
Lawrence Berkeley National Laboratory
LBL Publications

Title
Simulation of Occupancy in Buildings:

Permalink
https://escholarship.org/uc/item/9j6223kx

Authors
Feng, Xiaohang
Yan, Da
Hong, Tainzhen

Publication Date
2015-05-01

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9j6223kx
https://escholarship.org
http://www.cdlib.org/


LBNL-xxxxx  
  

 
 
 
 
 
 
 
 
 
 

Simulation of Occupancy in Buildings 
 
 

 
 
 
Xiaohang Feng1, Da Yan1, Tianzhen Hong2 

 

 
 
1School of Architecture, Tsinghua University,        
Beijing 100084, China 
 
2Building Technology and Urban Systems Division 
Energy Technologies Area 
 
 
 
 
 
 
 
 
May 2015 
 
 
 
 
This is an article published in the journal of Energy and Buildings, January 2015. 

ERNEST ORLANDO LAWRENCE 
BERKELEY NATIONAL LABORATORY 



 
 

 
 

 
Disclaimer 

 
This document was prepared as an account of work sponsored by the United States 
Government. While this document is believed to contain correct information, neither 
the United States Government nor any agency thereof, nor The Regents of the 
University of California, nor any of their employees, makes any warranty, express or 
implied, or assumes any legal responsibility for the accuracy, completeness, or 
usefulness of any information, apparatus, product, or process disclosed, or represents 
that its use would not infringe privately owned rights. Reference herein to any specific 
commercial product, process, or service by its trade name, trademark, manufacturer, or 
otherwise, does not necessarily constitute or imply its endorsement, recommendation, 
or favoring by the United States Government or any agency thereof, or The Regents of 
the University of California. The views and opinions of authors expressed herein do 
not necessarily state or reflect those of the United States Government or any agency 
thereof, or The Regents of the University of California. 

 
Ernest Orlando Lawrence Berkeley National Laboratory is an equal opportunity 
employer. 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Please cite this report as follows: 
Feng, X., Yan, D., Hong, T. Simulation of occupancy in buildings. Energy and 
Buildings, 87: 348-359, 2015. LBNL-xxxxx. 
 

 



 
 

 
 

Acknowledgement 
 
This work was sponsored by the United States Department of Energy (Contract No. DE-
AC02-05CH11231) and the China Ministry of Housing and Urban - Rural Development 
and the Ministry of Science & Technology (Grant No. 2010DFA72740-02) under the U.S.-
China Clean Energy Research Center for Building Energy Efficiency. It is also part of the 
research of Annex 66, Definition and Simulation of Occupant Behavior in Buildings, under 
the International Energy Agency Energy in Buildings and Communities Program. 
  
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
  

 



Simulation of Occupancy in Buildings 
Xiaohang FENG a, Da YAN a, Tianzhen HONG b *  

 

 

a School of Architecture, Tsinghua University, Beijing 100084, China 

E-mail address: fengxh12@mails.tsinghua.edu.cn (X. Feng), yanda@tsinghua.edu.cn (D. Yan) 

 

b Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA 

* Corresponding author. Tel: +1-510-4867082; Fax: +1-510-4864089 

E-mail address: thong@LBL.gov (T. Hong) 

Abstract 

Occupants are involved in a variety of activities in buildings, which drive them to move among rooms, 
enter or leave a building. In this study, occupancy is defined at four levels and varies with time: (1) the 
number of occupants in a building, (2) occupancy status of a space, (3) the number of occupants in a 
space, and (4) the space location of an occupant. Occupancy has a great influence on internal loads and 
ventilation requirement, thus building energy consumption. Based on a comprehensive review and 
comparison of literature on occupancy modeling, three representative occupancy models, corresponding 
to the levels 2, 3, and 4, are selected and implemented in a software module. Main contributions of our 
study include: (1) new methods to classify occupancy models, (2) the review and selection of various 
levels of occupancy models, and (3) new methods to integrate these model into a tool that can be used in 
different ways for different applications and by different audiences. The software can simulate more 
detailed occupancy in buildings to improve the simulation of energy use, and better evaluate building 
technologies in buildings. The occupancy of an office building is simulated as an example to demonstrate 
the use of the software module.  

Keywords 

Building simulation, co-simulation, occupancy, occupant behavior, software module, stochastic modeling 
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1 Introduction 

Occupants are involved in a variety of activities in a building, such as working in their offices, 
communicating with other occupants, meeting in a conference room, or going to a restroom. Activities 
drive occupants’ movement among rooms and in and out of a building. Occupancy here is defined as 
occupied status or number of occupants at four levels varied with time: (1) the number of occupants in a 
building, (2) a space is occupied or not, (3) the number of occupants in a space, and (4) in which space an 
occupant is located.  

