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Dr. Akula Venkatram, Chairperson 
 
 
 
 

Atmospheric dispersion models play a critical role in the management of air 

quality. They are used to estimate the impact of sources of air pollutants on air quality. 

They are also used to infer emissions from sources from measurements of pollutant 

concentration. Regulatory agencies used air quality models to determine whether existing 

or proposed industrial facilities comply with regulatory requirements.  

In my research, I developed a class of dispersion models to study four problems. I 

developed two Lagrangian dispersion models to estimate emissions of wildfires using 

data from PM monitoring networks and the High-Resolution Rapid Refresh (HRRR) 

meteorological model. By integrating data from ground-based monitors and NASA's 

Moderate Resolution Imaging Spectroradiometer (MODIS), I created a comprehensive 

model that enables improved spatial and temporal resolution for assessing PM2.5 
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concentrations during wildfires. This integrated technology, capable of evaluating 

concentrations at 1 km spatial resolution with 1 hour temporal resolution, has significant 

implications for health risk assessment, evacuation planning, and policy development 

related to wildfire impacts. 

I next demonstrated the application of a dispersion model to estimate emissions of 

methane (CH4) using total column measurements from four field campaigns conducted in 

the San Joaquin Valley of California during four seasons from March 2019 until January 

2020. The atmospheric column dry mixing ratios of CH4 were retrieved from multiple 

EM27/SUN solar spectrometers deployed upwind and downwind of a cluster of dairy 

farms. These measurements were complemented with satellite observations of column-

averaged CH4 from the S5P/TROPOMI satellite instrument over the same area to extend 

the analysis to larger scales and periods. 

The next study involved the development and application of a model to estimate 

the impact of vehicle tailpipe emissions on people waiting next to idling vehicles. We 

conducted a field study designed to collect CO2 concentration data at distances of a few 

meters from the tailpipe of a vehicle: the accelerator pedal was controlled to simulate 

idling and acceleration from a stop. Analysis of the data shows that the measurements are 

described within a factor of two with a dispersion model that uses micrometeorological 

variables as inputs and includes plume rise associated with the buoyancy of the exhaust 

plume. The data suggest that people situated a few meters from an idling vehicle are 

likely to be exposed to levels of NO2 that are above the Clean Air Act 1-hour standard of 

100 ppb. 
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The final study examined the application of a dispersion model to estimate PM10 

emissions from roads. This involved sampling silt loadings on roads using a mobile dust 

collection system that I helped to design and build. The sampling was conducted on two 

freeways and two city roads in Riverside, California. PurpleAir PM monitors and 

PICARRO CO2 monitors were deployed on the mobile platform to measure road dust 

concentrations, which was then used to infer emission factors with a line source 

dispersion model, and carbon mass balance approach. The results indicated that freeways 

have lower emission factors compared to the city roads. The data from the field studies 

was used to propose a new model for emission factors, which improves upon the 

currently used regulatory model. 
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1. Background, Motivation, and Objective 

This thesis addresses the application of dispersion models to four different 

problems related to air quality. This chapter provides the motivation for studying these 

problems and states the objectives of the associated research. Details of the research 

conducted to accomplish these objectives are described in subsequent chapters. Each of 

these problems involved adapting existing models or developing new dispersion models. 

This required evaluating these models with available data or data collected in field 

studies in which I played an active role. 

1.1 Improving Spatial Resolution of PM2.5 Measurements during Wildfires 

U.S. Environmental Protection Agency (EPA) sets National Ambient Air Quality 

Standards (NAAQS) for six pollutants, including particulate matter, ozone, carbon 

monoxide, sulfur dioxide, nitrogen dioxide, and lead (US EPA, 2023a). These pollutants 

can harm public health and the environment. The Clean Air Act delineates two categories 

of national ambient air quality standards. Primary standards are designed to safeguard 

public health, with a focus on protecting "sensitive" populations, such as individuals with 

asthma, children, and the elderly. The secondary standards aim to safeguard public 

welfare, addressing concerns such as diminished visibility and potential harm to animals, 

crops, vegetation, and buildings. Large wildfires pose a significant threat to air quality, 

endangering public health by releasing harmful substances found in wildfire smoke, 

primarily fine particulate matter (PM2.5) which is one of the criteria pollutants (Fann et 
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al., 2018). Exposure to over standard PM2.5 can cause adverse health effects such as 

cardiovascular diseases, lung cancer, asthma and so on (Youssouf et al., 2014). 

To effectively monitor and predict the impact of wildfire smoke on air quality, it 

is crucial to assess PM2.5 concentration levels. The U.S. Clean Air Act (CAA) requires 

nationwide monitoring compliance monitors for PM must be officially classified as either 

Federal Reference Methods (FRMs) or Federal Equivalent Methods (FEMs) (US EPA, 

2019). These regulatory monitoring networks have poor spatial resolution, and they are 

typical expensive to establish (Levy Zamora et al., 2019).  

The Moderate Resolution Imaging Spectroradiometer (MODIS), situated on the 

TERRA and AQUA satellites in polar orbits, were launched in 2000 and 2002, 

respectively. MODIS supply daily data on AOD, extensively employed to enhance spatial 

coverage in the estimation of ground-level PM2.5 concentrations. AOD represents the 

column-integrated sum of total ambient particle extinction and is notably correlated with 

surface PM2.5 (Liu et al., 2005). Many studies have applied statistical models using AOD 

to predict PM2.5 concentrations and yielded high linear correlation (Geng et al., 2018). 

MODIS AOD products could provide 3-10 km spatial resolution (Li et al., 2020). Multi-

Angle Implementation of Atmospheric Correction MAIAC retrieval products provides an 

advanced algorithm for gridding MODIS AOD measurements to improve accuracy of 

cloud detection aerosol retrievals and atmospheric correction (Lyapustin et al., 2011). 

Each daily MAIAC file (MCD19A2) contains gridded AOD retrievals from both Terra 

and Aqua and the product shows good accuracy within 1 km resolution (Lyapustin and 

Wang, 2018). Satellite remote sensing provides Aerosol Optical Depth (AOD) to estimate 
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PM2.5 concentrations in areas not covered by ground-level monitors (Hoff and 

Christopher, 2009). The column integrated value measured by AOD divided by the 

boundary layer height is likely to be correlated with the surface PM2.5 concentration if 

material is well mixed through the depth of the boundary layer (Liu et al., 2005).  

However these daily observations are roughly five-minute snapshots occurring 

around 1030 local sidereal time (LST) for Terra observations, and around 13:30 LST for 

Aqua observations, and only are available for cloud-free conditions. Since ground-based 

monitors provide limited spatial coverage, while satellite observations, being five-minute 

snapshots only available for cloud free pixels, is not consistently available to follow the 

time evolution of the ground-level impact of wildfire plumes (Sifakis et al., 2003). 

Because of limited spatial resolution of ground monitoring networks and limited temporal 

resolution of satellite observations for PM2.5 information during wildfires, several studies 

have been conducted to create high spatial resolution maps for particulate matter during 

wildfires. Wu et al. (2006) estimated daily particulate matter concentrations at a zip-code 

level for southern California and assigned valid estimated PM concentrations at air 

quality stations to the created smoke polygon. Gupta et al. (2018) used multiple 

regression method to predict and interpolate the concentration by fitting over 3000 of 

satellite observed AOD and low-cost sensors measured PM2.5 pairs at the nearest 

locations. 

The previous studies applied the purely statistical method to improve the spatial 

resolution of surface PM concentrations. There exists a need for a method including the 
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underlying physical plume structure that can evaluate health risks associated with 

wildfires at the community level, offering enhanced spatial and temporal resolution.  

This thesis aims to address this gap by integrating ground monitor measurements 

with satellite observations using dispersion models. This integrated technology can assess 

PM2.5 concentrations at 1 ×1 km grid with 1 hour temporal resolution, enabling better 

evaluation of health risks and offering the potential for predicting wildfire impacts to aid 

in public health assessment and wildfires management. 

1.2 Quantifying and Monitoring Methane Emissions from Dairy Farms in 

California Using TROPOMI and EM27/SUN Measurements 

The environmental community appropriately identifies global warming as a 

significant threat to the planet. Atmospheric methane (CH4), a greenhouse gas 

contributing to global warming, is emitted from various sources and it has increased by 

150% since preindustrial times, causing the second largest radiative forcing of the long-

lived greenhouse gases after carbon dioxide (IPCC, 2013; Karakurt et al., 2012). 

Increased anthropogenic emissions now account for 50 to 65% of the total emissions 

(IPCC, 2013), which are likely to be part of the reasons for the renewed rise since 2007 

(Kirschke et al., 2013; Luther et al., 2019; Saunois et al, 2016b). CH4 emissions from 

agriculture and waste are estimated at 195 Tg/yr globally, accounting for 57% of total 

anthropogenic emissions (Saunois et al., 2016a). Inventory of greenhouse gas (GHG) 

emissions suggests that CH4 emissions increase by 16% between 2000 and 2015 in 

California (CARB, 2020). The state of California has taken legislative action to address 
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this issue with Senate Bill 1383, which mandates the reduction of livestock manure 

methane emissions below 2013 levels by 2030 (CARB, 2016a).  

Several methods to estimate methane emissions from dairy facilities are based on 

atmospheric column measurements. Gisi et al. (2012) illustrated the use of compact solar-

tracking Fourier transform spectrometers (EM27/SUN) for measurements of the column-

averaged dry-air mole fractions of CH4. Since the entire atmospheric column is measured, 

column-averaged measurements are believed to be less sensitive to vertical and near-

surface transport of methane that affect interpretation of point methane concentrations 

(Heerah et al., 2021; Lauvaux and Davis, 2014). Solar column gradients have been 

utilized previously to assess CH4 emissions from dairy farms in Southern California 

through the application of the differential column measurement technique using 

EM27/SUN (Chen et al., 2016; Viatte et al., 2017). Chen et al. (2016)  employed multiple 

solar column instruments to mitigate the impact of long-range influences through 

simultaneous measurements at upwind and downwind locations within urban scales and 

applied mass balance approach to verify the inventory emissions. Viatte et al. (2017) 

measured the differential CH4 from four EM27/SUN and assessed the fluxes of the 

dairies using the mass balance approach and high resolution WRF-LES simulations. 

The TROPOspheric Monitoring Instrument (TROPOMI) serves as the satellite 

instrument aboard the Copernicus Sentinel-5 Precursor satellite launched in October 

2017, which can measure a wide range of atmospheric pollutants including nitrogen 

dioxide (NO2), ozone (O3), sulfur dioxide (SO2), and methane (CH4). TROPOMI 

measures the column-averaged gas concentration using backscattered sunlight in the 
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shortwave-inferred (SWIR) spectral range (Butz et al., 2012). TROPOMI provides daily 

global measurements at approximately 13:30 local solar time. The spatial resolution 

provided by TRPOMI was 7×7 km2 during the first part of the study and was then to 

upgraded to 5.5×7 km2  after August 2019 (Siddans and Smith, 2018). Lorente et al. 

(2021) and Hasekamp et al. (2019) have assessed the global mean bias and station-to-

station variability between TROPOMI and the ground-based Total Carbon Column 

Observing Network (TCCON). The estimated CH4 values are -3.4 ± 5.6 ppb and -4.3 ± 

7.4 ppb, respectively. Despite challenges such as hazy atmospheres or low surface 

reflectance limiting the usefulness of only 3% of the data over land (Jacob et al., 2022), 

TROPOMI measurements have been employed in various studies to estimate CH4 

emissions (Qu et al., 2021; Varon et al., 2019). 

However, current models used to infer emissions from column measurements 

make assumptions about the wind fields and source geometry lead to high uncertainty in 

the corresponding emission estimates (Chen et al., 2016; Jacob et al., 2016). There is a 

need to reduce these uncertainties in currently used methods by including considerations 

of the geometry of sources, the geometry of column measurements, and governing 

micrometeorological conditions. My research addresses this need by developing and 

applying a method based on dispersion models to estimate dairy farms methane emissions 

for the column measurements. 

1.3 Field Study to Estimate Exposure to Vehicle Exhaust During Idling and Starting 

Exposure to vehicle pollutants including carbon monoxide (CO), particulate 

matter (PM), nitrogen oxides (NOx), black carbon (BC), and volatile organic compounds 
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(VOCs) has been linked to a range of adverse health effects. such as cardiovascular 

morbidity, asthma, respiratory illnesses, lung function and chronic obstructive pulmonary 

disease (HEI, 2010; Laumbach et al., 2012). Several studies have been conducted to 

examine the impact of vehicle emissions on roadways. Heist et al. (2009) conducted wind 

tunnel studies to examine the effect of different road configurations including noise 

barriers on the dispersion of traffic related pollution and observed a reduction in the 

pollution when a barrier was present. A tracer gas study conducted by Finn et al. (2010) 

examined the effect of noise barriers by simulating roadway emissions using a line source 

releasing a tracer gas and observed reduction of up to 80%. Schulte et al., (2014) 

developed two semi-empirical models to explain the effect of downwind solid barriers. 

Thiruvenkatachari et al. (2022) conducted the real-world tracer gas field studies to 

estimate the dispersion of vehicular emissions for downwind barrier case. These studies 

have led to the development of dispersion models like RLINE and CALINE, used to 

estimate how new road construction affects local air quality (Kenty et al., 2007; Snyder et 

al., 2013; Yura et al., 2007). 

Limited studies have explored the dispersion of vehicle emissions within a few 

meters from stationary vehicles. Deng et al., (2020) found that vehicle-induced 

turbulence becomes more significant with increasing ambient wind speed, leading to 2.6-

3 times higher particle exposure for pedestrians 3 m away from the vehicle. Ning et al. 

(2005) observed rapid concentration drops within 5 m from an idling vehicle, attributing 

it to turbulence induced by exhaust momentum and buoyancy. McNabola et al. (2009) 

supported these findings in a congested traffic study, using a CFD model to confirm a 
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quick decrease in exhaust concentrations to background levels within 3 m from the 

source. 

The existing dispersion models employed for estimating the impact of road traffic, 

such as RLINE and CALINE, have not investigated areas within a few meters of vehicle 

exhaust sources. This is crucial for people near idling or accelerating vehicles. Frequently 

encountered exposure scenarios include children waiting at school pick-up points, 

pedestrians at traffic intersections, and individuals awaiting ride-sharing services. 

Therefore, there is a need to conduct a field study to collect the data required to evaluate 

the performance of existing dispersion models in estimating the near-source impact of 

emissions from stationary idling vehicles in varying atmospheric conditions. In summary, 

the objective of my research is to design and conduct a field study that focuses on 

dispersion at scales of a few meters from a source of buoyant emissions, and adapt and 

improve, if necessary, current models to describe data from the field study. 

1.4 An Assessment of Paved Road Dust Emissions Modeling 

Particulate matter (PM) is one of the six criteria air pollutants established by U.S. 

EPA, consisting of solid particles and liquid droplets suspended in the air (US EPA, 

2023b). PM emissions from roadway can be classified as exhaust emissions and non-

exhaust emissions (also called road dust). Recent studies show a growing trend in the 

contribution of road dust to roadway PM concentrations (S. Reid et al., 2016), which 

emphasizes the need for accurately quantifying the road dust emissions. Numerous 

studies have been conducted to try to distinguish the exhaust emissions and non-exhaust 

emissions. Matthaios et al. (2022) used the PMF method with mobile platform 
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measurements to suggest that non-exhaust sources can account for 65.6% of the PM10-2.5. 

Harrison et al. (2012) also conducted the study to integrate size distribution and tracer 

elements to distinguish brake dust, tire dust, and resuspension, and these non-exhaust 

sources contribute to 104.1% of PM10-2.5 mass in traffic. These evidences support the 

assumption made in chapter 5 that road dust is the primary contributor to PM10-2.5 size 

fraction emissions. 

The U.S. Clean Air Act (CAA) requires nationwide monitoring compliance 

monitors for PM must be officially classified as either Federal Reference Methods 

(FRMs) or Federal Equivalent Methods (FEMs) (US EPA, 2019). Since the regulatory 

PM monitoring networks are impractical to deploy near road ways, low-cost PM sensors 

can help us overcome this challenge (Kumar et al., 2015). They have the advantages of 

easy deployment on mobile platforms or any road sections, with relatively low power 

consumption for monitoring purposes. However, the accuracy and precision of the low-

cost monitors remain a concern (Kuula et al., 2017). Kelly et al. ( 2017) and Morawska et 

al. (2018) conducted the outer-calibration with low-cost sensors and FEM/FRM 

instruments. A multi-variable regression approach has been used to calibrate the low-cost 

sensors with the parameters including raw sensor measurements, ambient temperature, 

and relative humidity measurements (Barkjohn et al., 2021; Le et al., 2020).  

The currently used regulatory model to estimate emissions of road dust is 

described in “Compilation of Air Pollutant Emissions Factors” (AP-42) and published by 

U.S. Environmental Protection Agency (EPA). First formulated in 1968, it is routinely 

updated with new versions (US EPA, 2011a). This semi-empirical road dust model has 
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been widely used by worldwide researchers for decades (Bogacki et al., 2018; 

Bukowiecki et al., 2010; Chen et al., 2019), but also criticized due to its uncertainty, 

impracticality, and safety issues associated with collecting input data for the model. (Fitz 

et al., 2020; Venkatram et al., 1999; Zhang et al., 2017).  

The objective of my research is to develop a model for paved road dust emission 

factors that improves upon the current AP-42 model for estimating emission factors of 

road dust for California freeways with high traffic volume. The model is based on data 

collected in field studies that I helped to design and implement. 
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2. Improving Spatial Resolution of PM2.5 Measurements during 

Wildfires 

2.1 Introduction 

Large wildfires deteriorate air quality, adversely affecting human health (Fann et 

al., 2018). Several studies (Reid et al., 2016; Youssouf et al., 2014) conclude that the 

main health effects of wildland fire smoke are cardiorespiratory resulting from high 

short-term exposure to concentrations of pollutants associated with the smoke. 

Populations at greatest risk include people with chronic lung disease, older individuals, 

children, pregnant women and fetuses (Cascio, 2018). Between 2008 and 2012, the 

economic impact of wildfires in the U.S. were estimated to be between tens to hundreds 

of billions of US$ (Fann et al., 2018). Additionally, Hurteau et al., (2014) predicted that 

California wildfire emissions would increase by 19-101% by 2100. Such studies have 

motivated the development of methods to estimate the ground-level impact of wildfires at 

spatial and temporal scales relevant to health effects. 

The composition of wildfire smoke depends on multiple factors, such as fuel type, 

moisture content, fire temperature, wind conditions and other weather-related influences 

(Lipsett et al., 2008). The key air pollutants that are emitted during wildfire events 

include ambient air particles such as fine and coarse particulate matter (PM), and gases, 

carbon monoxide (CO), nitrogen oxides (NOx), volatile organic carbon (VOC) and other 

air toxics (Cascio et al., 2018). However, particulate matter is the principle pollutant of 

concern for exposures lasting hours to weeks (Lipsett et al., 2008); around 80%-90% of 
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mass particulate matter consists of PM2.5 with high black carbon, organic carbon, and 

brown carbon content (Gyawali et al., 2009; Youssouf et al., 2014). 

Large wildfires, such as the one studied here, produce highly buoyant plumes that 

can rise well above the mixed layer. The literature on this topic suggests that a significant 

fraction of the emissions can be transported above the boundary layer. Using Cloud-

Aerosol Lidar with Orthogonal Polarization (CALIOP) data from CALIPSO satellite, 

Amiridis et al., (2010) examined emissions from agricultural fires over SW Russia and 

Eastern Europe between 2006 and 2008. For low intensity fires, the data indicate that 

biomass burning plumes are injected within the mixing layer. However they found that 

the smoke from approximately 50% of the 163 fires examined were above the mixing 

layer, with the injection heights ranging from 1.6 to 5.9 km. Paugam et al, (2016) 

concluded that weakly burning landscape-scale fires appear to inject most of their smoke 

into the PBL, but larger and/or more intense wildfires produce smoke columns that can 

rise rapidly and semi-vertically above the PBL. Martin et al, (2018) presents an analysis 

over 23,000 wildfire smoke plume injection heights derived from Multi-angle Imaging 

Spectro Radiometer (MISR) space-based, multi-angle stereo imaging and shows that 

plumes occur preferentially during the northern mid-latitude burning season, and the 

dominance of near-surface injection is evident in AOD-weighted and pixel-weighted 

digital data. However, some smoke is injected to altitudes well above 2 km at times in 

nearly all the regions and biomes in the heavily forested regions of North and South 

America, and Africa. 
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PM2.5 mass concentration is monitored for regulatory compliance by either a 

federal reference method (FRM) or a federal equivalent method (FEM) (Noble et al., 

2001). Due to the high cost of expansion of networks with this currently accepted 

instrumentation, most of the monitoring networks maintained by state and federal 

agencies do not provide sufficient spatial and temporal coverage to assess the health 

impacts for special events such as a wildfire (Ahangar et al., 2019). 

