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Abstract

Analysis, Design of Control Algorithms and Applications for

Forward Invariance of Hybrid Systems

by

Jun Chai

This dissertation focuses on developing tools to study the robust forward invari-

ance of sets for systems with unknown disturbances and hybrid dynamics. In

particular, the notions of robust forward invariance properties are proposed for

hybrid dynamical systems modeled by differential and difference inclusions with

state-depending conditions enabling flows and jumps. A set is said to enjoy robust

forward invariance for a system when its solutions start within the set always stay

in the set regardless of disturbances. These proposed notions allow for a diverse

type of solutions (with and without disturbances), including solutions that have

persistent flow and jumps, that are Zeno, and that stop to exist after finite amount

of (hybrid) time. Moreover, sufficient conditions for sets to enjoy such properties

are presented. The proposed conditions involve the system data and the set to be

rendered robust forward invariant.

Furthermore, such conditions are exploited to derive conditions guaranteeing

that sublevel sets of Lyapunov-like functions are robust forward invariant and, in

turn, inspired a constructive way to design invariance-based control algorithms for

a class of hybrid systems with control inputs and disturbances. More precisely,

when a hybrid system have a Lyapunov-like function V satisfying a set of specific

conditions, existence of feedback laws that render sublevel sets of V robustly

forward invariant for the closed-loop hybrid systems are presented. In addition,

two selection theorems are proposed to design invariance-based controllers for the

class of hybrid systems considered.
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Applications and academic examples are given to illustrate the results. In par-

ticular, the presented forward invariance analysis and design tools are applied to

the design and validate of hybrid controllers for power conversion systems, specif-

ically, a single-phase DC/AC inverter and a DC/DC boost converter. Moreover,

results are applied to the estimation of weakly forward invariant sets, which is

an invariance property of interest when employing invariance principles to study

convergence properties of solutions. Finally, the developed algorithms are tested

on the control of a constrained bouncing ball system.
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Chapter 1

Introduction

The recent advancements in automation technology in everyday lives call for re-

liable algorithms to guarantee safe and efficient operation of autonomous systems;

such as path planing in autonomous driving, energy generation and allocation in

smart grids, cooperative control in air traffic management and motion planning

in human-robot collaboration. Techniques to verify the safety properties are vital

in the design of autonomous systems, which are even more valuable under the

presence of disturbances. Such control specifications can be recast as the problem

of rendering a set forward invariant.

Formally, a set K is said to be forward invariant for a dynamical system if every

solution to the system from K stays in K. This property is also referred in the

literature as flow-invariance [1] or positively invariance [2]. In [3], Aubin studies

viability and invariance (or weak forward invariance and forward invariance) for

continuous dynamical systems given as differential inclusions. His explanations of

these concepts by quoting Jacques Monod’s book “Chance and Necessity” are very

informative: the term “chance” describes the indeterministic factor that comes

from the set-valuedness of system dynamics; while the phrase “necessity” captures

the behavior that solutions ought to evolve within desired regions. In the presence

of disturbances, one is typically interested in invariance properties that hold for all

possible allowed disturbances, which has been referred in the literature as robust
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forward invariance; see, e.g., [4]. In fact, robust forward invariance are used

to characterize solution behaviors to systems with uncertain disturbances. This

motivates the development of forward invariance tools for hybrid systems modeled

by differential and difference inclusions with state constraints. In this dissertation,

we verify the “necessity” of solution pairs evolving within the set that they are

initialized from; while considering a wider range of “chance” in system dynamics

compared to [3]: in addition to set-valuedness, it comes from the possible mixture

of continuous and discrete behaviors and uncertain disturbances.

1.1 Background

Forward invariant sets are regions of the state space from which solutions

start and stay for all future time. In addition to safety guarantees, such proper-

ties emerge in many engineering problems that seek for set reachability, control

optimization and system asymptotic stability. For an obstacle avoidance problem

in vehicular networks, [5] achieves safety in autonomous path planning via in-

variant set and reachable set analysis for a linear continuous-time system. In [6],

forward invariant sets are used to determine the constraints of feasibility to model

predictive control of nonlinear discrete-time systems. In [7], stability of controlled

invariant sets is derived for piecewise-affine systems given by a finite collection of

affine linear differential equations on polytopic subsets of the state space. Treated

as reachability and invariance analysis of hybrid systems, air traffic management

of multiple aircrafts with safety concerns is studied in [8].

Moreover, analysis and feedback-control designs with invariance rendering

goals under the influence of disturbances have appeared in the literature fea-

turing various engineering applications. For an adaptive cruise control problem,

[9] studies the robust invariance properties of sublevel sets of control barrier func-

tions for nonlinear continuous-time systems. For predicting threat assessment in

semi-autonomous cars, [10] identifies the safe driving regions via reachability and
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robust controlled invariance analysis for a discrete-time system with perturba-

tions. To achieve stability of a network system with delays, which is modeled as

a discrete-time system, a model predictive control using set invariance properties

is implemented in [11]. Safety control of urban traffic network is considered as a

robust controlled invariance problem in [12] for discrete-time and hybrid systems.

1.1.1 Forward Invariance for Continuous-time and Discrete-

time Systems

Tools to verify invariance of a set for continuous-time and discrete-time systems

have been thoroughly investigated in the literature. In the seminal article [13],

the so-called Nagumo Theorem is established to determine forward invariance

(and weak forward invariance1) of sets for continuous-time systems with unique

solutions. Given a locally compact set K that is to be rendered forward invariant

and a continuous-time system with a continuous vector field, the Nagumo Theorem

requires that, at each point in the boundary of K, the vector field belongs to the

tangent cone to K; see also [3, Theorem 1.2.1]. This result has been revisited

and extended in several directions. In [14], conditions for weak invariance as well

as invariance for closed sets are provided – a result guaranteeing finite-time weak

invariance is also presented. In particular, one result shows that a closed set K is

forward invariant for a continuous-time system with unique solutions if and only

if the vector field and its negative version are subtangential to K at each point

in it. A similar result is known as the Bony-Brezis theorem, which, instead of

involving a condition on the tangent vectors, requires the vector field to have a

nonpositive inner product with any (exterior) normal vector to the set K [15,16].

Taking advantage of convexity and linearity of the objects considered, [17] provides

necessary and sufficient conditions for forward invariance of convex polyhedral

sets for linear time-invariant discrete-time systems. Essentially, conditions in [17]

1When solutions are nonunique and invariance only holds for some solutions from each point
in K, then K is said to be weakly forward invariant – in [3] this property is called viability.
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require that the new value of the state after every iteration belongs to the set

that is to be rendered forward invariant. This condition can be interpreted as

the discrete-time counterpart of the condition in the Nagumo Theorem. For the

case of time-varying continuous-time systems, [1] provides conditions guaranteeing

forward invariance properties of K given by a sublevel set of a Lyapunov-like

function; see also [18–20]. The analysis of forward invariance of a set for systems

under the effect of perturbations has also been studied in the literature; see [21]

for the case when K is a cone, [22, 23] when K is a polyhedral, to just list a few

more, [5, 10].

For systems with an input, forward invariance can be employed as a tool for

control design. In particular, such techniques synthesize forward invariance speci-

fications, that is, the question of whether, under the selected inputs, the states of

the system remain contained in a desired region. Referred to as invariance-based

control, invariance of sets are exploited for nonlinear continuous-time constrained

systems [24], cascade nonlinear systems [25] and system stabilization of a wide

class of systems. For example, [26] investigates the relationship between forward

invariance and stability for uncertain constrained pure discrete-time and pure

continuous-time systems. Conditions for existence of invariance-based controllers

for linear discrete-time systems are given in [27]. In [28], using stability analysis,

the authors derive equivalent conditions to the existence of forward invariant sets

based on comparison principle for constrained discrete-time nonlinear systems.

Under the presence of disturbances, predicting and governing the solution behav-

iors of the system more intricate than for nominal systems. For model-predictive

controls of discrete-time systems, [29] establishes sufficient conditions on feasible

controls that induce stability via invariance analysis. Minimal invariant sets are

determined for discrete-time control systems in [30]. In [7], stability of controlled

invariant sets is achieved for piecewise-affine systems. In recent years, more at-

tention is drawn to control applications that seek for set invariance and safety

under disturbances outside of stability theory. In [31], as a case study for ma-
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nipulating genetic regulatory networks, robust invariant set is derived to keep the

cellular states of a boolean network within desired set. For continuous-time mono-

tone systems, [4] achieves energy efficiency in temperature control of ventilation

in buildings via invariance analysis. For nonlinear continuous-time systems with

control barrier functions, [9] studies invariance applications in adaptive cruise con-

trol. Among above application driven research, forward invariance analysis and

control design tools often are different from the ones for set stability. Therefore,

in this dissertation, we develop systematic tools to verify forward invariance prop-

erties of sets without stability in consideration. Moreover, we study the robust

forward invariant sets for a general class of hybrid dynamical systems modeled as

hybrid inclusions with disturbances.

Theoretical and computational results on forward invariance of sets under the

presence of disturbances are available under the terms invariance-based control

or controlled invariance. For example, article [2] surveys results for the design of

controllers that induce forward invariance via Lyapunov approach. The authors

of [32] study the invariance control of saturated linear continuous-time systems

(the singular case is treated in [33]). Regarding the computation of invariant

sets, algorithms for the computation of the maximum controlled invariant set for

discrete-time systems are given in [6, 34, 35]. Among these, control designs for

systems with inputs using control Lyapunov functions are implemented to gener-

ate state-feedback laws to assure invariance. For instance, [1] guarantees forward

invariant properties of single-valued continuous-time systems with nonunique so-

lutions via analysis of a family of Lyapunov-like functions. Utilizing a local control

Lyapunov function, feedback control of linear systems under the presence of per-

turbations appeared in [36], which exploits a nesting property of sets to guarantee

invariance of sets; see also the optimization approach in [37]. Similarly, barrier

functions (and control barrier functions) have been shown to be effective for the

study of safety in continuous-time systems; see [38, 39].

5



1.1.2 Forward Invariance for Hybrid Systems

The interests in forward invariance of sets for hybrid systems is also driven

by applications. The use of forward invariance for analysis and design for hybrid

systems include periodic motion analysis with impacts [40], reachability [41], and

hybrid control design [42]. Safety verification in hybrid systems is studies as

invariance-based control problem for hybrid automata with nonlinear continuous

dynamics, disturbances, and control inputs. For example, [43, 44], a differential

game approach is proposed to compute reachable sets for the verification of safety.

In [45], an algorithm is proposed to approximate invariant sets of hybrid systems

that have continuous dynamics with polynomial right-hand-side and that can

be written as hybrid programs. In [46, 47] control barrier functions are used

for verification of safety in hybrid automata with disturbances that affect the

continuous dynamics.

However, the study of forward invariance in systems that combine continuous

and discrete dynamics is not as mature as the continuous-time and discrete-time

settings. This is because the dynamics of hybrid systems are typically governed by

set-valued, nonlinear maps, which lead to nonunique solutions. Certainly, when

the continuous dynamics are discretized, the methods for purely discrete-time

systems mentioned above are applicable or can be extended without significant

effort for certain classes of hybrid models in discrete time; see, in particular, the

results for a class of piecewise affine discrete-time systems in [48]. Establishing

forward invariance (both nominal and robust) is much more involved when the

continuous dynamics are not discretized. Forward invariance of sets for impulsive

differential inclusions, which are a class of hybrid systems without disturbances,

are established in [49]. In particular, [49] proposes conditions to guarantee (weak

– or viability – and strong) forward invariance of closed sets and a numerical

algorithm to generate invariant kernels. Other recent contributions to the under-

standing of forward invariance for hybrid systems without inputs and disturbances

include those for hybrid automata [50, 51] for hybrid inclusions [52, 53]. In [54],
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discrete-time invariance inducing controllers are designed for continuous-time non-

linear systems. The particular case of invariance-based control design for switched

systems modeled by discrete-time systems without perturbations was treated in

[55]. The problem of computing the controlled invariant sets for switched sys-

tems was studied in [56,57]. Game theoretic approach to reachability via forward

invariance control design for a class of hybrid systems with disturbances were

proposed in [58] and [59]. For the case of perturbed systems, analysis results to

study robust forward invariance of sets for linear continuous-time systems with

multiple operation modes are established and applied to controller design in [60].

When both control input and disturbances are considered in hybrid systems, pre-

dicting solutions behaviors is much more complicated compared to those for pure

continuous-time or pure discrete-time systems. In this dissertation, we focus on

the systematic analysis and control designs of a class of hybrid systems modeled

as hybrid inclusions with control input and disturbances.

1.2 Contribution

Motivated by the lack of results for the study of robust and nominal forward in-

variance in hybrid systems, we propose tools for analyzing forward invariance prop-

erties of sets. In particular, formal notions of invariance and solution-independent

conditions that guarantee desired invariance properties of sets are established for

hybrid dynamical systems modeled as

Hw




(x, wc) ∈ Cw ẋ ∈ Fw(x, wc)

(x, wd) ∈ Dw x+ ∈ Gw(x, wd)
(1.1)

which we refer to as hybrid inclusions [61] and where x is the state and w =

(wc, wd) is the disturbance.2

Building from the established robust forward invariance properties for hybrid

dynamical systems, we introduce the notions of robust controlled forward invari-

2See Chapter 2 for a precise definition of system notations appeared in this section.
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ance for hybrid systems given as in [62]. Differential and difference inclusions with

state, input and disturbance constraints are used to model the continuous-time

and discrete-time dynamics of systems, respectively. More precisely, we consider

hybrid systems with both disturbances w = (wc, wd) ∈ Wc × Wd and control

inputs u = (uc, ud) ∈ Uc × Ud that are given by3

Hu,w




(x, uc, wc) ∈ Cu,w ẋ ∈ Fu,w(x, uc, wc)

(x, ud, wd) ∈ Du,w x+ ∈ Gu,w(x, ud, wd),
(1.2)

where x ∈ Rn is the state. We focus on the controller design and synthesis for the

purpose of rendering a set robustly controlled forward invariant for the closed-loop

system that is resulted by replacing u with an admissible state-feedback pair. The

main challenges in asserting these forward invariance properties and their designs

include the following:

(1) Combined continuous and discrete dynamics: given a disturbance signal and

an initial state value, a solution to (1.1) may evolve continuously for some

time, while at certain instances, jump. As a consequence, the set K must

have the property that solutions stay in it when either the continuous or the

discrete dynamics are active.

(2) Potential nonuniqueness and noncompleteness of solutions: the fact that the

dynamics of (1.1) are set valued and the existence of states from where flows

and jumps are both allowed (namely, the state components of Cw and Dw

may have a nonempty overlap with points from where flows are possible) lead

to nonunique solutions. In particular, at points in K where both flows and

jumps are allowed, conditions for invariance during flows and at jumps need

to be enforced simultaneously. Furthermore, solutions may cease to exist after

finite (hybrid) time due to the state reaching a point from where neither flow

nor jump is possible. – these include points in the boundary of Cw that are

not in Dw, from where the elements in Fw point outward the set Cw, and
3The space for disturbances and control inputs are Wc ⊂ Rdc ,Wd ⊂ Rdd and Uc ⊂ Rmc ,Ud ⊂

Rmd , respectively.
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points from where the jumps map the state outside where flow and jumps are

possible.

(3) Presence of disturbances for systems with state constraints: for it to be inter-

esting, forward invariance of a set K for a hybrid system with disturbances

is an invariance property that has to hold for all possible disturbances. In

technical terms, for every x such that (x, wc) belongs to Cw, the vectors in

the set Fw(x, wc) need to be in directions that flow outside of K is impossible

for all values of wc. Similarly, for each x such that (x, wd) belongs to Dw, the

set Gw(x, wd) should be contained in K regardless of the values of wd.

(4) Forward invariance analysis of intersection of sets: when provided a Lyapunov-

like function, V , for the given system, conditions to guarantee forward invari-

ance properties will need to take advantage of the nonincreasing property of

V . In such a case, the state component of the sets Cw and Dw will be in-

tersected by sublevel sets of the given Lyapunov-like function, which require

less restrictive conditions than for general sets.

(5) Robust controlled forward invariance for Hu,w via (κc, κd): we provide notions

of robust controlled forward invariance of a generic set K ⊂ Rn for Hu,w via

given feedback laws. When a Hu,w-admissible state-feedback pair (κc, κd)
4

renders a set robustly controlled forward invariant for the closed-loop system,

the existence of nontrivial solution pair from every possible initial condition

is guaranteed. Moreover, every maximal solution pair that starts from the

set is complete and stays within the set for all future time. Such concept

concerns the solution pair behavior of the closed-loop hybrid system of Hu,w

under the effect of a state-feedback pair (κc, κd), which is given by

Hw




(x, wc) ∈ Cw ẋ ∈ Fw(x, wc)

(x, wd) ∈ Dw x+∈ Gw(x, wd),
(1.3)

4A state-feedback pair (κc, κd), where κc : Rn → Rmc and κd : Rn → Rmd , is said to be
Hu,w-admissible if the pair satisfies the dynamics of Hu,w.
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where the set-valued maps Fw(x, wc) := Fu,w(x, κc(x), wc) and Gw(x, wd) :=

Gu,w(x, κd(x), wd) govern the continuous-time and discrete-time evolutions of

the system on the sets Cw := {(x, wc) ∈ Rn ×Wc : (x, κc(x), wc) ∈ Cu,w} and

Dw := {(x, wd) ∈ Rn × Wd : (x, κd(x), wd) ∈ Du,w}, respectively. Note that

Hw share same structure as hybrid system in (1.1). When provided differ-

ent feedback pairs to Hu,w, the resulting closed-loop systems have different

dynamics.

(6) Robust forward invariance of sublevel sets of Lyapunov-like functions: condi-

tions to guarantee robust forward invariance properties that take advantage

of the nonincreasing property of a Lyapunov-like function, V , are proposed.

The sublevel sets of the given V is intersected by the state component of the

sets Cw andDw. Intricate derivations are needed to guarantee the existence of

nontrivial solution pair from every point, furthermore, to guarantee the com-

pleteness of solution pairs. Note that these Lyapunov-like functions ought to

satisfy inequalities over carefully constructed regions that allow increase in

V in the interior of their sublevel sets. Moreover, to further relax the regu-

larity on set Cw (compared to [63, Theorem 5.1]) via a constructive proof by

investigating properties of vectors in the tangent cone of the intersected sets.

(7) Existence of continuous state-feedback laws using robust control Lyapunov

function for forward invariance (RCLF-FI): we extend the concept of ro-

bust control Lyapunov function from [62] to the purpose of rendering robust

controlled invariance. The proposed notion is derived from the conditions to

guarantee robust forward invariance of sublevel sets of Lyapunov-like func-

tions. Such a novel concept is exploited to determine sufficient conditions that

lead to the existence of continuous state-feedback laws for robust controlled

invariance, which involve the data of the system and properly constructed

regulation maps. In particular, by assuring the existence of continuous se-

lections from set-valued maps that collect all possible control inputs, forward

invariance of sublevel sets is guaranteed. The invariance-based control design
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approach using RCLF-FI for hybrid systems is unique and original to our

best knowledge. Finally, utilizing the regulation maps built, we employ a

pointwise minimum norm selection scheme to construct state-feedback laws.

Such feedback pairs lead to suboptimality with respect to some meaningful

cost function while ensuring robust controlled forward invariance for Hu,w.

In this dissertation, we provide results that help tackle these key issues system-

atically. For starters, we introduce the notions for forward invariance in hybrid

dynamical systems, both with and without disturbances. Then, we present the

sufficient conditions to verify each proposed notions, for which, in the case with

disturbances, we establish a result to guarantee existence of nontrivial solutions

to the system modeled as in (1.1) and provides insight for solution behavior based

on completeness. The proposed notions of robust forward invariance are uniform

over all possible disturbances, and allow for solutions to be nonunique and to

cease to exist in finite (hybrid) time (namely, not complete). For each notion, we

propose sufficient conditions that the data of the hybrid inclusions and the set K

should satisfy to render K robustly forward invariant. Results for hybrid systems

without disturbances are derived as special cases of the robust ones. Compared

to [49], which studies the nominal systems exclusively, we focus on a more gen-

eral family of hybrid systems, where Marchaud and Lipschitz conditions are not

necessarily always imposed in the flow map. As an application of the results

for generic sets K, we present a novel approach to verify forward invariance of

a sublevel set of a given Lyapunov-like function intersected with the sets where

continuous or discrete dynamics are allowed. Such a result lays the groundwork

for the design results in this thesis. Because of the nonincreasing properties of

the given Lyapunov-like function along solutions, the developed conditions are

less restrictive and more constructive when compared to the ones for a generic set

K. Moreover, our results are also insightful for systems with purely continuous-

time or discrete-time dynamics. In fact, because of the generality of the hybrid

inclusions framework, the results in this paper are applicable to broader classes
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of systems, such as those studied in [2, 3, 17, 19, 20].

Then, we exploit the analysis tools for verifying robust forward invariance prop-

erties for the autonomous hybrid dynamical system Hw, to develop invariance-

based control design using proposed RCLF-FI. We provide systematic approach

for constructing invariance inducing feedbacks under the presence of a generic

class of perturbations, from which the invariance-based control designs for hybrid

systems without disturbances are derived as special cases.5 Moreover, our results

are also insightful for systems with purely continuous-time or discrete-time dy-

namics. In fact, because of the generality of the hybrid inclusions framework, the

results in this paper are applicable to broader classes of systems, such as those

studied in [4, 26, 30, 32].

To illustrate analysis and design tools proposed in this dissertation, we investi-

gated several engineering applications. In particular, we present two technological

invariant-based control for power conversion systems, a single-phase DC/AC in-

verter and a DC/DC boost converter. Both systems with switching dynamics are

modeled as hybrid systems with a logical input signal to be designed. To ac-

complish the design goals, we proposed control laws that result in desired output

signals as close as possible to the reference signal by controlling the switch(es) in

circuits. The proposed controllers trigger switch(es) based on the value of the cur-

rent and voltage of the electronic filter. Results on forward invariance of sets for

general hybrid systems are used to analyze the effect of the proposed controllers.

Then, we study a bouncing ball system with constrain, which is modeled by hybrid

inclusions in form of (1.2). Following the provided approach, the designed control

input manage to accomplish the objective of maintaining the peaks of height after

each bounce within desired range for the closed-loop system. This controller fea-

tures robust controlled forward invariance of a desired set on the state space that

corresponds to the desired height range under the uncertain coefficient of restitu-

tion during impact. Finally, for the purpose of estimating largest weakly forward

5The nominal version of the results in this paper appeared without proof in the conference
article [64].
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invariant set, which is essential in the set stabilization via La Salle’s invariance

principle, we explore the proposed sufficient conditions that guarantee forward

invariance property of the sublevel sets of Lyapunov-like functions. Numerical

simulations are presented for applications to validate the claims. The proposed

results are also demonstrated with illustrative academic examples.

1.3 Organization

The contents of this dissertation are organized into following chapters. For

ease of presentation, we introduce results in each chapter for the nominal hybrid

systems prior to the ones for the perturbed systems.

Chapter 2: Preliminaries In this chapter, the hybrid inclusions framework,

which models hybrid systems as differential and difference inclusions with con-

straints, and its basic properties are presented. These will be used throughout

this dissertation.

Chapter 3: Notions of Forward Invariance for Hybrid Systems In this

chapter, we formally define the notions of nominal forward invariance properties

of a set for hybrid system without disturbance signals. The proposed notions are

thoroughly discussed concerning the existence of nontrivial solutions and their

completeness. Then, extending these to the case with disturbances, we propose

the notions of robust forward invariance for hybrid systems Hw in (1.1). We

provide several academic examples to illustrate the notions, which we revisit in

later chapters.

Chapter 4: Sufficient Conditions to Verify Forward Invariance for Hy-

brid Systems In this chapter, we present sufficient conditions to guarantee each

presented forward invariance notion in Chapter 3 for a generic set K. For the

13



system with disturbances, we provide conditions to check for existence of nontriv-

ial solutions and their behaviors. Each set of conditions include those to ensure

solutions to stay within K during flows and jumps. In addition, a particular con-

dition to guarantee no finite escape time of solutions during flow is explored for

possible solution-independent alternatives. We present several academic examples

to illustrate the main results.

Chapter 5: Forward Invariance of Sublevel Sets of Lyapunov-like Func-

tions In this chapter, we propose invariance inducing conditions for systems with

a given Lyapunov-like function V . These conditions are less restrictive on system

data, when compared to the ones in Chapter 4. Such advantage comes from the

fact that the set of interest is the intersection of the sublevel sets of V and the

regions where flows and jumps are enabled. These results are crucial to the up-

coming analysis and control design efforts. We provide several academic examples

to illustrate the results, which we revisit in later chapters.

Chapter 6: Controlled Forward Invariance using Control Lyapunov

Functions In this chapter, we start with providing the definitions of (robust)

controlled forward invariance for hybrid systems via feedback laws. Then, revisit-

ing the relaxed sufficient conditions using Lyapunov methods, we give the formal

definition of control Lyapunov function for forward invariance. Then, results for

the existence and design of continuous state-feedback laws using such functions

to render its sublevel sets (robustly) controlled forward invariant are presented.

Control synthesis is also proposed using a minimal selection scheme. Academic

examples for major concepts are included.

Chapter 7: Applications of Invariance-based Controls In this chapter,

we investigate several engineering applications to illustrate analysis and design

tools proposed in this dissertation. Two power conversion systems, a single-phase
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DC/AC inverter and a DC/DC boost converter, are presented. A bouncing ball

system with constraints, which is modeled by hybrid inclusions in form of (1.2),

is controlled and analyzed to achieve the control goal of maintaining the peaks

of height after each bounce within desired range. Finally, for the purpose of

estimating largest weakly forward invariant set, we explore the proposed suffi-

cient conditions that guarantee forward invariance property of the sublevel sets

of Lyapunov-like functions. Numerical simulation results are presented for most

applications to validate the claims.

Chapter 8: Conclusion and Plan of Future Work In this chapter, the

results in this dissertation are summarized and several potential future directions

are briefly discussed.
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Chapter 2

Preliminaries on Hybrid Systems

In this dissertation, we consider hybrid system modeled as hybrid inclusions,

where system dynamics are captured by differential and difference inclusions with

constraints. More precisely, for hybrid system Hw given as in (1.1), which has

disturbance input w = (wc, wd) and state x, we are interested in forward invariance

properties of a set that are uniform in the allowed disturbances w; while for

hybrid systems H studied in [61], which is considered as a special case of Hw with

constant zero disturbance, i.e., w ≡ 0. We further explore the relaxed conditions to

guarantee nominal forward invariance of sublevel sets of Lyapunov-like functions.

In the rest of this section, we present basic definitions and properties of Hw that

are important for deriving the forthcoming results.

We study the system Hw = (Cw, Fw, Dw, Gw) in (1.1). The data of Hw in (1.1)

is defined by the flow set Cw ⊂ Rn × Wc, the flow map Fw : Rn × Rdc ⇒ Rn,

the jump set Dw ⊂ Rn × Wd, and the jump map Gw : Rn × Rdd ⇒ Rn. The

space for the state x is Rn and the space for the disturbance w = (wc, wd) is

W = Wc ×Wd ⊂ Rdc ×Rdd . The sets Cw and Dw define conditions that x and w

should satisfy for flows or jumps to occur. In this paper, we assume domFw ⊃ Cw

and domGw ⊃ Dw. The considered class of disturbances are formally given as

follows.

Definition 2.0.1 (hybrid disturbance) A hybrid disturbance w is a function on a
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hybrid time domain that, for each j ∈ N, t 7→ w(t, j) is Lebesgue measurable and

locally essentially bounded on the interval {t : (t, j) ∈ domw}. �

When w(t, j) = 0 for every (t, j) ∈ domw (which means that there is no

disturbance), the system Hw reduces to the nominal hybrid system introduced in

[61], which is given by

H




ẋ ∈ F (x) x ∈ C

x+ ∈ G(x) x ∈ D,
(2.1)

where the system data is given by

• flow map, a set-value map F : Rn ⇒ Rn describing the continuous dynamics

of H;

• flow set, a set C ⊂ domF specifying the points where dynamics of F applies;

• jump map, a set-value map G : Rn ⇒ Rn describing the discrete dynamics

of H;

• jump set, a set D ⊂ domG specifying the points where dynamics of G

applies.

Following [61], a solution to the hybrid system Hw is parameterized by the

concept of hybrid arcs and hybrid time domains.

Definition 2.0.2 (hybrid time domain, [61, Definition 2.3]) A subset E ⊂ R≥0×
N is a compact hybrid time domain if

E =
J−1⋃

j=0

([tj, tj+1], j)

for some finite sequence of times 0 = t0 ≤ t1 ≤ t2... ≤ tJ . A subset S ⊂ R≥0 × N

is a hybrid time domain if for all (T, J) ∈ S, S ∩ ([0, T ], {0, 1, ..., J}) is a compact

hybrid time domain. �
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The operations supt and supj on a hybrid time domain E return the supremum

of the t and j coordinates, respectively, of points in E. A hybrid arc φ, satisfying

system dynamics, can be defined as a set-valued mapping φ : R2 ⇒ Rn that is

single-valued on its domain domφ.

Definition 2.0.3 (hybrid arc, [61, Definition 2.4]) A function x : dom x→ Rn is

a hybrid arc if dom x is a hybrid time domain and if for each j ∈ N, the function

t 7→ x(t, j) is locally absolutely continuous. �

Then, solutions to (2.1) are defined in [61, Definition 2.6] in terms of hybrid time

domains and hybrid arcs.

Definition 2.0.4 (solution to H) A hybrid arc φ is a solution to the hybrid system

(C, F,D,G) if φ(0, 0) ∈ C ∪D, and

(S1) for all j ∈ N such that Ij := {t : (t, j) ∈ domφ} has nonempty interior

φ(t, j) ∈ C for all t ∈ int Ij ,

φ̇(t, j) ∈ F (φ(t, j)) for almost all t ∈ Ij ;

(S2) for all (t, j) ∈ domφ such that (t, j + 1) ∈ domφ,

φ(t, j) ∈ D,

φ(t, j + 1) ∈ G(φ(t, j)).

A solution φ to the hybrid system H = (C, F,D,G) is

• nontrivial if domφ contains at least two points;

• complete if domφ is unbounded;

• Zeno if it is complete and supt domφ <∞;

• maximal if there does not exist another solution ψ to H such that domφ is

a proper subset of domψ and φ(t, j) = ψ(t, j) for all (t, j) ∈ domφ;
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• eventually discrete if T = supt domφ <∞ and domφ ∩ ({T} ×N) contains

at least two points;

• discrete if nontrivial and domφ ⊂ {0} × N.
�

Given K ⊂ Rn, we use SH to represent the set of all maximal solutions to the

hybrid system H and SH(K) to denote a set that includes all maximal solutions

φ to the hybrid system H with initial condition φ(0, 0) in K.

As an extension to Definition 2.0.4, solution pairs to a hybrid system Hw as

in (1.1) are defined as follows.

Definition 2.0.5 (solution pairs to Hw) A pair (φ, w) consisting of a hybrid arc

φ and a hybrid disturbance w = (wc, wd), with domφ = domw(= dom(φ, w)),

is a solution pair to the hybrid system Hw in (1.1) if (φ(0, 0), wc(0, 0)) ∈ Cw or

(φ(0, 0), wd(0, 0)) ∈ Dw, and

(S1w) for all j ∈ N such that Ij has nonempty interior

(φ(t, j), wc(t, j)) ∈ Cw for all t ∈ int Ij,

dφ

dt
(t, j) ∈ Fw(φ(t, j), wc(t, j)) for almost all t ∈ Ij,

(S2w) for all (t, j) ∈ domφ such that (t, j + 1) ∈ domφ,

(φ(t, j), wd(t, j)) ∈ Dw

φ(t, j + 1) ∈ Gw(φ(t, j), wd(t, j)).

In addition, a solution pair (φ, w) to Hw is said to be

• nontrivial if dom(φ, w) contains at least two points;

• complete if dom(φ, w) is unbounded;

• maximal if there does not exist another (φ, w)′ such that (φ, w) is a truncation

of (φ, w)′ to some proper subset of dom(φ, w)′.
�
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Similar as for H, we use SHw
(K) to denote a set that includes all maximal solution

pairs (φ, w) to Hw with initial condition φ(0, 0) in K.

To formulate our results, we will need the following result from [61].

Proposition 2.0.6 ([53, Proposition 2.2]) Consider the hybrid system H = (C, F,D,G).

Let ξ ∈ C ∪D. If ξ ∈ D or

(VC) there exist ε > 0 and an absolutely continuous function z : [0, ε] → Rn

such that z(0) = ξ, ż(t) ∈ F (z(t)) for almost all t ∈ [0, ε] and z(t) ∈ C for

all t ∈ (0, ε],

then there exists a nontrivial solution φ to H with φ(0, 0) = ξ. If (VC) holds for

every ξ ∈ C \D, then there exists a nontrivial solution to H from every point of

C ∪D, and every φ ∈ SH satisfies exactly one of the following:

a) φ is complete;

b) φ is not complete and “ends with flow”, with (T, J) = sup domφ, the interval

IJ has nonempty interior; and either

b.1) IJ is closed, in which case φ(T, J) ∈ C \ (C ∪D); or

b.2) IJ is open to the right, in which case (T, J) /∈ domφ, and there does

not exist an absolutely continuous function z : IJ → Rn satisfying

ż(t) ∈ F (z(t)) for almost all t ∈ IJ , z(t) ∈ C for all t ∈ int IJ , and

such that z(t) = φ(t, J) for all t ∈ IJ ;

c) φ is not complete and “ends with jump”: for (T, J) = sup domφ, one has

φ(T, J) /∈ C ∪D.

Furthermore, if G(D) ⊂ C ∪D, then c) above does not occur.

Our control design effort considers hybrid systems with both disturbances w =

(wc, wd) ∈ Wc ×Wd and inputs u = (uc, ud) ∈ Uc × Ud given by (1.2). The space

for disturbances and inputs are Wc ⊂ Rdc ,Wd ⊂ Rdd and Uc ⊂ Rmc ,Ud ⊂ Rmd ,
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respectively. We focuses on the controller design and synthesis for the purpose

of rendering a set robustly controlled forward invariant for the closed-loop sys-

tems that is resulted by replacing u with a Hu,w-admissible state-feedback law

(κc, κd).1 In (1.2), the maps Fu,w(x, uc, wc) and Gu,w(x, ud, wd) are nonempty for

every (x, uc, wc) and (x, ud, wc), respectively, and capture the system dynamics

when in sets Cu,w and Du,w, which define conditions that x, u, and w should sat-

isfy for flows or jumps to occur, respectively. We assume that Cu,w andDu,w define

conditions on u that only depend on x and conditions on w that only depend on

x, where w = 0, meaning there is no disturbance in system, always qualifies as a

value for disturbance. For convenience, we define the projection of S ⊂ Rn ×Wc

onto Rn as

Πw
c (S) := {x ∈ Rn : ∃wc ∈ Wc s.t. (x, wc) ∈ S},

and the projection of S ⊂ Rn ×Wd onto Rn as

Πw
d (S) := {x ∈ Rn : ∃wd ∈ Wd s.t. (x, wd) ∈ S}.

Moreover, the projection of S ⊂ Rn × Uc ×Wc onto Rn as

Πc(S) := {x ∈ Rn : ∃uc ∈ Uc, wc ∈ Wc s.t. (x, uc, wc) ∈ S},

and the projection of S ⊂ Rn × Ud ×Wd onto Rn as

Πd(S) := {x ∈ Rn : ∃ud ∈ Ud, wd∈Wd s.t. (x, ud, wd) ∈ S},

Given sets Cu,w and Du,w, the set-valued maps Ψw
c : Rn ⇒ Wc and Ψw

d : Rn ⇒ Wd

are defined for each x ∈ Rn as

Ψw
c (x) := {wc ∈ Rdc : (x, uc, wc) ∈ Cu,w},

Ψw
d (x) := {wd ∈ Rdd : (x, ud, wd) ∈ Du,w},

(2.2)

respectively, and the set-valued maps Ψu
c : Rn ⇒ Uc and Ψu

d : Rn ⇒ Ud are defined

for each x ∈ Rn as

Ψu
c (x) := {uc ∈ Rmc : (x, uc, wc) ∈ Cu,w},

1A state-feedback pair (κc, κd), where κc : Rn → Rmc and κd : Rn → Rmd is said to be
Hu,w-admissible if the pair satisfies the dynamics of Hu,w.
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Ψu
d(x) := {ud ∈ Rmd : (x, ud, wd) ∈ Du,w},

respectively.

The following regularity conditions on the system data of a hybrid system Hw

as in (6.2) are considered in some forthcoming results. These conditions guarantee

robustness of stability of compact sets with respect to perturbations.

Definition 2.0.7 (hybrid basic conditions) A hybrid system Hw is said to satisfy

the hybrid basic conditions if its data satisfies

(A1w) Cw and Dw are closed subsets of Rn ×Wc and Rn ×Wd respectively;

(A2w) Fw : Rn × Rdc ⇒ Rn is outer semicontinuous2 relative to Cw and locally

bounded, and for all (x, wc) ∈ Cw, Fw(x, wc) is convex;

(A3w) Gw : Rn × Rdd ⇒ Rn is outer semicontinuous relative to Dw and locally

bounded.

�

Similarly, for system H in (2.1), we define the following regularity conditions

on its system data; see [61, Assumption 6.5] for details.

Definition 2.0.8 (hybrid basic conditions) A hybrid system H is said to satisfy

the hybrid basic conditions if its data satisfies

(A1) C and D are closed subsets of Rn;

(A2) F : Rn ⇒ Rn is outer semicontinuous relative to C and locally bounded,

and for every x ∈ C, F (x) is convex;

(A3) G : Rn ⇒ Rn is outer semicontinuous relative to D and locally bounded.

�

2See Definition A.0.2 in Appendix.
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For general hybrid systems H = (C, F,D,G), [61, Definition 3.6] introduces

the following stability notion.

Definition 2.0.9 (Stability) A compact set A ⊂ Rn is said to be

• stable if for each ε > 0 there exists δ > 0 such that each solution χ with

|χ(0, 0)|A ≤ δ satisfies |χ(t, j)|A ≤ ε for all (t, j) ∈ domχ;

• attractive if there exists µ > 0 such that every maximal solution χ with

|χ(0, 0)|A ≤ µ is complete and satisfies lim(t,j)∈domχ,t+j→∞ |χ(t, j)|A = 0;

• asymptotically stable if A is stable and attractive;

• globally asymptotically stable if the attractivity property holds for every

point in C ∪D.

�
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Chapter 3

Notions of Forward Invariance for

Hybrid Systems

In this chapter, we formally introduce the notions of forward invariance for hy-

brid systems. First, for the nominal system H in (2.1), four notions are presented

to capture the properties where solutions stay within set K ⊂ Rn when they are

initialized within it. The four notions are different considering the existence of

nontrivial solutions and completeness of maximal solutions. Then, for the hybrid

system Hw in (1.1), the robust notions are presented for cases where the forward

invariance properties are uniformly in disturbances. These definitions provide

the fundamentals for the forth coming effort in the invariance-based controls for

hybrid systems with inputs in Chapter 6.

3.1 The Nominal Forward Invariant Sets

In this section, we define several forward invariance notions that, in particular,

apply in situations where not every maximal solution is complete and unique,

which is very common in hybrid systems. We start by defining weak forward

pre-invariance of a set.
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Definition 3.1.1 (weak forward pre-invariance) The set K ⊂ Rn is said to be

weakly forward pre-invariant for H if for every x ∈ K there exists φ ∈ SH(x) with

rgeφ ⊂ K. �

Note that the prefix “pre” captures the fact that the solution staying in K may

not be complete. The weak forward pre-invariance notion requires that at least

one solution exists from every point in K. Such a solution can be trivial (domφ

with only one point), nontrivial (domφ with more than one point), but at least

one maximal solution from each point in the set has to stay in the set for all future

hybrid time. In the case that a trivial solution φ with φ(0, 0) ∈ K is maximal,

the property of rgeφ ⊂ K holds for free by definition of solutions. Furthermore, if

K has points that are not in C ∪D, the weak forward pre-invariance notion hold

for these points as they have one trivial solution as the maximal solution, which

is rather a trivial statement, suggesting that one may want to start from a set K

that is a subset of C ∪D in the first place.

Next, we define a weak forward invariant set, which is equivalent to the one in

[61, Definition 6.19].

Definition 3.1.2 (weak forward invariance) The set K ⊂ Rn is said to be weakly

forward invariant for H if for every x ∈ K there exists one complete solution

φ ∈ SH(x) with rgeφ ⊂ K. �

Note that this notion requires the existence of nontrivial solutions from every

x ∈ K. We use the next example to illustrate such concept.

Example 3.1.3 (weak forward invariant set) Consider the hybrid system H =

(C, F,D,G) on R2 in (2.1) with system data given by

F (x) :=





(1, 1) if x2 > 1− x1

con {(1, 1), (−1,−1)} if x2 = 1− x1

(−1,−1) if x2 < 1− x1
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for every x ∈ C := {x ∈ R2 : x1 ∈ [0, 1], x2 ∈ [0, 1]}, and

G(x) :=





(
1
2
+ 1

4
B, 1

2

)
if x2 ∈ {0, 1}, x1 ∈ (0, 1)

{(
1
2
+ 1

4
B, 1

2

)
,
(
1
2
, 1
2
+ 1

4
B
)}

if x ∈ {(0, 0), (0, 1), (1, 1), (1, 0)}
(
1
2
, 1
2
+ 1

4
B
)

if x1 ∈ {0, 1}, x2 ∈ (0, 1)

for every x ∈ D := ∂C = ({0, 1} × [0, 1])
⋃
([0, 1]× {0, 1}).

x1

x2

1

1

0

C
D = ∂C

K

x2 = 1− x1

(1
2
, 1
2
)

(1, 1)

1
2

1
2

Figure 3.1: Sets pertaining to the system in Example 3.1.3.

Consider the set K = [1
2
, 1] × [1

2
, 1]. According to the first piece of the defini-

tion of F , every solution that starts from the set
(
(1
2
, 1)× (1

2
, 1)
)⋃ ({1

2
} × (1

2
, 1)
)

⋃ (
(1
2
, 1)× {1

2
}
)

which is represented by darker blue points in Figure 3.1, initially

flows within K with vector field [1 1]⊤. According to the definition of G, points

in set
(
{1} × [1

2
, 1]
)⋃ (

[1
2
, 1]× {1}

)
, i.e., the points in green, are mapped via G

to either outside of K (to a point in {x ∈ R2 : x1 ∈ [1
4
, 1
2
), x2 = 1

2
}⋃{x ∈ R2 :

x2 ∈ [1
4
, 1
2
), x1 =

1
2
}) or mapped inside K (to a point in {x ∈ R2 : x1 ∈ [1

2
, 3
4
], x2 =

1
2
}⋃{x ∈ R2 : x2 ∈ [1

2
, 3
4
], x1 =

1
2
}). Finally, a solution that starts from (1

2
, 1
2
),the

yellow dot in Figure 3.1, can flow either inside or outside of K due to the second

piece in the definition of F . In summary, using the solution-based approach, from
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every point in K, there exists at least one complete solution that stays in K. △

Similar to pure continuous-time and pure discrete-time systems, the invariance

principle introduced by [65], presented originally by LaSalle [66] for differential

and difference equations, is important to study convergence and stability for hy-

brid dynamical systems. The LaSalle’s invariance principle states that bounded

solutions converge to the largest invariant subset of the set, where the derivative

or the difference of a suitable energy function is zero. Among the two properties

that induces such invariance, i.e., backward and forward invariance [61, Definition

6.19], tools to identify the largest weak forward invariant sets are meaningful to

derive stability of hybrid system. We dedicate one result in Chapter 5 to such

task for estimating the largest forward invariant set for a given H.
When every maximal solution starting from K stays in K, we say the set is

forward pre-invariant for H. This notion was introduced in [61, Definition 6.25]

as “strong forward pre-invariance” in the context of invariance principles.

Definition 3.1.4 (forward pre-invariance) The set K ⊂ Rn is said to be forward

pre-invariant for H if every φ ∈ SH(K) has rgeφ ⊂ K. �

Finally, the strongest version of forward invariance property that requires not

only that every maximal solution starting from K stays in K, but also requires

completeness of all maximal solutions.

Definition 3.1.5 (forward invariance) The set K ⊂ Rn is said to be forward

invariant for H if every φ ∈ SH(K) is complete and satisfies rgeφ ⊂ K. �

The following example illustrates the concept of a forward invariant set.

Example 3.1.6 (forward invariant set) Consider the hybrid system given by

H





x ∈ C ẋ = F (x) :=


−|x1|x2

0




x ∈ D x+ = G(x) := x,

(3.1)
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where the flow set is C = {x ∈ R2 : |x| ≤ 1, x1x2 ≥ 0} and the jump set is

D = {x ∈ R2 : |x| ≤ 1, x1x2 ≤ 0}. We observe that during flow, solutions evolve

continuously within the unit circle centered at the origin; while at jumps, solutions

remain at the current location. In fact, the set K1 = C1 ∪D1 is forward invariant

for H, where C1 = {x ∈ R2 : x1 ≥ 0, x2 ≥ 0, |x| ≤ 1} and D1 = {x ∈ R2 : x1 ≤
0, x2 ≥ 0, |x| ≤ 1}. We show this property holds true applying results in Chapter 4

in Example 4.1.9. △

The relationship among the four notions is summarized in the diagram in

Figure 3.2.

+ Completeness+ Completeness

+∀φ ∈ SH(K)

+∀φ ∈ SH(K)

Weak Forward
pre-Invariance

Weak Forward
Invariance

Forward
pre-Invariance

Forward
Invariance

Figure 3.2: Relationships of the notions of forward invariance for a set K.

In many control applications, the properties of “every solution” start from K

stays in set K is essential. For instance, safety control methodologies, such as the

use of control barrier functions, call for such strict constraints. It is intuitive that

when some solutions escape the “safe set,” safety constraints are violated. Hence,

in the forth coming Chapter 6, we dedicate control design and synthesis to render

a set forward pre-invariant and forward invariant.

