ay = f | Ay and so f = g. Thus,
fa = ga = w as desired. m

Question 82. Is it possible to have A and B where B is w-endo-homogenous, (A, B) is finitely
determined, and yet (A, B) is not type determined?

Obviously, if f: A — B commutes with tp* for each morphism from A to B, then the
strong morphic types property is implied by the weak version. So there is some interest in
the following question.

Question 83. Which morphisms f: A — B commute with tp™ in the sense that for all a € A
and all (finite) subsets Ay of A we have f, tp*(a/Ag) =tp™(fa/fA)?
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The reader may be wondering if there are a-endo-homogenous elementary extensions of
any structure, just as there are a-(strongly)-homogenous elementary extensions. The answer
is yes, and a common argument for the existence of the latter can be adapted with little
change.

Definition 84. A structure M is said to be w-weakly-endo-homogenous when for all
tuples @ and b from M of finite length and all elements ¢ € M, if tp*(a) C tp*(b), then
there is some d € M such that tp*(ac) C tp*(bd).

Lemma 85. Let L be a countable language, and let M be a countable L-structure. Then
there is a countable w-weakly-endo-homogenous elementary extension of M.

Proof. We shall define an elementary chain
M=M, M = =M=

of length w of countable L-structures with the property that if a@,b,c € M; and tp*(a) C
tp(b), then there is a d € M;,; such that tp*(ac) C tp*(bd). Then M’ := .., M; will be
the desired elementary extension.

So, to get this chain, assuming that M; is defined, for each triple (@, b, c) from M; with
tp*(a) C tp*(b), we introduce a new constant symbol d ;. and consider the theory T con-

sisting of the elementary diagram of M; together with the following sentences:

{o(b, dgs.) | ©(z,y) € tp*(ac)}

This theory T' is consistent because given ¢1(Z,¥),...,¢n(7,y) € tp*(ac), we have M; =
Jy \; ¢;(b,y). Thus there is a model M;; of T'. O

S

Lemma 86. Let M be a countable structure. Then M is w-weakly-endo-homogenous iff M
18 w-endo-homogenous.

Proof. Of course endo-homogenous implies weakly-endo-homogenous, because if we have an
endomorphism f: M — M which sends @ to b, then tp*(ac) C tp*(fafc) = tp*(bfc) and
we can let d := fc.

Now assume that M is countable and w-weakly-endo-homogenous. Let M = (mq, ma,...).
Let tp*(a) C tp™(b). By repeated application of weak-endo-homogeneity, we get that
tpT(@amymy---) C tpT(bning - --) for some n;. Then m; + n; is a well-defined endomor-
phism of M taking a to b. O

Proposition 87. Let a be an infinite cardinal. Let M be an L-structure with |[M|,|L| <
2% Then there is some elementary extension M' of M with |M'| < 2% and M' o™ -endo-
homogenous.

Proof. We construct an expanded elementary chain
My =<+ < M; <+

of length 2¢. Each structure M; is an L;-structure where
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1. My =M and Ly =L

2. |M;| < 2% for each i

3. My = Uz’<)\ M; for nonzero limit ordinals A
4. Ly =, Li for nonzero limit ordinals A
5 M; < M; | L; for all ¢ < j

6. Liy1 = L;U{fs a unary function symbol | @, b from M; with length < o and tpj (a) C

tpz (b)}

7. For each appropriate f,,

M1 = “f.3 is an L-endomorphism sending @ to b”

Once constructed, we put M’ := |J;_oa M; [ L. Given tuples a and b of length < a, since
the cofinality of 2¢ is bigger than «, we get that the tuples occur in some M;, and so M,
thinks f.; is an L-endomorphism taking @ to b, and so M’ must think so too. Also, M’ has
size at most 2% since each M; has size at most 2% and the chain has length 2.