Satellite remote sensing capabilities have been improving especially in terms of 

assessing PM2.5 mass concentrations. The Moderate Resolution Imaging 

Spectroradiometer (MODIS) aboard both NASA’s Terra and Aqua polar-orbiting 

satellites makes near-global daily observations of solar reflected radiances at the top of 

the atmosphere at a resolution between 1 and 10 km depending on specific retrieval 

product that is used to derive spectral Aerosol Optical Depths (AOD) (Remer et al., 

2005). These observations are roughly five-minute snapshots occurring around 1030 local 

sidereal time (LST) for Terra observations, and around 1330 LST for Aqua observations, 

and are only available for cloud-free conditions. A recent study ( Gupta et al., 2018) 

showed that under wildfires conditions, FEM PM2.5 values and satellite-estimated values 

determined from geographically weighted regression models showed good agreement.  

Because the short-term impact of the high concentrations of PM2.5 associated with 

wildfire smoke is of concern, air quality management authorities require ground-level 

information on PM2.5 at kilometer scale resolution to address the health concerns of the 

affected community. However, ground-based monitors provide limited spatial coverage, 

while satellite maps, being five-minute snapshots, only available for cloud free pixels, are 
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not consistently available to follow the time evolution of the ground-level impact of 

wildfire plumes (Sifakis et al., 2003). This chapter presents an approach to improve the 

spatial and temporal resolution of ground-based monitors by using information from 

satellite images and dispersion models. 

2.2 Study Cases 

We illustrate our approach by applying it to the analysis of data from a wildfire 

complex in northern California that started on 8 October 2017 and the Camp Fire that 

occurred in Butte County in northern California that ignited on 8 November 2018. We 

first provide brief descriptions of the fires and their impacts on air quality in the 

surrounding areas. 

2.2.1 Northern California Wildfire 

The five fires in this complex are known as the Atlas, Nuns, Tubbs, Pocket, and 

Redwood Valley fires. Over the course of two weeks, these wildfires, illustrated in Figure 

1, consumed a total of 198,867 acres (CALFIRE, 2017) and resulted in 44 fatalities and 

about $9 billion worth of insurance claims (Kasler et al., 2017). Furthermore, the heavily 

polluted skies caused schools and universities to close and hundreds of flights at San 

Francisco Airport to be delayed or canceled ( Gupta et al., 2018). 

Table 2.1 shows the statistics of the 24 hour averaged PM2.5 concentrations 

measured by the California Air Resources Board Air Quality Management and 

Information System (AQMIS), shown in Figure 2.1. During October 10 to October 13, 

when the fires were at their peak (Mass and Ovens, 2019), the mean concentration over 
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the 22 monitors was above the EPA 24-hour average standard of 35 𝜇𝜇𝜇𝜇/𝑚𝑚3; the highest 

concentration of 55 𝜇𝜇𝜇𝜇/𝑚𝑚3 was recorded on October 13.  

Figure 2.2 shows the wind roses constructed using hourly meteorological data 

from the Remote Automatic Weather Stations at Middle Peak (37.9308, -122.591). We 

see that except for October 10, 14, and 15, the dominant wind blew was from the 

northwest bringing wildfire smoke into the Bay area that led to the severe deterioration of 

air quality. 

 

Figure 2.1. Map of routine state-agency surface PM2.5 monitors and fire sources in the San 
Francisco Bay area. Monitor data obtained from the AQMIS 
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Figure 2.2. Wind rose of hourly data at Middle Peak California. The color represents the wind 
speed in meters per second, and the percent number at the top right corner represents the wind 

direction frequency 

Table 2.1. Statistics of Daily Averaged Concentrations measured at AQMIS monitors in San 
Francisco Bay area 

Date 
24 hours Averaged 

Measured Concentration 
(𝜇𝜇𝜇𝜇/𝑚𝑚3) 

Standard deviation of 
Measured Concentration 

(𝜇𝜇𝜇𝜇/𝑚𝑚3) 

 Oct-8 11 6 
 Oct-9 29 19 
 Oct-10 55 43 
 Oct-11 44 27 
 Oct-12 42 24 
 Oct-13 49 41 
 Oct-14 21 9 
 Oct-15 16 14 

 
2.2.2 The Camp Fire 

The Camp Fire, which broke out in Butte County, California, was first reported on 

8 November 2018 and reached 100 percent containment on 25 November 2018 
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(CALFIRE, 2018). Over a period of two weeks, the fire destroyed 18,804 structures and 

burned 62,052 hectares(CALFIRE, 2018). It has been designated as the most destructive 

and deadly wildfire in California state history. 

Measurements from 17 regulatory agency stations from AQMIS in Sacramento 

Valley are shown in Figure 2.3. Figure 2.4 shows the wind roses constructed using hourly 

meteorological inputs from the Automated Surface Observing System at Yuba County 

(39.1020, -121.5688). The most frequent wind direction is north except for November 12 

as Figure 2.4. Moreover, strong winds that exacerbated the spread of the fire occurred on 

November 8 and 11, when average wind speeds were above 7 𝑚𝑚/𝑠𝑠. Table 2.2 shows that 

the highest mean value of PM2.5 of 197𝜇𝜇𝜇𝜇/𝑚𝑚3 was measured on November 15, and the 

mean concentrations were above the EPA 35 𝜇𝜇𝜇𝜇/𝑚𝑚3  24-hour average standard after 

November 9. 
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Figure 2.3. Map of routine state-agency surface PM2.5 monitors and fire source in Sacramento 
Valley. Monitor data obtained from the California Air Resources Board Air Quality Management 

and Information System (AQMIS) 

    

    
Figure 2.4. Wind rose of hourly data at Yuba California 
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Table 2.2. Statistics of Daily Averaged Concentrations measured at AQMIS monitors in 
Sacramento Valley 

Date 
24 hours Averaged 

Measured Concentration 
(𝜇𝜇𝜇𝜇/𝑚𝑚3) 

Standard deviation of 
Measured Concentration 

(𝜇𝜇𝜇𝜇/𝑚𝑚3) 

 Nov-8 16 7 
 Nov-9 39 28 
 Nov-10 116 61 
 Nov-11 76 47 
 Nov-12 72 44 
 Nov-13 88 54 
 Nov-14 159 67 
 Nov-15 197 86 
 Nov-16 122 88 
 Nov-17 114 52 
 Nov-18 74 28 

 
2.3 Methodology 

2.3.1 Technical Approach 

A common approach to improving the the spatial resolution of ground-based 

PM2.5 measurements by is interpolation of the observed concentrations at monitors, 𝐶𝐶𝑜𝑜, 

using a purely statistical interpolation technique such as Kriging, or one based on 

statistical models that linearly combine meteorological and land-use variables that are 

considered relevant by Gupta et al. (2018). The problem with these approaches is that 

they do not account for the underlying physical structure of the smoke plume that governs 

the concentration field. For example, Kriging cannot account for the anisotropy of the 

concentration field associated with the large smoke plumes associated with wildfires. We 

can improve upon simple Kriging by using an estimate from a transport and dispersion 

model, 𝐶𝐶𝑝𝑝, to remove the structure in observed concentration to leave behind a residual, 
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which can then be interpolated using Kriging (Venkatram, 1988;Schneider et al., 

2017).We can express the observed concentration 𝐶𝐶𝑜𝑜 at a monitor as  

 𝐶𝐶𝑜𝑜 = 𝐶𝐶𝑝𝑝 + 𝜀𝜀 (2.1) 

where 𝜖𝜖 is the residual whose statistics are spatially isotropic. Then the estimate 

of the concentration, 𝐶𝐶𝑜𝑜𝑒𝑒, at a receptor of interest (not at a monitor) is estimated through 

 𝐶𝐶𝑜𝑜𝑒𝑒 = 𝐶𝐶𝑝𝑝 + 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾(𝜀𝜀) (2.2) 

The spatial resolution of 𝐶𝐶𝑜𝑜𝑒𝑒is determined by that of the dispersion model used to 

calculate 𝐶𝐶𝑝𝑝, and its uncertainty is determined by the spatial statistics of 𝜖𝜖.  

The accuracy of this approach depends on the ability of the chosen dispersion 

model to describe the underlying structure. In the case of a wildfire, this structure 

depends on a host of processes, including emissions which can be one of the most 

uncertain. To avoid specifying its value, we treat it as a model parameter whose value is 

obtained by minimizing ∑𝜀𝜀2 at the ground monitors. We rewrite Equation (2.1) as 

 𝐶𝐶𝑜𝑜𝑜𝑜 = � 𝑇𝑇𝑖𝑖𝑖𝑖𝐸𝐸𝑗𝑗
𝑗𝑗

+ 𝜀𝜀𝑖𝑖 (2.3) 

where 𝐶𝐶𝑜𝑜𝑜𝑜 is the measured concentration at monitor ‘i’ , 𝑇𝑇𝑖𝑖𝑖𝑖 is the model estimate 

of the concentration at ‘i’ due to unit emission rate at ‘j’, and 𝐸𝐸𝑗𝑗 is the inferred emission 

rate obtained by minimizing � 𝜀𝜀𝑖𝑖2𝑖𝑖 with the constraint that their values are greater than or 

equal to zero. To achieve this, we used the MATLAB function lsqnonneg described in 

Lawson and Hanson (1995). We compute the transport coefficients, 𝑇𝑇𝑖𝑖𝑖𝑖 , using two 

different dispersion models, which are described in the next section.  
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In summary, improvement of the spatial resolution of the information from the 

ground-based monitors involves the following steps: 

1. The concentration estimates from a transport/dispersion model are fitted to the 

PM2.5 measurements at the AQMIS monitors. The inputs to the model are the 

a) locations of the sources and their sizes, b) locations of the AQMIS monitors, 

and c) wind speed and direction and boundary layer height from a 

meteorological model. The outputs from this step are emission rates that 

provide the best fit between model estimates of concentrations and 

corresponding measurements (Equation (2.3)). 

2. The model with the emissions derived from step 1 is used to compute 

concentrations on a grid with the desired spatial resolution. 

3. The residuals between model estimates and measurements at the AQMIS 

monitors are interpolated using Kriging to the fine mesh grid where 

concentrations are estimated in step 2 (Equation (2.2)). The final product is a 

map of PM2.5 concentrations at the desired spatial resolution. We also 

examined the value of using satellite information to enhance the information 

from the ground-based AQMIS monitors. 

The following sections provide details of the model and the methods used these 

steps. We applied two transport-dispersion models, which are described next. 

2.3.2 The Backward Lagrangian Model 

The model applied here is similar to the Lagrangian model used in Pournazeri et 

al.,(2014). This model estimates concentrations by tracing the history of the air parcel 
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released at different hours in a day from a receptor of interest. Each backward trajectory 

from a receptor is extended backward in time for 12h using 0.25h time steps. The 

concentration along each back trajectory is computed from  

 
𝑇𝑇𝑘𝑘 = 𝑇𝑇𝑘𝑘−1 ⋅ 𝑚𝑚𝑚𝑚𝑚𝑚 �

𝑧𝑧𝑏𝑏𝑏𝑏(𝑘𝑘 − 1)
𝑧𝑧𝑏𝑏𝑏𝑏(𝑘𝑘)

, 1� +
𝑞𝑞𝑘𝑘 ⋅ 𝛥𝛥𝛥𝛥
𝑧𝑧𝑏𝑏𝑏𝑏(𝑘𝑘)

 (2.4) 

where 𝑇𝑇𝑘𝑘 is the concentration at the kth step, 𝑧𝑧𝑏𝑏𝑏𝑏 is the boundary layer height, Δ𝑡𝑡 

is the time step, and 𝑞𝑞𝑘𝑘 is the emission rate per unit area injected into the air parcel. The 

term within the parenthesis ensures that the concentration does not increase if the box 

shrinks. The transport coefficient in Equation 3 for each trajectory is computed from 

Equation 4 by taking 𝑞𝑞𝑖𝑖 = 1 g
m2 /𝑠𝑠 over the area of the fire of interest. The 24 hourly 

transport coefficients corresponding to a 24-hour period are averaged to obtain an 

averaged transport coefficient. 

Much of the emitted carbon from a wildfire is initially present in the gas phase, 

with potential to condense and form fine particulates over time. Recent research(Ahern et 

al., 2019) shows that the total organic aerosol mass (primary mass plus secondary mass) 

enhancement could be between factor 1 and 3 after 1.5 aging hours based on different 

fuel types. Thus, the emissions inferred by fitting model estimates to ground-level 

concentrations represent “effective” emissions which can differ from “bottom-up 

emissions” based on fuel types and consumption rates(Larkin et al., 2009). 

In our calculations, we assume that PM2.5 originates from the five areas 

corresponding to the Atlas, Nuns, Tubbs, Pocket, and Redwood fires comprising the fire 

complex, shown in Figure 2.2. Each day of the fire is associated with a background 
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emission density that is associated with the entrainment of emissions from smoke above 

the boundary layer that is not accounted for in the dispersion model. To account for this 

background PM2.5, we introduce a background emission rate, 𝑞𝑞𝑏𝑏 , in fitting model 

estimates to observations 

 𝐶𝐶𝑜𝑜𝑜𝑜 = � 𝑇𝑇𝑖𝑖𝑖𝑖𝐸𝐸𝑗𝑗
𝑗𝑗

+ 𝑞𝑞𝑏𝑏τ �
1
𝑧𝑧𝑏𝑏𝑏𝑏
� + 𝜀𝜀𝑖𝑖 (2.5) 

where the angle brackets refer to an average over all 24 trajectories, and 𝜏𝜏 = 24ℎ. 

The emission rates, 𝐸𝐸𝑗𝑗, from the fires as well as 𝑞𝑞𝑏𝑏 are treated as parameters whose value 

is obtained by fitting model estimates to corresponding 24-hour averaged PM2.5 

observations. 

2.3.3 Plume Model 

In this model, we estimate the 24-hour averaged concentration by describing the 

dispersion of emissions from the fire as a plume whose horizontal dimensions are 

determined by the spread of the 24 trajectories. The transport coefficient is computed 

from a segmented plume model 

 
𝑇𝑇𝑖𝑖𝑖𝑖 =

1
√2𝜋𝜋

1
𝜎𝜎𝑦𝑦

1
⟨𝑈𝑈𝑧𝑧𝑏𝑏𝑏𝑏⟩

𝑒𝑒𝑒𝑒𝑒𝑒 �−
𝑦𝑦2

2𝜎𝜎𝑦𝑦2
� (2.6) 

where the origin of the co-ordinate system is at the center of the fire. The 

horizontal spread, 𝜎𝜎𝑦𝑦 , is computed relative to the mean of the 24 1-hour trajectories 

emanating from the fire source; the angle brackets refer to the mean along this trajectory. 

The horizontal distance, 𝑦𝑦, at each time step is taken to be the perpendicular distance 

between the midpoint of each instantaneous trajectory segment and the mean trajectory 

segment at the same time step. The standard deviation of these horizontal distances at 
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each time step provides the horizontal spread as a function of travel time from the source 

(Haan and Rotach, 1995). These values are then fitted to an equation of the form 𝜎𝜎𝑦𝑦 =

𝜎𝜎𝑣𝑣𝑡𝑡, where 𝑡𝑡 is the travel time, and 𝜎𝜎𝑣𝑣 is an effective horizontal turbulent velocity. The 

size of the fire is accounted for in the total horizontal spread, 𝜎𝜎𝑦𝑦𝑦𝑦, through 𝜎𝜎𝑦𝑦𝑦𝑦2 = 𝜎𝜎𝑦𝑦2 +

𝜎𝜎𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦2 , where 𝜎𝜎𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦2 = 𝑅𝑅2/2 ,where R is the radius of the fire which can be approximated 

according to the actual size of the fires. 

2.3.4 Data Input 

The two models were fitted to the the surface PM2.5 concentrations obtained from 

state agency routine surface monitors (AQMIS).The meteorological inputs for the models 

were obtained from the High-Resolution Rapid Refresh (HRRR) model (Blaylock et al., 

2017; Rolph et al., 2017). The HRRR model provides 3-km resolved, hourly updated 

meteorological data field that includes the model inputs: ten-meter wind speed (𝑈𝑈), wind 

direction (𝜃𝜃), and the boundary layer height (𝑧𝑧𝑏𝑏𝑏𝑏). 

We also examined the value of satellite data in improving the accuracy of the 

modeled PM2.5 concentration field by incorporating an empirical model based on the 

aerosol optical depth (AOD) measured by the Moderate Resolution Imaging 

Spectroradiometer (MODIS), which is carried by NASA’s Terra and Aqua satellites. We 

utilized MODIS-based AOD from the MAIAC (Multi-Angle Implementation of 

Atmospheric Correction) retrieval products, which uses a new advanced algorithm for 

gridding MODIS measurements to improve accuracy of cloud detection aerosol retrievals 

and atmospheric correction (Lyapustin et al., 2011). Each daily MAIAC file (MCD19A2) 
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contains gridded AOD retrievals from both Terra and Aqua and the product shows good 

accuracy within 1 km resolution (Lyapustin and Wang, 2018). 

2.3.5 AOD Model 

Figure 2.5 shows an example of the AOD at 0.47μm at the starting and middle 

days of the fires. We clearly see that the AOD increased significantly after the fires began 

on October 13, 2017 and on November 15, 2018, which is consistent with the air quality 

data presented in Table 2.1and Table 2.2. Although the satellite data capture the PM2.5 

gradients of the spatial distribution during the fires on October 13 they miss a substantial 

fraction of the pixels. Furthermore, the data, based on interpretation of column integrated 

AOD, is only roughly correlated with surface PM2.5 concentrations and is thus uncertain 

(Gupta et al., 2006; Marsha & Larkin, 2019; Donkelaar et al, 2006). However, the 

satellite data provides useful information at areas not covered by ground-level monitors, 

and can add value to the results from the dispersion model. So it is worthwhile to 

examine the situation in which AOD data can improve estimates from the dispersion 

models. 
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(a) (b) 

  

(c) (d) 

Figure 2.5. Aerosol optical depth observation from MAIAC MCD19A2 at 0.47𝝁𝝁m at (a) October 
8, 2017, (b) October 13, 2017, (c) November 8, 2018, and (d) November 15, 2018 

We fitted the measured AOD to the ratio of 24-hour PM2.5 concentration to 

planetary boundary layer (PBL) height using a power curve as in (Liu et al., 2005); the 

column integrated value measured by AOD divided by the boundary layer height is likely 

to be correlated with the surface PM2.5 concentration if material is well mixed through the 

depth of the boundary layer. Figure 2.6 (a) and (c)shows the performance of the ratio of 

AOD to PBL in describing daily PM2.5 concentrations. The performance of the models is 

evaluated by geometric mean (𝑚𝑚𝑔𝑔) and the geometric standard deviation (𝑠𝑠𝑔𝑔) of the ratios 
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of the modeled predictions to the observations (Venkatram, 2008); 𝑚𝑚𝑔𝑔=1 indicates no 

bias, 𝑚𝑚𝑔𝑔  greater (less) than unity indicates overestimation (underestimation) from the 

model, and 𝑠𝑠𝑔𝑔2 is an approximate measure of the 95% confidence interval. Figure 2.6 (b) 

and (d) shows that the coefficient of determination, 𝑅𝑅2, between observations and model 

estimates from the AOD model is 0.53 and 0.51 in the 2017 Northern CA Fires and 2018 

Camp Fire respectively. The estimates from the AOD model are correlated with both low 

and high PM2.5 measurements, which suggests that AOD data can be useful in analyzing 

the wide range of PM2.5 concentrations observed during the evolution of a fire. However, 

the scatter between model estimates and measurements is not small: 𝑠𝑠𝑔𝑔2 = 2.98 and 3.77 

for the 2017 Northern CA Fires and 2018 Camp Fire respectively. 
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(a) (b) 

  

(c) (d) 

Figure 2.6. Relationship between measured PM2.5 and AOD/PBL at the nearest satellite pixel to 
the measurement station. (a) AOD model fitted to observations in 2017 Northern CA Fires, and 
(b) performance of model in 2017 Northern CA Fires (c) AOD model fitted to observations in 

2018 Camp Fire, and (d) performance of model in 2018 Camp Fire 
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2.4 Results and Discussion 

2.4.1 Modeling Results 

We estimated the daily emission rates for each of the five fires in the complex by 

fitting estimates from both the backward Lagrangian model and the plume model to 

concentrations at the 22 AQMIS receptors using Equation (2.4) and Equation (2.6). 