Remark 3.1.7 In [49], viable and invariant sets concepts are introduced for au-

tonomous hybrid systems that are modeled in term of impulsive differential inclu-

sions. The viability property in [49] is equivalent to the weak forward invariance in

Definition 3.1.2, while the invariant property in [49] is equivalent to the definition

of forward pre-invariance in Definition 3.1.4.
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3.2 The Robust Forward Invariant Sets

For hybrid systems with disturbances, i.e., Hw given as in (1.1), we formally

define the notions of robust forward invariant sets. In particular, a set K enjoys

robust forward invariance when the state evolution begins fromK and stays within

K regardless of the value of the disturbance w. Similar to the nominal case,

we present four classes of sets depends on solution pair behavior of Hw. Such

properties are uniformly in the allowed disturbances w First, we introduce the

weak versions where not every maximal solution pair to Hw is necessarily that

starts from K stays within K.

Definition 3.2.1 (robust weak forward pre-invariance) The set K ⊂ Rn is said

to be robustly weakly forward pre-invariant for Hw if for every x ∈ K there exists

one solution pair (φ, w) ∈ SHw
(x) such that rgeφ ⊂ K. �

When completeness of solution pairs are required, it leads to the notion of

robust weak forward invariant set

Definition 3.2.2 (robust weak forward invariance) The set K ⊂ Rn is said to be

robustly weakly forward invariant for Hw if for every x ∈ K there exists a complete

(φ, w) ∈ SHw
(x) such that rgeφ ⊂ K. �

The following notions are considered stronger than the ones in Definition 3.2.1

because all maximal solution pairs that start from the set K are required to stay

within K.

Definition 3.2.3 (robust forward (pre-)invariance of a set) The set K ⊂ Rn is

said to be robustly forward pre-invariant for Hw if every (φ, w) ∈ SHw
(K) is such

that rgeφ ⊂ K. �

Then, with existence of nontrivial solution pairs from every x ∈ K and com-

pleteness of every maximal solution pair, we derive the strongest notion of forward

invariance as follows.
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Definition 3.2.4 (robust forward invariance of a set) The set K ⊂ Rn is said

to be robustly forward invariant for Hw if for every x ∈ K there exists a solution

pair to Hw and every (φ, w) ∈ SHw
(K) is complete and such that rgeφ ⊂ K. �

The following example illustrates the concept of weakly forward invariant

Example 3.2.5 (robustly weakly forward invariant set) Consider a variation of

hybrid system H in Example 3.1.6 with disturbances given by

Hw





(x, wc) ∈ Cw ẋ = Fw(x, wc) := |x1|


−x2
wcx1




(x, wd) ∈ Dw x+ ∈ Gw(x, wd) := {R(θ)x : θ ∈ [wd,−wd]},

where R(θ) :=

[
cos θ sin θ

− sin θ cos θ

]
is a rotation matrix, Cw := {(x, wc) ∈ R2 × R :

0 ≤ wc ≤ |x| ≤ 1, x1x2 ≥ 0}, and Dw := {(x, wd) ∈ R2 × R : x1x2 ≤ 0, |x| ≤
1,−π

4
≤ wd ≤ 0}. As shown in Figure 3.3, the projections of Cw and Dw onto

R2 are given by Πw
c (Cw) = C1 ∪ C2 on R2 with C2 = {x ∈ R2 : x1 ≤ 0, x2 ≤

0, |x| ≤ 1} and by Πw
d (Dw) = D1 ∪D2 with D2 = {x ∈ R2 : x1 ≥ 0, x2 ≤ 0, |x| ≤

1}, respectively.1 Based on provided dynamics, solutions travel counter-clockwise

during flows, while they either rotate clockwise or counter-clockwise during jumps.

As a result, solutions can evolve in any of the four quadrants in R2, either by flow

or jump.

Note in Example 3.1.6, the set K1 is forward invariant for H. When small

disturbances are introduced, solution pairs may escape the set of interest as shown

in this example, namely, the set K1 is only weakly forward invariant uniformly in

the given disturbances w. We verify this property using the results in Chapter 4

in Example 4.2.6. △

In the upcoming Chapter 6, Definition 3.2.1 - Definition 3.2.4 are presented in

the context of robust controlled forward invariance properties of sets for Hu,w in

1We use the same definitions for K1, C1, and D1 as in Example 3.1.6.
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x1

x2

C1

C2

D1

D2

0 1-1

ξ1
ξ2

Figure 3.3: Projection onto the state space of flow and jump sets of the system in

Example 3.2.5. The blue solid arrows indicate possible hybrid arcs during flow,

while the red dashed arrows indicate possible hybrid arcs during jumps.

(1.2) under the effect of a given state-feedback pair (κc, κd).
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Chapter 4

Sufficient Conditions to Verify

Forward Invariance for Hybrid

Systems

In general, it is very difficult to directly check forward invariance of a set

from the definitions, as that would require checking solutions explicitly. The

solution based approach is even more exhausting for hybrid inclusions as the

solutions are not unique and not necessarily bounded or complete. Therefore,

in this chapter, when possible, solution independent conditions to check if a set

enjoys some forward invariance properties are provided.

The presented conditions are sufficient ones to guarantee forward invariance

and robust forward invariance for H in (2.1) and Hw in (1.1), respectively. Among

these conditions, only a few is necessary since we are interested in studying a very

generic class of systems without regularities such as bounded growth or linear

growth during flows. We end this chapter with discussions regarding to the pre-

sented conditions that are also necessary.
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4.1 Sufficient Conditions for Nominal Forward In-

variant Sets

We present the sufficient conditions for forward invariance of a given set K

for H that involve the data (C, F,D,G). For the discrete dynamics, namely, the

jumps, such conditions involve the understanding of where G maps the state to.

Inspired by the well-known Nagumo Theorem [13], for the continuous dynamics,

namely, the flows, our conditions use the concept of tangent cone to the closed set

K. The tangent cone at a point x ∈ Rn of a closed set K ⊂ Rn is defined using

the Dini derivative of the distance to the set, and is given by1

TK(x) =

{
ω ∈ Rn : lim inf

τց0

|x+ τω|K
τ

= 0

}
. (4.1)

K

ξ1

TK(ξ1)

ξ2

TK(ξ2)

ξ3

TK(ξ3)

Figure 4.1: Tangent cone of a closed set K at ξ1, ξ2, ξ3 ∈ K.

As shown in Figure 4.1, the set K ∈ R2 is closed. At points ξ1, ξ2, ξ3 ∈ K,

the tangent cone directions are represented by the light blue cones and the blue
1In other words, ω belongs to TK(x) if and only if there exist sequences τi ց 0 and ωi → ω

such that x+ τiωi ∈ K for all i ∈ N; see also [3, Definition 1.1.3]. The latter property is further
equivalent to the existence of sequences xi ∈ K and τi > 0 with xi → x, τi ց 0 such that
ω = limi→∞(xi − x)/τi.
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vectors initiated from each points are examples of vectors that are included in the

tangent cones. Note that for ξ2 ∈ intK, TK(ξ2) = R× R.

In the literature (see, e.g., [67, Definition 4.6] and [49]), this tangent cone is also

known as the sequential Bouligand tangent cone or contingent cone. In contrast to

the Clarke tangent cone introduced in [67, Remark 4.7], which is always a closed

convex cone for every x ∈ K, the tangent cone (possibly nonconvex) we consider

in this work includes all vectors that point inward to the set K or that are tangent

to the boundary of K.2

Our sufficient conditions for forward invariance require part of the data of H
and the set K to satisfy the following mild assumption.

Assumption 4.1.1 The sets K,C, and D are such that K ⊂ C ∪ D and that

K ∩ C is closed. The map F : Rn ⇒ Rn is outer semicontinuous, locally bounded

relative to K ∩ C, and F (x) is convex for every x ∈ K ∩ C.

The following result is a consequence of the forthcoming Theorem 4.2.4. Suffi-

cient conditions for a given set K to be weakly forward pre-invariant and weakly

forward invariant are presented.

Theorem 4.1.2 (nominal weak forward pre-invariance and weak forward invari-

ance) Given H = (C, F,D,G) as in (2.1) and a set K, suppose K,C,D, and F

satisfy Assumption 4.1.1. The set K is weakly forward pre-invariant for H if the

following conditions hold:

4.1.2.1) For every x ∈ K ∩D, G(x) ∩K 6= ∅;

4.1.2.2) For every x ∈ Ĉ \D, F (x) ∩ TK∩C(x) 6= ∅;

where Ĉ := ∂(K ∩C) \L and L := {x ∈ ∂C : F (x)∩TC(x) = ∅}. Moreover, K is

weakly forward invariant for H if, in addition, K ∩L ⊂ D and, with K⋆ = K \D,

2Note that, for a convex set, the Bouligand tangent cone coincides with the Clarke tangent
cone.
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N⋆) for every φ ∈ SH(K
⋆) with rgeφ ⊂ K, case b.2) in Proposition 2.0.6 does

not hold.

This result follows from an application of Theorem 4.2.4 for a hybrid system with

zero disturbance. An proof that is independent of Theorem 4.2.4 for Theorem 4.1.2

is provided as follows.

Proof Given K,C,D, F satisfying Assumption 4.1.1, we define the restriction of

H by K, i.e., H̃ = (C̃, F, D̃, G), where C̃ := K ∩ C and D̃ := K ∩ D. Since

K ⊂ C ∪ D, by Definition 2.0.4, there exists a solution to H̃ from every ξ ∈ K.

Let K1 = D̃ and K2 = K \ (D ∪L) and K3 = K \ (K1 ∪K2). By definition, every

ξ ∈ K3 is such that ξ ∈ L\D and F (x)∩TC(x) = ∅. Then, item (a) in [61, Lemma

5.26] and Definition 2.0.4 imply there is only trivial solution from ξ to H̃, in which

case we have rgeφ ⊂ K. Otherwise, in the case where φ(0, 0) ∈ K1∪K2, we show

there exists φ ∈ SH̃ that is nontrivial and it has rgeφ ⊂ K when 4.1.2.1) and

4.1.2.2) hold true. To this end, we construct a nontrivial solution from every

ξ ∈ K1 ∪K2. Since K1 ∩K2 = ∅, we have the following two cases:

i) If ξ ∈ K1, then ξ ∈ D; hence, a jump is possible from every ξ in K1. Let

φ̃(0, 0) = ξ. By condition 4.1.2.1), there exists φ̃(0, 1) ∈ G(ξ) such that

φ̃(0, 1) ∈ K.

ii) when ξ ∈ K2: since ξ ∈ C\D, nontrivial solutions can only evolve by flowing.

Conditions enforced by Assumption 4.1.1 imply that C̃ is closed, F is outer

semicontinuous, locally bounded and convex valued on C̃. Since TC̃(x) = Rn

for every x ∈ (intC̃) \ (D ∪ L), item 4.1.2.2) implies that F (x) ∩ TC̃(x) 6= ∅
for every x ∈ K2. Then, by an application of (VC) in Proposition 2.0.6,

there exists a nontrivial solution φb to H̃ from every ξ ∈ K2. By item (S1)

in Definition 2.0.4, such a nontrivial solution φb is absolutely continuous on

[0, ε], for some ε > 0, with φb(0) = ξ, φ̇b(t) ∈ F (φb(t)) for almost all t ∈ [0, ε]

and φb(t) ∈ C̃ for all t ∈ (0, ε]. By closedness of C̃, we have φb(t, 0) ∈ K for

every t ∈ [0, ε].
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The above shows that there exists a nontrivial solution from every point inK1∪K2.

It also shows that from every point in K1, solutions can be extended to continue

jumping in K1 using the construction in case i), while from points in K2, solutions

can be extended using the construction in case ii). Moreover, since K∩C is closed,

by definition of solutions, such extensions can be defined so as they do not leave

K2 by flowing (since they can always be extended using the argument in ii)). As

a consequence, from every ξ ∈ K, there exists at least one maximal solution φ̃ to

H̃ that stays in K.

Next, we prove that each such φ̃ is also a maximal solution to H. If φ̃ is

complete, then φ̃ is already maximal. Consider the case that φ̃ is not complete.

Proceeding by contradiction, suppose φ̃ is not maximal for H, meaning that there

exists φ such that φ(t, j) = φ̃(t, j) for every (t, j) ∈ dom φ̃ and domφ\dom φ̃ 6= ∅.
Let (T, J) = sup dom φ̃. If (T, J) ∈ dom φ̃, then, φ̃(T, J) ∈ K and we have the

two following cases:

• φ̃(T, J) ∈ K1 ∪K2, 4.1.2.1) and closeness of C̃ imply that, using the arguments

in i) and ii) above, it is possible for φ to satisfy φ(t, j) ∈ K for some (t, j) ∈
domφ \ dom φ̃. By definition of solution, this contradicts with maximality of

(φ̃, w̃) for H̃.

• φ̃(T, J) ∈ K3, by definition of L, F (φ̃(T, J)) ∩ TC(φ̃(T, J)) = ∅. Hence,

sup domφ = (T, J), which contradicts with the assumption domφ \ dom φ̃ 6= ∅.

If (T, J) /∈ dom φ̃, according to Proposition 2.0.6, only b.2) holds.3 In such a

case, there is no function z : IJ → Rn satisfying the conditions in b.2) of Propo-

sition 2.0.6, which are needed to have a φ such that domφ \ dom φ̃ 6= ∅. Thus, K

is weakly forward pre-invariant for H.

Finally, we prove thatK is weakly forward invariant for H when, in addition, H
and K satisfy condition N⋆) and K ∩ L ⊂ D. We proceed by showing that from

3Case a) does not hold due to φ̃ not being complete, while b.1) and c) do not hold because

(T, J) 6∈ dom φ̃.
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every ξ ∈ K there exists at least one complete solution φ for the K restricted

system H̃. This is because such complete solutions are also maximal for the

original system H and have rgeφ ⊂ K. First, since K ∩ L ⊂ D, there exists

nontrivial solution to H̃ from every x ∈ (K ∩L) via argument i) by jump. Hence,

the existence of nontrivial solutions to H̃ from every ξ ∈ K is guaranteed by the

fact that K is weakly forward pre-invariant for H. By the closedness of K ∩ C

and continuity of the function z in (VC) of Proposition 2.0.6, for every ξ ∈ K \D
case b.1) is excluded for some φ ∈ SH̃(ξ). Moreover, case b.2) does not hold for all

maximal solutions as required by condition N⋆). Due to condition 4.1.2.1), from

every ξ ∈ K ∩D, at least one solution can be extended by jumping to points in

G(x) ∩K, from where the solution can be extended either by jumping or flowing

afterward. Thus, case c) in Proposition 2.0.6 is not possible for such solutions.

Hence, according to Proposition 2.0.6, for each ξ ∈ K, there exists φ ∈ SH̃(ξ) such

that only a) holds.

To illustrate Theorem 4.1.2, we present the following example on R2.

Example 4.1.3 (weak forward invariant set) Consider the hybrid system H =

(C, F,D,G) in R2 in Example 3.1.3. We apply Theorem 4.1.2 to verify the ob-

servation that set K is weakly forward invariant for H. First, H and K sat-

isfy Assumption 4.1.1. Then, according to above analysis, condition 4.1.2.1) in

Theorem 4.1.2 holds, since for every x ∈ K ∩ D, which is x ∈
(
{1} × [1

2
, 1]
)⋃

(
[1
2
, 1]× {1}

)
, G(x) ∩K 6= ∅. Moreover, noting that L = ∅, we verify that condi-

tion 4.1.2.2) in Theorem 4.1.2 holds: for every point x ∈ K \D, we have

TK∩C(x) =





R≥0 × R if x ∈ {1
2
} × (1

2
, 1)

R× R≥0 if x ∈ (1
2
, 1)× {1

2
}

R≥0 × R≥0 if x = (1
2
, 1
2
).

As a result, for every x ∈ K \D, F (x)∩TK∩C(x) 6= ∅. Then, since F is linear

everywhere on C, condition N⋆) in Theorem 4.1.2 holds. Therefore, since L = ∅,
according to Theorem 4.1.2, K is weakly forward invariant for H. △
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The next result, which is a consequence of Theorem 4.2.8 provides sufficient

conditions for a set K to be forward pre-invariant and forward invariant for H.

Theorem 4.1.4 (nominal forward pre-invariance and forward invariance) Given

H = (C, F,D, G) as in (2.1) and a set K ⊂ Rn, suppose K,C,D, and F satisfy

Assumption 4.1.1 and that F is locally Lipschitz on (∂K+δB)∩C for some δ > 0.

Let Ĉ and L be given as in Theorem 4.1.2. The set K is forward pre-invariant

for H if the following conditions hold:

4.1.4.1) G(K ∩D) ⊂ K;

4.1.4.2) For every x ∈ Ĉ, F (x) ⊂ TK∩C(x).

Moreover, K is forward invariant for H if, in addition, K ∩ L ⊂ D and, with

K⋆ = K ∩ C, item N⋆) in Theorem 4.1.2 holds.

This result follows from an application of Theorem 4.2.8 for a hybrid system with

zero disturbance. An proof that is independent of Theorem 4.2.8 for Theorem 4.1.4

is provided as follows.

Proof Since conditions 4.1.4.1) and 4.1.4.2) imply conditions 4.1.2.1) and 4.1.2.2)

in Theorem 4.1.2, respectively, under Assumption 4.1.1, there exist one nontrivial

solution to H from every point in K. Next, proceeding by contradiction, we show

that K is forward pre-invariant for H when conditions 4.1.4.1) and 4.1.4.2) hold.

Suppose there exists a solution φ ∈ SH(K) such that rgeφ \K 6= ∅. Then, there

exists (t∗, j∗) ∈ domφ such that φ(t∗, j∗) /∈ K, i.e., φ eventually leaves K in finite

hybrid time.4 We have the following cases:

i) The solution φ “leaves K by jumping:” namely, φ(t, j) ∈ K for all (t, j) ∈
domφ with t+j < t∗+j∗, and φ(t∗, j∗−1) ∈ K∩D. Since φ(t∗, j∗−1) ∈ K∩D,

item 4.1.4.1) implies φ(t∗, j∗) ∈ K, which is a contradiction. Then, it must

4Note that when rgeφ ⊂ K and lim
t+j→supt domφ+supj domφ

φ(t, j) = ∞ (that is, φ stays in K

but escapes to infinity, potentially in finite hybrid time) corresponds to a solution that satisfies
the definition of forward invariance for K.
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be the case that φ left K by flowing. We consider this possibility in the next

item.

ii) The solution φ “leaves K by flowing:” by definition of solution, φ leaves K ∩C
and enters C \ K. Then, there exists a hybrid time instant (τ ∗, j∗) ∈ domφ

such that φ(t, j∗) ∈ C \ K for all t ∈ (τ ∗, t∗] and τ ∗ < t∗ is arbitrarily small

and positive. Moreover, by closedness of K ∩ C, φ(τ ∗, j∗) ∈ ∂(K ∩ C). Let

t 7→ χ(t) ∈ K ∩ C be such that for every t ∈ [τ ∗, t∗],

|z(t)|K∩C = |z(t)− χ(t)|, (4.2)

where z(t) = φ(t, j∗) for all t ∈ [τ ∗, t∗]. Such points exist because of the

closedness of K∩C. By definition of solution to H, the function t 7→ |z(t)|K∩C

is absolutely continuous. Thus, for almost every t ∈ [τ ∗, t∗], d
dt
|z(t)|K∩C ex-

ists and equals to the Dini derivative of |z(t)|K∩C. Let t be such that both
d
dt
|z(t)|K∩C and ż(t) exist. We have

d

dt
|z(t)|K∩C

= lim inf
hց0

|z(t) + hż(t)|K∩C − |z(t)|K∩C
h

,

which, by definition of χ(t) and (4.7), satisfies

|z(t) + hż(t)|K∩C − |z(t)|K∩C
h

≤ |z(t)− χ(t)|+ |χ(t) + hż(t)|K∩C − |z(t)|K∩C
h

=
|χ(t) + hż(t)|K∩C

h

≤ |χ(t) + hω|K∩C
h

+ |ż(t)− ω|,

for every ω ∈ TK∩C(χ(t)). Moreover, for every such ω,

lim inf
hց0

|χ(t) + hω|K∩C
h

= 0

by definition of the tangent cone in (4.1). Hence, we have

d

dt
|z(t)|K∩C ≤ lim inf

hց0

|χ(t) + hω|K∩C
h

+ |ż(t)− ω| = |ż(t)− ω|.
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Thus, for almost every t ∈ [τ ∗, t∗],
d

dt
|z(t)|K∩C ≤ |ż(t)|TK∩C(χ(t)).

Since K ∩ C is closed, by definition, χ(t) ∈ K ∩ C for every t ∈ [τ ∗, t∗].

Condition 4.1.4.2) implies that for almost all t ∈ [τ ∗, t∗], we have
d

dt
|z(t)|K∩C ≤ |ż(t)|TK∩C(χ(t)) (4.3)

≤ |ż(t)|F (χ(t)).

Then, because of the mapping F is locally Lipschitz on ∂K + δB∩C for some

δ > 0, we can construct a neighborhood U ′ of z(t) such that U ′ ⊂ χ(t) + δB

and χ(t) ∈ U ′ for every t ∈ [τ ∗, t∗] and for which there exists a constant λ > 0

satisfying

F (z(t)) ⊂ F (χ(t)) + λ|z(t)− χ(t)|B

for every t ∈ [τ ∗, t∗]. Hence, for every t ∈ [τ ∗, t∗] and every η ∈ F (z(t)),

|η|F (χ(t)) ≤ λ|z(t)− χ(t)|.

Moreover, since ż(t) ∈ F (z(t)) together with (4.8) and (4.7), we have that
d

dt
|z(t)|K∩C ≤ |ż(t)|F (χ(t))

≤ λ|z(t)− χ(t)| = λ|z(t)|K∩C.

Then, by the Gronwall Lemma (see [68, Lemma A.1]), for every t ∈ [τ ∗, t∗],

|z(t)|K∩C = 0.

Since K ∩ C is closed, φ(t∗, j∗) ∈ K ∩ C, which contradicts the definition of

t∗. Thus, there does not exist maximal solution φ ∈ SH(K) that eventually

leaves K ∩ C by flowing.

Therefore, every φ ∈ SH(K) is such that rge ⊂ K.

Following the proof of Theorem 4.1.2, when K ∩ L ⊂ D, with 4.1.2.1) and

4.1.2.2) satisfied, there exists a nontrivial solution φ with φ(0, 0) = ξ to H from

every ξ ∈ K. To complete the proof, we show that when H and K also satisfy

condition N⋆), the set K is forward invariant for H. Since there exists a nontrivial
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solution from every point in K, we show that only case a) in Proposition 2.0.6

holds for every φ ∈ SH(K). Proceeding by contradiction, suppose that there exists

φ∗ ∈ SH(K) that is not complete. Let (T, J) = sup domφ∗ and T + J < ∞. By

the closedness of K ∩ C, φ∗ does not end as described in case b.1). Since K is

forward pre-invariant for H, every φ ∈ SH(K ∩ C) is such that rge ⊂ K. Using

arguments similar to those in the proof of Theorem 4.1.2, case b.2) does not hold

for φ∗ by virtue of condition N⋆). Then, according to Proposition 2.0.6, φ∗ satisfies

c) therein. But 4.1.4.1) leads to a contradiction of the maximality of φ∗. More

precisely, item 4.1.4.1) implies thatG(φ∗(T, J−1)) ⊂ K, so φ∗(T, J) ∈ K ⊂ C∪D,

and, hence, the solution φ∗ can be extended either by flow or jump using the

arguments in i) and ii) of proof for Theorem 4.1.2. Thus, by an application of

Proposition 2.0.6, all maximal solutions to H that start from K are complete and

have rgeφ ⊂ K.

Remark 4.1.5 Some of the conditions in Theorem 4.1.2 and Theorem 4.1.4 are

weaker than those required by results in [53]. The construction of the set L in items

4.1.2.2) and 4.1.4.2) is inspired by the viability domain in [3, Definition 1.1.5].

Note that when N⋆) holds, completeness of maximal solutions is guaranteed by

ensuring that K ∩ L ⊂ D, which guarantees that solutions can continue to evolve

from L via a jump.

The following example is used to illustrate Theorem 4.1.2 and Theorem 4.1.4.

Example 4.1.6 (solutions with finite escape time) Consider the hybrid sys-

tem H = (C, F,D,G) in R2 with system data given by

F (x) :=

[
1 + x21

0

]
∀x ∈ C := {x ∈ R2 : x1 ∈ [0,∞), x2 ∈ [−1, 1]},

G(x) :=

[
x1 + B

x2

]
∀x ∈ D := {x ∈ R2 : x1 ∈ [0,∞), x2 = 0}.

Let K = C and note the following properties of maximal solutions to H:
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• For some x ∈ K, there exists φ = (φ1, φ2) ∈ SH(x) with rgeφ ⊂ K, but is not

complete due to lim
tցt∗

φ1(t, 0) = ∞ with t∗ < ∞; for instance, from x = (0, 1),

the solution given by φ(t, 0) = (tan(t), 1) for every (t, 0) ∈ domφ has its φ1

component escape to infinite as t approaches t∗ = π/2;

• From points in D ⊂ K, there exist maximal solutions that leave K and are not

complete: such solutions end after a jump because their x1 component is mapped

outside of K.

x1

x2

1

-1

0

C

Dxv
TK∩C(xv)

xu

TK∩C(xu)

xl

TK∩C(xl)

Figure 4.2: Flow and jump sets of the system in Example 4.1.6.

Thus, we verify weak forward pre-invariance of K by applying Theorem 4.1.2.

The sets K,C,D and the map F satisfy Assumption 4.1.1 by construction and

condition 4.1.2.1) holds for H by definition of G,D and K. Since L = ∅, condition

4.1.2.2) holds because for every x ∈ Ĉ, F (x) points horizontally, and

TK∩C(x) =





R× R≤0 if x ∈ {x ∈ R2 : x1 ∈ (0,∞), x2 = 1}

R× R≥0 if x ∈ {x ∈ R2 : x1 ∈ (0,∞), x2 = −1}

R≥0 × R≤0 if x = (0, 1)

R≥0 × R if x ∈ {x ∈ R2 : x1 = 0, x2 ∈ (−1, 1)}

R≥0 × R≥0 if x = (0,−1).
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Tangent cones of K ∩ C at points xu, xv and xl of K are shown in Figure 4.2.

Now, consider the same data but with G replaced by G′(x) = G(x)∩ (R≥0×R)

for each x ∈ D. The set K = C is forward pre-invariant for this system. This is

because maximal solutions are not able to jump out of K as G′ only maps x1 com-

ponents of solutions to [0,+∞). More precisely, the conditions in Theorem 4.1.4

hold: we have G′(D∩K) ⊂ K, and Assumption 4.1.1 and condition 4.1.4.2) hold

as discussed above. △

4.1.1 Sufficient Conditions for N⋆)

In Theorem 4.1.2 and Theorem 4.1.4, item N⋆) excludes case b.2) in Proposi-

tion 2.0.6, where solutions escape to infinity in finite time during flows. In fact,

when every solution φ to ẋ ∈ F (x) with φ(0, 0) ∈ K⋆ does not have a finite escape

time, namely, there does not exist t∗ < ∞ such that lim
tցt∗

|φ(t)| = ∞, item N⋆)

holds for H and K⋆ as defined in Theorem 4.1.2 and Theorem 4.1.4, respectively.

Although, in principle, such a condition is solution dependent, it can be guaran-

teed without solving for solutions when F is single valued and globally Lipschitz.

Moreover, we provide several other alternatives in the next result.

Lemma 4.1.7 (sufficient conditions for completeness) Given H = (C, F,D,G)

and a set K ⊂ Rn, suppose K,C,D, and F satisfy Assumption 4.1.1 Condition

N⋆) holds if

4.1.7.1) K⋆ is compact; or

4.1.7.2) F has linear growth on K⋆.

Proof Let φ ∈ SH(K
⋆) with rgeφ ⊂ K be as described by b.2) in Proposi-

tion 2.0.6; namely, t 7→ φ(t, J) defined on IJ , where (T, J) = sup domφ, T+J <∞
and, for some tJ , IJ = [tJ , T ). Since t 7→ φ(t, J) is locally absolutely continuous

on IJ , lim
t→T

φ(t, J) is finite or infinity. If it is finite, then t 7→ φ(t, j) can be ex-

tended to IJ , which contradicts with b.2). Then, it has to be that lim
t→T

φ(t, J) is
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infinity. When 4.1.7.1) holds, lim
t→T

φ(t, J) being infinity is a contradiction since K⋆

is compact.

When 4.1.7.2) holds, there exists M > 0 such that, for each x ∈ K⋆, η′(x) :=

sup{|η| : η ∈ F (x)} ≤M(|x|+1). Because of linearity, solutions to ξ̇ =M(|ξ|+1)

are bounded for every ξ ∈ R and t <∞. Then, applying the comparison principle,

for every x ∈ K⋆, solutions to ξ̇ = η′(ξ) are also bounded for every t < ∞. This

contradicts with lim
t→T

φ(t, J) being infinity.

The next example illustrates Theorem 4.1.2, Theorem 4.1.4 and Lemma 4.1.7.

Example 4.1.8 (weakly forward invariant set) Consider the hybrid system H =

(C, F,D,G) in R2 given by

F (x) := (x2,−x1) ∀x ∈ C;

G(x) := (−0.9x1, x2) ∀x ∈ D,

where C := {x ∈ R2 : |x| ≤ 1, x2 ≥ 0} and D := {x ∈ R2 : x1 ≥ −1, x2 = 0}.

x1

x2

1-1 0

C

D

Figure 4.3: Sets and directions of flows/jumps in Example 4.1.8.

The set K1 = ∂C is weakly forward invariant for H by Theorem 4.1.2. More

precisely, for every x ∈ K1∩D, G(x) ∈ K1; and for every x ∈ ∂(K1∩C)\(D∪L) =
{x ∈ R2 : |x| = 1, x2 > 0}, since 〈∇(x21 + x22 − 1), F (x)〉 = 0, applying item 1) in

Lemma A.0.15, we have F (x) ∈ TK1∩C(x). Notice that the set L = (0, 1]×{0} ⊂ D

for H by observation. In addition, K1 ∩ C = ∂C is compact, which implies
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condition N⋆) holds by Lemma 4.1.7. Thus, for every x ∈ K1, there exists one

complete solution that stays in K1. For example, for every x ∈ [−1, 1]×{0}, there

exists one complete solution that is discrete and stays in K1 (from the origin there

is also a complete continuous solution that remains at the origin), but also there

exist maximal solutions that flow inside {x ∈ R2 : |x| < 1} and leave K1.

Now consider K2 = C. It is forward invariant for H by applying Theo-

rem 4.1.4. In fact, using the observations above, item 4.1.4.2) can be verified

via Lemma A.0.15 since 〈∇(x21+x
2
2−1), F (x)〉 = 0 for every x ∈ ∂(K2∩C)\L =

{x ∈ R2 : |x| = 1, x2 > 0} ∪ ([−1, 0]× {0}). △

Condition 4.1.7.2) is typically assumed in the study of viability and invariance

of differential inclusions; see, e.g., [3, 49, 69]. Condition 4.1.7.1) does not require

F to be Marchaud, but impose boundedness of F and extra properties on K ∩C.

Note that F is not necessarily required to be Marchaud in the results in this paper

since linear growth is not assumed. In Lemma 4.1.7, we require F to be outer

semicontinuous, locally bounded, and with nonempty, convex image, which imply

that F enjoys all properties of being Marchaud except for the linear growth.

Note that one can replace condition 4.1.4.2) in Theorem 4.1.4 by

4.1.4.2
′

) For every x ∈ ∂(K ∩ C),

F (x) ⊂ TK∩C(x) if x /∈ ∂C ∩D (4.4)

F (x) ∩ (TC(x) \ TK∩C(x)) = ∅ if x ∈ ∂C ∩D. (4.5)

Note that assumption (4.5) is important as in some cases, having item (4.4) only

leads to solutions that escape the set K by flowing as shown in the following

example. Consider the hybrid system H on R2 with

F (x) = (x2,−γ) ∀x ∈ C := {x ∈ R2 : x1x2 ≥ 0}
G(x) = x ∀x ∈ D := {x ∈ R2 : x1 ≥ 0, x2 = 0},
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where γ > 0. The set K = {x ∈ R2 : x1 ≥ 0, x2 ≥ 0} is weakly forward invariant,

and the sets K,C,D and the map F satisfies (4.4). However, at the origin, we

have F (0) = (0,−γ) and

TC(0) = (R≥0 × R≥0) ∪ (R≤0 × R≤0),

TK∩C(0) = R≥0 × R≥0.

Hence, at the origin, one solution can flow into C \K (the third quadrant) because

F (0) ∈ TC(0) \ TK∩C(0).

The following example is an application of Theorem 4.1.4 and Lemma 4.1.7.

Example 4.1.9 (forward invariant set) Consider the hybrid system given by (3.1)

as in Example 3.1.6. Applying Theorem 4.1.4, we show that the set K1 = C1∪D1

is forward invariant for H, where C1 = {x ∈ R2 : x1 ≥ 0, x2 ≥ 0, |x| ≤ 1} and

D1 = {x ∈ R2 : x1 ≤ 0, x2 ≥ 0, |x| ≤ 1}. By construction, K1, C,D and F satisfy

Assumption 4.1.1. Condition 4.1.4.1) holds since G maps the state to its current

value. Condition 4.1.4.2) holds since

• for every x ∈ {x ∈ ∂C1 : |x| = 1}, since x1x2 ≥ 0,

〈∇(x21 + x22), F (x)〉 = −2|x1|x1x2 ≤ 0;

• for every x ∈ {x ∈ ∂C1 : |x| 6= 1}, F (x) = (0, 0), which leads to F (x) ∈
TK1∩C(x).

Finally, applying Lemma 4.1.7, N⋆) holds since K1 ∩ C is compact. △

4.1.2 Necessary Conditions

The hybrid inclusions framework allows for an overlap between the flow set C

and the jump set D. As a result, the proposed conditions are not necessary to

induce forward invariance properties of sets for H. When existence of nontrivial

solutions and completeness are not required for every point in K, as in the “pre”

notions, some of these conditions are necessary. In fact, suppose K,C,D, and F

satisfy Assumption 4.1.1:
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• If K is weakly forward pre-invariant for H, then for every x ∈ (K ∩ D) \ C,

G(x) ∩K 6= ∅.

• If K is forward pre-invariant or forward invariant for H, then condition 4.1.4.1)

in Theorem 4.1.4 holds.

• If K is weakly forward invariant or forward invariant for H, then for every

x ∈ K \D, F (x) ∩ TK∩C(x) 6= ∅.5

Moreover, unlike [49, Theorem 3], when the flow map F is Marchaud6 and Lips-

chitz as defined in Definition A.0.3, condition F (x) ⊂ TK∩C(x) for every x ∈ K\D
is not necessary as the following example shows.

Example 4.1.10 Consider H in (2.1) with data F (x) =




1 if x > −1

[−1, 1] if x = −1
for

each x ∈ C := [−1, 1], G(x) := {−1, 0} for each x ∈ D := {1}. By inspection, the

set K = C is forward invariant for H and F is Marchaud and Lipschitz. However,

at x = −1 ∈ K \D, F (−1) ⊃ −1 but −1 /∈ TK∩C(−1). △

4.2 Sufficient Conditions for Robust Forward In-

variance Properties for Hw

As an extension to the nominal notions, the robust forward invariance notions

for Hw in Definition 3.2.2 - 3.2.4 capture four types of forward invariance proper-

ties, some of which are uniform over disturbances w for Hw. In this section, The-

orem 4.2.4 and Theorem 4.2.8 extend Theorem 4.1.2 and Theorem 4.1.4 to hybrid

systems Hw given in (1.1). These results will be exploited in forward invariance-

based control design for hybrid systems (with and without disturbances) in Chap-

ter 6.
5A similar claim is presented in [3, Proposition 3.4.1] for continuous-time system.
6A map F is Marchaud on K ∩C when Assumption 4.1.1 holds and F has linear growth on

K ∩ C; see [3, Definition 2.2.4].
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Results in this section replay on conditions to check for existence of nontriv-

ial solutions to Hw. Hence, inspired by the conditions guaranteeing existence of

solutions to H (see Proposition 2.0.6), we provide the following result for guaran-

teeing existence of nontrivial solution pairs to Hw and characterizing their possible

behavior.

Proposition 4.2.1 (basic existence under disturbances) Consider a hybrid sys-

tem Hw = (Cw, Fw, Dw, Gw) as in (1.1). Let ξ ∈ Πw
c (Cw) ∪ Πw

d (Dw). If ξ ∈
Πw

d (Dw), or

(VCw) there exist ε > 0, an absolutely continuous function z̃ : [0, ε] → Rn with

z̃(0) = ξ, and a Lebesgue measurable and locally essentially bounded func-

tion w̃c : [0, ε] → Wc such that (z̃(t), w̃c(t)) ∈ Cw for all t ∈ (0, ε) and

˙̃z(t) ∈ Fw(z̃(t), w̃c(t)) for almost all t ∈ [0, ε], where w̃c(t) ∈ Ψw
c (z̃(t)) for

every t ∈ [0, ε],

then, there exists a nontrivial solution pair (φ, w) from the initial state φ(0, 0) = ξ.

If ξ ∈ Πw
d (Dw) and (VCw) holds for every ξ ∈ Πw

c (Cw)\Πw
d (Dw), then there exists

a nontrivial solution pair to Hw from every initial state ξ ∈ Πw
c (Cw) ∪ Πw

d (Dw),

and every solution pair (φ, w) ∈ SHw
(Πw

c (Cw)∪Πw
d (Dw)) from such points satisfies

exactly one of the following:

a) the solution pair (φ, w) is complete;

b) (φ, w) is not complete and “ends with flow”: with (T, J) = sup dom(φ, w),

the interval IJ has nonempty interior, and either

b.1) IJ is closed, in which case either

b.1.1) φ(T, J) ∈ Πw
c (Cw) \ (Πw

c (Cw) ∪Πw
d (Dw)), or

b.1.2) from φ(T, J) flow within Πw
c (Cw) is not possible, meaning that there

is no ε > 0, absolutely continuous function z̃ : [0, ε] → Rn and a

Lebesgue measurable and locally essentially bounded function w̃c :
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[0, ε] → Wc such that z̃(0) = φ(T, J), (z̃(t), w̃c(t)) ∈ Cw for all

t ∈ (0, ε), and ˙̃z(t) ∈ Fw(z(t), w̃c(t)) for almost all t ∈ [0, ε], where

w̃c(t) ∈ Ψw
c (z̃(t)) for every t ∈ [0, ε], or

b.2) IJ is open to the right, in which case (T, J) /∈ dom(φ, w) due to the

lack of existence of an absolutely continuous function z̃ : IJ → Rn and

a Lebesgue measurable and locally essentially bounded function w̃c :

[0, ε] → Wc satisfying (z̃(t), w̃c(t)) ∈ Cw for all t ∈ intIJ , ˙̃z(t) ∈
Fw(z̃(t), w̃c(t)) for almost all t ∈ IJ , and such that z̃(t) = φ(t, J) for

all t ∈ IJ , where w̃c(t) ∈ Ψw
c (z̃(t)) for every t ∈ [0, ε];

c) (φ, w) is not complete and “ends with jump”: with (T, J) = sup dom(φ, w) ∈
dom(φ, w), (T, J − 1) ∈ dom(φ, w), and either

c.1) φ(T, J) /∈ Πw
c (Cw) ∪ Πw

d (Dw), or

c.2) φ(T, J) ∈ Πw
c (Cw) \Πw

d (Dw),
7 and from φ(T, J) flow within Πw

c (Cw) as

defined in b.1.2) is not possible.

Proof To prove the existence of a nontrivial solution pair from ξ, we show that

under the given assumptions, a solution pair (φ, w) satisfying the conditions in

Definition 2.0.5 can be constructed such that dom(φ, w) contains at least two

points. We have the following cases:

i) If ξ ∈ Πw
d (Dw), then there exist w∗

d such that (ξ, w∗
d) ∈ Dw by defini-

tion of Πw
d (Dw). Let the hybrid disturbance w1 = (wc, wd) be defined on

domw1 := {(0, 0)} ∪ {(0, 1)} as wd(0, 0) = w∗
d and wd(0, 1) = a, where

a ∈ Wd and wc can be arbitrary. By definition of the jump map Gw, there

exists b ∈ Gw(ξ, w
∗
d). Let φ1 be a hybrid arc with domφ1 = domw1 defined

as φ1(0, 0) = ξ and φ1(0, 1) = b. Then, (φ1, w1) is a nontrivial solution pair

to Hw;

7As a consequence of (φ,w) ending with a jump, i.e., φ(T, J)/∈Πw
d (Dw), φ(T, J) ∈ Πw

c (Cw) \
Πw

d (Dw) is under the condition in case c.2).
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ii) If ξ ∈ Πw
c (Cw) \ Πw

d (Dw) and (VCw) holds, there exist ε > 0, an absolutely

continuous function z̃ : [0, ε] → Rn and a Lebesgue measurable and locally

essentially bounded function w̃c : [0, ε] → Wc with z̃(0) = ξ and w̃c(0) ∈
Ψw

c (ξ) satisfying (S1w) in Definition 2.0.5. Let the hybrid disturbance w2 =

(wc, wd) be defined on domw2 := [0, ε)× {0} with wc(t, 0) = w̃c(t) for every

t ∈ [0, ε) and let wd be given arbitrarily. Let the hybrid arc φ2 be defined

on domφ2 = domw2 as φ2(t, 0) = z̃(t) for every t ∈ [0, ε). Then, (φ2, w2) is

a nontrivial solution pair to Hw.

Item i) and ii) imply the existence of a nontrivial solution pair to Hw from every

ξ ∈ Πw
d (Dw) and every ξ ∈ Πw

c (Cw) \ Πw
d (Dw), respectively, that is, for every

ξ ∈ Πw
c (Cw) ∪ Πw

d (Dw).

Next, we prove that every maximal solution pair (φ, w) to Hw satisfies exactly

one of the properties in a), b), and c). Suppose the nontrivial solution pair (φ, w)

is not complete, i.e., case a) does not hold and either b) or c) holds. We show

that only one of these properties holds. Let (T, J) = sup dom(φ, w).

If (T, J) ∈ dom(φ, w), then IJ is closed and case b.2) does not hold, for which

we have either

iii) IJ is a singleton; or

iv) IJ has nonempty interior.

If iii) is true, the solution pair (φ, w) ends with a jump and either φ(T, J) /∈
Πw

c (Cw) ∪ Πw
d (Dw), which directly leads to case c.1), or φ(T, J) ∈ Πw

c (Cw) ∪
Πw

d (Dw). The latter case leads to c.2) only since otherwise (φ, w) can be extended

by flow via the functions z̃ and w̃c as described in b.1.2) or by a jump as described

in item i) above with an arbitrary wd ∈ Ψw
d (x). If iv) is true, then, by item (S1w)

in Definition 2.0.5, case b.1.1) holds, i.e., φ(T, J) ∈ Πw
c (Cw)\ (Πw

c (Cw)∪Πw
d (Dw)),

or case b.1.2) holds, namely, the solution pair (φ, w) cannot be extended via flows.

In summary, if (T, J) ∈ domφ, then only one among b.1.1), b.1.2), c.1) and c.2)

may hold.
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If (T, J) /∈ dom(φ, w), then IJ is open to the right, and by maximality of

(φ, w), b.2) holds.

Proposition 4.2.1 presents conditions guaranteeing existence of nontrivial so-

lution pairs to Hw from every initial state ξ ∈ Πw
c (Cw) ∪ Πw

d (Dw), as well as

characterizes all possibilities for maximal solution pairs. In particular, maxi-

mal solution pairs that are not complete can either “end with flow” or “end with

jump.” In short, the former means that IJ has a nonempty interior over which

(φ(t, J), wc(t, J)) ∈ Cw for all t ∈ intIJ and dφ
dt
(t, J) ∈ Fw(φ(t, J), wc(t, J)) for

almost all t ∈ intIJ , where (T, J) = sup dom(φ, w). In particular, case b.1.1)

corresponds to a solution pair ending at the boundary of Cw, case b.1.2) de-

scribes the case of a solution pair ending after flowing and at a point, where

continuing to flow is not possible, while case b.2) covers the case of a solution

pair escaping to infinity in finite time. The case “end with jump” means that

(T, J), (T, J − 1) ∈ dom(φ, w), (φ(T, J − 1), wd(T, J − 1)) ∈ Dw, and the solution

pair ends either with φ(T, J) ∈ Πw
c (Cw) ∪ Πw

d (Dw) due to flow being not possible

or with φ(T, J) /∈ Πw
c (Cw) ∪ Πw

d (Dw), where (T, J) = sup dom(φ, w).

Remark 4.2.2 Case c.1) in Proposition 4.2.1 is not possible when Gw(Dw) ⊂
Πw

c (Cw) ∪Πw
d (Dw).

8 Moreover, when the disturbance signal wc is generated by an

exosystem of the form9

ẇc ∈ Fe(wc) wc ∈ Wc, (4.6)

(VCw) can be guaranteed if, for each (ξ, w′
c), there exists a neighborhood U such

that for every (x, wc) ∈ U ∩ Cw, (Fw(x, wc), Fe(wc)) ∩ TCw
(x, wc) 6= ∅, provided

that Cw is closed and (Fw, Fe) is outer semicontinuous and locally bounded with

nonempty and convex values on Cw.

Similar to the results in Section 4.1, throughout this section, the following

8Gw(Dw) = {x′ ∈ Rn : ∃(x,wd) ∈ Dw, x
′ ∈ Gw(x,wd)}

9The disturbance wc generated by (4.6) are not necessarily differentiable but rather, abso-
lutely continuous over each interval of flow. For examples of exosystems given as in (4.6) and
having also jumps, see [70].
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version of Assumption 4.1.1 with disturbances is assumed.

Assumption 4.2.3 The sets K,Cw, and Dw are such that K ⊂ Πw
c (Cw)∪Πw

d (Dw)

and that K ∩ Πw
c (Cw) is closed. The map Fw is outer semicontinuous, locally

bounded on (K × Wc) ∩ Cw, and Fw(x, wc) is convex for every (x, wc) ∈ (K ×
Wc) ∩ Cw. For every x ∈ Πw

c (Cw), 0 ∈ Ψw
c (x).

