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Abstract

Some results on arithmetic aspects of K3 surfaces and abelian varieties

by

Anningzhe Gao

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Martin Olsson, Chair

The thesis is divided into three parts. We consider the essential dimension of alge-
braic stacks, and compute the essential dimension of moduli stack of polarized K3
surfaces in part 1. In part 2 we concentrate on the period index problems. More
precisely, we show that if C is an algebraic curve of genus 1 over a field k of char-
acteristic 0 then the index of C, defined to be the greatest common divisor of the
degrees of its closed points, is equal to the index of the Brauer class defined by the
Gm-gerbe given by the Picard stack of degree 0 line bundles on C. We also relate
this number to the essential dimension. In the last part we give a new proof of the
finiteness of abelian varieties over finite fields using the Tate conjecture. This result
was first proved by Zarhin.
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Chapter 1

Introduction

The thesis is divided into three parts: In part 1 we consider the essential dimen-
sion of algebraic stacks, in part 2 we consider the period index problem of abelian
varieties and in part 3 we consider the finiteness of abelian varieties over finite fields.

1.1 Essential dimension of algebraic stacks

The essential dimension was first proposed by Buhler and Reichstein in [6], who
defined the essential dimension of an algebraic group. Then in [30] Merkurjev gener-
alized it to any functors from the category of field extensions to the category of sets.
We will recall the basic properties of essential dimension in part 1 and compute the
essential dimension of the moduli stack of polarized K3 surfaces.

Roughly speaking, the essential dimension of an algebraic object is the minimal
number of parameters needed to describe it. In the following discussion we will use k
to denote a given base field. Given an object defined over a field extension K of k, one
can ask whether this object can be defined over some subfield of K, in particular, we
might hope to have a minimal subfield K ′ of K over which the object can be defined.
It turns out, however, that considering the minimal field does not lead to the good
definition. Rather, one should consider the minimal transcendental degree of a field
of definition (see [38, Section 1] for discussion). Let Field/k be the category of field
extensions of k. Given a functor F : Field/k → Set, and an object η ∈ F (K) for
some field extension K, we may consider the smallest transcendence degree over k
of a subfield over which η is defined. This is called the essential dimension of the
object, denoted by edk(η). Taking the supremum over all pairs (K, η) we get the
essential dimension edkF of the functor F .

For an algebraic stack X/k, define the functor FX : Field/k → Set by sending
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a field extension K/k to the isomorphism classes of objects in the category X (K).
The essential dimension of the algebraic stack is defined as the essential dimension
of the functor FX , and we use edkX instead of edkFX to denote it.

To motivate why we consider algebraic stacks, consider the following example
from [3, Proposition 8.3]. Assume the characteristic of k is 0, and consider the
moduli stack of elliptic curves over k. It is known that any elliptic curve can be
defined by a Weierstrass equation Y 2 = X3 + aX + b for some a, b ∈ k. Therefore
the curve is defined over Q(a, b) ⊂ k. This implies that the essential dimension of
the moduli stack of the elliptic curves is less than or equal to 2. Combining with the
genericity theorem (see [3, Theorem 4.1]) the essential dimension of the moduli stack
of elliptic curves is 2. This may at first seem counter intuition: The moduli stack
is of dimension 1 and the essential dimension of a scheme or a space is the same as
its usual dimension. The stacky nature of the moduli stack introduces a difference
between the usual dimension and the essential dimension. We will discuss this in
more detail later. Hence to get interesting results, we need to consider algebraic
stacks.

We will concentrate on the essential dimension of algebraic stacks in this part,
in particular Deligne-Mumford stacks. Brosnan, Reichstein and Vistoli developed
many aspects of the theory for algebraic stacks in [3]. In particular, they proved
the genericity theorem of the essential dimension of Deligne-Mumford stacks, which
is the most important tool in our computation. They also discussed the essential
dimension of some gerbes. In [10, Section 1], the following conjecture is proposed:

Conjecture 1.1.1. ([10]) Let k be a field of characteristic 0 and η ∈ Br(k) be a
Brauer class. Let n be the index of η. Let n = pr11 ...p

rs
s is the prime decomposition of

n, and let X → Spec(k) be the µn-gerbe corresponding to the Brauer class η. Then
we have

edkX = pr11 + pr22 + ...+ prss − s+ 1

The conjecture has been proved in the case when n is a power of a single prime
([3, Theorem 5.4]) and when n = 6 ([10, Theorem 1.3]).

The main result we will show is:

Theorem 1.1.2. ([15, Theorem 1.1 and Theorem 1.2] ) Let k be an algebraically
closed field. Let Md be the moduli stack of polarized K3 surfaces of degree d over
k. Then

(1) If k is of characteristic 0, the essential dimension ofMd is 20 when d = 2 and
19 if d ≥ 4.

(2) If k is of characteristic p for some p > 22, then the essential dimension ofMd

is 19 when d > 2.



CHAPTER 1. INTRODUCTION 3

In Chapter 2 we recall the basic properties of the essential dimension of algebraic
stacks. In Chapter 3 we give the proof of Theorem 1.1.2. The proof is based on the
genericity theorem (Theorem 2.3.2). It says that for an integral Deligne-Mumford
stack, the essential dimension of the stack is determined by the usual dimension of
the stack and the essential dimension of the generic gerbe. In Chapter 3 we will show
that the moduli stackMd is generically a scheme when d > 2, then by the genericity
theorem the essential dimension of Md is the same as its usual dimension. When
d = 2 we will show that the stack is generically a trivial Z/2 gerbe, then we apply
the genericity theorem again to prove the theorem.

1.2 The period-index problem

In this part we consider the period index problem for elliptic curves. The classical
paper about the period index problem is [26], and there are also several results in [9]
and [29].

Let A be an abelian variety over k. An A-torsor is a pair (T, f), where T is a
non-empty k-scheme and f : T × A → T is a morphism, such that the following
conditions hold:

(1) The following diagrams commute:

T × A× A T × A

T × A T

f×1

1×m f

f

T T × A

T

1×ε

id
f

Here m : A × A → A is the addition morphism and ε : Spec(k) → A is the unit
of A.

(2) The morphism
T × A→ T × T

(t, a)→ (t, ta)
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is an isomorphism.
It is well known that the isomorphism classes of torsors are classified by the first

cohomology group.

Theorem 1.2.1. ([19, Chapter 3, Remark 3.5.4], [35, Corollary 12.1.5]) Let A be an
abelian variety over some field k, then there is a bijection

{Isomorphism classes of A-torsors over k} ↔ H1(k,A)

Given a torsor T of an abelian variety A over k, the period of T , denoted by
per(T ), is the order of the cohomology class [T ] in the first cohomology group
H1(k,A). The index I(T ) of T , is defined to be the greatest common divisor of
the degrees of closed points of T . We have the relation between these two numbers
per(T )|I(T )|per(T )2g, where g is the dimension of the abelian variety A. Details can
be found in the first two sections of [9].

We also need the definition of gerbes.

Definition 1.2.2. ([27, Definition 3.15]) Given an algebraic stack X , an algebraic
space X and a morphism π : X → X. We say X is a gerbe over X if the two
morphisms π : X → X and ∆ : X → X ×X X are both epimorphims.

Let G be a sheaf of abelian group over k. A gerbe banded by G, sometimes referred
to as a G-gerbe, is a gerbe X over k equipped with an isomorphism GX ' IX between
G × X and the inertia stack of X . Concretely this means that for every object
η ∈ X (S) over a k-scheme S we are given an isomorphism AutS(η) ' GS and these
isomorphisms are appropriately functorial. A G-gerbe is trivial if it is equivalent to
the classifying stack BkG. Similar to the isomorphism classes of torsors, we have the
following theorem:

Theorem 1.2.3. ([19, Chapter 4, Theorem 3.4.2], [35, Theorem 12.2.8]) Let X be
an algebraic space over k, G is a sheaf of abelian groups. Then there is a bijection

{Isomorphism classes of G-gerbes over X} ↔ H2(X,G)

We are interested in the case of dimension 1. Let E be an elliptic curve and
let C be an E-torsor. Let Pic0

C/k be the moduli stack of degree 0 line bundles on

C, and let Pic0
C be the Jacobian of C. Then Pic0

C is a Gm-gerbe over Pic0
C , and,

using the canonical isomorphism E ' Pic0
C , we can view this as a Gm-gerbe over E.

Restricting to the function field K of E we obtain an element of the Brauer group
Br(K). However we know that the set of isomorphism classes of Gm-gerbes over
Spec(K) is just H2(K,Gm), and the latter one is just the Brauer group Br(K) of K.
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We define a new constant i(C) to be the index of the Brauer class Pic0
C/k → Spec(K)

in Br(K), called generic index. The main result of this part is the following:

Theorem 1.2.4. ([16, Theorem 1.1]) With the notations defined as above, we have

i(C) = I(C)

The reason we consider i(C) is the following: Similar to the case of Deligne-
Mumford stacks, we also have the genericity theorem of Gm-gerbes. The Picard stack
Pic0

C/k is a Gm-gerbe over the Picard variety Pic0
C/k, and the generic index is just

the index of the generic gerbe in the Brauer group H2(k(Pic0
C/k),Gm). Combined

with the Conjecture 1.1.1, we can see the result is related to the essential dimension
of Pic0

C/k. We will discuss this in Chapter 5.

1.3 The finiteness of abelian varieties

Let A be an abelian variety over k with dimA = g. Choose l a prime number
with l 6= p. We know that if (p, n) = 1, the morphism n : A → A is a separable
isogeny of degree n2g, denote A[n] = Ker(n : A → A), then A[n](k̄) ∼= (Z/nZ)2g.
The Tate module is defined as

Tl(A) = lim←−
n

A[ln](k̄)

In [42, Section 1], Tate proved the following famous theorem

Theorem 1.3.1 (Tate). Let k = Fq be a finite field where q is a power of a prime p.
Let A,B be two abelian varieties over k. Let G = Gal(k̄/k) be the absolute Galois
group of k. If l is a prime and l 6= p, then we have the isomorphism

HomAV (A,B)⊗ Zl ∼= HomZl[G](Tl(A), Tl(B))

Here Tl is the Tate module of an abelian variety.

The key ingredient in the proof is the following result:

Key Ingredient. Fix an integer d, a prime l and an abelian variety A over k. Then
the number of isomorphism classes of abelian varieties which admits a polarization
of degree d2 and an isogeny B → A of degree ln for some n is finite.

In fact, a stronger statement is true. Namely, for a given dimension g there are
only finitely many abelian varieties of dimension g over a given finite field. In part
3, we will show this stronger statement is, in fact, implied by the Tate conjecture.
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Theorem 1.3.2. Let k be a finite field. The Tate conjecture of abelian varieties
over k implies that there are only finitely many abelian varieties of dimension g over
k.

This result is first proved by Zarhin [46, Theorem 4.1]. We will give a different
approach to this result.
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Part I

The essential dimension of
algebraic stacks
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Chapter 2

Essential dimension and algebraic
stacks

In this chapter we review the definitions and facts we need in our discussion.

2.1 The essential dimension of a functor

We refer to the survey article [1] for basic material of the essential dimension.
Let k be a field. We use Field/k to denote the category of field extensions of k with
morphisms the obvious inclusions and Set the category of sets. Given a functor

F : Field/k → Set

for an element η ∈ F (K) for some field extension K/k, we say an intermediate
field k j L j K a defining field of η if there is an element η′ ∈ F (L) such that
η′|K ∈ F (K) is just η under the inclusion. The essential dimension of η, which is
denoted by edkη, is defined by

edkη = minLtr.deg(L/k)

where L runs over all the defining field of η. The essential dimension of the functor
F , which is denoted by edkF , is defined by

edkF = maxη∈F (K)edkη

for all field extension K/k and all elements in F (K).
From the definition we can see that the essential dimension of a functor can be

infinity.
Here are some interesting examples:
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Example 2.1.1. Let G be a group variety over k. Define a functor F :

F :Field/k → Set

K/k → H1(K,GK)

sending K to the set of isomorphism classes of G-torsors over K. In this case we
usually denote the essential dimension of F by edkG. This is a numerical invariant
of the group variety G. This invariant gives us the information about how many
parameter we need to describe a torsor of the group variety.