Distributions of emission estimates were created by bootstrapping the residuals between 

model estimates and corresponding observations: 1500 sets of pseudo observations were 

created by randomly adding these residuals to model estimates, and fitting each set of 

pseudo observations to the model estimates. The 95% confidence intervals were derived 

from the resulting distributions of emissions. 

The results from the analysis are shown in Figure 2.7. In the 2017 Northern CA 

Fires, we see that both models provide similar descriptions of the measured 

concentrations with the Lagrangian model yielding a higher 𝑅𝑅2 while the Plume model 

overestimating less as shown in Figure 2.7 (a) and (b). The Figure 2.7 (a) and (c) show 

that the Plume model yields 𝑅𝑅2 = 0.70 for the 2017 Northern CA Fires and 𝑅𝑅2 = 0.59 

for the 2018 Camp Fire. 
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(a) (b) 

 

 

(c) 

Figure 2.7. Measured PM2.5 concentrations fitted to model estimates from (a) Plume Model in 
2017 Northern CA Fires. (b) Lagrangian Model in 2017 Northern CA Fires. (c) Plume Model in 

2018 Camp Fire 
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Figure 2.8 compares time series of PM2.5 estimates from the Plume Model at 

selected receptors to corresponding measured concentrations. We see that the Plume 

Model captures the peak concentrations, and model estimates compare well with 

measurements during the whole time period of the fire. 

  
(a) (b) 

  
(c) (d) 

Figure 2.8. Time Series of the predicted and observed concentrations from (a) Sebastopol-103 
Morris Street in 2017 Northern CA Fires, (b) Vallejo-304 Tuolumne Street in 2017 Northern CA 
Fires, (c) Gridley-Cowee Avenue in 2018 Camp Fire, and (d) Elk Grove-Bruceville Road in 2018 

Camp Fire 

Figure 2.9 compares the sum of the inferred emission rates over the fires with 

independent, bottom-up estimates made by US Forest Service (USFS) using fuel 

information (Larkin et al., 2009).We see that in the 2017 Northern CA Fires, the inferred 

emission rates from the two models are consistent with each other. However, during the 
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2017 Northern CA Fires and the first two days of 2018 Camp Fire, the model inferred 

emissions are well below the fuel-based estimates. This is reasonable because the inferred 

emission rates only include those that directly affect surface concentrations at monitors, 

which are predominantly those emissions that stay confined through the depth of the 

boundary layer. On the other hand, the injection height can typically reach a few 

kilometers (Amiridis et al., 2010; Martin et al., 2018), which is much larger than the daily 

averaged PBL in our study cases which are range from 100 to 400m obtained by HRRR 

model. The USFS estimates refer to total emissions, some of which are likely to stay 

above the boundary layer and do not affect ground-level concentrations at the AQMIS 

monitors. During the Nov 10 to Nov 18, most of the model inferred emissions are larger 

than the bottom-up emissions. This discrepancy could be related to the formation of 

secondary aerosols that are not accounted for in the bottom-up estimates (Ahern et al., 

2019). 

The modeled concentrations at downwind monitors account for the background 

emissions which are determined by least square fitting to concentration measurements. 

Notice that on October 10, 2017, the inferred emission rates from both models are 

relatively low even though the average measured surface concentration is higher than that 

of any other day (See Table 2.1). This is because the wind directions indicated that most 

monitors were not affected by the fire, which also appears to be supported by the wind 

rose in Figure 2.2. However, the inferred background concentration on this day is high to 

account for the high PM2.5 concentrations at the upwind ground monitors on this day. 
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(a) (b) 

 

(c) 

Figure 2.9. Emissions from the models compared with those from USFS bottom-up estimates 
from (a) Plume model in 2017 Northern CA Fires, (b) Lagrangian model in 2017 Northern CA 

Fires, and (c) Plume model in 2018 Camp Fire. The vertical bars indicate 95% confidence 
intervals derived from bootstrapping, as discussed in text. 

Table 2.3 shows that the emission estimates from the two models differ for each 

of the sources but the sum of the estimated emissions are similar as indicated in Table 

2.4. In the 2017 Northern CA Fires, the largest emissions are estimated to be 3566 and 

4032 tons/day, and both of them appeared on October 10, which correlated with the 

statistics results shown in Table 2.1. In the 2018 Camp Fire, Table 2.5 shows that the 
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highest emissions were estimated to be 890 tons/day on November 15, which showed an 

agreement with results from Table 2.2. 

Table 2.3. Emissions rates and 95% confidence intervals on Oct 9 calculated by the Plume model 
and the Lagrangian model 

Source 
Plume Model 

Emission Rates 
(Tons/Day) 

Plume Model 95% 
Confidence Interval 

(Tons/Day) 

Lagrangian Model 
Emission Rates 

(Tons/Day) 

Lagrangian Model 
95% Confidence 

Interval (Tons/Day) 
ATLAS 872 458-1632 640 289-962 
NUNS 0 0-1328 2371 270-4036 

POCKET 828 113-1009 0 0-0 
REDWOOD 0 0-584 531 150-831 

TUBBS 2030 754-2892 493 0-1163 
 

Table 2.4. Sum of the emissions in 2017 Northern CA Fires inferred from models. The lower and 
upper limits, LL and UL refer to 95% confidence limits normalized by the mean sum of 

emissions from all fires 

Date 

Plume Model Lagrangian Model 

Mean sum 
(tons/day) LL UL Mean sum 

(tons/day) LL UL 

 Oct-8 563 0.51 1.49 578 0.81 1.50 
 Oct-9 3566 0.62 1.38 4032 0.91 1.07 
 Oct-10 481 0.31 3.49 501 0.96 1.06 
 Oct-11 1129 0.76 1.17 1032 0.86 1.42 
 Oct-12 698 0.64 1.30 670 0.83 1.47 
 Oct-13 144 0.39 1.84 173 0.71 1.89 
 Oct-14 254 0.43 1.89 270 0.96 1.12 
 Oct-15 275 0.31 3.47 372 0.93 1.07 
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Table 2.5. Emissions from 2018 Camp Fire inferred from models. The lower and upper limits, LL 
and UL refer to 95% confidence limits normalized by the mean sum of emissions from all fires 

Date 

Plume Model 

Mean sum 
(tons/day) LL UL 

 Nov-8 227 0.60 1.28 
 Nov-9 154 0.54 1.82 
 Nov-10 568 0.78 1.23 
 Nov-11 383 0.00 1.97 
 Nov-12 528 0.82 1.24 
 Nov-13 492 0.81 1.19 
 Nov-14 503 0.78 1.18 
 Nov-15 890 0.82 1.19 
 Nov-16 437 0.78 1.34 
 Nov-17 448 0.85 1.17 
 Nov-18 461 0.82 1.19 

 

2.4.2 Concentration Maps 

We next examined the value of the AOD based model in improving the estimates 

from the dispersion model. The measured concentrations were fitted to a linear 

combination of the two models as follows 

 𝐶𝐶𝑜𝑜 = 𝑨𝑨𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 𝑩𝑩𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴 + 𝜀𝜀 (2.7) 

where 𝐶𝐶𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 is the estimate from the plume model, 𝐶𝐶𝐴𝐴𝐴𝐴𝐴𝐴 is the estimate from the 

AOD model, A and B are non-negative regression coefficients. Non-negative least 

squares regression is then used to fit A and B to daily concentrations over all the AQMIS 

stations. We see from Table 2.6 and Table 2.7 that the Combined Model 𝑅𝑅2  usually 

increased compared to those from the Plume Model when the satellite term makes a 
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contribution. In the 2017 Northern CA Fires, the largest 𝑅𝑅2 improvement was from 0.41 

to 0.59 on October 9, and in the 2018 Camp Fire the largest improvement was from 0.38 

to 0.73 on November 12. Figure 2.10 shows this improvement on November 12. 

Table 2.6. Contributions of Plume and AOD model estimates to Observed Concentrations in 2017 
Northern CA Fires. The value of B relative to that of A indicates the contribution of the AOD 

model.  

Date A B Plume Model R2 Combined Model R2 
 Oct-8 0.86 0.16 0.40 0.43 
 Oct-9 0.65 0.35 0.41 0.59 
 Oct-10 0.82 0.32 0.70 0.71 
 Oct-11 0.92 0.16 0.34 0.36 
 Oct-12 0.97 0.05 0.83 0.83 
 Oct-13 0.74 0.42 0.61 0.66 
 Oct-14 1.00 0.00 0.28 0.28 
 Oct-15 0.72 0.20 0.33 0.39 

 

Table 2.7. Contributions of Plume and AOD model estimates to Observed Concentrations in 2018 
Camp Fire 

Date A B Plume Model R2 Combined Model R2 
 Nov-8 0.57 0.27 0.13 0.15 
 Nov-9 1 0 0.37 0.37 
 Nov-10 1 0 0.20 0.20 
 Nov-12 0.35 0.67 0.38 0.73 
 Nov-13 1 0 0.49 0.49 
 Nov-14 0 1.07 0.29 0.57 
 Nov-15 0.34 0.84 0.24 0.33 
 Nov-16 0 1.28 0.22 0.53 
 Nov-17 0.52 0.80 0.49 0.68 
 Nov-18 1 0 0.32 0.32 
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(a) (b) 

Figure 2.10. Scatter with improved 𝑅𝑅2 on November 12 from (a) Plume Model and (b) Combined 
Model 

To use the residual Kriging method that we mentioned in Chapter 2.3.1, we 

generated the 100×100 grid (approximate 1km resolution) in the area we are interested 

in. Figure 2.11 shows the semivariograms used in the residual Kriging; each pair of 

locations were placed into 15 bins to fit spherical models shown in the figure 
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(a) (b) 

Figure 2.11. Semivariogram by grouping each pair of locations into 15 lag bins from (a) Residual 
kriging 2017 Northern CA Fires on October 13, and (b) Residual kriging 2018 Camp Fire on 

November 13 

This combined model was then used to create a concentration map as described 

previously using Equations (2.1) and (2.2). Figure 2.12 compares the map with a spatial 

resolution of 1 km created using Equation 7 with that created by simple Kriging of 

observations on October 13, 2017 and November 13, 2018, two of the high PM days 

during the fires. Visually, there appears to be little difference between the maps, but 

Figure 2.12 (e) and (f) show differences as large as 10 𝜇𝜇𝜇𝜇/𝑚𝑚3 at several locations. Figure 

2.12 (e) shows that the most negative residuals and positive residuals appear at the place 

where satellite information was missing at most locations as seen in Figure 2.5 (b). 
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(a) (b) 

 1  

(c) (d) 

  

(e) (f) 

Figure 2.12. PM2.5 maps created by (a) Kriging Observations in 2017 Northern CA Fires, (b) 
Model estimates combined with Kriged residuals for 2017 Northern CA Fires, (c) Kriged 

Observations in 2018 Camp Fire, (d) Model estimates combined with Kriged residuals in 2018 
Camp Fire, (e) Residuals of Kriged Observations minus Combined model in 2017 Northern CA 

Fires, and (f) Residuals of Kriging Observations minus Combined model in 2018 Camp Fire 
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Figure 2.13 indicates that the concentration field determined from the combined 

model shows greater spatial variation than that from simple Kriging. This is expected 

because Kriging can only reflect the variance of the observations. The differences can be 

above 10  𝜇𝜇𝜇𝜇/𝑚𝑚3  or below -10 𝜇𝜇𝜇𝜇/𝑚𝑚3  because the model introduces the variance 

associated with the underlying transport processes that produce the structures of the fire 

plumes. 

   

(a) (b) (c) 

   

(d) (e) (f) 

Figure 2.13. Histograms of PM2.5 concentrations created by (a) Simple Kriged Observations on 
October 13, (b) Model (Equation 7) plus Kriged residuals on October 13, (c) Differences between 

the two estimates on October 13, (d) Simple Kriged Observations on November 13, (e) Model 
(Equation 7) plus Kriged residuals on November 13, (f) Differences between the two estimates on 

November 13 
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2.5 Conclusions 

This chapter presents an approach to construct highly resolved surface PM2.5 maps 

by combining observations made at surface monitors and satellite data collected during 

wildfires. The method uses models to fill in the gaps in the measured data. Surface 

observations are first described using two dispersion models: a Lagrangian model based 

on backward trajectories from source to receptor and a segmented plume model that 

transports emissions from the source within a large-scale plume, whose horizontal 

dimensions are governed by trajectories originating from the sources. Estimates from 

these two models are fitted to surface observations to obtain emissions rates from 

sources. The satellite measurements of AOD, which measures column integrated PM2.5, 

are also fitted to surface observations using an empirical power law model. Because the 

results from the Lagrangian model are similar to those from the Plume model, the 

computationally efficient Plume model is used in most of the analysis.  

The AOD model and the Plume model are then combined linearly to describe 

surface PM2.5 observations. The AOD model makes a contribution to the correlation,𝑅𝑅2 

,between model estimates and surface observations; the contribution is relatively small on 

most days, but can be significant on some days.  

This model is used to construct 1 km resolved maps of surface PM2.5 

concentration during the October 2017 fires and the 2018 Camp Fire in Northern 

California. These maps interpolate between observations by combining model estimates 

with Kriged residuals between model estimates and observations. The residual Kriging 
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maps show greater spatial variation than that from simple Kriging, which just interpolates 

the measured concentrations. 

The proposed approach to creating highly resolved maps (1 km by 1 km grid size) 

of surface PM2.5 is a valuable contribution to estimating health risks associated with 

wildfires, when ground-level concentrations of PM2.5 can be well above the 24 hour 

standard of 35 𝜇𝜇𝜇𝜇/𝑚𝑚3. In principle, the plume dispersion model is simple enough to 

allow updating of the parameters, horizontal plume spread and effective emission rate, in 

real time, which suggests that it can complement or be incorporated into a system 

(Marsha & Larkin, 2019 for example) to forecast ground-level PM2.5 during wildfires. 
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3. Quantifying and Monitoring Methane Emissions from Dairy 

Farms in California Using TROPOMI and EM27/SUN 

Measurements 

3.1 Introduction 

Atmospheric methane (CH4) concentrations have increased by a factor of 2.5 

since preindustrial times and is now responsible for the second largest radiative forcing 

after carbon dioxide (IPCC, 2013). Anthropogenic CH4 emissions are estimated to 

account for 50 to 65% of the total CH4 emissions globally (IPCC, 2013), and they may be 

responsible for the increase in global CH4 concentrations since 2007 (Kirschke et al., 

2013; Luther et al., 2019). CH4 emissions from agriculture and waste are estimated at 195 

Tg/yr globally, accounting for 57% of total anthropogenic emissions (Marielle Saunois et 

al., 2016). The US national greenhouse gas emission inventory reports that CH4 

emissions from US agricultural activities increased by 16.2% between 1990 and 2018 

(EPA, 2020). Additionally, from 2000 to 2017, dairy farm emissions in California have 

increased by 16% in the state’s inventory (CARB, 2020). Dairy facilities account for 

roughly 60% of agricultural GHG emissions, while livestock contributes nearly half of 

the CH4 emissions in California (CARB, 2020; Maasakkers et al., 2016). California’s 

Senate Bill 1383 requires livestock manure CH4 emissions to be reduced below 2013 

levels by 2030 (CARB, 2016a). 

Despite the significance of global and regional CH4 emissions, estimates of CH4 

emissions from point sources are highly uncertain due to lack of sufficiently fine 
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resolution observations from either space-based or in situ observations 

(Jongaramrungruang et al., 2019). Jeong et al. (2016) and Cui et al. (2019) applied a 

Bayesian inverse model to multitower observations in California to suggest that total state 

annual CH4 emissions are 1.2 - 1.8 and 1.14 - 1.47 times higher than the California Air 

Resources Board (CARB) emission inventories.  

Methane emissions are commonly estimated by bottom-up methods or top-down 

methods. Bottom-up methods refer to methods that use the physical and chemical 

characteristics of the source to estimate CH4 emissions (Allen, 2014). For example, the 

US Environmental Protection Agency (US EPA) (US-EPA, 2017) and the CARB 

(CARB, 2015) suggest methods that estimate CH4 emissions from manure lagoons using 

number of livestock animals house at a dairy farm, manure management information, and 

an empirical factor that converts volatile solids to CH4. These bottom-up methods have 

large uncertainties due to uncertainty in cow population, manure management strategies, 

and most importantly the empirical CH4 emission factor based on a small sample of 

measurements (Marklein et al., 2020).  

Top-down methods estimate CH4 emissions from ambient observations of CH4 

made on towers, mobile platforms, and satellites (Amini et al., 2022; Chen et al., 2016; 

Cui et al., 2017; Heerah et al., 2021; Jeong et al., 2016; Viatte et al., 2017). This chapter 

focuses on a method to infer methane emissions from column averaged CH4 mixing ratios 

measured with satellites and a surface-based instrument, the EM27/SUN, which uses 

solar absorption spectroscopy along the atmospheric path from the instrument to the sun. 

Heerah et al. (2021) used EM27/SUN measurements to infer CH4 emissions from the San 
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Joaquin valley, a spatial scale that is an order of magnitude larger than that addressed in 

this study. A number of studies have estimated methane emissions from CH4 mixing 

ratios averaged over atmospheric columns measured using a variety of instruments, such 

as ground-based spectrometers (Chen et al., 2016; Gisi et al., 2012; Viatte et al., 2017), 

aircraft remote sensing instruments (Frankenberg et al., 2016; Thorpe et al., 2016), and 

satellites (Jacob et al., 2022; Jacobs et al., 2020; Qu et al., 2021). Because the entire 

atmospheric column is measured, column-averaged measurements are believed to be less 

sensitive to vertical and near-surface transport of methane that affect interpretation of 

point methane concentrations (Heerah et al., 2021; Lauvaux and Davis, 2014).  

Several methods have been used to estimate point source or area source CH4 

emission rates from column observations. Chen et al. (2016) and Jacob et al. (2016) used 

a simple mass balance to infer area source emission rates. This balance essentially 

equates the difference in the mole fractions of CH4 between the downwind and upwind 

receptors to the product of unknown emission rate, the time taken for air to travel over 

the source and the total source area. Frankenberg et al. (2016) inferred emissions from a 

point source by assuming that the integral of the product of the vertical profiles of 

concentration and horizontal wind speeds is approximated by the product of an effective 

wind speed and the vertically integrated methane enhancement retrieved from a remote 

instrument (Bovensmann et al., 2010; Varon et al., 2018).  

Methods that infer emissions from column average methane concentrations make 

assumptions about the wind fields and source geometry that lead to uncertainty in the 

corresponding emission estimates. Varon et al. (2018) has developed a semi-empirical 
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method that purports to overcome some of the major uncertainty in currently used 

methods of estimating emissions from point sources especially when the estimates are 

based on instantaneous images of plumes. The motivation to develop the method 

described in this chapter is to account for the geometry of the source, the geometry of the 

column measurements, and the micrometeorology of the atmospheric boundary layer. 

The detailed treatment of the governing processes avoids some of the assumptions made 

in previous estimates of emission rates. We estimate CH4 emissions from sources 

distributed over scales of the order of 10 kilometers using remotely sensed column 

measurements of methane enhancements. The data originate from four field campaigns 

conducted near Visalia, California located in central part of the state where the majority 

of dairy farms in the state are located. The objectives of this chapter are to: 1) show how 

a dispersion model with a detailed treatment of transport and dispersion can be used to 

quantify CH4 emissions from area sources and the associated uncertainty using column-

based measurements and 2) compare CH4 emission estimates derived from two different 

sources: TROPOMI and the EM27/SUN instruments. This chapter is spilt into two major 

parts. The first part of the chapter describes the field campaigns and details of the 

numerical model (chapter 3.2). Then the second part discusses the emission results from 

EM27/SUN and TROPOMI sequentially (chapter 3.3). 