Assumption 4.2.3 guarantees that all points in the set to render invariant,

namely, K, are either in the projections to the state space of Cw and Dw, which is

necessary for solutions from K to exist. The closedness of the set K∩Πw
c (Cw) and

the regularity properties of Fw are required to obtain conditions in terms of the

tangent cone; see, also, [61, Proposition 6.10]. The assumption of 0 ∈ Ψw
c (x) for

every x ∈ Πw
c (Cw) usually holds for free since systems with disturbances, such as

Hw, typically reduce to the nominal system, in our case H, when the disturbances

vanish. A similar property could be enforced for the disturbance wd, but such an

assumption is not needed in our results.

Next, we propose sufficient conditions to guarantee robust weak forward pre-

invariance and robust weak forward invariance of a set for Hw.

Theorem 4.2.4 (sufficient conditions for robust weak forward (pre-) invariance

of a set) Given Hw = (Cw, Fw, Dw, Gw) as in (1.1) and a set K ⊂ Rn, suppose

Cw, Fw, Dw and K satisfy Assumption 4.2.3. The set K is robustly weakly forward

pre-invariant for Hw if the following conditions hold:

4.2.4.1) For every x ∈ K ∩ Πw
d (Dw), ∃wd ∈ Ψw

d (x) such that Gw(x, wd) ∩K 6= ∅;

4.2.4.2) For every x ∈ Πw
c (Ĉw) \ Πw

d (Dw), Fw(x, 0) ∩ TK∩Πw
c (Cw)(x) 6= ∅;

where Ĉw := ((∂(K ∩ Πw
c (Cw)) × Wc) ∩ Cw) \ Lw and Lw := {(x, wc) ∈ Cw :

x ∈ ∂Πw
c (Cw), Fw(x, wc) ∩ TΠw

c (Cw)(x) = ∅}. Moreover, K is robustly weakly

forward invariant for Hw if, in addition, K ∩Πw
c (Lw) ⊂ Πw

d (Dw) and, with K̃⋆ =

((K \ Πw
d (Dw))×Wc) ∩ Cw,
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⋆) For every (φ, w) ∈ SHw
(Πw

c (K̃
⋆)) with rgeφ ⊂ K, case b.2) in Proposition 4.2.1

does not hold.

Proof Given Cw, Fw, Dw and K satisfying Assumption 4.2.3, zero disturbance is

always admissible to Hw during continuous evolution of solution pairs. We define

a restriction of Hw by K with zero disturbance during flows as follows: H̃w =

(C̃, F̃ , D̃w, Gw), where C̃ := K ∩ Πw
c (Cw), F̃ (x) = Fw(x, 0) for every x ∈ Πw

c (Cw)

and D̃w := (K ×Wd) ∩ Dw. Since K ⊂ Πw
c (Cw) ∪ Πw

d (Dw), by Definition 2.0.5,

there exists a solution pair to H̃w from every ξ ∈ K. Let K1 = Πw
d (D̃w), K2 =

K \ (Πw
d (D̃w) ∪ Πw

c (Lw)) and K3 = K \ (K1 ∪ K2). By definition, every ξ ∈ K3

is such that ξ ∈ Πw
c (Lw) \ Πw

d (D̃w) and F̃ (ξ) ∩ TΠw
c (Cw)(ξ) = ∅. Then, item

(a) in [61, Lemma 5.26] and Definition 2.0.4 imply there is only trivial solution

from ξ to H̃w, in which case we have rgeφ ⊂ K. Otherwise, in the case where

φ(0, 0) ∈ K1 ∪ K2, we show there exists (φ, w) ∈ SH̃w
that is nontrivial and it

has rgeφ ⊂ K when 4.2.4.1) and 4.2.4.2) hold true. To this end, we construct a

nontrivial solution pair from every ξ ∈ K1 ∪ K2. Since K1 and K2 are disjoint

sets, we have following two cases:

i) when ξ ∈ K1: since K1 ⊂ Πw
d (Dw), a jump is possible from every ξ ∈ K1, i.e.,

from every (ξ, wd) ∈ D̃w. Let φa(0, 0) = ξ. By condition 4.2.4.1), there exists

w̃d ∈ Ψw
d (ξ), φa(0, 1) ∈ Gw(ξ, w̃d), such that φa(0, 1) ∈ K.

ii) when ξ ∈ K2: since K ⊂ Πw
c (Cw) ∪ Πw

d (Dw), ξ ∈ Πw
c (Cw) \ Πw

d (Dw) and solu-

tion pairs can only evolve by flowing from ξ. Conditions enforced by Assump-

tion 4.2.3 imply that C̃ is closed, F̃ is outer semicontinuous, locally bounded

and convex valued on C̃. Since TC̃(x) = Rn for every x ∈ (intC̃) \ (Πw
d (D̃w) ∪

Πw
c (Lw)), item 4.2.4.2) implies that F̃ (x)∩TC̃(x) 6= ∅ for every x ∈ K2. Then,

by an application of [61, Proposition 6.10], there exists a nontrivial solution φb

to H̃w from every ξ ∈ K2. By item (S1) in Definition 2.0.4, such a nontrivial

solution φb is absolutely continuous on [0, ε], for some ε > 0, with φb(0) = ξ,

φ̇b(t) ∈ F̃ (φb(t)) for almost all t ∈ [0, ε] and φb(t) ∈ C̃ for all t ∈ (0, ε]. By
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closedness of C̃, we have φb(t, 0) ∈ K for every t ∈ [0, ε].

The above shows that from every point inK1, solution pairs to H̃w can be extended

via jumps with the state component staying within K using the construction in

case i). While from points in K2, solution pairs can be extended using the con-

struction in case ii) with the state component staying within K. As a consequence,

from every point in K, there exists at least one (φ̃, w̃) ∈ SH̃w
with rge φ̃ ⊂ K.

Next, we prove that each such (φ̃, w̃) is also maximal to Hw.10 If (φ̃, w̃) is

complete, then it is already maximal and a solution pair to Hw. Consider the case

that (φ̃, w̃) is not complete. Proceeding by contradiction, suppose (φ̃, w̃) is not

maximal for Hw, meaning that there exists (φ, w) such that φ(t, j) = φ̃(t, j) and

w(t, j) = w̃(t, j) for every (t, j) ∈ dom φ̃ and domφ \ dom φ̃ 6= ∅. Let (T, J) =

sup dom φ̃. If (T, J) ∈ dom φ̃, then, φ̃(T, J) ∈ K and we have the two following

cases:

• φ̃(T, J) ∈ K1 ∪K2, 4.2.4.1) and closeness of C̃ imply that, using the arguments

in i) and ii) above, it is possible for φ to satisfy φ(t, j) ∈ K for some (t, j) ∈
domφ\dom φ̃. By definition of solution pairs, this contradicts with maximality

of (φ̃, w̃) for H̃w.

• φ̃(T, J) ∈ K3, by definition of Lw, Fw(φ̃(T, J), wc) ∩ TΠw
c (Cw)(φ̃(T, J)) = ∅ for

every wc ∈ Ψw
c (φ̃(T, J)). Hence, sup domφ = (T, J), which contradicts with the

assumption domφ \ dom φ̃ 6= ∅.

If (T, J) /∈ dom φ̃, according to Proposition 4.2.1, only b.2) holds.11 In such

a case, there is no function z : IJ → Rn satisfying the conditions in b.2) of

Proposition 4.2.1, which are needed to have a (φ, w) such that domφ\dom φ̃ 6= ∅.
Thus, K is robustly weakly forward pre-invariant for Hw.

The last claim requires to show that among these maximal solution pairs to

Hw that stay in K for all future time, there exist one complete solution pair from

10During flows, we have (φ̃, 0).
11Case a) does not hold due to (φ̃, w̃) not being complete, while b.1) and c) do not hold

because (T, J) 6∈ dom φ̃.

54



every point in K when, in addition, (K ∩ Πw
c (Lw)) ⊂ Πw

d (Dw) and item ⋆) hold.

To this end, first, note that the existence of a nontrivial solution pair to Hw from

every x ∈ K follows from (K ∩Πw
c (Lw)) ⊂ Πw

d (Dw), which implies K3 = ∅. Then,

we apply Proposition 4.2.1 to complete the proof. Proceeding by contradiction,

given any ξ ∈ K, suppose every (φ∗, w∗) ∈ SHw
(ξ) is not complete, i.e., (T, J) =

sup domφ∗, T + J < ∞, and case a) in Proposition 4.2.1 does not hold. Such a

solution pair (φ∗, w∗) is not as described in case b.1.1) in Proposition 4.2.1 due

to the closeness of K ∩Πw
c (Cw). Case c.1) does not hold for (φ∗, w∗) either, since

rgeφ∗ ⊂ K and K ⊂ Πw
c (Cw)∪Πw

d (Dw). Thus, by Proposition 4.2.1, (φ∗, w∗) can

only end as described by case b.1.2), b.2) or c.2).

• The solution pair ends because the functions described in case b.1.2) or c.2) of

Proposition 4.2.1, i.e., z̃ does not exist for (φ∗(T, J), w∗(T, J)). However, using

the same argument in item ii) above with w̃c ≡ 0, for every (x, 0) ∈ K1 × 0

there exists z̃ such that b.1.2) holds, which leads to a contradiction.

• If (φ∗, w∗) is as described by case b.2), φ∗(0, 0) /∈ Πw
c (K̃

⋆) by assumption ⋆).

More precisely, φ∗(0, 0) ∈ K1, hence, the solution pair can be extended following

the same construction in i) above, which contradicts with the maximality of

(φ∗, w∗).

Condition 4.2.4.1) in Theorem 4.2.4 guarantees that for every x ∈ K∩Πw
d (Dw)

such that there exists wd ∈ Ψw
d (x), the jump map contains an element that also

belongs to K. Under the stated assumptions, condition 4.2.4.2) implies the sat-

isfaction of (VCw) with zero disturbance wc, which suffices for the purpose of

Theorem 4.2.4 as it is about weak forward invariance notions. While involving

the tangent cone ofK∩Πw
c (Cw) in condition 4.2.4.2) is natural, such solution prop-

erty is more than needed for robust weak forward pre-invariance of K as defined in

Definition 3.2.2. Similarly to Lemma 4.1.7, solution-independent conditions that

imply ⋆) are derived for the disturbance case.
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Lemma 4.2.5 (sufficient conditions for completeness) Given Hw = (Cw, Fw, Dw, Gw)

and a set K ⊂ Rn, suppose K,Cw, Dw, and Fw satisfy Assumption 4.2.3. Condi-

tion ⋆) in Theorem 4.2.4 holds if

4.2.5.1) K̃⋆ is compact; or

4.2.5.2) Fw has linear growth on K̃⋆.

The following example illustrates Theorem 4.2.4.

Example 4.2.6 (robustly weakly forward invariant set) Consider the hybrid sys-

tem Hw in Example 3.2.5 with disturbances. we apply Theorem 4.2.4 to conclude

robust weak forward invariance of the set K1 = C1∪D1 for Hw. Assumption 4.2.3

holds for K1, Cw, Dw and Fw by construction. Since the set Lw is empty, condition

4.2.4.1) holds since for every (x, wd) ∈ (K1×Wd)∩Dw, the selection x+ = R(0)x

always results in x+ ∈ K1. Condition 4.2.4.2) holds since, applying item 1) in

Lemma A.0.15, for every x ∈ ∂C1 \ Πw
d (Dw), since x1x2 ≤ 0, we have

〈∇(x21 + x22 − 1), Fw(x, 0)〉 = 2x1(−x2|x1|) + 2x2(wcx1|x1|)
= −2x1x2|x1| ≤ 0.

Then, the robust weak forward invariance ofK1 follows from 4.2.5.2) in Lemma 4.2.5

and Theorem 4.2.4. Note that the property is weak due to the following observa-

tions:

• Because of the set-valuedness of the map Gw, there exists a solution pair from

a point ξ1 ∈ D1 that jumps to a point in C2 that is not in K1, as depicted in

Figure 3.3. On the other hand, from the same point ξ1, there exists a solution

pair that keeps jumping from and to ξ1, and stays within D1 ⊂ K1;

• Because of the overlap between Πw
c (Cw) and Πw

d (Dw), there exists a solution pair

that starts from a point ξ2 ∈ D1 and flows to a point in C2 that is not in K1,

as depicted in Figure 3.3. On the other hand, the solution pair that jumps from

and to ξ2 from ξ2 stays within D1 ⊂ K1.
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△

To derive a set of sufficient conditions guaranteeing the stronger robust for-

ward invariance property of K, i.e., every solution pair to Hw is such that its

state component stays within the set K, when starting from K, we require the

disturbances w and the set K to satisfy the following assumption.

Assumption 4.2.7 For every ξ ∈ (∂K)∩Πw
c (Cw), there exists a neighborhood U

of ξ such that Ψw
c (x) ⊂ Ψw

c (ξ) for every x ∈ U ∩ Πw
c (Cw).

The next result provides conditions implying robust forward pre-invariance and

robust forward invariance of a set for Hw.

Theorem 4.2.8 (sufficient conditions for robust forward (pre-) invariance of

a set) Given Hw = (Cw, Fw, Dw, Gw) as in (1.1) and a set K ⊂ Rn, suppose

Cw, Fw, Dw and K satisfy Assumption 4.2.3. Furthermore, suppose the mapping

x 7→ Fw(x, wc) is locally Lipschitz uniformly in wc on ((∂K + δB)×Wc)∩Cw for

some δ > 0. The set K is robustly forward pre-invariant for Hw if the following

conditions hold:

4.2.8.1) For every (x, wd) ∈ (K ×Wd) ∩Dw, Gw(x, wd) ⊂ K;

4.2.8.2) For every (x, wc) ∈ Ĉw, Fw(x, wc) ⊂ TK∩Πw
c (Cw)(x).

where Ĉw and Lw be given as in Theorem 4.2.4. Moreover, K is robustly forward

invariant for Hw if, in addition, K ∩ Πw
c (Lw) ⊂ Πw

d (Dw) and, with K̃⋆ = (K ∩
Πw

c (Cw))×Wc) ∩ Cw, condition ⋆) in Theorem 4.2.4 holds.

Proof Since condition 4.2.8.1) and 4.2.8.2) imply condition 4.2.4.1) and 4.2.4.2),

respectively, under given conditions, which include the fact that Cw, Fw, Dw and

K satisfy Assumption 4.2.3, the set K is robustly weakly forward pre-invariant

for Hw by Theorem 4.2.4.
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Now we show that every (φ, w) ∈ SHw
(K) has rgeφ ⊂ K. Proceeding by

contradiction, suppose there exists a solution pair (φ, w) ∈ SHw
(K) such that

rgeφ \ K 6= ∅. Then, there exists (t∗, j∗) ∈ domφ such that φ(t∗, j∗) 6∈ K, i.e.,

φ eventually leaves K in finite hybrid time.12 Then, we have the two following

cases:

i) In the case that φ “leftK by jumping," namely, φ(t, j) ∈ K for all (t, j) ∈ domφ

with t + j < t∗ + j∗, (φ(t∗, j∗ − 1), wd) ∈ Dw with φ(t∗, j∗) /∈ K for some

wd ∈ Ψw
d (φ(t

∗, j∗ − 1)). This contradicts item 4.2.8.1). More precisely, since

φ(t∗, j∗−1) ∈ K ∩Πw
d (Dw), item 4.2.8.1) implies that φ(t∗, j∗) ∈ Gw(φ(t

∗, j∗−
1), wd(t

∗, j∗ − 1)) ⊂ K for every wd ∈ Ψw
d (φ(t

∗, j∗ − 1)). Thus, φ did not leave

K by jumping. Then, it must be the case that φ left K by flowing, which is

treated in the next item.

ii) In the case that φ “leftK by flowing," namely, there exists a hybrid time instant

(τ ∗, j∗) ∈ domφ such that φ(t, j∗) ∈ Πw
c (Cw) \K for all t ∈ (τ ∗, t∗] and t∗ − τ ∗

is arbitrarily small and positive. Moreover, by closedness of K ∩ Πw
c (Cw), we

suppose that φ(τ ∗, j∗) ∈ (∂K) ∩ Πw
c (Cw).13 Let t 7→ χ(t) ∈ K ∩ Πw

c (Cw) be

such that for every t ∈ [τ ∗, t∗]

|z(t)|K∩Πw
c (Cw) = |z(t)− χ(t)|, (4.7)

where z(t) = φ(t, j∗) for all t ∈ [τ ∗, t∗]. Such points exist because of the

closedness of K ∩Πw
c (Cw). By definition of solution pairs to Hw, the function

t 7→ |z(t)|K∩Πw
c (Cw) is absolutely continuous. Thus, for almost every t ∈ [τ ∗, t∗],

d
dt
|z(t)|K∩Πw

c (Cw) exists and equals to the Dini derivative of |z(t)|K∩Πw
c (Cw). Let

12Note that when rgeφ ⊂ K and lim
t+j→supt domφ+supj domφ

φ(t, j) = ∞ (that is, φ stays in K

but escapes to infinity, potentially in finite hybrid time) corresponds to a solution that satisfies
the definition of forward invariance for K.

13By definition of solution pair, it is the case that φ left K ∩Πw
c (Cw) and entered Πw

c (Cw)\K
passing through (∂K) ∩ Πw

c (Cw).
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t be such that both d
dt
|z(t)|K∩Πw

c (Cw) and ż(t) exist. We have

d

dt
|z(t)|K∩Πw

c (Cw)

= lim inf
hց0

|z(t) + hż(t)|K∩Πw
c (Cw) − |z(t)|K∩Πw

c (Cw)

h
,

which, by definition of χ(t) and (4.7), satisfies

|z(t) + hż(t)|K∩Πw
c (Cw) − |z(t)|K∩Πw

c (Cw)

h

≤ |z(t)− χ(t)|+ |χ(t) + hż(t)|K∩Πw
c (Cw) − |z(t)|K∩Πw

c (Cw)

h
=

|χ(t) + hż(t)|K∩Πw
c (Cw)

h

≤ |χ(t) + hω|K∩Πw
c (Cw)

h
+ |ż(t)− ω|,

for every ω ∈ TK∩Πw
c (Cw)(χ(t)). Moreover, for every such ω,

lim inf
hց0

|χ(t) + hω|K∩Πw
c (Cw)

h
= 0

by definition of the tangent cone in (4.1). Hence, we have

d

dt
|z(t)|K∩Πw

c (Cw) ≤ lim inf
hց0

|χ(t) + hω|K∩Πw
c (Cw)

h
+ |ż(t)− ω| = |ż(t)− ω|.

Thus, for almost every t ∈ [τ ∗, t∗],
d

dt
|z(t)|K∩Πw

c (Cw) ≤ |ż(t)|TK∩Πw
c (Cw)(χ(t)).

Since K ∩ Πw
c (Cw) is closed, by definition, χ(t) ∈ K ∩ Πw

c (Cw) for every t ∈
[τ ∗, t∗]. Condition 4.2.8.2) implies that for almost all t ∈ [τ ∗, t∗], and every

w ∈ Ψw
c (χ(t)), we have

d

dt
|z(t)|K∩Πw

c (Cw) ≤ |ż(t)|TK∩Πw
c (Cw)(χ(t)) (4.8)

≤ |ż(t)|Fw(χ(t),w).

Since t∗ − τ ∗ is positive and can be arbitrarily small, it is always possible

to construct a neighborhood of χ(t) for every t ∈ [τ ∗, t∗], denoted U , with

z(t) ∈ U , and it is such that Ψw
c (z(t)) ⊂ Ψw

c (χ(t)) by Assumption 4.2.7.

Then, because of that and the fact that the mapping x 7→ Fw(x, wc) is locally

Lipschitz uniformly in wc on ((∂K + δB) ×Wc) ∩ Cw for some δ > 0, we can

construct a neighborhood U ′ of z(t) such that U ′ ⊂ χ(t) + δB and χ(t) ∈ U ′
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for every t ∈ [τ ∗, t∗] and for which there exists a constant λ > 0 satisfying

Fw(z(t), wc) ⊂ Fw(χ(t), wc) + λ|z(t)− χ(t)|B

for every t ∈ [τ ∗, t∗] and every wc ∈ Ψw
c (z(t)). Hence, for every t ∈ [τ ∗, t∗],

every wc ∈ Ψw
c (z(t)), and every η ∈ Fw(z(t), wc),

|η|Fw(χ(t),wc) ≤ λ|z(t)− χ(t)|.

Moreover, since ż(t) ∈ Fw(z(t), wc), for every wc ∈ Ψw
c (z(t)), together with

(4.8) and (4.7), we have that
d

dt
|z(t)|K∩Πw

c (Cw) ≤ |ż(t)|Fw(χ(t),wc)

≤ λ|z(t)− χ(t)| = λ|z(t)|K∩Πw
c (Cw).

Then, by the Gronwall Lemma (see [68, Lemma A.1]), for every t ∈ [τ ∗, t∗],

|z(t)|K∩Πw
c (Cw) = 0.

Since K ∩ Πw
c (Cw) is closed, φ(t∗, j∗) ∈ K ∩ Πw

c (Cw), which contradicts the

definition of t∗. Thus, there does not exist maximal solution pair (φ, w) ∈
SHw

(K) that eventually leaves K ∩Πw
c (Cw) by flowing.

Thus, the set K is robustly forward pre-invariant for Hw.

Following the proof of Theorem 4.2.4, when K ∩ Πw
c (Lw) ⊂ Πw

d (Dw), with

4.2.4.1) and 4.2.4.2) satisfied, there exists a nontrivial solution pair (φ, w) with

φ(0, 0) = ξ to Hw from every ξ ∈ K. Then, robust forward invariance of K follows

from the addition of condition ⋆). As shown above, every (φ, w) ∈ SHw
(K) has

rgeφ ⊂ K, thus, it suffices to show that every maximal solution pair to Hw is

complete. We proceed by contradiction. Suppose there exists a maximal solution

pair (φ∗, w∗) ∈ SHw
(K) that is not complete, and (T, J) = sup domφ∗. Because

every (φ, w) ∈ SHw
(K) has rgeφ ⊂ K, by an application of Proposition 4.2.1,

(φ∗, w∗) only satisfies one of the cases described in item b.1.2), b.2), and c.2).

In particular, condition ⋆) eliminates case b.2) by assumption. Then, condition

4.2.8.1) and condition 4.2.8.2) imply that (φ∗, w∗) can be extended within K by

jumps and flows, respectively. More precisely, when φ∗(T, J) ∈ Πw
c (Cw), condi-
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tions in Assumption 4.2.3 and item 4.2.8.2) imply the function z̃ : [0, ε] → Rn as

described in (VCw) in Proposition 4.2.1 exists with w̃c(t) = 0 for every t ∈ [0, ε],

and such (z̃, w̃c) can be used to extend (φ∗, w∗) to hybrid instant (T +ε, J), which

contradicts the maximality of (φ∗, w∗).14 When φ∗(T, J) ∈ Πw
d (Dw), jumps are

always possible by virtue of condition 4.2.8.1). Therefore, the set K is robustly

forward invariant for Hw.

Remark 4.2.9 In comparison to Theorem 4.2.4, Lipschitzness of the set-valued

map Fw (uniformly in w) is assumed. Together with Assumption 4.2.7, they are

crucial to ensure that every solution pair stays in the designated set during flows.

Note that Assumption 4.2.7 guarantees such property uniformly in wc (see the

proof of Theorem 4.2.8 for details). We refer readers to the example provided

below Theorem 3.1 in [2], which shows solutions leave a set due to the absence of

locally Lipschitzness of the right-hand side of a continuous-time system.

The following example shows an application of Theorem 4.2.8.

Example 4.2.10 (Example 3.2.5 revisited) Consider the hybrid system in Ex-

ample 3.2.5. We apply Theorem 4.2.8 to show the set K2 = Πw
c (Cw) ∪ Πw

d (Dw)

is robustly forward invariant for Hw. Similar to Example 3.2.5, Lw = ∅, As-

sumption 4.2.3 and condition ⋆) hold for K2, Fw, Cw and Dw. Moreover, Assump-

tion 4.2.7 holds since wc ≤ |x| for every x ∈ Πw
c (Cw) and the map Fw is locally

Lipschitz on Cw by construction. Then, condition 4.2.8.1) holds since for every

(x, wd) ∈ (K2×Wd)∩Dw, the map Gw only “rotates" the state variable x without

changing |x| within the unit circle centered at the origin. Condition 4.2.8.2) holds

since

• for every (x, wc) ∈ (∂K2 ×Wc) ∩ Cw, because 0 ≤ wc ≤ |x| ≤ 1 and x1x2 ≥ 0,

14Note that the resulting disturbance will be Lebesgue measurable and locally essentially
bounded on interval IJ .
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we have

〈∇(x21 + x22), Fw(x, wc)〉
= 2x1(−x2|x1|) + 2x2(wcx1|x1|)
= 2x1x2(wc − 1)|x1| ≤ 0,

which, applying item 1) in Lemma A.0.15, implies Fw(x, wc) ∈ TK2∩Πw
c (Cw)(x);

• for every (x, wc) ∈ ((∂(Πw
c (Cw)) \ ∂K2)×Wc) ∩ Cw, we have

TK2∩Πw
c (Cw)(x) =





R≥0 × R if x ∈ C1, x1 = 0, x2 /∈ {0, 1}

R≤0 × R if x ∈ C2, x1 = 0, x2 /∈ {0,−1}

R× R≥0 if x ∈ C1, x1 /∈ {0, 1}, x2 = 0

R× R≤0 if x ∈ C2, x1 /∈ {0,−1}, x2 = 0

R2
≥0 ∪ R2

≤0 x = 0,

which, applying item 1) in Lemma A.0.15, implies Fw(x, wc) ∈ TK2∩Πw
c (Cw)(x)

holds true by definition of Fw.15

Thus, the set K2 is robustly forward invariant for Hw. △

15We recall from Example 3.2.5 that C1 = {x ∈ R2 : x1 ≥ 0, x2 ≥ 0, |x| ≤ 1} and C2 = {x ∈
R2 : x1 ≤ 0, x2 ≤ 0, |x| ≤ 1}.
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Chapter 5

Forward Invariance of Sublevel Sets

of Lyapunov-like Functions

For many control problems, Lyapunov-like functions V : Rn → R for H and

Hw can be obtained via analysis or numerical methods. For such systems, we can

verify the robust and nominal forward invariance of the r−sublevel sets of V by

exploiting the nonincreasing property of V along solutions. In this work, for the

nominal case, conditions on the system data, namely (C, F,D,G) in Theorem 4.1.2

and Theorem 4.1.4 are explored to guarantee the forward invariance of a subset

of its r−sublevel set that is given by

Mr = LV (r) ∩ (C ∪D). (5.1)

For the more generic study of robust forward invariance properties for Hw via

Lyapunov methods, we employ a different set of conditions than the ones in The-

orem 4.2.8 to establish robust forward (pre-)invariance of the sublevel sets of V . In

particular, given a continuous differentiable function V : Rn → R for Hw, we de-

rive the sufficient conditions to render robust controlled forward (pre-)invariance

of subsets of its r−sublevel set, which is given by

Mw
r = LV (r) ∩ Πw

c (Cw) ∪Πw
d (Dw). (5.2)

Results in this chapter are preliminaries of the forthcoming control effort to
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select feedback laws that render robust forward invariance of the Lyapunov func-

tions’ sublevel sets.

5.1 Nominal Forward Invariance for H via Lya-

punov Method

The next result introduces a set of constructive conditions that induce weak

forward invariance and forward invariance for Mr in (5.1) for H. These conditions

ensure that solutions stay within Mr and also guarantee existence and complete-

ness of nontrivial solutions from every point in the set Mr. For convenience,

given a function V and two constants r, r∗ ∈ R with r ≤ r∗, we define the set

I(r, r∗) := {x ∈ Rn : r ≤ V (x) ≤ r∗}.

Theorem 5.1.1 (weak forward invariance and forward invariance of Mr) Given

a hybrid system H = (C, F,D,G) as in (2.1), suppose the set C is closed, the map

F : Rn ⇒ Rn is outer semicontinuous and locally bounded, and F (x) is nonempty

and convex for all x ∈ C. Suppose there exist a constant r∗ ∈ R and a function

V : Rn → R that is continuously differentiable on an open set containing C such

that

〈∇V (x), η〉 ≤ 0 ∀x ∈ I(r, r∗) ∩ C, η ∈ F (x), (5.3)

V (η) ≤ r ∀x ∈ LV (r) ∩D, η ∈ G(x), (5.4)

for some r ∈ (−∞, r∗). Moreover, suppose such r satisfies

5.1.1.1) for every x ∈ V −1(r), ∇V (x) 6= 0;

5.1.1.2) for every x ∈ (LV (r) ∩ ∂C) \D, F (x) ∩ TC(x) 6= ∅;

5.1.1.3) for every x ∈ (V −1(r) ∩ ∂C) \ D, the set C is regular at x and ∃ξ ∈
F (x) ∩ TC(x), 〈∇V (x), ξ〉 < 0};

5.1.1.4) condition N⋆) in Theorem 4.1.2 holds for K⋆ = Mr ∩ C and H.

64



Then, for each such r ∈ (−∞, r∗) that defines a nonempty and closed Mr, we

have the following:

• The set Mr is weakly forward invariant for H if

5.1.1.5) for every x ∈ Mr ∩D, G(x) ∩ (C ∪D) 6= ∅;

• The set Mr is forward invariant for H if

5.1.1.6) G(Mr ∩D) ⊂ C ∪D.

Proof Fix r < r∗ that satisfies the conditions in Theorem 5.1.1. The sets K =

Mr, C,D and the map F satisfy Assumption 4.1.1. In fact, since Mr is defined

as the intersection of an r-sublevel set of V and the union of the flow set and the

jump set, Mr is a subset of C ∪D. Closedness of Mr ∩ C follows from the fact

that C is closed and V is continuous. The properties of F directly follow from

the assumptions. Now, we apply Theorem 4.1.2 to prove weak forward invariance

of the set Mr.

Since set L in Theorem 4.1.2 is empty in this case, we prove that for every

x ∈ ∂(Mr ∩ C) \D,

F (x) ∩ TLV (r)∩C(x) 6= ∅. (5.5)

To this end, we need the following properties of the sets C,LV (r) and of the

map F . For every x ∈ LV (r), the r−sublevel set LV (r) is regular1 at x by a

direct application of [71, Corollary 2 of Theorem 2.4.7 (page 56)] with f(x) =

V (x) − r. Moreover, since (7.63) and item 5.1.1.1) hold, for each x ∈ V −1(r),

F (x) ⊂ TLV (r)(x), and the set LV (r) admits a hypertangent2 at every x applying

Lemma A.0.15.3 Then, we show that (5.5) holds for every x ∈ ∂(Mr ∩ C) \D in

1 The set C is regular at x provided the Bouligand tangent cone at x of C coincides with
the Clarke tangent cone at x of C (see [71, Definition 2.4.6]). Furthermore, every convex set is
regular – see [71, Theorem 2.4.7 and (page 55) and Corollary 2 (page 56)] for other special cases
of regular sets.

2See [71, Section 2.4].
3Function h(x) = V (x)− r is directional Lipschitz since V is continuously differentiable and

by item (i) in [71, Theorem 2.9.4].
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the following cases:

1. For every x ∈ (intLV (r)∩ ∂C) \D, since TLV (r)∩C(x) = TC(x), 5.1.1.2) implies

(5.5) holds;

2. For every x ∈ V −1(r) ∩ intC, we have TLV (r)∩C(x) = TLV (r)(x). This implies

(5.5) holds for every such x, because F (x) ⊂ TLV (r)(x) as shown above;

3. For every x ∈ (V −1(r) ∩ ∂C) \D, 5.1.1.3) implies

TC(x) ∩ intTLV (r)(x) 6= ∅.

Then, since LV (r) and C are regular at x, we can apply [71, Corollary 2 of

Theorem 2.9.8 (page 105)] with C1 = C and C2 = LV (r) since LV (r) admits a

hypertangent at x: for every x ∈ (V −1(r) ∩ ∂C) \D, we have
TC(x) ∩ TLV (r)(x) = TLV (r)∩C(x),

i.e., (5.5) holds.

Hence, condition 4.1.2.2) in Theorem 4.1.2 holds for the sets C,K = Mr and the

map F .

Moreover, (7.64) implies for every x ∈ Mr ∩D, G(x) ⊂ LV (r). Together with

item 5.1.1.5), (7.64) leads to condition 4.1.2.1) in Theorem 4.1.2. Then, according

to Theorem 4.1.2, Mr is weakly forward invariant for H as condition N⋆) holds

by item 5.1.1.4).

For the remainder of the proof, we show that Mr is forward invariant when

condition 5.1.1.6) holds. First, we prove Mr is forward pre-invariant for the hybrid

system H.

Consider the restriction to hybrid system H to the set LV (r
∗), denoted H̃

and whose data is (C̃, F, D̃, G), where the flow set and the jump set are given by

C̃ = LV (r
∗) ∩ C and D̃ = LV (r

∗) ∩ D, respectively. Note that (7.64) implies for

every x ∈ Mr ∩ D, G(x) ⊂ LV (r). Then, every φ ∈ SH̃(Mr) has rgeφ ⊂ LV (r)

if φ cannot leave LV (r) by “flowing.” We show by contradiction that this is the

case. Suppose φ left LV (r) by “flowing” during the interval Ij
∗

:= [tj∗ , tj∗+1]:
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namely, φ left LV (r) ∩C and entered (LV (r
∗) \ LV (r)) ∩C. More precisely, since

LV (r) ( LV (r
∗), by closedness of Mr and item (S1) in Definition 2.0.4, there exist

hybrid time instants (t∗, j∗), (τ ∗, j∗) ∈ domφ with φ(t∗, j∗) ∈ (LV (r
∗)\LV (r))∩C,

φ(τ ∗, j∗) ∈ V −1(r) ∩ C, and φ(t, j∗) ∈ (LV (r
∗) \ LV (r)) ∩ C for all t ∈ (τ ∗, t∗],

where tj∗ < τ ∗ < t∗ ≤ tj∗+1. Hence, we have

V (φ(τ ∗, j∗)) = r < V (φ(t∗, j∗)) ≤ r∗. (5.6)

By item (S1) in Definition 2.0.4, for every t ∈ intIj
∗

, φ(t, j∗) ∈ C̃. According to

(7.63), d
dt
V (φ(t, j∗)) ≤ 0 for almost all t ∈ Ij

∗

. Then, integrating both sides, we

have

V (φ(t∗, j∗)) ≤ V (φ(τ ∗, j∗)),

which contradicts with (5.6). Hence, every φ ∈ SH̃(Mr) stays in Mr during flow.

Therefore, if φ left Mr and entered LV (r) \ Mr, which is outside of C ∪ D by

definition of Mr, it must have left C ∪ D via jumps. This is not possible by

virtue of 5.1.1.6). Thus, we establish the forward pre-invariance of Mr for H̃ by

Definition 3.1.5.

Moreover, we verify that every φ ∈ SH̃(Mr) with rgeφ ⊂ Mr is also a maximal

solution to H by contradiction. Suppose there exists φ ∈ SH̃(Mr) with rgeφ ⊂
Mr that can be extended outside of Mr for H. More precisely, there exists ψ ∈
SH(Mr), such that domψ \ domφ 6= ∅, for every (t, j) ∈ domφ, ψ(t, j) = φ(t, j)

and for every (t, j) ∈ domψ \ domφ, ψ(t, j) /∈ Mr. Let (T, J) = sup domφ. We

have two cases:

4. ψ extends φ via flowing: namely, ψ(T, J) = φ(T, J) ∈ Mr ∩ C, t 7→ ψ(t, J)

is absolute continuous on IJ . By item (S1) in Definition 2.0.4, ψ(t, J) ∈ C

for all t ∈ intIJ . Thus, it must be the case that ψ(t, J) ∈ C \ LV (r) for

some t ∈ IJ . Since LV (r) ( LV (r
∗), there exists t∗ ∈ IJ such that ψ(t∗, J) ∈

LV (r
∗) ∩ (C \ LV (r)). This contradicts with the maximality of φ to H̃.

5. ψ extends φ via jumping: namely, ψ(T, J) = φ(T, J) ∈ Mr∩D and ψ(T, J+1) /∈
Mr. By item (S2) in Definition 2.0.4, this contradicts with the maximality of
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φ to H̃.

To complete the proof for forward invariance of Mr for H, we show that every

φ ∈ SH(Mr) is also complete. Because condition 5.1.1.6) implies 5.1.1.5), we

know the set Mr defined by the chosen r < r∗ is weakly forward invariant for

H. Hence, there exists a nontrivial solution to H from every x ∈ Mr. Case b.1)

Proposition 2.0.6 is excluded for every φ ∈ SH(Mr) since Mr ∩C is a closed set.

Case b.2) is not possible for every maximal solutions from Mr by assumption

5.1.1.4). Finally, G(Mr ∩D) ⊂ Mr implies case c) in Proposition 2.0.6 does not

hold. Therefore, only case a) is true for every maximal solution starting from Mr.

Condition 5.1.1.3) together with (7.63) result in a less restrictive requirement

on the flow map F when compared to the usual Lyapunov conditions for stability

purposes, for instance, condition (3.2b) in [61, Theorem 3.18], which often rely on

finding a qualified positive definite function with strict decrease outside the set

to stabilize. It is not a trivial task to relax condition 5.1.1.3) in Theorem 5.1.1.

When the set {ξ ∈ F (x) : 〈∇V (x), ξ〉 < 0} is empty for some x ∈ V −1(r) ∩C, we

have that for every ξ ∈ F (x), 〈∇V (x), ξ〉 = 0. With item 5.1.1.1), it is either that

F (x) = 0 or F (x) 6= 0. If the former holds, condition 4.1.2.2) in Theorem 4.1.2

holds trivially. However, if the latter holds, it is possible to get F (x)∩TLV (r)∩C = ∅
at such x, which implies that only a trivial solution exists at such x. The following

example illustrates such a case.

Example 5.1.2 Consider a system on R2 given by ẋ = F (x) := (x2,−x1) with

C = (−∞,−1] × R and pick V as V (x) = x2 with r∗ = 2. Mr is nonempty

and closed for r ∈ [1, r∗). The conditions in Theorem 5.1.1 except for 5.1.1.3),

which does not hold for r = 1. In fact, for r = 1, at the point (−1, 0), the

vector F ((−1, 0)) = (0, 1) lays in TC((−1, 0)) and satisfies 〈∇V (x), F (x)〉 = 0

for each x ∈ LV (r) ∩ C, so 5.1.1.3) does not hold. As a result F ((−1, 0)) /∈
TLV (r)∩C((−1, 0)). △
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When set C is a sublevel set of a function that satisfies some mild conditions,

item 5.1.1.2) and item 5.1.1.3) in Theorem 5.1.1 hold as a consequence as stated

in Lemma A.0.15. The following result describes such a special case.

Lemma 5.1.3 (special construction of C) Given a map F : Rn ⇒ Rn and C :=

{x : h(x) ≤ 0} ⊂ domF , suppose ∇h(x) 6= 0, ∇h(x) is nonempty and h is

continuously differentiable at every x ∈ ∂C. Moreover, suppose for every x ∈ ∂C,

there exists ξ ∈ F (x) such that 〈∇h(x), ξ〉 < ∞. Then, condition 5.1.1.2) and

5.1.1.3) in Theorem 5.1.1 hold.

Remark 5.1.4 As stated in Chapter 1, invariance is also a property that is key in

the study of safety in dynamical systems. The Lyapunov-like function approach in

this section resembles the idea behind the safety certificates. Note that the function

V in the results in this section is not sign definite and that the aim was to assume

as few properties as possible, though it should be recognized that the invariance

property obtained is only for its sublevel sets. Connections between results in this

section and their extensions to invariance-based control design is the focus of the

upcoming second part of this paper.

5.2 Robust Forward Invariance for Hw via Lya-

punov Method

When a Lyapunov-like function V : Rn → R for Hw is provided, one can

employ a set of conditions derived from the ones in Theorem 4.2.8 to establish

robust forward (pre-)invariance of the sublevel sets of V . We provide conditions

for robust forward (pre-)invariance of sublevel sets of V for Hw, which in turn,

provide insights for the invariance-based control design methods in Chapter 6.

More precisely, given a continuously differentiable function V : Rn → R for Hw,

we derive sufficient conditions to render its r−sublevel set Mw
r .
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We consider Lyapunov-like functions that are tailored to forward invariance

analysis. Unlike the traditional ones for stability analysis, our Lyapunov candi-

dates are not necessarily strictly decreasing outside of Mw
r , nor that it is non-

increasing when inside of Mw
r . Building from Section 5.1, the next result char-

acterizes the robust forward pre-invariance of Mw
r . Following the same notation

in Section 5.1, given a function V and two constants r, r∗ ∈ Rn with r ≤ r∗, we

define the set I(r, r∗) := {x ∈ Rn : r ≤ V (x) ≤ r∗}.

Proposition 5.2.1 (robust forward pre-invariance of Mw
r ) Given a hybrid system

Hw = (Cw, Fw, Dw, Gw) as in (6.2), suppose there exist a constant r∗ ∈ R and a

function V : Rn → R that is continuously differentiable on an open set containing

Πw
c (Cw) such that

〈∇V (x), η〉 ≤ 0 ∀(x, wc) ∈ (I(r, r∗)×Wc) ∩ Cw, η ∈ Fw(x, wc), (5.7)

V (η) ≤ r ∀(x, wd) ∈ (LV (r)×Wd) ∩Dw, η ∈ Gw(x, wd), (5.8)

for some r ∈ (−∞, r∗) such that Mw
r is nonempty and closed, and

Gw((Mw
r ×Wd) ∩Dw) ⊂ Πw

c (Cw) ∪Πw
d (Dw) (5.9)

holds. Then, the set Mw
r is robustly forward pre-invariant for Hw.

Proof Consider the LV (r
∗) restriction to the hybrid system Hw, denoted H̃ and

whose data is (C̃, Fw, D̃,Gw), where the flow set and the jump set are given by

C̃ = (LV (r
∗) × Wc) ∩ Cw and D̃ = (LV (r

∗) × Wd) ∩ Dw, respectively. Fix r ∈
(−∞, r∗) such that (5.7), (5.8), and (5.9) hold and Mw

r is nonempty and closed.

For any nontrivial4 (φ, w) ∈ SH̃(Mw
r ), pick any (t, j) ∈ domφ and let 0 = t0 ≤

t1 ≤ t2 ≤ ... ≤ tj+1 = t satisfy

domφ ∩ ([0, t]× {0, 1, ..., j}) =
j⋃

k=0

([tk, tk+1]× {k}) .

Next, we show that rgeφ ⊂ LV (r). Proceeding by contradiction, suppose there

4Trivial solution pairs always stay within the set of interest.
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exists (t∗, j∗) ∈ domφ that φ(t∗, j∗) ∈ LV (r
∗) \ LV (r), i.e.,

r < V (φ(t∗, j∗)) ≤ r∗. (5.10)

Without lose of generality, we have the following two cases:

i) φ leaves LV (r) by “jumping” at (t∗, j∗):

namely, φ(t, j) ∈ Mw
r for all (t, j) ∈ domφ with t + j < t∗ + j∗, and

(φ(t∗, j∗ − 1), wd(t
∗, j∗ − 1)) ∈ (LV (r) × Wd) ∩ Dw. Hence, using (5.8),

it implies V (φ(t∗, j∗)) ≤ r, which contradicts (5.10);

ii) φ leaves LV (r) by “flowing” during the interval Ij
∗

:= [tj∗ , tj∗+1]:

due to absolute continuity of t 7→ φ(t, j)onIj
∗

, φ leaves LV (r)∩Πw
c (Cw) and

enters (LV (r
∗) \LV (r))∩Πw

c (Cw). More precisely, since LV (r) ( LV (r
∗), by

closedness of LV (r), there exists a hybrid time instant (τ ∗, j∗) ∈ domφ such

that (φ(τ ∗, j∗), wc(τ
∗, j∗)) ∈ (V −1(r) × Wc) ∩ Cw and (φ(t, j∗), wc(t, j

∗)) ∈
((LV (r

∗) \ LV (r)) × Wc) ∩ Cw for all t ∈ (τ ∗, t∗], where tj∗ < τ ∗ < t∗ ≤
tj∗+1. Moreover, by item (S1w) in Definition 2.0.4, for every t ∈ intIj

∗

,

(φ(t, j∗), wc(t, j
∗)) ∈ C̃. Then, (5.7) implies that for almost all t ∈ [τ ∗, t∗],

d

dt
V (φ(t, j∗)) ≤ 0.

Integrating both sides, we have

V (φ(t∗, j∗)) ≤ V (φ(τ ∗, j∗)),

which leads to V (φ(t∗, j∗)) ≤ V (φ(τ ∗, j∗)) = r. This contradicts (5.10).

Next, we establish robust forward pre-invariance of Mw
r for H̃ when (5.9) holds.

By item (S1w) in Definition 2.0.4 and closedness of Mw
r , every (φ, w) ∈ SH̃(Mw

r )

stays within Mw
r during flow. Therefore, if φ leaves Mw

r and enters LV (r) \Mw
r ,

it must have jumped. Suppose there exists (φ, w) ∈ SH̃(Mw
r ) that has its φ

element left Mw
r eventually, while (5.9) holds. Then, for every such (φ, w), there

exists (t∗, j∗) ∈ domφ such that φ(t∗, j∗) ∈ LV (r) \ (Πw
c (Cw) ∪ Πw

d (Dw)) and

(φ(t∗, j∗ − 1), wd(t
∗, j∗ − 1)) ∈ (Mw

r × Wd) ∩ Dw. This leads to a contradiction

with (5.9). Thus, Mw
r is robustly forward pre-invariant for H̃.
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To complete the proof, we show that every (φ, w) ∈ SH̃(Mw
r ) with rgeφ ⊂ Mw

r

is also a maximal solution to Hw. Proceeding by contradiction, suppose there

exists (φ, w) ∈ SH̃(Mw
r ) with rgeφ ⊂ Mw

r that can be extended outside of Mw
r for

Hw. More precisely, there exists (ψ, v) ∈ SHw
(Mw

r ), such that domψ \domφ 6= ∅,
for every (t, j) ∈ domφ, (ψ(t, j), v(t, j)) = (φ(t, j), w(t, j)) and for every (t, j) ∈
domψ \ domφ, ψ(t, j) /∈ Mw

r . Let (T, J) = sup domφ. We have two cases:

iii) (ψ, v) extends (φ, w) via flowing:

namely, (ψ(T, J), vc(T, J)) = (φ(T, J), wc(T, J)) ∈ (Mw
r × Wc) ∩ Cw, t 7→

ψ(t, J) is absolute continuous on IJ . By item (S1w) in Definition 2.0.4,

(ψ(t, J), vc(t, J)) ∈ Cw for all t ∈ intIJ . Thus, it must be the case that

ψ(t, J) ∈ Πw
c (Cw) \ LV (r) for some t ∈ IJ . Since LV (r) ( LV (r

∗), there

exists t∗ ∈ IJ such that ψ(t∗, J) ∈ LV (r
∗) ∩ (Πw

c (Cw) \ LV (r)), which is an

extension of (φ, w) for H̃. This contradicts with the maximality of (φ, w) to

H̃.

iv) (ψ, v) extends (φ, w) via jumping:

namely, (ψ(T, J), vd(T, J)) = (φ(T, J), wd(T, J)) ∈ (Mw
r × Wd) ∩ Dw and

ψ(T, J + 1) /∈ Mw
r . By item (S2w) in Definition 2.0.4, this contradicts with

the maximality of (φ, w) to H̃.

