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ABSTRACT OF THE DISSERTATION

Implicit Solvent Method Development and Application: Fast Molecular Surfaces,

Constant pH and Accelerated Dynamics, and Rational Drug Design

by

John Mongan

Doctor of Philosophy in Bioinformatics

University of California San Diego, 2006

Professor J. Andrew McCammon, Co-chair

Professor Gary Huber, Co-chair

Implicit solvation provides a means of accelerating and improving the efficiency of com-

putational biomolecular studies by eliminating explicit solvent degrees of freedom while

still representing the effects of solvation. Evidence is provided supporting the impor-

tance of defining the implicit solvent-solute boundary such that solvent is excluded from

spaces smaller than a water molecule. The pairwise analytical generalized Born (GB)

model, a popular implicit solvent model, is extended to incorporate this property. Meth-

ods for conducting molecular dynamics simulations at a constant pH, rather than the

traditional constant protonation state, are reviewed and a constant pH method employ-

ing a consistent GB-based Hamiltonian for conformational and protonation state sam-

pling is developed. Even with the improved efficiency of implicit solvent, it is difficult

to achieve sufficient sampling in molecular dynamics. This problem is addressed by

accelerated molecular dynamics, a technique for accelerating sampling that requires no

advance knowledge of the potential energy landscape is presented. Analysis of molec-

ular dynamics data is aided by Interactive Essential Dynamics, a tool for visualization

of principal component analysis results. Implicit solvent methods are applied to the

computer-aided design of inhibitors for the zinc(II) proteases stromelysin-1 and anthrax

lethal factor. Inhibitors with IC50 of 100 nM and 14µM are reported for stromelysin-1

and lethal factor, respectively. Use of the GB model developed here allows for accurate

xv



elucidation of the binding mode of the lethal factor inhibitor, while GB models that al-

low solvent in spaces smaller than a water molecule identify an incorrect binding mode.
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Chapter 1

Introduction

We are creatures who originated in the sea, and in a sense have never left it: our

bodies are well encapsulated facsimiles of our earliest environment. This is because the

functions of biomolecules that give us life—protein folding, enzyme catalysis, phos-

pholipid bilayer formation—occur only in aqueous solution. Because water plays such

a crucial role in biomolecular structure and function, computational studies of these

systems must accurately represent the effects of water if they are to yield useful results.

The most straightforward and physically rigorous method of simulating water is

to create many individual water molecule representations surrounding the biomolec-

ular system of interest. This approach is calledexplicit solvation, because the water

molecules are explicitly represented as particles in the system. While conceptually

simple, explicit solvation has a number of drawbacks, mostly centering on issues of

computational efficiency. Due to long-range ordering in water, the layer of water used

to solvate a molecule must be fairly thick, usually at least 8–10 Å. This substantially

increases the number of particles that must be simulated; if the solute molecule of in-

terest is small, there may be many times more solvent atoms than solute atoms in the

system. Motions of biomolecular solutes occur slowly in explicit solvent. Water is an

easily yielding medium on the human scale, but on molecular size and time scales, it is

not. The speed of any movement or conformational change of a solute is limited by the

time it takes for water molecules to move out of the way. Probably the most important

limitation of explicit solvation is that at any point in a simulation, the arrangement of

1
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water molecules represents only one configuration out of a large ensemble of configu-

rations. In almost all cases, the computational result of interest is not a result for just

a single solvent configuration, but a result averaged over the entire ensemble of sol-

vent configurations. Therefore, explicit solvation must always be coupled with a solvent

configuration sampling method such as molecular dynamics or Monte Carlo sampling.

Collecting a sufficient sample to accurately estimate ensemble average properties can be

very time consuming.

An alternative approach,implicit solvation, avoids representation of individual wa-

ter molecules in favor of a solvent region that simulates the ensemble average effects

of water. Implicit solvation also has its limitations, particularly when interactions of

the solute molecule with individual solvent molecules are important. Nevertheless im-

plicit solvent is sufficiently accurate for most applications, and it effectively addresses

the efficiency problems of explicit solvation: no solvent particles need be added to the

system, there are no water molecules to impede motions and since the model calculates

averaged properties, there is no need to sample multiple solvent configurations. This

dissertation explores the development and improvement of implicit solvent methods,

and the applications made possible by the improved efficiency of implicit solvation.