As the limit steps are easy, let’s verify that the successor steps work. Suppose we are
given M; and we want to define the L;, -structure M; ;. Observe that L;,; is L; plus
unary function symbols f;; for all pairs of tuples of length at most « taken from M; with
tpf(a) C tp;(b). Note that there are at most 2% many symbols added in this way, so
|L;+1| remains at most 2*. We want to show that the L;.;(M;)-theory consisting of the L;-
elementary diagram of M; and sentences that assert each f;; is an L-endomorphism taking a
to b is consistent. By the Robinson joint consistency theorem, we may deal with one function
symbol fz; at a time (and even forget momentarily about the other unary function symbols
that were already dealt with). Let Ty be a finite collection of the sentences to be shown
consistent. Note that the language L' U {f;;} of Ty can be taken to be countable, and we
can assume that the portions @ and o' of the tuples @ and b present in L' are the same finite
length and correspond. As only finitely many constants are present, there is a countable
L’-elementary submodel N of M;. By our lemmas, there is an (L' | L)-elementary extension
N’ of N which is w-endo-homogenous. We know that tp}, (a’) € tpj, (V') and so there
is some (L' | L)-endomorphism f: N’ — N’ sending @’ to V/. Since L' — L contains only
constants, N’ is also an L'-elementary extension of N. Thus, N’ |= Tg. H

Corollary 88. Let o be a cardinal. Let M be a structure. Then there is an a-endo-
homogenous elementary extension of M.

Perhaps a more finite take on the problem of determining morphisms would be to consider
partial morphisms.
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Definition 89. Let A and B be structures. Let’s say that a partial morphism f: A~ B
is a partial function with the property that if a € dom(f) and A = Rti(a)---t,(a) then
B = Rti(fa)---t,(fa) where R is a relation symbol (or equality) and the ¢; are terms.

Let Ag C A. We say that Ay is uniquely extendable with respect to (A, B) when for
every partial morphism f: A ~» B with dom(f) = Ay and for all subsets X of A there is at
most one partial morphism f’: A ~» B such that dom(f’) = AgU X and f' | Ay = f.

We say that (A, B) has the unique extensions property when there is a finite Ay that
is uniquely extendable.

Note that in the definition of uniquely extendable we could have taken the sets X to
be singletons without changing anything, because the restriction of a partial morphism is a
partial morphism.

The unique extensions property provides a more stringent form of determining. Indeed,
it is even strictly stronger than type determined.

Proposition 90. The unique extensions property implies the strong morphic types property
(and hence type determined and finitely determined).

Proof. Let (A, B) have the unique extensions property, and let Ay = @ be a finite subset of
A that is uniquely extendable. Let a € A and let f: A — B be a morphism. Let w realize
ftpt(a/a). Tclaim that (f | Ag)U{(a,w)} is a partial morphism, from which it follows that
fa = w as desired. First of all, it is a partial function because, if a € Ay, say a = a;, then
y = fa; is in the type ftpT(a/a) and so w = fa;. As for the partial morphism business,
suppose A = Rt(a,a). Then B | Rt(w, fa) because w realizes ftp*(a/a). O

Ezrample 91. This example shows that the strong morphic types property does not imply
the unique extensions property. Let A = (Z,S) with S the usual successor function, but we
express it using a binary relation symbol. We let B = (2<%, S) where S = {(z,279) | z €
2<% i € 2}. There is no morphism from A to B, so trivially (A, B) has the strong morphic
types property. However, given any finite subset Ay of A, we can find a partial morphism
with domain Ag which has different extensions. Simply take an element a > Ay and we have
choices where to send it.

For the sake of convenience, let’s record some of the observations we’ve made in one

place:

Proposition 92. The following are strict implications:

unique extensions property = strong morphic types property
= lype determined
= finitely determined
= always relatively finitely determined
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Also, the strong morphic types property strictly implies the weak morphic types property. The
weak morphic types property does not imply finitely determined, but it implies the strong mor-
phic types property under the assumption of commuting types. Finitely determined does not
imply the weak morphic types property, but it does under the assumption that the codomain
15 w-endo-homogenous. Type determined does not imply the weak morphic types property.

One question that remains is Question 82.

Now we turn to a particular kind of situation where (A, B) is finitely determined, but we
additionally ask which finite subsets Ay of A work to determine the morphisms. The proofs
of the following propositions are easy and are therefore omitted.

