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Department of Artificial Intelligence, School of Computer Science and Engineering, University of New South Wales,
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Abstract

We address the question of how artificial systems and natural
organisms develop spatial competence. Most artificial systems
draw upon considerable sophisticated operator- or developer-
originated knowledge about what in the world sensor signals
represent. Natural systems do not have such sophisticated aux-
iliary sources of information. We are interested in how, despite
this, they achieve perceptual organisation, and suspect that the
methods they use will have generalisable effectiveness. We de-
scribe a process that creates coherent mappings between the
physical world and the phenomenological realm, analogous to
retinotopicity and sensory homuncularity in natural systems,
and discuss its application to problems of higher dimensional-
ity and higher levels of abstraction. Importantly, such a proc-
ess, having proved successful in the perceptual robotics do-
main of our current interests, is likely to be found in other cog-
nitive domains because its strengths lie in its ability to organise
and implicitly summarise data in the absence of clues about
what that data represents.

Introduction

Most artificial systems draw upon considerable sophisticated
operator- or developer-supplied knowledge when making
assumptions about what lies on the external side of their sen-
sor arrays. Natural systems do not have such sophisticated
auxiliary, or a priori, sources of information. They must
come to make the right assumptions completely autono-
mously (given the head start provided by their genetic en-
dowment).

Several artificial self-organising low-level vision systems
have been developed, e.g., by Linsker (1988). Generic to
these systems is a dependence on a pre-existent orthogonal
matrix of inputs, resulting from choices made by the operator
or developer, or imposed by video or hardware standards.
The data that these discrete vision systems process come
conveniently packaged in this orthogonal matrix, which itself
contains much implicit information about the outside world,
but not all of it helpful.

Prokopowicz (1994) showed that there is no inherent value
in the orthogonality of the input image, but that what is es-
sential to a visual robot is an internal mapping between pixels
and motor positions. His system, IRV, eschewing or-
thogonality, locates pixels relative to each other via motor
commands in the form of a set of statements to the effect that,
given motor movement M, the point in the environment that
now appears in pixel B, will next appear in pixel A.

IRV is dependent on unequivocal knowledge of its moto-
rium, and it is from this sound basis that it builds the organi-
sation of its sensorium. Knowledge of the motorium takes the
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form of direct control of the pan and tilt motors that govern
its camera’s direction of gaze. IRV therefore bears some-
what asymmetrical relationships to its sensorium (ran-
domly ordered but subjected to modification) and its moto-
rium (ordered, fixed, and used as a reference).

This asymmetry raises an interesting question: are the
organisational principles used by IRV capable of learning
both sensory organisation and motor organisation? And, if
so, can they be used to evolve a system which might lie
between any unknown sensorium-motorium coupling, and
learn its way to a position of control over the whole appa-
ratus?

The answer to these questions is positive if the senso-
rium can self-organise, since it can, in turn, be used to or-
ganise an unknown motorium, as has been shown, e.g., by
van der Smagt (1995), whose work is in some ways a mir-
ror image of IRV. And if so, this might help explain how
immature animals learn to improve simultaneously both
their coordination and perception, becoming spatially
competent adults. This is one motivation for undertaking
this research. The potential to develop robots that first con-
figure themselves (and in so doing, adaptively learn how to
perceive and behave) is a second motivator, but perhaps
the most important motivation is that the problem charac-
teristics can be cast in a context-independent form. The
problem is that of learning, unsupervised, in an open loop,
and in the absence of all meta-information, a succinct rep-
resentation whose internal similarities aptly capture simi-
larity in the unseen source of the data. The applicability of
a solution therefore extends beyond the domain under cur-
rent discussion.