3.2 Data and Methods 

3.2.1 Site 

We measured the column-averaged dry-air mole fractions of CH4 (𝑋𝑋𝑋𝑋𝐻𝐻4) in an 

area with a cluster of dairy farms north of Visalia located in California’s San Joaquin 
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Valley (SJV) (Figure 3.1). We deployed EM27/SUN instruments at the northwest (NW) 

and southeast (SE) corners of the study area. Because the dominant wind direction in 

Visalia during the study was northwest, instruments were well positioned to make 

simultaneous 𝑋𝑋𝑋𝑋𝑋𝑋4 measurements of the background and downwind of the dairy farms. 

The direct distance between the NW and SE sites is approximately 15 km. Surface 

micrometeorology was measured using a CSAT3 3-D sonic anemometer on a 10 m tower 

located in one of the dairy farms in the cluster. 

 

Figure 3.1. Locations of dairy facilities and deployed instruments in the study area. SE1 and SE2 
are two different setup locations at southeast corners. 

Four field campaigns were conducted to monitor the change in the CH4 emissions 

from the dairy farms. The EM27/SUN deployment schedule and placement is listed in 

Table 3.1. We deployed two EM27/SUN owned by Los Alamos National Lab and 

NASA's Jet Propulsion Lab in the first three campaigns (March 2019, June 2019, and 



 48 

September 2019). An additional EM27/SUN provided by Harvard University was 

deployed in January 2020. 

Table 3.1. EM27/SUN working schedule and setup configuration 

Date Measurement Time (Local Time) Location 

03/25/2019 10:50 to 18:11 SE2, NW 

03/26/2019 10:45 to 17:45 SE2, NW 

03/29/2019 11:00 to 18:20 SE2, NW 

06/21/2019 10:00 to 18:00 SE2, NW 

06/22/2019 11:00 to 19:00 SE2, NW 

09/11/2019 11:00 to 18:00 SE2, NW 

09/13/2019 11:00 to 18:00 SE2, NW 

09/14/2019 8:00 to 17:00 SE2, NW 

09/17/2019 10:30 to 18:00 SE2, NW 

01/23/2020 11:30 to 16:00 SE1 *, SE2, NW 

01/28/2020 10:00 to 16:00 SE1 *, SE2, NW 

01/31/2020 10:00 to 15:30 SE1 *, SE2, NW 

*EM27/SUN was deployed in the third location in January 2020. 

3.2.2 EM27/SUN measurements 

The EM27/SUN is a compact and transportable solar tracking FTS. Column-

averaged dry-air mole fractions of gases (Xgas) are retrieved with the instrument by using 
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solar absorption spectroscopy along the atmospheric path from the instrument to the sun. 

It takes 5.8s to complete one forward/backward scan and the instrument has a 1σ running 

precision of 0.06% for 𝑋𝑋𝑋𝑋𝐻𝐻4 (Chen et al., 2016; Hedelius et al., 2016). The raw 𝑋𝑋𝑋𝑋𝐻𝐻4 

measurements from the EM27/SUN were retrieved from double-sided interferograms 

using the GGG and I2S software (Wunch et al., 2015) and EGI processing suite (Hedelius 

et al., 2016). All the EM27/SUN instruments were calibrated to remove systematic 

offsets at the NASA Armstrong TCCON site or the Californian Institute of Technology 

TCCON site. The TCCON instruments are part of a network of high-resolution solar 

Fourier transform spectrometers, which are tied to the World Meteorological 

Organization (WMO) trace gas scale using aircraft concentration profiles. We found that 

the coefficient of determination 𝑅𝑅2  of the calibrations between our instruments and 

TCCON sites was higher than 0.96, indicating that our instruments correlated well with 

TCCON (Heerah et al., 2021). 

Examples of the raw 𝑋𝑋𝑋𝑋𝐻𝐻4  measurements collected in the four campaigns are 

shown in Figure 3.2. We see that the 𝑋𝑋𝑋𝑋𝐻𝐻4  at the downwind site (SE1 or SE2) are 

generally larger than those measured at the upwind site (NW), indicating the contribution 

of CH4 emissions from the dairy farms. The dispersion model used 30-minute averaged 

differential column wind measurements between SE and NW (NW and SE) 

measurements to infer the emissions. 



 50 

  

  

  

Figure 3.2. EM27/SUN raw measurements collected in March 2019, June 2019, September 2019, 
and January 2020. For each month, we show one day of measurements as an example.  

3.2.3 Meteorological measurements 

The micrometeorological data was measured with a CSAT3 3-D sonic 

anemometer mounted at 10 m. The instrument recorded 3d winds and temperature at 

20Hz. The data from the sonic anemometer were processed to obtain the 

micrometeorological variables, the friction velocity (𝑢𝑢∗), the kinematic heat flux (𝑄𝑄𝑜𝑜), 

and the Monin-Obukhov length (𝐿𝐿) required by the dispersion model. The boundary 

layer height was estimated with AERMET, the meteorological processor of the American 
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Meteorological. Society and U.S. Environmental. Protection. Agency Regulatory Model 

(AERMOD) (Cimorelli et al., 2005). The averaged meteorological measurements 

collected over four different seasons are shown in Table 2.2. We also used the High-

Resolution Rapid Refresh (HRRR) model as the source of meteorological data to model 

CH4 emissions based on column-averaged observations by TROPOMI (Blaylock et al., 

2017; Rolph et al., 2017b). The HRRR model provides 3-km resolved hourly 

meteorological data that includes 3-dimensional wind fields, surface temperature (𝑇𝑇), 

surface friction velocity (𝑢𝑢∗), surface heat flux (𝑄𝑄𝑜𝑜), and the boundary height (𝑧𝑧𝑖𝑖). 

Table 3.2. Meteorological data collected from 10 m sonic anemometer averaged during 9:00 to 
18:00 (local time) 

𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌𝐌 

𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏 

𝐖𝐖𝐖𝐖𝐖𝐖𝐖𝐖 

𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒𝐒 

(𝒎𝒎 𝒔𝒔⁄ ) 

𝐖𝐖𝐖𝐖𝐖𝐖𝐖𝐖 

𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃 

(°) 

𝐮𝐮∗ 

(𝐦𝐦 𝐬𝐬⁄ ) 

𝑻𝑻 

(°𝑪𝑪) 

𝑳𝑳 

(𝒎𝒎) 

𝑸𝑸𝒐𝒐 

(𝑲𝑲

⋅ 𝒎𝒎/𝒔𝒔) 

𝒛𝒛𝒊𝒊 

(𝒎𝒎) 

March 25 - March 

30, 2019 
2.19 316 0.28 17.92 -43.93 0.06 611 

June 18 – June 27, 

2019 
3.29 288 0.29 30.27 -23.48 0.11 900 

September 11 - 

September 17, 

2019 

2.35 307 0.24 26.41 -29.35 0.07 718 

January 21- 
February 02, 2020 

1.79 308 0.18 12.61 -25.86 0.03 365 

 

Our modeling framework assumes that mean winds in the study area are spatially 

homogeneous over a horizontal scale of 10 km. To evaluate the degree to which this 
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assumption was met, we used the 10 m wind data collected at Visalia Municipal Airport 

(~11 km from the sonic anemometer location), which is part of the Automated Surface 

Observing System (ASOS). We compared the ASOS measurements with sonic 

anemometer measurements and HRRR wind data at the sonic anemometer location 

(Figure 3.3). The 5-minute data from 10:00 to 18:00 local time during the complete 

measurement days was used for sonic anemometer comparisons (left panel) and hourly 

averaged data was used for HRRR comparisons (right panel) during the campaign 

periods. The 𝑅𝑅2  with the ASOS data is 0.64 and 0.55 for the sonic anemometer and 

HRRR data, respectively. The scatter suggested by these correlation coefficients between 

different sources of wind fields has bearing on the uncertainty in the inferred emission 

rates.  

  

Figure 3.3. 10-m wind comparison: ASOS (Visalia Municipal Airport site) versus the sonic 
anemometer (left panel) and ASOS versus HRRR (right panel). Positive U and V components 

represent the east and north directions. 
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Different methods were used to examine the vertical distribution of the wind 

speeds (Figure 3.4). Measurements were made with radiosondes that were launched in the 

morning and evening near the sonic anemometer location during the March campaign. 

We also accessed hourly wind observations from a 915-MHz boundary-layer profiler 

provided by NOAA Physical Sciences Laboratory. Its vertical coverage ranges from 120 

m to 4000 m with approximately 62 m vertical resolution and 0.99 𝑚𝑚/𝑠𝑠  precision 

(Angevine et al., 1998). 

Modeled wind profiles were obtained from the HRRR model, which predicts wind 

profiles at 25-minibar pressure intervals from the surface. A similarity wind profile was 

also generated using the 10 m sonic anemometer data following Businger (1973). 

The wind speeds from the Visalia radar wind profiler, radiosonde, and HRRR 

show a similar increasing trend with height on March 29th morning, however the 

similarity wind profile underpredicts the wind speed compared to the other 

measurements. This indicates the need to combine the similarity wind profiles from 

surface measurements with wind profiles observed at higher altitudes in applying the 

dispersion model, described in the next section. 
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Figure 3.4. Comparison of vertical wind speed observations and predictions on one study day. 

3.2.4 Interpretation of data using a dispersion model 

The data collected in the field study was used to infer emissions from the manure 

lagoons by fitting results from a dispersion model to the measurements. Details of the 

dispersion model and the fitting procedure are described next. 

The contribution of emissions from a surface-based area source, such as a manure 

lagoon, to the concentration at a receptor at (𝑥𝑥𝑟𝑟 , 𝑦𝑦𝑟𝑟 , 𝑧𝑧𝑟𝑟) is computed by representing the 

area by a set of line sources. 
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Figure 3.5. Area source representation 

As shown in Figure 3.5, each line source spans the area source and is placed 

perpendicular to the near surface wind speed; the x-axis of the co-ordinate system is 

parallel to the direction of the surface wind speed. This allows us to compute the 

contribution of each line source to the concentration at the receptor using the expression 

(Venkatram and Horst, 2006) 

 
𝐶𝐶(𝑥𝑥𝑟𝑟 , 𝑦𝑦𝑟𝑟 , 𝑧𝑧𝑟𝑟) = 𝑞𝑞𝐹𝐹𝑧𝑧(𝑥𝑥𝑟𝑟 − 𝑥𝑥𝑙𝑙 , 𝑧𝑧𝑟𝑟)

𝑒𝑒𝑒𝑒𝑒𝑒(𝑡𝑡2) − 𝑒𝑒𝑒𝑒𝑒𝑒(𝑡𝑡1)
2

 (3.1) 

where 𝑞𝑞 is the emission rate per unit length of line source, 𝑥𝑥𝑟𝑟 ,𝑦𝑦𝑟𝑟  and 𝑧𝑧𝑟𝑟, are the 

co-ordinates of the receptor, 𝑥𝑥𝑙𝑙 is the x-co-ordinate of the line source, and 

 𝑡𝑡𝑖𝑖 =
𝑦𝑦𝑙𝑙𝑙𝑙 − 𝑦𝑦𝑟𝑟

√2𝜎𝜎𝑦𝑦(𝑥𝑥𝑟𝑟 − 𝑥𝑥𝑙𝑙)
 

(3.2) 
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The y-co-ordinates of the beginning and end of the line source are 𝑦𝑦𝑙𝑙1 and 𝑦𝑦𝑙𝑙2, 

and 𝜎𝜎𝑦𝑦(𝑥𝑥𝑟𝑟 − 𝑥𝑥𝑙𝑙) is the horizontal spread of the plume over the distance 𝑥𝑥𝑟𝑟 − 𝑥𝑥𝑙𝑙. 

The vertical distribution of the concentration is given by 𝐹𝐹𝑧𝑧(𝑥𝑥, 𝑧𝑧) , which is 

commonly described with a Gaussian distribution. Nieuwstadt and Van Ulden (1980) 

show that the tracer concentrations measured during the classic Prairie Grass experiment. 

Barad (1958) indicates that the vertical concentration distribution is more nearly 

exponential than Gaussian during unstable conditions; it is close to Gaussian only under 

very stable conditions. They also show that the solution of the two-dimensional mass 

conservation provides an excellent description of the vertical distribution of concentration 

when the wind speed and eddy diffusivity are formulated using Monin-Obukhov 

similarity. Current formulations of plume spread draw upon this early work (Venkatram 

et al., 2011). 

We use the numerical solution of the two-dimensional mass conservation equation 

to derive 𝐹𝐹𝑧𝑧(𝑥𝑥, 𝑧𝑧) because it provides a realistic description of the vertical distribution of 

concentrations associated with surface releases. The equation is 

 
𝑈𝑈(𝑧𝑧)

𝜕𝜕𝐹𝐹𝑧𝑧
𝜕𝜕𝜕𝜕

=
𝜕𝜕
𝜕𝜕𝜕𝜕 �

𝐾𝐾𝑧𝑧(𝑧𝑧)
𝜕𝜕𝐹𝐹𝑧𝑧
𝜕𝜕𝜕𝜕 �

 (3.3) 

where the wind speed, 𝑈𝑈(𝑧𝑧) , and eddy diffusivity, 𝐾𝐾𝑧𝑧(𝑧𝑧) , are functions of 

micrometeorological variables in addition to 𝑧𝑧. These variables are the surface friction 

velocity, 𝑢𝑢∗, the Monin-Obukhov (MO) length, 𝐿𝐿, the surface roughness length, 𝑧𝑧0, and 

the boundary layer height, 𝑧𝑧𝑖𝑖. We use formulations suggested by Businger (1973), based 

on MO similarity theory, to represent the wind, 𝑈𝑈(𝑧𝑧), for z < 0.1𝑧𝑧𝑖𝑖 and the radar wind 
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profiler measurements for heights between 0.1𝑧𝑧𝑖𝑖 and zi The eddy diffusivity profile 𝐾𝐾(𝑧𝑧) 

follows MO similarity for 𝑧𝑧 < 0.1𝑧𝑧𝑖𝑖, and then taken to be the value at 𝑧𝑧 = 0.1𝑧𝑧𝑖𝑖 above 

this height. 

One of the attractive features of applying Equation (3.3) is that we can specify the 

vertical distributions of wind speed and eddy diffusivity to obtain the best description of 

the measured concentrations; the Gaussian distribution does not provide this flexibility. 

Note that the eddy diffusivity representation of vertical mixing is not realistic for elevated 

releases in the atmospheric boundary layer. 

The boundary conditions for Equation (3.3) are 

 𝜕𝜕𝐹𝐹𝑧𝑧
𝜕𝜕𝜕𝜕

= 0 𝑎𝑎𝑎𝑎 𝑧𝑧 = 𝑧𝑧0 𝑎𝑎𝑎𝑎𝑎𝑎 𝑧𝑧 = 𝑧𝑧𝑖𝑖 (3.4) 

where 𝑧𝑧𝑖𝑖 is the boundary layer height. Equation (3.4) says that there is no vertical 

transport beyond the boundaries of the domain, (𝑧𝑧0, 𝑧𝑧𝑖𝑖). 

The horizontal plume spread, σy, used in Equation (3.2) for the contribution of a 

line source is based on the expression suggested by Eckman (1994) and applied by 

Venkatram et al. (2013) to describe horizontal spread of plumes released during the 

Prairie Grass field study 

 𝑑𝑑𝜎𝜎𝑦𝑦
𝑑𝑑𝑑𝑑

=
𝜎𝜎𝑣𝑣
𝑈𝑈(𝑧𝑧̅)

 

and 

z̅(𝑥𝑥) =
∫ 𝐹𝐹𝑧𝑧(𝑥𝑥, 𝑧𝑧)𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑖𝑖
𝑧𝑧0

∫ 𝐹𝐹𝑧𝑧(𝑥𝑥, 𝑧𝑧)𝑑𝑑𝑑𝑑𝑧𝑧𝑖𝑖
𝑧𝑧0

 

(3.5) 
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where 𝑧𝑧̅ is the center of mass of the vertical distribution 𝐹𝐹𝑧𝑧(𝑥𝑥, 𝑧𝑧) obtained from the 

solution of Equation (3.3), and 𝑈𝑈(𝑧𝑧̅) is the wind speed at the mean plume height by 

interpolating the value from the combined wind profile. 

The horizontal domain used in the solution of Equation (3.3) extends from the 

minimum of the x-co-ordinates of corners of the area polygon to the receptor, 𝑥𝑥𝑟𝑟. The 

source of emissions is represented by a non-zero value of concentration at a near surface 

vertical level at 𝑥𝑥 = 0  in the co-ordinate system used in the numerical solution of 

Equation (3.3); the resulting concentrations are normalized by the integral of the vertical 

distribution to yield 𝐹𝐹𝑧𝑧 for a unit emission rate. The concentrations are computed on a 

two-dimensional grid at a fine enough spatial resolution to allow us to linearly interpolate 

the vertical distribution at any horizontal distance between a line source and receptor. 

The contribution of the area source to the concentration at a receptor is computed 

by summing over contributions from the line sources used to represent the area source; 

the emission per unit length of the line sources is obtained by dividing the unit strength 

by the total length of the lines. This integration is conducted in steps in which the number 

of line sources is doubled in subsequent steps, and successive results compared. The 

integration is terminated when the relative error between successive integrals, 

extrapolated to zero distance between the line sources, is less than 10−4. 

This procedure is extended to compute the integral of the concentration along a 

specified line in three-dimensional space. This integral is required in interpreting data 

from the EM27/SUN instrument, which measures the integral of the methane 

concentration along the line joining the measuring instrument to the sun. The equation 
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describing the line can be expressed in terms of the azimuth and elevation angles of the 

sun. 

This integral consists of two integrals: the first integrating the contributions from 

the line sources from the area sources to the concentration at a receptor along the path, 

and the second integrates these concentrations along the path. If it is assumed that the 

methane above the boundary layer is at background levels, the line integral is terminated 

at the top of the boundary layer. 

As shown in Figure 3.6, the EM27/SUN measures the line integral of the CH4 

molar concentration normalized by the total molar mass of air per unit cross-sectional 

area along the line joining the instrument to the sun; this is the average mixing ratio of 

methane along this line of sight. 

 

Figure 3.6. Atmospheric column geometry from the EM27/SUN measurement 

The molar mass of air along the line of sight of the EM27/SUN is 
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The molar mass of air along the line of sight of the EM27/SUN is 

 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑎𝑎𝑎𝑎𝑎𝑎 =
𝑝𝑝

𝑔𝑔 ⋅ 𝑠𝑠𝑠𝑠𝑠𝑠(𝜃𝜃) ⋅ 𝑀𝑀𝑊𝑊𝑎𝑎𝑎𝑎𝑎𝑎
 

(3.6) 

where 𝑝𝑝 is the surface pressure, g is the acceleration due to gravity, 𝜃𝜃 is the sun’s 

elevation angle, and 𝑀𝑀𝑊𝑊𝑎𝑎𝑎𝑎𝑎𝑎  is the molecular weight of air. Then the modeled value, 

𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, that is compared to the measured value is 

 
𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = � 𝐶𝐶𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚  (𝑠𝑠

𝑠𝑠2

0
(𝑥𝑥, 𝑦𝑦, 𝑧𝑧)) 𝑑𝑑𝑑𝑑

1
𝑀𝑀𝑊𝑊𝐶𝐶𝐻𝐻4 ⋅ 𝑀𝑀𝑀𝑀𝑀𝑀𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎

 (3.7) 

where 𝑠𝑠(𝑥𝑥,𝑦𝑦, 𝑧𝑧) describes the line joining the instrument to the sun, and 𝑠𝑠2 is the 

upper limit of the integral where the line intersects the boundary layer height. 

The unknown CH4 emission rates from the dairy farms are estimated by fitting the 

differences in the values of EM27/SUN measurements made between the downwind and 

upwind locations to the corresponding modeled values, 𝛥𝛥𝛥𝛥 , corresponding to unit 

emission rates 

 𝛥𝛥𝑋𝑋𝑖𝑖 = � 𝛥𝛥𝛥𝛥𝑖𝑖𝑖𝑖
𝑗𝑗

𝑄𝑄𝑗𝑗 + 𝜀𝜀𝑖𝑖 (3.8) 

where the subscript “i” denotes the measurement, “j” refers to the source area 

with the unknown emission rate, 𝑄𝑄𝑗𝑗 , and 𝜀𝜀𝑖𝑖 is the residual between the model estimate 

and the measured value. The emission rates 𝑄𝑄𝑗𝑗 are obtained by minimizing the sum of 

residual squared ∑ 𝜀𝜀𝑖𝑖2𝑖𝑖  with the constraint that the 𝑄𝑄𝑗𝑗 values are greater than or equal to 

zero. To achieve this, we use the MATLAB function lsqnonneg described in Lawson and 

Hanson (1974). 