Example 2.1.2. Given an integral variety X/k, consider the following functor:

F :Field/k → Set

K/k → X(K)

We can compute the essential dimension of F in this case. For any field extension
K/k, an element in η ∈ X(K) is just a morphism

Spec(K)→ X

but any morphism from a point to a scheme can be factored through some point on
X, i.e. it can be factored through

Spec(K)→ Spec(κ(x))→ X

for some point x ∈ X. Then we have

edkη = tr.deg(κ(x)/k)

So we have
edkF ≤ maxx∈Xtr.deg(κ(x)/k) = dimX

On the other hand, the generic point of X has essential dimension dimX. So we
have

edkF = dimX

For an integral algebraic space X, we can always find a stratification of it and
each strata is a scheme. So by definition if we define a functor F as above, we still
have

edkF = dimX

so there is no much interest for algebraic varieties or algebraic spaces. The situation
is much more interesting for algebraic stacks.
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2.2 The essential dimension of algebraic stacks

We refer to [35] and [44] for more details of algebraic stacks. Let S be a scheme.
We denote AffS the category of affine schemes over S. A stack over S is a stack over
AffS. That is, a fibered category over AffS satisfying the Definition 4.6 of [44].

Definition 2.2.1. ([35, Definition 8.1.4] ) A stack X over a scheme S is called an
algebraic stack if it satisfies the following two conditions:

(1) The diagonal
X → X ×S X

is representable, separated and quasi-compact.
(2) There is an algebraic space X and a morphism X → X which is surjective

and smooth.

Now let the base scheme S be Spec(k) for some field k, and X → Spec(k) an
algebraic stack over k. Consider the functor

FX :Field/k → Set

K/k → {Isomorphism classes of objects in X (K)}

The essential dimension of X is just the essential dimension of this functor FX .
Usually we use edkX instead of edkFX to denote the essential dimension of an alge-
braic stack.

This is a natural generalization of the case of algebraic varieties or spaces. Unlike
the previous two cases, the essential dimension of algebraic stacks can be really
complicated. We consider the following examples.

Example 2.2.2. Let G be a smooth algebraic group, and X = BG the classifying
stack of G. In this case we know that the set of K points of the classifying stack is
just the set of isomorphism classes of torsors of G. So edkBG = edkG, as we defined
in Example 2.1.1. We refer to [3] for more results on classifying stacks.

Example 2.2.3. ([3, Theorem 1.8]) Assume the base field k has characteristic 0.
Let Mg,n be the moduli stack of n pointed curves with genus g. Then we have

edkM0,0 = edkM1,1 = 2

edkM0,1 = edkM0,2 = 0

edkM1,0 = +∞
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edkM2,0 = 5

otherwise we have
edkMg,n = 3g − 3 + n

We can see from these examples that the essential dimension of algebraic stacks
are usually complicated, it can even be infinity.

We need some basic facts about the essential dimension of algebraic stacks.

Proposition 2.2.4. ([3, Propositon 2.12]) Let X/k be an algebraic stack over k and
K/k a field extension. Then we have

edKXK ≤ edkX

Proof. Let L/K be a field extension, then we have the map XK(L) → X (L) is an
equivalence. Pick some element ξ ∈ XK(L), and suppose M/k is a field of definition
of ξ ∈ XK(L) ∼= X (L). Then any field containing M and K will be a defining field
of ξ ∈ XK(L) (as an object in Field/K). So we may pick some composition field
N of M and K and we can see that tr.deg(N/K) ≤ tr.deg(M/k), hence we have
edK(ξ) ≤ edk(ξ), hence

edKXK ≤ edkX

Proposition 2.2.5. ([3, Proposition 2.24]) Let X and Y be two algebraic stacks,
then we have

edk(X ×k Y) ≤ edkX + edkY

Proof. This is almost by definition. We refer to [27, Chapter 2, 2.2.2] the construction
of fiber products of fiber categories. Let K/k be a field extension. Pick an object
(η, ξ) in (X ×k Y)(K), then we may choose k j F j K to be a defining field
of η with tr.deg(F/k) ≤ edkX and k j L j K to be a defining field of ξ with
tr.deg(L/k) ≤ edkY . Then any composition field of F and L is a defining field of
(η, ξ). So we must have edk(η, ξ) ≤ edkX + edkY . Since this is true for all elements,
so we have

edk(X ×k Y) ≤ edkX + edkY

Remark 2.2.6. The equality doesn’t hold in general. For example, if X ∼= Bµ2 and
Y ∼= Bµ3, the base field k is algebraically closed, then we have

edkBµ2 = 1, edkBµ3 = 1

while
edk(Bµ2 ×k Bµ3) = edkBµ6 = 1
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2.3 The genericity theorem

In this section we will introduce the genericity theorem proved in [3, Theorem
4.1] and generalized in [5, Theorem 6.1]. An algebraic stack X is called a Deligne-
Mumford stack, if in the condition (2) of Definition 2.2.1, we can find an algebraic
spaceX and a morphismX → X which is etale and surjective. We will useDM stack
instead of Deligne-Mumford stack in the thesis. Now suppose we have a DM stack
X . The inertia stack of X is X ×X×X X , we use IX to denote it. We say the DM
stack X admits finite inertia if the canonical morphism

IX → X

is finite.

Definition 2.3.1. ([35, Definition 11.1.1]) Let X be an algebraic stack, X an alge-
braic space with a morphism π : X → X. We say X is a coarse moduli space of X
with respect to the morphism π if the following two conditions are satisfied:

(1) For all algebraically closed field K, the morphism π induces a bijection of
points |π| : |X (K)| → |X(K)|. Here for an algebraic stack X and a field K, |X (K)|
means the set of isomorphism classes in X (K).

(2) π is universal for all morphisms from X to an algebraic space. That is if there
is another algebraic space Z and a morphism g : X → Z then there is a morphism
f : X → Z such that g = fπ.

By the Keel-Mori theorem (see [11] for the statement and the proof), if X is a
DM stack locally of finite type over k with finite inertia IX , then X admits a coarse
moduli space. Now we can state the genericity theorem:

Theorem 2.3.2. ([3, Theorem 4.1], [5, Theorem 6.1]) Let X be a smooth integral
tame connected DM stack locally of finite type. Let U be any open substack of X
with finite inertia, and by Keel-Mori theorem, U admits a coarse moduli space U .
Denote the function field of U to be K, and UK = U ×U Spec(K). Then we have

edkX = dimU + edKUK

Remark 2.3.3. In [3, Theorem 4.1], the theorem is proved in the case when the
base field k is of characteristic 0. In [5, Theorem 6.1], the authors proved a general
statement for positive characteristic base field and the algebraic stack X is integral
and smooth (not necessarily with fintie inertia). Also a proposition they used in that
paper is incorrect, but they gave a correct version in [4, Theorem 1.2]. Please check
these papers for details.
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We have two direct corollaries.

Corollary 2.3.4. Let X be a DM stack satisfying the properties needed in Theorem
2.3.2. For any open substack U of X , we have

edkX = edkU

Corollary 2.3.5. Let X be a DM stack satisfying the properties needed in Theorem
2.3.2. If the generic point has a trivial automorphism group, then

edkX = dimX

Example 2.3.6. The tameness here is really important. We can consider the follow-
ing example: Set G = Z/prZ for some odd prime p. Then by Lemma 3 in [40] we can
construct a smooth curve X over Fp with a smooth G fixed point. Set X = [X/G].
Then X is a smooth DM integral stack locally of finite type over Fp. But it is obvious
that

edFpX ≥ edFpZ/prZ
And Ledet conjectured in [28, Remark in page 4] that

edFpZ/prZ = r

So if the conjecture holds, we can see that the essential dimension of X can never be
controlled by its generic point.

A naive question is the following: Give a DM stack π : X → X which is a smooth
map, and X is smooth integral tame, X is integral and regular, then for any point
x ∈ X, we have a stack Xs, then we may ask how the essential dimensions of this
family of stacks change. Or more precisely, does the function

f(x) = edk(x)Xx

have some good properties? The following example shows that this function is not
locally constant.

Example 2.3.7. Consider the affine line C over Fp, where p is a prime. Choose some
q a prime number such that q|p− 1 but q2 - p− 1, for example p = 29, q = 7. Then
consider the trivial gerbe X = X × B(Z/qrZ) for some r > 1. We need to use [14,
Theorem 4.1]. We can see the essential dimension edk(η)Xη = qr−1. Then suppose the
function defined above is locally constant, then there exists an open subset U j C
such that for any u ∈ U , we always have

edk(u)Xu = qr−1
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Let’s prove this cannot happen. From elementary number theory we can always
find an integer t such that qr|pt − 1. Suppose C − U = {x1, x2, ..., xn}, we set

N = max1≤i≤ndeg(k(xi)/Fp)

We may choose an irreducible polynomial f(x) of degree tN in Fp[x]. Then the
canonical quotient morphism Fp[x] → Fp[x]/f(x) = F gives us a natural closed
point

x : Spec(F )→ C

and the image of x must be in U . Then we have k(x) ∼= FptN . And we have edk(x)Xx
is just the essential dimension of the constant groups scheme over F . But then by
Theorem 4.1 of [14], we can see that edk(x)Xx ≤ q (here we cannot apply the theorem
directly but at least the inequality holds). Which is a contradiction.

2.4 The essential dimension of gerbes

We can see that to compute the essential dimension of a DM stack X , by Theorem
2.3.2 we just need to consider the generic gerbe of it (lots of stacks coming from
moduli problems satisfy the conditions we need in Theorem 2.3.2). Then we need to
consider the essential dimension of gerbes.

Definition 2.4.1. ([27, Definition 3.15]) Given an algebraic stack X , an algebraic
space X and a morphism π : X → X. We say X is a gerbe over X if the two
morphisms π : X → X and ∆ : X → X ×X X are both epimorphisms.

Remark 2.4.2. This is a formal definition. There is another concrete explanation.
Since we will mostly consider gerbes over fields, so we just give this description in
this case, for details, please check [35, Chapter 12]. Let X be a stack over a field k.
We say X → Spec(k) is a gerbe over Spec(k) if the following conditions are satisfied:

(1) There exists a field extension k′/k such that X (k′) is non-empty.
(2) Given an affine scheme S over k and two objects η, ξ ∈ X (S), there exists a

fppf cover {Si → S} such that the pullback ηSi and ξSi are isomorphic in X (Si).

We call X is a trivial gerbe (or neutral gerbe) over Spec(k) if X (k) is non-empty.
Let G be a sheaf of abelian group over k. X is a gerbe over k. X is called a

gerbe banded by G, or simply a G-gerbe, if for any affine scheme S and any object
η ∈ X (S), we have an isomorphism GS

∼= Auts(η) compatible with pullbacks, here
AutS(η) is the group scheme of automorphisms of η over S. A G-gerbe is trivial if
and only if it is equivalent to the classifying stack BkG.

The following theorem is well known.
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Theorem 2.4.3. ([19, Chapter 4, Theorem 3.4.2], [35, Theorem 12.2.8]) Let X be
a algebraic space over k, G is a sheaf of abelian groups. Then there is a bijection

{Isomorphism classes of G-gerbes over X} ↔ H2(X,G)

We will concentrate on µn-gerbes and Gm-gerbes. As the previous theorem shows
they are just H2(k, µn) and H2(k,Gm). We know that H2(k,Gm) is canonically
isomorphic to the Brauer group Br(k) of k, the equivalent classes of central simple
algebras over k. By Wedderburn’s theorem, any central simple algebra over k is
isomorphic to a matrix algebra Mn(D) for some division algebra D. For any Brauer
class α ∈ Br(k), there is a matrix algebra Mn(D) representing α, the index of
α, denote it by ind(α), is defined as the square root of the dimension of D, i.e.√

dimk(D). Also the period of α, denote it by per(α), is defined to be the order of
α in Br(k). For details of the Brauer group over fields we refer to [18].

For future use we need an explicit way from a cohomology class to a central simple
algebra. The construction is as follows: Given a cohomology class α ∈ H2(k,Gm),
this is represented by some cycle, that is a map

f : G×G→ k̄∗

satisfying the relation:

f(σ, τν)f(τ, ν) = f(στ, ν)ν(f(σ, τ))

Here G is the absolute Galois group of k. Choose some finite Galois extension k′/k
such that αk′ is trivial in H2(k′,Gm), and write G′ = Gal(k′/k) the Galois group.
Then α is equivalent to a map

f : G′ ×G′ → k′∗

satisfying the same relation. Now we can construct an algebra as follows: Let A be
a k′ vector space with basis labeled by G′, i.e. A is a vector space spanned by xσ for
σ ∈ G′. We equip A with the following product rules:

xσxτ = xστf(σ, τ)

cxσ = xσσ(c)

We can show this is a central simple algebra, so we get a Brauer class represented
by A. We will need this construction in Chapter 4.

There is an short exact sequence of group schemes:

1→ µn → Gm
×n−→ Gm → 1
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which induces a morphism:

H2(k, µn)→ H2(k,Gm)[n]

So we can see that H2(k, µn) corresponds to n torsion elements of the Brauer group.
Now we need a technical theorem.