Since an implicit solvent method simulates a solvent region having the properties of

water, a key component of any implicit solvent model is a definition of the boundary

between the solvent region and the solute. Chapter2 investigates the errors that result

from the use of a class of boundary definitions, often employed for their simplicity

and computational efficiency, that allow the solvent region to extend into spaces smaller

than a water molecule. To address these problems, chapter3 introduces an extension to a

commonly used implicit solvent model, the pairwise generalized Born (GB) model, that

modifies the boundary definition to exclude solvent from places where a water molecule

cannot fit.

One of the earliest applications of implicit solvation was to the calculation of protein

pKa values. Implicit solvent models are well suited to studies involving protonation

changes as there is no need for solvent re-equilibration after protonation state transitions.

Chapter4 examines a number of methods for predicting pKa values and protonation

states in biomolecules, with a focus on constant pH molecular dynamics. Unlike earlier
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protonation state methods, which use mostly or entirely static structures, constant pH

molecular dynamics maintains the coupling between protonation state and conformation

by sampling these properties in conjunction with each other. A constant pH method

using a single GB-based Hamiltonian for simultaneous molecular dynamics sampling

of conformation and Monte Carlo sampling of protonation state is presented in chapter

5.

Obtaining sufficient sampling is a major problem in studies of biomolecules, as there

are a very large number of degrees of freedom and many biologically interesting pro-

cesses occur only on timescales that are orders of magnitude longer than what can be

feasibly simulated with traditional techniques. Use of implicit solvation in general, and

efficient implementations such as GB in particular, alleviates this difficulty by accel-

erating sampling somewhat and making it more computationally efficient. However,

this degree of acceleration may not be suffcient. Furthermore, the improved accuracy

and physical realism achieved by many of the previously described advances comes at

the expense of making the sampling problem more difficult. The boundary definition

modifications discussed in chapters2 and3 provide more accurate results by reintro-

ducing energetic barriers found in explicit solvation to GB implicit solvation, but the

time required to traverse these barriers slows sampling. Likewise, constant pH molecu-

lar dynamics allows for greater physical realism by eliminating the constant protonation

state assumption of traditional molecular dynamics, but in doing so adds additional pro-

tonation state degrees of freedom to the system, complicating sampling. Finally, in some

cases existing implicit solvent methods may not provide sufficient accuracy to simulate

the phenomena of interest, so it may be necessary to forgo the efficiencies of implicit

solvent for explicit solvent. For all these reasons, it is useful to have means for accelerat-

ing sampling.Accelerated molecular dynamics, a method for enhancing sampling rates

in molecular dynamics is presented in chapter6. Acceleration is achieved by biasing the

potential energy function to reduce the depth of energy minima, thus reducing the effec-

tive height of energy barriers. This method is distinguished by requiring essentially no

knowledge of the potential energy surface or location of “interesting” conformations, as

is necessary for many other potential biasing methods. Additionally, unlike temperature

based enhanced sampling methods, it does not increase particle velocities, so there is no
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need to reduce the length of the time step.

Molecular dynamics simulations rapidly generate large quantities of data, involving

motions on a wide range of time and size scales. Much of this motion is relatively un-

informative small scale thermal vibration, which can obscure the more interesting slow,

large scale motions. One technique for separating these motions is principal component

analysis (PCA) applied to trajectory data, a combination often calledessential dynam-

ics. PCA is used to explore conformation–protonation state coupling in chapter5 and to

measure rates of conformational sampling in chapter6. The mathematics behind PCA

are fairly simple, so the technique has been widely implemented, but tools for the visual

analysis of PCA results have been lacking. Therefore,Interactive Essential Dynamics,

a tool for visualization of these data that was developed to aid in the analyses conducted

in chapters5 and6 is presented in chapter7.

