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Calcium Coordination Solids for pH-Triggered Release of Olsalazine 
Dana J. Levine, Miguel I. Gonzalez, Christina M. Legendre, Tomče Runčevski, Julia Oktawiec, Kristen 
A. Colwell, and Jeffrey R. Long*

Abstract: Calcium coordination solids were synthesized and 
evaluated for delivery of olsalazine (H4olz), an anti-inflammatory 
compound used for treatment of ulcerative colitis. The materials 
include one-dimensional Ca(H2olz)·4H2O chains, two-dimensional 
Ca(H2olz)·2H2O sheets, and a three-dimensional metal–organic 
framework Ca(H2olz)·2DMF (DMF = N,N-dimethylformamide). The 
framework undergoes structural changes in response to solvent, 
forming a dense Ca(H2olz) phase when exposed to aqueous HCl. 
The compounds Ca(H2olz)·xH2O (x = 0, 2, 4) were each pressed 
into pellets and exposed to simulated gastrointestinal fluids to mimic 
the passage of a pill from the acidic stomach to the pH-neutral 
intestines. All three calcium materials exhibited a delayed release of 
olsalazine compared to Na2(H2olz), the commercial formulation, 
illustrating how formulation of a drug within an extended 
coordination solid can serve to tune its solubility and performance. 

Olsalazine is a prodrug of the anti-inflammatory 5-
aminosalicylic acid (5-ASA, Figure 1a), which is prescribed as 
the first line of treatment for patients with idiopathic inflammatory 
bowel diseases such as Crohn’s disease and ulcerative colitis.1 
Since 5-ASA alone does not reach the colon when administered 
orally, an enteric coating is required for formulation.2 
Alternatively, 5-ASA is prepared as an azo-linked prodrug such 
as olsalazine, which is cleaved by bacterial azoreductases in the 
colon where the concentration of bacteria is highest (Figure 1b).3 
Patients with ulcerative colitis often require daily multigram 
doses of 5-ASA to achieve therapeutic concentrations in the 
colon,4 so it is desirable to minimize the amount of excipients or 
adjuvant molecules in the dosage form. Among approved 
prodrugs of 5-ASA, olsalazine is the most efficient by weight, 
since it is a homodimer of two 5-ASA molecules, whereas 
sulfasalazine and balsalazide are heterodimers of 5-ASA and 
carrier molecules.   

While olsalazine disodium is effective for treatment of active 
ulcerative colitis and for maintenance of remission,5 as much as 
35% of patients experience diarrhea as a side effect, causing 
over 10% of patients to discontinue treatment.6 These dose-
dependent effects are also observed with other azo-linked 
prodrugs of 5-ASA7 and are attributed to increased secretion of 

anions and inhibition of NaCl absorption in the small intestine.8 
Such side effects may be diminished in formulations that 
minimize olsalazine release throughout the upper 
gastrointestinal tract. To this end, olsalazine has been 
incorporated into materials such as polymer matrices and 
hydrogels;9 however, the high molecular weights of the additives 
required for preparation of these materials result in a low weight- 
percent of olsalazine, which may be problematic due to dosing 
limitations. 

Metal–organic frameworks and coordination solids have 
been increasingly investigated for potential applications in drug 
delivery, owing to their structural diversity and high drug-loading 
capacities.10 A variety of metal–organic materials have been 
made using bioactive linkers,11 and such materials can serve as 
platforms for release of both bioactive molecules and metal 
ions.12 While a handful of biocompatible olsalazine coordination 
solids are known,13 only one has yet been tested for time-
dependent drug release.13b We therefore sought to evaluate the 
drug-release properties of a wider array of biocompatible 
olsalazine coordination solids. In particular, we focused on 
calcium-based solids because Ca2+ is known to produce a 
variety of architectures with dicarboxylate ligands.14 Additionally, 
the Ca2+ component itself may provide therapeutic benefits for 
patients with ulcerative colitis.15 In this study, calcium 
coordination solids that form one-, two-, and three-dimensional 
structures with olsalazine (H4olz) were synthesized, 
characterized, and investigated as potential alternatives to the 
existing olsalazine disodium formulation. 