The 95% confidence values of the emission rates are obtained using a version of 

bootstrapping in which the residuals are added randomly to the initial set of modeled 
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values to create a set of ‘pseudo observations’ (Ding et al., 2021). We created 1500 sets 

of pseudo measurements, which were then used to derive 1500 emission sets, 𝑄𝑄𝑗𝑗 , using 

Equation (3.5). The values of 𝑄𝑄𝑗𝑗  were then used to estimate the 95% confidence 

intervals. 

3.3 Results and Discussion 

3.3.1 Emissions from the EM27/SUN measurements 

The performance of the model in fitting the observed 𝑋𝑋𝑋𝑋𝐻𝐻4  enhancements 

between the upwind and downwind sites is measured with the 𝑅𝑅2 between the modeled 

and observed values, the percentage of modeled values within a factor of 2 of the 

observed values (Fact2), geometric mean (𝑚𝑚𝑔𝑔) and the geometric standard deviation (𝑠𝑠𝑔𝑔) 

of the ratios of the modeled to the observed values (Venkatram et al., 2013b) 𝑚𝑚𝑔𝑔 and are 

defined as 

 𝑚𝑚𝑔𝑔 = 𝑒𝑒𝑒𝑒𝑒𝑒(⟨𝜀𝜀𝑚𝑚⟩) (3.9) 

 𝑠𝑠𝑔𝑔 = 𝑒𝑒𝑒𝑒𝑒𝑒(𝜎𝜎(𝜀𝜀)) (3.10) 

where ⟨⟩ and 𝜎𝜎 represent average and standard deviation, respectively, and 𝜀𝜀𝑚𝑚 is 

the residual between the logarithms of model predictions and observations, given by 

 𝜀𝜀𝑚𝑚 = 𝑙𝑙𝑙𝑙(𝐶𝐶𝑝𝑝) − 𝑙𝑙𝑙𝑙(𝐶𝐶𝑜𝑜) (3.11) 

𝑚𝑚𝑔𝑔  is a measure of the model bias; 𝑚𝑚𝑔𝑔  greater (less) than unity indicates 

overestimation (underestimation) by the model. 𝑠𝑠𝑔𝑔  is a measure of the uncertainty of 

modeled values and 𝑠𝑠𝑔𝑔2 is an approximate measure of the 95% confidence interval of the 

ratio of modeled to measured values. 
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In order to capture the effective plume signals from the cluster dairy farms, the 

EM27/SUN dataset was filtered using wind direction and mole fraction differences. Only 

wind direction ranges from 270 to 360 degree with a positive mole fraction difference 

(SE-NW) or wind direction ranges from 0 to 90 degree with a positive mole fraction 

difference (NW-SE) were used to estimate emission rates.  

The 𝑅𝑅2 values between modeled and measured values of methane enhancement 

were 0.78, 0.45, 0.82, and 0.43 for March 2019, June 2019, September 2019, and January 

2020, respectively (Figure 3.7). 𝑚𝑚𝑔𝑔  ranges from 1.04 to 1.12 (relative to unity) and 

𝑠𝑠𝑔𝑔 from 1.66 to 2.49. Figure 3.8 compares the estimates from the dispersion model with 

the corresponding to EM27/SUN measured differential methane mole fractions. As seen 

in the figure, the dispersion model captures the variation of the measured 𝛥𝛥𝛥𝛥𝛥𝛥𝐻𝐻4 during 

the campaign periods. 
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Figure 3.7. Scatter plots of EM27/SUN measurements and predictions from the dispersion model 
for all the campaigns 
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Figure 3.8. Comparisons of EM27 measurements and model estimates at the 30-minute averaged 
sampling points during the campaigns. 

The model inferred CH4 emissions driven by the EM27/SUN and 10 m sonic 

anemometer measurements as well as the 95% confidence intervals are shown in Table 

3.3. We compare these values with the ‘bottom-up’ annual averaged emissions 25.3 

Gg/yr estimated by Marklein et al. (2021) using populations and habits of the cows in the 

dairy farms being examined. These emissions include enteric fermentation emissions 
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based on dry matter intake by total cattle (Appuhamy and Kebreab, 2018) and manure 

emissions (Hristov et al., 2017). 

The highest model inferred emission rate is 105.0 Gg/yr in the summer campaign, 

and the 95% confidence interval is 80.4 -119.1 Gg/yr. The best fit value is 4.2 times the 

prior bottom-up emission rate. The emission rates from the other three campaigns range 

from 43.7 to 49.8 Gg/yr, which are lower than that of June 2019. We notice that all of 

these emissions are at least 1.7 times higher than the bottom-up emission estimates. 

Table 3.3. Inferred CH4 emissions and uncertainties from all field campaigns 

Time Best Fit Emission 
(Gg/yr) 

95% Confidence 
Intervals Factor to Prior 

March 2019 44.7 [41.3, 48.8] 1.8 

June 2019 105.0 [80.4, 119.1] 4.2 

September 2019 43.7 [39.4, 53.1] 1.7 

January 2020 49.8 [46.7, 55.6] 2.0 
 

3.3.2 Impact of modeled meteorology 

Since meteorological data is not always available from the 3-D sonic, we 

examined the potential use of the HRRR meteorological data as an alternative. The 

EM27/SUN measurements during January 2020 were used in the evaluation, and the 

micrometeorological data from the sonic anemometer and HRRR model served as inputs 

to the dispersion model respectively. 

The meteorological datasets were obtained from the HRRR model, which was 

then interpolated at the location corresponding to the sonic anemometer using a linear 2-

D scattered scheme. We used the hourly HRRR data including the surface temperature at 
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2 m (𝑇𝑇), the surface friction velocity (𝑢𝑢∗), the kinematic heat flux (𝑄𝑄𝑜𝑜), and the mixed 

layer height, 𝑧𝑧𝑖𝑖. The vertical velocity profiles were constructed from wind vectors (𝑢𝑢, 𝑣𝑣) 

at 10 m, 80 m, 1000 mbar height (~111 m) and levels at 25 mbar intervals (~220 m) up to 

a height of 775 mbar (~1950 m). 

The crosswind turbulence velocity required by the dispersion model is estimated 

from the relationship (Venkatram and Princevac, 2008) 

 𝜎𝜎𝑣𝑣 = (𝜎𝜎𝑣𝑣𝑣𝑣3 + 𝜎𝜎𝑣𝑣𝑣𝑣3 )
1
3 (3.12) 

where 𝜎𝜎𝑣𝑣𝑣𝑣 = 1.9𝑢𝑢∗ for the mechanical component as in Hicks (1984), and the 

convective component 𝜎𝜎𝑣𝑣𝑣𝑣 is given by (Isakov et al., 2007) 

 
𝜎𝜎𝑣𝑣𝑣𝑣 = 0.6 �

𝑔𝑔 ⋅ 𝑧𝑧𝑖𝑖 ⋅ 𝑄𝑄𝑜𝑜
𝑇𝑇

�
1
3

,𝑤𝑤ℎ𝑒𝑒𝑒𝑒 𝑄𝑄𝑜𝑜 > 0 

and 

𝜎𝜎𝑣𝑣𝑣𝑣 = 0,𝑤𝑤ℎ𝑒𝑒𝑒𝑒 𝑄𝑄𝑜𝑜 ≤ 0 

(3.13) 

Figure 3.9 compares the 𝜎𝜎𝑣𝑣 values computed from Equation (3.12) and (3.13) at 

the locations of the 3D sonic anemometer to measurements from the sonic anemometer. 

The impact of such differences in modeled and measured micrometeorology was assessed 

through differences in the corresponding inferred methane emission rates, shown in the 

violin plots of Figure 3.10. 
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Figure 3.9. Comparison of horizontal velocity fluctuations (𝜎𝜎𝑣𝑣) measured with 3D sonic 
anemometer with values inferred from HRRR model results using Equation (9) 

We see from the violin plot that the HRRR meteorology yields slight 

overestimates of CH4 emissions relative to those based on sonic anemometer 

measurements; however, the uncertainty of the emission estimates based on the HRRR 

data are larger than those based on the sonic measurements.  
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Figure 3.10. Violin plot of CH4 emissions estimates using different meteorological (Met) data in 
January 2020. The width of the color region represents the frequency of the fitted emissions, 

while the best fit emissions are determined using non-negative least squares regression. 

3.3.3 TROPOMI based emissions 

CH4 emission rates were also estimated by the dispersion model using 

instantaneous column measurements from the TROPOMI instrument mounted on a 

satellite that passes over the study area once a day at 13:30 local solar time. The 

TROPOspheric Monitoring Instrument (TROPOMI) is one of the current instruments on 

board the Sentinel 5 satellite, which can measure a wide range of atmospheric pollutants 

including nitrogen dioxide (NO2), ozone (O3), sulfur dioxide (SO2), and methane (CH4). 

TROPOMI measures the column-averaged gas concentration using backscattered sunlight 

in the shortwave-inferred (SWIR) spectral range (Butz et al., 2012). 
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TROPOMI, launched in October 2017, provides daily global measurements at 

approximately 13:30 local solar time with the resolution of 7×7 km2, which was upgraded 

to 5.5×7 km2 in August 2019. Lorente et al. (2021) and Hasekamp et al. (2019) estimate 

the global mean bias and station-to-station variability between TROPOMI and the ground 

based Total Carbon Column Observing Network (TCCON) to be -3.4 ± 5.6 ppb and -4.3 

± 7.4 ppb for CH4 specifically. Several studies have used TROPOMI measurements to 

estimate CH4 emissions estimates (Qu et al., 2021; Varon et al., 2019) even though only 

3% of the data over land has been useful because of hazy atmosphere or low surface 

reflectance (Jacob et al., 2022). 

The spatial resolution provided by TRPOMI was 7×7 km2 during the first part of 

the study and was then to upgraded to 5.5×7 km2 after August 2019 (Siddans and Smith, 

2018). We realize that this spatial resolution might reduce the magnitudes of the gradients 

of CH4 mole fractions created by emissions from the dairy cluster. 

We studied the time period between January 1st 2019 and August 31st 2020. Only 

108 out of 608 (18%) of the study days in this period had non-zero quality values that 

could be analyzed with the dispersion model. The satellite metadata files provide the 

viewing azimuth and the solar zenith angles, which are used by the dispersion model to 

compute the CH4 concentrations along the line of sight from the observation point to the 

sun. An example of the instantaneous TROPOMI observations without interpolation over 

the study area is plotted in Figure 3.11. The upwind and downwind 𝑋𝑋𝑋𝑋𝐻𝐻4  from 

TROPOMI correspond to locations nearest to those of the EM27/SUN instruments. The 

𝑋𝑋𝑋𝑋𝐻𝐻4 gradient associated with methane emissions from diary cluster between SE2 and 
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NW is clearly seen in the image. During the period that TROPOMI passes over this area, 

the HRRR wind direction in this region was 301 degrees which is consistent with the 

presence of this 𝑋𝑋𝑋𝑋𝐻𝐻4 gradient. 

 

Figure 3.11. TROPOMI observations of column-averaged dry-air mole fractions 𝑋𝑋𝑋𝑋𝐻𝐻4 in the 
study area. The white polygons denote the clusters of dairy facilities, and the stars represent 

TROPOMI model observation locations. 

Table 3.4 presents the emissions from the two sources, normalized by the head of 

milk cows. We see that emissions based on the EM27/SUN and TROPOMI data are close 

to each other. Both of them are more than twice as high as the “bottom up” estimates 

(Maasakkers et al., 2016) and those from the CARB GHG inventory (CARB, 2015). The 
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timeseries of CH4 emissions estimated from TROPOMI measurements and EM27/SUN 

are shown in Figure 3.12. Monthly averaged emissions in June, July, and August 2020 

are 47, 71, and 91Gg/yr respectively. 

The uncertainty in the TROPOMI derived emissions is obtained from satellite 

observation standard errors, and the 95% confidence intervals of EM27/SUN determined 

by the bootstrapping method described earlier. During overlapping time periods, the 

differences in the fitted emission estimates derived from the EM27/SUN and the 

TROPOMI values are much smaller than the uncertainties in the emission estimates. The 

EM27/SUN based seasonal methane emissions, shown in Table 3.4, are likely to be 

higher during the summer than in the other seasons, which is consistent with seasonal 

variation of emissions of a California-specific a priori model estimated by Jeong et al. 

(2012). One possible reason for higher emissions in summer could be the higher ambient 

temperatures (Table 3.2) during summer accompanied by higher pond temperatures, 

which in turn result in increased CH4 production (Mangino et al., 2002; McMillan et al., 

2007). Our stringer summer seasonal source results differ with those reported by Heerah 

et al. (2021) using EM27/SUN deployed in the same region at large scales and were 

attributed to greater soil moisture in winter. This is possibly due to our sampling of 

lagoon CH4 emissions at the smaller scales that are not water limited. These results 

suggest that more studies are needed to investigate the mechanism of CH4 production in 

dairy ponds and the effect of temperature on emissions. 
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Table 3.4. CH4 emissions per head and uncertainties comparisons in March 2019 

 CH4 Emissions Per Head (kg/yr) 95% Confidence Interval 
EM27/SUN 475 [447, 575] 
TROPOMI 507 [436, 583] 

Prior 271 [141, 401] 
CARB 187 - 

 

 

Figure 3.12. The time series of inferred emissions from TROPOMI remote sensed observations 
and EM27/SUN. 

3.4 Conclusions 

This chapter demonstrates the application of a numerical dispersion model to infer 

methane emissions from a dairy cluster using column-averaged methane measurements 

upwind and downwind of the cluster. The model accounts for the geometry of the sources 

and the mean and turbulent structure of the atmospheric boundary layer in estimating 

concentrations associated with area sources of methane. The model also pays attention to 

the details of the geometry of the remote measurement method. The numerical model 
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allows a straightforward incorporation of the vertical structure of the boundary layer into 

the model inputs to describe the three-dimensional concentration field resulting from an 

area source of emissions. This concentration field is then used to compute the average 

concentration along the line joining the instrument and the sun. The application is 

restricted to a horizontal spatial scale of the order of 10 kilometers over which the 

vertical structure of the boundary layer is assumed to be invariant. 

Because onsite meteorological inputs are not routinely available, we examined the 

use of these inputs derived from the HRRR model. The emissions derived from these 

inputs were compared with those based on-site measurements. Although the emissions 

estimated using these two methods were similar, the HRRR modeled inputs introduced 

larger uncertainty in the emission estimates. 

The model was also applied to two sets of methane measurements, one from a 

ground-based EM27/SUN and the second from a satellite-based system, and the results 

compared well. We show that measurements made by the TROPOMI combined with the 

HRRR modeled meteorology can be used to infer CH4 emissions from a cluster of dairy 

farms. The emission estimates from this approach compare well with those derived from 

on-site EM27/SUN column measurements and meteorology. This suggests that this 

satellite-based approach can be used to monitor the time variation of CH4 emissions over 

selected dairy farms. This type of continuous monitoring is not practical with on-site field 

measurements. 
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4. Field Study to Estimate Exposure to Vehicle Exhaust During 

Idling and Starting 

4.1 Introduction 

Vehicle pollutants contain carbon monoxide (CO), particulate matter (PM), 

nitrogen oxides (NOx), black carbon (BC), and volatile organic compounds (VOCs) 

(Schulte et al., 2014; Ulfvarson et al., 1987). Several studies have indicated that exposure 

to these pollutants can trigger several adverse health effects such as cardiovascular 

morbidity, asthma, respiratory illnesses, lung function and chronic obstructive pulmonary 

disease (HEI, 2010; Laumbach et al., 2012). To address this issue, several field and wind 

tunnel studies have been conducted to estimate the impact of vehicle emissions on air 

quality next to roads (Finn et al., 2010; Heist et al., 2009; Thiruvenkatachari et al, 2021). 

Results from these studies have been used to develop dispersion models that can 

provide estimates of pollutant concentration next to roads given inputs such as emission 

rates, traffic flows, and governing meteorological variables. Examples of such models are 

RLINE and CALINE (Kenty et al., 2007; Snyder et al., 2013; Yura et al., 2007), which 

have been used to estimate the impact of new roadway construction (e.g., highway 

expansion) on surrounding air quality. These models are not designed to estimate 

concentrations of pollutants at distances of meters from a vehicle exhaust. These 

distances are relevant to pollutant exposure for people located close to a vehicle when it 

is idling or is accelerating from a stationary position. 
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A limited of studies have examined dispersion of vehicle emissions at meters 

from a stationary vehicle. Ning et al. (2005) report results from a study that measured 

concentrations and size distributions of fine particles, VOCs, and NOx at distances within 

5 m from an idling vehicle. The experiments were conducted under light wind conditions 

at the end of the day so that atmospheric turbulence played a minor role in dispersion. 

Turbulence induced by momentum and buoyancy of the exhaust was believed to have 

caused dilution of the exhaust plume. The experiments indicated that the velocity and the 

exit angle of the exhaust gases had a strong impact on their subsequent vertical and 

horizontal dispersion. The concentrations dropped off rapidly with distance from the 

source, reaching background levels within 3 m from the sources. These observations on 

the behavior of the exhaust plume were described adequately with a CFD model. 

McNabola et al. (2009) conducted a related study in which the dilution of exhaust 

concentrations was inferred by measuring concentrations of several pollutants in two 

identical vehicles located at 1 and 2 m from the cars in front of them. These two vehicles 

were driven in congested stop and go traffic. By recording the fractions of time spent in 

idling and moving traffic, they could estimate the fall off exhaust concentrations between 

1 and 2 m during idling. They then used a CFD model to extend the measured 

concentrations to distances between 0 and 4 m. McNabola et al. (2009) concluded that 

their results were consistent with those of Ning et al. (2005), which showed a rapid 

decrease in exhaust concentrations to background levels within 3 m from the exhaust 

source. Deng et al., (2020) measured the gaseous and solid particles within exhaust plume 

of a typical passenger car under simulated traffic light driving pattern. They highlighted 
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that vehicle-induced turbulence was more and more important on pollutant dispersion 

with ambient wind speed increasing and pedestrians would expose 2.6-3 times higher 

particle number (with diameters of 28-33 nm) than atmosphere value with a 3 m distance 

from the vehicle. 

Our study differs from previous studies in that it focuses on the near-field 

concentration field associated with a stationary idling vehicle located in surroundings 

with varying mean winds and atmospheric stabilities. The data are analyzed with a 

dispersion model to infer the impact of the buoyancy of the exhaust on the vertical and 

horizontal variation within 3 m from the source. The objective of the research described 

in this chapter is to collect tailpipe CO2 concentrations relevant to such situations and use 

it to modify existing dispersion models for estimating exposure to vehicle related 

pollutants. Our experiment is designed to quantify concentrations relevant to those 

exposure scenarios such as 1) young children waiting on the curb to be picked up after 

school, 2) people waiting at curbside to cross the road at a signalized intersection, where 

vehicles stop and go in response to traffic lights, and 3) people waiting for pick-up 

services by transportation network companies, such as Lyft and Uber. We next describe 

the field study, and then evaluate the performance of a currently used dispersion model in 

describing the data from the study. 

4.2 Field Study 

In the field study, we collected meteorological data, and measured CO2 

concentrations at different levels and distances near the vehicle tailpipe. The CO2 

concentrations are well above background values at meters from the tailpipe. We 



 77 

measured CO2 concentrations for both idling and power cases under daytime and 

nighttime conditions which usually have different wind and stability conditions. 

4.2.1 Site 

The study was conducted in the parking lot of the College of Engineering, Center 

for Environmental Research and Technology (CE-CERT) of University of California, 

Riverside. The location was far enough from roads to avoid contamination of the CO2 

measurements by emissions from vehicles from these roads. A 2012 Toyota Corolla LE 

model with a 1.8-litre internal combustion engine served as the source of emissions, and 

the exhaust tailpipe was 26 cm above the ground. 

Figure 4.1 shows the experimental set-up of the study. A polar coordinate system 

for measurements was used in this study. The concentrations were collected at radii of 1, 

2, 3, 4 m centered around the tailpipe at angles 30, 60, 90, 120, 150°, and heights 0.3, 0.6, 

1.2 m above the ground. 