A particularly useful application of implicit solvation is in calculation of binding free

energies for proteins and small molecule ligands, since this forms the basis of rational

drug design. Chapters8 and9 discuss the computational study and design of inhibitors

for two zinc(II) proteases, stromelysin-1 and anthrax lethal factor. Results in chapter

9 underscore the importance of continued improvement of the models discussed here:

a widely used GB model identifies an incorrect pose of the inhibitor within the lethal

factor enzyme as having the lowest energy, but the GB model developed in chapter3

identifies the correct binding mode.

In summary, this dissertation will identify and address some of the outstanding issues

in current methods of implicit solvation, and describe improvements in accuracy that can

be realized with minimal effect on computational efficiency. Applications of implicit

solvation to improvement of the physical realism and efficiency of molecular dynamics,

through constant pH molecular dynamics and accelerated molecular dynamics will be

presented. Finally, the advances in implicit solvation are highlighted by improved results

in application to rational drug design.



Chapter 2

Limitations of atom-centered dielectric

boundaries

ABSTRACT

Many recent advances in Poisson-Boltzmann and generalized Born implicit solvent

models have used atom-centered polynomial or Gaussian functions to define the bound-

ary separating low and high dielectric regions. In contrast to the Lee and Richards

molecular surface, atom-centered surfaces result in inter-atomic crevices and buried

pockets of high dielectric which are too small for a solvent molecule to occupy. This

chapter shows that these interstitial high dielectric regions are of significant magnitude

in globular proteins, that they artificially increase solvation energies, and that they distort

the free energy surface of non-bonded interactions. These results suggest that implicit

solvent dielectric functions must exclude interstitial high dielectric regions in order to

yield physically meaningful results.

2.1 Introduction

Continuum solvent models have become an increasingly useful tool in the charac-

terization of biomolecular systems. The most popular such methods employ either the

Poisson-Boltzmann (PB) or generalized Born (GB) models, treating the solute as a set of

5
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point charges in a low dielectric cavity and the surrounding solvent as a uniform high di-

electric medium. The PB model is generally considered to be more accurate and is often

used to benchmark GB models. GB has found more extensive application in dynami-

cal simulations, however, because it is computationally efficient and more amenable to

force calculations.

One of the main challenges in the use of PB for dynamics has been the determination

of numerically stable and accurate forces. Most PB calculations have used a dielectric

boundary based on the molecular surface (MS) as defined by Lee and Richards,1 which

results in forces that are unstable over time, lack analytical definition, converge poorly,

and are sensitive to grid discretization.2 Furthermore, an abrupt dielectric transition re-

sults in numerical instability regardless of the location of the boundary. Recent advances

in PB methods have avoided these difficulties by using overlapping atom-centered Gaus-

sian or polynomial functions to define the solute surface, resulting in analytically de-

fined, differentiable dielectric functions with smooth transitions between low and high

dielectric values.2,3 These dielectric definitions increase force stability and computa-

tional efficiency. However, unless modifications such as those presented by Luoet al.4

and Leeet al.5 are employed, they result in inter-atomic crevices and buried pockets of

high dielectric that are too small for a solvent molecule to occupy.4–6 It was originally

postulated that the consequences of these regions, henceforth calledinterstitial high

dielectrics, would be minimal and that either a MS or an atom-centered surface defi-

nition should be physically and theoretically equivalent,2,7 but more recent work has

suggested that atom-centered surfaces are physically flawed.5,6 Nevertheless, implicit

solvent models based on unmodified atom-centered dielectric functions are becoming

increasingly popular in the biophysical community.2,3,7–10 This chapter reports results

showing that atom-centered surfaces create interstitial high dielectric regions of signif-

icant magnitude in globular proteins, increase solvation energies, and distort the free

energy surface of non-bonded interactions. Although similar results are expected for

most atom-centered smoothed dielectric boundaries, the focus here is on the spline sur-

faces (SS) introduced by Imet al.3 and implemented in the Adaptive Poisson-Boltzmann

Solver (APBS),11 the PBEQ module in CHARMM,12 and the GBSW model.8
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2.2 Methods