Theorem 2.4.4. ([5, Theorem 4.1]) Assume the base field has characteristic 0. Let
d > 1 be an integer. Let α ∈ H2(k, µd) be a cohomology class and β ∈ H2(k,Gm)
be its image under the above map. Let X be the µd-gerbe associated to α and Y the
Gm-gerbe associated to β, then we have

edkX = edkY + 1

In Conjecture 1.1.1 it is conjectured that the essential dimension of µn-gerbes is
closed related to the index of its associated Brauer class. The conjecture has been
proved in the case when the index is a prime power.

Theorem 2.4.5. ([3, Theorem 5.4]) Let X be a gerbe over k banded by µpn for some
prime p. Then we have

edkX = ind[X ]

where [X ] means the Brauer class of X in Br(k).

With these preparations we can prove:

Theorem 2.4.6. Let X be a smooth integral variety over some field k of charac-
teristic 0. Let X → X be a Gm-gerbe. Denote K the function field of X, then we
have

edkX = dimX + edKXK
Here XK means the base change of X along the generic point Spec(K)→ X.

Proof. Since X is smooth, the canonical inclusion Spec(K) → X induces an injec-
tion H2(X,Gm) → H2(K,Gm), which implies that H2(X,Gm) is torsion. So the
cohomology class [X ] ∈ H2(X,Gm) lies in the image of H2(X,µn)→ H2(X,Gm) for
some n. Write Y → X the µn-gerbe such that its image in H2(X,Gm) is just [X ].
Then we have

edkX = maxp∈X{edk(p)Xp + tr.deg(k(p))}
= maxp∈X{edk(p)Yp + tr.deg(k(p))} − 1

= dimX + edKYK − 1

= dimX + edKXK
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where k(p) is the residue field of p ∈ X and Xp is the restriction of X to p, similar
for Yp. The first equality is by definition, the second is by Theorem 2.4.4, the third
is by Theorem 2.3.2, the last is again by Theorem 2.4.4.

This implies for Gm-gerbes over smooth varieties, we still have the genericity
theorem. This fact is known to experts, for example see [39, Chapter 2].

We also have a small lemma.

Lemma 2.4.7. Given a Gm-gerbe X over some field k of characteristic 0, then we
have edkX = 0 if and only if X is the trivial gerbe.

Proof. If X is the trivial gerbe then obivously we have edkX = edkGm = 0. Let’s
prove the other direction. Suppose edkX = 0. Let Y be a µd-gerbe for some d and
[Y ] maps to [X ] in H2(k,Gm). By Theorem 2.4.4, we have edkY = 1. Write

ind[Y ] = pr11 ...p
rk
k

the prime decomposition of the index of [Y ]. Then we have

edkY ≥ pr11

by Theorem 2.4.5. Hence we must have r1 = 0. This is true for all prime factors, so
we have X is the trivial gerbe.
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Chapter 3

Essential dimension of moduli
stack of polarized K3 surfaces

In this chapter we will discuss the essential dimension of the moduli stack of K3
surfaces. The proof of d = 2 case was given by Angelo Vistoli through an email with
the author. The material in this chapter is more or less the same as [15].

3.1 The case when d = 2

A K3 surface X over k is a smooth proper variety over k with trivial canonical
line bundle and H1(X,OX) = 0. For a line bundle L on X, L is called primitive if
there exists no line bundle M on X such that L = M⊗d for some d > 1. A polarized
K3 surface of degree d is a pair (X,L) with X a K3 surface and L a primitive
ample line bundle with L2 = d. Note here d must be an even number.

We will omit the details for the moduli stack (space) of polarized K3 surfaces of
degree d, for details, see [23] and [41].

We use Md to denote the moduli stack of polarized K3 surfaces with degree d.
We have

Theorem 3.1.1. ([41, Theorem 4.3.3]) The moduli stackMd is a connected smooth
DM stack with finite inertia locally of finite type.

So we have a coarse moduli space Md. It is integral of dimension 19, but it is not
smooth.

Next we consider the case when d = 2. We first list some properties of polarized
K3 surfaces (X,L) with degree 2 as an example here.
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Example 3.1.2. Given a polarized K3 surface (X,L) with (L2) = 2. Then we know
that the global sections of L give a double cover π : X → P2, and π is ramified
along a smooth curve C j P2 of degree 6. And we know that a general curve of
degree 6 in P2 has trivial automorphism group. Then by the standard description
of double covers we know that a general polarized K3 surface (X,L) of degree 2 has
automorphism group Z/2Z. So we know that in this case if we denote the field of
rational functions of M2 by K, then the fiber product M2,K =M2 ×M2 Spec(K) is
a Z/2Z gerbe over K.

With the previous example and Theorem 2.3.2 we see to find the essential di-
mension ofM2 over k we just need to consider the essential dimension ofM2,K over
K, then by Theorem 2.4.5 we just need to find the index of the class of [M2,K ] in
Br(K).

Theorem 3.1.3. ([15, Theorem 3.2] ) The gerbe M2,K is a trivial gerbe, so it has
index 1, hence edkM2 = 20.

Proof. From Example 3.3.4 we know that the moduli space M2 is just the quotient
of the space of smooth curves of degree 6 in P2 by the PGL3 action. So there exists
a Brauer-Severi surface P over K and a degree 6 curve C j P such that the generic
gerbe is just the stack of the double covers Y → P which ramified over C. To prove
the gerbe is trivial it suffices to showM2,K(K) is non-empty. But by the description
of double covers we just need to find a square root of O(C). Then since Pic(P ) ∼= Z,
we just need to find a line bundle of degree 3. But the inverse of the canonical line
bundle has degree 3, so the gerbe is trivial, we finish the proof.

This gives the answer in the case of d = 2.

3.2 The case when d > 2

Next we consider the case when the degree is greater than 2. We first assume
k = C. We need a technical lemma.

Lemma 3.2.1. Let X be a smooth connected DM stack with finite inertia locally
of finite type over k. If there exists a k point x on X such that the automorphism
group Gx is trivial, then there exists an open dense substack U of X such that for
any point on U , it will have trivial automorphism group, hence the generic point has
trivial automorphism group.
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Proof. The automorphism group Gx is the pull-back

Gx = Spec(k)×X IX

where IX is the inertia stack of X . We pick some etale cover U → X of X , then we
have U is smooth. Then there exists a k point u on U such that the composition

u→ U → X

is just the given k point (here we use the fact that k is algebraically closed). We may
choose an affine connected open neighborhood of u, also denoted by U . Write

GU = U ×X IX

Since IX is finite over X , by definition GU is also an affine scheme over k. Also we
know for any dense open subset of U its image in X will be a dense open set. So we
just need to prove that there exist an open dense subscheme W of U such that for
any point of W the fiber is just Spec(k).

Let’s denote the morphism GU → U by π, and the point with trivial automor-
phism group by x. Write GU = Spec(B), U = Spec(A), the maximal ideal corre-
sponding to x by m, then we have B/mB ∼= k. Consider the sheaf associated to B
on U , we call it F . Then F is coherent. We have

dimFx ⊗OU,x/mx = 1

But by [21, Ex. 5.8] on page 125, the function

φ(u) = dimFu ⊗OU,u/mu

is an upper semi-continuous function. Since the fiber over any point is non-empty,
so

W = {u ∈ U |φ(u) = 1}
is an open subscheme of U . Since U is integral, W is dense.

By the same exercise, since U is integral, so on W , FW is a line bundle. Then we
may choose an open subscheme of W (just shrink W , so we still use W to denote it)
such that on it we have FW ∼= OW . Then on this subset, it is obvious that every point
has fiber Spec(k). This dense open subscheme satisfies the properties we want.

By the above lemma, since Md satisfies all the property we need, if we find a
polarized K3 surface with a trivial automorphism group, then the generic point must
have trivial automorphism group. But we know there must exist a polarized K3
surface with Picard number 1 of any degree, then by the following theorem, we can
get our result.
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Theorem 3.2.2. ([23, Corollary 12.2.12] ) If X is a complex projective K3 surface
with Pic(X) = ZH and (H2) > 2, then Aut(X) = id.

For proof, see [23, Corollary 12.2.12].
Combine this theorem and the above technical lemma and Theorem 2.3.2, we can

see that if the base field is the field of complex numbers, then the theorem is true.
For the general case, we know that Md is defined over Q. By [3, Proposition 2.14]
we have

edQ̄Md,Q̄ = edkMd,k = edCMd,C

So we have:

Theorem 3.2.3. Let k be an algebraically closed field of characteristic 0. The
essential dimension of Md is 19 when d > 2.

3.3 The case of positive characteristic

By [3, Proposition 2.14] , we may assume that the base field k = F̄p for some
p prime. We will consider the moduli stack of polarized K3 surfaces when the base
field is of (large) positive characteristic in this section. Actually we will only consider
the K3 surfaces over F, the algebraic closure of Fp for some prime p ≥ 23 and p - d.
The idea is to apply the deformation theory of K3 surfaces and the result we got
above. We first collect some results we need.

Recall that actually to compute the essential dimension of some DM stack with
finite inertia actually we just need to consider the general case, so it suffices to
consider the ordinary K3 surfaces. It suffices to find one point in the stack with
trivial automorphism group, so let’s concentrate on the K3 surfaces with height 1
and Picard number 20. Over C, K3 surfaces with Picard number 20 can be classified
by the transcendental lattices, which have rank 2. More precisely, let Sp denote
the set of positive definite even lattices with rank 2 such that the discriminant is a
non-zero square mod p. Given any positive definite, oriented even lattice M of rank
2, there exists a unique complex K3 surface XM with its transcendental lattice is
just M . Such X is defined over Q̄. The reduction of X over F is a K3 surface with
Picard number 20 (for details see the discussion in [25, Section 3] ). This gives us
a morphism from the set Sp to the set of isomorphism classes of K3 surfaces with
Picard number 20 over F. We have the following:

Theorem 3.3.1. ([25, Theorem 3.7]) The morphism defined above is a bijection.
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For an ordinary K3 surface over F with Picard number 20, it has a unique Neron-
Severi preserved lifting, which is just the canonical lifting [34, Definition 1.9]. We
have the following theorem comparing the automorphism group of the K3 surface
itself and the Neron-Severi preserved lifting.

Theorem 3.3.2. ([24, Theorem 3.7]) Let X be a weakly tame K3 surface over F,
then there exists a Neron-Severi group preserving lifting X/W , where W is the Witt
vector of F, such that the reduction map Aut(X⊗K)→ Aut(X) is an isomorphism.

For the proof and the definition of weakly tame, we refer to [24, Theorem 3.7].
Recall that if p > 22, then every K3 surface of finite height is weakly tame. And
by the standard argument we can show that in this case Aut(X⊗C) ∼= Aut(X) and
NS(X⊗ C) ∼= NS(X) canonically.

Now let’s return to the polarized case. Given the moduli stack Md of polarized
K3 surfaces over F, let’s assume the degree of the polarization is greater than 2. By
Lemma 3.2.1, if we can find a point onMd with trivial automorphism group, we can
show the generic point has trivial automorphism group.

We next need to use the theory of period domain. We suggest [23, Chapter 6] for
the basic facts and properties. We have the following theorem:

Theorem 3.3.3. We fix the ground field to be C. In the moduli stack Md, the set
of K3 surfaces with Picard number 20 and the discriminant of the transcendental
lattice is a non-zero square mod p form a dense subset of Md(C).

Before we start our proof, let’s first recall some basic results about the period
domain. Set the lattice Λd = Z(−d) ⊕ U⊕2 ⊕ E8(−1)⊕2 and (−,−) the quadratic
form on it, where U is the hyperbolic lattice and E8 is the lattice associated to the
Dynkin diagram E8. This is the lattice orthogonal to the lattice generated by the
ample line bundle of degree d we choose in the standard K3 lattice, see [23, Chapter
6].

So we have the period domain of marked polarized K3 surfaces with degree d,
which we denoted by Dd. Dd is a subset of P(Λd,C). The group of orthogonal matrix
Od has a natural action on Dd, and we know that the coarse moduli space Md is
just an open subset of the quasi-projective variety Dd/Od. So to prove the above
theorem, we just need show the points on Dd corresponding to the mark polarized
K3 surfaces with transcendental lattice having discriminant a non-zero square mod p
is dense in Dd. But since Dd is diffeomorphic to the set of oriented planes in Λd⊗R
such that the restriction of the quadratic form on the plane is positive definite ([23,
Proposition 6.1.5] ), and the set of positive definite planes is an open subset of the
set of all planes, we just need to prove the following theorem. For simplicity, we call
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the property of a lattice with discriminant a non-zero square mod p just property
R.