We use the analogy of a jigsaw puzzle to illustrate the
principle characteristic of our algorithm. The usual steps
for solving a jigsaw puzzle can be characterised thus:

1. Locate corner and edge pieces

2. Coarsely group all pieces according to main colour
and texture (e.g., ‘sky’)

3. Select pairs of high similarity

4. Fit pieces to nearest neighbours found in step 3.

We note that steps 1 and 4 both depend on the form (edges)
of the pieces, whereas steps 2 and 3 depend only on their
content (colour and texture). However, difficult problems
are often devoid of convenient a priori ‘form’ clues
(analogous to jigsaw piece edges, or location in an or-
thogonal matrix) because these are the artifacts of a prior
organisation - precisely what we do not have, need to de-
rive, and cannot assume. We must instead rely solely on a
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method analogous to steps 2 and 3, grouping according to
similarity.

Methods

Rather than simply arranging pieces of an image, our current
task is to arrange inputs that carry those pieces of information
to us. Once arranged, the inputs will convey any image cor-
rectly. To extend the analogy, it is as if, having completed the
jigsaw, we are able to note the location of each piece and the
precise unique shape of that piece. Using that information
alone we are able to assemble any other jigsaw from the same
cutter, without seeing its image.

We define a sensory input as a line of communication that
provides information about a single point in the world. This
information, its signal, varies over time if that part of the
world changes. An input also has an internal location in a
context made by the set of all inputs.

There are three ways in which any two inputs can be said
to be related:

Environmental Proximity — the points in the world to
which the inputs refer are close together;

Behavioural Proximity — over time the values of the in-
puts vary proportionally and in time with each other;

Geometrical Proximity — the internal locations (coordi-
nates) assigned to the inputs are close together.

It is the relationships of these three kinds of proximity that
form the subject of this paper. The input to our algorithm is
behavioural data; the output is geometrical data. We show
that there is sufficient isomorphism between unavailable en-
vironmental data and available behavioural data such that the
latter can be used to construct a coherent geometrical repre-
sentation of the former. From this observation we ultimately
wish to bootstrap a learning visuo-motor agent (see Figure 1).

As the goal of this work is to derive order for a set of in-
puts, it is inappropriate to assume or inherit order from else-
where. Therefore we must ignore the organisation inherent in
the standard video matrix. Similarly, we do not depend on
any framing concepts such as up, down, left, right, or any
alignments with the direction of fall, or the robot’s base or
motor axes. In fact, we randomly scrambled the locations of
all pixels (c.f. Prokopowicz 1994). Doing so means that our
geometrical arrangement of inputs remains immune to con-
figuration peculiarities and is determined only by the content
of the signals.

One can draw no inference about the organisation of any
visual system on the basis of one static image. If there is no
change in the input, any applied ordering produces spurious
geometrical arrangements, bearing no relation to the envi-

Environmental » Behavioural » Geometrical N Accurate
Order Order Order Rapresantabon
Stimulus
Leaming . Self Molor
r— sponsa — r—
Agency Cohbisnee Calibration Mapping

Figure 1: The internal organisational detour from envi-
ronmental order to learning.
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Figure 2: Over-sorted arrangements of inputs based
on similarity in static input. a) is the initial random
ordering of inputs, b) — e) are stages in the ordering
process, f) is the final stable but incorrect
arrangement of inputs, g) is the original unscrambled
environment, h) another environment that would
produce the same arrangement.

ronment (see Figure 2) as there is too much ambiguity pre-
sent in the relationships between pixels. It is as if the jig-
saw had many pieces of the same shape and colour, which
can just as well be set in many different arrangements. So,
the criterion for organising the array of inputs can only be
behavioural proximity (common histories between inputs,
or similarity over time, not just in a snapshot).

We first tried to use natural environmental movement as
the source of change. This proved to be ineffective, as it is
difficult to find convenient places where a camera can be
set up in the confidence that sufficient movement will be
detected by all pixels. The next approach was to use the
camera’s pan-tilt mount to continuously change the direc-
tion of gaze of the camera, but this was curtailed due to
fear that the motors would overheat. The most effective
solution was to dispense with a camera completely, and
simply connect a VCR, tuned to a television station, di-
tectly into the computer. This provided a continuous
source of all kinds of *first person’ movement: pans, tilts,



relative behavioural distance
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Figure 3: Relative behavioural difference plotted against
horizontal separation in a single line of video data. Pixel
33 has zero difference with itself, and progressively
more difference with pixels further to its left and right.