The protein surface and energy calculations were performed with APBS 0.3.2 us-

ing a grid resolution of 0.2 Å. To facilitate comparison between the different dielectric

boundaries, the Ninaet al. optimized radii have been chosen to define the van der Waals

surface (vdWS), MS, and SS.13,14 For results with different boundary conditions to be

comparable, the radii must be rescaled for the MS and particularly for the SS; the recom-

mended rescaling has been performed. To check that results were not specific to Ninaet

al. radii, they were verified with AMBER optimized radii,15 parm22 radii,12 and Bondi

radii.16 The latter two were augmented by the spline window width (w = 0.3Å) for the

SS: a simple but reasonable scaling. APBS versions 0.3.2 and earlier have a flaw in

the MS algorithm that overestimates MS volumes by 2-5% and underestimates solva-

tion energies by 1-3%. Results shown here were calculated with a modified algorithm

that corrects this problem. The energy calculations were performed with zero bulk ionic

strength, a temperature of 300 K, a solvent dielectric of 80, a solute dielectric of 1 and

charges from the CHARMM22 all atom force field for which the Ninaet al. radii were

optimized.

Implicit solvent potentials of mean force (PMFs) for hydrogen bond formation were

calculated by combining solvation, Coulomb and van der Waals energies. PB solva-

tion energies were calculated with APBS and the same parameters as used for protein

solvation energies except for a finer grid resolution of 0.1 Å. GBMV and GBSW solva-

tion energies, Coulombic energies and vdW energies were calculated with CHARMM

31a1. AMBER GB solvation energies were calculated using the igb=1 model in AM-

BER 8. Because AMBER GB models are not compatible with atoms having zero radius,

the hydrogen radii were increased to 0.8 Å. This made the outer surfaces of the hydro-

gen atoms approximately coincident with the surfaces of the atoms to which they were

bound. The explicit solvent PMFs were calculated by WHAM from results of umbrella

sampling in TIP3P solvent. Umbrella sampling was carried out using the PMEMD mod-

ule of sander, modified to apply harmonic restraints to only the y and z coordinates of

the peptides. Due to the use of different force fields for implicit and explicit solvent

measurements, no quantitative comparison should be made. However, explicit solvent
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potentials calculated with the CHARMM force field have the same general shape.17

2.3 Results and Discussion

To probe the magnitude of interstitial high dielectric regions in globular proteins the

solute volumes generated by vdWS, MS, and SS were compared. Figure2.1shows the

MS and SS dielectric values on a plane intersecting a structure of Intestinal Fatty Acid

Binding Protein (IFABP) taken from a molecular dynamics (MD) simulation. Although

MD conformations might be expected to contain more interstitial high dielectrics than

NMR or crystal structures, surprisingly similar plots were obtained for all the systems

in table2.1. The solute volumes, reported in table2.1, show a consistent trend across

all 6 structures: substantial interstitial high dielectrics with the SS definition. Within the

MS volume the SS renders 65–262 Å3 of interstitial high dielectric space with a value

of 80 and an additional 502–1121 Å3 with values over 20. The total interstitial high

dielectric space ranges from 12% for the crystal structures to 15% for the NMR and MD

structures. The quantitative effects of these regions on electrostatic solvation energies

are shown in table2.2; SS energies are overestimated by 11–21%, only slightly less than

the overestimation by vdWS.

The volume and dielectric value of the interstitial spaces created by the SS can be

decreased by using a larger spline smoothing window for SS or longer Gaussian tails

for Gaussian surfaces, but interstitial high dielectrics can not be eliminated altogether.2

Unfortunately, longer tails overestimate the size of solvent exposed atoms and create

unphysical bulges around overlapping and adjacent atoms.5 These expanded dielectric

boundaries yield solvation energies and forces that are severely underestimated. For

example when a spline window of 1.0 Å is applied to the systems in table2.1, intersti-

tial high dielectrics withε > 20 are essentially eliminated, but the volume of lowered

dielectric outside the MS is increased dramatically and the solvation energies are under-

estimated by 35% to 48%. This over or under-estimation of solvation energies by SS has

also been reported by Leeet al.6 who used hybrid explicit/implicit solvation energies to

test various continuum surface definitions.
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Figure 2.1: Dielectric maps of IFABP. Dielectric values on a plane intersecting IFABP
for the vdWS (A), SS (B) and MS (C). Red regions have ε = 1, blue have ε = 80 and
white regions have intermediate dielectric values. The location of the intersecting plane
is shown in (D).