Theorem 3.3.4. The set of rationally generated planes in Λd⊗R satisfying property
R forms a dense subset of the grassmannian Gr(2,Λd ⊗ R).

Proof. Choose an open subset of Gr(2,Λd⊗R). We first choose a rationally generated
plane H ∈ U . And we notice that actually to check property R, it suffices to check
the discriminant of a rational basis of H ∩ Λd. The reason is that the discriminant
of such basis only differ with the discriminant of the integral basis by a square, so if
the discriminant of a rational basis is a non-zero square mod p, the same is true for
the integral basis. Also, when we write 1

N
∈ Z/p for some p - N , we just mean the

inverse of N in Z/p.
Assume H ∩Λd is rationally generated by ω1, ω2 in Λd. We first need to do some

reductions:
Step 1. We may assume (ω1, ω1) 6= 0 in Z/p. If not, we can consider the element

δ ∈ Λd satisfying (δ, δ) = −2. Of course δ in not in H. Then consider the plane H ′

generated by (ω1 + 1
N
δ, ω2). For N large enough, H ′ is in U . And

(ω1 +
1

N
δ, ω1 +

1

N
δ) = (ω1, ω1) +

2

N
(ω1, δ) +

1

N2
(δ, δ)

since (δ, δ) 6= 0 ∈ Z/p, there must exist some N such that (ω1, ω1) + 2
N

(ω1, δ) +
1
N2 (δ, δ) 6= 0 in Z/p. We we can replace H by H ′ to assume that (ω1, ω1) 6= 0 in Z/p.

Step 2. We may assume disc(ω1, ω2) is non-zero mod p. Consider H ′ generated
by (ω1, ω2 + 1

N
δ) with any (δ, δ) 6= 0 in Z/p. Then we have disc(ω1, ω2 + 1

N
δ) =

((ω1, ω1)(ω2, ω2)−(ω1, ω2)2)+ 2
N

((ω1, ω1)(ω2, δ)−(ω1, δ)(ω1, ω2))+ 1
N2 ((ω1, ω1)(δ, δ)−

(ω1, δ)
2). By the same reason, we just need to find some δ such that the leading

coefficient (ω1, ω1)(δ, δ)− (ω1, δ)
2 is non-zero in Z/p. We prove the existence of such

δ by contradiction. Assume for any (δ, δ) 6= 0 in Z/p, we have (ω1, ω1)(δ, δ)− (ω1, δ)
2

is zero in Z/p. Since Λd contains E8(−1), so we can find δ1, δ2, with (δ1, δ2) = 0 and
(δi, δi) = −2 for i = 1, 2. We have

(ω1, ω1)(δi, δi)− (ω1, δi)
2

is zero for both i, and (ω1, ω1)(δ1 +δ2, δ1 +δ2)−(ω1, δ1 +δ2)2 is zero, we may conclude

(ω1, ω1)(δ1, δ2) = (ω1, δ1)(ω1, δ2)

in Z/p. But (δ1, δ2) = 0, so we may assume (ω1, δ1) = 0 in Z/p. But then

(ω1, ω1)(δ1, δ1)− (ω1, δ1)2 ≡ (ω1, ω1)(δ1, δ1)
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which is non-zero, which is a contradiction. By replacing H by H ′, we may assume
the discriminant is non-zero.

Step 3. We may assume there exists a η ∈ Λd orthogonal to H and (η, η) is non-
zero in Z/p. From the previous two steps, we may assume H is rationally generated
by ω1, ω2 with (ωi, ωi) 6= 0 in Z/p for i = 1, 2 and (ω1, ω2) = 0 (just by diagonalizing
the matrix). Pick any δ ∈ Λd, we have

δ − (ω1, δ)

(ω1, ω1)
ω1 −

(ω2, δ)

(ω2, ω2)
ω2

is orthogonal to H. And

(δ − (ω1, δ)

(ω1, ω1)
ω1 −

(ω2, δ)

(ω2, ω2)
ω2, δ −

(ω1, δ)

(ω1, ω1)
ω1 −

(ω2, δ)

(ω2, ω2)
ω2)

= (δ, δ)− (ω1, δ)
2

(ω1, ω1)
− (ω2, δ)

2

(ω2, ω2)

If for some δ the above number is non-zero in Z/p, we are done. If not, let’s
choose a η orthogonal to H, also let’s assume η is primitive. Then H ′ defined by
(ω1, ω2 + 1

N
η) also satisfies the assumption we made in step 1 and step 2. If for this

plane, we also have every δ orthogonal to H ′ has (δ, δ) ≡ 0, then we have

(δ, δ)− (ω1, δ)
2

(ω1, ω1)
−

(ω2 + 1
N
η, δ)2

(ω2, ω2)

is zero in Z/p. Comparing with the previous equation we get

(η, δ) ≡ 0

for any δ. But this makes η is divided by p in Λd, which is a contradiction to the
primitivity of η. So by replacing H by H ′ we may assume there is a η orthogonal to
H with (η, η) 6= 0 in Z/p.

Step 4. We finish the proof in this step. So far we have a plane H ∈ U rationally
generated by ω1, ω2 with (ωi, ωi) 6= 0 in Z/p and (ω1, ω2) = 0. Set A = disc(ω1, ω2).
Then A 6= 0 in Z/p under the reduction of step 2. If A is already a square, we are
done. If not, by step 3, we choose η orthogonal to H and (η, η) 6= 0 in Z/p. Consider
H ′ generated by ω1, ω2 + 1

N
η for large enough N . Then

disc(ω1, ω2 +
1

N
η) = A+

1

N2
(ω1, ω1)(η, η)
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Denote B = −(ω1, ω1)(η, η), then B is non-zero in Z/p. And

disc(ω1, ω2 +
1

N
η) = A−By2

Here y is the inverse of N mod p and can be 0, which means H = H ′. We just need
to show for some y, A − By2 is a square mod p. We separate the problem into 2
cases:
(1) If B is a square mod p, consider the set S = {0, 1, 2, ..., p−1

2
}. Then for any

y1, y2 ∈ S, A − By2
1 6= A − By2

2 mod p unless y1 = y2. But A − By2 cannot be 0
in Z/p since A is not a square. But we only have p−1

2
non-squares mod p, and S

contains p+1
2

elements. So there must be some y that makes A − By2 a non-zero
square.
(2) If B is not a square, then A/B is a square. We prove by contradiction. If for any
y, A−By2 is zero or not a square mod p, then for any y, A

B
− y2 is a square (maybe

0), hence 1− y2 is a square for any y. The following is a little tricky: We notice −1
cannot be a square, or y2 − 1 is a square then by induction every element in Z/p is
a square, which is not true. Then 2 cannot be a square, otherwise 1 − 2 = −1 is a
square. Then −2 = −1 × 2 is a square. So 1 − (−2) = 3 is a square. On the other
hand, 1

y2
− 1 is a square for any y 6= 0, in particular −2 − 1 = −3 is a square, this

makes −1 = −3
3

is a square, which is a contradiction. We finish the proof.

So by the above theorem, and Theorem 3.2.2, we can find a polarized K3 surface
over C with trivial automorphism group such that the transcendental lattice T is
in Sp. It’s reduction is a polarized K3 surface (X,L) over F. Then from Theorem
3.3.1 and 3.3.2, we can conclude that Aut(X,L) = {id}. Then by Lemma 3.2.1, we
can conclude that the generic object of Md in characteristic p case also has trivial
automorphism group if d > 2.

In [13, Theorem 2.1], it is proved that if p > 11, then every automorphism of
a K3 surface with finite order is tame. In particular, that implies in this case the
moduli stack Md is tame, so apply Theorem 2.3.2, we have

Theorem 3.3.5. Assume k is an algebraically closed field of characteristic p for
p ≥ 23. Then the essential dimension of Md with d > 2 and p - d is 19.
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Part II

The period-index problem of
elliptic curves
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Chapter 4

Period-index problem of elliptic
curves

In this chapter we consider the period-index problem of elliptic curves. We will
see in the next chapter how this topic is related to the essential dimension of algebraic
stacks. We refer to [9] for details.

4.1 The general setting of period-index problem

In the general case, fix a base field k, and we denote G = Gal(ksep/k) the absolute
Galois group. Let M be a G module, write η ∈ H i(k,M) a cohomology class of M .
The period of η, which is denoted by per(η), is the order of η in H i(k,M). A field
extension l/k is called a splitting field of η, if the restriction η|l is trivial in H i(l,M).
The index of η, denote it by I(η), is defined as the greatest common divisor of the
degrees of finite splitting fields of η. The basic properties of per(η) and I(η) are
collected in the following:

Proposition 4.1.1. ([9, Proposition 9]) Let η ∈ H i(k,M) be a cohomology class for
some i > 0.

(1) per(η) divides I(η) and they have the same prime factors.
(2) If l/k is a field extension with degree prime to per(η), then we have per(η) =

per(η|l) and I(η) = I(η|l).

A natural way to relate an abelian variety to Galois cohomology theory is the
theory about the torsors. Let A be an abelian variety over k. An A-torsor is a pair
(T, f), where T is a non-empty k-scheme and f : T × A → T is a morphism, such
that the following conditions hold:
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(1) The following diagrams commute:

T × A× A T × A

T × A T

f×1

1×m f

f

T T × A

T

1×ε

id
f

Here m : A × A → A is the addition morphism and ε : Spec(k) → A is the unit
of A.

(2) The morphism
T × A→ T × T

(t, a)→ (t, ta)

is an isomorphism.
Similar to gerbes banded by some group scheme, we also have a similar description

of torsors.

Theorem 4.1.2. ([19, Chapter 3, Remark 3.5.4], [35, Corollary 12.1.5]) Let A be an
abelian variety over some field k, then there is a bijection

{isomorphism classes of A-torsors over k} ↔ H1(k,A)

We give a concrete construction here for future use. Given an abelian variety A
over k, T is a torsor of A. By the condition (2) of torsors, we can see that after we pass
to the separated closure ksep, Tksep is isomorphic to Aksep . We choose an isomorphism
τ : Tksep → Aksep . Fix any ksep point t on Tksep , then for any σ ∈ G(= Gal(ksep/k)),
there is a unique element σ(t)− t in A(ksep) such that f(t, (σ(t)− t)) = σ(t). Then
we have a map g : G → A(ksep). It is straightforward to check this is a cocycle,
which is the cohomology class in H1(k,A) representing this torsor.

Now for any torsor T of A we can associate a cohomology class [T ] ∈ H1(k,A).
So we can define its index and period as above. We use per(T ) and I(T ) to denote
them. In this special case we have a better relation between them.
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Theorem 4.1.3. ([9, Corollary 11]) Let A be an abelian variety of dimension g over
k, T is a torsor of A, then we have

per(T )|I(T )|per(T )2g

Before we prove it, we need a lemma.

Lemma 4.1.4. ([9, Proposition 10]) Let M be a finite G module with n elements,
and η ∈ H1(k,M) a cohomology class, then we always have

I(η)|n

Proof. Let ξ : G → M be the 1 cocycle representing the cohomology class. Define
H to be the subset of G consists of elements σ ∈ G with ξ(σ) = 0. We can check H
is a subgroup (not necessarily normal). Then we have an injection of sets

φ : G/H →M

Let l be the fixed field of H by Galois theory, then we can see that l is a splitting
field of η. This proves the lemma.

Now we go back to the proof of the theorem. We have the Kummer sequence (see
[32, Example 7.9])

1→ A(l)/nA(l)→ H1(l, A[n])→ H1(l, A)[n]→ 1

for any number n and field extension l/k. Pick n here to be the period of T , then
the cohomology class of T lies in H1(k,A)[n]. By the exact sequence to split T it
suffices to split its lift ξ ∈ H1(k,A[n]). So we have I(T )|I(ξ). But we have A[n] is a
finite module with n2g elements. Then by the previous lemma we have

I(T )|I(ξ)|per(T )2g

4.2 Picard stacks of curves with genus 1

In this section we will consider elliptic curves. In the previous section we can see
if E is an elliptic curve over k, C is a torsor of E (We use C instead of T cause C
stands for curves), then we always have

per(C)|I(C)|per(C)2
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We first introduce a new invariant of C. In the rest of the chapter we will assume
the characteristic of the base field k is 0. The reason why we don’t consider the
positive characteristic case is because we need to apply Theorem 2.4.6. In the proof
of the theorem if the base field is of positive characteristic, then we don’t have the
tameness of the DM stack Y .