When given a Lyapunov-like function V and a constant r < r∗ as in Proposi-

tion 5.2.1, one can verify the robust forward pre-invariance of Mw
r for Hw. In turn,

conditions (5.7), (5.8) and (5.9) can be used to check whether a designed state-

feedback pair (κc, κd) renders Mw
r given as in (5.2) robustly controlled forward

invariant for Hu,w.

A typical set of Lyapunov conditions for asymptotic stability analysis can be

found in [61, Theorem 3.18], where the key is to evaluate the value of V along

trajectories outside of the set of interests, i.e., A. These conditions ensure the

decrease of V along solutions that are initialized outside of A. In comparison,

forward invariance characterizes the properties of system dynamics within the set
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of interest, in our case, Mw
r . Comparing to [61, Definition 3.16] and [61, Theorem

3.18], a function V as in Proposition 5.2.1 is a Lyapunov function candidate that

is less restrictive. Such function V is neither bounded by two class-K∞ functions,

nor has its change along solutions bounded by the negative of a positive definite

function of the distance to the set of interest. In particular, for the nominal case,

item (3.2b) in [61, Theorem 3.18] asks 〈∇V (x), η〉 ≤ 0 for all x ∈ LV (r
∗) ∩ C

and η ∈ F (x); while (5.7) allows 〈∇V (x), η〉 to be positive for x ∈ intLV (r) ∩ C.

Similarly, during jumps, item (3.2c) in [61, Theorem 3.18] demands the change

V (η) − V (x) to be nonpositive for every x ∈ LV (r) ∩ D; while (5.8) allows such

changes to be positive for x ∈ intLV (r) ∩ D as long as it is such that V (η) ≤ r.

Such properties of function V ensure solutions stay within LV (r) for any qualifying

r < r∗.5 Note that (5.7) and (5.8) do not imply that maximal solutions are

complete, neither to Hw nor to the restriction of Hw to LV (r
∗). Other alternative

conditions may involve a locally Lipschitz flow map Fw similar to Corollary 6.1.5.

Remark 5.2.2 It is worth noting that due to being inequalities, the conditions in

Proposition 5.2.1 cover the special cases where V remains constant in the contin-

uous or discrete region. In such a case, (5.7) and (5.8) in Proposition 5.2.1 are

given by

〈∇V (x), η〉 = 0 ∀(x, wc) ∈ (LV (r
∗)×Wc) ∩ Cw, η ∈ Fw(x, wc),(5.11)

V (η)− V (x) = 0 ∀(x, wd) ∈ (LV (r)×Wd) ∩Dw, η ∈ Gw(x, wd),(5.12)

respectively. Intuitively, when V dose not change on LV (r
∗), solution pairs to Hw

stay within the r−sublevel set during flows and jumps. Namely, we can employ

(5.11) and (5.8), or (5.7) and (5.12), to verify robust forward pre-invariance of

Mw
r .

Observations in Remark 5.2.2 are also practical for controlled systems where con-

trol inputs affect only the flow or jump map and the jump map, or, respectively,

5Note that solution pairs may escape LV (r) when r = r∗. This is because 〈∇V (x), η〉 is
allowed to be zero in (5.7).
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flow map ensure V does not change along flows or jumps, respectively. One such

example is presented in Section 7.4, in which, a ball travels vertically and is con-

trolled by impacts with a surface at zero height. The total energy of the ball is

used to construct the V function for invariance analysis. During flows, no en-

ergy loss is considered. Hence, the total energy level of the system remains the

same, which implies the special case of (5.7), i.e., (5.11) holds. The controlled

single-phase DC/AC inverter system is one example where (5.12) holds, which is

a special case of (5.8), as presented in Section 7.2.

Next, we derive conditions rendering the set Mw
r ⊂ Rn in (5.2) robustly for-

ward invariant for Hw given as in (6.2). This conditions follow from Section 5.1

and ensures that every solution pair φ ∈ SHw
(Mw

r ) has rgeφ ⊂ Mw
r . Moreover,

the proposed set of conditions guarantee existence and completeness of nontrivial

solution pairs to Hw.

Proposition 5.2.3 (robustly forward invariance of Mw
r ) Given a hybrid system

Hw = (Cw, Fw, Dw, Gw) as in (6.2), suppose the set Cw is closed, item (A2w) in

Definition 2.0.8 holds and for every x ∈ Πw
c (Cw), 0 ∈ Ψw

c (x). Suppose there exist

a constant r∗ ∈ R and a function V : Rn → R that is continuously differentiable

on an open set containing Πw
c (Cw) such that (5.7) and (5.8) in Proposition 5.2.1

hold for some r ∈ (−∞, r∗) such that Mw
r is nonempty and closed. Moreover,

suppose

5.2.3.1) for every x ∈ V −1(r), ∇V (x) 6= 0;

5.2.3.2) for every x ∈ (LV (r) ∩ ∂Πw
c (Cw)) \ Πw

d (Dw), Fw(x, 0) ∩ TΠw
c (Cw)(x) 6= ∅;

5.2.3.3) for every x ∈ (V −1(r)∩∂Πw
c (Cw))\Πw

d (Dw), the set Ξx := {ξ ∈ Fw(x, 0)∩
TΠw

c (Cw)(x) : 〈∇V (x), ξ〉 < 0} is nonempty;

5.2.3.4) (Mw
r ×Wc)∩Cw is compact, or Fw has linear growth on (Mw

r ×Wc)∩Cw.

If, furthermore, (5.9) in Proposition 5.2.1 holds, then, the set Mw
r is robustly

forward invariant for Hw.

74



Proof The proof is derived from the proof of Theorem 5.1.1, being the main

difference, the presence of the disturbances wc and wd. First, we show that Mw
r

given as in (5.2) is robustly weakly forward invariant for Hw by applying Theo-

rem 4.2.8 In particular, the sets K = Mw
r , Cw, and Dw, and the map Fw satisfy

Assumption 4.2.3. Then, with (5.7) and item 5.2.3.1)-5.2.3.3), we show in the

following lemma that item 4.2.8.2) in Theorem 4.2.8 holds with K = Mw
r , Cw,

and Fw.

Lemma 5.2.4 Consider a closed set Cw ⊂ Rn × Wc that has 0 ∈ Ψw
c (x) for

every x ∈ Πw
c (Cw) and a map Fw : Rn × Wc ⇒ Rn satisfying item (A2w) in

Definition 2.0.8. Suppose there exists a pair (V, r∗), where V is continuously

differentiable on an open set containing LV (r
∗) and r∗ ∈ R such that for some

r < r∗, items (5.7) and 5.2.3.1) - 5.2.3.3) hold. Then, for every x ∈ ∂(Mw
r ∩

Πw
c (Cw)) \ Πw

d (Dw),

Fw(x, 0) ∩ TMw
r ∩Πw

c (Cw)(x) 6= ∅. (5.13)

Proof Let r < r∗ satisfy the properties in the statement of the claim. Let K1 =

int(LV (r))∩∂Πw
c (Cw), K2 = V −1(r)∩ int(Πw

c (Cw)), and K3 = V −1(r)∩∂Πw
c (Cw).

It is obvious that K1, K2, and K3 are disjoint and
3⋃

i=1

Ki \ Πw
d (Dw) = ∂(Mw

r ∩
Πw

c (Cw)) \ Πw
d (Dw). We have the following three cases:

i) For every x ∈ K1 \Πw
d (Dw), since TMr∩Πw

c (Cw)(x) = TΠw
c (Cw)(x), item 5.1.1.2)

implies (5.13).

ii) For every x ∈ K2 \ Πw
d (Dw), we have TMr∩Πw

c (Cw)(x) = TLV (r)(x). ]Applying

item 1) of Lemma A.0.15 to every such x with h(x) = V (x) − r, (hence,

S = LV (r)) we have that (5.7) and item 5.1.1.1) imply Fw(x, wc) ⊂ TLV (r)(x)

for every wc ∈ Ψu
c (x). Then, with the assumption that 0 ∈ Ψu

c (x) for every

x ∈ Πw
c (Cw), (5.13) holds.

iii) For every x ∈ K3\Πw
d (Dw), we argue that there exists a vector ξ ∈ Fw(x, 0)∩

TΠw
c (Cw)(x) that is also contained in TLV (r)∩Πw

c (Cw)(x). To this end, for every
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x ∈ K3 \ Πw
d (Dw), consider ξ ∈ Ξx as defined in 5.1.1.3). For a given

x ∈ K3 \ Πw
d (Dw), let

C̃x := {x+ αξ : α ≥ 0} ∩ Πw
c (Cw).

If C̃x = {x}, we have ξ = 0 by the fact that x ∈ K3 ⊂ Πw
c (Cw) and

item 5.1.1.2), which contradicts with item 5.1.1.3). Hence, for every such

x, C̃x has more than one point and ξ 6= 0. Then, there exists x′ 6= x

such that x′ = (α′ξ + x) ∈ C̃x. By definition of C̃x, for each λ ∈ [0, 1],

x′′ = λx + (1 − λ)x′ is also in C̃x. Let Cx = con{x, x′}. By construction,

Cx is a convex subset of C̃x and is not a singleton. Next, for every x ∈
K3 \Πw

d (Dw), we apply Corollary A.0.5 with C1 = Cx and C2 = LV (r). Item

5.1.1.3) implies TCx
(x) ∩ intTLV (r)(x) 6= ∅. Applying Lemma A.0.15 with

h(x) = V (x)− r, the set LV (r) admits a hypertangent at every x ∈ V −1(r).

Then, [71, Corollary 2 of Theorem 2.4.7 (page 56)] implies the set LV (r) is

regular at every x with f(x) = V (x) − r. Since set Cx is regular at x by

construction, Corollary A.0.5 implied that for every x ∈ K3 \ Πw
d (Dw),

TCx
(x) ∩ TLV (r)(x) = TLV (r)∩Cx

(x).

Because of the properties of tangent cones in [69, Table 4.3, item (1)] and

the fact that Cx ∩ LV (r) ⊂ Πw
c (Cw) ∩ LV (r) by construction of Cx, we also

have

TLV (r)∩Cx
(x) ⊂ TLV (r)∩Πw

c (Cw)(x).

Then, by definition of tangent cones, ξ ∈ TCx
(x) and ξ ∈ (TLV (r)(x) ∩

TCx
(x)) ⊂ TLV (r)∩Πw

c (Cw)(x). Therefore, by assumption, since ξ ∈ Fw(x, 0) ∩
TΠw

c (Cw)(x), (5.13) holds for every x ∈ K3K3 \ Πw
d (Dw).

Then, (5.9) together with (5.8) imply item 4.2.8.1) in Theorem 4.2.8, holds for

Mw
r , Cw, Dw and Gw. Hence, Mw

r is robustly weakly forward invariant for Hw by

Theorem 4.2.8 since condition 5.2.3.4) implies item ⋆) according to Lemma 4.2.5.

Applying Proposition 4.2.1, there exists a nontrivial solution pair to Hw from

every x ∈ Mw
r .
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Next, it follows from Proposition 5.2.1 that Mw
r is also robustly forward pre-

invariant for Hw. Such a property implies that every maximal solution pair to

Hw has rgeφ ⊂ Mw
r . Finally, by applying Proposition 4.2.1, every maximal

solution pair to Hw starting from Mw
r is also complete when item 5.2.3.4) holds.

Case b.1.1) in Proposition 4.2.1 is excluded for every (φ, w) ∈ SH(Mw
r ) since

Mw
r ∩ Πw

c (Cw) is closed. Case b.1.2) and c.2) are excluded since (5.13) holds for

every x ∈ Mw
r \Πw

d (Dw). This follows from Lemma 5.2.4, and the fact that Mw
r ⊂

Πw
c (Cw)∪Πw

d (Dw) and TLV (r)∩Πw
c (Cw)(x) = Rn for every x ∈ int(LV (r)∩Πw

c (Cw)).

Case b.2) is not possible for every maximal solution from Mw
r by assumption

5.2.3.4). Finally, when (5.9) holds, namely, Gw((Mw
r × Wd) ∩ Dw) ⊂ Mw

r , case

c.1) in Proposition 4.2.1 does not hold. Therefore, only case a) is true for every

maximal solution pair starting from Mw
r .

Compared to Theorem 5.1.1, item 5.2.3.3) does not require the set Πw
c (Cw) to

be regular as in item 5.1.1.3).

Remark 5.2.5 Forward invariance that is uniform in the disturbances is key for

certifying safety in real-world applications. As mentioned in Chapter 1, barrier

certificates are shown to be useful for the study of safety [39,46,47]. The Lyapunov-

like function approach in this section resembles the idea behind barrier certificates,

but we do not require the set to render invariant be defined by regions of where

a function is nonnegative. In addition, the function V in this work is not sign

definite and that the aim is to assume as few properties as possible, though it

should be recognized that the invariance property obtained is only for its sublevel

sets.
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Chapter 6

Controlled Forward Invariance using

Control Lyapunov Functions

In previous chapters, we formally characterize forward invariance for the nom-

inal hybrid systems, i.e., H in (2.1), and hybrid systems with disturbances, i.e.,

Hw in (1.1). Analysis tools to verify such properties are established for a generic

set K ⊂ Rn and the sublevel set of LV (r) for a given Lyapunov-like function.

Building on these results, in this chapter, we present control designs to render a

set forward invariant for closed-loop hybrid systems.

We focus on the control synthesis for hybrid systems in form of Hu,w given in

(1.2) and in form of Hu given by

Hu




(x, uc) ∈ Cu ẋ ∈ Fu(x, uc)

(x, ud) ∈ Du x+ ∈ Gu(x, ud).
(6.1)

As mentioned in Chapter 2, these two classes of systems have input u = (uc, ud)

that can be replaced by state-feedback pair (κc, κd), where the result in closed-loop

systems in the same form of H and Hw. In particular, given a static state-feedback

pair (κc : R
n → Rmc , κd : Rn → Rmd , the closed-loop systems of Hu, with some
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abuse of notations, are given by

H




x ∈ C ẋ ∈ F (x);

x ∈ D x+ ∈ G(x),
(6.2)

where the set-valued maps

F (x) := Fu(x, κc(x)) and G(x) := Gu(x, κd(x))

govern the continuous and discrete evolutions of the system on the sets

C := {x ∈ Rn : (x, κc(x)) ∈ Cu}, and D := {x ∈ Rn : (x, κd(x)) ∈ Du},

respectively. Similar to the notations for Hu,w, we define the projection of S ⊂
Rn × Uc onto Rn as

Πu
c (S) := {uc ∈ Rmc : (x, uc) ∈ Cu},

and the projection of S ⊂ Rn × Ud onto Rn as

Πu
d(S) := {ud ∈ Rmd : (x, ud) ∈ Du},

Moreover, we define the set-valued maps

Ψun
c (x) := {uc ∈ Rmc : (x, ud) ∈ Cu},

Ψun
d (x) := {ud ∈ Rmd : (x, ud) ∈ Du}

that collects all inputs u that satisfy the system dynamics for a given x.

To obtain properties (A1)-(A3) in Definition 2.0.8 for H = (C, F,D,G), we

have the following immediate result.

Lemma 6.0.6 (hybrid basic conditions) Suppose κc : C → Uc and κd : D → Ud

are continuous and Hu = (Cu, Fu, Du, Gu) is such that

(A1’) Cu and Du are closed subsets of Rn × Uc and Rn × Ud, respectively;

(A2’) Fu : Rn × Rmc ⇒ Rn is outer semicontinuous relative to Cu and locally

bounded, and for every (x, uc) ∈ Cu, Fu(x, uc) is nonempty and convex;

(A3’) Gu : Rn × Rmd ⇒ Rn is outer semicontinuous relative to Du and locally

bounded, and for every (x, ud) ∈ Du, Gu(x, ud) is nonempty.
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Then, Hw satisfies conditions (A1)-(A3) in Definition 2.0.8.

Similarly, the resulting closed-loop system for Hu,w when controlled by pair

(κc, κd) is given by (1.3). Then, to obtain properties (A1w)-(A3w) in Defini-

tion 2.0.7 for Hw = (Cw, Fw, Dw, Gw), we have the following immediate result.

Lemma 6.0.7 (hybrid basic conditions) Suppose κc : Πc(Cu,w) → Uc and κd :

Πd(Du,w) → Ud are continuous and Hu,w = (Cu,w, Fu,w, Du,w, Gu,w) is such that

(A1’w) Cu,w and Du,w are closed subsets of Rn × Uc × Wc and Rn × Ud × Wd,

respectively;

(A2’w) Fu,w : Rn×Rmc ×Rdc ⇒ Rn is outer semicontinuous relative to Cu,w and

locally bounded, and for every (x, uc, wc) ∈ Cu,w, Fu,w(x, uc, wc) is convex;

(A3’w) Gu,w : Rn × Rmd × Rdd ⇒ Rn is outer semicontinuous relative to Du,w

and locally bounded.

Then, Hw satisfies conditions (A1w)-(A3w) in Definition 2.0.7.

We start this chapter by formally define the concept of (robust) controlled

forward invariance for hybrid system Hu and Hu,w. Results that guarantee these

notions for a hybrid system with given static feedback pair are derived from the

sufficient conditions presented in Chapter 4. Then, adapting the Lyapunov condi-

tions in Chapter 5, we define the concept of (robust) control Lyapunov functions

for forward invariance. It turns out the existence of such functions for both Hu

and Hu,w leads to continuous feedback laws that render their sublevel sets (robust)

forward invariant for the closed-loop system H and Hw. Finally, we provide con-

structive feedback law designs featuring pointwise minimal norm selection scheme

that induces (robust) controlled forward invariance.
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6.1 Controlled Forward Invariance via Static State-

Feedback Laws

In this section, we investigate solutions (or solution pair) behavior of the closed-

loop system H in (6.2) (or Hw in (1.3), respectively) of Hu (or Hu,w, respectively)

that is resulted from a given feedback pair. We formulate these properties as the

controlled forward invariant (or robustly controlled forward invariant, respectively)

for the hybrid system Hu (or Hu,w, respectively) via (κc, κd). For the nominal case,

i.e., hybrid systems Hu, we define the notions of controlled forward invariance

based on Definition 3.1.1 - Definition 3.1.5.

Definition 6.1.1 (controlled forward invariance of Hu) The set K ⊂ Rn is said

to be

N1) controlled weakly forward pre-invariant for Hu via (κc, κd) if K is weakly

forward pre-invariant for closed-loop system H as in (6.2);

N2) controlled weakly forward invariant for Hu via (κc, κd) if K is weakly forward

invariant for closed-loop system H as in (6.2);

N3) controlled forward pre-invariant for Hu via (κc, κd) if K is forward pre-

invariant for closed-loop system H as in (6.2);

N4) controlled forward invariant for Hu via (κc, κd) if K is forward invariant for

closed-loop system H as in (6.2). �

Similarly, when disturbances are present, referencing Definition 3.2.1 - Defini-

tion 3.2.4, we have the following definitions for Hu,w.

Definition 6.1.2 (robust controlled forward invariance of Hu,w) The set K ⊂ Rn

is said to be

R1) robustly controlled weakly forward pre-invariant for Hu,w via (κc, κd) if K is

robustly weakly forward pre-invariant for closed-loop system Hw as in (1.3);
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R2) robustly controlled weakly forward invariant for Hu,w via (κc, κd) if K is ro-

bustly weakly forward invariant for closed-loop system Hw as in (1.3);

R3) robustly controlled forward pre-invariant for Hu,w via (κc, κd) if K is robustly

forward pre-invariant for closed-loop system Hw as in (1.3);

R4) robustly controlled forward invariant for Hu,w via (κc, κd) if K is robustly

forward invariant for closed-loop system Hw as in (1.3). �

Remark 6.1.3 Similar to our notion of robustly controlled forward invariance,

to the best of our knowledge, all other existing notions in the literature, though

defined for different class of systems, rely on the existence of feasible control in-

puts that render sets robustly forward invariant for the closed-loop system. As

mentioned in Chapterchap:intro, our notions apply to a more general class of

systems, in particular, continuous-time, discrete-time, and hybrid systems with

set-valued dynamics. Very importantly, we do not require uniqueness of solu-

tions as in [2, Definition 2.3], [4, Definition 8] (for continuous-time systems) or

[48, Definition 1] (for discrete-time systems).

Next, we provide conditions guaranteeing that a static state-feedback pair

renders controlled (robustly) forward invariant (in the appropriate sense) of a

set for the closed-loop system resulting from controlling a hybrid system. Our

conditions involve the Hu-admissible1 (or Hu,w-admissible) state-feedback pair

(κc, κd), which is considered to be given, the data of the closed-loop system it

leads to, which is denoted H (or Hw), and the set K to render (robustly) forward

invariant. The following result present conditions to render controlled (weak)

forward invariance of K for Hu, by adapting results in Section 4.1.

Corollary 6.1.4 (controlled (weak) forward invariance) Consider a hybrid sys-

tem Hu = (Cu, Fu, Du, Gu) as in (6.1) and a Hu-admissible state-feedback pair

1A state-feedback pair (κc, κd), where κc : Rn → Rmc and κd : Rn → Rmd is said to be
Hu-admissible if the pair satisfies the dynamics of Hu.
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(κc, κd). Let the closed-loop system H = (C, F,D,G) satisfy the conditions in Def-

inition 2.0.8. Furthermore, suppose K ⊂ Rn is a closed subset of Πu
c (C)∪Πu

d(D).

Then, the set K is

• controlled weakly forward invariant for Hu via (κc, κd) if

6.1.4.1) For every x ∈ K ∩Πu
d(Du), Gu(x, κd(x)) ∩K 6= ∅;

6.1.4.2) For every x ∈ Ĉ \ Πu
d(Du), Fu(x, κc(x)) ∩ TK∩Πu

c (Cu)(x) 6= ∅, where

Ĉ := ∂(K ∩ Πu
c (Cu)) \ L and L := {x ∈ ∂Πu

c (Cu) : Fu(x, κc(x)) ∩
TΠu

c (Cu)
(x) = ∅}.

6.1.4.3) K ∩ Πu
c (Cu) is compact or F (x) has linear growth on K ∩ C.

• controlled forward invariant for Hu via (κc, κd) if 6.1.4.3) holds and

6.1.4.4) For every x ∈ K ∩Πu
d(Du), Gu(x, κd(x)) ⊂ K;

6.1.4.5) For every x ∈ Ĉ, Fu(x, κc(x)) ⊂ TK∩Πu
c (Cu)(x);

6.1.4.6) F is locally Lipschitz on (∂K + δB) ∩Πu
c (Cu) for some δ > 0.

As discussed in Section 4.1.1, item 6.1.4.3) provides two solution-independent

sufficient conditions to exclude the case where solution ends during flow by es-

caping to infinity in finite time. In turn, every maximal solution initiated from

K are complete. Hence, to verify the “pre” notions, namely, controlled weak for-

ward pre-invariance and controlled forward pre-invariance, one can simply ignore

item 6.1.4.3).

Then, under the presence of disturbances, we derive conditions that a pair

(κc, κd), along with the data of the hybrid system Hu,w and a given set K, should

satisfy forK to be robustly controlled invariant. Though the result is not necessar-

ily a systematic design tool, it provides checkable solution-independent conditions.

Corollary 6.1.5 (robust controlled forward (pre-)invariance) Consider a hybrid

system Hu,w = (Cu,w, Fu,w, Du,w, Gu,w) as in (1.2) and a Hu,w-admissible state-

feedback pair (κc, κd). Let the closed-loop system Hw = (Cw, Fw, Dw, Gw) satisfy
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the conditions in Definition 2.0.8. Furthermore, suppose K ⊂ Rn is a closed

subset of Πw
c (Cw) ∪ Πw

d (Dw) and Fw is locally Lipschitz (as in Definition A.0.3)

on ((∂K + δB)×Wc)∩Cw for some δ > 0. Then, the set K is robustly controlled

forward pre-invariant for Hu,w via (κc, κd) if K and (Cw, Fw, Dw, Gw) are such

that

6.1.5.1) For every ξ ∈ (∂K) ∩ Πw
c (Cw), there exists a neighborhood U of ξ such

that Ψw
c (x) ⊂ Ψw

c (ξ) for every x ∈ U ∩ Πw
c (Cw);

6.1.5.2) For every (x, wd) ∈ (K ×Wd) ∩Dw, Gw(x, wd) ⊂ K;

6.1.5.3) For every (x, wc) ∈ ((∂(K ∩ Πw
c (Cw)) × Wc) ∩ Cw) \ Lw, Fw(x, wc) ⊂

TK∩Πw
c (Cw)(x), where Lw is given as in Theorem 4.2.4.

Moreover, K is robustly controlled forward invariant for Hu,w via (κc, κd) if, in

addition

6.1.5.4) (K ×Wc) ∩Cw is compact, or Fw has linear growth on (K ×Wc)∩Cw;

and

6.1.5.5) K ∩ Πw
c (Lw) ⊂ Πw

d (Dw).

Proof The proof exploits results in Section 4.2. Namely, applying Theorem 4.2.8,

we show that the assumptions and conditions 6.1.5.1)-6.1.5.3) in Corollary 6.1.5

together imply the set K is robustly pre-forward invariant for the closed-loop

system Hw. In particular, K ∩ Πw
c (Cw) is closed since K and Cw are closed sets.

Because of item (A2w) and the assumption that 0 ∈ Ψw
c (x) for every x ∈ Πc(Cu,w),

Assumption 4.2.3 holds for Cw, Dw, Fw and K. Hence, applying Theorem 4.2.8,

since 6.1.5.2) and 6.1.5.3) imply item 4.2.8.1) and 4.2.8.2), respectively, set K is

robustly controlled forward pre-invariant for Hu,w via (κc, κd) by Definition 6.1.2.

With the addition of item 6.1.5.4), Lemma 4.2.5 implies solution pairs are

bounded in finite time. Then, item 6.1.5.5) guarantees existence of nontrivial

solution pairs from every x ∈ K by guaranteeing jump is possible from every
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x ∈ (K∩Πw
c (Lw)). Therefore, K is robustly forward invariant for Hw and robustly

controlled forward invariant for Hu,w via (κc, κd).

Remark 6.1.6 The locally Lipschitzness of the set-valued map Fw is crucial to

make sure that every solution pair stays in the set K during flows as shown in

proof of Theorem 4.2.8. In addition, we refer readers to the example provided below

[2, Theorem 3.1], which shows that, even though f(x) ∈ TK , a continuous-time

system has solutions that leave a set due to the absence of locally Lipschitzness of

the right-hand side of a continuous-time system. In addition, condition 6.1.5.1)

guarantees such property uniformly in wc (see the proof of Theorem 4.2.8 for

details.

We use the next example illustrates Corollary 6.1.5.

Example 6.1.7 (nonlinear planar system with jumps) Consider a hybrid system

Hu,w with flow map

Fu,w(x, uc, wc) :=

{[
x21 − γ

x1x2

]
ucwc : γ ∈ [3, 4]

}

defined for every (x, uc, wc) ∈ Cu,w, where the flow map is given by

Cu,w := {(x, uc, wc) ∈ R2 × R× [0, 1] :

|x| ≥ 1, |x1| ≥ |uc|, (|x|2 − 2)x21 ≤ ucx1 ≤ (|x|2 − 1)x21}

and jump map2

Gu,w(x, ud, wd) := {−R(udwd)x,R(udwd)x} ,

defined for every (x, ud, wd) ∈ Du,w, where the jump map is given by

Du,w :
{
(x, ud, wd) ∈ R2 × R× [−1.1, 1.1] : x1 = 0, |x| ≥ 1, ud ∈

[π
4
,
π

2

]}
.

2 R(s) =

[
cos s sin s
− sin s cos s

]
represents a rotation matrix.
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Consider the set K = {x ∈ R2 : 1 ≤ |x| ≤
√
2}, and a continuous state-feedback

pair (κc, κd) defined for every x ∈ R2 given by

κc(x) =

(
|x|2 − 3

2

)
x1, κd(x) =

π

3
.

x1

x2

0 1
√
2

K

Πd(Du,w)

Πc(Cu,w)

Figure 6.1: Set configuration for Example 6.1.7.

By definition of Fu,w and κc, we have

Fw(x, wc) :=

{[
x21 − γ

x1x2

](
|x|2 − 3

2

)
x1wc : γ ∈ [3, 4]

}
,

which is Lipschitz on the set Πc(Cu,w)∩K = K. The assumptions and conditions

6.1.5.1) and 6.1.5.4) in Corollary 6.1.5 hold by construction of Hu,w, (κc, κd),

and K. Consider a continuously differentiable function V (x) := x21 + x22 for every

x ∈ R2. Since γ ∈ [3, 4] and wc ∈ [0, 1], we have that for every x such that |x| = 1

and every ξ ∈ Fw(x),

〈∇V (x), ξ〉 = 2x1ξ1 + 2x2ξ2 = (γ − 1)x21wc ≥ 0,

and for every x such that |x| = 2 and every ξ ∈ Fw(x),

〈∇V (x), ξ〉 = 2x1ξ1 + 2x2ξ2 = (2− γ)x21wc ≤ 0.

Hence, item 6.1.5.3) holds and Lw = ∅ by application of item 2) in Lemma A.0.15.

Condition 6.1.5.2) holds because the rotation matrix R only changes the direction

of the vector x, while its magnitude remains the same after each jump. Item

6.1.5.5) holds trivially as Lw = ∅. Therefore, by an application of Corollary 6.1.5,
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the set K is robustly controlled forward invariant for system Hu,w via the given

state-feedback pair (κc, κd). △

6.2 Invariance-based Control for Hybrid Systems

via Control Lyapunov Functions

Utilizing Theorem 5.1.1, feedback pair (κc, κd) can be designed for Hu to ren-

der a sublevel set of Lyapunov-like function V : Rn → R, namely, Mr as in (5.1),

forward invariant for the closed-loop system H given as in (6.2). Consequently,

set Mr is controlled forward invariant for Hu via such pair (κc, κd). In this sec-

tion, we start with formally defining the concept of control Lyapunov functions

for forward invariance (CLF-FI). When provided an CLF-FI for Hu, regulation

maps can be constructed for selecting state-feedbacks that induces controlled for-

ward invariance using Theorem 5.1.1. Then, the existence of such state-feedback

selections in Section 6.2.1. In addition, to show case an alternative approach to

get state feedback pair that induces forward invariance featuring locally Lipschitz

flow map, one result is provided in Section 6.2.2.

Motivated by achieving the regularities in Definition 2.0.8 for the resulting

closed-loop system H, we design state-feedback control laws by making continuous

selections from sets that include all inputs ensuring required properties for forward

invariance for H. To this end, feedbacks are selected from the sets of inputs that

keep “all solutions” within Πu
c (Cu)∪Πu

c (Du). More precisely, for every x ∈ Πu
c (Cu),

we consider Ψun
c (x) and for every x ∈ Πu

d(Du), we define

Θn
d(x) := {ud ∈ Ψun

d (x) : Gu(x, ud) ⊂ Πu
c (Cu) ∩ Πu

d(Du)}. (6.3)

Note that when constructing feedbacks using the methodology introduced in this

section, it suffices to find subsets of Θn
d(x) for each x ∈ D that satisfy the condi-

tions in the forthcoming results. Then, we define the control Lyapunov functions

for forward invariance as follows.
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Definition 6.2.1 (CLF-FI for Hu) Consider sets Uc ⊂ Rmc, Ud ⊂ Rmd, a hybrid

system Hu = (Cu, Fu, Du, Gu) as in (6.1), a constant r∗ ∈ R, and a continuous

function V : Rn → R that is also continuously differentiable on an open set

containing Πu
c (Cu). Suppose there exist continuous functions ρc : Rn → R and

ρd : R
n → R≥0 such that for some r < r∗, we have

ρc(x) > 0 ∀x ∈ I(r, r∗), (6.4)

ρd(x) > 0 ∀x ∈ LV (r).

Then, the pair (V, r∗) defines a control Lyapunov function for forward invariance

(CLF-FI) of the sublevel sets of V for Hu if

inf
uc∈Ψu

c (x)
sup

ξ∈Fu(x,uc)

〈∇V (x), ξ〉+ ρc(x) ≤ 0 ∀x ∈ I(r, r∗) ∩Πu
c (Cu), (6.5)

inf
ud∈Θn

d
(x)

sup
ξ∈Gu(x,ud)

V (ξ) + ρd(x) ≤ r ∀x ∈ LV (r) ∩ Πu
d(Du). (6.6)

�

Compared to the typical control Lyapunov functions (see, e.g., [72, Definition

2.1]), the CLF-FI in Definition 6.2.1 are not constrained to be bounded by class

K∞ functions. In addition, the constant r∗ defining an r∗-sublevel set in Defini-

tion 6.3.1 is allowed to be negative. Note that it is possible to have LV (r
∗) = ∅,

in which case we consider the pair (V, r∗) to be trivial.

6.2.1 Existence of State-Feedback Pair for Controlled For-

ward Invariance

Given a pair (V, r∗) defined as in Definition 6.2.1 for Hu and r < r∗ satisfying

the conditions therein, our approach consists of selecting a state-feedback law pair

(κc, κd) from these inequalities. In fact, we are interested in synthesizing a pair
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(κc, κd) that, in particular, satisfies

sup
ξ∈Fu(x,κc(x))

〈∇V (x), ξ〉+ ρc(x) ≤ 0 ∀x ∈ I(r, r∗) ∩ Πu
c (Cu),

sup
ξ∈Gu,w(x,κd(x))

V (ξ) + ρd(x) ≤ r ∀x ∈ LV (r) ∩ Πu
d(Du),

which, under certain mild conditions, with abuse of notation, renders the set

Mr := LV (r) ∩ (Πu
c (Cu) ∪ Πu

d(Du)) (6.7)

controlled forward invariant for Hu. Interestingly, with a constant parameter

σ ∈ (0, 1), the selection of such a feedback pair can be performed by defining sets

that nicely depend on the functions

Γn
c (x) :=





sup
ξ∈Fu(x,uc)

〈∇V (x), ξ〉+ σρc(x) if x ∈Mc ∩Πu
c (Cu),

−∞ otherwise

for each (x, uc) ∈ Rn × Uc, and

Γn
d(x) :=





sup
ξ∈Gu(x,ud)

V (ξ) + σρd(x)− r if x ∈ Md ∩Πu
d(Du),

−∞ otherwise,

for each (x, ud) ∈ Rn × Ud. In fact, with these functions defined, by introducing

the set-valued maps

{uc ∈ Ψun
c (x) : Γn

c (x) < 0}, {ud ∈ Θn
d(x) : Γ

n
d(x) < 0}

which are the so-called regulation maps [73], our approach is to determine a state-

feedback pair (κc, κd) that is selected from these maps. In other words, the selected

state-feedback pair (κc, κd) is such that

κc(x) ∈ {uc ∈ Ψun
c (x) : Γn

c (x) < 0}, κd(x) ∈ {ud ∈ Θn
d(x) : Γ

n
d(x) < 0}

at the appropriate values of the state x.

The goal of the remainder of this section is to formalize the approach outlined

above. First, we provide key results on forward invariance of sublevel sets of CLF-

like functions, which are used in our CLF approach. It turns out that when an

CLF-FI for Hu is provided, regulation maps as outlined above can be constructed
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for selecting a state-feedback satisfying the conditions in Theorem 5.1.1; hence,

the results in Section 5.1 enable us to show the desired invariance property under

feedback. Since according to Lemma 6.0.6, the closed-loop system H satisfies

conditions (A1)-(A3) in Definition 2.0.8 when the applied state-feedback pair is

continuous, we seek the design of a state-feedback pair (κc, κd) with κc and κd

being continuous functions of the state. For this purpose, we first reveal conditions

assuring the existence of continuous selections from the regulation maps. For ease

of representation in the forthcoming sections, we define

Mn
c := I(r, r∗) ∩ Πu

c (Cu), Mn
d := LV (r) ∩Πu

d(Du), (6.8)

Then, building from Theorem 5.1.1, we establish conditions to guarantee ex-

istence of a continuous state-feedback pair (κc, κd) to render the set Mr in (6.7)

controlled forward pre-invariant for Hu.

Theorem 6.2.2 (existence of state-feedback pair for controlled forward pre-invariance

using CLF-FI) Consider a hybrid system Hu = (Cu, Fu, Du, Gu) as in (6.1) satis-

fying conditions (A1’)-(A3’) in Lemma 6.0.6. Suppose there exists a pair (V, r∗)

that defines a control Lyapunov function for forward invariance for Hu as in Def-

inition 6.2.1. Let r < r∗ satisfy (6.4)-(6.6) and Θn
d be given as in (6.3). If the

following conditions hold:

6.2.2.1) The set-valued maps Ψun
c and Θn

d are lower semicontinuous, and Ψun
c and

Θn
d have nonempty, closed, and convex values on the sets Mn

c and Mn
d as

in (6.8), respectively;

6.2.2.2) For each x ∈ Mn
c , the function uc 7→ Γn

c (x) is convex on Ψu
c (x) and, for

each x ∈Mn
d , the function ud 7→ Γn

d(x) is convex on Θn
d(x);

then, the set Mr in (6.7) is controlled forward pre-invariant for Hu via a state-

feedback pair (κc, κd) with κc continuous on Mn
c and κd continuous on Mn

d .

We omit the proof for Theorem 6.2.2 as is it directly derived from Theo-

rem 6.3.3 in the forthcoming section on invariance-based control for hybrid system
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Hu,w. Please see a detailed proof in Section 6.3.

The reminder of this section is dedicated to show, when provided a CLF-FI

defined in Definition 6.2.1, there exists controlled forward invariance inducing

feedback pair for a class of Hu by enforcing additional requirements on the selec-

tions. These additional conditions guarantee existence of nontrivial solutions and

completeness of maximal solutions. To this end, for every x ∈ Πu
c (Cu), we define

the map

Θn
c (x) :=




{uc ∈ Ψun

c (x) : Fu(x, ud) ∩ TΠu
c (Cu) 6= ∅} ∀x ∈ ∂Πu

c (Cu) \ Πu
d(Du)

Ψun
c (x) otherwise.

(6.9)

The next result provides conditions on system data of Hu for existence of

continuous state-feedback pair that renders controlled forward invariance using

CLF-FI in Definition 6.2.1.

Theorem 6.2.3 (existence of state-feedback pair for controlled forward invari-

ance using CLF-FI) Consider a hybrid system Hu = (Cu, Fu, Du, Gu) as in (6.1)

satisfying conditions (A1’)-(A3’) in Lemma 6.0.6. Suppose there exists a pair

(V, r∗) that defines a control Lyapunov function for forward invariance of the sub-

level sets of V for Hu as in Definition 6.2.1 with Ψun
c (x) in (6.5) replaced by

Θn
c (x) as in (6.9). Let r < r∗ satisfy (6.4)-(6.6) and Θn

d be given as in (6.3). If

the following conditions hold:

6.2.3.1) The set-valued maps Θn
c and Θn

d are lower semicontinuous and Θn
c and

Θn
d have nonempty, closed, and convex values on the set Mn

c and the set

Mn
d , respectively;

6.2.3.2) For each x ∈Mn
c , the map uc 7→ Γn

c (x) is convex on Θn
c (x) and, for each

x ∈Mn
d , the map ud 7→ Γn

d(x) is convex on Θn
d(x);

then, the set Mr in (6.7) is controlled forward pre-invariant for Hu via a state-

feedback pair (κc, κd) with κc continuous on Mn
c and κd continuous on Mn

d . Fur-

thermore, if item 5.1.1.4) in Theorem 5.1.1 holds for the closed-loop system H as

in (6.2), the pair (κc, κd) renders set Mr controlled forward invariant for Hu.
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We omits the proof here as it resembles the one for Theorem 6.3.5. Because

Θn
c in (6.9) is used rather than the generic map Ψun

c in selecting the inputs,

the resulting regulation maps are inherit the properties from Θn
c , namely, every

selected input κc(x) at x is such that Fu(x, ud) ∩ TΠu
c (Cu) 6= ∅. This additional

constraint on feedback pair design includes condition 5.1.1.1), 5.1.1.3) and 5.1.1.4)

in Theorem 5.1.1. In turn, at every x ∈ Mr, the feedback law κc(x) guarantees

existence of nontrivial solution, moreover, the completeness of every maximal

solution to the closed-loop system.

6.2.2 Existence of Lipschitz State-Feedback Pair for Con-

trolled Forward Invariance

Results and control Lyapunov functions for forward invariance presented in

Section 6.2.1 take a different approach compared to the ones in [64], which are

derived from the sufficient conditions for generic sets that are presented in Sec-

tion 4.1 In particular, for the “pre” notion, the continuous-time feedback law κc is

selected from Ψun
c (x) for every x ∈ Mr ∩Πu

c (Cu) in Theorem 6.2.3; while result in

[64] selects feedbacks that guarantee the flow condition specified in Theorem 4.1.4.

In this section, we provide an alternative approach to Theorem 6.2.3 to induce

controlled forward invariance in Definition 6.1.1. The results herein resemble the

ones presented in [64]. To get controlled forward invariance of the sublevel sets

of a given CLF-FI, we need the flow map for the closed-loop system to be locally

Lipschitz, for which we assume that the map Fu is locally Lipschitz. The next

result shows that under the effect of a locally Lipschitz state-feedback κc, the

closed-loop flow map F derived from Fu is also locally Lipschitz.

Lemma 6.2.4 (Locally Lipschitzness of Fu(x, uc)) Suppose Fu : S1 × S2 ⇒ S1 is

locally Lipschitz (as a set-valued map) and κc : S1 → S2 is locally Lipschitz (as

a function). Then, F := Fu(x, κc(x)) is locally Lipschitz on S1 (as a set-valued

map).

92



Proof Since Fu is locally Lipschitz, for every (x, u) ∈ S1 × S2, there exists a

neighborhood UF = UF1×UF2 of (x, u) and a constant LF ≥ 0, where x ∈ S1, u ∈
S2, such that for every (ξ, δ) ∈ UF ∩ (S1 × S2),

Fu(x, u) ⊂ Fu(ξ, δ) + LF |(x, u)− (ξ, δ)|B,

which is equivalent to, for every (ξ, δ) ∈ (UF1 ∩ S1)× (UF2 ∩ S2),

Fu(x, u) ⊂ Fu(ξ, δ) + LF

√
(x− ξ)2 + (u− δ)2B. (6.10)

Then, because κc is a locally Lipschitz single-valued map, for every x ∈ S1, there

exist a neighborhood Uκc
of x and a constant Lκc

≥ 0, such that for every ξ ∈ S2,

|κc(x)− κc(ξ)| ≤ Lκc
|x− ξ|,

i.e.,

(κc(x)− κc(ξ))
2 ≤ L2

κc
(x− ξ)2. (6.11)

Now, we consider the set Ucl := min{UF1, Uκc
}, it follows that, for every x ∈ S1,

(6.10) and (6.11) hold for every (ξ, δ) ∈ Ucl×{u ∈ S2 : (x, u) ∈ S1×S2 s.t. x ∈ Ucl}
and ξ ∈ Ucl, respectively. Then, let u = κc(x), δ = κc(ξ), for every x ∈ S1, we

have that, for every ξ ∈ Ucl,

F (x, κc(x)) = Fu(x, u) ⊂ Fu(ξ, δ) + LF

√
(x− ξ)2 + (u− δ)2B

⊂ Fu(ξ, δ) + LF

√
(x− ξ)2 + L2

κc
(x− ξ)2B

⊂ Fu(ξ, κc(x)) + (LF

√
1 + L2

κc
)|x− ξ|B,

which is equivalent to, for every ξ ∈ Ucl,

F (x) ⊂ F (ξ) + λ|x− ξ|B,

where λ = LF

√
1 + L2

κc
, and Ucl is a neighborhood of x. Thus, F is locally

Lipschitz on S1.

Since forward invariance requires that every solution to H stays in Mr, we

define the following two set-valued maps. With Πu
c (()Cu) closed, for each x ∈
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Πu
c (()Cu), we define

Θ̃c(x) := {uc ∈ Ψun
c (x) : Fu(x, uc) ⊂ TΠu

c (()Cu)(x)}, (6.12)

and for each x ∈ Π(Du),

Θ̃d(x) := {ud ∈ Ψun
d (x) : Gu(x, ud) ⊂ (Πu

c (()Cu) ∪ Πu
d(()Du))}. (6.13)

Then, the following proposition establishes conditions that guarantee the existence

of a continuous state-feedback pair ((κc, κd)) for Hu to render the set Mr forward

invariant.

Theorem 6.2.5 (existence of state-feedback pair for forward invariance) Con-

sider a hybrid system Hu = (Cu, Fu, Du, Gu) as in (6.1) satisfying conditions

(A1’)-(A3’) in Lemma 6.0.6. Suppose the flow map Fu is locally Lipschitz on

Cu and there exists a pair (V, r∗) that defines a control Lyapunov function for for-

ward invariance of the sublevel sets of V for Hu as in Definition 6.2.1 with Ψun
c (x)

in (6.5) replaced by Θ̃c(x) as in (6.12) and Θn
d(x) in (6.6) replaced by Θ̃d(x) as in

(6.13). Let r < r∗. If the following conditions hold:

6.2.5.1) The set-valued map Θ̃c is locally Lipschitz on Mn
c and Θ̃c has nonempty,

compact and convex values; the set-valued map Θ̃d is lower semicontinu-

ous, gph Θ̃d is open relative to gphΨun
d , and Θ̃d has nonempty and convex

values;

6.2.5.2) For each x ∈Mn
c , the map uc 7→ Γn

c (x) is convex on Θ̃c(x) and, for each

x ∈Mn
d , the map ud 7→ Γn

d(x) is convex on Θ̃d(x),

then, the set Mr in (6.7) is controlled forward invariant for Hu via a state-feedback

pair (κc, κd) with κc continuous on Mn
c and κd continuous on Mn

d .