Table 2.2: Electrostatic solvation energies for different surface definitions. All energies
are reported in kcal/mol. The SS yields energies much larger than the MS and similar
to the vdWS. Percentages of vdWS and SS overestimation relative to the MS energies
are given in parenthesis.

protein MS vdWS SS
1FKG-xtal -1475.8 -1680.4 (13.9%) -1638.3 (11.0%)
1AKI-xtal -1724.3 -2034.7 (18.0%) -1976.7 (14.6%)
1KZK-xtal -2196.0 -2585.6 (17.7%) -2499.9 (13.8%)
1KZK-md -2162.5 -2549.1 (17.9%) -2475.9 (14.5%)
1AEL-nmr -2247.4 -2838.2 (26.3%) -2727.0 (21.3%)
1AEL-md -1979.3 -2368.9 (19.7%) -2301.9 (16.3%)
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While the ability to calculate atomic forces in a PB model is an important advance,

such forces can have useful application only if the potential they are derived from accu-

rately represents the physics of the system. In particular, solvation models employed in

dynamical simulations must be capable of accurately calculating high energy as well as

low energy conformations. Therefore, dynamics may constitute a more demanding test

of a solvation model than calculating solvation energies of static structures, which tend

to be dominated by low energy configurations of atoms.

Hydrogen bonds are of particular interest in simulations of biomolecules; since sol-

vation effects make a large contribution to these interactions, the PMF for the separation

of a hydrogen bond can be used as a test of the quality of a solvation model. The PMF

of hydrogen bonding between the delta hydrogen and the epsilon nitrogen of two delta

protonated histidines calculated with a variety of solvation methods is shown in figure

2.2. Both PB and GB results based on a MS dielectric boundary faithfully represent

the important features of the explicit solvent PMF: a narrow minimum and a signifi-

cant barrier to separation of the hydrogen bond. The energetic barrier in the MS PMFs

comes about because the electrostatic energy rises rapidly as soon as the hydrogen bond

participants are separated, but the solvation energy does not substantially increase in

magnitude (become more negative) until the bond is sufficiently separated that the sol-

vent probe will fit between the participants. The SS based implicit solvent models have

good performance near the minimum and at long distances, but fail to capture the appro-

priate energetic barrier. At the separation where the MS PMF energy peaks, the SS has

large interstitial high dielectrics, which result in a more negative solvation energy. This

produces an artifactual minimum—or in less extreme cases, a shoulder—near a location

where the PMF should have a maximum. AMBER (igb=1) GB results, based on the

model of Hawkins, Cramer and Truhlar,18 illustrate that the lack of a barrier to separa-

tion is a general feature of implicit solvent models that allow interstitial high dielectrics.

In comparison to the SS results, the AMBER GB PMF is somewhat broader near the

minimum, but is smoother and avoids the second minimum seen in the SS PMF.

Discrepancies between MS and SS PMFs are most dramatic for interactions between

sterically bulky groups, where the magnitude of the interstitial high dielectrics is largest,

but are observed to a greater or lesser degree across a variety of hydrogen bond and salt
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Figure 2.2: PMF for illustrated histidine-histidine hydrogen bond. Distances are mea-
sured between the hydrogen and nitrogen atoms participating in the bond. Spline-based
dielectric boundaries fail to capture the free energy barrier to hydrogen bond separation
because they allow interstitial high dielectrics near the hydrogen bond as it is separated.

bridge systems as seen in figures2.2 through2.6. For simplicity, apolar solvation con-

tributions have been ignored in the implicit solvent PMFs presented here. A traditional

surface area apolar term changes the depth of the minimum, but has no appreciable

effect on the discrepancies between MS and SS PMFs.