Occupancy has great impact on building energy consumption and is the basis of building simulation with 
tools such as EnergyPlus [1] and DeST [2]. It is also a key to occupant behavior modeling, e.g. window 
opening and closing or HVAC systems turning on and off. With the global trend towards low energy 
buildings, occupancy based controls are being used to reduce energy use in buildings, such as air-
conditioning [3], ventilation [4], and lighting [5].  

Some devices are controlled by occupancy sensors and perform independently of occupant behavior 
decision making. For example, a lighting system installed with an occupancy sensor in a room can be 
turned off if the sensor signals that the room is unoccupied, and it can be turned on if the sensor sends an 
occupied signal. A typical 30% energy savings can be achieved with occupancy sensors to control 
lighting [6]. Lo et al [7] simulated the energy consumption with occupancy control in an open office, and 
found that a 30% cooling energy reduction is achieved when the thermostat setting of the unoccupied 
zones were reset to have a higher temperature than that of the occupied zones.  

Occupant behavior varies by individuals. Yun et al [8] found that the lighting use patterns are 
significantly related to the occupancy patterns in offices. An investigation of residences in Kuwaiti 
conducted by Al-Mumin et al [9] suggests that the air-conditioning (AC) thermostat settings of surveyed 
residences vary from below 19°C to above 25°C. Brager et al [10] states that thermal sensations were 
broadly distributed in the same way from both the warm and cool season surveys due to individual 
preferences. This may lead to different window operations. Some occupants may prefer the window to be 
closed, while others to be open, even under the same room thermal conditions. From this perspective, it is 
important to know who is in a space at a particular time in order to determine operations of energy-related 
devices for comfort.  

Some systems are demand controlled, i.e. the number of occupants in a space determines the operation of 
such systems. Ventilation is always required for an occupied space to maintain proper indoor air quality. 
As more occupants fill a space, the more ventilation air is needed in that space. It has been demonstrated 
that energy savings by using occupancy controlled ventilation can be achieved, by reducing the average 
ventilation rate while keeping an acceptable indoor climate [11]. In this way, better control of indoor 
pollutant concentrations while at the same time lower energy use and peak energy demand, can be 
achieved [12].  

Some devices, like laptop computers, are often attached to individual occupants. Portable devices move 
together with the occupants from space to space and consume energy or generate heat gains. Since most 
occupant behavior patterns are influenced by occupancy. Therefore, simulating occupancy becomes 
fundamental for occupant behavior research. Current building energy simulation usually treats occupancy 
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as deterministic daily profiles, varying between 0 and 1, presenting no occupancy and full occupancy. 
Figure 1 shows typical occupancy schedules (for the whole building) on weekdays, Saturday, and 
Sunday/Holidays for office buildings, which are part of the 16 prototype buildings developed by the 
United States Department of Energy, covering 80% of the commercial building floor area in the United 
States [13].  

  

Figure 1 Building occupancy schedules on a typical workday, Saturday and Sunday & holidays 

In such profiles, although the diversity between workdays and holidays is considered, all workdays, 
Saturdays and Sunday & holidays in a building are described with identical schedules respectively. As 
shown in Figure 1, the number of occupants in the building reaches 10% of full occupancy at 7 am, and 
increases gradually to a maximum value of 95% at 9 am. It drops to 50% during lunch time and returns to 
95% after lunch. Occupants start to leave the building at 5 pm and finally the building restores to no 
occupancy status at 12 am. When these homogeneous occupant profiles are used, each space will have 
same or very similar load profiles, thus no diversity is considered. Duarte et al [14] collected long-term 
data to show variations of occupancy diversity factors in private offices for time of day, day of the week, 
holidays, and month of the year, which show differences as much as 46% from those currently 
recommended by ASHRAE Standard 90.1 2004 energy cost budget guideline, a document referenced by 
energy modelers regarding occupancy diversity factors for simulations. The simplification of 
homogeneous schedules also does not capture actual system performance. For example a variable air 
volume (VAV) system would perform very well without reheat penalty because spaces have similar load 
profiles, while in reality the diversity of loads usually cause reheat because some spaces call for high 
cooling while others call for very low cooling [15].  

In fact, occupancy in a building is stochastic both in time and in space. Thus a discrepancy occurs 
between the actual and simplified occupancy profiles. When different occupancy profiles are used to 
simulate building energy consumption, the deterministic profiles may be incapable of estimating the peak 
energy consumption when special events occur. Moreover, profiles may overestimate the peak load of 
spaces in the same system partition as they reach the maximum occupancy simultaneously, which is often 
not realistic due to stochastic nature of occupant behavior in buildings. To describe occupancy more 
realistically, various models on occupancy simulation have been developed in literature. Energy modeling 
programs can use more accurate and dynamic occupancy schedules by integrating these occupancy 
models. 