Condition 6.2.5.1) in Theorem 6.2.5 is restrictive in the sense that it requires

a locally Lipschitz property of Θ̃c rather than of the general input projection Ψun
c .

This is due to the fact that, in general, intersections of locally Lipschitz maps are

not locally Lipschitz. However, as the following lemma suggests, it is possible to

relax that condition for special cases.
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Lemma 6.2.6 In Theorem 6.2.5, when either

1) for each x ∈ Πu
c (()Cu), Fu(x, uc) ⊂ TΠu

c (()Cu)(x) for each uc ∈ Ψun
c (x); or

2) there exist Lipschitz functions γ : Πu
c (()Cu) → R>0 and ε : Πu

c (()Cu),→
(0, 1) such that Ψun

c (x)∩ε(x)r(x)B 6= ∅, and for every x ∈ Πu
c (()Cu), Θ̃c(x) =

Ψun
c (x) ∩ r(x)B, condition 6.2.5.1) in Theorem 6.2.5 can be replaced by

6.2.5.1)* The set-valued map Ψun
d is lower semicontinuous, gph Θ̃d is open rela-

tive to gphΨun
d , and the set-valued map Ψun

c is locally Lipschitz.

Proof Item 1) implies that Θ̃c(x) = Ψun
c (x) for every x ∈ Πu

c (()Cu). It follows

directly from the definitions of Θ̃c and uxcn.

Item 2) follows from the application of Proposition A.0.12, where S(x) =

Θ̃c(x),W (x) = Ψun
c (x) for every x ∈ Πu

c (()Cu).

6.3 Invariance-based Control for Hybrid Systems

via Robust Control Lyapunov Functions

For systematic invariance-based feedback design for Hu,w given as in (1.2),

we propose control Lyapunov functions that are tailored to forward invariance

properties. We refer to these functions as robust control Lyapunov functions for

forward invariance. Under appropriate conditions, these functions can be used

to systematically design state-feedback laws that render a particular sublevel set

robustly forward invariant. In simple words, a robust control Lyapunov function

for forward invariance, denoted as V , allows to select the inputs of Hu,w as a

function of the state x so that a set Mw
r given as in (5.2), which is a subset

of the r-sublevel set of V , has the robust controlled forward invariance property

introduced in Definition 6.1.2. As expected, and as formally stated next, the

function V needs to satisfy certain CLF-like properties involving the constant r
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defining the level of the sublevel set LV (r) and the data of Hu,w. In its definition,

we employ the set-valued map

Θd(x) := {ud ∈ Ψu
d(x) : Gu,w(x, ud,Ψ

w
d (x)) ⊂ Πc(Cu,w) ∪Πd(Du,w)}, (6.14)

for every x ∈ Πd(Du,w), which, at each such x, collects all inputs ud such that,

regardless of the value of the disturbance, the state x after jumps is in Πc(Cu,w)∪
Πd(Du,w).

Definition 6.3.1 (RCLF-FI for Hu,w) Consider sets Uc ⊂ Rmc, Ud ⊂ Rmd , Wc ⊂
Rdc, Wd ⊂ Rdd, a hybrid system Hu,w = (Cu,w, Fu,w, Du,w, Gu,w) as in (1.2), a

constant r∗ ∈ R, and a continuous function V : Rn → R that is also continuously

differentiable on an open set containing Πc(Cu,w). Suppose there exist continuous

functions ρc : R
n → R and ρd : R

n → R≥0 such that for some r < r∗, we have

ρc(x) > 0 ∀x ∈ I(r, r∗), (6.15)

ρd(x) > 0 ∀x ∈ LV (r). (6.16)

Then, the pair (V, r∗) defines a robust control Lyapunov function for forward

invariance (RCLF-FI) of the sublevel sets of V for Hu,w if

inf
uc∈Ψu

c (x)
sup

wc∈Ψw
c (x)

sup
ξ∈Fu,w(x,uc,wc)

〈∇V (x), ξ〉+ ρc(x) ≤ 0 ∀x ∈ I(r, r∗) ∩Πc(Cu,w),(6.17)

inf
ud∈Θd(x)

sup
wd∈Θd(x)

sup
ξ∈Gu,w(x,ud,wd)

V (ξ) + ρd(x) ≤ r ∀x ∈ LV (r) ∩Πd(Du,w).(6.18)

�

Remark 6.3.2 Compared to a typical control Lyapunov function (see, e.g., [72,

Definition 2.1]), the RCLF-FI in Definition 6.3.1 is not constrained to be bounded

by class K∞ functions. In addition, (6.17) does not impose condition in the in-

terior of LV (r); while, for almost every x ∈ LV (r) ∩ Πd(Du,w), (6.18) allows

the change of V to be positive during jumps. Note that the strict positivity re-

quirements in (6.15) and (6.16) are essential to make continuous selections in the

forthcoming result.
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Given a pair (V, r∗) defined as in Definition 6.3.1 for Hu,w and r < r∗ satisfying

the conditions therein, our approach consists of selecting a state-feedback law pair

(κc, κd) from these inequalities. In fact, we are interested in synthesizing a pair

(κc, κd) that, in particular, satisfies

sup
wc∈Ψw

c (x)

sup
ξ∈Fu,w(x,κc(x),wc)

〈∇V (x), ξ〉+ ρc(x) ≤ 0 ∀x ∈ I(r, r∗) ∩Πc(Cu,w),

sup
wd∈Θd(x)

sup
ξ∈Gu,w(x,κd(x),wd)

V (ξ) + ρd(x) ≤ r ∀x ∈ LV (r) ∩ Πd(Du,w),

which, under certain mild conditions, renders the set Mw
r in (7.16) robustly

controlled forward invariant for Hu,w. Interestingly, with a constant parameter

σ ∈ (0, 1), the selection of such a feedback pair can be performed by defining sets

that nicely depend on the functions

Γc(x, uc) :=





sup
wc∈Ψw

c (x)

sup
ξ∈Fu,w(x,uc,wc)

〈∇V (x), ξ〉+ σρc(x) if (x, uc) ∈ ∆c,

−∞ otherwise
(6.19)

for each (x, uc, wc) ∈ Rn × Uc ×Wc, and

Γd(x, ud) :=





sup
wd∈Θd(x)

sup
ξ∈Gu,w(x,ud,wd)

V (ξ) + σρd(x)− r if (x, ud) ∈ ∆d,

−∞ otherwise,
(6.20)

for each (x, ud, wd) ∈ Rn × Ud × Wd, where ∆c := {(x, uc) : (x, uc, wc) ∈ (Mc ×
Uc ×Wc) ∩ Cu,w} and ∆d := {(x, ud) : (x, ud, wd) ∈ (Md × Ud ×Wd) ∩Du,w}. In

fact, with these functions defined, by introducing the set-valued maps

{uc ∈ Ψu
c (x) : Γc(x, uc) < 0}, {ud ∈ Θd(x) : Γd(x, ud) < 0}

which are the so-called regulation maps [73], our approach is to determine a state-

feedback pair (κc, κd) that is selected from these maps. In other words, the selected

state-feedback pair (κc, κd) is such that

κc(x) ∈ {uc ∈ Ψu
c (x) : Γc(x, uc) < 0}, κd(x) ∈ {ud ∈ Θd(x) : Γd(x, ud) < 0}

at the appropriate values of the state x.
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The goal of the remainder of this section is to formalize the approach outlined

above. First, we provide key results on robust forward invariance of sublevel sets

of CLF-like functions, which are used in our CLF approach. It turns out that

when an RCLF-FI for Hu,w is provided, regulation maps as outlined above can be

constructed for selecting a state-feedback satisfying the conditions in the forth-

coming Proposition 5.2.1 and Proposition 5.2.3; hence, the results in Section 5.2

enable us to show the desired invariance property under feedback. Since according

to Lemma 6.0.6, the closed-loop system Hw satisfies conditions (A1w)-(A3w) in

Definition 2.0.8 when the applied state-feedback pair is continuous, we seek the

design of a state-feedback pair (κc, κd) with κc and κd being continuous functions

of the state. For this purpose, we first reveal conditions assuring the existence of

continuous selections from the regulation maps. Our main design results are in

Section 6.3.2, where we provide a explicit construction of (κc, κd) with pointwise

minimum norm.

For ease of representation in the forthcoming sections, we define

Mc := I(r, r∗) ∩Πc(Cu,w), Md := LV (r) ∩ Πd(Du,w), (6.21)

6.3.1 Existence of State-Feedback Pair for Robust Controlled

Forward Invariance

Next, building from Proposition 5.2.1, we establish conditions to guarantee

existence of a continuous state-feedback pair (κc, κd) to render the set Mw
r robustly

controlled forward pre-invariant for Hu,w.

Theorem 6.3.3 (existence of state-feedback pair for robust controlled forward

pre-invariance using RCLF-FI) Consider a hybrid system Hu,w = (Cu,w, Fu,w, Du,w, Gu,w)

as in (1.2) satisfying conditions (A1’w)-(A3’w) in Lemma 6.0.6. Suppose there

exists a pair (V, r∗) that defines a robust control Lyapunov function for forward

invariance for Hu,w as in Definition 6.3.1. Let r < r∗ satisfy (6.15)-(6.18) and

Θd be given as in (6.14). If the following conditions hold:
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6.3.3.1) The set-valued maps Ψu
c and Θd are lower semicontinuous, and Ψu

c and

Θd have nonempty, closed, and convex values on the sets Mc and Md as

in (6.21), respectively;

6.3.3.2) For each x ∈ Mc, the function uc 7→ Γc(x, uc) is convex on Ψu
c (x) and,

for each x ∈Md, the function ud 7→ Γd(x, ud) is convex on Θd(x);

then, the set Mw
r in (5.2) is robustly controlled forward pre-invariant for Hu,w via

a state-feedback pair (κc, κd) with κc continuous on Mc and κd continuous on Md.

Proof To establish the result, we first show the existence of continuous control

laws for a restricted version of the original hybrid system Hu,w that is given by

H̃u,w




ẋ ∈ Fu,w(x, uc, wc) (x, uc, wc) ∈ C̃u,w

x+ ∈ Gu,w(x, ud, wd) (x, ud, wd) ∈ D̃u,w,

where C̃u,w := (Mc×Uc×Wc)∩Cu,w and D̃u,w := (Md×Ud×Wd)∩Du,w. To this

end, using Γc and Γd given as in (6.19) and (6.20), for each x ∈ Rn, we define the

set-valued maps

S̃c(x) := {uc ∈ Ψu
c (x) : Γc(x, uc) < 0},

S̃d(x) := {ud ∈ Θd(x) : Γd(x, ud) < 0}.
By definition of Θd and condition 6.3.3.1), the maps Ψu

c and Θd are lower semi-

continuous and for every x ∈ Md,Θd(x) is a nonempty, convex subset of Ψu
d(x).

Then, we show the maps S̃c and S̃d are lower semicontinuous by applying Corol-

lary A.0.7. First, we establish that functions Γc and Γd are upper semicontinuous

by observing the properties of maps Ψw
c ,Ψ

w
d , Fu,w and Gu,w.

i) The maps Ψw
c and Ψw

d are upper semicontinuous by direct application of

[61, Lemma 5.10 and Lemma 5.15]: item (A1’w) of Lemma 6.0.6 imply maps

Ψw
c and Ψw

d defined in (2.2) have closed graphs and by system assumption,

Ψw
c and Ψw

d are locally bounded;

ii) The maps Ψw
c and Ψw

d have compact values, which follows from the fact

that Ψw
c and Ψw

d are locally bounded and Cu,w and Du,w are closed;
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iii) The maps Fu,w and Gu,w are upper semicontinuous by direct application

of [61, Lemma 5.10 and Lemma 5.15] while noting that item (A2’w) and

(A3’w) of Lemma 6.0.6 hold;

iv) The maps Fu,w and Gu,w have compact values, which follows from the fact

that Fu,w and Gu,w are locally bounded and Cu,w and Du,w are closed;

Since for every x ∈ Md,Θd(x) is a nonempty, convex subset of Ψu
d(x), Θd is

also upper semicontinuous and has compact values from properties i) and ii).

Then, applying [73, Proposition 2.9], Γc and Γd are upper semicontinuous on

the closed sets ∆c and ∆d, respectively, since V is continuously differentiable

on an open set containing Πc(Cu,w), and ρc and ρd are continuous on Mc and

Md, respectively. Then, Γc and Γd are upper semicontinuous because for every

(x, uc, wc) ∈ (Rn × Uc × Wc) \ C̃u,w,Γc(x, uc) = −∞ and for every (x, ud, wd) ∈
(Rn × Ud × Wd) \ D̃u,w,Γd(x, ud) = −∞. Then, applying Corollary A.0.7, with

z = x, z′ = uc (or z′ = ud), W = Ψu
c (or W = Θd) and w = Γc (or w = Γd,

respectively) S̃c (or S̃d, respectively) is lower semicontinuous. The maps S̃c and

S̃d have nonempty values on Mc and Md, respectively. This is because, first, Ψu
c

and Θd have nonempty values on Mc and Md, respectively. In addition, since the

inequalities in (6.17) and (6.18) hold, for each (x, uc) ∈ ∆c,

Γc(x, uc) + σρc(x) ≤ 0,

and for each (x, ud) ∈ ∆d,

Γd(x, ud) + σρd(x) ≤ 0.

Then, since the functions ρc and ρd have positive values on I(r, r∗) and LV (r),

respectively, and constant parameter σ ∈ (0, 1), for every x ∈Mc (every x ∈Md),

there exists uc ∈ Ψu
c (x) (exists ud ∈ Θd(x)) such that Γc(x, uc) < 0 (respectively,

Γd(x, ud) < 0). Then, by the convexity of functions Γc and Γd in condition 6.3.3.2)

and of values of the set-valued maps Ψu
c and Θd in 6.3.3.1), we have that the maps

S̃c and S̃d have convex values on Mc and Md, respectively.
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Then, to use [72, Lemma 4.2] for deriving regulation maps that are also lower

semicontinuous, for each x ∈ Rn, we define the set-valued maps

Sc(x) :=




S̃c(x) if x ∈Mc,

Rmc otherwise,

Sd(x) :=




S̃d(x) if x ∈Md,

Rmd otherwise,

(6.22)

In addition, Sc and Sd also have nonempty and convex values due to the nonempti-

ness and convex-valued properties of S̃c and S̃d.

Now, according to Michael’s Selection Theorem, namely, Theorem A.0.8, there

exist continuous functions κ̃c : Rn → Rmc and κ̃d : Rn → Rmd such that, for all

x ∈ Rn,

κ̃c(x) ∈ Sc(x), κ̃d(x) ∈ Sd(x).

Now, we define functions κc : Rn → Rmc and κd : Rn → Rmd such that

κc(x) = κ̃c(x) ∈ Uc ∀x ∈Mc,

κd(x) = κ̃d(x) ∈ Ud ∀x ∈Md,
(6.23)

where the functions κc and κd inherit the continuity of κ̃c and κ̃d on Mc and

Md, respectively. Applying Lemma 6.0.6, the closed-loop system resulting from

controlling H̃u,w by κc and κd in (6.23) satisfies the hybrid basic conditions in Def-

inition 2.0.8. More precisely, this is because H̃u,w satisfies conditions (A1’)-(A3’)

in Lemma 6.0.6, and the state-feedback pair (κc, κd) is continuous on Πc(C̃u,w) ∪
Πd(D̃u,w). With these properties and the fact that ∇V is continuous, it follows

that

κc(x) ∈ Ψu
c (x), Γc(x, κc(x)) ≤ 0 ∀x ∈Mc,

κd(x) ∈ Θd(x), Γd(x, κd(x)) ≤ 0 ∀x ∈ Md,
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which lead to

sup
ξ∈Fu,w(x,κc(x),wc)

〈∇V (x), ξ〉+ ρc(x) ≤ 0 ∀(x, κc(x), wc) ∈ C̃u,w, (6.24)

sup
ξ∈Gu,w(x,κd(x),wd)

V (ξ) + ρd(x)− r ≤ 0 ∀(x, κd(x), wd) ∈ D̃u,w. (6.25)

The state feedback laws κc and κd can be extended – not necessarily con-

tinuously – to every point in Πc(Cu,w) and Πd(Du,w), respectively, by selecting

values from the nonempty sets Ψu
c (x) for every x ∈ Πc(Cu,w) and Θd(x) for every

x ∈ Πd(Du,w).

To complete the proof, we establish the robust controlled forward pre-invariance

of Mw
r . For this purpose, we apply Proposition 5.2.1 to the closed-loop system

of Hu,w controlled via the extended state-feedback pair (κc, κd) that is defined on

Πc(Cu,w) ∪Πd(Du,w). Relationship (6.24) and (6.25) imply

〈∇V (x), ξ〉 ≤ 0 ∀(x, wc) ∈ (I(r, r∗)×Wc) ∩ Cw, ξ ∈ Fw(x, wc)

V (ξ) ≤ r ∀(x, wd) ∈ (LV (r)×Wd) ∩Dw, ξ ∈ Gw(x, wd),

respectively. Thus, it is the case that (5.7) and (5.8) hold for the resulting closed-

loop system. Moreover, since κd(x) ∈ Θd(x) for every x ∈Md, (6.14) implies (5.9)

for Hw. Hence, according to Definition 6.1.2, the extended state-feedback pair

(κc, κd) renders the set Mw
r as in (5.2) robustly controlled forward pre-invariant

for Hu,w.

Remark 6.3.4 Item 6.3.3.1) in Theorem 6.3.3 imposes lower semicontinuity of

the mappings from state space to the input spaces during flows and jumps. For

systems that does not have convex-valued Ψu
c and Θd on Mc and Md, respectively,

Theorem 6.3.3 can still be applied, if there exist nonempty, closed and convex

subsets of Ψu
c (x) and Θd(x) for every x ∈Mc and x ∈Md, respectively, such that

item 6.3.3.2) holds for these subsets. Similar comments apply to the forthcoming

results.

To show existence of state feedback pair (κc, κd) that renders Mw
r as in (5.2)

robustly forward invariant, we need further conditions on the regulation maps to
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ensure existence of a solution pair from every Πc(Cu,w). Hence, we dedicate the

reminder of this section to show, with a variation of RCLF-FI in Definition 6.3.1,

there exists a feedback pair for a class of Hu,w that induces robust controlled

forward invariance of Mw
r by applying Proposition 5.2.3. In particular, the next

result resembles Theorem 6.3.3, but employs different regulation maps to guaran-

tee existence of nontrivial solution pairs and their completeness. To this end, for

every x ∈ Πc(Cu,w), we define the map

Θc(x) :=




{uc ∈ Ψu

c (x) : Fu,w(x, ud, 0) ∩ TΠc(Cu,w) 6= ∅} ∀x ∈ ∂Πc(Cu,w) \ Πd(Du,w)

Ψu
c (x) otherwise.

(6.26)

Theorem 6.3.5 (existence of state-feedback pair for robust controlled forward in-

variance using RCLF-FI) Consider a hybrid system Hu,w = (Cu,w, Fu,w, Du,w, Gu,w)

as in (1.2) satisfying conditions (A1’w)-(A3’w) in Lemma 6.0.6. Suppose there

exists a pair (V, r∗) that defines a robust control Lyapunov function for forward

invariance of the sublevel sets of V for Hu,w as in Definition 6.3.1 with Ψu
c (x) in

(6.17) replaced by Θc(x) as in (6.26). Let r < r∗ satisfy (6.15)-(6.18) and Θd be

given as in (6.14). If the following conditions hold:

6.3.5.1) The set-valued maps Θc and Θd are lower semicontinuous and Θc and

Θd have nonempty, closed, and convex values on the set Mc and the set

Md, respectively;

6.3.5.2) For each x ∈ Mc, the map uc 7→ Γc(x, uc) is convex on Θc(x) and, for

each x ∈Md, the map ud 7→ Γd(x, ud) is convex on Θd(x);

then, the set Mw
r in (5.2) is robustly controlled forward pre-invariant for Hu,w

via a state-feedback pair (κc, κd) with κc continuous on Mc and κd continuous on

Md. Furthermore, if item 5.1.1.4) in Proposition 5.2.3 holds for the closed-loop

system Hw as in (1.3), the pair (κc, κd) renders set Mw
r robustly controlled forward

invariant for Hu,w.
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Proof The robust forward pre-invariance of Mw
r for Hu,w follows from a direct

application of Theorem 6.3.3. More precisely, when conditions in Theorem 6.3.5

hold, every condition in Theorem 6.3.3 holds for a hybrid system H̃ that has flow

map, jump map, and jump set given as Fu,w, Gu,w, and Du,w, respectively, and

flow set given by

C̃u,w = (Rn × {uc ∈ Θc(x) : x ∈ Πc(Cu,w)} ×Wc) ∩ Cu,w.

Note that C̃u,w is closed since Cu,w is close, Θc has closed values on Mc and

∂Πc(Cu,w) \ Πd(Du,w) ⊂ Mc. Hence, there exists a state-feedback pair (κc, κd)

that renders Mw
r robustly controlled forward pre-invariant for H̃ with κc and κd

being continuous on Mc and Md, respectively. Since for every x ∈ Πc(Cu,w), such

κc(x) ∈ Θc(x) ⊂ Ψu
c (x), this implies such pair (κc, κd) is also Hu,w− admissible.

Moreover, the closed-loop system resulting from H̃ controlled by (κc, κd) is also

the closed-loop system of Hu,w controlled by the same pair (κc, κd). Hence, by Def-

inition 6.1.2, such (κc, κd) renders Mw
r robustly controlled forward pre-invariant

for Hu,w.

According to Theorem A.0.9, since the set Mc is closed, there exists a contin-

uous extension of κc from I(r, r∗) ∩ Πc(Cu,w) to Rn with κc(x) ∈ Rm for every

x ∈ intLV (r)∩Πc(Cu,w).3 Then, applying such pair (κc, κd), with κc and κd being

continuous on LV (r) ∩ Πc(Cu,w) and Md, respectively, Lemma 6.0.6 implies the

closed-loop system is such that Fw is outer semicontinuous, locally bounded and

has nonempty and convex values on (Mw
r ×Wc)∩Cw. Hence, item (A2w) in Defi-

nition 2.0.8 holds for closed-loop system H̃. Then, applying Proposition 5.2.3, we

show that the pair (κc, κd) renders set Mw
r robustly controlled forward invariant

for H̃. For every x ∈ Πw
c (Cw), 0 ∈ Ψw

c (x) by assumption. Next, inequalities (5.7)

and (5.8) follow from (6.24) and (6.25) for the given pair (V, r∗). In addition,

(6.24) implies condition 5.1.1.1), and condition 5.1.1.2) follows from the definition

of Θc. Then, (6.24) and definition of Θc together implies item 5.1.1.3). Item

5.1.1.4) holds by assumption. The definition of Θd imply (5.9) holds. Hence, the

3Note that the selected κc in proof of Theorem 6.3.3 is not necessarily continuous on Πc(Cu,w).
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set Mw
r is robustly controlled forward invariant for H̃ via the selected (κc, κd).

Furthermore, as showed above, the pair (κc, κd) is Hu,w− admissible and renders

the set Mw
r robustly controlled forward invariant for Hu,w by Definition 6.1.2.

Theorem 6.3.5 uses an alternative RCLF-FI that is defined based on Θc as in

(6.26) instead of Ψu
c as in Definition 6.3.1, which leads to the existence of state-

feedbacks rendering robust controlled forward invariance for Hu,w. By selecting

κc from the map Θc in (6.26) rather than the generic Ψu
c , we guarantee existence

of nontrivial solution pair from every x ∈ Mw
r \ Πd(Du,w). This follows from an

application of Lemma 5.2.4 and the fact that items 5.1.1.1), 5.1.1.3) and 5.1.1.4)

in Proposition 5.2.3 hold. Moreover, item 5.1.1.4) ensures completeness of every

(φ, w) ∈ SHw
(Mw

r ).

Remark 6.3.6 Selection results for nominal hybrid system without perturbations

are published in [64], which are developed from a different set conditions and

control Lyapunov functions for forward invariance; see details in [64, Definition

4.1]. Results in [64] are derived from the forward invariance inducing sufficient

conditions for generic sets4 and are not tailored to sublevel sets of function V. In

particular, to guarantee the state component of every solution pair stays within

Mw
r , the feedback law κc needs to be locally Lipschitz, see [64, Theorem 4.7, R4)].

To get such a property, condition [64, Theorem 4.7, R1’)] asks the regulation map

Θ̃c to be locally Lipschitz, and κc is a Lipschitz selection, which is more intricate

than a continuous selection. By virtue of results in Section 5.2, Theorem 6.3.5

only require κc to be a continuous selection.

Remark 6.3.7 In the case where control inputs are only applied during jumps,

conditions in Theorem 6.3.3 leads to robustly controlled forward invariance of

Hu,w, provided (5.7) holds during flows. Similarly, when control inputs are only

applied over flow dynamics, the Fu,w and Cu,w related conditions in Theorem 6.3.3

4The equivalent results of Corollary 6.1.5 in Section 6.1.
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together with (5.8) lead to robust controlled forward invariance of Mw
r . In addi-

tion, results in this section can be applied to pure continuous-time or pure discrete-

time systems by defining RCLF-FI only based on (6.17) or (6.18), respectively.

6.3.2 Systematic Design of Pair (κc, κd) for Robust Con-

trolled Forward Invariance

Inspired by the pointwise minimum norm results in [73] and [62, Theorem 5.1],

we construct state-feedback pairs rendering robust controlled forward invariance

of sets in form of Mw
r as in (5.2). To this end, for given pair (V, r∗) defines a

RCLF-FI as in Definition 6.3.1 of hybrid system Hu,w, we employ Theorem 6.3.3.

As a result, state-feedbacks constructed via minimal selections ought to render

set Mw
r robustly controlled forward pre-invariant for hybrid system Hu,w. Such

a claim relies on constructing appropriate functions Γc,Γd and regulation maps

Sc, Sd in Section 6.3.1.

Consider the maps Sc and Sd defined in (6.22). When 6.3.3.2) in Theorem 6.3.3

holds, uc 7→ Γc(x, uc) and ud 7→ Γd(x, ud) is convex on Ψu
c (x) for every x ∈ Mc

and on Θd(x) for every x ∈ Md, respectively. Hence, the maps Sc and Sd have

nonempty and convex values on Rn. According to [74, Theorem 4.10], for every

x ∈ LV (r
∗) ∩ Πc(Cu,w) and x ∈ LV (r

∗) ∩ Πd(Du,w), respectively, the closure of

Sc(x) and Sd(x), i.e., Sc(x) and Sd(x), have unique element of minimum norm.

Thus, we construct the state-feedback laws κmc : LV (r
∗) ∩ Πc(Cu,w) → Uc and

κmd : LV (r
∗) ∩Πd(Du,w) → Ud that are given by

κmc (x) := argmin
uc∈Sc(x)

|uc| ∀x ∈ LV (r
∗) ∩Πc(Cu,w) (6.27)

κmd (x) := argmin
ud∈Sd(x)

|ud| ∀x ∈ LV (r
∗) ∩Πd(Du,w).

Moreover, such state-feedback pair enjoy continuity when map Ψu
c and Θd satis-

fies 6.3.3.1). We capture above claims in the following result, which is a direct

application of Theorem 6.3.3.
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Theorem 6.3.8 (pointwise minimum norm state-feedback laws for robust con-

trolled forward pre-invariance) Consider a hybrid system Hu,w as in (1.2) satisfy-

ing conditions (A1’w)-(A3’w) in Lemma 6.0.6. Suppose there exists a pair (V, r∗)

that defines a robust control Lyapunov function for forward invariance for Hu,w

as in Definition 6.3.1. Let r < r∗ satisfy (6.15)-(6.18) and Θd be given as in

(6.14). Furthermore, suppose conditions 6.3.3.1) and 6.3.3.2) in Theorem 6.3.3

hold. Then, the state-feedback pair (κmc , κ
m
d ) given as in (6.27) renders the set Mw

r

in (5.2) robustly controlled forward pre-invariant for Hu,w. Moreover, κmc and κmd

are continuous on set Mc and Md as in (6.21), respectively.

Proof The first claim follows from similar proof steps in Theorem 6.3.3. In

particular, since κmc and κmd are selected from the closure of Sc and Sd, i.e.,

κmc (x) ∈ Sc(x), and κmd (x) ∈ Sd(x),

it follows that

κmc (x) ∈ Ψu
c (x),Γc(x, κ

m
c (x)) ≤ 0 ∀x ∈Mc,

κmd (x) ∈ Θd(x),Γd(x, κ
m
d (x)) ≤ 0 ∀x ∈Md,

which lead to

sup
ξ∈Fu,w(x,κm

c (x),wc)

〈∇V (x), ξ〉+ ρc(x) ≤ 0 ∀(x, κmc (x), wc) ∈ C̃u,w,

sup
ξ∈Gu,w(x,κm

d
(x),wd)

V (ξ) + ρd(x)− r ≤ 0 ∀(x, κmd (x), wd) ∈ D̃u,w.

The feedback pair (κmc , κ
m
d ) can be extended to every point in Πc(Cu,w) and

Πd(Du,w), respectively, by selecting values from the nonempty sets Ψu
c (x) for ev-

ery x ∈ Πc(Cu,w) and Θd(x) for every x ∈ Πd(Du,w). Then, applying Proposi-

tion 5.2.1, we establish the robust controlled forward pre-invariance of Mw
r for

Hu,w via (κmc , κ
m
d ).

Finally, the continuity of κmc and κmd follow directly from Proposition A.0.10.

In particular, maps Sc and Sd are lower semicontinuous with nonempty closed

convex values as shown in proof of Theorem 6.3.3.
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A similar result to Theorem 6.3.8 can be derived using Theorem 6.3.5 to render

Mw
r robustly controlled forward invariant for Hu,w via (κmc , κ

m
d ). In such a case,

the feedback law κmc is selected from the closure of a map Sc that is defined using

Θc given as in (6.26) instead of Ψu
c . More precisely, we consider the state feedback

laws κmc defined as in (6.27) with Sc given by

Sc(x) :=




{uc ∈ Θc(x) : Γc(x, uc) < 0} if x ∈Mc,

Rmc otherwise.
(6.28)

In addition to conditions 6.3.5.1) and 6.3.5.2) in Theorem 6.3.5, robustly controlled

forward invariance of Mw
r requires item 5.1.1.4) in Proposition 5.2.3 to hold for

the closed-loop system Hw. We formally present such a result as follows.

Theorem 6.3.9 (pointwise minimum norm state-feedback laws for robust con-

trolled forward invariance) Consider a hybrid system Hu,w as in (1.2) satisfying

conditions (A1’w)-(A3’w) in Lemma 6.0.6. Suppose there exists a pair (V, r∗) that

defines a robust control Lyapunov function for forward invariance for Hu,w as in

Definition 6.3.1. Let r < r∗ satisfy (6.15)-(6.18), Θc and Θd be given as in (6.26)

and (6.14), respectively. Furthermore, suppose conditions 6.3.5.1) and 6.3.5.2)

in Theorem 6.3.5 hold. Then, the state-feedback pair (κmc , κ
m
d ) given as in (6.27)

defined using Sc as in (6.28) renders the set Mw
r in (5.2) robustly controlled for-

ward invariant for Hu,w if condition 5.1.1.4) in Proposition 5.2.3 holds for the

closed-loop system Hw. Moreover, κmc and κmd are continuous on set Mc and Md

as in (6.21), respectively.

We omit the proof here as it resembles the one for Theorem 6.3.8. Note that

the design results (Theorem 6.3.8 and Theorem 6.3.9) in this section naturally

apply to hybrid systems without disturbances.
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Chapter 7

Applications of Invariance-based

Control

In this chapter, we illustrate the analysis and control design tools developed

in previous chapters to several engineering applications. Relying on these tools,

we complete tasks that are recast as forward invariance inducing problems. We

motivate and explain the hybrid nature for each system. Moreover, their imple-

mentations focus on the importance and applicability of forward invariance tools

developed in this thesis. Among these applications, we pay special attention to

two power conversion problems; see Section 7.2 and Section 7.3.

7.1 Applying Forward Invariance Tools to Power

Conversions in Smart Grids

Under the name “smart grid,” future power generation and distribution systems

ought to provide efficient, reliable and environmental-friendly power generation,

conversion and transmission to customers. In particular, advanced power conver-

sion methods from renewable energy sources are required. The newly developed

hybrid system tools have the potential to address such challenges; see examples
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in [75–80]. Tools for hybrid systems in [61] can be applied to the modeling,

controller design, and analysis of these power conversion systems. In particular,

controllers are designed and mathematically analyzed for the two design prob-

lems using forward invariance properties. We show that the application of hybrid

system theories to power conversion not only provides implementable controllers,

but also are useful in highlighting the robustness introduced by such (hybrid)

feedback.

In the following sections, two feedback control design problems for power sys-

tems, one pertaining to DC/DC conversion and the other to DC/AC inversion,

are presented for the use of tools for hybrid systems in power conversion. The

single-phase DC/AC inverter circuit, a switching system, is capable of transform-

ing a DC input voltage into an AC output voltage. As shown in Figure 7.1a

(see Chapter 7.2 for notations), by controlling the positions of the four switches

of the inverter, the sign of the input DC voltage to the RLC filter changes, and

when appropriately controlled, the voltage across the capacitor and the current

though the inductor can evolve almost sinusoidally. Similarly, the DC/DC boost

converter circuit in Figure 7.1b (see Chapter 7.3 for notations), also a switching

system, is able to convert a lower DC voltage input to a higher DC voltage output

by switching the switch on and off based on control logics.

Typically, both circuits are controlled using Pulse Width Modulation (PWM)

techniques [81, 82]. The PWM-based controllers change switch configuration of

the circuits based on the sign changes in the difference between a carrier signal,

usually a triangular wave, and a reference signal. The performance of PWM-based

controllers has been thoroughly studied in literatures [83–85]. Critical issues in

power conversion have led to the development of new control algorithms relying

on recent advances in the theory of switching and hybrid systems [77,86,87]. For

example, in the control of inverter, one of the shortcomings of the PWM-based

controllers is that the control of the output voltage magnitude is not robust to

changes of the input DC voltage. Without a DC voltage regulator at its input, the
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(a) Single-phase DC/AC inverter.
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(b) DC/DC boost converter.

Figure 7.1: Circuit diagrams for power conversion control design problems.

“sinusoidal” output would be significantly affected, while the proposed controller

using forward invariance tools for hybrid systems manages to maintain a consistent

sinusoidal-like output.

The systems involved in these problems have the following challenging features,

which make tools for hybrid systems very fitting (if not mandatory) for their

analysis and design:

• Systems involve nonsmooth dynamics under constraints due to the presence

of switches and/or diodes. Most power conversion circuits include some sort

of switching mechanism as well as passive components for filtering. The

switching mechanism typically introduces changes in the dynamics, which

define different modes of operation and associated discrete dynamics. The
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passive components for filtering and other analog tasks introduce continuous

dynamics into the system. In this way, depending on the configuration of the

switches and/or diodes in the circuit, the system operates at different modes

and switches between them. By controlling the configuration of the switches

with an appropriate algorithm, the closed-loop system generates desired

output signals. Popular control algorithms for such purpose are designed

using pulse width modulation (PWM), which is a technique that changes the

configuration of the switches by comparing a carrier signal (e.g., a triangular

signal for DC/AC inverter) and a reference signal (e.g., a sinusoidal signal

for DC/AC inverter).

Due to the switching nature of these power converters/inverters and the asso-

ciated continuous dynamics, systems have nonsmooth dynamics, which can

be modeled as differential equations/inclusions with constraints as in [61].

For example, the single phase DC/AC inverter with H-bridge in Fig. 7.1a

has three operation modes, and each mode corresponds to a vector field that

is described by one set of differential inclusions; see Section 7.2.

• Stabilization goals require recurrent switching. Unfortunately, the desired

output of these systems cannot be generated by choosing a single mode of

operation for all time. In fact, for each fixed configuration of the switches,

the resulting system has an equilibrium point that does not represent the

desired output. More precisely, for example, for the circuit in Fig 7.1a, in

which iL and vC represent the current though inductor and voltage across

the capacitor, when S1 = S3 = ON and S2 = S4 = OFF, the resulting

equilibrium is for iL = 0 and vC = VDC , while, when S1 = S3 = OFF and

S2 = S4 = ON, the equilibrium condition is iL = 0 and vC = −VDC (other

equilibrium points can be computed similarly). Due to this, a control algo-

rithm that changes the configuration of the switches recurrently is required

to achieve the desired AC output for the inverter. Similarly, algorithms with

the same feature are required for the DC/DC boost converter in Fig. 7.1b,

112



where the control algorithm needs to switch between two operation modes

to generate an approximate DC output signal.

• Systems have state perturbations and unmodeled dynamics. In addition to

stability properties, the hybrid analysis tools from [61] allow us to conclude

robustness properties of the power conversion systems. In particular, having

the closed-loop systems with designed controller to satisfy conditions in [61,

Assumption 6.5] directly leads to robustness to small state perturbations

and unmodeled dynamics. Moreover, these tools also benefits the modeling

and analysis of hybrid systems that require periodic-like solutions, which

can be studied using the forward invariance for sets.

Both power conversion systems are modeled as hybrid systems, i.e., H in (2.1).

Control algorithms that leads to desired output signals, which use hybrid feedback

control scheme, are presented in the following sections with analysis featuring

forward invariance properties of sets. Simulations for both problems confirm the

usefulness of hybrid systems methods in power conversion. The detailed work in

Section 7.3 and Section 7.2 are presented in [88] and [89], respectively.

In addition, to allow simulation-based quantifiable performance comparison

between our control algorithms and others, we propose benchmark tests that

focus on switching properties of these power systems. In particular, the proposed

benchmark tests are relevant when assessing durability of the switching devices

used in hardware/software implementations. For the DC/DC boost converter

controller with spatial regulation, we study the number of switches per second

during its “steady state”; see Section 7.3. For the DC/AC inverter controller, the

benchmark tests consists of determining the number of switches per period of the

generated sinusoidal-like signal; see Section 7.2. Furthermore, we indicate that

both control algorithms have the flexibility of changing how often the switches

happen by adjusting a corresponding controller parameter.
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7.2 A Single Phase DC/AC Inverter

In this work, we consider a single-phase DC/AC inverter circuit that consists

of a full H-bridge connecting to a series RLC filter, as shown in Figure 7.1a.

−

+
+

−VDC

vC

S1

S2 S3

S4

R L

C

iL

Vin

Figure 7.2: Single-phase DC/AC inverter circuit diagram.

In particular, we design a controller for the plant with an external time varying

(positive) input signal Vbus, which is a perturbed DC signal that is given by

t 7→ Vbus = VDC + dv(t), (7.1)

where VDC is the constant nominal voltage of signal Vbus and the term dv(t) ∈ R

is 0 for all t ≥ R≥0 when no disturbance is present and a function of t otherwise.

Moreover, the inverter plant has the voltage across the capacitor C, denoted

by vC , and the current through the inductor L, denoted by iL, as its output

signals. Specifically, in this paper, we design and validate a controller that selects

the operation configurations of the full H-bridge such that the generated output

vC approximates a sinusoidal signal with desired frequency and amplitude by

appropriately toggling the switches. The presence of the full H-bridge, i.e., the

switches S1 − S4, in the circuit introduces non-smooth dynamics. By controlling

the position of the switches at every t, to either “ON” or “OFF” position, we

consider the operation modes where the input voltage to the RLC filter, i.e., Vin,

is either Vbus , −Vbus, or 0. More precisely, we study the system with dynamics
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given by

i̇L =





−R
L
iL − 1

L
vC + Vbus

L
when S1 = S3 = ON and S2 = S4 = OFF;

−R
L
iL − 1

L
vC − Vbus

L
when S1 = S3 = OFF and S2 = S4 = ON;

−R
L
iL − 1

L
vC when S1 = S4 = OFF and S2 = S3 = ON

v̇C =
1

C
iL,

(7.2)

where R,L, C are parameters of the circuit. Let z := (iL, vC) ∈ R2 and q be

a logic variable that describes the operation configurations of the full H-bridge.

Then, q ∈ Q := {−1, 0, 1} leads to the compact form of (7.2) given as

ż = fq(z, t) :=

[
−R

L
iL − 1

L
vC + Vbus

L
q

1
C
iL

]
. (7.3)

Remark 7.2.1 Note that the full H-bridge may present other operation configu-

rations in between switches among the ones that correspond to q ∈ Q. We address

these “transient” operation modes as unmodeled system dynamics in robustness

analysis for the closed-loop system in Section 7.2.3.1. In addition, we explore

robustness to stability under the presence of measurement noise of state z ∈ R2.

7.2.1 State-dependent Control Law

Our control objective is to design a control law for the inverter system in

Figure 7.1a such that the output vC approximates a sinusoidal signal with desired

frequency and amplitude. In this paper, we consider the reference signal given by

t 7→ Vr(t) = b sin (ωt+ θ) (7.4)

where b is the targeted magnitudes, ω > 0 is the targeted angular frequency and θ

is the initial phase.1 By Kirchoff’s law, vC and iL in the RLC filter always satisfy

relationship

v̇C(t) =
1

C
iL(t),

1Note tracking phase of reference signal is out of our project scope.
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hence, when vC approximates signal given by (7.4), iL approximates the signal

t 7→ Ir(t) = Cωb cos (ωt+ θ). (7.5)

Following the exosystem approach, the signals given in (7.4) and (7.22) can be

generated by

żr =

[
0 −Cω2

1
C

0

]
zr, zr(0) =

[
Cωb cos(θ)

b sin(θ)

]
. (7.6)

Let a = Cωb, on the (iL, vC) plane, the zr trajectory describes an ellipse with

semi-major axis a and semi-minor axis b, and aspect ratio a
b
= Cω. Referred to

as the reference trajectory on the (iL, vC) plane, such an ellipse is give by

Sr :=

{
zr :

(zr1
a

)2
+
(zr2
b

)2
= 1

}
. (7.7)

For every z ∈ R2, we define

V (z) :=

(
iL
a

)2

+
(vC
b

)2
. (7.8)

Then, taking advantage of the function V (z), we provide an alternative control

strategy with arbitrary precision to the traditional PWM techniques. More pre-

cisely, rather than using a PWM-based controller to generate switching signal V

to the RLC filter, our control law properly assign q ∈ Q to the H-bridge based on

spatial feedback logics that uses a tunable neighborhood, which is referred to as

the invariant band, around the Sr. Given the design parameters ci ∈ (0, 1) and

co > 1, the invariant band is given by

Kz := {z ∈ R2 : ci ≤ V (z) ≤ co}. (7.9)

The proposed control law guarantees solutions to the resulting closed-loop system

converge to the set Kz in finite time, and after that, stays within it for all future

time. For this purpose, Section 7.2.1.1 introduces a switching logic that guaran-

tees forward invariance of Kz, and after that, a global convergence controller is

provided in Section 7.2.1.2. The supervisor controller presented in Section 7.2.1.3

provides the logic to determine the appropriate controller in the loop for the full

closed-loop system.
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A sample solution to the full closed-loop system with the proposed controller

is shown in Figure 7.3. On the (iL, vC) plane, the invariant band Kz has outer

boundary S∗
o = {z ∈ R2 : V (z) = co} (the outer green dashed line) and inner

boundary S∗
i = {z ∈ R2 : V (z) = ci}, (the inner green dash line). The reference

trajectory (the blue solid line) is enclosed by the invariant band Kz. As Figure 7.3

depicts, the solution trajectory initialized within Kz, represented by the red solid

line on the (iL, vC) plane, remains in the invariant band Kz for all time and

“approximates” the reference trajectory; while the output signals iL and vC are

“periodic-like.”

vC

iL
S∗
i

✲

S∗
o
✛

vC

iL

t

Figure 7.3: A sample trajectory resulting from using the proposed control law

with circuit parameters as R = 1Ω, L = 0.106H, C = 66.3µF, Vbus ≡ 220V,

b = 120, ω = 120π,ci = 0.9 and co = 1.1.

To ensure existence and completeness of solutions under the presence of small

noises, we “inflate” the boundary sets Si and So outside of the invariant band Kz.

More precisely, consider a small inflation factor δ ≥ 0, the sets S∗
i and S∗

o are

redefined as

Si := {z ∈ R2 : ci − δ ≤ V (z) ≤ ci} (7.10)

and

So := {z ∈ R2 : co ≤ V (z) ≤ co + δ}. (7.11)

Note that when δ = 0, Si and So becomes the sets S∗
i and S∗

o , respectively.
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7.2.1.1 Control Logics within the Invariant Band

In this section, we present the control logic induces forward invariance of the

invariant band Kz for the closed-loop system by switching q ∈ Q appropriately.

More precisely, such control logics ensures every maximal solution initiated within

Kz stays in it for all future time. To this end, given the design parameters co and

a positive design parameter ε, we define special “buffering” regions on the outer

boundary of Kz, which are given by

M1 = {z ∈ So : 0 ≤ iL ≤ kε, vC ≥ 0};
M2 = {z ∈ So : (k − 1)ε ≤ iL ≤ 0, vC ≥ 0};
M3 = {z ∈ So : −kε ≤ iL ≤ 0, vC ≤ 0};
M4 = {z ∈ So : 0 ≤ iL ≤ (1− k)ε, vC ≤ 0},

where, with α = LCω2 − 1,

k =




1 if α < 0,

0 otherwise
(7.12)

Then, the proposed control algorithm for forward invariance switches q according

to the following rules:

1. if z ∈ Si ∩ (R≥0 × R) and q 6= 1, switch q to 1;

2. if z ∈ Si ∩ (R≤0 × R) and q 6= −1, switch q to −1;

3. if z ∈ (So \ (M2 ∪M3)) ∩ (R≤0 × R) and q 6= 1, switch q to 1;

4. if z ∈ (So \ (M1 ∪M4)) ∩ (R≥0 × R) and q 6= −1, switch q to −1;

5. if z ∈M1 ∪M4 and q = 1, switch q to 0;

6. if z ∈M2 ∪M3 and q = −1, switch q to 0,

The values of k decides whether M1,M3 or M2,M4 are in active for switching rules

iii) - vi). In particular, when system parameters are such that α < 0, the sets M1

and M3 are used for “buffering”; while sets M2 and M4 are in use when α ≥ 0.
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Such switching dynamics are designed to ensure solution trajectories always stay

within the invariant band Kz given in (7.9) on the (iL, vC) plane.

vC

iL

So
✲

iv), M1
✠

iii), M3
✟✟✯

Si
✛

Kzδ

δ

(a) When α < 0

vC

iL

So
✲

iii), M2

❘

iv), M4
❍❍❨

Si
✛

Kz

δ

δ

(b) When α ≥ 0

Figure 7.4: Switching regions of proposed control law.