Note: the values for pixels 63 and 64 are edge effects caused by the
video image not quite filling the memory allocated to it.

zooms, tracking; and plenty of natural ‘third person’ move-
ment too.

Using video input we can show that the behavioural
proximity between any two inputs is monotonically related to
their environmental proximity (see Figure 3). So, behavioural
proximity implies environmental proximity. Curiously, once
the significant noise has been removed this relationship is
closely approximated by the elegant curve:

y=1-1/¢" M

We wonder whether this relationship might be a general
one, since it seems to convey the diminishing probability,
having found something at one location, of finding something
similar at other increasingly distant locations. Armed with the
knowledge of the relationship’s monotonicity, we can now
describe the two-dimensional version of the method in detail.

We start by randomly selecting one input, A, and searching
for others with high behavioural proximity to A. Behavioural
proximity can be defined by a threshold of, say, 15% of the
maximum possible behavioural difference between inputs.
Once we have found enough similar inputs (the number re-
quired is the number of dimensions we intend our represen-
tation to have, plus 2) we observe them for a while, in order
to determine all mutual behavioural proximities.

We assign nominal locations (i.e., Cartesian coordinates) to
two of these inputs, starting by assigning, say, (0, 0) to A, (1,
0) to B. Other inputs will be arranged relative to these two
according to their mutual behavioural proximities. For in-
stance, in Table 1, the geometric distances of C (0.2, 0.25)
have been calculated from the behavioural differences ab, ac,
be, and the geometric distance AB = 1, as follows:

_AB: f(ac)

AB- f (bc)
AC = I el it
C="Fab)

BC = 2
f (ab) e

832

Figure 4: In the upper diagram A and B are used to
locate two positions for C. In the lower diagram A and
C are used to locate two positions for D. In the case of
C the point chosen is arbitrary but for D it is the point
nearer the geometric distance estimated from B.

Table 1: Calculating the geometric location of inputs in
two dimensions.

Input x y Behavioural | Geometrical
Differences Distances
A 0.00 | 0.00 ab: 4023 AB: 1.00
ac: 1287 AC:0.32
B 1.00 | 0.00 be: 3339 BC: 0.83
;& 0.20 | 0.25

from which the Cartesian coordinates of C are easily de-
rived. For C we arbitrarily choose one of the two points,
C,, C;, that satisfy the geometry. For subsequent inputs we
follow essentially the same procedure: comparing a short-
list of inputs already set, and selecting from them those
exhibiting most behavioural proximity, then using formu-
lae of the same form as (2), calculating two possible loca-
tions for the candidate input. Of these two we choose the
one nearer the distance estimated using the behavioural
proximity of another reference input (see Figure 4).



Note that relative to environmental space, our geometric
space may appear skewed, inverted, scaled, or even bent.
This is not significant since the actual mapping is sull
monotonic and. minimally, needs only provide the motorium
with a monotonically coherent representation of the environ-
ment. It is therefore sufficient. A second learming process,
e.g., van der Smagt (1995) must be implemented to map
motor commands from this geometrical representation back
to the world.

Results

After only one pass the process converges closely upon the
environmental order it cannot directly observe. In Figure 5
we present the resulting geometric location plotted against
environmental location. Note that, even at this stage, a previ-
ously scrambled image passed through the new rearrange-
ment of inputs is perfectly comprehensible to the naked eye,
exhibiting relatively minor distortions as objects translate
through the image plane. Any robotic control system that
operates non-ballistically would be able to use such input to
iteratively position either itself or a mechanical arm relative
to observed objects.