In this study, four levels of occupancy models for various applications were identified. The reviewed and 
selected existing occupancy models were used in the development of software architecture to integrate 
these models. Finally the application of the software tool, to generate occupancy schedules which better 
represent the spatial and temporal diversity of occupancy in buildings, was demonstrated.  
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2 Review of occupancy models 

Four types of occupancy models are categorized according to the problems they try to address:  

(1) Building level and number of occupants, which addresses how many occupants are in a building at a 
particular time;  

(2) Space level and occupied status, which addresses whether or not a space is occupied at a particular 
time. This is the information required by devices like lighting, with less emphasis on the number of 
occupants and more focus on the status of whether a space is occupied to determine the action of lighting 
devices;  

(3) Space level and number of occupants, which addresses how many occupants are in a space at a 
particular time. One example is the demand controlled system, which requires information as detailed as 
the number of occupants, regardless of which occupants are in the space to determine the demand and 
operation.  

(4) Occupant level, which addresses individual tracking and is the most detailed level.  

The problem to address is in which space an occupant is at a particular time. As mentioned before, 
occupant behavior is different among individuals, thus the operation or performance of systems in a space 
is significantly based on the individual who occupies the space if one has access to the control of these 
systems. Each of the four level models addresses a specific occupancy application, and the information 
required is different by devices or operations. 

Literature on occupancy modeling is reviewed and models are categorized into the four levels. At the first 
level, building level, unfortunately none is found in the building energy domain. Other domains, like 
emergency evacuation, may be more interested at this level.  

2.1 Occupancy model, Level 2: occupancy status of a space 

Several relevant papers are found for the second level, as listed in Table 1. 

Table 1 Literature on occupancy status of a space  

Authors Keywords Pros Cons 

Yu T. [16] 
Occupancy model;  
Genetic programming;  
Time variables 

Relatively accurate; 
Existing algorithm 

Field data required; 
Less accurate for departure 

Wang D.  et. al.  
[17] 

Commercial buildings; 
Occupancy properties; 
Single person offices 

Matches with 
observed; 
time varying; 

Intervals not fit well 

Chang W, et. al. 
[18] 

Occupancy pattern; 
Statistical analysis 

Classification of  
occupants; 
Easy to implement 

Patterns not validated 
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Yu [16] applies genetic programming (GP) algorithm to learn the behavior of an occupant in a single-
person office based on motion sensor data. The developed rules provide prediction accuracies of 80%–83% 
on testing data from five different offices. Six variables are provided for GP to learn the occupancy rules, 
i.e. day, hour, minute, the length of time the occupant spent in the state prior to the previous state, and the 
length of time the occupant has been in the office since the first arrival of the day. Wang et al [17] 
examines the statistical properties of occupancy in single-person offices of a large office building. A 
probabilistic model to predict and simulate occupancy in single-person offices is proposed. The states of 
an occupant are divided into occupancy and vacancy. The interval lengths are modeled as exponentially 
distributed random variables. Chang et al [18] statistically analyses information collected from 200 
cubicle offices on three floors of a commercial office building. A mathematical model, to describe the 
occupancy patterns, including the probability distributions of the number of absences and absence 
duration, is developed with three key elements: the cumulative distribution function (CDF) of the number 
of daily absences, CDF of each absence duration, and the probability distribution function (PDF) of the 
start time of each absence. These models focus on the occupancy status of a single-person office or 
cubical, and are not able to extend to the case where multiple occupants are present in an office since the 
probability distribution is totally changed, so the models have a common limitation that they are only 
applicable to one occupant in a space. 

2.2 Occupancy model, Level 3: number of occupants in a space 

There are also several relevant papers on the third level, as listed in Table 2. 

Table 2 Literature on number of occupants of a space 

Authors Keywords Pros Cons 

Goldstein R, Tessier 
A, Khan A. [19] 

Space layout; 
Occupant model; 
Cost function 

Interdependent; 
Classification 

Layout needed; 
Numerous schedules 

Page J, Robinson D, 
Morel N, et al. [20] 

Presence model; 
Stochastic process; 
Markov chain 

No limitations to scales; 
Easy to implement Long-term monitoring  

Goldstein R, Tessier 
A, Khan A. [21] 

Occupant interaction; 
Occupant schedule; 
Customization 

Interdependent; 
Classification 

Dependent on real 
schedule extensively 

 