Proposition 93. Let 7 be a signature. Let A be the free T-structure on o generators. Let
B be a T-structure with |B| > 2. Then (A, B) is finitely determined iff o is finite.

Proposition 94. Let A be the free T-structure on finitely many generators a. Let Ay =

{ti(@), ..., tu(a)} be a finite subset of A. Then Ay determines morphisms from A to B iff
for all ¢,d € B we have

(t;(¢) = ti(d) each i) = ¢=d

One may be interested in presentations of free algebras instead of free algebras themselves,
as exemplified by Question 95. We now introduce some definitions and examples relevant to
this question.

For this question we suppose that A is not an algebra, but instead simply some subset
of X* for some finite set X, i.e., A is a collection of words (a “language”) where the alphabet
is 2. We continue to suppose that B is some algebra, and we look at functions from A to
B, but only ones that “factor through a free algebra” in some sense. There should be a
finitely generated free algebra F' and functions f: A — F and g: F' — B such that g is an
algebra morphism and f is a bijection. Of course, without further constraints, the condition
that h: A — B is the composition g o f of some such g and f means nothing. There
are two (related) kinds of restrictions we might add: one on the kind of language A itself
(e.g. context-free), the other on the function f assigning elements of the free algebra to the
sentences (e.g. some kind of monotonicity or agreement with how the language is generated).
Let’s formulate some reasonable restrictions motivated by the propositional logic examples
involving Polish notation and parenthesis notation.

Recall that a context-free language is a language constructed as follows. Let X be a finite
set (whose elements are called terminals) and let V' be another finite set (which is disjoint
from ¥ and whose elements are called non-terminals, and includes one element S called the
start symbol), and let R C V x (V UX)* be a relation (whose elements are called rules). A
derivation is a sequence u; — --- — u, such that u; = S, v, € ¥* and each u; — ;41 is
the application of a rule in the sense that a symbol T" € V occurring in u; is replaced by an
image of T" under R. Something is in the language iff it is obtained by some derivation.

For example, let ¥ = {p1, - ,pn, 7, A,(,)} and let V' = {S} and let R = {S —
(SNS),S = (=5),5 = pi}. Then the language obtained is the usual parenthesis nota-
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tion propositional logic. Or, letting ¥ = {p1,...,py,,A} and V = {S} and R = {S —
ASS,S — =S, S — p;} we get Polish notation.

Now let’s suppose that A C ¥* is some context-free language (with associated non-
terminals and rules). Given a finitely generated free algebra F' (this is a free algebra for the
signature, not for some variety), a bijection f: A — F' is called “nice” if for every n-ary
function symbol A in the signature there is a rule S — 5(S1,---,S,) (where each S; is a
distinct occurrence of S in ) such that for all py,..., 0, € F,

B 1), fHen) = (D1 )

Here B(f~ (1), .-, f *(¢n)) denotes the result of replacing each S; in 3 by the finite se-
quence f~!(y;). Note in particular that 8 has no non-terminals other than Si,...,S,. For
both the Polish notation and parenthesis notation, for example, we have a nice bijection.

Question 95. Suppose that A is some context-free language and B is some algebra. Does
there exist a finite subset Ay of A (and if so, which Ay work) so that for any function
ho: Ay — B there is at most one extension hg C h: A — B such that there is a finitely
generated free algebra F' and a nice bijection f: A — F and a morphism ¢g: F — B such
that h = gf?

Ehrenfeucht’s conjecture, which was proven independently by Albert and Lawrence [1],
and Guba in 1985, is a result which may be related to these notions of determination. It
states that if 3 is a finite set and L C X* (recall ¥* is the free monoid generated by )
then there is some finite subset T" of L such that for all finite sets A and for all morphisms
g, h: X" — A* we have