Definition 4.2.1. Let C be a curve of genus 1. Then its Picard variety Pic0
C/k is an

elliptic curve. We use E to denote it. Then C is a torsor of E (C ∼= Pic1
C/k and the

latter has a natural action of E). The Picard stack, the moduli stack of line bundles
on C with degree 0, we use Pic0

C/k to denote it, has a natural morphism

Pic0
C/k → Pic0

C/k

makes Pic0
C/k a Gm-gerbe over Pic0

C/k. Write K the function field of E. Restrict to
the generic point we have a Gm-gerbe

Pic0
C/k|K → Spec(K)

this corresponds to a Brauer class in Br(K). We define i(C) to be the index of this
Brauer class.

In some references the authors call this number i(C) the index of the Gm-gerbe
Pic0

C/k. We first consider the Gm-gerbe Pic0
C/k. One easy observation is that when C

admits a k rational point, then it is a trivial E torsor, and in that case since we have
the Poincare bundle on C ×Pic0

C/k, so Pic0
C/k is a trivial Gm-gerbe. The converse is

also true.

Theorem 4.2.2. ([20, Section 10.1.7]) Let E/k be an elliptic curve over some field
k with characteristic 0 and C is a torsor of E. Then C is a trivial torsor if and only
if Pic0

C/k is a trivial Gm-gerbe over E.

We summarize the basic facts of these three values in the following lemma.

Lemma 4.2.3. The numbers per(C), i(C), I(C) have the following relations:

per(C)|i(C)

i(C)|I(C)

Proof. The inclusion Br(E) → Br(K) is injective (see [32, Example 3.2.22]), so we
can see that per(C) = per(Pic0

C/k|K), hence we always have per(C)|i(C). Also we
know that suppose C is a torsor splitting over some finite field extension L with
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degree d, then we know C admits a L point, so Pic0
CL/L

is a trivial gerbe over EL,

hence K⊗kL is a splitting field of the Brauer class Pic0
C/k|K , so i(C)|L, which implies

i(C)|I(C).

In Chapter 5 we will consider the relation between the essential dimension of the
Picard stack Pic0

C/k and the index of C. The purpose of this chapter is to consider

the period and the index. The question is whether we always have per(C) = I(C)?
This is true in some cases which we list below:

Theorem 4.2.4. ([29, Theorem 1]) Let E is an elliptic curve over k and C is a torsor
of it. If we have Br(k) = 0, then we have

per(C) = I(C)

Theorem 4.2.5. ([29, Theorem 3]) Let E is an elliptic curve over a p-adic field, C
is a torsor of E, then we have

per(C) = I(C)

Remark 4.2.6. We can see that this period-index problem can be considered for
any abelian varieties. Please see [26] and [9] for more details.

However, this is not true in general. The following example is given by Cassels
[7].

Example 4.2.7. Let E be the elliptic curve given by

X2 = Y 2 − T 2

Z2 = Y 2 + T 2

for any m,n, l, we have a torsor Cm,n,l defined by

mnX2 = nlY 2 − T 2

mlX2 = nlY 2 + T 2

Using the construction we given (from torsors toH1(k,E)) we can see that per(Cm,n,l) =
2 for any m,n, l. And in [7] it shows that for infinitely many (m,n, l), I(Cm,n,l) = 4,
for example (m,n, l) = (3, 1,−11)

We will consider this problem by using Pic0
C/k. First we need some preparations.
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4.3 Canonical decomposition of Br(E)

We give the following geometric interpretation of the Br(E). The decomposition
is well known but the author didn’t find references for this theorem, so we give a
proof here.

Theorem 4.3.1. Given an elliptic curve E. We have a canonical decomposition

π : Br(k)⊕H1(k,E)→ Br(E)

defined as below: For any G ∈ Br(k) and torsor C of E

π(G, C) = f ∗G + Pic0
C/k

where f : E → Spec(k) is the structure morphism.

Proof. This is a direct consequence of the Leray spectral sequence of the morphism
f : E → Spec(k). We first show that π is an injection. Suppose π(f ∗G + Pic0

C/k) =

0 ∈ Br(E), then f ∗G + Pic0
C/k restricts to the identity of E is a trivial gerbe, but

the restriction of Pic0
C/k to the identity is always trivial since we always have the

structure sheaf, so G = 0 ∈ Br(k). Now Pic0
C/k is a trivial gerbe over E then by

Theorem 4.2.2 we must have C is a trivial torsor. So π is injective.
For surjectivity, we have the exact sequence

0→ Br(k)→ Br(E)→ H1(k,E)→ 0

induced by the Leray spectral sequence, and the Picard stack Pic0
C/k ∈ Br(E) maps

to C ∈ H1(k,E). So for any X a Gm-gerbe over E, define C ∈ H1(k,E) to be the
image of X . Then we have X − Pic0

C/k maps to 0 under the morphism Br(E) →
H1(k,E). So X−Pic0

C/k = f ∗G for some G ∈ Br(k). This proves the surjectivity.

4.4 2-torsion elements of Br(E)

We need to following useful description of the 2-torsion elements in Br(E) for
an elliptic curve E given in [8]. For any field L, two elements a, b ∈ L∗, we use the
notation < a, b >∈ Br(L) to denote the quaternion algebra generated by 1, i, j, ij
with relations

i2 = a, j2 = b, ij = −ji
We first set up the notations. Let E/k be an elliptic curve over some field k with

characteristic 0, and suppose that the 2-torsion points of E are defined over k. We
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use σ, τ, ω to denote the three non-trivial 2-torsion points of E, e the identity point of
E. We denote fσ,σ the rational function on E with double zeroes at σ, double poles
at e. Moreover, if we denote OE,e the local ring at the point e, and π an uniformizer
of it, then we need π2fσ,σ ∈ OE,p/πOE,p a square in k∗. We can define fτ,τ , fω,ω
similarly. In the case when the elliptic curve is given by

y2 = (x− a)(x− b)(x− c)

the three non-trivial 2-torsion points are (a, 0), (b, 0), (c, 0), and in this case we can
set fσ,σ = x− a, fτ,τ = x− b, fω,ω = x− c.

Theorem 4.4.1. ([8, Theorem 3.6]) With the notations defined as above. All ele-
ments in H1(k,E)[2] j Br(E)[2] j Br(K)[2] can be written in the form:

< fσ,σ, r > ⊗ < fτ,τ , s >

Also all biquaternion algebras of this form arise from some torsors. And such a
biquaternion algebra is trivial if and only if it is similar to one of the following three
types:

(a) < fσ,σ, u− b > ⊗ < fτ,τ , u− a > where u is the x coordinate of some points
in E(k) with u 6= a, u 6= b.

(b) < fσ,σ, a− b > ⊗ < fτ,τ , (a− b)(a− c) >
(c) < fσ,σ, (b− a)(b− c) > ⊗ < fτ,τ , b− a >

With these tools, we can begin our discussion.

4.5 A computation of I(C) for 2-torsion elements

in Br(E)

In this section we will discuss I(C) in details. We will first fix our field to be k
of characteristic 0. We assume the elliptic curves we consider admits full 2-torsion
points, that is E[2] are all k rational points. So the elliptic curve can be written as:

y2 = x(x− a)(x− b)

and K its functional field, e the identity point. We fix the following notations:

fσ,σ = x− a

fτ,τ = x− b
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The general theory about the case when I(C) = 2

By Theorem 4.4.1, elements in Br(K) come from Pic0
C/k with per(C) = 2 if and

only if it can be represented as:

< fσ,σ,M > ⊗ < fτ,τ , N >

for some A,B ∈ k. Denote C the torsor corresponding to this Brauer class. We will
describe the case when I(C) = 2.

We need some computation on elliptic curves. We suppose I(C) = 2, and that
means C admits a closed points with degree 2, say C(k(

√
α)) is not empty for some

α non-square in k. Set Gα = Gal(k(
√
α)/k), and g the only non-trivial element. So

[C] ∈ H1(k,E) is represented by a 1 cocycle

θ :g → pg

1→ e

for some point pg ∈ E(k(
√
α)). The case when pg is a 2-torsion point on E is easy to

control, so we assume 2pg 6= e. Since θ is a cocycle, we must have pg +gpg = e, so we

must have pg = (A,
√
A(A− a)(A− b)) and α/A(A− a)(A− b) is a square for some

A ∈ k. We use m to denote pg/2 (choose either one). By the standard calculation
we have m = (xm, ym) where

xm = A+
√

(A− a)(A− b) +
√
A(A− a) +

√
A(A− b)

ym = (x2
m − ab)/2

√
A

So we can see that if we set L := k(xm, ym) = k(
√
A,
√
A− a,

√
A− b), then we have

the following three cases, [L : k] = 2, 4 or 8. The first two cases are really similar to
the last one, so we only discuss the case when [L : k] = 8:

If [L : k] = 8. Then we consider the following three elements in Gal(L/k):

g :
√
A→ −

√
A

√
A− b→

√
A− b

√
A− a→

√
A− a

β :
√
A→ −

√
A

√
A− b→ −

√
A− b

√
A− a→

√
A− a
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γ :
√
A→ −

√
A

√
A− b→

√
A− b

√
A− a→ −

√
A− a

Then g, β, γ are generators of Gal(L/k) and β, γ fix the field k(
√
α). By definition,

the following two cocycles are same:

η1 :g → pg

β → e

γ → e

η2 :g → pg + gm−m
β → e+ βm−m
γ → e+ γm−m

We can see that η1 is just θ under the obvious restriction. Also η2 can be regarded
as elements in H1(k,E[2]). Since the action of Gal(k̄/k) on E[2] is trivial, η1 is
just a group homomorphism, and the kernel is generated by g + γ + β. Denote
F = k(

√
A(A− a),

√
A(A− b)). Define µ, ν ∈ Gal(F/k) where µ sends

√
A(A− a)

to −
√
A(A− a) and ν sends

√
A(A− b) to −

√
A(A− b). We can see that g+γ = µ

and g+β = ν in Gal(k(
√
A(A− a),

√
A(A− b))/k). We have e+ (g+γ)m−m = σ

and e+ (g + β)m−m = τ by direct calculation. So define:

η :µ→ σ

ν → τ

We can see that η and γ are the same if we restricts to H1(Gal(L/k), E). So [C] ∈
H1(k,E) is also represented by η. That means, the Brauer class

< fxσ ,σ,M > ⊗ < fτ,τ , N >

has index 2 if and only if it is isomorphic to

< fσ,σ, A(A− a) > ⊗ < fτ,τ , A(A− b) >
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and the splitting field is k(
√
A(A− a)(A− b)). The cases when [L : k] = 2, 4 are

the same. From Mordell-Weil theorem we know that E(k)/2E(k) is a finite set. By
the exact sequence

E(k)/2E(k)→ H1(k,E[2])→ H1(k,E)[2]→ 0

There is a finite set of pairs of integers P = {(β1, γ1), ..., (βn, γn)} with elements in
k∗/(k∗)2 × k∗/(k∗)2 such that

< fσ,σ,M > ⊗ < fτ,τ , N >∼=< fσ,σ,M
′ > ⊗ < fτ,τ , N

′ >

if and only if (MM ′, NN ′) ∈ P (Since everything is in k∗/(k∗)2×k∗/(k∗)2 so M/M ′ =
MM ′). So we have

Theorem 4.5.1. Let E/k be an elliptic curve over k with characteristic 0. Given
some element

< fσ,σ,M > ⊗ < fτ,τ , N >

coming from some torsor C of E. Let P = {(β1, γ1), ..., (βn, γn)} be the set of pairs
of integers coming from E(k)/2E(k). Then I(C) = 2 if and only C is not trivial
and for some A ∈ k, we have (MA(A − a), NA(A − b)) ∈ P , or the Brauer class of
Pic0

C/k|K is isomorphic to < fσ,σ, A >, < fτ,τ , A > or < fω,ω, A > for some A ∈ k.

The theorem seems hard to control, but we will see in the next section that in
specific cases it is really clear.