In Goldstein et al. [19], shows space layout influences the selection of individuals who participate in an 
activity, and the location where the activity occurs. Participants and locations are randomly selected based 
on probabilities derived from cost functions. When a new activity is generated, participants are selected 
from all occupants based on probabilities from cost value, after which the location of the activity is 
selected. Page et al. [20] describes an algorithm for the simulation of occupant presence, to be later used 
as an input for occupant behavior models within building simulation tools. By considering occupant 
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presence as an inhomogeneous Markov chain interrupted by occasional periods of long absence, the 
model generates a time series of the state of presence (absent or present) of each occupant of a space, for 
each space of a building. The IFM (Inverse Function Method) is applied to generate a sample of events 
from a given probability distribution function. Goldstein et al. [21] introduces personas, fictional 
individuals used in the field of human-computer interaction, into the simulation of building performance. 
It extends the previous method [22] to allow occupants to interact with one another. Both occupant 
interaction and behavior customization were achieved via the assignment of weighting coefficients to 
activities used for model calibration. Models at this level commonly study occupancy in a room by 
estimating each occupant, who is attached with some properties or may have interaction with other 
occupants. Richardson et al [23] presents a method for generating realistic occupancy data for UK 
households, based upon surveyed time-use data describing what and when people do. The approach he 
presented generates statistical occupancy time-series data and the number of occupants that are active 
within a house at a given time, which is important to model the sharing of energy use. The model has 
already been implemented and is freely available. 

2.3 Occupancy model, Level 4: space location of an occupant 

More models are found to address the last occupant level problem, i.e. individual tracking, as listed in 
Table 3. 

Table 3 Literature on locations of occupants in buildings 

Authors Keywords Pros Cons 

Wang C, Yan D, 
Jiang Y. [24] 

Occupant movement; 
Stochastic process; 
Markov chain 

No constraint with scales; 
Parameters easily decided 

Large matrices to store; 
Arithmetic speed problem 

Nassar K. , 
Elnahas M. [25] 

Occupant movement; 
Random walks; 
Architectural design 

Randomness of walking; 
No constraint with scales; 

Detailed layout needed; 
Activities not reflected 

Liao C, Barooah 
P. [26] 

Agent-based model; 
Commercial buildings 

Related with former state; 
Improving Page's model 

much information to store 
for an instance 

Tabak V. [27] USSU system;  
Office building; 

Cover many activities; 
More realistic in events 

Distance between every 
space needed 

 

Wang et al. [24] proposes an approach for building occupancy simulation based on the Markov chain. By 
using the Markov chain method to simulate this stochastic movement process, the model can generate the 
location for each occupant and further aggregated as the zone-level occupancy for the whole building. 
Each occupant is attached with a homogenous Markov matrix to simulate the stochastic movement 
process. Nassar et al. [25] presents a basic measure for analyzing the design of building spaces in terms of 
space accessibility.  The proposed measure, namely the Random Access Measure (RAM), is presented as 
a useful and simple design analysis technique that relates to occupant movement as well as to space 
topology. Provided the starting point of an occupant, the model uses the Random Accessibility Measure 
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to simulate one’s position after a time step. Liao et al. [26] develops an agent-based model to simulate the 
behavior of all occupants in a building, and extract reduced-order graphical models from Monte-Carlo 
simulations of the agent-based model. The model, named Mixed Agent-based Rules Model (MARM), 
consists of a number of modules for each agent i. Knowing Pi,j (k), the probability of agent i occupying 
node j at time k, an acceleration rule and a damping rule are used to mimic the behavior. Finally access 
profile is associated with each agent. Tabak [27] aims to develop a system that can be applied for 
analyzing and evaluating the space utilization of a building for any given organization. First,  the  activity  
location  choice  algorithm  creates  a  choice  set consisting  of  all  relevant choices. Next, the algorithm 
calculates, for each activity location in the choice set, the distance to the location of the previous activity 
in one’s activity.  Finally, the activity location associated with the shortest distance is chosen and 
allocated to the activity. Models at this level are the most detailed, providing the information of spaces 
occupied by each occupant. 

Since occupant activity is complicated, simplification is required during modeling. Some models are still 
too complicated to implement or need a large amount of inputs which tend to be simplified. Several 
comments on occupancy modeling are summarized from the literature review: (1) Occupancy models 
often treat an occupant as an object, to study the presence or movement. This is very natural and makes 
sense. (2) No relevant literature on the building level occupancy modeling is found in the domain of 
building energy simulation. Perhaps other domains like emergency evacuation may be extended to review 
models at this level in the future. (3) There are no direct models on space level occupancy modeling 
except single-occupancy spaces, instead the number of occupants or occupancy status is found by 
aggregating the state or location of individual occupants. However, information on the number of 
occupants can be obtained without calculation of each occupant if direct models are available, which may 
save calculation time and have a certain degree of accuracy. (4) There are several detailed tracking 
models at the occupant level, but they usually require lots of user inputs which are sometimes hard to get. 
The challenge lies in how to convert these inputs to a small set of parameters which can be understood by 
a respondent.  