Figure 7.4 illustrates the switching regions on the (iL, vC) plane following rules

i)-vi). In particular, to ensure trajectories remain in Kz, the blue colored region

calls for q = 1; while the red colored region calls for q = −1. Then, depending

on the sign of α, different green colored regions are in active for rule iii) and iv),

which call for q = 0. Let Vmin := mint{Vbus}, we define the set

Γ = {z ∈ R2 : −Vmin ≤ −RiL + αvC ≤ Vmin}.

The forward invariance of Kz induced control logics i) - vi) builds on the following

properties of the plant vector fields.

Lemma 7.2.2 (inner product properties) Given positive system constants R,L, C,

ω, Vmin, b, the followings hold:

1. For every (q, z) ∈ ({1} × (Γ ∩ (R≤0 × R)) ∪ ({−1} × (Γ ∩ (R≥0 × R)),

〈∇V (z), fq(z)〉 ≤ 0

2. For every (q, z) ∈ ({−1} × (Γ ∩ (R≤0 × R)) ∪ ({1} × (Γ ∩ (R≥0 × R)),

〈∇V (z), fq(z)〉 ≥ 0;

3. When α ≤ 0, for every z ∈ (R≥0 ×R≥0)∪ (R≤0 ×R≤0), 〈∇V (z), f0(z)〉 ≤ 0;
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4. When α ≥ 0, for every z ∈ (R≥0 ×R≤0)∪ (R≤0 ×R≥0), 〈∇V (z), f0(z)〉 ≤ 0;

Proof The inner product between the vector field fq in (7.2) and the function V

in (7.25) is given by

〈∇V (z), fq(z)〉 =
2iL
a2

(−RiL − vC + Vminq

L

)
+

2vC
b2

(
iL
C

)
= σq(z)iL,

where, for every (q, z) ∈ Q× R2,

σq(z) =
2

a2L
(−RiL + αvC + Vminq).

Since a and L are all positive constants, for every z ∈ Γ, we have

σ1(z) ≥ 0 and σ−1(z) ≤ 0.

Hence,

1) 〈∇V (z), fq(z)〉 =




σ1(z)iL ≤ 0 ∀z ∈ Γ ∩ (R≤0 × R),when q = 1,

σ−1(z)iL ≤ 0 ∀z ∈ Γ ∩ (R≥0 × R),when q = −1;

2) 〈∇V (z), fq(z)〉 =




σ1(z)iL ≥ 0 ∀z ∈ Γ ∩ (R≥0 × R),when q = 1,

σ−1(z)iL ≥ 0 ∀z ∈ Γ ∩ (R≤0 × R),when q = −1;

Item 1) leads to claim a), while item 2) leads to claim b).

Next, when α ≤ 0, we have the followings:

3) When iL ≥ 0, vC ≥ 0, σ0(z) ≤ 0, and 〈∇V (z), f0(z)〉 = σ0(z)iL ≤ 0;

4) When iL ≤ 0, vC ≤ 0, σ0(z) ≥ 0, and 〈∇V (z), f0(z)〉 = σ0(z)iL ≤ 0.

Therefore, item c) holds. Similarly, when α ≥ 0, item d) holds.

The sign properties listed in Lemma 7.2.2 indicate the proposed control law

leads to forward invariance of the set Kz for the closed-loop system, which we

will formally characterize in Section 7.2.2. The design parameters ci and co allow

tunable “tracking” precisions of the resulting signal compared to the references

(7.4) and (7.22). Note that, according to Lemma 7.2.2, the design of co and δ

need to be such that So ⊂ Γ. It is obvious when co − ci → 0, solution trajectories
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are “periodic-like” and “imitate” Sr in (7.24) on (iL, vC) plane, while the H-bridge

switches arbitrarily fast.

The regions M1 - M4 are designed to avoid the fast switchings at the in-

tersection points of So and iL−axis, from where, when q ∈ {−1, 1}, ż points

“horizontally” (to the left or to the right) on the (iL, vC) plane. Moreover, with

careful designs, appropriate value of ε avoids solution trajectory stuck near these

intersection points; see details at Section 7.2.4.1. For every explicitly given set of

system parameters, i.e., b, ci, co, Vmin, ω, R, L, and C, the exact lower bound for ε

can be determined by the critical point from intersecting the boundary S∗
o and a

critical solution of the system controlled by rules i)-iv).2 The explicit expression

of such a bound is complicated, though, one can use the conservative choice of

ε = a
√
co − ci. In addition, irregular designs of S∗

i and S∗
o , i.e., having varying ci

and co rather than keeping them constants, may reduce the possibility of solution

trajectories stuck near (0,±b).
The presented control law is formulated in the hybrid inclusions framework

introduced in [61]. With state q ∈ Q and input z ∈ R2, the forward invariance

controller, denoted by Hfw, has data (Cfw, ffw,Dfw, Gfw), which is given by

Hfw





q̇ = ffw(q, z) := 0 (q, z) ∈ Cfw
q+ ∈ Gfw(q, z) (q, z) ∈ Dfw,

where the flow set Cfw is defined as3

Cfw := (Q×Kz) ∪ ({0} × (M1 ∪M2 ∪M3 ∪M4))∪
{(q, z) ∈ Q× So : iLq ≤ 0, q 6= 0} ∪ {(q, z) ∈ Q× Si : iLq ≥ 0, q 6= 0},

2In particular, if α < 0, the critical points near (0, b) or (0,−b) present on S∗

o and are in
the first or the third, respectively, quadrant of the (iL, vC) plane. When z is initialized at such
points, the resulting solutions pass though (0, b

√
ci) or (0,−b

√
ci), respectively, after exactly one

jump. Similarly, if α ≥ 0, the critical point near (0, b) or (0,−b) present on S∗

o and are in the
second or the fourth, respectively, quadrant of the (iL, vC) plane. Solutions pass though these
points when z is initialized at (0, b

√
ci) or (0,−b

√
ci), respectively.

3When δ = 0, we have Cfw = Q×Kz.
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the jump map Gfw is defined as

Gfw(q, z) :=





−1 if q 6= −1, ((z ∈ So \ (M1 ∪M4), iL ≥ 0)

or (z ∈ Si, iL < 0));

0 if |iL| 6= ε, ((q = 1, z ∈ (M1 ∪M4))

or (q = −1, z ∈ (M2 ∪M3)));

1 if q 6= 1, ((z ∈ So \ (M2 ∪M3), iL ≤ 0)

or (z ∈ Si, iL > 0));

{0, 1} if q = −1, z ∈ So, iL = −ε, vC ≥ 0;

{−1, 0} if q = 1, z ∈ So, iL = ε, vC ≤ 0;

{−1, 1} if q = 0, z ∈ Si, iL = 0;

where k is given as in (7.12), and the jump set Dfw is defined as

Dfw :={(q, z) ∈ Q× So : iLq ≥ 0, q 6= 0}
⋃

{(q, z) ∈ Q× Si : iLq ≤ 0, q 6= 0}
⋃

({0} × Si).

For the ease of forthcoming analysis in Section 7.2.2, we introduce the closed-loop

system Hcl
fw with controller Hfw in the loop. The output of Hfw, i.e., q, is the input

to the plant given in (7.3), while the output z from the plant becomes the input to

Hfw. Hence, Hcl
fw is autonomous with state variable ξ := (q, z) ∈ Q×(Si∪Kz∪So),

and it is given by

Hcl
fw




ξ̇ = f cl

fw(ξ) := (0, fq(z)) ξ ∈ Cfw
ξ+ ∈ Gcl

fw(ξ) := (Gfw(ξ), z) ξ ∈ Dfw.
(7.13)

7.2.1.2 Control Logics for Global Convergence

When solutions are initialized outside of the invariant band Kz, the controller

introduced in this section guarantees global convergence to Kz in finite time. The

following control logics are considered:

vii) if z ∈ {z ∈ R2 : V (z) ≥ co} and q 6= 0, switch to q = 0;
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viii) if z ∈ {z ∈ R2 : V (z) ≤ ci} and q = 0, switch to either q = 1 or q = −1.

More precisely, the vector field f0(z) of (7.3) steers solutions to So from set {z ∈
R2 : V (z) ≥ co}; while f−1(z) and f1(z) steer solution to Si from {z ∈ R2 : V (z) ≤
ci}. We dedicate the following result to capture such properties.

Lemma 7.2.3 (convergence properties) Given positive system constants R,L, C,

ω, Vmin, b and ci < co such that Vmin > b
√
co, the followings hold:

e) Every solution to ż = f0(z) initialized in {z ∈ R2 : V (z) ≥ co} converges to

S∗
o in finite time;

f) Every solution to ż = f1(z) and every solution to ż = f−1(z) initialized in

{z ∈ R2 : V (z) ≤ ci} converge to S∗
i in finite time.

Proof We rewrite (7.3) in a compact form as

ż = fq(z) = Az +Bq,

where A =

[
−R

L
− 1

L

1
C

0

]
, and B = (Vbus

L
, 0). Then, solutions to ż = fq(z) is given

by

φ(t) = exp(At)φ(0) +

∫ t

0

exp(A(t− τ))Bdτ. (7.14)

The matrix A has eigenvalues given by

λ1,2 =
−R

L
±
√(

R
L

)2 − 4
CL

2
.

Since R,L, C are all positive constants, λ1,2 have negative real part.

When q = 0, the origin is asymptotic stable for ż = f0(z), the solution has

explicit expression φ(t) = exp(At)φ(0) from (7.14). Let φ ∈ Sż=f0(z)({z ∈ R2 :

V (z) ≥ co}) and T = sup domφ. We show T < ∞ for item e). By definition of

So, for every t ∈ [0, T ),

|φ(t)| ≥ |φ(t)|So
+min{a, b}√co ≥ min{a, b}√co.

123



Then, pick max
i∈{1,2}

Re(λi) < β < 0, there exists γ > 0 such that, for every t ∈ [0, T ),

|φ(t)| = | exp(At)φ(0)| ≤ | exp(At)||φ(0)| ≤ γ exp(βt)|φ(0)|.

Hence, for every t ∈ [0, T ),

min{a, b}√co ≤ |φ(t)| ≤ γ exp(βt)|φ(0)|.

Since β < 0, γ > 0 and |φ(0)| > 0, we have, for every t ∈ [0, T ),

0 <
min{a, b}√co

γ|φ(0)| ≤ exp(βt) ≤ 1,

thus,

0 ≤ T ≤ 1

β
ln

(
min{a, b}√co

γ|φ(0)|

)
<∞.

When q = 1 (or q = −1), the varying equilibrium (0, Vbus) (or (0,−Vbus)) is

asymptotic stable for ż = f1(z) (or ż = f−1(z), respectively). Since Vmin > b
√
co,

(0, Vbus), (0,−Vbus) /∈ {z ∈ R2 : V (z) ≤ ci}. Hence, following similar arguments

above, every φ ∈ Sż=f1(z)({z ∈ R2 : V (z) ≤ ci}) (or φ ∈ Sż=f−1(z)({z ∈ R2 :

V (z) ≤ ci})) with T = sup domφ has T <∞. Therefore, item f) holds.

We model the controller as a hybrid system with state q ∈ Q and input z ∈ R2,

denoted by Hg, which has flow map fg(q, z) := 0 defined for every point on the

flow set

Cg := ({0} × {z ∈ R2 : V (z) ≥ co})
⋃

({−1, 1} × {z ∈ R2 : V (z) ≤ ci}),

and jump map

Gg(q, z) =




0 if V (z) ≥ co,

{−1, 1} if V (z) ≤ ci,

defined on the jump set

Dg := ({−1, 1} × {z ∈ R2 : V (z) ≥ co})
⋃

({0} × {z ∈ R2 : V (z) ≤ ci}).

Remark 7.2.4 In fact, Lemma 7.2.3 implies the set Kz given in (7.9) is uni-

formly globally pre-attractive when controller Hg is active according to [61, Defi-

nition 3.6]. Such a property is important to establish the global asymptotic stability
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in Section 7.2.2.

7.2.1.3 Supervisor Controller

With appropriately chosen parameters for controllers Hfw and Hg, we can

globally “track” any reference trajectory (Ir(t), Vr(t)) described by (7.24). For

this purpose, we introduce a hybrid supervisor controller denoted Hs that uses

information of the location of z and switches between controller Hfw and Hg to

guarantee global convergence and forward invariance of the invariant band Kz.

Figure 7.5 shows the feedback control architecture.

ż =

[
−R

L
− 1

L

1
C

0

]
z +

[
Vbus

L

0

]
q

q z

p

Hfw

Hg

Hs

q

q

Figure 7.5: Full closed-loop system with Hs,Hg, and Hfw.

The supervisor Hs = (Cs, fs,Ds, gs) has state p and input z. The state variable

p takes values from P := {1, 2}, which denotes the following:

p =




1 indicates Hfw is in the loop,

2 indicates Hg is in the loop.

The dynamics of controller Hs is given by

Hs




ṗ = fs(p, z) := 0 (p, z) ∈ Cs
p+ = gs(p, z) := 1 (p, z) ∈ Ds := {2} ×Kz
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with flow set defined as

Cs :=({1} × (Si ∪Kz ∪ So))
⋃

({2} × ({z ∈ R2 : V (z) ≥ co}
⋃

{z ∈ R2 : V (z) ≤ ci})).

Remark 7.2.5 Note that we constraint the definitions of Cs and Ds such that

jumps from p = 1 to p = 2 are not allowed. This is because once Hfw is active,

the preferable action is to keep Hfw in the loop for all future time. We formally

characterize these properties in Section 7.2.2. Such a design also avoids Zeno be-

havior on the boundaries of the invariant band Kz. However, under the presence

of disturbances on z, nontrivial solution may fail to exist due to the fact that p

cannot be switched from 1 to 2. The controller design with δ > 0, which induces

some robustness properties, ensures existence and completeness of solutions from

the set (Q×Kz)+ δB. We formally characterize the properties in Section 7.2.3.1.

When δ = 0, a temporal regularization of the controller using appropriately de-

signed timers can be implemented to ensure the jumps do not happen consecutively,

for which we can allow p jumps from 1 to 2.

7.2.2 Properties of the Full Closed-Loop System

In this section, we analyze the properties of the full closed-loop system H that

combines the dynamics of the plant in (7.3) controlled by the proposed controllers

Hfw,Hg and Hs. The closed-loop system is autonomous and has state variable

x := (p, q, z) ∈ P ×Q× R2. Its hybrid model is given by

H





ẋ = f(x) x ∈ C

x+ ∈ G(x) x ∈ D
(7.15)

where the flow map is given as

f(x) = (0, 0, fq(z)),
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the flow set C is given as

C ={1} × Cfw
⋃

{2} × Cg,

the jump map is given as

G(x) =




(1, Gfw(q, z), z) if (q, z) ∈ Dfw

(2, Gg(q, z), z) if (q, z) ∈ Dg, p = 2,

and the jump set is given as

D =
{
x ∈ P ×Q× R2 : (p, z) ∈ Ds

}⋃
{1} × Dfw

⋃
{2} × Dg.

In fact, the closed-loop system H satisfies the hybrid basic conditions intro-

duced in [61, Assumption 6.5].

Lemma 7.2.6 (hybrid basic conditions) The hybrid system H satisfies the basic

hybrid conditions, i.e., its data (C, f,D, G) is such that

(A1) C and D are closed subsets of P ×Q× R2;

(A2) f : P ×Q× R2 → P ×Q× R2 is continuous;

(A3) G : P × Q × R2 ⇒ P × Q × R2 is outer semicontinuous, nonempty-valued

and locally bounded relative to D.

Proof The item (A1) and (A2) are obvious by design. The map Gfw is outer

semicontinuous since Dfw = domGfw is closed and Q×Kz is closed. Hence, item

(A3) holds.

Then, according to [61, Section 6.1], the full closed-loop system H = (C, f,D, G) is

a well-posed system, which implies the forthcoming stability properties and their

robustness with respect to small perturbations.

Next, we present the main properties of H that validate the proposed con-

troller. To this end, we define the set4

K := P ×Q×Kz. (7.16)

4The projection of K on the (iL, vC) plane is the invariant band Kz.

127



In particular, we establish the forward invariance and asymptotic stability of K

for H.

Proposition 7.2.7 (forward invariance of K for H) Given positive system con-

stants R,L, C, ω, Vmin, ε, b and ci < co such that Kz ⊂ Γ, K is forward invariant

for H given in (7.15).

Proof The set K ⊂ C ∪ D, K ∩ C = K is compact and the flow map f is locally

Lipschitz continuous by construction. According to Lemma 7.2.6, H satisfies the

hybrid basic conditions. Hence, we make the proof applying Theorem 4.1.4.

The jump map G maps p to 1 and its q component to set Q by design, while

the iL and vC components remain the same before and after jumps. Thus, con-

dition 4.1.4.1) in Theorem 4.1.4 holds. According to Lemma 7.2.2, by definition

of tangent cones the set K ∩ M = P × (Cfw ∩ Dfw). Hence, condition 2.3) in

Theorem 4.1.4 holds. Then, we show that for every x ∈ K \ M, i.e., for every

x ∈ P × (Cfw \ Dfw), f(x) ∈ TK∩C(x), which is equivalent to f(x) ∈ TK(x) since

K ∩ C = K. In particular, we have the following properties

1. For every x ∈ K such that z ∈ intKz, TK(x) = 0 × 0 × R2, hence, f(x) ∈
TK(x).

2. By definition of tangent cone, item a), c) and d) in Lemma 7.2.2 imply that

for every x ∈ P × ((Q× S∗
o) \ Dfw), f(x) ∈ TK(x).

3. Similarly, for every x ∈ P × (Q × S∗
i ) \ Dfw, according to item b) of

Lemma 7.2.2, f(x) ∈ TK(x).

Then, together with the properties e) and f) from Lemma 7.2.3, we present

the global asymptotic stability of K for H.

Theorem 7.2.8 (global pre-asymptotic stability of K for H) Given positive sys-

tem constants R,L, C, ω, Vmin, ε, b and ci < co such that Kz ⊂ Γ and Vmin > b
√
co,

the (compact) set K is globally pre-asymptotically stable for H given in (7.15).
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Proof Firstly, Proposition 7.2.7 established forward invariance of K. Then, be-

cause Hg is designed such that e) and f) in Lemma 7.2.3 hold for every solution

initiated outside of K, it is the case that K is globally uniformly pre-attractive for

H. By an application of [61, Proposition 7.5], since H satisfies the hybrid basic

conditions according to Lemma 7.2.6, the set K is globally pre-asymptotically

stable for H.

As discussed in Remark 7.2.5, due to the design of the supervisor controller,

i.e., p = 1 jump to p = 2 is not allowed, some initial conditions to the full closed-

loop systems H only have trivial solution. However, every nontrivial maximal

solution to H is complete. In particular, complete solutions are guaranteed to

exist for initial conditions within {2} ×Q×R2 and {1} ×Q× (Si ∪Kz ∪ So), for

which we introduce the next result.

Corollary 7.2.9 (completeness of solutions from H for certain initial conditions)

Suppose positive system constants R,L, C, ω, b, Vmin, ε and ci < co such that Kz ⊂
Γ and Vmin > b

√
co, every φ ∈ SH satisfies exactly one of the following conditions:

g) φ is trivial, when φ(0, 0) ∈ O := {1} ×Q× (R2 \ (Si ∪Kz ∪ So));

h) φ is complete, when φ(0, 0) /∈ O.

Proof Item g) directly follows from the dynamics of Hs. According to Proposi-

tion 7.2.7, every φ ∈ SH(K) is complete, then, we show h) holds true by showing

every maximal solution is complete when φ(0, 0) /∈ (O ∪ K). In fact, for every

φ ∈ SH((P ×Q× R2) \ (O ∪K)), it is one of the following cases:

1. if φ(0, 0) ∈ {2}×Cg, item e) and f) in Lemma 7.2.3 shows solutions converges

to K by design of Cg, hence, every maximal φ enters K and is complete;

2. if φ(0, 0) ∈ {2} × Dg, map Gg maps the q component to Q, while p and

z remain the same, hence, solutions can be extended further by flow and

converge to K in finite time according to Lemma 7.2.3;
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3. if φ(0, 0) ∈ P × Q × ((Si ∪ So) \Kz), items a) - d) in Lemma 7.2.2 implies

that solutions either jump in component q or flow towards set K, which also

leads to complete solutions in K eventually.

In fact, properties g) and h) in Corollary 7.2.9 imply that hybrid system H given in

(7.15) is pre-forward complete by [61, Definition 6.12], i.e., every maximal solution

to H is either bounded or complete. Furthermore, together with Theorem 7.2.8,

item h) in Corollary 7.2.9 indicate the set K is globally asymptotically stable for

H when solutions are initialized outside of O because of the design of Hs.

7.2.3 Analytic Validation of Proposed Algorithm

The supervisor controller Hs is designed such that, Hfw is in the loop even-

tually for every initial condition that leads to a complete solution. When Hfw is

in the loop, the closed-loop system Hcl
fw given as (7.13) generates sinusoidal-like

solutions. Hence, we validate the resulting solutions to the closed-loop system

H given in (7.15) always “approximate” the reference trajectory given in (7.24)

by studying Hcl
fw given in (7.13) with δ = 0. As (ci, co) → (1, 1), the outer and

inner boundaries of Kz, i.e., S∗
o and S∗

i , get closer to each other, and become

the set Sr when (ci, co) = (1, 1). Since S∗
o and S∗

i are the switching boundaries

on the (iL, vC) plane, the amount of flow time in between jumps goes to zero as

(ci, co) → (1, 1). When (ci, co) = (1, 1) and δ = 0, the sets Cfw and Dfw overlaps

and become Q × Sr, while the switching of q is arbitrarily fast and the solutions

are pure discrete. In the case of limit (ci, co) → (1, 1), Hcl
fw behaves as a switch-

ing system with sliding mode control, where, instead of three individual switched

modes correspond to q ∈ Q, the flow map is generalized as the convex hull of all

available vector directions at every z ∈ Sr. We denote such a system at limit of
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(ci, co) → (1, 1) as H∗, which is given by

H∗




ξ̇ ∈ F ∗(ξ) ξ ∈ C∗ := Q× Sr

ξ+ ∈ Gcl
fw(ξ) ξ ∈ D∗ := Q× Sr,

(7.17)

where the flow map is defined for every ξ ∈ C∗, and is given by

F ∗(ξ) :=





(0, co{f1(z), f0(z)}) if z ∈M2 ∪M3,

(0, co{f0(z), f−1(z)}) if z ∈M1 ∪M4,

(0, co{f1(z), f−1(z)}) otherwise.

In the next result, we establish important solution properties of the limiting system

H∗.

Proposition 7.2.10 The hybrid system H∗ given in (7.17) satisfies the hybrid

basic conditions. Suppose Hcl
fw is such that So ⊂ Γ and Vmin > b

√
co. For every

ξ ∈ Q× Sr, every φ ∈ SH∗(ξ) is complete. Moreover, from every ξ ∈ Q× Sr,

i) there exists a Zeno solution; and

j) there exists a pure continuous solution and is such that φ(t+k∆) = φ(t) for

every t ∈ domφ and k ∈ N, where ∆ = 2π
ω

.

Proof Following the same steps in Lemma 7.2.6, it is obvious that H∗ given in

(7.17) satisfies the hybrid basic conditions. Then, we apply [61, Proposition 6.10]

to show every solution to H∗ is complete. Since C∗ = D∗ by construction, (VC)

holds trivially for every ξ ∈ C∗ \ D∗, and there exists a nontrivial solution to H∗

from every ξ ∈ C∗ ∪D∗ = Q×Sr. Item (b) in [61, Proposition 6.10] does not hold

since the set C∗ is compact; while item (c) does not hold by construction of jump

map Gcl
fw and set D∗. Hence, for every ξ ∈ Q× Sr, every φ ∈ SH∗(ξ) is complete.

Item i) directly follows from the fact that Gcl
fw(D∗) = D∗. To establish item j),

we show that when selecting the vector field fr(ξ) ∈ F ∗(ξ) for every ξ ∈ Q × Sr

following appropriate rules, there exists a complete pure continuous solution to
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ξ̇ = fr(ξ) with period ∆ = 2π
ω

. More precisely, for every ξ ∈ Q×Sr, we show that

fr(ξ) := (0,−Cω2vC ,
1

C
iL) (7.18)

is such that fr(ξ) ∈ F ∗(ξ). The first and third component of fr are 0 and 1
C
iL,

respectively, which are the same as F ∗. Hence, by definition of convex hull of

two vectors, we show that for every z = (iL, vC) ∈ Sr, the term −Cω2vC can be

expressed as a convex combination of the first component of f1(z) and f0(z), or

of f0(z) and f−1(z), or of f1(z) and f−1(z). Such a claim is equivalent to finding

a constant λ ∈ [0, 1] such that

−Cω2vC = λfq(z) + (1− λ)fq′(z), (7.19)

with q, q′ ∈ Q and q 6= q′. Then, (7.19) leads to

−Cω2vC =
−RiL − vC

L
+ (1− λ(q′ − q))

Vmin

L
,

i.e.,

−RiL + (LCω2 − 1)vC = (1− λ(q′ − q))Vmin,

Since z ∈ Sr ⊂ Γ, by definition of Γ, we have

−Vmin ≤ −RiL + (LCω2 − 1)vC ≤ Vmin.

With Vmin > 0, we have 0 ≤ λ(q′ − q) ≤ 2. Hence, λ ∈ [0, 1] for each possible

combination of q, q′ ∈ Q and q 6= q′. We rewrite the map fr given in (7.18) in

compact form as

ξ̇ = fr(ξ) =




0 0 0

0 0 −Cω2

0 1
C

0


 ξ, (7.20)

which has the z component matching the linear oscillator system in (7.6). Such a

system has eigenvalues 0 and ±ωi. Hence, all solutions to (7.20) are continuous,

complete and is periodic with ∆ = 2π
ω

.

Without losing generality, we assume ci+ co = 2 and define δ∗ := 1− ci. Then,

building on Proposition 7.2.10, the next result characterize the property of every
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solution to Hcl
fw “tracks” one solution to H∗ by showing the closedness of solutions

to H∗ and solutions to its δ∗−perturbed system.

Proposition 7.2.11 (consequence of well-posedness of H∗) Given δ∗ > 0, hybrid

system Hcl
fw given in (7.13) and H∗ given in (7.17), there exist ε∗ > 0 and τ ∗ ≥ 0

with the following property: for every ψ ∈ SHcl
fw
(Q×Kz), there exists a φ ∈ SH∗

such that ψ and φ are (τ ∗, ε∗)-close.5

Proof Since δ∗ = 1 − ci and ci + co = 2, we have that Kz = Sr + δ∗B. Then,

to show the relationship between ψ ∈ SHcl
fw
(Q × Kz) and a solution to Hcl

fw, we

construct the δ∗−perturbed system of H∗ as follows. With the same flow map F ∗

and jump map Gcl
fw, the hybrid system H∗

δ∗ has its flow set and jump set given by

C∗
δ∗ := Q×Kz and D∗

δ∗ := Q×Kz, respectively.

By Proposition 7.2.10, H∗ is nominally well-posed and pre-forward complete.

Such properties are inherited by H∗
δ∗ , i.e., H∗

δ∗ is nominally well-posed and pre-

forward complete from the set Q×Sr. Then, by an application of [61, Proposition

6.14], given δ∗ > 0, there exist a pair of ε∗ > 0 and τ ∗ ≥ 0 such that for every

φδ∗ ∈ SH∗
δ∗
(Q × Kz), there exists a solution φ ∈ SH∗

δ∗
(Q × Sr) ≡ SH∗ such that

φδ∗ and φ are (τ ∗, ε∗)-close. This establish the result since, by definition of Hcl
fw

and H∗
δ∗ , SHcl

fw
(Q×Kz) ⊂ SH∗

δ∗
(Q× Sr).

The (τ ∗, ε∗)-closeness property presented in Proposition 7.2.11 indicate that, given

a δ∗ > 0, the every solution generated by Hcl
fw stay close to one of the maximal

solutions to the limiting system H∗ graphically. In particular, every ψ ∈ SHcl
fw
(Q×

Kz) tracks one φ ∈ SH∗ when projected on the (iL, vC) plane.

7.2.3.1 Robustness of H

The proposed controllers guarantee robustness with respect to perturbations

of the full closed-loop system. We formally characterize these properties in this

5See formal definition of (τ, ε)-closeness in [61, Definition 5.23].
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section. In particular, we consider the following types of disturbances in H given

by (7.15):

1. A varying Vbus input signal given as in (7.1) rather than a constant DC

voltage input;

2. Measurement noise of the output z ∈ R2;

3. Unmodeled dynamics of the closed-loop system introduced by transition

modes during switches of q;

4. State variable noise on z caused by non-ideal electronic components.

Firstly, Theorem 7.2.8 implies the globally pre-asymptotically stability of K is

robust to variations in the input voltage Vbus described in item N1) as long as

Vmin > b
√
co. Then, according to Lemma 7.2.6, the closed-loop system H satisfies

the hybrid basic conditions, the global pre-asymptotic stability of K asserted by

Theorem 7.2.8 is robust to small state perturbations. Such perturbations may

include measurement noise d1 ∈ R2 as described in item N2) and unmodeled

dynamics d2 ∈ R2 as described in item N3). Hence, we consider the plant in (7.3)

with perturbations modeled as

ż = fq(z + d1) + d2.

Let d̃i = (0, 0, di) for i ∈ {1, 2, 3} with d3 ∈ R2 as described in item N4). The

perturbed system H, denoted by H̃, with state x := (p, q, z), has dynamics

ẋ = f(x+ d̃1) + d̃2 x ∈ C̃
x+ ∈ G(x) x ∈ D̃,

where C̃ = {x ∈ P ×Q×R2 : x+ d̃3 ∈ C} and D̃ = {x ∈ P ×Q×R2 : x+ d̃3 ∈ D}.
The next result establishes the robustness property of stability of K for H.

Theorem 7.2.12 Suppose H given as in (7.15) satisfies assumptions of The-

orem 7.2.8 and the positive constant δ is such that (Si ∪ Kz ∪ So) ⊂ Γ and

Vmin > b
√
co + δ. Then, the followings hold:
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k) there exists β̃ ∈ KL such that, for each ε̃ ≥ 0, there exists δ̃ > 0 such that for

any three measurable functions d̃1, d̃2, d̃3 : R≥0 → δ̃B, every solution φ ∈ SH̃

is such that its z := (iL, vC) component satisfies

|z(t, j)|Kz
≤ β̃(|z(0, 0)|Kz

, t+ j) + ε̃ ∀(t, j) ∈ domφ,

where ε̃ = 0 if φ(t, j) ∈ 1×Q×Kz;

l) given δ > 0, and any three measurable functions d̃1, d̃2, d̃3 : R≥0 → δB, the

set P ×Q× (Si ∪Kz ∪ So) is forward invariant for H̃.

Proof Since for every t ≥ 0, d̃1(t), d̃2(t), d̃3(t) ∈ δ̃B, the perturbed hybrid system

H̃ can be rewritten as 


ẋ = fδ̃(x) x ∈ Cδ̃
x+ ∈ Gδ̃(x) x ∈ Dδ̃

where

fδ̃(x) := coF ((x+ δ̃B) ∩ C̃) + δ̃B

Gδ̃(x) :=
{
η ∈ g + δ̃B : g ∈ G((z + δ̃B) ∩ D̃)

}

Cδ̃ :=
{
x : (x+ δ̃B) ∩ C̃ 6= ∅

}

Dδ̃ :=
{
x : (x+ δ̃B) ∩ D̃ 6= ∅

}
.

Then, by application of [61, Theorem 7.12], the globally pre-asymptotic stabil-

ity and compactness of K imply the set Bp
K is open and that K is KL pre-

asymptotically stable on Bp
K . Then, applying [61, Lemma 7.20], K is semiglobally

practically robustly KL pre-asymptotically stable on Bp
K . More preciously, ac-

cording to [61, Definition 7.18], item (b), with ω(x) := |x|K defined for every

x ∈ P ×Q× R2, for every compact subset of Bp
K , there exists β̃ ∈ KL such that,

for each ε̃ > 0, there exists δ̃ > 0 such that every φ ∈ SH̃ satisfies

|φ(t, j)|K ≤ β̃(|φ(0, 0)|K, t+ j) + ε̃ ∀(t, j) ∈ domφ.

Then, item k) holds because K = P × Q × Kz and for every (t, j) ∈ domφ,

|φ(t, j)|K = |z(t, j)|Kz
and |z(t, j)|Kz

= 0 when φ(t, j) ∈ P ×Q×Kz.
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Then item l) directly follows from the convergence properties presented in

Lemma 7.2.3, the forward invariance proved in Proposition 7.2.7 and item h) in

Corollary 7.2.9.

In addition to the nominal robustness induced by the well-posedness of H pre-

sented in k) of Theorem 7.2.12, item l) asserts the robustness with respect to

noise type N2), N3) and type N4) for forward invariance of K. More precisely,

the design parameter δ introduced in (7.10) and (7.11) allows maximal solutions

to the perturbed system H̃ to be complete when |di(t)| ≤ δ for all t and every

i ∈ {1, 2, 3}. In fact, with δ = 0, the completeness of solutions would fail for

the perturbed system for the similar reasonings mentioned in Remark 7.2.5. The

“δ−inflation design” of S∗
i and S∗

o to Si and So, respectively, preserve the forward

invariance property of K for the perturbed system by guaranteeing existence of

solutions from the set P ×Q× ((Si ∪ So) \Kz).

7.2.4 Simulation Validations and Discussions

In this section, we present numerical simulations of the closed-loop system

with proposed controllers, which is implemented via MATLAB Hybrid Equations

Toolbox (HyEQ); see details at [90].6 Note that unless specified otherwise, all

simulations in this section uses the following parameters: R = 1Ω, L = 0.1H ,

C = 66.6µF , Vbus ≡ 220V , b = 120V , ω = 120π, ci = 0.9, co = 1.1 and δ = 0.05.

Simulations with above provided set of system parameters have α < 0, for sample

results with α ≥ 0, please see simulations in preliminary work [89, 91].

7.2.4.1 Properties of Mr for H

The next few simulations of the closed-loop system H validates the important

properties of the set Mr numerically. In particular, the first set of simulations

have z initialized inside the interior of the invariant band Kz; while the second

6Code available at https://github.com/HybridSystemsLab/SinglePhaseInverter.
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set of simulations have z0 /∈ Kz. Both sets of results indicate that, when p is

initialized appropriately, solutions to the closed-loop system are complete and

eventually only evolve within Kz on the (iL, vC) plane. Then, a simulation to

show the significance of design parameter ε is presented.

1. Figure 7.6 shows the solutions to the closed-loop system H given in (7.15)

with z0 = (bCω, 0) = (3.013, 0) and q0 as either −1, 0 or 1, where all three

trajectories stay within the projection of Mr onto the (iL, vC) plane, i.e.,

Kz.

-4 -2 0 2 4
-150

-100

-50

0

50

100

150

vC

iL

z0 ✲

q0 = −1
q0 = 0
q0 = 1

Figure 7.6: Simulations of H with initial z = (3.012, 0), and different initial values

of q.

2. Figure 7.7 shows solutions to the closed-loop system H given in (7.15) with

x0 = (2, 1, 0, 0) and x0 = (2, 0, 0, 150), where both trajectories converge to

and stay within Kz on the (iL, vC) plane.
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vC

iL

z0 = (0, 0)

z0 = (0, 150)

Figure 7.7: Simulations of H with z0 = (0, 0) and z0 = (0, 150).

3. The next simulation uses ε = 0.871, which is not large enough to prevent

solution trajectory to stuck near (0,−b) as shown in Figure 7.8. In partic-

ular, starting around t = 0.2s, the trajectory evolves at the bottom of Kz

(see the zoom in view at bottom right of Figure 7.8), while stay within Kz,

until it reaches M3 defined by a not large enough ε, where q is switched to

q = 0.

0 0.1 0.2 0.3 0.4 0.5

-100

0

100

-2 0 2

-100

0

100

-1 0 1
-130

-120

-110

-100

vC

vC

iLiL

t
q 6= 0
q = 0

Figure 7.8: Simulations of H with ε = 0.871.

7.2.4.2 H with Perturbations

The next few simulations validate results from Section 7.2.3.1, where each

of the four considered type of noises, i.e., N1)-N4), generated within range, is

implemented for H. For the input noise type N1), we consider the input voltage
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Vbus given as in (7.1) has VDC = 220V and dv(t) = dc(t) + ds(t), where t 7→ dc(t)

is a sinusoidal signal given by dc(t) = 2 sin(400πt), and t 7→ ds(t) is a signal with

multiple step changes that is given by

ds(t) =





0 if t ∈ [0, 0.1)

−18 if t ∈ [0.1, 0.2)

30 if t ∈ [0.2, 0.3)

0 if t ∈ [0.3,∞)

.

Note that this input signal has Vmin = 200V , and with given system parameters,

this simulation confirms that the proposed controller is robust to input noise type

N1), which is a key robustness property of our controller.

0 0.1 0.2 0.3 0.4 0.5

202

220

250

-120

0

120

Vbus

vC

t[s]

Figure 7.9: Simulations of H with given Vbus.

As shown in Figure 7.9, the generated vC signal is sinusoidal-like without

significant transient behavior at 0.1, 0.2 and 0.3 seconds, where step changes are

present in the input voltage Vbus. The amplitude of vC remain within the expected

10% tolerance of b. The FFT analysis for this simulation suggest the fundamental

frequency of the resulting output signals, i.e., iL and vC , are 60Hz with THD of

% and %, respectively.
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7.2.4.3 Benchmark tests

Above simulations show that the proposed controller is able to generate AC

output with desired frequency and amplitude that is robust to the variations in

DC input voltage. In addition, decreasing the width of the “tracking band” forces

the output trajectory to be closer to the idea trajectory on the R2 plane, but

results in higher number of switches within a unit of time. Thus, we propose

a benchmark test for control algorithms of a single phase DC/AC inverter that

focuses on the switching properties of the designed controllers. More precisely, we

are interested in the average number of switches during one “period” of the output

sinusoidal-like signal, vC , from the closed-loop system. In this benchmark test, for

different sets of ci and co values, we record the average number of switches during

a time period of 2π
ω

after the “transient” state7 of solutions from five different

initial conditions. In addition, we also compute the average number of switches

and its standard deviation (Std) for three different widths co − ci of the tracking

band. The numbers of switches per period are rounded.

7By “transient” we mean the time after trajectories enter the set T .
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Table 7.1: Benchmark test for single phase DC/AC inverter

ci & co z0

Average number
of switches
per period

Average & Std

ci = 0.9
co = 1.1

co − ci = 0.2

(0.1,0.009) 31

Average = 30
Std = 0.313

(0.15,0) 30
(0.005,0.0119) 30

(0.08,0.01) 30
(0.14,0.004) 30

ci = 0.95
co = 1.05

co − ci = 0.1

(0.1,0.009) 60

Average = 60
Std = 0.451

(0.15,0) 60
(0.005,0.0119) 60

(0.08,0.01) 60
(0.14,0.004) 60

ci = 0.99
co = 1.01

co − ci = 0.02

(0.1,0.009) 301

Average = 300
Std = 0.972

(0.15,0) 301
(0.005,0.0119) 300

(0.08,0.01) 299
(0.14,0.004) 301

Table 7.1 shows that with smaller width of the tracking band (namely, higher

precision), the switching is more frequent, which is expected. Furthermore, the

number of switches varies with different initial conditions, but the average and

standard deviation results reported in Table 7.1 imply that by tuning the value

of co and ci, it is possible to control the number of switches per “period”. The

resulting data also gives a general guideline for choosing appropriate co and ci

values for given system parameters.

7.2.5 Hardware Implementation

A design project to develop a hardware prototype of this hybrid control algo-

rithm is currently undergoing. An undergraduate design team, with team mem-

ber Ryan Rodriguez and Benjamin Chainey and financial support from CITRIS

and Dr. Ricardo G. Sanfelice, is working towards the goal of implementing the
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algorithm on a self-designed circuit board with the Texas Instruments C2000 mi-

crocontroller. The resulting product ought to convert the DC power output by

two photovoltaic panels into the 120Vrms power using the proposed hybrid control

algorithm. A block diagram showing the complete system configuration is shown

in Figure 7.10.

Figure 7.10: Design Block Diagram

The DC power source, two Sharp solar panels, has varying voltage and current

output capabilities depending on lighting conditions. According to team research

data, the maximum output power for the 170W panels occurs at Vpanel = 34.8V

and Ipanel = 4.9A, which has a highly nonlinear relationship between the current

and voltage. Therefore, based on the design parameters and assumptions in The-

orem 7.3.6, an upper limit buffer set of 200 W power from the power source is set.

In addition, a DC/DC boost converter in Figure 7.11 is designed for maintain the

lower limit of voltage input to the inverter circuits.

Currently, The team has accomplished the design and building of the hardware

configuration shown in Figure 7.10. In addition, the PWM controller that will be

used in comparison with the hybrid algorithm is implemented successfully on the

Texas Instrument microcontroller. The current project progress is at the stage of

debugging and program the hybrid controller into the hardware prototype.

142



Figure 7.11: DC/DC Boost Converter Circuit Design for Hybrid Control of a

Inverter

7.2.6 Control of DC/AC Inverter with Resistive Load

Unlike the control design proposed in previous sections for the inverter without

load, the inverter system illustrated in Figure 7.1a has dynamics given by

ż = fq(z) :=


−

(
R
L
+ 1

CRℓ

)
iC −

(
1
L
+ R

LRℓ

)
vC + 1

L
Vbusq

1
C
iC


 , (7.21)

which has a resistive load Rℓ < ∞. Note in this case, we study a system with

state variable (iC , vC) instead of (iL, vC). The state variable iC is equal to iL

in the case studied in previous sections, where its dynamics are given by (7.21)

with 1
Rℓ

to zero, since it is equivalent to infinity resistive load Rℓ. The proposed

control law in previous sections cannot be directly applied to the inverter plant

in Figure 7.1a due to the presence of the resistive load Rℓ <∞. However, we can

modify the control logic to achieve the control goal of appropriately toggling the

switches in the full H-bridge such that the inverter with resistive load converts

the input signal Vbus into an sinusoidal-like output, namely, vC .

The reference voltage signal for vC in this design problem is given by (7.4)

with b as the targeted amplitude, ω > 0 as the targeted angular frequency, and θ

as the initial phase. Then, since the state variables vC and iC in the RLC filter
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always satisfy

v̇C(t) =
1

C
iC(t).

Then, when vC approximates Vr(t) as in (7.4), iC approximates the signal

t 7→ Ir(t) = CV̇r(t) = Cωb cos (ωt+ θ). (7.22)

In fact, with t 7→ Ir(t) given as in (7.22), Vr(t) in (7.4) satisfies V̈r(t) = −ω2Vr(t).

Hence, a reference trajectory (Ir(t), Vr(t)) in coordinates (iC , vC) is generated by

an exosystem with dynamics

İr = −Cω2Vr,

V̇r =
1

C
Ir.

The exosystem is formally defined by by the state-space model with state zr :=

(Ir, Vr) ∈ R2 and dynamics

żr =

[
0 −Cω2

1
C

0

]
zr, zr(0) =

[
Cωb cos (θ)

b sin(θ)

]
. (7.23)

This system is a harmonic oscillator that generates solutions t 7→ (Ir(t), Vr(t))

given as in (7.22) and (7.4) from initial conditions (Ir(0), Vr(0)) = (Cωb cos (θ), b sin(θ)).

Let a = Cωb, on the (iC , vC) plane, a solution to (7.23) describes an ellipse with

semi-major axis a, semi-minor axis b, and aspect ratio a
b
= Cω. Referred to as

the reference trajectory on the (iC , vC) plane, such an ellipse is give by the set of

points

Sr :=

{
zr ∈ R2 :

(zr1
a

)2
+
(zr2
b

)2
= 1

}
. (7.24)

For every z ∈ R2, we define

V (z) :=

(
iC
a

)2

+
(vC
b

)2
. (7.25)

Then, taking advantage of the function V , we provide a novel control strategy

with arbitrary precision compare to the reference (Ir, Vr). Given design parameters

ci ∈ (0, 1) and co > 1, the invariant band is given by

Kz := {z ∈ R2 : ci ≤ V (z) ≤ co}.
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Note that Sr ⊂ Kz regardless of the choice of co and ci. Moreover, for ease of

representation, we denote the outer boundary of Kz as S∗
o := {z ∈ R2 : V (z) = co}

and the inner boundary as S∗
i := {z ∈ R2 : V (z) = ci}. To ensure existence and

completeness of solutions under the presence of small state noises, we “inflate”

the boundaries S∗
i and S∗

o outside of the invariant band Kz with a small inflation

factor δ ≥ 0. More precisely, we consider sets

Si := {z ∈ R2 : ci − δ ≤ V (z) ≤ ci}

and

So := {z ∈ R2 : co ≤ V (z) ≤ co + δ}.

It is obvious to see when δ = 0, sets Si and So become the sets S∗
i and S∗

o ,

respectively.

With the proposed controller, solutions to the inverter with resistive load start

within the invariant band and stay within it for all future time.

7.3 A DC/DC Boost Converter

The DC/DC Boost converter is shown in Fig. 7.1b. It consists of a DC voltage

source VDC , a capacitor C, an ideal diode d, an inductor L, a resistor R, and an

ideal switch S. The voltage across the capacitor is denoted vC , and the current

through the inductor is denoted iL. The presence of switching elements (d and

S) causes the overall system to be of a switching/hybrid nature. The purpose of

the circuit is to draw power from the DC voltage source, and supply power to the

load at a higher DC voltage value. This task is accomplished by first closing the

switch to store energy in the inductor, and then opening the switch to transfer

that energy to the capacitor, where it is available to the load. Depending on the

(discrete) state of the diode and of the switch, one can distinguish four modes of
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operation, see details in [76]:

mode 1: (S = 0, d = 1) mode 2: (S = 1, d = 0)

mode 3: (S = 0, d = 0) mode 4: (S = 1, d = 1)

Using the ideal diode model, we have

conducting (d = 1) : id ≥ 0, vd = 0

blocking (d = 0) : id = 0, vd ≤ 0

while using the ideal switch model, we have

conducting (S = 1) : vS = 0

blocking (S = 0) : iS = 0.