gl T=h|T = gl L=h|L

We first give an intuitive interpretation of the content of this theorem. We conceive of
> as a collection of words, and >* is of course then the collection of all finite sequences of
words. L C X* is thought of as all the meaningful sentences. A morphism ¢g: >* — A* is a
dictionary for the words X. Le., each word o € ¥ gets assigned a definition g(o). However,
sometimes it’s difficult to give definitions for little sentences (or just words by themselves),
e.g. maybe it’s difficult to give meaning to the word “the” and it’s easier to give meaning to
“the food is ready”. This gives reason to restrict the domain to L, the meaningful sentences.
The goal is to find a finite subset T of L whose definitions suffice to determine the definitions
of everything in L. It may happen that ¥ C L, in which case we can let T'= Y. l.e., if we
have definitions for all the words, then we have definitions for all the sentences. However,
it’s not immediately clear that we can get a finite collection of sentences that determines
the definitions of all sentences. This is the content of the theorem. It should be remarked
however, that the theorem only allows “definitions” in finitely generated free monoids.

One question is how to relate Ehrenfeucht’s conjecture to the discussion of finitely de-
termined pairs. So we ask the question how we may understand the morphisms h [ L. We
introduce a new signature £ for describing such morphisms. For each natural number n,
and for each pair of finite sequences i, ..., u, ji1,- .., jm from {1,2 ... n} we introduce an
n-ary relation symbol R,;;. £ is the signature that consists just of these relation symbols.
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We may make L C 3¥* into an L-structure as follows. We set

Rn{j(al,...,an) <— Qi+ Ay, = Ay -+

m

We note that if £ = 0 or m = 0 then the product is interpreted as the identity 0.

Suppose that L and L’ are concrete L-structures with L C ¥* and L' C A*. Let S(L)
denote the submonoid of ¥* generated by L, and similarly S(L’) denotes the submonoid of
A* generated by L. Then L£-morphisms from L to L’ are correspond to monoid-morphisms
from S(L) to S(L') that send elements of L to elements of L'.

Question 96. Under what conditions do we have a pair of L-structures (L, L’) finitely deter-
mined?

Suppose that L and L’ are concrete L-structures with L C X* and L' C A*. If ¥ C L,
then an £-morphism L — L’ is pretty much the same thing as a monoid-morphism ¥* — A*.
However, if X Z L then it might not work out the same way. Take, for instance ¥ = {a} = A
and let L = {aa,aaaa,d®, ...} and L' = A*. Define h: L — L' by sending a*" to a”. This
is an L-morphism but not the restriction of any monoid-morphism. Yet, in this example, if
we redescribe A* as (A’)* where A’ = {b} and bb = a, then it is a restriction of a monoid-
morphism. More generally we may phrase this idea as follows:

Question 97. Given any L-morphism h: L — L' with L C ¥* and L' C A* with ¥ and A
both finite, then is there some finite © and L” C ©* such that

1. There is some L-isomorphism ¢: L' = L” and
2. @ o his the restriction of some monoid-morphism from ¥* to ©*.

The answer to this question is “no”, as pointed out to me by George Bergman. Let
Y ={x,y} = A and L = {x,zy}. Then the submonoid of ¥* generated by L, which we
denote S(L), is isomorphic to the free monoid on two generators. So there is a monoid-
morphism H: S(L) — A* which sends = to z and zy to the identity element of A*. Let
L' = A*. The restriction h := H | L of this monoid-morphism to L is an £-morphism of
L into L'. If ¢p: L' — L” is any L-isomorphism from L’ to some subset L” of some free
monoid ©%, then, in particular, for any z € L’ we have z is the identity element iff p(z) is
the identity element. So, if there is some such ¢, we get that (¢ o h)(z) is not the identity
element, while (¢ o h)(zy) is the identity element. No monoid-morphism from ¥* to ©* can
have this property.

At this point I'd like to raise some more general questions about L-structures. Of course
not every L-structure arises as a subset of a finitely generated free monoid. For example,
consider the L-structure obtained in a natural way from (Z,+). Le., R, (a) iff a;, +--- +
a;, = aj, +---+a;,. Here we have 2 +2 4 (—2) =2 and 2+ 2 # 2, yet in any L-structure
obtained as a subset of a free monoid, we have aab = a implies aa = a. But this leads us to
the question of how to characterize the L-structures that do arise in this way.

Question 98. Which L-structures arise as subsets of finitely generated free monoids? Is the
theory of such L-structures axiomatizable? Decidable?
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