3 Occupancy models selected for implementation 

Occupancy models are supposed to support the design and evaluation of building performance by 
generating more realistic occupant schedules. According to this criterion, a model is considered good if it 
has a limited number of input parameters, which can easily be determined by surveys or a small amount 
of measured data. Often, these models do not require detailed building layout or specific information. 
Based on a comprehensive comparison of the advantages and disadvantages of these models, three of the 
occupancy models, each representing one of the three levels 2, 3, and 4 are selected to implement in a 
software module.  

3.1 Occupancy model, Level 2: occupancy state of a space  

Chang’s model [18] is selected to simulate the occupancy state of a space, i.e. being present or absent at a 
certain time in an office cubical. It is developed with three key elements: (1) the cumulative distribution 
function (CDF) of the number of daily absences, (2) the CDF of each absence duration, and (3) the 
probability distribution function (PDF) of the start time of each absence.  
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Once the profile of occupancy patterns are determined, the occupancy schedules can be generated by the 
following steps: (1) generate a uniform distribution of random numbers between 0 and 1 for the CDF of 
the number of daily absences to decide the number of daily absences, (2) generate a uniform distribution of 
random numbers between 0 and 1 for the CDF of the absence duration for each absence, (3) generate a 
uniform distribution of random numbers to calculate the start time of each absence. Note that the 
distribution of absence start time varies among occupancy patterns and is not always uniform. 

Figure 2 shows the sample simulation result of an occupant, where the number 1 means that the occupant 
is present at that time, while number 0 indicates absence. 

 

Figure 2 Simulated schedule of occupant presence during a day 

3.2 Occupancy model, Level 3: number of occupants in a space  

Page’s model [20] is selected to simulate number of occupants in a space. It assumes that the presence of 
each occupant is independent and the probability that an occupant is present only depends on whether one 
was present at the previous time step.  

The model takes a profile of the probability of the presence over a typical week and the parameter of 
mobility to determine the probability distribution of presence. For Example, T01, indicates the probability 
of being present now when being absent at the previous time step, and T10, indicates the probability of 
being absent now when being present at the previous time step. The inverse function method (IFM) is used 
to determine the next state of presence. In a special case where long absence occurs, given the probability 
of starting a period of long absence is determined by the IFM. If there is a long absence, then the length of 
the absence is determined by the distribution of the duration of periods of long absences with the same 
method, during which period the occupant is considered to be absent. 

3.3 Occupancy model, Level 4: space location of an occupant  

Wang’s model [24] is selected to generate the space location of each occupant and the space-level 
occupancy for the whole building. The core concept is the use of Markov chain. A Markov chain is a 
matrix with elements representing probabilities. The row index denotes the previous occupancy states, 
while the column index denotes the current occupancy states. The elements denote the probability of 
transferring from state [row index] to state [column index]. Here is a simple example: 

0.2 0.3 0.5
0.3 0.4 0.3
0.1 0.6 0.3

 
 
 
    
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The element 0.5 in this matrix represents that if an occupant is in state 1 (Row 1), there is a probability of 
0.5 for (s)he to transfer to state 3 (Column 3). This model is based on events, which use matrices to 
represent properties attached to an event and an occupant. Typical events defined in an office building 
include going to work, going for lunch, returning back from lunch, leaving work, and meeting. Some 
parameters are defined to describe the events in a simple way. For example, the range of arrival times and 
the average arrival time are used to describe the event “going to work”. 

Once the parameters of an event are known, a random number between 0 and 1 is generated to decide 
what event is taking place and the Markov chain is updated correspondingly. For each occupant, the new 
location of an occupant is determined by comparing a generated random number with the probabilities in 
the Markov chain.  

4 Software Architecture 
Based on the comprehensive review of the existing occupancy models in literature, a software module 
was developed to include three representative occupancy models which can be used to simulate various 
occupancy levels. The software architecture of the occupancy module was developed to be object oriented, 
flexible and extensible. To the best of our knowledge no existing software tools are available which 
satisfy the cohesive integration of the three representative occupancy models. Figure 3 shows the high-
level software architecture with the major software classes. 

 

Figure 3 Software architecture of the occupancy module 

The classes are designed to model real-world objects, encapsulate implementation details, and streamline 
parameter exchange [28]. Classes for a building, a room, an occupant, an event and a schedule are 
explicitly defined, with some properties to describe the object and methods to exchange parameters or 
implement the algorithms. CBuildings contains a collection of instances of CBuilding, where there is an 
instance of CSchedule representing the number schedule of number of occupants in the building. 
Similarly, CBuilding has an instance of CRooms, a collection of instances of CRoom, which contains two 
instances of CSchedule representing both occupancy state and number in a room. COccupants is a 
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collection of instances of COccupant, which contains various modules represented as classes to 
implement different occupancy models. To calculate occupancy for each building, room or occupant, we 
can simulate each one in the collection successively. The class CEvent contains information to simulate 
what an event is taking place at a particular time and what occupants are involved. Such information are 
inputs to COccupants. The other three classes, COccupantState, COccupantNumber and 
COccupantTracking refer to the three selected occupancy models mentioned before. An additional new 
occupancy model is easy to integrate in this module by creating a new class to implement such model 
without the need to change existing classes. The major software classes are described as follows:  

1) The CBuilding contains information required by the module to describe the main properties of a 
building and methods to calculate occupancy at the building level. Table 4 presents the properties 
and methods of the CBuilding class.  