2.4 Conclusion

The introduction of atom-centered dielectric functions has been a significant ad-

vance for PB force calculations. They can be analytically defined and easily smoothed

allowing for numerical stability and increased efficiency. However, this chapter demon-

strates that atom-centered surfaces produce large volumes of interstitial high dielectrics

in globular proteins which artificially overestimate solvation energies and distort the free

energy profile of non-bonded interactions such as hydrogen bonds and salt bridges. Dy-

namical simulations conducted using these dielectric boundaries will sample incorrect

conformational ensembles. These findings suggest that although the optimal surface

definition should be smooth and differentiable it should also exclude interstitial high
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Figure 2.3: PMF for illustrated orientation of asparagine-asparagine hydrogen bond.
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Figure 2.4: PMF for alternate orientation (illustrated) of asparagine-asparagine hydro-
gen bond.
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Figure 2.5: PMF for illustrated orientation of arginine-aspartate salt bridge.
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Figure 2.6: PMF for β-sheet hydrogen bonding model (alanine-alanine).
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dielectrics as the MS does. Dielectric boundaries that address this issue, such as those

proposed by Luoet al.,4 and Leeet al.5 will be critical for further improvement of PB

and GB models.

This chapter is a reprint in full of material that appeared inLimitations of atom-

centered dielectric functions in implicit solvent models. Jessica M.J. Swanson, John

Mongan and J. Andrew McCammon. Journal of Physical Chemistry B,109(31) 14769-

14772, August 2005. I was the secondary researcher and author of this work.



Chapter 3

Generalized Born with a simple, robust

molecular volume correction

ABSTRACT

Generalized Born (GB) models provide a computationally efficient means of represent-

ing the electrostatic effects of solvent and are widely used, especially in molecular dy-

namics. A class of particularly fast GB models is based on integration over an interior

volume approximated as a pairwise union of atom spheres—effectively, the interior is

defined by a van der Waals rather than Lee-Richards molecular surface. The approx-

imation is computationally effective, but if uncorrected, allows for non-physical inter-

stitial high dielectric (water) regions between the atoms, leading to decreased accuracy.

Here, an earlier pairwise GB model is extended by a simple analytic correction term

that largely alleviates the problem by correctly describing the solvent-excluded volume

of each pair of atoms. The correction term introduces a free energy barrier to the sep-

aration of non-bonded atoms. This free energy barrier is seen in explicit solvent and

Lee-Richards molecular surface implicit solvent calculations, but has been absent from

earlier pairwise GB models. The correction term yields hydrogen bond length distri-

butions that are in better agreement with explicit solvent results. The robustness and

simplicity of the correction preserves the efficiency of the pairwise GB models while

making them a better approximation to reality.

16
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3.1 Introduction

The effects of aqueous solvent are critical to the structure and function of biological

macromolecules. Commonly, solvent is represented explicitly, by models of multiple

water molecules, or implicitly, by a high dielectric region and additional apolar solvation

terms. Although explicit solvent is a more physically rigorous representation, implicit

solvent models have the advantage of dramatically reducing the degrees of freedom that

must be sampled by eliminating those associated with the solvent. Additionally, implicit

solvent models are often more computationally efficient than their explicit counterparts.

The solvation effects can be described by∆Gsolv: the free energy of transferring

a given configuration of a molecule from vacuum to solvent. To facilitate calculation

of ∆Gsolv, it is typically decomposed into polar and nonpolar components:∆Gsolv =

∆Gpol +∆Gnonpol. Here,∆Gnonpol is the free energy of introducing the solute molecule

into solvent while electrostatic interactions between the solute and solvent are turned

off, and ∆Gpol is the free energy change in the system resulting from turning these

electrostatic interactions back on. In this work, the focus is on methods for calculating

∆Gpol.