With these conditions, we derive the differential equations for each mode using

state variable x := (vC , iL), along with the specific values of S and d. After further

analysis, see [88] for details, the system will take the form of a switched differential

inclusion with constraints, namely

ẋ ∈ FS(x) x ∈ M̃S (7.26)

where S ∈ {0, 1} is the position of the switch S, and for each S ∈ {0, 1}, FS(x)

is the Krasovskii regularization of the vector fields and M̃S is the corresponding

regularization of the sets capturing the regions of validity for each mode. Then,

the four operation modes can be combined, and expressed by two differential

inclusions, as follows:

• For each x ∈ M̃0 :=M1 ∪M3, we have

F0(x) :=








− 1
RC
vC + 1

C
iL

− 1
L
vC + VDC

L




if x ∈M1 \M3

{
− 1

RC
vC
}
×
[
− 1

L
vC + VDC

L
, 0

]
if x ∈M3
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where

M1 = {x ∈ R2 : iL > 0} ∪ {x ∈ R2 : vC ≤ VDC , iL = 0}

and

M3 = {x ∈ R2 : vC > VDC , iL = 0}.

• For each x ∈ M̃1 = {x ∈ R2 : vC ≥ 0}, we have

F1(x) :=
[
− 1

RC
vC

VDC

L

]⊤

Notice that the switching variable S can be either 0 or 1, representing different

vector fields, which, at every instant, depends on the choice made by the controller.

This promotes the use of hybrid system analysis and controller design tools.

The goal of the controller is to approximate a DC output with given v∗C and i∗L,

which represent the desired voltage cross capacitor and current through inductor,

respectively. The equivalent design goal is to design a controller that guarantees

asymptotic stability of set Ax × {0, 1} for the closed-loop system, where x∗ =

(v∗C , i
∗
L) and

Ax := {x ∈ R2 : x = x∗}.

In addition, we conclude that A = Ax×{0, 1} is forward invariant for the closed-

loop system with designed controller.

7.3.1 State-dependent Control Law

In this design problem, we present results on a CLF (control Lyapunov function)-

based hybrid controller to achieve the desired DC voltage output. To this end,

consider the Lyapunov-like function

V (x) = (x− x∗)⊤P (x− x∗), (7.27)

where P =

[
p11 0

0 p22

]
. For each S ∈ {0, 1}, let

γS(x) := max
ξ∈FS(x)

〈∇V (x), ξ〉.
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Then, the following lemma establishes an important property of the functions

γS(x) that leads to the key stability result in later section. The constraints M̃S

in (7.26) on the switching are not taken into account at this point, but are incor-

porated again later (see Proposition 7.3.5 below).

Lemma 7.3.1 Let R, VDC , p11, p22 > 0, p11
C

= p22
L

, v∗C > VDC, and i∗L =
v∗
C

2

RVDC
.

Then, for each x ∈ R2 \ Ax, there exists S ∈ {0, 1} such that

γS(x) < 0

Moreover, {x ∈ R2 : γS(x) = 0, S ∈ {0, 1}} = Ax.

Proof Consider the functions γS, S ∈ {0, 1}, using the relationship p11
C

= p22
L

, we

can rewrite γS(x) = 0 as

γ0(x) = 2(A0v
2
C +B0vC + C0iL +D0) (7.28)

γ1(x) = 2(A1v
2
C +B1vC + C1iL +D1) (7.29)

where the coefficients, A0 through D0 and A1 through D1 are defined as

A0 = − p11
RC

A1 = − p11
RC

B0 =
p11v

∗
C

RC
+
p22i

∗
L

L
B1 =

p11v
∗
C

RC

C0 = −p11v
∗
C

C
+
p22VDC

L
C1 =

p22VDC

L

D0 = −p22i
∗
LVDC

L
D1 = −p22i

∗
LVDC

L

To guarantee that for every (vC , iL) ∈ R2 \ Ax there exists an S ∈ {0, 1} such

that γS(x) < 0 and that {x ∈ R2 : γS(x) = 0, S ∈ {0, 1}} = Ax, we consider the

sets ΓS := {x ∈ R2 : γS(x) < 0} for S ∈ {0, 1}. We will also use the boundaries

of the sets ΓS given by ΩS := {x ∈ R2 : γS(x) = 0} for S ∈ {0, 1}, which are

parabolas. We first derive explicit expressions for ΓS, S ∈ {0, 1}, next.

1. For x ∈ Γ0, we have A0v
2
C + B0vC + C0iL + D0 < 0. Substituting the

coefficients A0 through D0, using p11
C

= p22
L

and v∗C > VDC gives

iL >
1

VDC − v∗C

(
1

R
v2C −

(
v∗C
R

+ i∗L

)
vC + i∗LVDC

)
(7.30)
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2. For x ∈ Γ1, we have A1v
2
C + B1vC + C1iL + D1 < 0. Substituting the

coefficients A1 through D1, using again p11
C

= p22
L

gives

iL <
1

RVDC

v2C − v∗C
RVDC

vC + i∗L (7.31)

This gives the expressions

Γ0 =

{
(vC , iL) ∈ R2 : iL >

1

VDC − v∗C

(
1

R
v2C −

(
v∗C
R

+ i∗L

)
vC + i∗LVDC

)}

Γ1 =

{
(vC , iL) ∈ R2 : iL <

1

RVDC
v2C − v∗C

RVDC
vC + i∗L

}

and similar ones for ΩS, S ∈ {0, 1}. Both parabolas ΩS , S ∈ {0, 1}, have their axis

of symmetry parallel to the iL-axis. Hence, we have to show now that Γ1 ∪ Γ2 =

R2 \ Ax and Ω0 ∩ Ω1 = Ax.

To shows this, note that 1
(VDC−v∗

C
)
< 0 indicating that Ω0 is a “downward”

parabola (it has a maximum in iL-direction) and Γ0 is the region above it. Sim-

ilarly, since 1
RVDC

> 0, Ω1 is an “upward” parabola (it has a minimum in iL-

direction) and Γ1 is the region below it. See Figure 7.12 for an illustration. If we

now can show that Ω0 ∩ Ω1 = Ax, then it follows that Γ1 ∪ Γ2 = R2 \ Ax as in

Figure 7.12, and the proof of the lemma is complete.

vC

iL

γ0(x) = 0

γ0(x) < 0

γ0(x) < 0

γ1(x) = 0

γ1(x) < 0

γ1(x) < 0

Figure 7.12: An example of a possible sign distribution for the two parabolas

γ0(x) = 0 and γ1(x) = 0.
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To show that Ω0 ∩ Ω1 = Ax, we observe that if (vC , iL) ∈ Ω0 ∩ Ω1 we must

have that the right-hand sides of (7.31) and (7.30) are equal, which leads to
(
− 1

R
v2C +

(
v∗C
R

+ i∗L

)
vC − i∗LVDC

)
1

VDC − v∗C
= − 1

RVDC
v2C +

v∗C
RVDC

vC − i∗L.

(7.32)

Since i∗L =
v∗C

2

RVDC
, we have

− v∗C
RVDC

(v2C − 2v∗CvC + (v∗C)
2) = 0,

which has a unique solution vC = v∗C , and implies that Ω0∩Ω1 is indeed {(v∗C , i∗L)}.
This completes the proof.

The property in Lemma 7.3.1 shows that V is a CLF-like function in the sense

that

min
S∈{0,1}

max
ξ∈FS(x)

〈∇V (x), ξ〉 < 0 ∀x ∈ R2 \ Ax (7.33)

This condition is used to derive the suitable stabilizing hybrid control law.

7.3.1.1 The hybrid controller

The condition obtained in (7.33) naturally leads to the following selection of

the input S, which is a nonlinear system with discontinuous right-hand side (if we

forget for a moment the constraints on the switching in (7.26)):

S = argmin
S′∈{0,1}

max
ξ∈FS′(x)

〈∇V (x), ξ〉 (7.34)

However, the direct application of (7.34) as the switching law, leads to a discon-

tinuous control law and results in chattering, which is undesirable in practice.

Therefore, we will propose a modified logic-based control law (and a correspond-

ing regularized closed-loop system), which is practically feasible. In fact, for the

resulting (regularized) controller various robustness properties can be derived and

proved mathematically based on the hybrid system setup particularly chosen for

this purpose.

Let q ∈ {0, 1} be a logic state indicating the value of the actual input S. The

envisioned logic-based control law will select the input according to the current

150



active input q and the value of the state, namely, when certain well-designed

functions γ̃q become zero. These functions γ̃q are control design parameters that

are related to the functions γq in (7.28) and (7.29) and will be chosen as in the

following lemma.

Remark 7.3.2 The functions γ̃q are not chosen exactly equal to γq, because mode

1 would have an equilibrium (vC , iL) =
(
VDC ,

VDC

R

)
exactly at γ0(x) = 0. This

would prevent to achieve global asymptotic stability of the desired set point

Lemma 7.3.3 Let R, VDC , p11, p22 > 0, p11
C

= p22
L

, v∗C > VDC, and i∗L =
v∗
C

2

RVDC
.

For each q ∈ {0, 1}, let γ̃q be given for x ∈ R2 as

γ̃0(x) = γ0(x) +K0 (vC − v∗C)
2 (7.35)

γ̃1(x) = γ1(x) +K1 (vC − v∗C)
2 (7.36)

and K0 ∈
(
0, 2p11

RC

)
, K1 ∈

(
0, 2p11

RC

)
. The following hold:

1. For q ∈ {0, 1} and x /∈ Ax we have that γ̃q(x) ≥ 0 implies γ̃1−q(x) < 0;

2. For q ∈ {0, 1} and x /∈ Ax we have that γ̃q(x) ≤ 0 implies γq(x) < 0;

3. For x ∈ R2 it holds that

1
C0

lim
K0→ 2p11

RC

γ̃0(x) = 1
C1

lim
K1→ 2p11

RC

γ̃1(x) = −2i∗
L

v∗
C
vC + 2iL, lim

K0→0
γ̃0(x) = γ0(x),

lim
K1→0

γ̃1(x) = γ1(x).

Proof To show (b), note that we can rewrite (7.35) and (7.36) as

γ0(x) = γ̃0(x)−K0 (vC − v∗C)
2

γ1(x) = γ̃1(x)−K1 (vC − v∗C)
2

Because K0, K1 > 0, γ̃q(x) ≤ 0 implies γq(x) < 0 if vC 6= v∗C .

If vC = v∗C and iL 6= i∗L (as otherwise x = x∗), we have γ̃q(x) = γq(x) ≤ 0.

However, we know that γ̃q(x) = γq(x) = 0 cannot occur, as together with vC = v∗C
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this would imply iL = i∗L, which would be a contradiction. Hence, also in this case

γ̃q(x) = γq(x) < 0, and the proof of property (b) is complete.

The proof of (a) follows analogously to the proof of lemma 7.3.1. First define

γ̃0(x) = γ0(x) +K0 (vC − v∗C)
2 = γ0(x) +K0δ0(vC) (7.37)

γ̃1(x) = γ1(x) +K1 (vC − v∗C)
2 = γ1(x) +K1δ1(vC) (7.38)

we consider the sets Γ̃q := {x ∈ R2 : γ̃q(x) < 0} for q ∈ {0, 1}. We will also use

the boundaries of the sets Γ̃q given by Ω̃q := {x ∈ R2 : γ̃q(x) = 0} for q ∈ {0, 1},
which are parabolas. Now define Γ̃0 and Γ̃1 by deriving (7.37) and (7.38) in similar

forms as before

Γ̃0 ={
(vC , iL) ∈ R2 : iL >

1

VDC − v∗C

(
1

R
v2C −

(
v∗C
R

+ i∗L

)
vC + i∗LVDC +K0δ0(vC)

)}

(7.39)

Γ̃1 =

{
(vC , iL) ∈ R2 : iL <

1

RVDC
v2C − v∗C

RVDC
vC + i∗L +

K1δ1(vC)

VDC

}
(7.40)

and similar ones for Ω̃q, q ∈ {0, 1}. Both parabolas Ω̃q, q ∈ {0, 1}, have their axis

of symmetry parallel to the iL-axis. Then, because 1
(VDC−v∗

C
)
< 0, K0δ0(vC) > 0,

and Ω0 is a “downward” parabola, we know that Ω̃0 is also a “downward” parabola

(it has a maximum in iL-direction) and Γ̃0 is the region above it. Similarly, since

Ω1 is an “upward” parabola and K1δ1(vC )
VDC

> 0, we have Ω̃1 is also an “upward”

parabola (it has a minimum in iL-direction) and Γ̃1 is the region below it. If we

now can show that Ω̃0 ∩ Ω̃1 = Ax, then it follows that Γ̃1 ∪ Γ̃2 = R2 \ Ax.

To show that Ω̃0∩ Ω̃1 = Ax, we find out the vC , iL value for the intersection of

the two curves Ω̃0 and Ω̃1. When the right-hand-side of the inequalities in (7.39)

and (7.40) equals to each other, we get a similar expression to (7.32):

1

VDC − v∗C

(
1

R
v2C −

(
v∗C
R

+ i∗L

)
vC + i∗LVDC +K0δ0(vC)

)

=
1

RVDC
v2C − v∗C

RVDC
vC + i∗L +

K1δ1(vC)

VDC
. (7.41)
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Then, we can rewrite (7.41) in quadratic form, and find its simplified discrim-

inant ∆ to be
(

v∗
C

2

RVDC

)2
− i∗L

2, which equals to zero because i∗L =
v∗
C

2

RVDC
. Therefore

(7.41) has a unique solution. We can find the unique solution by solving vC from

(7.41), and the result is

vC =
−
((

1
R
− VDC−vC

∗

RVDC
+ 2K0 − 2K1(VDC−v∗

C
)

VDC

)
v∗C + iL

∗
)

2
(

VDC−vC∗

RVDC
− 1

R
−K0 +

K1(VDC−v∗
C
)

VDC

) = v∗C

while iL = i∗L. This implies that Ω̃0 ∩ Ω̃1 is the set-point {(v∗C , i∗L)} and therefore

completes the proof of property (a).

Property (c) can be shown by explicitly computing the limits. For finding

the limit of the first two equations, we can rewrite the formulation of γq(x) with

q ∈ {0, 1} as

γq(x) = (1− q)γ0(x) + qγ1(x)

= −α(vC − v∗C)
2 + (βq + C0)

(
−2i∗L
v∗C

vC + 2iL

)

where α = 2p11
RC

, β =
p11v∗C
C

and C0 is given in the proof for Lemma 7.3.1. Then,

we get an expression

γ̃q(x) = (Kq − α)(vC − v∗C)
2 + (βq + C0)

(
−2i∗L
v∗C

vC + 2iL

)
(7.42)

We discuss the following cases when Kq → α,

• if q = 0, we have the limit of (7.42) expression as

lim
K0→α

γ̃q(x) = C0

(
−2i∗L
v∗C

vC + 2iL

)
.

• if q = 1, we have the limit of (7.42) expression as

lim
K1→α

γ̃q(x) = (β + C0)

(
−2i∗L
v∗C

vC + 2iL

)

=
p11VDC

C

(
−2i∗L
v∗C

vC + 2iL

)

= C1

(
−2i∗L
v∗C

vC + 2iL

)
.

Thus, we complete the proof for the first two limits, and the last two limits follow
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naturally from the expression γ̃q(x) = γq(x) +Kq(vC − v∗C)
2.

Based on the properties derived in the lemma above we can define an appropri-

ate (robustly) stabilizing control law. In fact, the control law makes sure that for

the current value of q and x it holds that γ̃q(x) ≤ 0, which implies by property (b)

that as long as x /∈ Ax, we have that γq(x) < 0, which, in turn, implies that the

CLF V in (7.27) is decreasing. Once γ̃q(x) becomes 0, a switch occurs from q to

1−q, and, due to property (a) in the above lemma, we have then that γ̃1−q(x) < 0

if x /∈ Ax, and hence, the switching is well defined. The constants K0 and K1

control the shape and position of the switching boundaries, which are parabolas

in the (vC , iL) plane. In fact, according to property (c) of Lemma 7.3.3, as K0

and K1 approach zero, the switching boundary approaches the zero level set of

γ0(x) and γ1, respectively. Moreover, as K0 and K1 approach 2p11
RC

, the switching

boundaries approach the line given by the points x such that −2i∗
L

v∗
C
vC + 2iL = 0.

Therefore, the closed-loop system with proposed controller can be expressed

as in (2.1) with state variable z = [x q]⊤ and dynamics

ż ∈
[
Fq(x)

0

]
=: F (x, q) (x, q) ∈ C

z+ =

[
x

Gq(x)

]
=: G(x, q) (x, q) ∈ D

(7.43)

where

C =
{
z : x ∈ M̃0, γ̃0(x) ≤ 0, q = 0

}
∪

{
z : x ∈ M̃1, γ̃1(x) ≤ 0, q = 1

}

D =
{
z : x ∈ M̃0, γ̃0(x) = 0, q = 0

}
∪

{
z : x ∈ M̃1, γ̃1(x) = 0, q = 1

}

and, for each z ∈ R2 × {0, 1}, the q is given by

Gq(x) =

{
{1} if q = 0

{0} if q = 1
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Sample contour plots and switching boundaries γq(x) = 0 and γ̃q(x) = 0 of the

proposed controller for a particular set of parameters (x∗ = (7, 3.27), VDC = 5V,

R = 3Ω, C = 0.1F, L = 0.2H, p11 = C
2
, p22 = L

2
, and varying K0 and K1) are

shown in Figure 7.13.

vc
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iL

x∗

γ0(x) = 0
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γ̃0(x) = 0, K0 = 0.14

γ̃1(x) = 0, K1 = 0.14

γ̃q(x) = 0, Kq =
2p11
RC

Figure 7.13: The switching boundaries γq(x) = 0 and γ̃q(x) = 0 with different

values for K0 and K1.

By varying the constants K0 ∈ (0, 2p11
RC

) and K1 ∈ (0, 2p11
RC

), the shape and

the position of the switching boundaries can be controlled. Some examples are

shown in Figure 7.13. Note that the switching boundaries can also be modified by

changing system parameters R and VDC (because of uncertainties in supply and

demand of renewable energy sources).
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7.3.1.2 Properties of closed-loop system

First, note that system data of H to satisfy the hybrid basic conditions.

Lemma 7.3.4 The closed-loop system H given by (7.43) satisfies the hybrid basic

conditions given by (A1)-(A3) in [61, Assumption 6.5].

Proof (A1) follows from the continuity of γ̃q for each q ∈ {0, 1} and the closedness

of M̃0 and M̃1. Next, (A2) follows from the Krasovskii regularization. Lastly, (A3)

follows from the fact that the jump map is continuous.

Then, we show that the solutions to the closed-loop system H are complete

by applying [61, Proposition 6.10].

Proposition 7.3.5 For each ξ ∈ C ∪D, every maximal solution χ = (x, q) to the

hybrid system H = (C, F,D, G) in (7.43) with χ(0, 0) = ξ is complete.

Proof We apply [61, Proposition 6.10]. First we check the viability condition

(V C), which requires verifying that for each (x, q) ∈ C \ D, there exists a neigh-

borhood U of (x, q) such that

F (x, q) ∩ TC(x, q) 6= ∅ ∀(x, q) ∈ U ∩ C (7.44)

In fact, note that if (x, q) ∈ C \D, then for any sufficiently small neighborhood U

of (x, q), it holds that (x, q) ∈ U ∩ C implies (x̄, q̄) ∈ C \ D due to continuity of

γ̃S, S ∈ {0, 1}. Therefore, it suffices to show that (we dropped the bars in x, q)

F (x, q) ∩ TC(x, q) 6= ∅ ∀(x, q) ∈ C \ D

To do so, we will first compute the tangent cones TC(x, q) for the set C for (x, q) ∈
C \ D:

• q = 0, iL > 0: TC(x, q) = R2 × {0}

• q = 0, iL = 0: TC(x, q) = R× R+ × {0}

• q = 1, vC > 0: TC(x, q) = R2 × {0}
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• q = 1, vC = 0: TC(x, q) = R+ × R × {0}

Using these calculations, we have the following:

1. For (x, q) ∈ C \ D such that q = 0, iL > 0, (7.44) trivially holds.

2. For (x, q) ∈ C \ D such that q = 0, iL = 0, we have to distinguish two

cases based on different set-valued vector fields depending if x ∈ M1 \M3

(i.e. vC < VDC) or x ∈M3 (i.e. vC ≥ VDC).

(a) If x ∈M1 \M3 and thus vC < VDC , we have the vector field

(
fa(x)

0

)
=




− 1
RC
vC + 1

C
iL

− 1
L
vC + VDC

L

0


 ∈ TC(x, q)

because − 1
L
vC + VDC

L
> 0.

(b) When x ∈ M 3 and thus vC > VDC , we have a set-valued vector field

given by {
− 1

RC
vC

}
×
[
− 1

L
vC +

VDC

L
, 0

]
× {0}

Since (− 1
RC
vC , 0, 0) is an element of the set above and also lies in

TC(x, q), (7.44) holds.

3. For (x, q) ∈ C \ D such that q = 1, vC > 0, (7.44) trivially holds.

4. For (x, q) ∈ C \ D such that q = 1, vC = 0, the vector field is given by

F1(x)×{0} that only contains the element (0, VDC

L
, 0), which lies in TC(x, q) =

R+ × R × {0}. Hence, (7.44) holds.

In summary, for each ξ ∈ C \ D, there exists a neighborhood U of ξ such that

(7.44) holds. Thus, according to [61, Proposition 6.10], there exists a nontrivial

solution χ to H for points in C ∪ D.

Now, to show that every maximal solution χ is complete, we prove that cases

(b) and (c) in [61, Proposition 6.10] cannot hold, and hence, only case (a) can be

true.
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Case (b) (finite escape time) cannot happen due to the fact that every maximal

solution χ is bounded. Indeed, using lemma 7.3.1 and property (b) of lemma

7.3.3, the function V in (7.27), along a maximal solution χ, has non-positive

derivative for flows and non-positive changes at jumps. Since V is quadratic it

upper bounds the norm of the state (relative to the desired set point) and has

compact sub-level sets. Therefore, limt→T |χ(t, j)| ≤ M < ∞ for some constant

M and T = suptdomχ.

Case (c) (solutions jumping outside C ∪ D8) can be excluded as well, because

below we will show that G(D) ⊂ C, and thus G(D) ⊂ C ∪ D.

In fact, to complete the proof we establish now that G(D) ⊂ C and we consider

two situations: I. x ∈ D and q = 0, and II. x ∈ D and q = 1.

1. Let x ∈ D and q = 0, and thus γ̃0(x) = 0 and x ∈ M̃0 (i.e. iL ≥ 0). We will

first show that this implies that x ∈ M̃1 (i.e. vC ≥ 0), i.e.

γ̃0(x) = 0

iL ≥ 0

}
⇒ vC ≥ 0 (7.45)

This latter implication will follow from the fact that Ω̃0 := {x ∈ R2 |
γ̃0(x) = 0} is a downward parabola and the fact that the minimal root

min{vC | x ∈ Ω̃0, iL = 0} is non-negative. Indeed, since Ω̃0 is a downward

parabola, these two facts would give

min{vC | x ∈ Ω̃0, iL ≥ 0} = min{vC | x ∈ Ω̃0, iL = 0}
≥ 0

which is equivalent to (7.45).

To compute the minimal root, we can use the expression in (7.35), showing

that the points x = (vC , iL) with γ̃0(x) = 0 (x ∈ Ω̃0) and iL = 0 satisfy

iL = −Ã0

C0
v2C − B̃0

C0
vC − D̃0

C0
= 0

where Ã0 = A0 +
K0

2
, B̃0 = B0 −K0v

∗
C , and D̃0 = D0 +

K0

2
v∗C

2, which can

8Note that flowing outside C∪D is not possible due to the closedness of C and D as formulated
in the hybrid basic conditions.
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be rewritten as (
vC −

(
− B̃0

2Ã0

))2

= −D̃0

Ã0

+

(
− B̃0

2Ã0

)2

Then, the roots vC1,2 of the function γ̃0(x)|iL=0 are given by

vC1,2 = − B̃0

2Ã0

±

√√√√−D̃0

Ã0

+

(
− B̃0

2Ã0

)2

= −
(
p11 +

p11
VDC

v∗C − RCK0

−2p11 +RCK0

)
v∗C

±

√

−(v∗C)
2 +

(
−
(
p11 +

p11
VDC

v∗C − RCK0

−2p11 +RCK0

)
v∗C

)2

in terms of system constants. Because v∗C > VDC > 0 and K0 ∈ (0, 2p11
RC

),

min{vC1, vC2} ≥ 0 as long as −(v∗C)
2 +

(
−
(

p11+
p11
VDC

v∗C−RCK0

−2p11+RCK0

)
v∗C

)2

> 0.

The left-hand side of the inequality can be rewritten as



p11
RC

(
1− v∗C

VDC

)

K0 − 2p11
RC


 v∗C

2

which is always positive since conditions v∗C > VDC > 0 and K0 ∈ (0, 2p11
RC

).

This establishes (7.45). Using now property (a) of Lemma 7.3.3, and γ̃0(x) =

0, we know that γ̃1(x) ≤ 0 and thus G(x, 0) = (x, 1) ∈ C.

2. Let x ∈ D and q = 1, and thus γ̃1(x) = 0 and x ∈ M̃1 (i.e. vC ≥ 0). Similar

to case I. we will first show that this implies that x ∈ M̃0 (i.e. iL ≥ 0), i.e.

γ̃1(x) = 0

vC ≥ 0

}
⇒ iL ≥ 0 (7.46)

To show this we compute min{iL | γ̃1(x) = 0, vC ≥ 0} and show it is non-

negative. First we observe that Ω̃1 := {x ∈ R2 | γ̃1(x) = 0} is an upward

parabola. Using the expression in (7.36), the points x = (vC , iL) satisfying

γ̃1(x) = 0 are given by

iL = −Ã1

C1

v2C − B̃1

C1

vC − D̃1

C1
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where Ã1 = A1+
K1

2
, B̃1 = B1−K1v

∗
C , and D̃1 = D1+

K1

2
v∗C

2. The minimum

value iLmin := min{iL | γ̃1(x) = 0} results in two cases, namely

iLmin,1 =
B̃2

1 − 4Ã1D̃1

4Ã1C1

, vC min,1 > 0, K1 ∈
(
0,
p11
RC

)
(7.47)

iLmin,2 = −D̃1

C1
, vC min,2 = 0, K1 ∈

[
p11
RC

,
2p11
RC

)
(7.48)

where iLmin is found by either the vertex of the parabola or at vC = 0

due to the constraint vC ≥ 0, respectively. Substituting the expressions of

Ã1, B̃1, D̃1 into the right-hand side of (7.47) and (7.48), we have

iLmin,1 =
B̃2

1 − 4Ã1D̃1

4Ã1C1

=
(6p11 − 4K1RC) v

∗
C
2

4p11RVDC (2p11 −K1RC)

iLmin,2 = −D̃1

C1

=
(2p11 −K1RC)v

∗
C
2

2p11RVDC

Since R,C, VDC, v
∗
C , p11 > 0, we obtain

iLmin > 0

and thus min{iL | γ̃1(x) = 0, vC ≥ 0} ≥ min{iL | γ̃1(x) = 0} = iLmin > 0.

This establishes (7.46). Using now property (a) of Lemma 7.3.3 and γ̃1(x) =

0, we know that γ̃0(x) ≤ 0 and thus G(x, 1) = (x, 0) ∈ C.

This completes the proof.

Using these properties, we are now ready to establish the following theorem,

which states global asymptotic stability of the compact set A for the hybrid system

H.

Theorem 7.3.6 Consider the hybrid system H in (7.43) with c, L, R, VDC , K0,

K1 > 0. Given a desired set-point voltage and current (v∗C , i
∗
L), where v∗C > VDC

and i∗L =
v∗C

2

RVDC
, then the compact set

A = Ax × {0, 1} (7.49)

is globally asymptotically stable for H.
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Proof Consider the function V given in (7.27) and define Ṽ (x, q) = V (x) for

all (x, q) ∈ C ∪ D. Note that Ṽ (x, q) = 0 when x ∈ Ax and Ṽ (x, q) > 0 for all

(x, q) ∈ (R2 × {0, 1}) \ Ax. From the computation of the inner product between

∇V and the direction belonging to FS, for each (x, q) ∈ C (see Lemma 7.3.1), we

have

uC(x, q) := max
ξ∈F (x,q)

〈∇Ṽ (x, q), ξ〉

=




(vC − v∗C)(− 1

R
vC + iL) + (iL − i∗L)(−vC + VDC) = γ0(x) ≤ 0 if q = 0,

(vC − v∗C)
(
− 1

R
vC
)
+ (iL − i∗L)VDC = γ1(x) ≤ 0 if q = 1

and, for each (x, q) ∈ D, we have

ud(x, q) := max
ξ∈G(x,q)

Ṽ (ξ)− Ṽ (x, q) = 0

Then, by [61, Theorem 3.18], the set (7.49) is stable.

To show attractivity, we apply the invariance principle in [65, Theorem 4.7].

To this end, we compute the zero level set of uC and ud defined above. It follows

that

u−1
C (0) = {(x, q) ∈ C : uC(x, q) = 0 } = D
u−1
d (0) = {(x, q) ∈ D : ud(x, q) = 0 } = D

Then, each complete and bounded solution (x, q) to H converges to the largest

weakly invariant9 subset of the set
{
(x, q) ∈ C ∪ D : Ṽ (x, q) = r

}
∩
(
u−1
C (0) ∪ (u−1

d (0) ∩G(u−1
d (0)))

)
(7.50)

for some r ≥ 0. With the definitions above, the set of points (7.50) reduces to

{(x, q) ∈ C ∪ D : V (x) = r } ∩D (7.51)

9For the set of hybrid trajectories S, the set M ⊂ O is said to be weakly invariant (with
respect to S) if it is both weakly forward invariant and weakly backward invariant; see [65,
Definition 3.1], it is weakly forward invariant (with respect to S) if for each x0 ∈ M, there
exists at least one complete hybrid trajectory x ∈ S(x0) with x(t, j) ∈ M for all (t, j) ∈ domx.
It is weakly backward invariant (with respect to S) if for each q ∈ M, N > 0, there exist x0 ∈ M
and at least one hybrid trajectory x ∈ S(x0) such that some (t∗, j∗) = q and x(t, j) ∈ M for all
(t, j) ≤ (t∗, j∗), (t, j) ∈ domx.
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Note that the only invariant set for H within (7.51) is A since solutions cannot

stay in (7.51) unless vC = v∗C and iL = i∗L (i.e., r = 0). In fact, solutions to

the hybrid systems H in (7.43) cannot stay in a constant level set of V since the

equilibrium points of the vector field F do not belong to C ∩ D and, for points in

C \ D, the derivative of V is negative for each q ∈ {0, 1}.

Theorem 7.3.6 implies all solutions (including solutions start from A) converge

to A. In addition, Proposition 7.3.5 implies all solutions are complete. Thus, we

can conclude solutions start from A are complete and always stay in A. Therefore,

A is forward invariant for close-loop system H. In fact, the asymptotic stability of

a set for a system general implies forward pre-invariance of a set due to the stability

part of definition. However, solutions to system are required to be complete for

an asymptotic stability set to be forward invariant to system.

7.3.1.3 Robustness to general perturbations

In addition, the construction of the proposed controller is such that the closed-

loop system H has data satisfying the hybrid basic conditions given by (A1)-(A3)

in [61, Assumption 6.5]. With these properties, we have that the asymptotic

stability property is robust to small perturbations; see [88, Theorem IV.6]. More

precisely, we consider the following model of the plant with perturbations:

ẋ ∈ FS(x+ d1) + d2 (7.52)

where d1 corresponds to state noise and d2 captures unmodeled dynamics. Then,

defining d̃i = (di, 0), the closed-loop system H results in the perturbed hybrid

system, which is denoted by H̃, with dynamics

ż ∈ F (z + d̃1) + d̃2 z + d̃1 ∈ C̃

z+ ∈ G(z) z + d̃1 ∈ D̃

The following result establishes a nominal robustness property of H.

Theorem 7.3.7 Under the assumptions of Theorem 7.3.6, there exists β̃ ∈ KL
such that, for each ε̃ > 0 and each compact set Mr ⊂ R2, there exists δ > 0 such
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that for any two measurable functions d̃1, d̃2 : R≥0 → δB, every solution χ̃ = (x̃, q̃)

to H̃ with χ̃(0, 0) ∈ Mr × {0, 1} is such that its x̃ component, namely, (vC , iL),

satisfies

|x̃(t, j)|Ax
≤ β̃(|x̃(0, 0)|Ax

, t+ j) + ε̃ ∀(t, j) ∈ dom χ̃

The proof is given in [88, Section III.C].

Unlike previous results in the literature, this robustness property implies that

our controller is robust to small measurement noise and unmodeled dynamics. In

addition to the robustness to general perturbations shown above, the asymptotic

stability of A is robust to slow variations of the system parameters, such as input

voltage VDC and load R. Such a result follows from a direct application of [61,

Corollary 7.27].

7.3.1.4 Robustness to spatial regularization

In addition to robustness to small perturbations, the fact that (A1)-(A3) are

satisfied imply that the closed-loop system is robust to spatial regularization,

which can be employed to alleviate possible arbitrarily fast switching. More pre-

cisely, we use the condition γ̃q(x) = ρ rather than γ̃q(x) = 0 as switching bound-

aries at the controller level, where ρ is a small positive constant. The motivation

for such a modification on the controller is to reduce the number of switches and

enlarge the time between switches by allowing a neighborhood around x∗ between

the two switching boundaries, rather than having them intersect at the point x∗.

The regularized system is denoted as

Hρ = (Cρ, F,Dρ, G) (7.53)

which share the same flow and jump maps as in H, while the switching boundaries

γ̃q(x) = ρ

are used to define the flow and jump sets.
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i.e.,
[
ẋ

q̇

]
∈
[
Fq(x)

0

]
(x, q) ∈ Cρ

where, now, the flow set is replaced by

Cρ =
{
(x, q) : x ∈ M̃0, γ̃0(x) ≤ ρ, q = 0

}
∪
{
(x, q) : x ∈ M̃1, γ̃1(x) ≤ ρ, q = 1

}

Furthermore, the jump map is given by

x+ = x

q+ ∈ Gq(x)
(x, q) ∈ Dρ

where, now, the jump set is given by

Dρ =
{
(x, q) : x ∈ M̃0, γ̃0(x) = ρ, q = 0

}
∪
{
(x, q) : x ∈ M̃1, γ̃1(x) = ρ, q = 1

}

and

Gq(x) =





{1} if q = 0, γ̃0(x) ≥ ρ

{0, 1} if γ0(x) ≥ ρ, γ1(x) ≥ ρ

{0} if q = 1, γ̃1(x) ≥ ρ

Under the given assumptions, it can be shown that the solutions satisfy a

practical KL bound for any solutions, namely, for every ǫ > 0, the such that

solutions to the closed-loop system converge to a neighborhood of Ax after finite

hybrid time (that depends on ǫ).

Theorem 7.3.8 Under the assumptions of Theorem 7.3.6, there exists β ∈ KL
such that, for each ε > 0 and each compact set Mr ⊂ R2, there exists ρ∗ > 0

guaranteeing the following property: for each ρ ∈ (0, ρ∗] every solution χ = (x, q)

to Hρ with χ(0, 0) ∈ Mr × {0, 1} is such that its x component satisfies

|x(t, j)|Ax
≤ β(|x(0, 0)|Ax

, t+ j) + ε ∀(t, j) ∈ domχ

The proof follows analogously to the proof of Theorem 7.3.7. A similar result can

be obtained using temporal regularization.

For the spatially regularized control algorithm, no Zeno behavior occurs and

certainly no “eventually discrete” solutions (in the sense of the solution that after
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some time t only jumps) exist due to the uniformly finite (nonzero) separation

between the flow and jump sets–this property follows from [65, Lemma 2.7] since

the closed-loop system satisfies the properties listed in Proposition 7.3.5.

7.3.2 Simulations Validations and Discussions

In this section, simulations of the closed-loop system H and its variations are

performed using VDC = 5V , R = 3Ω, C = 0.1F , L = 0.2H , P =

[
C
2

0

0 L
2

]
, and

x∗ = (7, 3.27). We used the Hybrid Equations (HyEQ) Toolbox via Simulink (see

[90]) for performing the simulations.

7.3.2.1 Simulations of the closed-loop system H

The simulation results for the closed-loop system H are shown in Fig. 7.14. As

can be seen, the solution components (vC , iL) converge from both initial conditions

to the set Ax in correspondence with the globally asymptotic stability property of

the closed-loop system. Here we use K0 = 0.05, K1 = 0.12, and q is only drawn

for the simulation using x0 = (0, 5).
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Figure 7.14: Simulation results for the closed-loop system H with initial conditions

x0 = (0, 5), q0 = 0 and x0 = (5, 0), q0 = 1.
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7.3.2.2 Simulations of robustness to perturbation

The perturbed closed-loop system H̃ with δ = 0.5, K0 = 0.28, and K1 = 0.23

is simulated, as shown in Fig. 7.15, and a sinusoidal perturbation injected in the

state x, resulting in d1 = 0.5 sin(500t) and d2 = 0 in (7.52). The Boost converter

reaches a neighborhood of x∗ and remains fluctuating due to the presence of the

perturbation.
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Figure 7.15: Simulation results for the perturbed closed-loop system H̃ for initial

conditions x0 = (8, 5), q0 = 1.

7.3.2.3 Simulations of robustness to regularization

Simulation results are shown in Fig. 7.16 for the spatial regularized system Hρ

with ρ = 0.2, K0 = 0.28, and K1 = 0.12. q is only drawn for the simulation using

x0 = (5, 0). As suggested by the plot of q v.s. t, the number of switches is reduced

significantly with the regularized system Hρ, which is preferred for the purpose of

hardware implementations.
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Figure 7.16: Simulation results for the spatially regularized closed-loop system Hρ

for initial conditions x0 = (0, 5), q0 = 1 and x0 = (5, 0), q0 = 0.

7.3.2.4 Simulations of robustness to changes in supply and demand

The input voltage VDC and load R are now varied to assure the robustness

to such changes. In the next simulation, VDC is increased from 2.5V to 5V and

afterwards R is decreased from 3Ω to 2Ω. By doing this, i∗L varies as well and also

the switching boundaries change during process.
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Figure 7.17: Simulation results for a varying input voltage VDC and a varying load

R with ρ = 0.5 for initial conditions x0 = (0, 5), q0 = 0.

Figure 7.17 shows a simulation where VDC is increased after 2 seconds and

R is decreased after 4 seconds. It shows the boundaries for the three different

situations. As it can be seen, a neighborhood of v∗C is reached in three situations,

which means that the controller is able to cope with variations in the supply VDC

and demand R.
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7.3.2.5 Benchmark tests

Using the regularized system in (7.53), we propose the following benchmark

test for the DC/DC boost converter. Given a constant ǫ representing the maxi-

mum deviation of the output range vC from v∗C , we determine the average number

of switches per second for five different initial conditions after the system reaches

its steady state region, i.e., when solutions reach the set

{z ∈ R2 × {0, 1} : |vC − v∗C | ≤ ǫ}

and remain in it. Moreover, we also compute the average number of switches

and its standard deviation (Std) for three different values of ǫ. We use the same

system parameters and the relationship ǫ ≈ 1.3ρ from [88, Table II] for this

benchmark test. In addition, for each value of ǫ, we present the average dwell

time for switching. The number of switches per second reported are rounded.

Table 7.2: Benchmark test for DC/DC boost converter

ǫ x0

Average number
of switches
per second

Average & Std
Average dwell-time
between switches

0.01

(0,5) 1467

Average = 1587
Std = 61.21

S = ON : 9× 10−4s
S = OFF : 3.6× 10−4s

(4,3) 1625
(6,2) 1625
(3,8) 1592
(5,0) 1625

0.05

(0,5) 348

Average = 356
Std = 4.37

S = ON : 4× 10−3s
S = OFF : 1.6× 10−3s

(4,3) 360
(6,2) 360
(3,8) 355
(5,0) 359

0.1

(0,5) 179

Average = 179
Std = 0.075

S = ON : 8× 10−3s
S = OFF : 3.1× 10−3s

(4,3) 179
(6,2) 179
(3,8) 179
(5,0) 179

The numerical results in Table 7.2 indicate that, for smaller ǫ values, switching
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happens more frequently. While the number of switches varies with the initial

condition, the standard deviations suggest that the dispersion around the average

is small. In addition, the average dwell time results indicate that the switch stays

at the “ON” position longer than at the “OFF” position, which is expected, but

more importantly, indicate that the time between consecutive switching times has

a reasonable lower bound. The smaller time duration between the two, when

switch is “ON” and when it is “OFF”, can be used as a factor to determine how

fast the switch happens during the “steady state”.

7.4 A Constrained Bouncing Ball System

We demonstrate our main results in a constrained mechanical system with

control inputs; namely, a bouncing ball moving vertically that is controlled by

impacts on a controlled surface at zero height. In addition, we attach one end of

a nonelastic string with length hmax to zero height and the other end to the ball;

see Figure 7.18 for system configuration. Compared to a typical bouncing ball

x1 = hmax

x2

String

hmin

Figure 7.18: Bouncing ball system configuration.

system [61, Example 1.1], the model considered here has an additional “pulling

phase” when the ball reaches the height hmax with possibly nonzero velocity. The
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possible pulls from the string at height hmax and the impacts between the ball and

the controlled surface both lead to jumps of the state. In addition to assuming

unitary mass of the ball and negligible weight of the string, forces, and friction,

we consider the following:

C1) at impacts with the controlled surface, the uncertain coefficient of restitution

is within the range [e1, e2], where 0 < e1 < e2 < 1;

C2) the string breaks when the ball pulls with velocity larger than vmax;

C3) at pulls of the string, the restitution coefficient is ep ∈ (0, 1].

With x = (x1, x2) ∈ R2, x1 and x2 model the height (position) and velocity of

the ball, respectively. Then, with gravity constant γ > 0, the flow map is defined

on R≥0 × R and is given by10

f(x) := (x2,−γ).

To formulate the flow and jump set, we define a function E : R2 → R that

describes the total energy of the system

E(x) =
x22
2

+ γx1.

According to C2), the string remains attached to the ball when x1 ∈ [0, hmax] and

x2 ≤ vmax, i.e., E(x) ≤ Emax with Emax := E(hmax, vmax). After impacts with the

controlled surface, the ball position x1 remains unchanged, while the velocity x2

is updated to a function of the disturbance wd ∈ Wd := [e1, e2], which represents

the uncertain coefficient of restitution, and input ud ∈ Ud := [0, umax] with umax =√
2Emax, which represents the velocity change caused by the controlled surface.

Hence, we model impacts between the ball and the controlled surface as x1 = 0 as

G1(x, ud, wd) := (x1, ud − wdx2)

when x2 ≤ 0. Before every impact x2 is nonpositive, after each impact the ball

velocity is updated according to G1. Then, with a small positive constant δp <

10Note that since there are no disturbances and inputs for flow, we omit the subscripts for f
and C in this model.
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vmax, the map

G2(x) := (x1,min{−epx2,−δp})

models the pulls between the ball and the string when x1 = hmax and x2 ∈
[0, vmax]. Since before every pull x2 is nonnegative, after each pull the ball velocity

reverses its sign and updates according to G2. Note that since closed jump sets

are preferred as suggested in (A1w) of Definition 2.0.8, our model only allows the

x2 component to jump to a strictly negative value that is lower bounded (and

controllable) by −δp.
Then, the hybrid system Hu,w = (Cu,w, Fu,w, Du,w, Gu,w) with control input ud

and disturbance wd has state x and dynamics on space X = R2×Ud ×Wd that is

given by

ẋ = f(x) x ∈ C, (7.54)

x+ = Gu,w(x, ud, wd) (x, ud, wd) ∈ Du,w,

where the flow set C is given by

C := {x ∈ R2 : 0 ≤ x1 ≤ hmax, E(x) ≤ Emax},

and the jump set Du,w is given by Du,w := D1 ∪D2 with

D1 := {(x, ud, wd) ∈ X : x1 = 0, x2 ∈ [−
√

2Emax, 0]},
D2 := {(x, ud, wd) ∈ X : x1 = hmax, x2 ∈ [0, vmax]},

where the jump map Gu,w is given by

Gu,w(x, ud, wd) :=




G1(x, ud, wd) if (x, ud, wd) ∈ D1

G2(x) if (x, ud, wd) ∈ D2.

We have the following control design goal: under the presence of disturbances

wd, control the ball at impacts so that when the ball is starts from x(0, 0) =

(x1(0, 0), x2(0, 0)) such that x1(0, 0) ∈ [hmin, hmax] and E(x(0, 0)) ∈ [0, Emax], the

string remains attached to the ball, and the peak height of the ball after each
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bounce is at least hmin. This objective is achieved by rendering the set

Mw
r = LV (−γhmin) ∩ (C ∪Πd(Du,w)) (7.55)

robustly controlled forward pre-invariant for Hu,w, where V (x) := −E(x) for every

x ∈ C ∪ Πd(Du,w).

Given system parameters e1, e2, ep, vmax and hmax, we choose system parame-

ters hmin such that
√
γ
(
hmin +

ε
2

)
< e1

√
Emax and with ε > 0,

γ(hmin + ε) ≤ (1 + e1 − e2)
2

2
Emax (7.56)

Since the control input appears in the map G1 only, for every x ∈ Πd(D1), ac-

cording to (6.14), the set Θd in (6.14) is given by

Θd(x) = [0,
√
2Emax + e2x2].