Table 4 Properties and methods of the CBuilding class 

 members comments 

properties 

ID An ID is required to uniquely refer to a building 

Type Building type e.g. office or residential building 

Number Number of rooms in the building 
Schedule Time schedule of number of  occupants in the building 
Rooms Rooms in the building 

method Calculate Occupancy If room-level is known, building-level can be deduced 
 

2) The CRoom contains information required by the module to describe the main properties of a room 
and methods to calculate occupancy at the room level. Table 5 presents the properties and methods of 
the CRoom class.  

Table 5 Properties and methods of the CRoom class 

 members comments 

properties 

ID An ID is required to uniquely refer to a room 

Building The building the room belongs to 

Type Room type e.g. meeting room, office, corridor, etc. 

State Schedule Time series of occupancy state (occupied or not) of the room 

Number Schedule Time series of occupancy number of the room 

Occupants Occupants in the room 

method CalculateOccupancy If occupant-level is known, room-level can be deduced 
 

3) The COccupant contains information required by the module to describe the main properties of an 
occupant and methods to calculate occupants’ state or location. Table 6 presents the properties and 
methods of the COccupant class.  
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Table 6 Properties and methods of the COccupant class 

 members comments 

properties 

ID An ID is required to uniquely refer to an occupant 

Room The room the occupant belongs to 

Type The job category of an occupant 

State Schedule Time series of occupancy state (present or not) of the occupant 

Number Schedule Time series of locations ( in which room) of the occupant 

method 

Set Events To specify the activity conducted by the occupant 

Simulate State To calculate time series of presence of the occupant 

Simulate Location To calculate time series of the room occupied by the occupant 

 
4) The CEvent contains the description of main properties of an event, includes start time, duration, 

occupants involved, etc. Table 7 presents the properties and methods of the CEvent class.   

Table 7 Properties and methods of the CEvent class 

 members comments 

properties 

ID An ID is required to uniquely refer to an event 

Type Type of the event, e.g. meeting, going to work, leaving from work 

Objected Room The room in which the event takes place 

Time Range When the event starts and ends 

Occupants Occupants who are involved in the event 
 

5) The CSchedule contains the description of a time series to represent the number of occupants by time 
or occupancy state of a space by time. Table 8 presents the properties and methods of the CSchedule 
class.   

Table 8 Properties and methods of the CSchedule class 

 members comments 

properties 
ID An ID is required to uniquely refer to a schedule 

Type Type of the schedule, i.e. what the schedule represent 
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Value Time series of rooms or states 

method GetAttributes To get statistical information, e.g. the maximum number of occupants 
 

5 Applications 

The software module can be used in three ways. First, it can be run stand-alone, as an executable file to 
pre-calculate occupancy schedules. Secondly, it can be integrated into building energy modeling 
programs as a dynamic link library (DLL). Thirdly, it can be used via co-simulation with other programs. 
To call functions in the DLL, an energy modeling tool has to rely on code to trigger the calls and handle 
the inputs and outputs from the calls.  

The major part of the module is implemented in a DLL, which can be called by other simulation programs. 
A stand-alone executable file is also developed to generate the occupancy schedule as input to simulation 
tools, which is a pre-simulation process. To integrate with current simulation tools, the concept co-
simulation is introduced. The following sections (5.1 and 5.2) go further into the details and examples of 
using the occupancy module during pre-simulation or co-simulation.  

5.1 Pre-simulation 

An example was built to demonstrate the usage and results of the developed occupancy module. Figure 4 
shows a floor plan of a single-story office building. Different types of rooms and occupants were defined 
including (1) 8 offices, usually occupied by staff and (2) a restroom, a corridor, a kitchen and a 
conference room, which were usually unoccupied or occupied by shorter durations of time. In Figure 4, 
the numbers below the room label denotes the number of occupants in the room. For example, 4 
researchers are working, labeled by B, G, K and N. The floor plan shows a snapshot of the occupant 
information, while the actual occupants are moving around and the number of occupants in each room 
varies with time.  
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Figure 4 Floor plan of a single-story office building 

To simulate the occupancy in this building, some inputs are required. Taking the occupant tracking model 
for example, the number of occupants in each room must be specified. Information about meetings are 
required for the conference room. In this example, two kinds of meetings are set, random and scheduled 
meetings. Meetings may be randomly held between 9:00 am to 11:30 am. A scheduled meeting is held 
between 2:00 pm to 3:00 pm every day. Other information besides the meeting time range is also set, as 
shown in Table 9. 