A concrete examples for the elliptic curve y2 = x(x2 − 1)

In this part we concentrate on the elliptic curve E defined by

y2 = x(x2 − 1)

over k = Q. The discussion in this part can be easily generalized. It is easy to see
that all 2 torsion points are defined over k and they are all k points of E. So by
Theorem 4.4.1,

< fσ,σ,M > ⊗ < fτ,τ , N >

is trivial if and only if (M,N) = (1, 1), (1,−1), (2, 2), (2,−2) in k∗/(k∗)2 × k∗/(k∗)2.
Suppose we have some torsor C with Pic0

C/k|K is represented by

< fσ,σ,M > ⊗ < fτ,τ , N >
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Denote P = {(1, 1), (1,−1), (2, 2), (2,−2)}. Then by Theorem 4.5.1 we know that
I(C) = 2 if and only there exists some A ∈ k such that (MA(A− 1), N(A+ 1)) ∈ P .
Let (MA(A−1), NA(A+1)) = (1, 1) in k∗/(k∗)2×k∗/(k∗)2. Then we have equations:

A(A− 1) = Mx2

A(A+ 1) = Ny2

for some x, y ∈ k. Take the sum we have 2A2 = Mx2 + Ny2. This is the same as
< 2M, 2N >= 1 ∈ Br(k). On the other hand, suppose we have < 2M, 2N >= 1,
this means there exists some rational numbers x, y ∈ k such that Mx2 +Ny2 = 2z2.
Take r = (Ny2 −Mx2)/2. Define

A =
s2

r
We can see that A satisfies equations:

A(A− 1) = Mx2s2/r2

A(A+ 1) = Ny2s2/r2

so (A(A− 1), A(A+ 1)) = (M,N) in k∗/(k∗)2 × k∗/(k∗)2. We can check other three
cases similarly. So we have proved:

Theorem 4.5.2. Let E/Q be the elliptic curve defined by

y2 = x(x2 − 1)

then the Brauer class
< fσ,σ,M > ⊗ < fτ,τ , N >

has index 2 if and only if it is non-trivial and at least one of the following quaternion
algebras

< M,N >,< M,−N >,< 2M, 2N >,< 2M,−2N >

splits.

Remark 4.5.3. The theorem can be generalized to any elliptic curves directly. Set
E/k defined by y2 = x(x − a)(x − b). If we denote P = {(β1, γ1), ..., (βn, γn)} as
usual, then we can see that

< fσ,σ,M > ⊗ < fτ,τ , N >

has index at most 2 if and only if one of the following quaternion algebras:

< −(a− b)bMβi, (a− b)aNγi >

for 1 ≤ i ≤ n is trivial.
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Remark 4.5.4. The integers M,N are not symmetric since for example we have
< fτ,τ ,−1 > is trivial while < fσ,σ,−1 > is not.

From the theorem we can give infinitely many torsors C of E with per(C) = 2
but I(C) = 4 concretely. For example, we pick (M,N) = (−1, 7), then we can see in
this case the index is 4. This generalizes Cassel’s construction [7].

Another example of per(C) < I(C)

In this part we give another example.
We set k = Q(t1, t2, t3, t4). Here actually Q can be replaced by any field of char

0. We define an elliptic curve E/k by

y2 = x(x− t1)(x− t2)

By Theorem 4.4.1, the central simple algebra

A =< fσ,σ, t3 > ⊗ < fτ,τ , t4 >

comes from some torsor C. We have per(C) = 2. Now we have the following:

Theorem 4.5.5. The central simple algebra A has index 4 in Br(K).

Proof. By [18, Theorem 1.5.5], A has degree 4 if and only if the equation

fσ,σu
2 + t3v

2 − t3fσ,σw2 = fτ,τr
2 + t4s

2 − t4fτ,τp2

has no non-trivial solutions. Now we have fσ,σ = x, fτ,τ = x − t1, and we know
K ∼= k(x)[y]/(y2 − x(x − t1)(x − t2)), so every element in K can be written in the
form fy + g where f, g are rational functions of x. Then we write every element
in the equation in the explicit form, the equation is the same as the following two
equations:

xu1u2 + t3v1v2 − t3xw1w2 = (x− t1)r1r2 + t4s1s2 − t4(x− t1)p1p2

x(u2
1x(x− t1)(x− t2)+u2

2)+ t3(v2
1x(x− t1)(x− t2)+v2

2)− t3x(w2
1x(x− t1)(x− t2)+w2

2)

= (x− t1)(r2
1x(x− t1)(x− t2) + r2

2) + t4(s2
1x(x− t1)(x− t2) + s2

2)

−t4(x− t1)(p2
1x(x− t1)(x− t2) + p2

2)

We may assume that all things appear in the equation are polynomials of x. We
will use infinite descend to get a contradiction. For simplicity, we will use the same
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notations when we consider things modulo some element. In the following proof,
we will concentrate on the second equation, cause the first one will be satisfied
automatically. Suppose we have a non-trivial solution, we may assume that the sum
of their degrees (as polynomials in k[x]) is minimal.

Let x = 0, we have
t3v

2
2 = −t1r2

2 + t4s
2
2 + t4t1p

2
2

Here v2, r2, s2, p2 means their values at x = 0, same for the following discussion. We
show that this equation has only trivial solution, in other words, we must have

x|v2, r2, s2, p2

in the original equation.
Assume this is not true. Since v2, r2, s2, p2 are rational functions in t1, t2, t3, t4,

we can regarded them as polynomials in t4 and coefficients in Q(t1, t2, t3). We may
also assume not all of them are divided by t4. If t4 - v2 or r2, then set t4 = 0 we will
see that −t1t3 will be a square in Q(t1, t2, t3), which is not true. So t4|v2, r2. Write
v2 = t4v

′
2, r2 = t4r

′
2, we have

t3t4v
′2
2 = −t1t4r′22 + s2

2 + t1p
2
2

By our assumption one of s2, p2 cannot be divided by t4, this implies t1 is a square in
Q(t1, t2, t3), which cannot happen. So we have x|v2, r2, s2, p2 in the original equation.

Write v2 = xv′2, r2 = xr′2, s2 = xs′2p2 = xp′2. We have

(u2
1x(x− t1)(x− t2) +u2

2) + t3(v2
1(x− t1)(x− t2) +xv′22 )− t3(w2

1x(x− t1)(x− t2) +w2
2)

= (x− t1)(r2
1(x− t1)(x− t2) + xr′22 ) + t4(s2

1(x− t1)(x− t2) + xs′22 )

−t4(x− t1)(p2
1(x− t1)(x− t2) + xp′22 )

We let x = 0, then we have

u2
2 + t3t1t2v

2
1 − t3w2

2 = −t21t2r2
1 + t1t2t4s

2
1 + t21t2t4p

2
1

Same as before we will show that this equation will only have trivial solution, which
means

x|u2, v1, w2, r1, s1, p1

in the original one. We can consider u2, v1, w2, r1, s1, p1 are polynomials in t4 with
coefficients in Q(t1, t2, t3), and not all of them are divided by t4. If one of u2, v1, w2, r1

is not divided by t4, by letting t4 = 0, we have

u2
2 + t1t2t3v

2
1 − t3w2

2 = −t21t2r2
1
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where u2, v1, w2, r1 ∈ Q(t1, t2, t3) and not all of them are zeroes. Then we may
consider them as polynomials in t3 and coefficients in Q(t1, t2). Similar as before we
may assume not all of are divided by t3. If t3 doesn’t divide one of u2, r1, modulo t3
will lead to −t2 is a square in Q(t1, t2), which is a contradiction. So t3|u2, r1. Divide
t3 and since t3 doesn’t divide one of v1, w2, this leads to t1t2 a square in Q(t1, t2),
which is a contradiction. So we must have

t4|u2, v1, w2, r1

Divide t4 since t4 - s1 or t4 - p1, this implies t1 is a square in Q(t1, t2, t3), which is a
contradiction. So we must have

x|u2, v1, w2, r1, s1, p1

Write u2 = xu′2, v1 = xv′1, w2 = xw′2, r1 = xr′1, s1 = xs′1, p1 = xp′1, we have

(u2
1(x− t1)(x− t2)+xu′22 )+ t3(v′21 x(x− t1)(x− t2)+v′22 )− t3(w2

1(x− t1)(x− t2)+xw′22 )

= (x− t1)(r′21 x(x− t1)(x− t2) + r′22 ) + t4(s′21 x(x− t1)(x− t2) + s′22 )

−t4(x− t1)(p′21 x(x− t1)(x− t2) + p′22 )

The following argument is really the same. We can conclude that x|u1, w1. Write
u1 = xu′1, w1 = xw′1, then

u′1, u
′
2, v
′
1, v
′
2, w

′
1, w

′
2, r
′
1, r
′
2, s
′
1, s
′
2, p
′
1, p
′
2

form a new solution of the original equation with smaller degree in x, which is a
contradiction. So we can see that

A =< fσ,σ, t3 > ⊗ < fτ,τ , t4 >

is a division algebra, hence i(C) = 4.
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Chapter 5

The relation between two indices
and the essential dimension of
Pic0

C/k

In this chapter we will concentrate on the relation between the two indices and
the essential dimension of Picard stacks. Through this chapter the base field will be
of characteristic 0.

We first show that

Theorem 5.0.1. Let C be an algebraic curve of genus 1. We always have

i(C) = I(C)

Then we have the result about the essential dimension of Pic0
C/k. By Theorem

2.4.6 we have:

Lemma 5.0.2. Let C be a curve of genus 1 over k, let K be the function field of
Pic0

C/k, then we have

edkPic0
C/k = 1 + edKPic0

C/k|K

The restriction Pic0
C/k|K is a Gm gerbe over Spec(K). From Conjecture 1.1.1 we

can see that its essential dimension is closed related to its index, so it reasonable
to consider i(C). Our purpose in this chapter is to prove i(C) = I(C), so we can
see that the essential dimension problem and the period-index problem are closed
related. However, we have an easy corollary.
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Corollary 5.0.3. We have
edkPic0

C/k = 1

if and only if C is a trivial torsor.

Proof. This is a direct consequence of Lemma 5.0.2 and Lemma 2.4.7

We need some preparations.

5.1 Fourier-Mukai transforms

We need the basic properties of Fourier-Mukai transforms in this part, so we give
a brief introduction. We refer to [22] for details. Let X, Y be two projective smooth
varieties over k, Db(X), Db(Y ) the derived category of coherent sheaves on X, Y .

Definition 5.1.1. ([36, Chapter 1]) Let X, Y be two smooth projective varieties
over k. P ∈ Db(X × Y ) an object in the derived category of coherent sheaves on
X × Y . Denote p : X × Y → X and q : X × Y → Y the two projections. The
Fourier-Mukai transform with kernel P is defined as follows:

ΦP :Db(X)→ Db(Y )

F → Rq∗(p
∗F ⊗ P )

We can see that the Fourier-Mukai transform gives a morphism of derived cate-
gories. The following theorem gives an answer to the other direction:

Theorem 5.1.2. ([36, Theorem 3.2.1]) Let X, Y be two smooth projective varieties
over k. Let F : Db(X)→ Db(Y ) a triangulated equivalence between them. Then F
is isomorphic to a Fourier-Mukai transform ΦP for some kernel P ∈ Db(X ×Y ), and
P is unique up to isomorphism.

This theorem is really powerful. It gives us a concrete way to describe the equiv-
alences between derived categories of smooth projective varieties. Orlov’s result is
more general where he doesn’t require F to be an equivalence but with other weaker
conditions. See [36, Theorem 3.2.1] for more details.

Remark 5.1.3. The projectivity of X, Y is essential here. If we want to consider
proper smooth varieties, then we need to use differential graded categories, see [43]
for details.

We concentrate on the Fourier-Mukai transform between abelian varieties.
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Theorem 5.1.4. ([33], [22, Theorem 9.19]) Let A be an abelian variety over k of

dimension g and Â its dual abelian variety. Let P be the Poincare line bundle on
A× Â. Then the Fourier-Mukai transform with kernel P ∈ Db(X × Y )

ΦP : Db(Â)→ Db(A)

is an equivalence. Moreover, the composition

Db(Â)
ΦP−−→ Db(A)

ΦP−−→ Db(Â)

is isomorphic to ι̂∗[−g], here ι̂ : Â→ Â is the inverse of the dual abelian variety.

With this we can prove the following lemma. The author didn’t find the references
but this lemma is well known to experts. We give a proof here, there are also some
discussions in Bhatt’s note [2, Lemma 18.1].

Lemma 5.1.5. Let A be an abelian variety over an algebraically closed field k of
dimension g, Â its dual abelian variety. Choose x ∈ Â(k) a point and Mx ∈ Pic0(A)
the corresponding line bundle. If F ∈ Db(A), there is a canonical isomophism

RΓ(A,F ⊗Mx) ∼= ΦP (F )|x
Similarly, for some G ∈ Db(Â), there is a canonical isomorphism

RΓ(Â,ΦP (G)⊗Mx) ∼= G[−g]|x
Proof. By taking G = ΦP (F ) then with the above theorem we can see that the
second statement is the same as the first one. We have the fiber diagram

A× x A× Â

x Â

ι

p′
p

ι′

Then by the flat base change theorem, we have

ΦP (F )|x ∼= ι′∗Rp∗(q
∗F ⊗ P ) ∼= Rp′∗(ι

∗(q∗F ⊗ P )) ∼= RΓ(A,F ⊗Mx)

Remark 5.1.6. Take x to be the identity in the second statement we have

RΓ(A,ΦP (G)) ∼= G[−g]e

which we have
χ(ΦP (G)) = (−1)grk(G)

Here χ is the Euler characteristic and rk(G) is the rank of G.
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5.2 The relation between I(C) and i(C)

From Theorem 5.0.2 we have the following theorem if the Conjecture 1.1.1 holds

Theorem 5.2.1. Assume Conjecture 1.1.1 holds. Let C/k be a curve over k with
genus 1. Write

i(C) = pr11 p
r2
2 ...p

rs
s

the prime decomposition. Then we have

edkPic0
C/k = pr11 + ...+ prss − s+ 1

Since the Conjecture 1.1.1 has been proved in the case when s = 1, so the previous
theorem is always true in this case.