The process can be enhanced in a number of ways. A short
list may be maintained for each input, containing other in-
puts, which have so far been found to show greatest behav-
ioural proximity to it. After the first pass through all inputs,
this list can be used for fine-tuning of locations at a local
level, for all subsequent passes. Extending the time over
which observations of behavioural proximity are made re-
duces noise effects. Raising the threshold for inclusion in
triangulation calculations also improves accuracy, since it
constrains selection to near neighbours, whose environ-
mental-behavioural proximity relationships are less ambigu-
ous, due to the proximal steepening of the curve in Figure 3.

Incorrect triangulations early on in the process have strong
detrimental effects on subsequent organisation. It is therefore
worthwhile allowing the earlier observations to extend for
longer periods than later ones. and to use a much higher be-
havioural proximity threshold.

The entire process may be analogous to the extension of
axons from one area of the nervous system to another. Those
that first reach a, say, cortical destination are the most free to
take a location, and the least likely to change their location.
Later axons will seek out areas most corresponding to their
own signals, but will exert negligible attraction on such areas
simply because of the weight of numbers already there.

Applications

Spatial mappings derived in the manner just described obvi-
ously do not possess the neat orthogonality of standard pixel
arrays. Standard grid-like neighbourhoods and all convolu-
tions that depend on them are therefore inapplicable to data
in this form. However, non-orthogonal, neighbour-
independent methods have been found for edge detection
(Prokopowicz & Cooper 1995), motion detection (Proko-
powicz 1994), the location of centroids in both artificial (Pe-
ters & Sowmya 1996, 1997, 1998b) and natural (Sparks, Lee
& Rohrer 1990) systems, and the calculation of spatially lo-
cated interest metrics (Peters 1998).
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Figure 5: Plot of geometric distance against environ-
mental distance calculated after only one pass, show-
ing that perfect monotonicity has already been
achieved.

The set of inputs need not be restricted to just one
source. Multiple cameras can be set up to supply incoming
data, and the algorithm can still be applied. This is thus a
solution to some forms of the data fusion problem. There
may be a need to adjust signals to normalise both range
and sign if sensor devices are of sufficiently different de-
sign. Additionally, derivatives may be used instead of the
original signal.

Given that the geometric arrangement of inputs depends
solely on environmental changes it will evolve to a space-
invariant state, effectively creating the inverse function for
the optical distortion and sampling bias of the anterior
parts of the system. Note that it should not be assumed that
sampling patterns would be fixed during operation. Peters
& Sowmya (1998a) have shown that there are good rea-
sons for changing sampling density and bias according to
data received during operation,

Having overcome space-variance. the system is able to
produce a relatively metrical memory map of its sur-
rounding space, which can then be used to note changes
that take place in the environment even while the system is
looking in another direction. It can also be used to calibrate
a motor mapping by following a program of random
moves, and observation of the resultant changes.

Much self-calibration research has been directed at
finding the minimum set of prerequisites for calibration.
Pollefeys & Van Gool (1997) have shown that a system
requires a minimum of three images (of the same scene,
with common points identified) to complete its calibration.
Other approaches include developing a system to derive
the function that converts given pixel locations to given
spatial locations (Sharma & Srinivasa 1996, Srinivasa).
There has been very little work attempting to deal with
varying camera parameters, though this has been shown to
be possible in the absence of skew (Pollefeys, Koch, &
Van Gool 1997).

These self-calibration solutions can only be used in sys-
tems that are already somewhat organised. They require:



1. certainty that the world has not changed between suc-
cessive images

2. an organised image-producing infrastructure that en-
ables recognition of vision primitives such as corners
or, alternatively, operator input of veridical example
data

3. a clear distinction between calibration and operation
phases.

The algorithm we have introduced requires none of these,
though it should be noted that it is unlikely to match the pre-
cision of other techniques. Instead, by reducing prerequisites,
the algorithm becomes useful in situations where others are
simply inapplicable (e.g.,, when more than one parameter
changes, when there is skew, when all camera parameters are
unavailable or unforeseeable).

Implications

This method provides a new interpretation of Hebbian learn-
ing (Hebb 1949) in which inputs (neurons) with behavioural
proximity migrate or extrude efferent processes towards each
other, rather than the traditional interpretation in which neu-
rons somehow strengthen an explicit mutual connection.