 

 

Figure 4.1. Experimental layout showing instruments used in the study. The vehicle was heading 
to west direction. 
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4.2.2 Meteorological measurements 

The meteorological data were collected using two CSAT3 3-D sonic anemometers 

mounted at a height of 1.5 m with a frequency of 20 Hz. One sonic anemometer (Figure 

4.1) was placed west (upwind) of the vehicle, and the other one was placed towards the 

east (downwind) of the vehicle to measure turbulence effects caused by the vehicle. The 

5-minute averaged meteorological data is shown in Figure 4.2. During daytime, there was 

a stable west wind which blew form the front to the back of the vehicle and during 

nighttime, the wind direction shifted more frequently. In addition, as indicated by the red 

dots in the figure, the surface friction velocities 𝑢𝑢∗ during nighttime were around half of 

the values measured during daytime. 

  
Figure 4.2. Wind direction and surface friction velocities 𝑢𝑢∗ from downwind sonic anemometer 

averaging every 5 minutes. 

4.2.3 Tailpipe temperature 

The tailpipe temperature was sampled instantaneously using an infrared 

thermometer. Figure 4.3 shows the variation of temperature of the exhaust gases during 

the same two power cycles used in the field study. Based on the measurements, the 
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tailpipe temperature during idling was about 60 °𝐶𝐶  and that during the power cycle 

exceeds 175 °𝐶𝐶 while the ambient temperature was approximately 20 °𝐶𝐶. 

 

Figure 4.3. Variation of tailpipe temperature and ambient temperature under different vehicle 
conditions. Each receptor number represents the averaged data during one sampling period 

ranging from 2 to 5 minutes measurements. 

4.2.4 Tracer measurements 

CO2 concentrations were measured at several distances and heights from the 

source using a Portable Emissions Acquisition System (PEAQS), provided by California 

Air Resources Board (CARB). The PEAQS. which can make real-time measurements, 

includes a LI-840 CO2 gas analyzer controlled with a low-cost single-board computer 

Raspberry Pi. At each location, sampling was conducted over 2 to 5 minutes to capture an 

averaged stable plume signal. The emission rates were computed from the recorded fuel 

consumption rate assuming complete combustion of the fuel (US EPA, 2018). The gas 

pedal was positioned to produce two CO2 emissions rates, one during idling and the other 

during starting. 
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4.3 Dispersion Modeling 

The data collected in this chapter was interpreted using a point source numerical 

model (Venkatram and Schulte, 2018). The primary objective of this modeling exercise is 

to identify the processes that govern the concentrations rather than to develop a new 

dispersion model. The dispersion model expresses the concentration as 

 
𝐶𝐶(𝑥𝑥,𝑦𝑦, 𝑧𝑧) =

𝑄𝑄
√2𝜋𝜋𝜎𝜎𝑦𝑦(𝑥𝑥)

𝑒𝑒𝑒𝑒𝑒𝑒 �−
𝑦𝑦2

2𝜎𝜎𝑦𝑦(𝑥𝑥)2� 𝐹𝐹𝑧𝑧
(𝑥𝑥, 𝑧𝑧) (4.1) 

where 𝑥𝑥, 𝑦𝑦, and 𝑧𝑧 are the downwind distance, crosswind distance from the source, 

and the height of the receptor respectively, 𝑄𝑄 is the source emission rate (mass/time), and 

σ𝑦𝑦 is the horizontal plume spread. The vertical distribution function, 𝐹𝐹𝑧𝑧 is the solution of 

the two-dimensional mass conservation equation. Nieuwstadt & van Ulden (1978) show 

that this solution provides an excellent description of the tracer measurements made 

during the Prairie Grass experiment (Barad, 1958). The governing equation is 

 
𝑈𝑈(𝑧𝑧)

𝜕𝜕𝐹𝐹𝑧𝑧
𝜕𝜕𝜕𝜕

=
𝜕𝜕
𝜕𝜕𝜕𝜕
�𝐾𝐾(𝑧𝑧)

𝜕𝜕𝐹𝐹𝑧𝑧
𝜕𝜕𝜕𝜕

� (4.2) 

where 𝐹𝐹𝑧𝑧 denotes the crosswind-integrated vertical concentration profile, 𝑈𝑈(𝑧𝑧) is 

the horizontal similarity wind profile given by Businger (1973) and 𝐾𝐾(𝑧𝑧) is the eddy 

diffusivity. The vertical eddy diffusivity is consistent with Monin-Obukhov similarity 

(Businger, et al., 1971).In the numerical model, the tailpipe is represented by a point 

source with a vertical Gaussian distribution centered at 𝑧𝑧𝑠𝑠 = 0.267 𝑚𝑚, with a nominal 

vertical spread of σ𝑧𝑧𝑧𝑧 = 0.05 𝑚𝑚.  

The mass flux at 𝑧𝑧 = 0 is equal to the deposition rate and is zero at large values of 

𝑧𝑧. The boundary conditions are 
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𝐾𝐾(𝑧𝑧)

𝜕𝜕𝐹𝐹𝑧𝑧
𝜕𝜕𝜕𝜕

= 𝑣𝑣𝑑𝑑𝐹𝐹𝑧𝑧 𝑎𝑎𝑎𝑎 𝑧𝑧 = 𝑧𝑧𝑜𝑜 

and 

𝜕𝜕𝐹𝐹𝑧𝑧
𝜕𝜕𝜕𝜕

= 0 𝑎𝑎𝑎𝑎 𝑧𝑧 = 𝐻𝐻 

(4.3) 

where 𝑣𝑣𝑑𝑑 is the deposition velocity, taken to be zero for 𝐶𝐶𝑂𝑂2, 𝑧𝑧𝑜𝑜 is the roughness 

length obtained by fitting the measured 𝑢𝑢∗ with the similarity 𝑢𝑢∗ iteratively (Qian et al., 

2010), which is taken to be 0.023 𝑚𝑚 in this study. and 𝐻𝐻  is the top of the modeling 

domain, taken to be 20 𝑚𝑚 in this study. The horizontal domain of the numerical solution 

is the distance between the source and the receptor at which the concentration is desired; 

Equation (4.2) with (4.3) are solved numerically at each receptor.  

Plume rise is included in the model by the adding the average plume rise between 

the source and receptor to the source height. The plume rise averaged over the distance 

between source and receptor is given by Venkatram and Schulte (2018) 

 

ℎ𝑝𝑝 =
0.96𝐹𝐹𝑏𝑏

1
3𝑋𝑋

2
3

𝑈𝑈
 (4.4) 

where 𝑈𝑈  is the wind speed at this average plume height, obtained from a 

similarity wind profile, 𝑋𝑋 is the distance from source to receptor, and 𝐹𝐹𝑏𝑏, is the buoyancy 

flux given by 

 𝐹𝐹𝑏𝑏 =
𝑔𝑔
𝑇𝑇𝑎𝑎
𝑣𝑣𝑠𝑠𝑟𝑟𝑠𝑠2(𝑇𝑇𝑠𝑠 − 𝑇𝑇𝑎𝑎) 

(4.5) 

where 𝑣𝑣𝑠𝑠 is the velocity of the exhaust gases, 𝑟𝑟𝑠𝑠 is the inner radius of tailpipe, 𝑇𝑇𝑠𝑠 is 

the exhaust gas temperature, and 𝑇𝑇𝑎𝑎 is the ambient temperature. Equation (4.5) has to be 

evaluated iteratively because the wind speed at plume height is not known a priori. We do 
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not account for the effects of the horizontal momentum of the exhaust plume in this 

preliminary attempt to explain the performance of model. 

4.4 Results and discussion 

4.4.1 Data Interpretation 

Figure 4.4 compares the model estimates normalized by the emission rates (C/Q), 

to corresponding observations at the receptors at different heights and distances over the 

meteorological conditions of the experiment. Note that the modeled C/Q, which depends 

only on meteorological variables, does not incorporate deposition and chemical 

transformation of pollutants as they are transported between source and receptor. These 

processes are likely to have little impact on concentrations of most vehicle-related 

pollutants at distances of a few meters from the tailpipe. 

The scatter between the measured 2-minute and modeled concentrations is large, 

but the right panel shows that the model provides a good description of the distribution of 

measured concentrations; the concentrations are sorted from high to low before plotting. 

The inclusion of plume rise, whose magnitudes are shown in Figure 4.5, does not make 

much difference to the modeled distributions shown in Figure 4.4. 
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Figure 4.4. Comparison between model estimates and corresponding measured concentrations 
normalized by emission rates. Left panel shows concentrations paired in space and time, while the 

right panel compares distributions of the two sets of concentrations. 

 
Figure 4.5. Plume rise versus distance from source. 
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We postulate that the arc-averaged concentration is an approximation to a time 

average that is longer than the averaging time used to compute the concentrations shown 

in Figure 4.4. Figure 4.6 compares the arc averaged concentrations measurements to the 

corresponding modeled values. Here, we see that most of the model estimates with plume 

rise are within a factor of two of the measurement arc-averaged values. The inclusion of 

plume rise appears to reduce the scatter at the low values of C/Q. 

 
Figure 4.6. Arc-averaged measurements compared with model estimates with and without plume 

rise. The parallel lines around the one-to-one lines correspond to factor-of-two limits. 

Figure 4.7 shows that the performance of the model in describing the downwind 

variation of concentrations. Both versions of the model are within a factor of two of the 

measurements at heights of 0.3m and 0.6m. However, at a height of 1.2m, plume rise 

improves the performance of the model relative to the version without plume rise. The 
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estimates with plume rise follow the decreasing trend with distance seen in the 

measurements, while the model estimates without plume rise do not. 

 

Figure 4.7. Comparison of modeled downwind variation with arc-averaged measurements. Black 
squares: Measurements. Blue diamonds: Model with plume rise. Red circles: Model without 

plume rise. 

Figure 4.8 compares the measured vertical variation of concentrations with the 

model values with and without plume rise. Here again we see the improvement in model 

performance by including plume rise. This is most evident at the distance of 3m where 

the measurements show mixing below the height of 0.6m; the model with plume rise 

describes this feature well while the model without plume rise shows a concentration that 

decreases rapidly with height. 

 

Figure 4.8. Comparison of modeled vertical variation of concentrations with arc-averaged 
measurements. Black squares: Measurements. Blue diamonds: Model with plume rise. Red 

circles: Model without plume rise. 
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4.4.2 Near Source Exposure to Emissions 

The measured emission normalized concentrations C/Q can be used to estimate 

exposure to various of pollutants such as nitrogen oxides (NOx) and particulate matter 

with aerodynamic diameter: less than 2.5 micrometer (PM2.5) close to the vehicle. The 

measured values of C/Q are multiplied by the vehicle NOx and PM2.5 fuel-based emission 

factors (grams of pollutant per kg fuel burned) given by Park et al. (2011) and on-board 

diagnostics (OBD) measured fuel rates whose values are shown in Table 4.1. The NOx 

and PM2.5 emission factors are slightly higher during idling than during the power cycle 

presumably because of incomplete combustion not operating at peak temperature 

(Shancita et al., 2014). The estimated NOx and PM2.5 averaged concentrations using the 

CO2 dispersion pattern at several distances and heights are shown in Table 4.2. 

Depending on how rapidly NOx is converted to NO2, we see that most NO2 

concentrations within the distance of 3 meters are likely to exceed the EPA NO2 1-hour 

standard of 100 ppb for both idling and power cycles. PM2.5 concentrations are below the 

EPA 24-hour standard of 35 μg/m3. These results suggest that exposure to high NO2 

concentrations could be one of the primary health concerns for people waiting a few 

meters from an idling vehicle over periods of minutes. 

Table 4.1. Averaged emission factors for light duty gasoline vehicles under idling and power 
conditions 

  
Fuel Rate 

(gal/hr) 

NOx Emission 

Factor (g/kg) 

PM2.5 Emission 

Factor (g/kg) 

NOx Emission 

Rate (g/s) 

PM2.5 Emission 

Rate (g/s) 

Idling 0.154 7.90 0.20 9.795 × 10−4 2.480 × 10−5 

Power 0.596 6.50 0.15 3.017 × 10−3 6.963 × 10−5 
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Table 4.2. Estimated NOx and PM2.5 arc averaged concentrations 

   Height (m)     

Distance (m) 

NOx Concentration (ppb) PM2.5 Concentration (μg/m3) 

0.3 0.6 1.2 0.3 0.6 1.2 

Idling 

1 872 91 38 41.6 4.3 1.8 

2 354 73 33 16.9 3.5 1.6 

3 182 141 37 8.7 6.8 1.8 

Power 

1 2406 1265 236 104.7 55.1 10.3 

2 110 128 134 4.8 5.6 5.8 

3 41 320 88 1.8 13.9 3.8 

 
4.5 Conclusions 

This chapter describes a field study designed to collect concentrations of tailpipe 

CO2 at distances of meters from idling vehicles exposed to varying wind speeds and 

stabilities. As the first step in interpreting the data, we examined the performance of a 

currently available point source dispersion model in describing the measured 

concentrations; this model is not designed for the spatial scales of the situation under 

study and does not account for the effects of the momentum of the exhaust plume.  

The comparison of measurements with model estimates suggests that currently 

available dispersion models provide an adequate description of the measurements if 

plume rise, associated with the exhaust plume, is accounted for. Wake turbulence might 

not be important when the vehicle is stationary; Chang et al., (2012) show that turbulence 

in the wake of a moving vehicle has a major impact on the dilution of the exhaust plume.  

To illustrate the application of a dispersion model designed for near-tailpipe 

exposure, we have used the results of the field study to estimate the risks of exposure to 

potential pollutants such as NO2 and PM2.5 during the situations described earlier. The 
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results show that people waiting next to idling or slowly moving cars are likely to be 

exposed to high levels of NO2. 

It is worth repeating that the field study described in this chapter is relevant to 

estimating exposure to vehicle emissions when customers are waiting for pick-up 

services by transportation network companies. Other similar situations to this near-road 

exposure case are: 1) young children waiting on the curb to be picked up after school; and 

2) people waiting at curbside to cross the road at a signalized intersection, where vehicles 

stop and go in response to traffic lights. 
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5. An Assessment of Paved Road Dust Emissions Modeling 

5.1 Introduction 

Particulate matter with diameters less than 10 𝜇𝜇𝜇𝜇 (PM10) is one of the six criteria 

air pollutants established by U.S. EPA. It consists of solid particles and liquid droplets 

suspended in the air (US EPA, 2023b). Numerous studies have demonstrated that 

exposure to particulate matter (PM) has adverse effects on respiratory and cardiovascular 

systems of humans (Jose and Srimuruganandam, 2020; Khan and Strand, 2018; US EPA, 

2023c). The mobile sources sector, including road traffic, is recognized as one of the 

primary contributors to PM emissions (Casotti Rienda and Alves, 2021; Dallmann and 

Harley, 2010). The 2020 National Emissions Inventory (NEI) developed by the U.S. EPA 

indicates that the transportation sector is responsible for about 10% of PM emissions in 

the United States (US EPA, 2023d). 

PM emissions from roadways can be classified into two primary categories: 

exhaust emissions and non-exhaust emissions (NEE). Many studies have been conducted 

to quantify and analyze vehicle exhaust emissions, and this research is crucial for 

understanding the environmental and health effects exposure to engine exhaust (Bisig et 

al., 2018; Ding et al., 2022; Ljungman et al., 2019; Steiner et al., 2016; Weitekamp et al., 

2020; Wu et al., 2022). Non-exhaust emissions, often referred to as resuspended dust or 

road dust (RD), encompass a range of sources such as the mechanical wear of tires, 

brakes, vehicle components, road materials, and the re-suspension of particles into the 

atmosphere due to the turbulence processes (Casotti Rienda and Alves, 2021). Recent 
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studies have shown that road dust plays a significant role in contributing to at least 50% 

of the total PM concentrations currently (Amato et al., 2014; Denier van der Gon et al., 

2018), and it is projected to increase to 67% in 2035 (S. Reid et al., 2016) or even reach 

90% in 2030 (OECD, 2020). The upward trend in road dust's dominance in PM 

concentrations emphasizes the importance of accurately quantifying road dust as well as 

uncertainties. 

PM10, consisting of all particles with an aerodynamic diameter smaller than 10 

μm, is categorized as inhalable particulate matter. PM10-2.5, composed of particles with an 

aerodynamic diameter between 2.5 and 10 μm, is termed coarse particulate matter. PM2.5, 

which comprises particles with an aerodynamic diameter less than 2.5 μm, is classified as 

fine particulate matter. Several studies tried to distinguish road dust contribution to PM2.5 

and PM10-2.5 respectively. Matthaios et al. (2022) deployed a mobile platform 

investigation along with the positive matrix factorization (PMF) method to identify non-

exhaust sources responsible for 65.6% of coarse particulate matter (PM) and 29.1% of 

fine PM respectively. Harrison et al. (2012) integrated size distribution and tracer 

elements to differentiate brake dust, tire dust, and resuspension, within the 0.9−11.5 μm 

aerodynamic diameter range. These sources collectively constituted 104.1% of coarse 

particle mass in traffic. Based on these evidences, our study assumes that road dust 

predominantly contributes to the PM10-2.5 size fraction in our data analysis and modeling. 

The currently used regulatory model to estimate the road dust is described in the 

“Compilation of Air Pollutant Emissions Factors” (AP-42). U.S. Environmental 

Protection Agency (EPA) initially published in 1968. The model is routinely updated the 
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new versions (US EPA, 2011a). The current version of the AP-42 model is a semi-

empirical equation based on two inputs: road surface silt loading sL, which refers to the 

fraction of surface dust with aerodynamic diameter below 75 𝜇𝜇𝜇𝜇 (US EPA, 1995), and 

averaged weight of vehicle (US EPA, 2011b). In recent years, numerous studies have 

employed the AP-42 model to assess silt loading and emission factors (Bogacki et al., 

2018; Bukowiecki et al., 2010; Chen et al., 2019; Fitz et al., 2020; Kumar and Elumalai, 

2018; Thorpe et al., 2007). For instance, Alves et al. (2018) applied the AP-42 method in 

Road tunnel, Braga, Portugal and reported the silt loading 0.059 [𝑔𝑔 𝑚𝑚−2 ] and PM10 

emission factor 33 [𝑚𝑚𝑚𝑚 𝑘𝑘𝑚𝑚−1 𝑣𝑣𝑣𝑣ℎ−1 ]. Amato et al. (2017) presented the AP-42 silt 

loading estimates ranging from 0.006 - 0.066 and [𝑔𝑔 𝑚𝑚−2 ] and PM10 emission factor 13–

32 [𝑚𝑚𝑚𝑚 𝑘𝑘𝑚𝑚−1 𝑣𝑣𝑣𝑣ℎ−1] in Milan, Italy. Although the AP-42 model is utilized worldwide, 

Venkatram et al. (1999) criticized the AP-42 model for yielding unreliable emission 

results due to its lack of a mechanistic foundation. Furthermore, the official procedures 

recommended by AP-42 for directly sampling silt loading on paved roads require manual 

and stationary collection of road surface materials using a vacuum cleaner (US EPA, 

1993). Han et al. (2011) highlighted limitations in replicating real-world road dust 

resuspension through local sampling using vacuum sweeping and resuspension chambers. 

Zhang et al. (2017) and Fitz et al. (2020) expressed concerns about the impracticality and 

safety issues associated with applying these procedures on some active roads. 

This study is motivated by the need to address the limitations of the formulation 

of the model as well as difficulty in specifying model inputs. The main objectives of this 

study are to 1) design a mobile dust collection system that adheres to AP-42 
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requirements, facilitating portable and reliable mobile sampling of silt loading on various 

roadways 2) develop and assess a new model that incorporates a physical structure for 

estimating emission factors of paved road dust (PM10-2.5) on California freeways with 

varying traffic volumes. 

5.2 Method and Methodology 

5.2.1 Field Studies 

This chapter provides a comprehensive overview of the methodologies employed 

and the measurement results from the field campaign conducted on two freeways and two 

city roads in Riverside, California. The on-road field studies were conducted during the 

period from June to July 2023, and the studied roads were chosen at a portion of I-91 

freeway, Chicago Avenue, Iowa Avenue, and I-215 freeway in Riverside California as 

shown in Figure 5.1. The studied roads are approximately 0.7-1.3 km long with 230° (I-

91 freeway) and 180° (other roads) orientation under geographic wind coordinate (North 

is 0° , and East is 90° ). The total widths of the studied roads are approximate 20-32 m 

listed in Table 2.  
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Figure 5.1. Top view of sampled roads in Riverside 

 

In this study, our mobile laboratory was equipped with two PurpleAir PM 

monitors and one Picarro G2401 CO/CO2 gas concentration analyzer, all of which were 

meticulously calibrated using standard cylinder CO/CO2 gas. The inlets for both the gas 

and PurpleAir PM monitors were mounted on the side door of the vehicle at an elevation 

of approximately 1.2 meters. During our mobile data collection measurements, we 

conducted multiple loops along both freeway and city roads. This enabled us to obtain 

real-time data on CO2 gas concentrations, PM concentrations, and collect surface road 

dust samples.  