A one-dimensional coordination solid Ca(H2olz)·4H2O (1, 
Figure 2) has been reported previously, where the material was 
made by slow evaporation from a water-ethanol mixture.13a 
However, we have accessed this compound through a more 
rapid synthesis from Ca(NO3)2·4H2O and olsalazine that requires 
only water as the solvent and a reaction time of hours instead of 
weeks. Its crystal structure consists of pentagonal bipyramidal 
Ca2+ ions that are each coordinated to four water molecules and 
three carboxylate oxygen atoms from two different olsalazine 
molecules, where one carboxylate coordinates in a monodentate 

 
Figure 1. Structure and recommended oral dose2 for (a) 5-ASA and (b) azo-
linked prodrugs, which release 5-ASA and a carrier molecule. In olsalazine, 
the carrier is another equivalent of 5-ASA. 
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fashion and the other in a bidentate fashion. Each olsalazine unit 
thus bridges two Ca2+ ions to produce one-dimensional chains. 

We have also discovered a new two-dimensional phase, 
Ca(H2olz)·2H2O (2, Figure 2), and determined its structure by 
single-crystal X-ray diffraction. This phase can be obtained 
through reaction conditions similar to those developed for the 
one-dimensional chains. While sonication or stirring of the 
reaction mixture at elevated temperature tends to favor the one-
dimensional phase, leaving the reaction undisturbed tends to 
afford the two-dimensional phase. This behavior suggests a 
delicate balance in the reaction kinetics and thermodynamics 
that govern the formation of one phase over the other.16 The 
sheets within this crystal structure are comprised of pentagonal 
bipyramidal Ca2+ ions, which are each coordinated to two water 
molecules in a cis geometry and five carboxylate oxygen atoms 
from the bridging olsalazine units. 

Reaction of Ca(NO3)2·4H2O and olsalazine in a mixture of 
DMF and ethanol under solvothermal conditions yields single 
crystals of the three-dimensional metal–organic framework 
Ca(H2olz)·2DMF (3·DMF, Figure 3a). In this structure, the Ca2+ 
ions exhibit an octahedral coordination environment with two 
DMF molecules bound in the axial positions and carboxylate 
oxygen atoms from four different olsalazine ligands bound in the 
equatorial positions. 

The framework exhibits remarkable flexibility, undergoing 
significant structural changes in the presence of different 
solvents. Similar behavior has been observed for other calcium 
frameworks with dicarboxylate ligands.14b-e Exposure of 3·DMF 
to wet methanol produces a new phase, Ca(H2olz)·2MeOH·H2O 
(3·MeOH), with a structure that was determined from powder X-
ray diffraction data (Figure 3b). Comparison of the structures 
revealed that the two coordinated DMF molecules in the original 
material are replaced by one methanol and one water molecule; 

an additional methanol molecule resides in the pore. Although 
the connectivity of the olsalazine ligand to the Ca2+ ion is 
maintained throughout this flexing, there is a dramatic shift in the 
positions of the solvent molecules. In the original structure, the 
DMF molecules are trans to one another, whereas the bound 
solvent molecules in the methanol structure are cis to one 
another (Figure 3, right). 

Immersion of either 3·DMF or 3·MeOH in 100-mM aqueous 
HCl irreversibly generates a third phase, likely with an 
accompanying change in ligand coordination mode (Figure 4). 
While the powder pattern of this phase could not be indexed to 
determine the structure, thermogravimetric analysis showed a 
single mass loss event at ~250 °C corresponding to 
decomposition (Figure S10). In conjunction with elemental 
analysis, this result corroborates a dense phase with the formula 
Ca(H2olz) (3) in which no solvent is present. 

To evaluate the potential utility of Ca(H2olz)·xH2O 
coordination solids in the treatment of ulcerative colitis (x = 4, 2, 
and 0 for 1, 2, and 3, respectively), each material was tested for 
drug release in comparison with Na2(H2olz), which is the salt 
used in the commercial formulation (available as Dipentum). 
Each material was pressed into a pellet and exposed to 
solutions that mimic the pH of the stomach, small intestine, and 
colon (Figure 5). The pH and composition of the release medium 
was changed by addition of buffers in accordance with the 
expected transit times of a pill through the gastrointestinal tract: 
the first two hours were held at pH 1.1, the next two hours at pH 
6.0, and the final six hours at pH 7.3. The vessels containing the 
pellet in release media were shaken at 60 rpm and 37 °C to 
simulate the motion and temperature of the body.  

 
Figure 2. Portions of the crystal structures of Ca(H2olz)·4H2O (1) 
containing one-dimensional chains13a and Ca(H2olz)·2H2O (2) featuring 
two-dimensional sheets. Grey, blue, and red spheres represent carbon, 
nitrogen, and oxygen atoms, respectively; hydrogen atoms are omitted for 
clarity. Orange surfaces represent the polyhedra formed by the first 
coordination sphere of the Ca2+ ions. 