If the human vision system achieves its spatial organisa-
tion and high levels of visual acuity via self-organising
means similar to those described, then we would expect to
sec large differences between mature adult vision and neo-
nate vision. This is because the method depends on continu-
ous environmentally meaningful, temporally varying visual
input, and this is not available to us until we are born.

Evidence from tests of infants reveals that they do indeed
exhibit inferior visual acuity and inferior contrast sensitivity,
just as we would expect. Development of visual acuity is
rapid until approximately six months, but continues until
twelve months, by which time normally developing infants
achieve 20/20 vision (see Figure 6). Contrast sensitivity im-
proves at a similar rate.

Several neurophysiological studies demonstrate that labile
neuronal level mappings are quite common. Merzenich &
Kass (1982) showed how cortical real estate recently made
vacant is co-opted by remaining afferent lines, whose coher-
ent convergence in new areas of the cortex can only be ex-
plained by the similarity of the signals they convey, not a
pre-established developmental arrangement.

The patterning of ocular dominance columns discovered
by Hubel & Wiesel (1977) is another example, where inputs
from anatomically quite separated origins (the two eyes) seek
out common destinations in the cortex, and actually terminate
in areas of less than 0.4 mm diameter.

Moreover, their later work with Stryker (Hubel, Wiesel &
Stryker 1978) showed that within this geometrical arrange-
ment there exist still finer convergences, those of the line
orientation preference neurons.

Can a single neurophysiological process explain all of
these examples of convergence of signals carrying similar
data? And can the same process by used to explain the obvi-
ous homuncularity of the somatosensory cortex, discovered
by Penfield & Jasper (1954)7 We feel that our process could
well explain how such mappings develop, and also gives a
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Figure 6: Simulations of what 1-month, 2-month, and
3-month old infants see when they look at a woman’s
face at a distance of 50 cm (Goldstein 1989).

clue as to why. Many researchers have looked at the brain
from the standpoint of computational and physiological
economy in various forms, both spatial and temporal. Dong
& Atick (1995) concentrate on the potential usefulness of
inferred decorrelation functions in the lateral geniculate
nucleus, and use time-varying images as a way of expli-
cating the statistics of the processes they infer. We showed
how similar decorrelation could bypass massive computa-
tional problems in motion tracking (Peters & Sowmya
1996). Michison (1991) speculated that there are evolu-
tionary constraints forcing economy in the wiring of the
cortex. Such constraints would naturally cause neurons
carrying similar signals to converge rather than extend
axons through the finite space of the brain.

The advantage of convergence according to behavioural
proximity is that if two signals are normally so similar that
one can be taken to imply the other, it is considerably more
economical to arrange them so that they are literally, phe-
nomenologically and neuro-anatomically, next door neigh-
bours, rather than attempting to construct an explicit rela-
tionship or rule which expresses their near-identity.

Such a process could have originated far back in the
early days of evolutionary development of the central
nervous system, as an economical organising principle, yet
now be useful at any level of abstraction where a strong
implication relation needs to be physically instantiated.

Discussion

The methods described are used to organise a set of one-
dimensional inputs into a two-dimensional arrangement.



However, there is no limit on the dimensionality of the prob-
lem or its solution. Similar techniques could be used to or-
ganise inputs in arrangements having three or more dimen-
sions, or to organise inputs with paired values, or tuples.

Both traditional connectionist and symbolic approaches
have been applied to similar problems. They both share the
shortcoming of attempting to represent complex information
in explicit form, which leads to vast computational demands.
A connectionist approach is to explicitly represent relation-
ships between inputs by weights. This becomes impractical
when dealing with even quite constrained vision problems
involving only, say, 128 by 96 pixels. The number of weights
generated for an input array of this size is 150,994,944. The
symbolic approach also has great difficulty in representing
relationships between large numbers of inputs. Its forte is in
later stages when visual data has been condensed and sum-
marised in a form amenable to symbolic representation and
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