To quantify re-suspended dust emissions, we employed the downwind-upwind 

difference method, with the experimental scenarios depicted in Figure 5.2. Scenario 1 

involved measurements taken while the vehicle was in motion on the downwind side of 

the road. In Scenario 2, we conducted measurements while the vehicle was parked 
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stationary on the downwind side of the road. This stationary setup allowed us to gather 

crucial turbulence parameters, including the standard deviation of the vertical velocity 𝜎𝜎𝑤𝑤 

and surface heat flux 𝑄𝑄𝑜𝑜, which will be discussed in detail in section 5.2.4. Scenario 3 

includes stationary measurements taken upwind, aiding in the determination of 

background concentrations and relevant meteorological variables such as wind direction 

and speed. The road contribution to the air species of interest in this study is expressed as 

follows 

 𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝐶𝐶1 − 𝐶𝐶3 (5.1) 

where 𝐶𝐶1 is the downwind on-road concentration averaged while the vehicle is on 

the road, and 𝐶𝐶3  is the upwind stationary concentration which is assumed to be the 

background concentration. The background sampling time was 5 minutes for all the 

studied roads. The evaluation of how the quality of air monitoring is influenced by 

factors such as the vehicle's body and movement-induced turbulence is discussed in an 

independent study conducted on the I-215 freeway. Further insights into this assessment 

can be found in section 5.4. 
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Figure 5.2. Experimental scenarios for on-road measurements by the mobile lab attached air 

quality monitors and the portable dust collection system 
5.2.2 PM Instruments Calibration 

The PurpleAir monitor comprises a pair of laser scattering particle sensors 

(Plantower PMS5003 sensors), along with a Bosch BME280 sensor for measuring 

pressure, temperature, and humidity. It also features a WiFi-enabled processor, enabling 

real-time data uploading to the cloud for immediate utilization. The PurpleAir SD card 

recording offers a minimum time resolution of approximately 2 minutes. However, the 

PurpleAir terminal provides the capability to retrieve raw data at a finer granularity of 1 

second, as demonstrated in Table 5.1. 

For the internal calibration, the current model called PurpleAir-II monitors were 

set for running side-by-side in the UCR Agricultural Operations (Ag-Ops). One 

PurpleAir monitor was set as a reference monitor, and the other monitors are corrected 
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based on its raw measurements. In this study, we applied a multiple regression method 

for PurpleAir correction using the equation discussed by Barkjohn et al. (2021) 

 𝑃𝑃𝐴𝐴𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑠𝑠1 × 𝑃𝑃𝐴𝐴𝑟𝑟𝑟𝑟𝑟𝑟 + 𝑠𝑠2 × 𝑇𝑇 + 𝑠𝑠3 × 𝑅𝑅𝑅𝑅 + 𝑖𝑖 (5.2) 

where 𝑃𝑃𝐴𝐴𝑐𝑐𝑐𝑐𝑐𝑐  is defined as the corrected PurpleAir measurements, 𝑃𝑃𝐴𝐴𝑟𝑟𝑟𝑟𝑟𝑟 

represents the raw PurpleAir measurements, 𝑇𝑇 is the PurpleAir recorded air temperature 

in degrees Fahrenheit [°F], 𝑅𝑅𝑅𝑅 is the PurpleAir measured relative humidity [%], 𝑠𝑠1, 𝑠𝑠2, 

and 𝑠𝑠3 are determined using the non-negative least-square method, which minimizes the 

square of residual 𝑖𝑖 between the reference measurements and raw measurements. 

For the external calibration, the historical routine measurements taken from the 

side-by-side BAM 1020 and PurpleAir monitors, which are maintained by the South 

Coast Air Quality Management District (SCAQMD) at the Rubidoux, Riverside location 

as shown in Figure 5.3, were utilized for the external calibration analysis. Table 5.1 

compares the PM monitors used for the external calibration. 
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Figure 5.3. South Coast AQMD PM monitors setup at Rubidoux site 

Table 5.1. Summary of the BAM 1020 and PuepleAir monitors 
Instrument 

Model 
Polluta

nts Minimum Time Resolution Air Monitoring 
Methods 

Power 
[W] 

Weight 
[kg] 

Cost 
(USD) 

PurpleAir II 
SD 

PM2.5; 
PM10 

~2 min (1 sec available via 
PurpleAir Utility terminal) 

Optical and 
Algorithm 1 0.4 289 

Met One 
BAM 1020 

PM2.5; 
PM10 

1 hour FEM (PM2.5; 
PM10) 

400 38 37200 

 

5.2.3 Meteorological Inputs 

A Campbell Scientific CSAT3 3D 20 Hz sonic anemometer was used to calibrate 

a 2D micrometeorological model before the formal field studies (Thiruvenkatachari et al., 

2023). The raw sonic anemometer data contains three mutually perpendicular wind 

vectors (u, v, w) and temperature (T). The sonic anemometer needs to be leveled to 

ensure that vertical wind vector w is perpendicular to the ground and the sonic arm faced 

true north using a compass and adjusted by the real-location magnetic declination. The 

sonic anemometer was mounted at 3 m and 5 m on a tower. The idling mobile lab was 
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parked next to the 3D sonic anemometer for 8 hours each day to estimate the 

performance of the mobile platform observed meteorology as shown in Figure 5.4. The 

raw data from the sonic anemometer was then retrieved and processed to obtain 5-minute 

averaged micrometeorological parameters. 

 
Figure 5.4. Experimental set up of side-by-side comparisons between 3-D sonic anemometer and 

mobile platform meteorological monitors 
5.2.4 Dust Collection System 

In this study, a mobile dust collection system was designed for a cargo van, as 

illustrated in Figure 5.5. A 3.5 kW generator powered a VacuMaid GV30 central vacuum 

cleaner, which boasts 740 max air watts. The vacuum cleaner employs a High Efficiency 

Particulate Air (HEPA) filter bag for dust collection. 

Throughout the on-road measurement phase, a phone GPS tracked the vehicle's 

location, information that was used to compute the distance traveled by the van. . The van 

was driven at speeds ranging from ranging from 25-30 mph in the rightmost lane, 
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ensuring the brush was fully in contact with the ground for stable dust collection. A 

trailing vehicle observed the brush and provided additional safety. Dust samples were 

obtained from both freeway and local street, with the HEPA bags subsequently sent to the 

lab for weighing. The log time that records the dust sampling period is shown in Table 

5.2. 

The first step of the in-lab standard procedure is to transfer the bag's contents to a 

plastic zip lock bag. The collected dust was then sieved through 0.315 mm, 0.15 mm, 

0.075 mm, and 0.0385 mm meshes in sequence. Since some dust inevitably remains in 

the original HEPA bag and ziplock bag, the leftover dust mass is proportionally allocated 

to the sieved dust with diameters below 0.15 mm for correction. Finally, the dust per unit 

area with an aerodynamic diameter below 0.075 mm was considered as the measured silt 

loading (sL) in this study. 
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Figure 5.5. Mobile dust sampling system 

Table 5.2. Summary of dust sampled on different roads 

Road 
Location 

Sampling Duration 
[minute] 

Road 
Width [m] 

Mean Silt 
Loading  
[g/m2] 

Mea
n 

Spee
d 

[mp
h] 

Mean Vehicle 
Weight [tons] 

Mean Traffic Flow 
[veh/hr] 

I-91 
Freeway ~ 4 30 0.009 ± 0.008 59 

± 4 2.31 8833 

Chicago 
Avenue ~ 5 20 0.012 ± 0.005 35 4.53 1850 

Iowa 
Avenue ~ 5 20 0.017 ± 0.006 35 5.18 2008 

I-215 
Freeway ~ 4 32 0.006 ± 0.003 47 

± 7 2.53 5733 

 

The traffic data including the traffic flow and vehicle speed for the freeways was 

available through the Caltrans Performance Measurement System (PeMS). This 

information is collected in real-time from Loop Detector Stations (LDS) embedded 

within the road surface, providing the traffic info for all lanes, updated every 5 minutes at 
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minimum (Caltrans, 2020). Meanwhile, the traffic data for the city roads was obtained 

through a GoPro camera, mounted roadside, recorded the traffic. The recorded video was 

then manually analyzed to count the number of vehicles and classify them based on 

different vehicle types during the time window when the mobile lab took on-road 

measurements. The averaged vehicle speed on city roads was assumed to be 35 [mph] 

which the upper limit for these roads. 

5.3 Road Dust Modeling 

5.3.1 AP-42 Model 

The document “Compilation of Air Pollutant Emissions Factors” (AP-42) was 

published by U.S. Environmental Protection Agency (EPA) since 1968. It isroutinely 

updated by EPA (US EPA, 2011a), and current version of the emission factor reads 

 𝐸𝐸𝐸𝐸 = 𝑘𝑘 × (𝑠𝑠𝑠𝑠)0.91 × (𝑊𝑊)1.02 (5.3) 

where 𝐸𝐸𝐸𝐸 is the particulate matter emission factor in unit of [𝑔𝑔/(𝑣𝑣𝑣𝑣ℎ ⋅ 𝑘𝑘𝑘𝑘)], 𝑠𝑠𝑠𝑠 is 

the road surface silt loading in [𝑚𝑚/𝑔𝑔2], 𝑘𝑘 is the particle size multiplier taken to be 0.15 

and 0.62 for PM2.5 and PM10 respectively, 𝑊𝑊 is average weight of vehicles traveling on 

the road expressed in tons. In this study, the average weight of light-duty vehicles (LDV) 

which include sedans, SUVs, pickup trucks and vans is taken to be 1.95 tons suggested 

by US EPA (2022). The average weight heavy-duty vehicles (HDV) is taken to be 16.5 

tons, which is the threshold value of the medium heavy-duty (MHD) vehicles and heavy 

heavy-duty (HHD) vehicles provided by US EPA (2016). Table 2 presents the weighted 

average weights determined from the traffic flow of LDV as well as HDV and their 

corresponding hypothesized weights. In addition, California statewide default value of 
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the average weight of vehicles, which is 2.4 tons, is treated in the results as a reference 

value (CARB, 2016b). Table 5.3 presents the default silt loading values, which will serve 

as a reference in cases where on-site measurements are unavailable. These values are 

evaluated and discussed in the chapter 5.4.  

Table 5.3. AP-42 default silt loading values 

Silt Loading Categories ADT Category [veh/day] 
<500 500 - 5000 5000 - 10000 >10000 

Default baseline [g/m^2] 0.6 0.2 0.06 0.015 for freeways; 
0.03 for other roads 

Winter baseline 
during months with 
frozen precipitation 

[g/m^2] 

2.4 0.6 0.12 0.015 for freeways; 
0.03 for other roads 

 

5.3.2 Line Source Model 

Highways and city roads are represented as a set of line sources, and the impact of 

each line source to the concentration at the receptor location is given by the expression 

(Venkatram and Horst, 2006) 

 𝐶𝐶𝑝𝑝(𝑥𝑥𝑟𝑟 ,𝑦𝑦𝑟𝑟 , 𝑧𝑧𝑟𝑟) =
𝑄𝑄

𝑐𝑐𝑐𝑐𝑠𝑠(𝜃𝜃)
[𝑒𝑒𝑒𝑒𝑒𝑒(𝑡𝑡𝑒𝑒) − 𝑒𝑒𝑒𝑒𝑒𝑒(𝑡𝑡𝑏𝑏)]𝐹𝐹𝑧𝑧(𝑥𝑥𝑑𝑑 , 𝑧𝑧𝑟𝑟) (5.4) 

 𝑡𝑡𝑒𝑒 =
𝑦𝑦𝑒𝑒 − 𝑦𝑦𝑟𝑟

√2 𝜎𝜎𝑦𝑦(𝑥𝑥𝑟𝑟 − 𝑥𝑥𝑒𝑒)
 

 

𝑡𝑡𝑏𝑏 =
𝑦𝑦𝑏𝑏 − 𝑦𝑦𝑟𝑟

√2 𝜎𝜎𝑦𝑦(𝑥𝑥𝑟𝑟 − 𝑥𝑥𝑏𝑏)
 

(5.5) 
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Figure 5.6. Line source co-ordinate system used to determine the concentration at the receptor 

location 
where 𝐶𝐶𝑝𝑝 is the plume state concentration in unit of [𝑔𝑔/𝑚𝑚3], 𝑄𝑄 is the emission 

rate in units of [𝑔𝑔/(𝑚𝑚 ⋅ 𝑠𝑠)], the parameters related to coordinates are established within a 

rotated coordinate system as shown in Figure 5.6, where the x-axis aligns with the 

direction of the wind, (𝑥𝑥𝑟𝑟 ,𝑦𝑦𝑟𝑟), (𝑥𝑥𝑏𝑏,𝑦𝑦𝑏𝑏), and (𝑥𝑥𝑒𝑒 ,𝑦𝑦𝑒𝑒) are the co-ordinates of the receptor, 

the beginning, and ending points of the source line, 𝜃𝜃 is the angle between the source line 

and the y-axis, 𝑥𝑥𝑑𝑑 is the downwind distance between the receptor and the source line, 

𝜎𝜎𝑦𝑦(𝑥𝑥𝑟𝑟 − 𝑥𝑥𝑒𝑒) and 𝜎𝜎𝑦𝑦(𝑥𝑥𝑟𝑟 − 𝑥𝑥𝑏𝑏) are the horizontal plume spread in [m] at the distances of 

(𝑥𝑥𝑟𝑟 − 𝑥𝑥𝑒𝑒)  and (𝑥𝑥𝑟𝑟 − 𝑥𝑥𝑏𝑏)  provided by Venkatram et al. (2013), and 𝐹𝐹𝑧𝑧  is the vertical 

concentration profile which can be given by 

 
𝐹𝐹𝑧𝑧(𝑥𝑥𝑑𝑑 , 𝑧𝑧𝑟𝑟) =

1
√2𝜋𝜋𝑈𝑈𝑒𝑒𝜎𝜎𝑧𝑧

�𝑒𝑒𝑒𝑒𝑒𝑒 �−
(𝑧𝑧𝑟𝑟 − 𝑧𝑧𝑠𝑠)2

2𝜎𝜎𝑧𝑧2
� + 𝑒𝑒𝑒𝑒𝑒𝑒 �−

(𝑧𝑧𝑟𝑟 + 𝑧𝑧𝑠𝑠)2

2𝜎𝜎𝑧𝑧2
�� (5.6) 
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where 𝑧𝑧𝑟𝑟 and 𝑧𝑧𝑠𝑠 are the receptor height and source height taken to be 1.2 m and 

0.3 m respectively in this study, 𝑈𝑈𝑒𝑒 is the effective wind speed in unit of [𝑚𝑚/𝑠𝑠] given by 

𝑈𝑈𝑒𝑒 = (2𝜎𝜎𝑣𝑣2 + 𝑈𝑈2)0.5 where 𝜎𝜎𝑣𝑣 is the standard deviation of crosswind velocity, and 𝜎𝜎𝑧𝑧 is 

the vertical plume spread in [m] obtained from an semi-empirical formulation given by 

Venkatram et al. (2013) 

 𝜎𝜎𝑧𝑧 = 𝑓𝑓(𝑥𝑥,𝑢𝑢∗, 𝐿𝐿,𝑈𝑈(𝑧𝑧̅)) (5.7) 

where 𝑢𝑢∗ is the surface friction velocity , 𝐿𝐿 is the Monin–Obukhov length, 𝑈𝑈(𝑧𝑧̅) is 

the Monin–Obukhov similarity theory predicted wind speed at the mean plume height 𝑧𝑧̅ 

by solving the Equation (5.7) and (5.8) iteratively (Businger et al., 1971; Venkatram et 

al., 2013a) 

 
𝑧𝑧̅ = 𝜎𝜎𝑧𝑧�

2
𝜋𝜋
𝑒𝑒𝑒𝑒𝑒𝑒 �−

1
2
�
𝑧𝑧𝑠𝑠
𝜎𝜎𝑧𝑧
�
2
� + 𝑧𝑧𝑠𝑠𝑒𝑒𝑒𝑒𝑒𝑒 (

𝑧𝑧𝑠𝑠
√2 𝜎𝜎𝑧𝑧

)  (5.8) 

Under low wind speed conditions, the meandering wind is assumed to spread 

radially in all horizontal directions and the meandering components of the concentration 

can be written as 

 
𝐶𝐶𝑚𝑚(𝑥𝑥𝑟𝑟 ,𝑦𝑦𝑟𝑟) = �2

𝜋𝜋
𝑄𝑄

𝑈𝑈𝑒𝑒𝜎𝜎𝑧𝑧(𝑥𝑥𝑝𝑝)
𝜃𝜃𝑠𝑠
2𝜋𝜋

 (5.9) 

where 𝜎𝜎𝑧𝑧(𝑥𝑥𝑝𝑝) is the vertical plume spread at the perpendicular distance of the 

receptor from the line source, and 𝜃𝜃𝑠𝑠  represents the angle between the lines joining 

(𝑥𝑥𝑏𝑏, 𝑦𝑦𝑏𝑏), (𝑥𝑥𝑟𝑟 ,𝑦𝑦𝑟𝑟), and (𝑥𝑥𝑒𝑒 ,𝑦𝑦𝑒𝑒) 
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The aggregate concentration, following the incorporation of the meandering 

algorithm, is computed as a weighted mean of both the plume component from Equation 

(5.4) and the meandering component given by Equation (5.9) 

 𝐶𝐶 = 𝐶𝐶𝑝𝑝(1 − 𝑓𝑓𝑟𝑟) + 𝐶𝐶𝑚𝑚𝑓𝑓𝑟𝑟  

 

𝑓𝑓𝑟𝑟 =
2𝜎𝜎𝑣𝑣2

𝑈𝑈𝑒𝑒2
 

(5.10) 

where 𝑓𝑓𝑟𝑟 is the weight for the random meandering component ensuring that the 

weight for meandering component to be unity when effective wind speed approaches 

zero. 

5.3.3 Simple Road Dispersion Model  

The dispersion model expression for an infinitely long road is used for estimating 

the emission factors (Thiruvenkatachari et al., 2022) 

 
𝐶𝐶 = �2

𝜋𝜋
𝑄𝑄

𝑊𝑊𝜎𝜎𝑤𝑤
𝑙𝑙 𝑛𝑛 �1 +

𝑊𝑊𝜎𝜎𝑤𝑤
ℎ𝑜𝑜𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈

� (5.11) 

where 𝐶𝐶  is the particulate matter concentration in unit of [𝑔𝑔/𝑚𝑚3 ], 𝑄𝑄  is the 

emission rate in unit of [𝑔𝑔/(𝑚𝑚 ⋅ 𝑠𝑠)], 𝑊𝑊  is the road width in [𝑚𝑚], 𝜎𝜎𝑤𝑤  is the standard 

deviation of vertical wind speed in unit of [𝑚𝑚/𝑠𝑠 ] predicted from the mobile platform 

model, 𝑈𝑈  is the background wind speed in unit of [𝑚𝑚/𝑠𝑠] observed from the mobile 

platform, and ℎ𝑜𝑜 is the initial mixing height which is given as 2 𝑚𝑚 in this study. 

The emission rate 𝑄𝑄  can be further converted to the emission factor with the 

observed traffic flow rate 
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 𝐸𝐸𝐸𝐸 =
𝑄𝑄
𝑇𝑇𝑇𝑇

 (5.12) 

where 𝐸𝐸𝐸𝐸  is the emission factor representing the particulate matter mass per 

vehicle per unit length traveled, 𝑇𝑇𝑇𝑇 is the traffic flow rate in [veh/hr]. 