Table 9 Settings of the rooms in the model 

 Room No. Time range Times duration Minimum Maximum 

1 Restroom 0 - - - - - 

2 Researcher office 4 - - - - - 

3 Supervisor office 1 - - - - - 

4 Secretary office 1 - - - - - 

5 Conference room 0 
9:00-11:30am 1(random) 60 min 3 7 

2:00-3:00pm 1(fixed) 60 min 3 7 

6 Kitchen 0 - - - - - 

7 Researcher office 3 - - - - - 

8 Researcher office 3 - - - - - 

9 Manager office 1 - - - - - 

10 Manager office 1 - - - - - 

11 HR office 2 - - - - - 

12 Corridor 0 - - - - - 
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Different types of occupants also have different properties of moving because of individual preferences or 
vocations. For example, a supervisor tends to go outside often to attend meetings or other activities, thus 
the proportion of time he stays in his own office may be shorter than other employees. On the contrary, a 
researcher, who tends to spend a lot of time in the office doing research work, will have a larger office 
occupied period. In this example, typical inputs for each kind of occupants are assumed, as shown in 
Table 10. P represents the percentage of time an occupant is in one of the four space types. Surveys may 
be conducted and field data can be used as inputs to simulate occupancy in the future.  
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Table 10 Settings of the occupants in the model 

ID Type Room 
Own office Other offices Auxiliary room Outside 

Times P Times P Times P Times P 

A~D Researcher 2 - 0.85 1 0.01 2 0.02 1 0.02 

E Supervisor 3 - 0.57 1 0.01 2 0.02 3 0.30 

F Secretary 4 - 0.63 1 0.03 2 0.02 2 0.10 

G~I Researcher 7 - 0.85 1 0.01 2 0.02 1 0.02 

J~L Researcher 8 - 0.85 1 0.01 2 0.02 1 0.02 

M Manager 9 - 0.72 1 0.01 2 0.02 2 0.15 

N Manager 10 - 0.72 1 0.01 2 0.02 2 0.15 

O,P HR staff 11 - 0.78 1 0.02 2 0.02 1 0.02 
 

Once these inputs are set, the software module can calculate the locations of each occupant at a particular 
time, and the total number of occupants in a room or building varying with time can be aggregated from 
the location of individual occupants.  

As the calculation process is based on stochastic models, the simulated occupancy changes every time, 
but the statistics of the simulated results are supposed to be the same. A simulation was conducted for 
three full working days. The total number of occupants in the building is shown in Figure 5. 

 

Figure 5 Number of occupants in the building during three days 

From Figure 5, it can be seen occupants usually go to work at about 8:30am, go for lunch at noon, and 
leave from work at about 17:30. During working hours, the number of occupants varies between 14 and 
16, with some occupants being outside the building. The results show consistency with the input and 
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similarity with the pre-determined schedule on a typical day, but when we zoom into the room level, the 
occupancy schedule becomes significantly different from the pre-determined one, as elaborated in Figure 
6. 

  

Figure 6 Number of occupants in the Office 2 and meeting room during three days 

It can be observed that the number of occupants in Office 2 fluctuates, with a maximum of 6. For the 
meeting room, several meetings are held during a day, with the meeting durations being random, except 
for the scheduled afternoon meeting. In reality, each type of room has its own typical schedule, and the 
number of occupants fluctuates during the day, which cannot be reflected by the pre-determined 
occupancy schedules, but can be by the stochastic models. 

Occupant movement appears to be random on the surface, but actually it complies with some statistical 
discipline due to their occupations or habits. Therefore, it becomes important to capture this statistical 
discipline by the occupancy model, to ensure its 
applicability. Figure 7 shows the simulation results of 
locations of two types of occupants.

 

Figure 7 Locations of occupant A and E during three days 

Occupant A, who is a researcher, stays in his own room for more time than Occupant E who is a secretary. 
As inputs, a researcher spends 85% time during work, while a secretary only 63% and moves among 
rooms more frequently. 
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To explicitly show occupancy in the building at a particular time, some screen shots are presented. The 
number in the room is the number of occupants at that time and the letters below the room label denote 
the occupants who stay there at that time. Figure 8 shows the occupancy at 12:00 pm on the first 
simulation day, where only a few occupants are in the building due to the lunch hour. Figure 9 shows the 
results at 8:30 am, the arrival time for going to work. It was found that more than half of the occupants 
are already in the building. Figure 10 shows the results at 14:30 pm when a scheduled meeting was to be 
held in the conference room labelled by 5. Four occupants participated in the meeting. 