 
Figure 3. Portions of the crystal structures of (a) Ca(H2olz)·2DMF (3·DMF) 
and (b) Ca(H2olz)·2MeOH·H2O (3·MeOH) as viewed down c-axis (left) and 
the b-axis (right). Grey, blue, red, and white spheres represent C, N, O, 
and H atoms, respectively; some hydrogen atoms are omitted for clarity. 
Orange surfaces represent the polyhedra formed by the first coordination 
sphere of the Ca2+ ions. 
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Sample pellets were prepared from pure material without 
binders or other agents typically used for pill preparation in the 
pharmaceutical industry. This was done in order to probe the 
properties of each material without influence from any excipients. 
Due to this method of preparation, however, pellets were 
susceptible to disintegration, which can accelerate the observed 
dissolution rates. The calcium-olsalazine chains (1) and sheets 
(2), as well as the sodium-olsalazine material, partially 
disintegrated once in contact with the solution. The variability in 
pellet integrity likely contributed to the large observed standard 
deviation. Notably, the Ca(H2olz) framework (3) consistently 
resisted disintegration throughout the release experiments.  

All three of the Ca(H2olz) materials outperformed Na2(H2olz) 
by providing slower release of olsalazine in the simulated 
gastrointestinal environment. While all materials resisted 
dissolution at pH 1.1, the Na2(H2olz) dissolved more rapidly than 
the Ca(H2olz) materials at pH 6.0 and above. The difference in 
dissolution rates is particularly clear when comparing the 
amount of drug released at the 4-h time point, where over 90% 
of the olsalazine had been released from Na2(H2olz) while about 
50% had been released from the Ca(H2olz)·4H2O chains and the 
Ca(H2olz)·2H2O sheets. Notably, the dense Ca(H2olz) 
framework 3 had released less than 25% of the drug at the 
same point. While these differences in solubility rates can be 
partly attributed to differences in pellet integrity, the improved 
resistance of the Ca(H2olz) materials to dissolution may 
nevertheless aid in preserving olsalazine as a solid throughout 
the upper gastrointestinal tract. 

Multiple properties of the sodium- and calcium-olsalazine 
materials may contribute to the observed differences in drug 
release. For example, the differences in solubility are consistent 
with the expected trends for hard carboxylate donors with Na+

versus Ca2+.17 Both the local and extended structure of the 
coordination solids may also play a role in governing the 
dissolution rates, since the three-dimensional material exhibits a 
distinct release profile compared to the other calcium-olsalazine 
materials. For instance, the number of water molecules 
coordinated to calcium may influence the rate of olsalazine 
dissociation required for hydrolysis. Because the materials 
resisted disintegration to different degrees, however, it is difficult 
to deconvolute the specific effects of crystal structure with that of 
other macroscopic or mechanical properties of the materials 
when compressed into a pellet without excipients.  

Historically, sodium has been used far more frequently than 
other metal cations in drug formulation, largely due to its 
tendency to increase the solubility of an active pharmaceutical 
ingredient over its free acid form.18 In this work, we show that 
calcium can be used to synthesize new solid-state architectures 
that may further optimize the performance of an existing drug by 
refining its release rates and solubility under physiological 
conditions. The slow-release properties of the Ca(H2olz)·xH2O (x 
= 0, 2, 4) coordination solids may provide advantages over the 
commercial Na2(H2olz) formulation by reducing the side effects 
associated with soluble olsalazine in the small intestine.  

 
Figure 4. (a) Scheme illustrating the reversibility between the DMF and 
methanol-solvated structures of the three-dimensional Ca(H2olz) metal–
organic framework and the irreversible change that occurs after exposure to 
100-mM aqueous HCl (3). (b) Flexibility of the three-dimensional Ca(H2olz) 
structure was analyzed by powder X-ray diffraction (λ = 0.72768 Å). 

 
Figure 5. Release of olsalazine from Na2(H2olz) (gray circles) and 
Ca(H2olz)·xH2O materials under simulated gastrointestinal conditions (x = 4, 
2, 0, denoted by teal squares, purple triangles, and orange diamonds, 
respectively). Error bars represent standard deviation across three 
independent data sets, where the quantity of olsalazine in solution was 
measured spectroscopically (λ = 360 nm). The release media were changed 
throughout the study to emulate the typical pH and transit times of a pill 
passing through the stomach (pH 1.1, 2 h, red), small intestine (pH 6.0, 2 h, 
yellow), and colon (pH 7.3, 6 h, green). 
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