5.3.4 Carbon Mass Balance Method 

The emission rates can also be determined based on the following equation (Jalali 

Farahani et al., 2022) 

 Q=
[𝑃𝑃𝑃𝑃]𝑑𝑑𝑑𝑑−[𝑃𝑃𝑃𝑃]𝑏𝑏𝑏𝑏

[𝐶𝐶𝑂𝑂2]𝑑𝑑𝑑𝑑−[𝐶𝐶𝑂𝑂2]𝑏𝑏𝑏𝑏
× 𝑤𝑤 × 106 × 𝜌𝜌 × 𝑈𝑈 (5.13) 

where [𝑃𝑃𝑃𝑃]  and [𝐶𝐶𝑂𝑂2]  are the particulate matter and carbon dioxide 

concentrations, []𝑑𝑑𝑑𝑑 and []𝑏𝑏𝑏𝑏 are air species measured at the downwind road and upwind 

background locations respectively, 𝑤𝑤 is the carbon weight fraction of the fuel, which was 

considered 0.85 and 0.87 for diesel fuels and gasoline fuels respectively, 𝜌𝜌 is the density 

of the fuel, reported 0.74 𝑘𝑘𝑘𝑘/𝐿𝐿 and 0.84 𝑘𝑘𝑘𝑘/𝐿𝐿 for gasoline and diesel respectively, 𝑈𝑈 is 

the average fuel consumption of the vehicles which are considered for diesel and gasoline 

were 0.107 𝐿𝐿/𝑘𝑘𝑘𝑘 and 0.424 𝐿𝐿/𝑘𝑘𝑘𝑘 respectively, and they are weighted averaged based 

on truck flow and passenger flow. The calculated emission rates can apply Equation 

(5.13) to obtain the emission factors as well. 

5.4 Results and Discussion 

5.4.1 PM Monitors Calibration 

To evaluate the influence of vehicle body and turbulence caused by movement, 

we conducted a comparative analysis using data collected simultaneously from both 

vehicular and stationary PurpleAir monitors. Figure 5.7 illustrates scatter plots depicting 
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the emission factors obtained from these distinct monitor types. Notably, both the R2 

values for PM10 and PM2.5 emission factors measured by vehicular and stationary 

PurpleAir units stand at 0.93 and 0.87 respectively. 

 
Figure 5.7. Comparisons of the emission factors estimated from vehicular calibrated PurpleAir 

monitors and stationary mounted PurpleAir monitors near the I-215 freeway. 
To validate the low-cost PurpleAir monitors, we compare the hourly PM10 and 

PM2.5 co-located FEM BAM 1020 monitor concentration measurements from SCAQMD 

routinely observing site in Rubidoux which is closed to 60 freeway for one month period 

starting from April 12th to April 30th, 2022. The raw correlation and statistical results are 

shown in Figure 5.8 and Table 5.3. 𝑚𝑚𝑔𝑔 is a measure of the bias; 𝑚𝑚𝑔𝑔 greater (less) than 

unity indicates over measurement (under measurement). The percentage of x-axis values 

within a factor of 2 of the y-axis values is denoted as Fact2. We can see that for raw 

PM2.5 measurements comparison, the R2 can reach as high as 0.73 and 87% of datapoints 
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lie within the factor of 2. However for raw PM10 measurements, the 𝑅𝑅2 is 0.55 and Fact2 

is only 23%. 

The results in Table 5.3 show that after applying the correction method, both 𝑚𝑚𝑔𝑔 

and Fact2 improve for PM10 comparison and the previous under measurements disappear. 

 

 

(a) (b) 
Figure 5.8. Comparisons of PM10 and PM2.5 measurements between PurpleAir and FEM BAM 

1020 instrument 
Table. 3 Statistical results for raw and corrected PurpleAir – BAM 1020 comparisons 

 Slope Intercept s1 s2 R2 mg Fact2 

PM2.5 
Raw 0.7 3.2 1 0 0.73 0.95 87% 

Corrected 1.1 -0.6 0.67 0.05 0.76 1.1 92% 

PM10 
Raw 1.3 19.4 1 0 0.55 0.32 23% 

Corrected 1.0 -1.7 1.32 0.25 0.6 1.06 96% 
 
5.4.2 Mobile Platform Meteorology Performance 

Because the 3D sonic anemometer needs careful leveling, it cannot be deployed 

on the mobile platform used to sample silt loading on roads. So we developed a method 

to measure micrometeorological parameters that was robust enough to be mounted on a 

mobile platform. The method, based on 2D wind information and high frequency 
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temperature data is described in Thiruvenkatachari et al.(2023). Figure 5.9 the top left 

and top right panels compare of the meteorological measurements from the 3D sonic 

anemometer with those derived from measurements made on the mobile platform. The 

bottom left and bottom right show the performance of the mobile platform model in 

estimating the standard deviation of vertical speed 𝜎𝜎𝑤𝑤 and kinematic heat flux 𝑄𝑄𝑜𝑜. The 

comparisons indicate that the meteorological parameters derived from the mobile 

platform are more than adequate as inputs to the dispersion model used to derive 

emission factors. 
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(a) (b) 

  

 

 

(c) (d) 

Figure 5.9. Measurement comparisons and model performance of mobile platform meteorology 
5.4.3 Estimated Emission Factors 

For the silt loading results, the standard deviation 1 𝜎𝜎  uncertainties were 

determined by sampling the surface road dust 3 times continuously with a relatively 
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constant traffic flow and the same mobile platform setup before the formal study. It 

turned out that our mobile system sampled silt loading results had an averaged standard 

deviation 6.5% of the measurements. Figure 5.10 shows the relationship between 

emission factors inferred from the using PurpleAir measurements (N=66) versus different 

parameters: silt loading, vehicle weight, vehicle speed, and traffic flow per lane. The 

measured emission factors, inferred from the line source model, increase with silt loading 

and vehicle weight, although there is scatter in the relationships. The emission factors 

show a decreasing trend with traffic flow rate per lane. 
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(a) (b) 

  

(c) (d) 

Figure 5.10. Relationship between dispersion model determined emission factors versus silt 
loading, vehicle weight, vehicle speed, and traffic flow per lane. 

The simple model was used for estimates of emission factors and compared with 

results inferred from the line source model as described in the section 5.3.2 and 5.3.3. 

Figure 5.11 shows that the R2 values are over 0.9 for both PM10 and PM2.5, indicating a 

high concordance between the results of the simple model and the line source model. 
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(a) (b) 
Figure 5.11 The comparisons of PM10 and PM2.5 emission factors inferred from simple model and 

line source model. 
 

We expect road dust emission rates to depend on traffic volume, vehicle weight, 

vehicle speed, and meteorological conditions (such as wind speed, atmospheric stability, 

and precipitation) in the short term. Governing factors on a longer time scale include 

atmospheric reactions, deposition, and production (Reid et al., 2016). Notice that AP-42 

is a semi-empirical model that lacks a mechanistic basis and relies on an input that is 

difficult to measure. The proposed system for measuring emission factors using a mobile 

platform overcomes the difficulty with measuring silt loading. To place the model on a 

mechanistic foundation we have derived a new equation that estimates the emission 

factors using silt loadings and vehicle The AP-42 equations and the new model for road 

dust emission rates and emission factors are listed in Table 5.4. The coefficient 𝑘𝑘 in this 

study is determined by using a non-negative least-square method to best fit the on-road 

measurements. Tr  and Vspd  listed in the Table 5.4 are the traffic flow expressed as 
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veh/hr and the vehicle speed in mph obtained by the PeMS sensors or from the recorded 

video described before.  

The comparisons (N=66) of emission rates derived from the AP-42 and our best-

fit model are shown in Figure 5.12. We can see that for all the types of particulate matter 

pollutants, the R2, Fact2, and mg improve over those corresponding to the AP-42 model. 
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Figure 5.12. The scatter plots of AP-42 model and our best-fit model for PM10, PM2.5, and  
PM10-2.5 
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Table 5.4. The comparisons of AP-42 equations and best-fit equations for road dust emission rate 
and emission factor 

Emissions Methods Equation Pollutants k a b 

Emission Rate 
US EPA 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = 𝑘𝑘 × (𝑠𝑠𝑠𝑠)𝑎𝑎 × (𝑊𝑊)𝑏𝑏 × 𝑇𝑇𝑇𝑇 

PM10 620 0.91 1.02 
PM2.5 150 0.91 1.02 

This Study 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = 𝑘𝑘 × 𝑠𝑠𝑠𝑠 × 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 × �
𝑇𝑇𝑇𝑇

𝑇𝑇𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚
�
0.1

 
PM10 2.0e-4 - - 
PM2.5 7.9e-5 - - 

Emission Factor 
US EPA EF = 𝑘𝑘 × (𝑠𝑠𝑠𝑠)𝑎𝑎 × (𝑊𝑊)𝑏𝑏 

PM10 620 0.91 1.02 
PM2.5 150 0.91 1.02 

This Study EF = 𝑘𝑘 × 𝑠𝑠𝑠𝑠 × 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 ×
1

𝑇𝑇𝑟𝑟0.9𝑇𝑇𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚0.1  
PM10 2.8e6 - - 
PM2.5 1.2e6 - - 

 

In the context of comparing emission factors, we normalized the emission rate 

equations by the corresponding traffic flow values for both the AP-42 method and our 

model. Figure 5.13 illustrates scatter plots depicting the emission factors for PM10, PM2.5, 

and PM10-2.5 for the AP-42 method and the proposed model. It is evident that the proposed 

model for PM2.5 is a factor of 1.93 times larger than that obtained using the AP-42 

method. The emission factors for PM10 and PM10-2.5, form the two models show good 

agreement. 
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(a) 

 

(b) 

 

(c) 
Figure 5.13. The scatter plot comparisons of PM10, PM2.5, and PM10-2.5 emission factors 

determined by the AP-42 model and this study 
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5.4.4 Estimated Emission Factors compared with Default Values 

We compare estimated emission factors from this study with reference values. CARB 

(2016) provided an independent road dust inventory that covers freeway and major 

roadways in Riverside. In Figure 5.14 we have depicted the estimation of PM10 and PM2.5 

emission factors using various methodologies, which include the line source model 

(LSM), the carbon mass balance (CMB) method, the AP-42 model with our vacuum 

sampling and suggested default inputs. Notably, regardless of the approach employed, we 

observe that the emission factors for city roads are significantly higher than those for 

freeways. Furthermore, when comparing these methods, it becomes evident that the 

emission factors calculated using the AP-42 method with default silt loadings and default 

weight are consistently higher than those obtained from the other four methodologies, 

which yield similar results. It shows that the default silt loadings in AP-42 were generally 

higher than those in southern California. This discrepancy may be attributed to the 

limited availability of crustal material for emissions in this region, leading to silt loadings 

stabilizing at lower levels due to the effective cleaning action of vehicle tires, as 

discussed by Fitz et al. (2020). 
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(a) 

 

(b) 
Figure 5.14. PM emission factors determined in this study compared to AP-42 default baselines 

and CARB inventory (CARB, 2016b). LSM stands for the line source model, CMB represents the 
carbon mass balance method, and AP-42 (Vacuum) incorporates silt loadings measured from a 

mobile vacuum dust system as input sources. 
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5.5 Conclusions 

This study was motivated by the need for estimating emission factors for PM10 

and PM2.5 from roads. a practical approach to sample silt loadings on highways and busy 

roads, particularly in situations where the existing AP-42 procedures encounter 

deployment challenges. the portable vacuum dust collection system presented in this 

study provides a potential solution for silt loading sampling on a wide range of roads with 

decent uncertainty. Furthermore, we conducted experiments using the widely tested low-

cost PM monitors (PurpleAir) on the mobile platform as a portable method for measuring 

PM concentrations. Another contribution in this study was to develop a physical structure 

model enhancing the accuracy of models used to estimate emission factors for paved 

roads dust, and this provides a theoretical explanation for road dust modeling work. 

To achieve this, we implemented a portable vacuum dust collection system 

mounted on a mobile platform, which underwent the field studies on two freeways and 

two city roads. The mobile dust sampling system demonstrated 1𝜎𝜎 uncertainty of 6.5% of 

the raw measurements through the continuous controlled test samplings. Simultaneously, 

we measured PM and CO2 concentrations using the vehicle-attached PurpleAir and 

PICARRO, respectively. We employed the downwind-upwind difference method to 

assess road contributions, and the 3-D micrometeorological inputs were derived from a 

vehicular attached 2-D sonic anemometer and a high-frequency bead thermistor 

(Thiruvenkatachari et al., 2023).  

Our research incorporated dispersion models and the carbon mass balance method 

for comparison with the regulatory AP-42 approach, using both measured and default 
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baseline inputs. Additionally, we included an independent inventory of PM emission 

factors measured at the same location in 2008 (CARB, 2016b). Our findings (N=66) on-

road tests indicate that all freeways exhibit lower PM10 and PM2.5 emission factors 

compared to city roads. Notably, the AP-42 model with default inputs tends to 

overestimate dust emission factors while the other methods demonstrate good agreement. 

Based on our measurements, PM10 emission factors ranged from 17 to 46 

[mg km−1 veh−1] for freeways and 59 to 149 [mg km−1 veh−1] for city roads. Similarly, 

PM2.5 emission factors ranged from 4 to 17 [mg km−1 veh−1] for freeways and 16 to 38 

[mg km−1 veh−1] for city roads.  

The physical structure model for road dust estimates includes the parameters of 

silt loadings, vehicle speed, and traffic flow. This model provides an explanation for the 

mechanism of the production the road dust. The new model shows an improved 

performance when compared to the AP-42 model.  
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6. Conclusions 

6.1 Improving Spatial Resolution of PM2.5 Measurements during Wildfires 

The significant threat posed by large wildfires to air quality and public health 

arises from the release of harmful substances, particularly fine particulate matter (PM2.5), 

in wildfire smoke. Conventional regulatory methods, mandated by the U.S. Clean Air 

Act, have limited spatial coverage in assessing PM2.5 concentrations during wildfire 

events. Existing satellites provide daily aerosol optical depth (AOD) data, offering a 

global perspective in cloud-free regions but with limited temporal resolution. There is a 

critical need for technology that can comprehensively evaluate health risks at the 

community level with enhanced spatial and temporal resolution. This research seeks to 

bridge this gap by integrating ground monitor measurements with satellite observations 

using dispersion models. 

An approach to construct highly resolved surface PM2.5 maps by combining 

observations made at surface monitors and satellite data collected during wildfires was 

presented. Surface observations were firstly described using two dispersion models: a 

Lagrangian model based on backward trajectories generated with HRRR data from 

source to receptor and a segmented plume model that transports emissions from the 

source within a large-scale plume, whose horizontal dimensions are governed by 

trajectories originating from the sources. Estimates from these two models were fitted to 

surface observations to obtain emissions rates from sources. The satellite measurements 

of AOD, which measures column integrated PM2.5, were also fitted to surface 
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observations using an empirical power law model. Because the results from the 

Lagrangian model were similar to those from the Plume model, the computationally 

efficient Plume model was used in most of the analysis. 

The development of an empirical power equation allowed the estimation of PM2.5 

concentrations from AOD data obtained through the Moderate Resolution Imaging 

Spectroradiometer (MODIS) by NASA. The AOD model made a contribution to the 

correlation,𝑅𝑅2 ,between model estimates and surface observations; the contribution was 

relatively small on most days but can be significant on some days.  

This model was used to construct 1 km resolved maps of surface PM2.5 

concentration during the October 2017 fires and the 2018 Camp Fire in Northern 

California. These maps interpolated between observations by combining model estimates 

with Kriged residuals between model estimates and observations. The residual Kriging 

maps showed greater spatial variation than that from simple Kriging, which just 

interpolates the measured concentrations. 

This integrated technology facilitates the assessment of PM2.5 concentrations at 1 

km spatial resolution with 1-hour temporal resolution. Such precision not only enhances 

the evaluation of health risks but also holds the potential to predict wildfire impacts. In 

principle, the plume dispersion model is simple enough to allow updating of the 

parameters, horizontal plume spread and effective emission rate, in real time, which 

suggests that it can complement or be incorporated into a system (Marsha & Larkin, 2019 

for example) to forecast ground-level PM2.5 during wildfires. 
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6.2 Quantifying and Monitoring Methane Emissions from Dairy Farms in 

California Using TROPOMI and EM27/SUN Measurements 

The application of a numerical dispersion model to infer methane emissions from 

a dairy cluster using column-averaged methane measurements upwind and downwind of 

the cluster is demonstrated. The model accounts for the geometry of the sources and the 

mean and turbulent structure of the atmospheric boundary layer in estimating 

concentrations associated with area sources of methane. The model also pays attention to 

the details of the geometry of the remote measurement method. The numerical model 

allows a straightforward incorporation of the vertical structure of the boundary layer into 

the model inputs to describe the three-dimensional concentration field resulting from an 

area source of emissions. This concentration field is then used to compute the average 

concentration along the line joining the instrument and the sun. The application is 

restricted to a horizontal spatial scale of the order of 10 kilometers over which the 

vertical structure of the boundary layer is assumed to be invariant. 

Because onsite meteorological inputs are not routinely available, we examined the 

use of these inputs derived from the HRRR model. The emissions derived from these 

inputs were compared with those based on-site measurements. Although the emissions 

estimated using these two methods were similar, the HRRR modeled inputs introduced 

larger uncertainty in the emission estimates. 

The model was also applied to two sets of methane measurements, one from a 

ground-based EM27/SUN and the second from a satellite-based system, and the results 

compared well. We show that measurements made by the TROPOMI combined with the 
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HRRR modeled meteorology can be used to infer CH4 emissions from a cluster of dairy 

farms. The emission estimates from this approach compare well with those derived from 

on-site EM27/SUN column measurements and meteorology. This suggests that this 

satellite-based approach can be used to monitor the time variation of CH4 emissions over 

selected dairy farms. This type of continuous monitoring is not practical with on-site field 

measurements. 

6.3 Field Study to Estimate Exposure to Vehicle Exhaust During Idling and Starting 

The adverse health effects associated with vehicle pollutants necessitate a 

thorough assessment of their impact on air quality near roads. A field study was designed 

to collect concentrations of tailpipe CO2 at distances of meters from idling vehicles with 

varying wind speeds and stabilities. As the first step in interpreting the data, we examined 

the performance of a currently available point source dispersion model in describing the 

measured concentrations; this model is not designed for the spatial scales of the situation 

under study and does not account for the effects of the momentum of the exhaust plume.  

The findings revealed that CO2 concentrations were significantly higher than 

background values at meters from the tailpipe. A comparative analysis between 

measurements and modeled results indicated that existing dispersion models provide an 

accurate depiction when accounting for plume rise associated with the exhaust plume. 

Wake turbulence might not be important when the vehicle is stationary; Chang et al., 

(2012) show that turbulence in the wake of a moving vehicle has a major impact on the 

dilution of the exhaust plume. 
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To illustrate the application of a dispersion model designed for near-tailpipe 

exposure, we have used the results of the field study to estimate the risks of exposure to 

potential pollutants such as NO2 and PM2.5 during the situations described earlier. The 

results show that people waiting next to idling or slowly moving cars are likely to be 

exposed to high levels of NO2. 

The results from the field study described in this chapter are relevant to estimating 

exposure to vehicle emissions when customers are waiting for pick-up services by 

transportation network companies. Other similar situations to this near-road exposure 

case are: 1) young children waiting on the curb to be picked up after school; and 2) 

people waiting at curbside to cross the road at a signalized intersection, where vehicles 

stop and go in response to traffic lights. 

6.4 An Assessment of Paved Road Dust Emissions Modeling 

This study was motivated by the need for a practical approach to estimate PM 

emissions from roads, which are highly correlated with silt loading on roads. Current 

methods to measure silt loading require stopping traffic on a section of road, which is 

difficult to implement on most roads and almost impossible on freeways with varying 

traffic volumes. So current emission factor methods rely on default values of silt loading, 

which can lead to uncertainty in emission estimates. The major contribution of this study 

is to develop and deploy a system that allows measurements on a moving platform to 1) 

estimate silt loading on freeways using the mobile dust sampling system, 2) infer dust 

emission rates from roads, and 3) estimate micrometeorological inputs for the dispersion 

model uses. The PM concentrations used to infer to emission rates are made with widely 
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tested low-cost PM monitors (PurpleAir) mounted on the mobile platform. The 

micrometeorological variables are modeled with data from a 2D sonic anemometer and a 

bead thermistor (Thiruvenkatachari et al., 2023), which are portable to be mounted on a 

mobile platform. This technique addresses the challenges associated with setting up a 3D 

sonic anemometer, which typically requires time and careful leveling to ensure reliable 

measurements. 

The new mobile system was used to collect data from several roads and highways, 

which was then used to a formulate emission factor model that has a better mechanistic 

foundation that the currently used AP-42 model. Emission factors of PM10 from the 

proposed model compared well with those from the AP-42 model, but PM2.5 emission 

factors were almost a factor of two higher than those from the AP-42 model. The line 

source model and the simple model show a good agreement on the estimated PM 

emission factors. All freeways sampled in this chapter had lower PM10 and PM2.5 

emission factors compared to city roads, and the AP-42 model with default inputs tends 

to overestimate dust emission factors while the other methods demonstrate good 

agreement.  
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