  

Figure 8 Occupancy at 12:00pm in the building on the first simulation day 

   

Figure 9 Occupancy at 8:30am in the building on the first simulation day 
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Figure 10 Occupancy at 14:30 in the building on the first simulation day 

 

5.2 Co-simulation 

Co-simulation is a simulation methodology that allows for individual components to be simulated by 
different simulation tools running simultaneously and to exchange information in a collaborative manner 
[29]. It exploits the modular structure of coupled problems in all stages of the simulation process 
beginning with the separate model setup and preprocessing for the individual subsystems in different 
simulation tools (which can be powerful simulators as well as simple C programs). During time 
integration, the simulation is again performed independently for all subsystems restricting the data 
exchange between subsystems to discrete communication points. In this way, modules developed by 
different programming languages or in different physical computers will be executed in an integrated 
manner. 

The FMI (Function Mock-up Interface) standard is a tool-independent standard to support both model 
exchange and co-simulation of dynamic models, using a combination of XML files, C-header files, and 
C-code in source or binary form [30][31]. FMI for co-simulation is an interface standard for coupling two 
or more simulation programs in a co-simulation environment. The data exchange between sub-systems is 
restricted to discrete communication points in time. In the time between two communication points, the 
sub-systems are solved independently from each other by their individual solver. A master algorithm 
controls the data exchange between sub-systems and the synchronization of all slave simulation programs 
(slaves). All information about the slaves, which is relevant for the communication in the co-simulation 
environment, is provided in a slave-specific XML file. 

A simulation model or program which implements the FMI standard is called the functional mock-up unit 
(FMU). An FMU comes along with a small set of easy-to-use C-functions (FMI functions) whose input 
and return arguments are defined by the FMI standard. These C-functions can be provided in source 
and/or binary form. The FMI functions are called by a simulator to create one or more instances of the 
FMU. Figure 11 shows a typical schematic diagram for co-simulation, where the master controls the 
FMU through a FMI, while the slave has its own model and solver to do simulation except when it 
communicates with the master [32]. 
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Figure 11 Co-simulation with generated code on a single computer 

To implement the FMI, an XML file is required to specify the information of variables in a module, e.g. 
properties like an input or output, constant or variable, reference, initial value, etc., which complies with 
an XML schema defined as the common model description. Besides, the functions declared in the header 
files should be defined and implemented before applying the FMU.  

Unfortunately, all structure entities, like records or arrays, are flattened into a set of scalar values of type 
float, integer, etc. in current version of FMI [32]. Arrays are supposed to be defined in a fixed size, while 
the number of variables are uncertain in the occupancy module varies with the number of rooms, 
occupants or days to be simulated. The variables in the module cannot be enumerated in an XML file. An 
alternative maybe enumerating all variables in the XML file in the case where rooms, occupants and 
simulated days are already specified. However, when simulating a new case with a different number of 
rooms, occupants or simulated days, another XML file needs to be created, which is inconvenient and 
time-consuming. The FMI of the occupancy module will be fully implemented on condition that arrays 
with variable size are supported.  

Co-simulation is a useful approach to running multiple simulation tools (can be multiple domains) 
simultaneously and exchanging information in real-time. This allows for the ability to leverage the best 
features of different tools simultaneously to solve a hard problem or provide more detailed solutions.  

6 Conclusion 

The simulation of occupancy in buildings is fundamental for the simulation of the energy performance of 
buildings as well as the simulation of occupant behavior, as it provides the basic information of locations 
or presence of occupants. Current models try to address different levels of occupancy for diverse 
applications. For example, demand-controlled ventilation requires the number of occupants in a certain 
space, thus the space level number of occupants will suffice. A more detailed occupancy model may 
provide more concrete information, at the cost of more inputs to be specified and potentially longer 
computational time. 

Four levels of occupancy modeling were identified to address various applications in buildings. Based on 
this comprehensive review, a software module was developed to include three representative occupancy 
models, which can be used to simulate various occupancy levels. The software architecture cohesively 
integrated occupancy state of a space, number of occupants in a space, and space location of individual 
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occupants, a considerable advancement for the occupant behavior-building energy simulations 
community. Effort was made so that the software module was designed to be object oriented, flexible and 
extensible, allowing for the integration of new occupancy models and the ease of updates and 
maintenance. 

The occupancy module can be used in multiple ways and for various audiences, including simulation 
users and software developers. The major part of the module was implemented in a DLL, which can be 
called by other simulation programs. The occupancy module can be used as a standalone program, to pre-
calculate occupant schedules, generating schedule inputs which can be used with current energy modeling 
programs. To integrate with current simulation tools, the concept of co-simulation was introduced, which 
made it possible to be used with other tools. The FMI and FMU of the occupancy module will be fully 
implemented on condition that arrays with variable size are supported. 
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