In fact, Θd collects all control input values ud such that G1(x, ud, wd) ∈ C ∪
Πd(Du,w) for all wd ∈ [e1, e2]; i.e., every such ud is such that E(0, G1(x, ud, e2)) ≤
Emax. Then, since Md = {0} × [−

√
2Emax,−

√
γhmin] and Ψu

d(x) = Ud, 6.3.3.1) in

Theorem 6.3.3 holds for Hu,w. Now, consider the constant r∗ = −γ(hmin − ε) and

the function ρd defined as ρd(x) = γε for every x ∈ LV (r). We show that the pair

(V, r∗) defines a RCLF-FI as in Definition 6.3.1. First, (5.11) and (5.7) hold on C

since, for every x ∈ C,

〈∇V (x), f(x)〉 = −x2(−γ)− γx2 = 0. (7.57)

Then, we show the pair (V, r∗) is such that (6.18) holds for constant r = −γhmin <

r∗. Moreover, for every x ∈ LV (r) ∩ Πd(D1), we have

min
ud∈Θd(x)

max
wd∈[e1,e2]

V (G1(x, ud, wd))

= min
ud∈Θd(x)

max
wd∈[e1,e2]

{
−(ud − wdx2)

2

2

}

= −(
√
2Emax + e2x2 − e1x2)

2

2
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Since x2 ∈ [−
√
2Emax,−

√
2γhmin] and condition (7.56), we have

min
ud∈Θd(x)

max
wd∈[e1,e2]

V (G1(x, ud, wd)) + ρd(x)

≤ −(
√
2Emax + (e2 − e1)(−

√
2Emax))

2

2
+ ρd(x)

= −(1 + e1 − e2)
2

2
Emax + γε ≤ −γhmin = r

For every x ∈ LV (r) ∩ Πd(D2), we have x2 ∈ [0, vmax] and

min
ud∈Θd(x)

max
wd∈[e1,e2]

V (G2(x)) = −(min{−epx2,−δp})2
2

− γhmax < r. (7.58)

Hence, the pair (V, r∗) defines a robust control Lyapunov function for forward

invariance for Hu,w according to Remark 6.3.7 and Definition 6.3.1.

Next, following the steps in Section 6.2.1, we construct the regulation map Γd.

Since there is no control input during flows, we omit defining Γc. Moreover, the

input ud is only active when (x, ud, wd) ∈ D1, we define the selection map Γd based

on G1 only. Then, for r = −γhmin and for every (x, ud) ∈ {(x, ud) ∈ R2 × Ud :

(x, ud, wd) ∈ (LV (r)× Ud ×Wd) ∩D1}, with σ = 1
2
, Γd is given by

Γd(x, ud) = max
wd∈[e1,e2]

V (G1(x, ud, wd)) +
ρd(x)

2
− r

= −(ud − e1x2)
2

2
+ γ

(ε
2
+ hmin

)
.

Item 6.3.3.2) in Theorem 6.3.3 holds since the function ud 7→ Γd(x, ud) is convex

on Θd(x) for each x ∈Md. For each x ∈ R2, the map Sd in (6.22) is given by

Sd(x) :=





{ud ∈ Θd(x) : γ(
ε
2
+ hmin)− (ud−e1x2)2

2
< 0}

if x ∈ LV (r) ∩ Πd(D1),

Rmd otherwise.

(7.59)

In addition, Hu,w given in (7.54) satisfies conditions (A1’w) - (A3’w) in Lemma 6.0.6.

According to Theorem 6.3.3, there exists a state feedback κd : R2 → R that is

continuous on Md. In particular, such a feedback is selected from the closure of
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map Sd given in (7.59), which reduces to an interval:

Sd(x) :=

[
max

{√
2γ
(ε
2
+ hmin

)
+ e1x2, 0

}
,
√
2Emax + e2x2

]
. (7.60)

One such continuous selection is

κd(x) :=

√
γ( ε

2
+ hmin)

Emax
x2 +

√
2γ
(ε
2
+ hmin

)
. (7.61)

Since Corollary 6.1.5 provides conditions guaranteeing robust controlled for-

ward invariance for hybrid systems without a Lyapunov function, we verify that

our design of κd in (7.61) indeed renders Mw
r robustly controlled forward invariant

for Hu,w. To this end, first, Mw
r is a subset of C∪Πd(Du,w), F is Lipschitz and F (x)

is convex on C by construction and 6.1.5.4) holds since Mw
r ∩C is compact. Then,

item 6.1.5.1) and 6.1.5.5) hold true trivially; while item 6.1.5.3) holds since (7.57)

and item 1) of Lemma A.0.15. Finally, for the closed-loop system with ud replaced

by κd in (7.61), we check the extreme cases for every x ∈ Mw
r ∩Πd(D1) and every

x ∈ Mw
r ∩ Πd(D2). More precisely, the worst case for impact with zero height is

x2 = −√
2γhmin before the impact and x2 is updated by map G1(x, κd(x), e1), i.e.,

G1(x, κd(x), e1) =

√
γ
(
ε
2
+ hmin

)

Emax

x2 +

√
2γ
(ε
2
+ hmin

)
− e1x2

=

√
2γ
(ε
2
+ hmin

)
+



√
γ
(
ε
2
+ hmin

)

Emax

− e1


 (−

√
2γhmin),

which is greater than
√
2γ
(
ε
2
+ hmin

)
since

√
γ
(
ε
2
+ hmin

)
< e1

√
Emax. Then,

6.1.5.2) holds for every x ∈ Mw
r ∩Πd(D2) since (7.58).

Simulations are generated to show solutions to Hu,w controlled by κd in (7.61)

with system parameters γ = 9.81, hmin = 10, hmax = 12, vmax = 6
√
γ, e1 =

0.8, e2 = 0.9, ep = 0.95, ε = 0.1, and δp = 0.01.11 Over the simulation horizon,

the disturbance wd is randomly generated within interval [e1, e2] after each im-

pact. One solution that starts from the initial condition for x given by (11, 0)

11All simulations in this section are generated via the Hybrid Equa-
tions (HyEQ) Toolbox for MATLAB; see [90]. Code available at
https://github.com/HybridSystemsLab/InvariantBoucingBall.
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is shown in Figure 7.19. Figure 7.19(a) presents the randomly generated wd dis-

turbance for Hu,w. Moreover, even under uncertain disturbances, the peaks of

the resulting height reach values larger than hmin and smaller than hmax as Fig-

ure 7.19(a) shows. Figure 7.19(b) shows, on the (x1, x2) plane, that solution stays

within the set Mw
r , which is the region bounded by dark green dashed line.
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Figure 7.19: Simulation of Hu,w controlled by κd in (7.61).

Next, using the results in Section 6.3.2, a control law with minimum point-

wise norm rendering the set Mw
r in (7.55) robustly controlled forward invariant

for Hu,w is provided. Such a feedback is given by

κmd (x) = argmin
ud∈Sd(x)

|ud|,

where Sd(x) is as in (7.60) and it leads to the continuous feedback law

κmd (x) = max

{√
2γ
(ε
2
+ hmin

)
+ e1x2, 0

}
, (7.62)

for every x ∈ Mw
r ∩Πd(D1). Following same steps as above, it can be shown that

Mw
r in (7.55) is robustly controlled forward invariant for Hu,w via κmd applying

Corollary 6.1.5.

Simulations are generated for Hu,w controlled by κmd given as in (7.62) with

the same system settings as above. One solution that starts from the same initial

condition x = (11, 0) is shown in Figure 7.20. As shown in Figure 7.20(a), the

peaks of the height in between impacts are between hmin = 10 and hmax = 12,
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while on the (x1, x2) plane, the trajectory stays within the set Mw
r , which is the

region bounded by dark green dashed lines.

As expected, compared to Figure 7.19(a), we observe that there are only 7

impacts with the controlled surface within the time span of 0 to 20 seconds in

Figure 7.20(a); while there are 14 impacts in Figure 7.19(a) and every impact is

followed with a pull. This indicates that less energy is used to bounce the ball at

the controlled surface to maintain peak position within range [hmin, hmax].
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(b) Solution on the (x1, x2) plane.

Figure 7.20: Simulation of Hu,w controlled by κmd in (7.62).

7.5 An Estimate of Weakly Forward Invariant Sets

using Lyapunov-like Functions

We dedicate results in this section to applying

In [49, Section IV], the authors introduce the concept of viability kernel (re-

spectively, invariance kernel) for a given set that is not viable (respectively, invari-

ant) to the given hybrid system in the impulse differential inclusions framework.

An iterative algorithm to find such set(s) is presented by using a specifically de-

fined set operation. For the purpose of invariant-based hybrid controller design,

we adapt the concept of viability kernel and invariance kernel for estimating the

weakly forward invariant set to a given hybrid system in (2.1). To this end, first,
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we characterize the forward invariance properties of sets that are sublevel sets of

Lyapunov-like functions.

Proposition 7.5.1 (Forward pre-Invariance of Sublevel Sets) Consider the hy-

brid system H = (C, F,D,G) in (2.1). Let c ≥ 0 and W : Rn → R be continuously

differentiable on an open set containing12 C ∩ LW (c) and such that it satisfies

〈∇W (x), η〉 ≤ 0 ∀x ∈ C ∩ LW (c), η ∈ F (x), (7.63)

W (η)−W (x) ≤ 0 ∀x ∈ D ∩ LW (c), η ∈ G(x), (7.64)

G(x) ⊂ Mr ∀x ∈ D ∩ LW (c), (7.65)

where Mr = LW (c)∩(C∪D). In addition, let the set Mr and H̃ = (Mr∩C, F,D∩
Mr, G) satisfy Assumption 4.1.1. Then, the set Mr is forward pre-invariant for

H̃.

Proof Let φ ∈ SH̃(Mr). Pick any (t, j) ∈ domφ and let 0 = t0 ≤ t1 ≤ t2 ≤ ... ≤
tj+1 = t satisfy

domφ ∩ ([0, t]× {0, 1, ..., j}) =
j⋃

k=0

([tk, tk+1]× {k}) .

For every k ∈ {0, ..., j} and almost all s ∈ [tk, tk+1], φ(s, k) ∈ C ∩ LW (c). Then,

(7.63) implies that, for each k ∈ {0, 1, ..., j} and for almost all s ∈ [tk, tk+1],

d

ds
W (φ(s, k)) ≤ 0.

Integrating both sides, we have that for each k ∈ {0, 1, ..., j}

W (φ(tk+1, k)) ≤ W (φ(0, k)). (7.66)

Similarly, for each k ∈ {1, 2, ..., j}, we have φ(tk, k − 1) ∈ D ∩ LW (c). Thus, we

obtain from (7.64) that for each k ∈ {0, 1, ..., j}

W (φ(tk, j)) ≤W (φ(tk, 0)). (7.67)

With W (φ(0, 0)) ≤ c, (7.66) and (7.67) yield

W (φ(t, j)) ≤W (φ(0, 0)) ≤ c

12The c-sublevel set of the function W : Rn → R is denoted by LW (c) = {x : W (x) ≤ c}.
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for all (t, j) ∈ domφ. Consequently, every solution φ ∈ SH̃(Mr) stays in LW (c)

for all (t, j) ∈ domφ. In addition, solution φ is not allowed to jump outside of

D because of the assumption on G in (7.65). Also, by (S1) of Definition 2.0.4,

φ does not escape C by flow. Thus, φ stays in Mr = LW (c) ∩ (C ∪ D) for

all (t, j) ∈ domφ. In other words, Mr is forward pre-invariant for the system

H̃ = (Mr ∩ C, F,Mr ∩D,G).

Proposition 7.5.1 establishes a forward pre-invariance property of sublevel sets

of Lyapunov-like functions for a modified version of a hybrid system H, namely H̃.

In particular, H̃ has the same flow and jump map as the original system H, but

its flow set and jump set are intersected by the sublevel set LW (c). We provide

sufficient conditions for the set Mr to be forward invariant for H̃ by applying

Theorem 4.1.4.

Proposition 7.5.2 (Forward Invariance of a Sublevel Set for H̃) Consider a hy-

brid system H = (C, F, D,G), c ≥ 0, and W (as well as Mr) be such that the

conditions in Proposition 7.5.1 hold. Then, the set Mr is forward invariant for

H̃ = (C ∩Mr, F,D ∩Mr, G) if at least one of the following condition holds:

• For every φ ∈ SH̃(Mr), case (b.2) in Proposition 2.0.6 does not hold;

• Either Mr ∩ C is compact or F is bounded on Mr ∩ C.

Proof Proposition 7.5.1 implies that the set Mr is forward pre-invariant for the

hybrid system H̃, i.e, for each x ∈ Mr, every maximal solution φ ∈ SH̃(Mr)

stays in Mr for all hybrid time. Thus, by proving that all maximal solutions are

complete, we complete the proof.

Since G(D ∩ LW (c)) ⊂ Mr, case (c) in Proposition 2.0.6 does not hold. Then,

the tangent cone condition guarantees solutions will not end on the boundary of

Mr ∩ C by flow, thus, case (b.1) in Proposition 2.0.6 does not hold.

In addition, with given assumptions on φ ∈ SH̃(Mr), i.e, case (b.2) in Proposi-

tion 2.0.6 does not hold, we conclude that all solutions φ ∈ SH̃(Mr) are complete.
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Therefore, Mr is forward invariant for H̃. When Mr ∩ C is compact or F is

bounded on Mr ∩C, solutions of H̃ do not escape to infinity in finite time for all

x ∈ Mr ∩C, which excludes the case (b.2) in Proposition 2.0.6. Therefore, it also

leads to completeness of all solutions φ ∈ SH̃(Mr) from every point in Mr to H̃.

In addition to the results from Proposition 7.5.1, Proposition 7.5.2 states that

if every solution φ ∈ SH̃(M) is complete, the set M is forward invariant for the

modified hybrid system H̃. With these results, we provide a result that can be

used to estimate weakly forward invariant sets of the original hybrid system H.

Theorem 7.5.3 (Weak forward invariance of a set for H) Consider the hybrid

system H in (2.1). For each i ∈ {1, 2, ..., N}, let ci and Mi satisfy the conditions

in Proposition 7.5.2 some function Wi. Then, the set

W =
⋃

i∈{1,2,...,N}
Mi

is weakly forward invariant for H.

Proof For each i, the set Mi is forward invariant for H̃i, which implies that,

for every x ∈ Mi, every solution φ ∈ SH̃i
(x) is such that rgeφ ⊂ Mi. Because

this property holds for every Mi, i ∈ {1, 2, ..., N}, we know that there exists at

least one solution φ ∈ SH̃(W) that is complete and rgeφ ⊂ W, where H̃ =

(W∩C, F,W∩D,G). This property extends to the original hybrid system H. In

fact, the data of H has C̃ = W ∩ C ⊂ C and D̃ = W ∩ D ⊂ D, and share the

same flow map F and jump map G with H̃. As a result, the existing (complete)

solutions φ ∈ SH̃(W) are also solutions to the original system H. Therefore, there

exists at least one complete solution φ ∈ SH(W) that satisfies rgeφ ⊂ W for every

x ∈ W, i.e., W is weakly forward invariant for H.

Remark 7.5.4 Note that SH(W) may include more solutions than
⋃

i∈{1,2,...,N}
SH̃i

(Mi),

due to Ci = Mi ∩ C and Di = Mi ∩D for each i, where H̃i = (Mi ∩ C, F,Mi ∩
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D,G). These extra solutions may be allowed to flow or jump outside of W, there-

fore, we cannot guarantee forward invariant of the set W for H. On the other

hand, if every φ ∈ SH(W) is unique, SH(W) is equal to
⋃

i∈{1,2,...,N}
SH̃i

(Mi) and

we can conclude that W is forward invariant for H.

The following example illustrates Proposition 7.5.1.

Example 7.5.5 (Forward pre-Invariance of M) Consider the hybrid system

H = (C, f,D, g) in R2 given by

f(x) := Ax :=

[
−2 1

1 −2

]
x ∀x ∈ C := B,

g(x) :=




2x if x ∈ D1 := {x ∈ R2 : x /∈ B}

−x if x ∈ D2 := {x ∈ R2 : x2 = 0, |x| ≤ 1},
∀x ∈ D := D1 ∪D2.

First, we note that the matrix A is Hurwitz, so the origin is a stable focus, i.e.,

solutions to ẋ = f(x) spiral toward the origin.

x1

x2

1-1

W1(x) = 1

W2(x) = 0.793

D

C

Figure 7.21: Sublevel sets of proposed Lyapunov functions Example 7.5.5.

We consider the function W1(x) = x⊤P1x, where P1 =

[
2 0

0 1

]
. Then, we have,
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for each x ∈ C,

〈∇W1(x), f(x)〉 = 4x1(−2x1 + x2) + 2x2(x1 − 2x2)

= −8x21 + 6x1x2 − 4x22 (7.68)

= −23

4
x21 − 4

(
3

4
x1 − x2

)2

,

which is guaranteed to be less than or equal to zero for every x ∈ R2. We con-

sider the largest sublevel set of W1 within C = B, which is LW1(c1) with c1 = 1

and is shown as yellow dashed line in Figure 7.21. In addition, g(x) = −x gives

W1(g(x)) −W1(x) = 0 for every x ∈ LW1(c1) ∩ D. Thus, according to Proposi-

tion 7.5.1, M1 = LW1(c1) is forward pre-invariant for H̃1 = (M1 ∩ C, f,M1 ∩
D, g).

Now we apply Theorem 4.1.4 to check the forward pre-invariance property. By

observing system data, we know M1 ∩D = {x : x1 ∈ [−
√
2
2
,
√
2
2
], x2 = 0}, and for

every x ∈ M1 ∩D,G(x) = −x, therefore, g(M1 ∩D) = M1 ∩D, i.e., item 4.1)

in Theorem 4.1.4 holds. Next, for closed set M1 ∩ C = LW1(1), the tangent cone

TM1∩C(x) = R2 for every interior point in LW1(1), i.e., f(x) ∈ TM1∩C(x); also,

TM1∩C(x) includes all vectors that are tangent to or pointing inward to the level set

W1(x) = c1 for every point on the boundary of LW1(1), the result in (7.68) implies

f(x) ∈ TM1∩C(x) for these boundary points, and item 4.2) in Theorem 4.1.4 holds.

Thus, M1 is forward pre-invariant for H̃1.

Similarly, we consider the function W2(x) = x⊤P2x, where P2 =

[
2 0.5

0.5 1

]
.

Then, we have, for each x ∈ C,

〈∇W2(x),f(x)〉
= (4x1 + x2)(−2x1 + x2) + (2x2 + x1)(x1 − 2x2)

= −7x21 − 3x22 + 2x1x2

= −6x21 − 2x22 − (x1 − x2)
2,

which is guaranteed to be less than or equal to zero for all points on R2. Again,

we consider the largest sublevel set for W2 within C = B, which is LW2(c2) with
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c2 ≈ 0.793 and is shown as green dash line in Figure 7.21. Similar to the case

for W1, g(x) = −x gives W2(g(x)) − W2(x) = 0 for every x ∈ LW2(c2) ∩ D.

Thus, according to Proposition 7.5.1, M2 = LW2(c2) is forward pre-invariant for

H̃2 = (M2 ∩C, f,M2 ∩D, g). This property can be verified using Theorem 4.1.4.

Following the same procedures, we can find more forward pre-invariant sets M
to the corresponding H̃ based on different Lyapunov-like functions that satisfy the

conditions in (7.63) and (7.64). △ △

In the following example, we explain the importance of (7.65) in Proposi-

tion 7.5.1.

Example 7.5.6 (Data restrictions on system in Proposition 7.5.1) Consider the

hybrid system H1 = (C1, f1, D1, g1) in R given by

f1(x) := −x ∀x ∈ C1 := {1}, g1(x) := 0 ∀x ∈ D1 := {1}.

We use quadratic function W1(x) = x2. It follows thatW1, c1 = 1 and given system

H1 satisfies conditions in (7.63) and (7.64) since for x = 1, 〈∇W1(x), f1(x)〉 =

−2x < 0 and W1(g1(x)) −W1(x) = −1 < 0. However, because g1(x) = 0 and

M1 = {1}, system H1 does not satisfy condition (7.65). As a result, the only

nontrivial solution φ1(0, 0) = 1, φ1(0, 1) = 0 jumps outside of M1, i.e, jumps

inside LW1(c1), but outside of C1 ∪ D1. Thus, the set M1 is not forward pre-

invariant for H1. Therefore, without guaranteeing (7.65), we cannot conclude

forward pre-invariance of M1 for H̃1.

10

C1 = D1

g1(x)

f1(x)

x

Figure 7.22: System H1 in Example 7.5.6.
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Then, consider the hybrid system H2 in R2 given by

f2(x) := [−x1 − x2]
⊤ ∀x ∈ C2 := [−2, 2]× [−2, 2] \ {x ∈ R2 : x2 < 1};

g2(x) := [0 0]⊤ ∀x ∈ D2 := {x ∈ R2 : x2 = 1}.

We choose quadratic function W2(x) = x2. It follows that W2, c2 = 4 and given

system H2 satisfies conditions in (7.63) and (7.64) since for every x ∈ C∩LW2(c2),

〈∇W2(x), f2(x)〉 = −2(x21+x
2
2) ≤ −2, and for every x ∈ D∩LW2(c2), W2(g2(x))−

W2(x) = 0− (x21 + x22) = −1 < 0. However, because g2(x) = [0 0]⊤ and the origin

x = (0, 0) /∈ M2, system H2 does not satisfy condition (7.65). As a result, all

maximal solution φ ∈ SH2(M2) jump outside of M2, i.e, jump inside LW2(c2),

but outside of C2∪D2. Thus, set M2 is not forward pre-invariant for H2. Similar

as the one dimension case above, the jump map G2 mapped solution out of M2,

while (7.63) and (7.64) are satisfied. This is because the Lyapunov like function

condition only stated the fact that solution will jump towards smaller sublevel sets,

which will not lead to weak forward pre-invariance only, when the smaller sublevel

sets are excluded from the interest set M2.

10

2

2

-2

-2 x1

x2

W2(x) = 4

C2

D2

G2(x)

F2(x)

Figure 7.23: System H1 in Example 7.5.6.

△
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Proposition 7.5.1 establishes a forward pre-invariance property of sublevel sets

of Lyapunov-like functions for a modified version of a hybrid system H, namely H̃.

In particular, H̃ has the same flow and jump map as the original system H, but

its flow set and jump set are intersected by the sublevel set LW (c). We provide

sufficient conditions for the set M to be forward invariant for H̃ by applying

Theorem 4.1.4.

An example illustrating Theorem 7.5.3 is presented next.

Example 7.5.7 (Estimating Weakly Forward Invariant Set) Consider the

hybrid system H = (C, F,D, g) in R2 given by

F (x) :=






 −x2
x1 − 0.5


 if x1 > 0

[0 − 0.5]⊤ if x1 = 0

 −x2
x1 + 0.5


 if x1 < 0

∀x ∈ C := ((0, 0.5) + 0.5B)
⋃

((0,−0.5) + 0.5B)

g(x) :=






1− x1

0


 if x ∈ D1


−1− x1

0


 if x ∈ D2

∀x ∈ D := D1 ∪D2,

where D1 := {x ∈ R2 : x2 = 0, x1 ≥ 0.5} and D2 := {x ∈ R2 : x2 = 0, x1 ≤ −0.5}.
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x1

x2

1-1

D1D2

C

M1M2

Figure 7.24: Possible solution trajectories configuration of Example 7.5.7.

It is not possible to include every point in C using a single sublevel set of a

Lyapunov like function. However, it is possible to use two different functions W1

and W2 such that every point within C is captured in the union of two sublevel sets.

We propose two candidates W1(x) = (x1 − 0.5)2+x22 and W2(x) = (x1 + 0.5)2+x22.

For each x ∈ {x ∈ C : x1 > 0}, the inner product between F and ∇W1 is

〈∇W1(x), F (x)〉 = (2x1 − 1)(−x2) + 2x2 (x1 − 0.5) = 0;

for each x ∈ {x ∈ C : x1 < 0},

〈∇W2(x), F (x)〉 = (2x1 + 1)(−x2) + 2x2 (x1 + 0.5) = 0;

and at the origin: 〈∇W1(x), F (x)〉 = 〈∇W2(x), F (x)〉 = 0.

Then, we check W at jumps. For every point in D1 we have

W1(g(x))−W1(x) = (0.5− x1)
2 + x22 − (x1 − 0.5)2 − x22 = 0,

and for every point in D2, we have

W2(g(x))−W2(x) = (−0.5− x1)
2 + x22 − (x1 − 0.5)2 − x22 = 0.

We choose M1 = LW1(c1) and M2 = LW2(c2), which are subsets of C, for H
with c1 = c2 = 1. Then, according to Proposition 7.5.1, M1 is forward pre-

invariant for H̃1 = (M1 ∩C, F,M1 ∩D, g), and M2 is forward pre-invariant for

H̃2 = (M2 ∩C, F,M2 ∩D, g). We verify that M1 and M2 are forward invariant

for H̃1 and H̃2, respectively, by applying Proposition 7.5.2. According to the data
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of H̃i, i ∈ {1, 2}, solutions to H̃1 and H̃2 can always be extended, respectively, by

either flowing or jumping on M1 and M2, respectively.

In addition, as shown in Figure 7.24, solutions starting from the origin (x = 0)

can either flow into the left circle or right circle according to F . Therefore, we

know neither M1 nor M2 is forward invariant set for the given H. On the other

hand, Theorem 7.5.3 implies that the sets M1,M2, and W = M1∪M2 are weakly

forward invariant for H. △ △

Without completeness of each φ ∈ SH̃i
(Mi) for every i ∈ {1, ..., N}, when

extending the solutions to the original system H, φ ∈ SH(W) may be allowed to

flow outside of W due to the changes of domF and (or) domG. An example to

illustrate the idea is as follow.

Example 7.5.8 Consider hybrid system H = (C, f,D, g) in R given by

f(x) := 1 ∀x ∈ C := R, g(x) = 0 ∀x ∈ D := ∅.

Consider sets M1 = [0, 1] and M2 = [1, 2]. M1 is forward pre-invariant for

H̃1 = (M1 ∩ C, f,M1 ∩D, g) and M2 is forward pre-invariant for H̃2 = (M2 ∩
C, f,M2∩D, g). By observing, we know solutions to H̃1 and H̃2 are not complete,

but rather stop at the right boundary of M1 and M2. Since f(x) for H are allowed

to flow continuously on R, set W = M1∪M2 is not weakly forward invariant for

H. △ △

Next, we propose an alternative construction for the restricted hybrid system

in Proposition 7.5.1 that does not require (7.65) to hold for the jump map G and

jump set D.

Given H = (C, F,D,G) in Rn and M ⊂ Rn, let the hybrid system H̃ =

(C̃, F, D̃, G̃) be given by

H̃




x ∈ C̃ ẋ ∈ F (x)

x ∈ D̃ x+ ∈ G̃(x),
(7.69)
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where C̃ := C∩M, D̃ := dom G̃, and G̃(x) :=




G(x) if G(x) ∩M 6= ∅;

∅ otherwise
∀x ∈

Rn.

Lemma 7.5.9 If C ⊂ domF and D ⊂ domG, then C̃ ⊂ domF and D̃ ⊂ dom G̃.

Proposition 7.5.10 Let W : Rn → R≥0 be continuous and c ≥ 0. Pick M =

{x ∈ Rn : W (x) ≤ c} and let the data of H̃ in (7.69) be generated with such a

choice of M. Define K := M∩ (C̃ ∪ D̃). If K is forward invariant for H̃ then it

is also weakly forward invariant for H.

Proof From the definition of K, we know that K ⊂ C̃ ∪ D̃. Since C̃ ⊂ C and

D̃ ⊂ D, K ⊂ C ∪D. By definition, K being forward invariant for H̃ means the

following: for every point in K, there exist at least one solution φ to H̃, and all

solutions to H̃ are complete and stay in K for all hybrid time. Because both

H and H̃ share the same flow map F , and jump set G̃ for H̃ is given by G on

{x ∈ Rn : G(x) ∩M 6= ∅}, we know that SH̃(K) ⊂ SH(K). Thus, for every point

in K, there exist at least one complete solution φ ∈ SH(K) that stays in K for all

hybrid time.

Remark 7.5.11 Proposition 7.5.10 only guarantees a weak forward invariant

property for the set K. This is because when D̃ = {x ∈ D : G(x) ∩ M 6= ∅}
and K ⊂ M, for every x ∈ D \ D̃ we have G(x) ∩ K = ∅. As a result, some

φ ∈ SH(K) will jump out of K by G. In other words, when (C̃ \ D̃) ∩D 6= ∅, we

have SH(K) \ SH̃(K) 6= ∅.

The invariance principle introduced in [61, Theorem 8.2] requires the com-

putation of (the largest) weakly invariant sets (inside some particular set) to

characterize the set to which solutions that are bounded and complete converge.

Theorem 4.1.2 can be helpful in such computation, in particular, to determine

weakly forward invariant sets. The following example illustrates such an applica-

tion of Theorem 4.1.2.
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Example 7.5.12 (Determining Largest Invariant Sets) Consider the hybrid

system H = (C, f,D, g) in R2 given by

f(x) :=

[
−x2
x1

]
∀x ∈ C := R× [0,+∞),

g(x) :=

[
−x2
x1

]
∀x ∈ D := R× (−∞, 0].

x1

x2

D

C

Figure 7.25: Possible solution trajectories configuration of Example 7.5.12.

To determine where solutions to H converge to, using [61, Theorem 8.2], we

take the Lyapunov-like function W (x) = 1
2
x21+

1
2
x22, and define the functions uC(x)

and uD(x) as

uC(x) :=




〈∇W (x), f(x)〉 = 0 if x ∈ C

−∞ otherwise

uD(x) :=




W (g(x))−W (x) = 0 if x ∈ D

−∞ otherwise

Then, following [61, Theorem 8.2], we compute the zero level set of uC and uD
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defined above. It follows that

u−1
C (0) = R× [0,+∞) u−1

D (0) = R× (−∞, 0].

Furthermore, we have

g(u−1
D (0)) = [0,+∞)× R.

Thus, [61, Theorem 8.2] implies that every maximal solution to H approaches the

largest weakly invariant set given by

W−1(r) ∩ R2 ∩ [(R× [0,+∞)) ∪ ((−∞, 0]× (−∞, 0])].

Then, given an arbitrary choice of r, this set can be rewritten as

K = {x ∈ R2 : |x| = r, x1 ≥ 0} ∪ {x ∈ R2 : |x| = r, x2 ≥ 0}.

The set K is weakly forward invariant according to Theorem 4.1.2. In fact, con-

dition 3.1) holds since for every point in K ∩ D, the jump map returns a point

in K, and for every point in K ∩ (C \D) the linear oscillator dynamics permits

flowing within the flow set. Condition 3.2) holds due to the properties of the flow

map. △
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Chapter 8

Conclusion and Future Work

In this dissertation, the forward invariance properties of a set are thoroughly

investigated. We present a summary of major content and several potential future

research directions in this chapter.

8.1 Conclusion

The hybrid inclusions is a modeling framework that models a wide range of

dynamical systems, for example, pure continuous-time systems, pure discrete-time

systems, and hybrid systems. This modeling framework also allows for nonlinear

set-valued system dynamics, presence of disturbances, and overlaps between the

flow and jump sets. Overcoming these complex characteristics, we provide a

systematic approach to analyze forward invariance properties of sets and synthesis

control designs that induce these important properties.

For starters, notions of nominal and robust forward invariance of sets for au-

tonomous hybrid systems are formally provided. The notions are established

based on solution (or solution pair) properties. In particular, we characterize the

property of whether a solution (or a solution pair) starts from a set stays in that

set for all future time. Moreover, the completeness of solutions (or solution pair)

is also considered as key feature to differentiate the notions.
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To prepare for the analysis effort in Chapter 4, the result [61, Proposition

2.10] is extended to hybrid systems with disturbances. It provides an in-depth

understanding on existence of nontrivial solution pairs to hybrid system Hu,w and

their behaviors based on their domains. For each type of forward invariance,

a set of sufficient conditions is presented for verifying such property for generic

sets. These conditions include a jump related condition, which ensures solutions

(or solution pairs) jump back to the set of interest, a flow related condition,

which ensures solutions (or solution pairs) flow in the set of interest, and a finite

escape time condition, which, together with the two other conditions, leads to

completeness of solutions (or solution pairs). Among these conditions, for some of

the notions, locally Lipschitzness and a uniform property on disturbances during

flows are enforced to guarantee every solution (pair) satisfies the desired invariance

property.

When provided a Lyapunov-like function V for the system, conditions pre-

sented in Chapter 4 can be modified to derive invariance properties for the sublevel

sets of V , namely, Mr (or Mw
r ). In particular, during flow, solutions (solution

pairs) cannot escape the sublevel sets because the non-increasing properties of

the Lyapunov-like function V along solutions within a thin band outside of the

sublevel sets. Such a property guarantees all solutions initialized within Mr (or

Mw
r ) stay in it by absolute continuity of the solutions (solution pairs) during flow.

During jumps, the Lyapunov-like function V ought to remain less than the value

that defines the sublevel set such that the solutions (solution pairs) do not jump

to higher level sets. Then, we modify a condition from Chapter 4 to ensure so-

lutions (or solution pairs) always jump back to the union of jump and flow sets

on the state space. As a result, one achieves forward pre-invariance, which does

not require completeness of solutions (or solution pairs), of the sets Mr (or Mw
r ).

In addition, to guarantee existence of nontrivial solutions from every point in the

flow set intersected with Mr (or Mw
r ), a set of conditions that involve the flow

set, flow map and the Lyapunov-like function V are derived. These conditions
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explore the tangent cone properties of intersected sets, in our case, the flow set

and the sublevel set of V . As a result, (robust) forward invariance notions that

require completeness of solutions (or solution pairs) are achieved according to the

modified result of [61, Proposition 2.10].

Using a variation of proposed Lyapunov conditions for (robust) forward in-

variance in Chapter 5, control Lyapunov functions are defined for forward invari-

ance purposes, namely, CLF-FI for Hu and RCLF-FI for Hu,w. Then, regulation

maps are built to include all possible inputs that induce forward invariance of

the sublevel sets of CLF-FI (or RCLF-FI). More precisely, these maps collect all

Hu−admissible (or Hu,w−admissible) inputs during flows and jumps such that

the closed-loop systems satisfy the flow and jump conditions derived in Chap-

ter 5. Then, to ensure the closed-loop systems satisfy the hybrid basic conditions

for robustness with respect to small state perturbations, continuous control feed-

back laws are constructed using these regulation maps. The existence of such

continuous feedback selections is established by checking a few mild conditions on

system data that induce the lower semicontinuity of the regulation maps. Finally,

building on the existence results, we present a constructive state-feedback design

that features a minimal norm selection scheme.

We also provide several engineering applications to illustrate the analysis and

control design tools developed in this dissertation for hybrid systems modeled as

hybrid inclusions model. Among these applications, (robust) forward invariance

properties are crucial to achieve analysis and control goals for each design problem.

In particular, for a DC/AC inverter control design, forward invariance of a band

around the reference trajectory on the state space for the closed-loop system

implies the resulting solutions evolve near the reference trajectory for all time.

Together with a global convergence property, the closed-loop system generates the

desired output sinusoidal-like signal. Then, for a DC/DC converter, by rendering

forward invariance of a small neighborhood around the set point on the state

space, a switching control law is derived to guarantee the DC-like output with
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higher voltage. Such a property is also crucial to achieve asymptotic stability of

the set for the closed-loop system. Then, state-feedback control laws are derived

for a constrained bouncing ball system with uncertain coefficient of restitution,

so that the peak height after each bounce remains within a desired range. This is

achieved by rendering robust forward invariance of the intersection of the flow set

and the sublevel set of a RCLF-FI, which is defined based on the energy level of

the bouncing ball system. Finally, we adapt our results to the use of estimating

the largest weakly invariant set for invariance principle of hybrid system.

8.2 Future Directions

Forward invariance properties for hybrid dynamical systems have great po-

tential in many motivational applications as presented in Chapter 7. Possible

future developments on theoretical analysis and invariance-based controls with

applications arises in the following topics.

• A Differential Game using Forward Invariance of Hybrid Systems

The pointwise minimal norm selection scheme presented in Section 6.3.2

features a invariance inducing control strategy that requires minimal control

effort. In fact, the constructed feedback laws are suboptimal with respect

to some meaningful cost function for a zero-sum hybrid game. Inspired by

[73, Chapter 4.2], the cost function include a quadratic cost component that

evaluates the cost during continuous evolution of the solutions for each initial

conditions. In addition, a cost component that characterizes the cost during

jumps can be established in similar forms.

In [3, Chapter 14], the optimality of a differential game is considered in the

sense of “playability” that is derived from forward invariance properties that

come from feedback control designs. One can derive the similar concept for

the hybrid inclusions.

• Safety and Control Barrier Functions for Hybrid Systems
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As mentioned repeatedly in this dissertation, forward invariance of sets are

widely considered to represent “safety” specifications for control systems.

For hybrid automata, Tomlin and co-authors established in-depth work to

formulate “safe” sets at forward invariant sets, [8]. Moreover, these “safe” sets

are computed numerically via reachability analysis [43, 58]; while controller

guaranteeing the “safety” specifications for hybrid automata are designed by

solving hybrid games [44].

In addition, extending [9, 38], control barrier functions defined for safety

guarantees for hybrid inclusions are under development using the tools pro-

posed in this dissertation. In particular, such functions surpass the tra-

ditional control Lyapunov functions in safety applications, since they are

often defined by the “boundaries” of the safe sets [46, 47]. A popular ap-

proach to solve for control barrier function based designs is to formulate it

to quadratic programming problems [39]. Our results for hybrid inclusions

can be extended in these directions.

• Forward Invariance in Model Predictive Control of Hybrid Sys-

tems

Similar to the “playability” in [3, Chapter 14], for model predictive control

(MPC), forward invariant sets that satisfy control constraints are consid-

ered to be the feasible regions where feedback laws are selected from. For

instance, in [6, 11], forward invariant sets, which are characterized by con-

trol horizon, prediction horizon and terminal constraint, are used to design

a MPC controller for nonlinear systems. In [10] and [12], forward invariant

sets featuring “safety” specifications based on environments are used to as-

sess the thread during a semi-autonunous driving scenario and to guarantee

safety in traffic networks, respectively.

Motivated by these applications, MPC feasibility problems for a wide class of

systems can be formulated as solving the controlled forward invariance sets

for hybrid systems. Such an algorithm can be computational challenging due
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to the use of tangent cone properties and defining the appropriate control

Lyapunov functions. For starters, one can extend the MPC algorithm in [6]

for computing the maximal controlled invariant set to the hybrid inclusions.

• Event-triggered Control for Forward Invariance in Hybrid Systems

As an efficient control implementation strategy, event-triggered control that

achieves stability draw increasing attention in the research community. This

is due to its nature of reducing the need to periodically update the control

input by triggering the updates only when necessary, i.e., a control condition

is violated. Among these, our recent effort in the modeling and analysis of

event-triggered controlled systems for hybrid inclusions [92] calls for in-depth

analysis of forward invariance inducing control implementations. Such result

has the potential to tackle the Zeno solution behavior near the stabilization

sets for event-triggered controlled systems in general.

• Hybrid Basic Conditions for Forward Invariance in Hybrid Sys-

tems

In [61], robustness of asymptotic stability of compact sets are guaranteed

by enforcing a set of conditions call the hybrid basic conditions; see Defi-

nition 2.0.8. Outside of the context of asymptotically stability of compact

sets, the sublevel sets of control Lyapunov functions for forward invariance

in Chapter 6 has the potential to achieve stability properties in a neighbor-

hood of itself. Such a property can be achieved by studying contractivity

of invariance sets for hybrid inclusions. Moreover, by clarifying the effect

of hybrid basic conditions on the forward invariance properties of sets, we

can better understand the connection between robustness of stability and

robust forward invariance of sets.

Other areas of science and engineering that would benefit from the theoretical and

practical results in this dissertation include several problems in biology, economics

and social science. For instance, according to Darwinian’s natural selection, sys-
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tems and organisms in nature evolve in nondeterministic ways; while the nature,

through physical constraints, “selects” the species that have better “survival" po-

tentials based on their abilities to “fit in" the environment. The concept of forward

invariance for hybrid systems with disturbances and constraints can be extended

to describe such behaviors. More precisely, the evolution history of the “survival"

species can be seen as solutions to the natural system that start within the sets,

which describe constraints like temperature, humidity, and pressure, and stay

within it for all time during their existence. Similar practices appear in economics

and social science, where the time span of system evolution is significantly shorter

than the classical “natural selection” problem. For example, determining implicit

evaluation of the volatility of portfolios and management of renewable resources

[93, Chapter 7 and Chapter 15] can be solved using forward invariance tools.

We believe this dissertation contributes both to the theory and applications

of hybrid control systems by introducing new analysis, and design tools that are

useful for the control community and other related fields.
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Appendix A

Set-valued Analysis Tools

Definition A.0.1 (local boundedness) A set-valued mapping M : Rm ⇒ Rn is

locally bounded at x ∈ Rm if there exists a neighborhood Ux of x such that M(Ux) ⊂
Rn is bounded. The mapping M is locally bounded if it is locally bounded at each

x ∈ Rm. Given a set S ⊂ Rm, the mapping M is locally bounded relative to S

if the set-valued mapping from Rm to Rn defined by M(x) for x ∈ S and ∅ for

x1 6∈ S is locally bounded at each x ∈ S. �

Definition A.0.2 (outer semicontinuity of set-valued maps) A set-valued map

S : Rn ⇒ Rm is outer semicontinuous at x ∈ Rn if for each sequence {xi}∞i=1

converging to a point x ∈ Rn and each sequence yi ∈ S(xi) converging to a point

y, it holds that y ∈ S(x); see [94, Definition 5.4]. Given a set K ⊂ Rn, it is outer

semicontinuous relative to K if the set-valued mapping from Rn to Rm defined by

S(x) for x ∈ K and ∅ for x /∈ K is outer semicontinuous at each x ∈ K. �

Definition A.0.3 (Lipschitz continuity of set-valued maps) Given a set-valued

map F : Rn ×Wc ⇒ Rn, the mapping x 7→ F (x, w) is locally Lipschitz uniformly

in w at x, if there exists a neighborhood U of x and a constant λ ≥ 0 such that
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for every ξ ∈ U

F (x, w) ⊂ F (ξ, w)+λ|x− ξ|B
∀w ∈ {w ∈ Wc : (U ×Wc) ∩ domF}.

Furthermore, x 7→ F (x, w) is locally Lipschitz uniformly in w on set K ⊂ domF

when it is locally Lipschitz uniformly in w at each x ∈ Π(K). �

Definition A.0.4 (lower semicontinuous set-valued maps) A set-valued map S :

Rn ⇒ Rm is lower semicontinuous if for every x ∈ Rn, one has that lim inf
xi→x

S(xi) ⊃
S(x), where

lim inf
xi→x

S(xi) := {z : ∀xi → x, ∃zi → z s.t. zi ∈ S(xi)}

is the inner limit of S (see [94, Chapter 5.B]). �

Corollary A.0.5 ([71, Corollary 2 of Theorem 2.9.8]) Let C1, C2 ⊂ Rn and that

x ∈ C1 ∩ C2. Suppose that

TC1 ∩ intTC2(x) 6= ∅,

and that C2 admits at least one hypertangent vector at x. Then, if C1 and C2 are

regular at x, one has

TC1 ∩ TC2(x) = TC1∩C2(x).

Proposition A.0.6 ([73, Proposition 2.11]) Let set-valued mapsH,L : Rn ⇒ Rm

be such that gphL ⊂ gphH. If H(x) is lower semicontinuous and gphL is open

relative to gphH, then, L is lower semicontinuous.

Corollary A.0.7 ([73, Corollary 2.13]) Given a lower semicontinuous set-valued

map W and an upper semicontinuous function w, the set-valued map defined for

each z as S(z) := {z′ ∈ W (z) : w(z, z′) < 0} is lower semicontinuous.
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Theorem A.0.8 (Michael’s Selection Theorem, [73, Theorem 2.18]) Given a

lower semicontinuous set-valued map S : Rn ⇒ Rm with nonempty, convex, and

closed values, there exists a continuous selection s : Rn → Rm.

Theorem A.0.9 ([95, Theorem 4.1]) Given a closed set A ⊂ Rn and a continu-

ous map s : A 7→ Rm. Then there exists a continuous extension s̃ : Rn 7→ Rm of

s. Furthermore, s̃ ⊂ co(s(A)).

Proposition A.0.10 (Minimal Selection Theorem [73, Proposition 2.19]) Let the

set-valued map S : Rn ⇒ Rm be lower semicontinuous with closed graph and

nonempty closed convex values. Then the minimal selection m : Rn → Rm, which

is given by

m(x) := argmin {|z| : z ∈ S(x)} ,

is locally bounded and gphm is closed and continuous.

Definition A.0.11 (Hypertangent) A vector v ∈ X is said to be hypertangent to

the set C at the point x ∈ C if, for some ε > 0,

y + tw ∈ C for all y ∈ (x+ εB) ∩ C,w ∈ v + εB, t ∈ (0, ε).

�

Proposition A.0.12 ([73, Proposition 2.16]) Let W : Rn ⇒ Rm be locally Lip-

schitz continuous with convex values. Let r : Rn → R>0 and ε : Rn → (0, 1) be

locally Lipschitz continuous, and suppose we have W (x) ∩ ε(x)r(x)B 6= ∅ for all

x ∈ Rn. Then, S : Rn ⇒ Rm defined by S(x) := W (x) ∩ ε(x)r(x)B is locally

Lipschitz continuous.
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Proposition A.0.13 ([73, Proposition 2.14]) Given a locally Lipschitz set-valued

map W with nonempty compact convex values. Let w be locally Lipschitz continu-

ous and such that the mapping z′ 7→ w(z, z′) is convex for each fixed z. Then the

set-valued map defined by S(z) := {z′ ∈ W (z) : w(z, z′) < 0} is locally Lipschitz

continuous on domS.

Proposition A.0.14 ([73, Proposition 2.20]) Given a locally Lipschitz set-valued

map S : Rn ⇒ Rm with nonempty, closed, convex values. Then, there exists a

locally Lipschitz selection such that s : Rn → Rm.

Lemma A.0.15 ([71, Theorem 2.9.10]) Given a set S := {x : h(x) ≤ 0}, suppose

that, for every x ∈ {x : h(x) = 0}, h is continuously differentiable at x with

0 /∈ ∇h(x) 6= ∅ and the collection of vectors Y := {y : 〈∇h(x), y〉 < ∞} is

nonempty. Then, the set S admits a hypertangent at x and

1) y ∈ TS(x) if 〈∇h(x), y〉 ≤ 0;

2) ∃y ∈ intTS(x) ∩ intY such that 〈∇h(x), y〉 < 0.
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