Usually the value i(C) is not so easy to control but I(C) is easy to estimate in
particular when the curve is given by some functions. So it’s reasonable to consider
the relation between them. Actually we have:

Theorem 5.2.2. Let C be a curve of genus 1 over a field k of characteristic 0. Then
we always have

i(C) = I(C)

Proof. We have seen that i(C) ≤ I(C), so we just need to show the other direction.
Recall we use E to denote the Picard variety Pic0

C/k and K its function field. Since
Pic0

C/k|K ∈ Br(K) has index i(C), so there is a finite field extension L/K of degree

i(C) such that Pic0
C/k|L ∈ Br(L) is trivial. Then there is a projective smooth curve

D with a commutative diagram

Spec(L) Spec(K)

D E

See [21, Chapter 1, Corollary 6.12] for details. We use π : D → C to denote the
morphism, and we can see that this is finite flat. Since the image of Pic0

C/k ∈ Br(E)
is 0 under the composition of morphisms

Br(E)→ Br(D)→ Br(L)

and the morphism Br(D)→ Br(L) is injective, so we can see the fiber product

Pic0
C/k ×E D → D
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is a trivial Gm-gerbe. This implies Pic0
C/k(D) is non-empty. From the definition of

Picard stacks, there is a universal line bundle V on D × C. Let p : D × C → C be
the projection, we claim that

deg(Rp∗V ) = −i(C)

To prove it, since the degree doesn’t change under the field extension, so we may
assume k is algebraic closed. Then C is isomorphic to E. Denote q : D × C → D
the first projection and P the Poincare line bundle on C × E. We have that

V ∼= q∗M ⊗ (π × 1)∗P

for some line bundle on D. Write p′ : E × C → C and q′ : E × C → E the two
projections. Now by the flat base change and projection formula we have

Rp∗V ∼= Rp∗(q
∗M ⊗ (π × 1)∗P )

∼= Rp′∗R(π × 1)∗(q
∗M ⊗ (π × 1)∗P )

∼= Rp′∗(R(π × 1)∗q
∗M ⊗ P )

∼= Rp′∗(q
′∗π∗M ⊗ P )

∼= ΦP (π∗M)

where the third equality is given by the projection formula and the fourth is given
by the flat base change. Since π : D → E is flat and finite of degree i(C), we have
rk(π∗M) = i(C). Then by Lemma 5.1.5, we have

χ(Rp∗V ) = χ(ΦP (M)) = rk(π∗M) = −i(C)

hence we have
deg(Rp∗V ) = χ(Rp∗V ) = −i(C)

by the Riemann-Roch theorem.
However for curves of genus 1 we have

deg(det(Rp∗V )−1) = −deg(Rp∗V ) = i(C)

So we get a line bundle of degree i(C) on the curve C. Then by the definition of
I(C) we get I(C)|i(C), which proves the other direction. We finish the proof.

With this theorem and curves given by equations we can estimate the essential
dimension of its Picard stack easily.

Remark 5.2.3. By a really similar idea we can see for any torsor T of an abelian
varietiy of dimension g we always have

I(T )|i(T )g!

The question whether I(T ) = i(T )g! seems unknown.
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Part III

The Tate conjecture and finiteness
of abelian varieties over finite fields
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Chapter 6

Tate conjecture and finiteness of
abelian varieties over finite fields

6.1 Introduction

Through the chapter, k is a finite field of characteristic p and k̄ means the alge-
braic closure of k.

In this chapter we will prove the following theorem.

Theorem 6.1.1. The Tate conjecture of abelian varieties over k implies that there
are only finitely many abelian varieties of dimension g over k.

This result is first proved by Zarhin in [46, Theorem 4.1]. We will give a different
approach to this result.

Notations: We will use k to represent a finite field of characteristic p, k̄ its
algebraic closure, G = Gal(k̄/k) the absolute Galois group. σ is the Frobenius
element. For a projective variety X over k, we use πX to denote the Frobenius
morphism of X.

6.2 Some basic facts about abelian varieties

In this section we recall the Tate module of an abelian variety and the p-divisible
group.

Let A be an abelian variety over k with dimA = g. Choose l a prime number
with l 6= p. We know that if (p, n) = 1, the morphism n : A → A is a separable
isogeny of degree n2g, denote A[n] = Ker(n : A → A), then A[n](k̄) ∼= (Z/nZ)2g.
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The Tate module is defined as

Tl(A) = lim←−
n

A[ln](k̄)

We know Tl(A) ∼= Z2g
l non-canonically. The Galois group G acts on Tl(A) in a

natural way. This action is continuous, since the Frobenius is a topological generator
of G, so the action of σ determines the action of G. The Frobenius morphism
πA : A→ A is a morphism in HomAV (A,A), and the image of πA under the natural
morphism

HomAV (A,A)⊗ Zl → HomZl[G](Tl(A), Tl(A))

is σ.
In [42, Section 1], Tate proved the following famous theorem

Theorem 6.2.1 (Tate). Let k = Fq be a finite field where q is a power of a prime p.
Let A,B be two abelian varieties over k. Let G = Gal(k̄/k) be the absolute Galois
group of k. If l is a prime and l 6= p, then we have the isomorphism

HomAV (A,B)⊗ Zl ∼= HomZl[G](Tl(A), Tl(B))

Here Tl is the Tate module of an abelian variety.

For πA, we define a function PπA(n) = deg(n− πA), then PπA is a polynomial of
degree 2g with Z coefficients. It is the same as the characteristic polynomial of σ
on Vl(A) = Tl(A) ⊗ Ql. In particular the characteristic polynomial of σ on Vl(A) is
independent of l. We will use several properties of the characteristic polynomials,
we refer to [17, Chapter 16] for details.

In the case if l = p, since now p : A → A is not separate, things are a little
different. We use the p-divisible group in this case. It is defined as

A[p∞] = lim−→
n

A[pn]

To introduce the Tate p-conjecture, we need to use the definitions and properties
of Dieudonne ring and Dieudonne modules, for details, see [45, Chapter 1] and [37,
Section 23].

LetDk be the Dieudonne ring of k, it is a non-commutative associativeW (k)−algebra
(W (k) is the ring of Witt vectors) with two generators F, V satisfying the following
conditions:

FV = V F = p

F (c) = φ(c)F
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cV = V φ(c)

for any c ∈ W (k). Here φ is the automorphism ofW (k) induced by the automorphism
x→ xp on k. So if k = Fp, then Dk is commutative.

By the standard procedure (see [37, Section 23]) we can associate A[p∞] with a
Dk module M(A). It is a free W (k) module of rank 2g. Its Dk action is uniquely
determined by the action of F (or V ), then Tate proved

Theorem 6.2.2 (Tate). For two abelian varieties A,B over k, with the above nota-
tions, we have a natural isomorphism

HomAV (A,B)⊗ Zp ∼= HomDk(M(B),M(A))

This theorem can be found in [45, Page 4]. In particular, we have

HomAV (A,A) ∼= HomDk(M(A),M(A))

In this case, if we denote σA is image of πA (The Frobenius morphism of A) under
this isomorphism, then σA = Fm if k = Fpm . And the character polynomial of σA is
just PπA .

6.3 The finiteness of isogeny classes

In this section we will prove that there are finitely many isogeny classes of abelian
varieties over k of dimension g. We first recall the isogeny theorem.

Theorem 6.3.1. ([42, Section 3, Theorem 1]) Given two abelian varieties A,B over
k, then

A and B are isogenous

⇐⇒ PπA = PπB

⇐⇒ Tl(A)⊗Ql
∼= Tl(B)⊗Ql as Ql[G] modules

So to consider the isogeny classes we just need to consider the characteristic
polynomials of the Frobenius. But we have the following big theorem.

Theorem 6.3.2. (Weil Conjecture, see [12, Theorem 1.6]) Let A be an abelian
variety over k with dimension g, then PπA is a monic polynomial with coefficients in
Z with degree 2g, and if α is a root of PπA , then for any Galois embedding η : Q̄→ Q̄
over Q, we have |η(α)| = √q, here q is the number of elements in k.

With these two theorems, we can state
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Corollary 6.3.3. There are only finitely many isogeny classes of abelian varieties
over k of dimension g.

Proof. By Theorem 6.3.1, it suffices to prove there are only finitely many character-
istic polynomials. Suppose k = Fq. If

P (x) = Σ2g
i=0aix

2g−i

is the characteristic polynomial of some abelian variety, and α1, α2, ..., α2g are roots
of P (x), then by Theorem 6.3.2, |αi| ≤

√
q, so we have

|as| = |Σ1≤i1<i2<...<is≤2gαi1 ...αis|

≤ Σ1≤i1<i2<...<is≤2g|αi1 ...αis|

≤ Σ1≤i1<i2<...<is≤2g
√
qs

≤M
√
qs

for some M . So we know all ai are bounded by some number which only depends
on the field k and the dimension g. But we know all ai are integers, so we only
have finitely many choices, so there are only finitely many polynomials can be the
characteristic polynomial of some abelian varieties. So there are only finitely many
isogeny classes.

So to prove there are finitely many isomorphism classes it suffices to show that ev-
ery isogeny class of abelian varieties only contains finitely many isomorphism classes.

6.4 Some calculus of the Tate module

In this section we fix an abelian variety A over k of dimension g. πA will de-
note the Frobenius morphism of A, PπA is its characteristic polynomial. Let C
be the isogeny class containing A. We will also use πA to denote the element in
HomZl[G](Tl(A), Tl(A)) under the Tate’s isomorphism, which can be regarded as a
2g × 2g matrix with element in Zl.

The main proposition of this section is:

Proposition 6.4.1. With the above data, there exists a positive integer N which
only depends on A (we will see from the proof N only depends on C), such that
for any B ∈ C and l > N , Tl(B) ∼= Tl(A) as Zl[G] modules, and for l < N , the
set {Tl(B)|B ∈ C} (consider as Zl[G] modules) is a finite set (we include the case
l = char k, in which case we consider Dieudonne modules as in Section 6.2).
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Before the proof, we first notice that we must have Tl(A) ⊗ Ql
∼= Tl(B) ⊗ Ql

as Ql[G] modules. As we discussed, the G action on the Tate module is uniquely
determined by the action of the Frobenius. So we can see Tl(A) ∼= Tl(B) as Zl[G]
modules if and only if πA and πB are conjugate by some matrix in GL2g(Zl) (not
GL2g(Ql), they already conjugate by some matrix in GL2g(Ql) by Tate’s isogeny
theorem).

We separated the proof into two parts, consists of the following two lemmas.
They are all purely linear algebra things.

Lemma 6.4.2. There exists a positive N such that for any abelian variety B which
is isogenous to A, and l > N , we can find basis of Tl(B) and Tl(A) such that the
matrices of πA and πB will be the same.

Proof. We know A is isogenous to Ab11 ×Ab22 × ...×Abss where all Ai are simple, non-
isogenous with each other. We know for a simple abelian variety Ai, the characteristic
polynomial PπAi of the Frobenius is a power of an irreducible polynomial, so Pπ

A
bi
i

is also a power of an irreducible polynomial. The characteristic polynomials Pπ
A
bi
i

should be coprime with each other, let Ki = Πj 6=iPπ
A
bj
j

. Then by Bezout’s theorem,

there exists gi ∈ Q[x] such that

Σs
i=1gi(x)Ki(x) = 1

Then choose N0 be a positive number such that if l > N0, then all gi(x) ∈ Zl[x]
(i.e. l doesn’t divide any denominators in gi). And denote Mi = Ki(π)Tl(A). Then
since all gi ∈ Zl[x], so if l > N0, Tl(A) = ⊕Mi. And this N0 only depends on the
chosen isogeny class C. On each Mi, the characteristic polynomial of πA is Pπ

A
bi
i

,

which is a power of an irreducible polynomial. Then we will concentrate on one M1,
i.e. we just assume M1 = Tl(A), and we can see the similar procedure can be applied
to all 2 ≤ i ≤ s and prove the lemma in the general case.

We know πA is an invertible matrix with coefficients in Zl. Let {α1, ..., αt} be
the roots of PπA , then we have PπA = ((x − α1)...(x − αt))e for some e and Q(x) =
Πt
i=1(x− αi) ∈ Z[x] is irreducible. Then we define

Pi(x) = Πj 6=i(x− αj)

for 1 ≤ i ≤ k. Since they don’t have common factors, so we may choose hi(x) ∈ Q̄[x]
such that

ΣhiPi = 1
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Choose N1 such that if l > N1, then we have hi ∈ Z̄l[x]. Then we can see for any
v ∈ Tl(A), v = Σhi(πA)Pi(πA)v. Also it is easy to check

Li = Pi(πA)Tl(A)

lies in αi-eigenspace (consider this over Z̄l). Let L̄i be the Z̄l linear expansion of Li in
Tl(A)⊗ Z̄l. Since every eigenspace of different eigenvalues are linearly independent,
so we have

Tl(A)⊗ Z̄l = ⊕L̄i
Define D = Πi 6=j(αi − αj)

2, then D ∈ Z. We pick u1, ..., ue to be an integral
basis of L̄1 over Z̄l, such that u1, ..., ue can be represented by ui = P1(πA)(wi) for
w1, ..., we in Tl(A) (This is true by linear algebra and the definition of L̄1). Define
vi = ΣPj(πA)(wi). Then we have vi ∈ Tl(A). We prove if l > max(N0, N1, |D|), then

{v1, πA(v1), ..., πt−1
A (v1), v2, ..., π

t−1
A (v2), ..., ve, ..., π

t−1
A (ve)}

is an integral basis of Tl(A). Since v = Σhi(πA)Pi(πA)v, so it suffices to show
Pi(πA)(v) can be represented over Z̄l by these elements. From the Galois theory
Pi(x) = φ(P1(x)) for some φ ∈ Gal(Q̄l/Ql). By definition of wi,

P1(πA)(v) = ΣβjP1(πA)(wj)

for some βj ∈ Z̄l, so we have

Pi(πA)(v) = Σφ(βj)Pi(πA)(wj)

Then we just need to show Pi(πA)(wj) can be represented over Z̄l by these elements.
This is solved by considering the system linear equations:

v1 = ΣPi(πA)(w1)

πA(v1) = ΣαiPi(πA)(w1)

....

πt−1
A (v1) = Σαt−1

i Pi(πA)(w1)

Then the matrix of this system of linear equations has determinantD, so by definition
of l and the Crammer’s rule, Pi(πA)(wj) can be represented over Z̄l by these elements.
So

{v1, πA(v1), ..., πt−1
A (v1), v2, ..., π

t−1
A (v2), ..., ve, ..., π

t−1
A (ve)}
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is an integral basis of Tl(A) (Here we only proved every element can be represented
integrally by these elements. But we have te elements here and te = 2g = dimTl(A)⊗
Ql, so they must form a basis). And the matrix of πA under this basis is uniquely
determined by PπA , just denote this matrix by C. So if we set N = max(N0, N1, |D|),
then for l > N , we can choose a basis as above such that the Frobenius acts on Tl(A)
is represented by the matrix C. But this is independent of A, so we can do the
same thing for B, so the matrices of πA and πB are the same. For the general
case, we can find Ni for each Mi, they are all only depend on PπA , so just choose
N = max(N0, N1, ..., Ns), then from the above procedure, we can choose basis such
that πA and πB have the same matrix when l > N . We proved the lemma.

Lemma 6.4.3. With N defined as above, for l < N , the set {Tl(B)|B ∈ C} (consider
as Zl[G] modules) is a finite set (we include the case l = char k, in which case we
consider Dieudonne modules as in section 2).

Proof. We use the same idea and notations as in Lemma 6.4.2. We collect them
here.
Let PπA = Πs

i=1Pπ
A
bi
i

where Pπ
A
bi
i

is a power of an irreducible polynomial. Set

Ki = Πj 6=iPπ
A
bj
j

for 1 ≤ i ≤ s, then these Ki(x) don’t have common factors. So we

have gi(x) ∈ Q[x] such that
Σs
i=1gi(x)Ki(x) = 1

Fix some l < N . Define Mi = Ki(πA)Tl(A). If we set s1 to be the smallest integer
such that ls1gi(x) ∈ Zl[x], then we have

ls1Tl(A) ⊆ ⊕Mi ⊆ Tl(A)

Notice that this s1 only depends on PπA and l. Then πA acts on Mi, and its charac-
teristic polynomial is just Pπ

A
bi
i

. Write Pπ
A
bi
i

= (Πri
j=1(x− αij))ei . Define

Pij = Πn6=j(x− αin)

for 1 ≤ i ≤ s and 1 ≤ j ≤ ri. Then by Bezout’s theorem, we may find hij ∈ Q̄[x]
such that

Σri
j=1hijPij = 1

Define
Lij = Pij(πA)Mi
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and L̄ij be the Z̄l expansion of Lij in Tl(A)⊗ Z̄l. Then L̄ij is a free module of rank
ei. Choose {wi1, ..., wiei} such that Pi1(πA)(wij) 1 ≤ j ≤ ei is an integral basis of Li1.
Define

vij = Σri
n=1Pin(πA)(wij), 1 ≤ i ≤ s, 1 ≤ j ≤ e1

Define Ni to be the submodule of M1 generated by

{vi1, πA(vi1), ..., πri−1
A (vi1), ....., viei , ..., π

ri−1
A (viei)}

Let D = (Πt
i=1Π1≤j,k≤ri(αij − αik))

2(e1+e2+...+es), and choose s2 to be the smallest
number such that

ls2hij ∈ Zl[x],
ls

D
∈ Z

Then similar to the proof in Lemma 6.4.2 we can see

ls2(⊕Mi) ⊆ ⊕Ni ⊆ ⊕Mi

Then we have
⊕Ni ⊆ Tl(A) ⊆ l−s1−s2 ⊕Ni

Note that the matrix of πA on⊕Ni is only determined by PπA in the chosen basis. Also
the action of πA on Tl(A) is induced from l−s1−s2(⊕Ni). But (l−s1−s2(⊕Ni))/(⊕Ni)
is a finite set, so we proved the finiteness of {Tl(B)|B ∈ C} if l 6= p.

The l = p case is similar as we can see we can do the similar calculus for W (k)
module M(A) with the action πA = Lm if k = Fpm . Then we can see that the set of
M(A) with the action of πA is finite, but for fixed πA, there are only finitely many
choices of L since they must be semi-simple. So we have the set of M(A) with Dk

action is a finite set.

By Proposition 6.4.1, to prove the finiteness of isomorphism classes of abelian
varieties, it suffices to show for a fixed abelian variety A of dimension g, the set

{B|B is an abelian variety, Tl(B) ∼= Tl(A) as Zl[G] modules for all prime l}

is a finite set. Here we include the case l = p, which we consider the Dk module
M(A). We will show this in the next section.

6.5 Proof of the main theorem

In this section, we will show the set in the previous section

{B|B is an abelian variety, Tl(B) ∼= Tl(A) as Zl[G] modules for all prime l}

is finite with the fixed A.
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Lemma 6.5.1. For a prime l 6= p, if Tl(A) ∼= Tl(B) as a Zl[G] module, then there
exists an isogeny π : B → A with (degπ, l) = 1.

Proof. From the Tate conjecture, we have the following isomorphism

HomAV (B,A) ∼= HomZl[G](Tl(B), Tl(A))

If σ : Tl(B) → Tl(A) the isomorphism, then since Z is dense in Zl, so we may find
an isogeny π : B → A such that the image of π is close to σ. So the image of π is
also an isomorphism. Then set N = Ker(π), so we have the exact sequence

0→ Tl(B)→ Tl(A)→ Nl → 0

here Nl means the sylow l group of N , see [17, Proposition 10.6]. Since π induces
isomorphism between Tate modules, so we must have Nl = {0}, so (degπ, l) = 1.

Lemma 6.5.2. The same holds for l = p case.

Proof. The proof is really similar, the exact sequence is

0→ Np → B[p∞]→ A[p∞]→ 0

see [17, p. 10.17]

We can conclude the previous two lemmas into one property:

Proposition 6.5.3. Fix an abelian variety A. If there exists an abelian variety B
such that Tl(B) ∼= Tl(A) for l 6= p and M(B) ∼= M(A) as Dk modules, then for any
prime l, we have an isogeny πl : B → A such that deg(π) is coprime to l.

We need a technique lemma.

Lemma 6.5.4. Assume there exists two abelian varieties A and B and two isogenies
π1 : B → A and π2 : B → A. If we have two integers m1,m2 such that (m1,m2) = 1
and (m1, degπ1) = (m2, degπ2) = 1, then we have an isogeny π : B → A such that
(degπ,m1m2) = 1.

Proof. Set π = m2π1 + m1π2. First we show π is an isogeny. Pick some l | m1,
then consider the image of π in HomZl[G](Tl(B), Tl(A)) under the Tate isomorphism.
We can see by condition m2π1 under this isomorphism induces an isomorphism since
(m2degπ1, l) = 1, and π and m2π1 are differ by l times some homomorphism, so we
have π is an isomorphisms of Tate modules, so π is an isogeny.
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If (degπ,m1m2) 6= 1, then there exists some x ∈ Ker(π) ∩ B[m1m2]. Then by
replacing x by some multiple, we may assume there exists some prime factor l of
m1m2, just say a prime factor of m1 (the case of m2 is the same), such that x 6= 0,
lx = 0 and x ∈ Ker(π). But then we have

0 = π(x) = m2π1(x) +m1π2(x) = m2π1(x)

so x ∈ Ker(m2π1), so x ∈ Ker(m2π1)∩B[l] = {0}, which is a contradiction. So this
π satisfies our requirements.

Now we come to the next lemma.

Lemma 6.5.5. Fix an abelian variety A. If there exists an abelian variety B such
that Tl(B) ∼= Tl(A) for l 6= p and M(B) ∼= M(A) as Dk modules, then B is a direct
component of A × A. Here direct component means we have an abelian variety C
such that B × C ∼= A× A

Proof. Choose any isogeny π1 : B → A, then by Lemma 6.5.4, Prop 6.5.3 and the
induction procedure, we may find an isogeny π2 such that (degπ1, degπ2) = 1, then
we have an embedding

g : B → A× A
b→ (π1(b), π2(b))

Then we may find isogenies φ1 : A→ B and φ2 : A→ B such that

φ1π1 = degπ1

φ2π2 = degπ2

Since (degπ1, degπ2) = 1, so there exists s, t ∈ Z such that sdegπ1 + tdegπ2 = 1.
Define

f : A× A→ B

(a1, a2)→ sφ1(a1) + tφ2(a2)

Then we have fg = 1B, so B is a direct factor of A× A.

Now we can finish our proof.

Theorem 6.5.6. There are only finitely abelian varieties of dimension g over k.

Proof. By [31, Theorem 18.7], for a fixed abelian variety, there are only finitely many
direct components, then the theorem follows from Corollary 6.3.3, Prop 6.4.1 and
Lemma 6.5.5.
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[20] Günter Harder. “Lectures on algebraic geometry II”. In: Aspects of Mathemat-
ics 39 (2008).

[21] Robin Hartshorne. Algebraic geometry. Vol. 52. Springer Science &amp; Busi-
ness Media, 2013.

[22] Daniel Huybrechts. Fourier-Mukai transforms in algebraic geometry. Oxford
University Press on Demand, 2006.

[23] Daniel Huybrechts. Lectures on K3 surfaces. Vol. 158. Cambridge University
Press, 2016.

[24] Junmyeong Jang. “A Lifting of an Automorphism of a K3 Surface over Odd
Characteristic”. In: International Mathematics Research Notices 2017.6 (2016),
pp. 1787–1804.

[25] Junmyeong Jang. “Neron-Severi group preserving lifting of K3 surfaces and
applications”. In: arXiv preprint arXiv:1306.1596 (2013).

[26] Serge Lang and John Tate. “Principal homogeneous spaces over abelian vari-
eties”. In: American Journal of Mathematics 80.3 (1958), pp. 659–684.

[27] Gérard Laumon and Laurent Moret-Bailly. Champs algébriques. Vol. 39. Springer,
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[43] Bertrand Toën. “The homotopy theory of dg-categories and derived Morita
theory”. In: Inventiones mathematicae 167.3 (2007), pp. 615–667.

[44] Angelo Vistoli. “Notes on Grothendieck topologies, fibered categories and de-
scent theory”. In: arXiv preprint math/0412512 (2004).



BIBLIOGRAPHY 60

[45] William C Waterhouse and JS Milne. “Abelian varieties over finite fields”. PhD
thesis. Harvard University, 1968.

[46] Yuri Zarhin. “Endomorphisms of abelian varieties and points of finite order
in characteristic p”. In: Mathematical notes of the Academy of Science of the
USSR 21 (1977), pp. 415–419.