Assuming that the solvent can be faithfully represented by a continuum dielectric

region, the Poisson-Boltzmann (PB) equation is the most physically correct method of

determining∆Gpol, and has been widely used over the past decade.19–25 Application

of PB to molecular geometries requires numerical solution of second order partial dif-

ferential equations, which is fairly computationally intensive and does not easily pro-

vide forces, although recent advances in PB methodology have improved the situation

somewhat.3,4,19,26 Alternatively, generalized Born (GB) models have become popular

as a computationally efficient approximation to numerical solutions of the PB equa-

tion,18,24,27–38especially for use in dynamics.39–49

GB models evaluate polar solvation free energy as a sum of pairwise interaction

terms between atomic charges. When the solute dielectric is 1 and the solvent dielectric

is much greater than that of the solute,50 the interactions can be accurately described

by an analytical function first proposed by Stillet al.,28 that interpolates between the



18

Coulombic limit at long distances and the Born or Onsager limits at small distances,

∆Gpol ≈ ∆GGB =−1
2∑

i, j

qiq j√
r2
i j +RiRj exp

(
−r2

i j
4RiRj

)
(

1− 1
εw

)
(3.1)

wherer i j is the distance between atomsi and j, qi andq j are partial charges andεw is

the dielectric constant of water. The key parameters in this GB function are the effective

radii of the interacting atoms,Ri andRj , which represent each atom’s degree of burial

within the solute. More specifically, the effective radius of an atom is defined as the

radius of a corresponding spherical ion having the same∆Gpol as the self energy of this

atom in the molecule. The self energy is the polar solvation free energy for the molecule

with partial charges set to zero for all atoms except the atom of interest. The effective

radius of an atom is larger than the intrinsic radius of its atom sphere because of the de-

screening effects of surrounding atoms, reducing the extent to which the atom charge is

screened by solvent. A computationally inefficient, but theoretically interesting method

for determining effective radii is to derive them from self energies calculated using well

converged numerical PB solutions. When these “perfect” effective radii are used, GB

results are in close agreement with PB results,51 which serve as a natural point of refer-

ence for assessing the accuracy of GB, since current GB models are an approximation

to the more fundamental formalism of the PB equation. Although this form of GB is

impractical for application, it suggests that in aqueous solution the GB function intro-

duced by Stillet al. is a minor source of error compared with the error introduced by

(non-perfect) methods for estimating effective radii. Consequently, considerable effort

has been spent on improving the way effective Born radii are computed.

In practice, effective radii for each atom are generally calculated by integration of an

approximate electric field density due to the atom of interest over some definition of the

molecule’s volume,5,18,23,29,36,47,52although formulations based on surface integrals

have also been proposed.34,38 Here, the focus is on volume-based GB models which

have traditionally used a Coulomb field integral,

Ii =
1
4π

Z

Ωi

r−4d3r (3.2)
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where the origin is centered on atomi andΩi represents the volume inside the molecule

but outside atomi. The effective radius is then calculated according to

Ri =
(

ρ−1
i − Ii

)−1
(3.3)

whereρi is the intrinsic radius of atomi. Within the Coulomb field approximation (CFA)

embodied by the integral in equation3.2, it is assumed that the electric field generated by

an atomic point charge is unaffected by the non-homogenous dielectric environment cre-

ated by the solute, so that the field has the form described by Coulomb’s law. The CFA is

exact for a point charge at the center of a spherical solute, but it over estimates effective

radii for molecular geometries36 as well as for spherical regions when the charge is off

center.53 It has been suggested that some of the success of early GB models on small

molecules may be attributed to fortuitous cancellation of errors in effective radius cal-

culations between the over estimates of a CFA based integrand and the under estimates

of a van der Waals (VDW) based region of integration.47 Improved approximations

based on empirical corrections to the CFA5,8,36 or theoretical derivations originating

with the Kirkwood formula53,54have significantly better agreement with effective radii

calculated from PB self energies.

The integration in equation3.2 can be performed numerically5,8,28,34,36or by an

analytical pairwise approximation.18,29,30,47,48,52GB methods based on analytically

approximated integrals are easily extended to calculate solvation forces and are gener-

ally faster than their numerically integrated counterparts,55 so they have traditionally

found greater application in dynamics.

Most pairwise approximations estimate the integral over a region formed by the

union of atom spheres, which is equivalent to a VDW surface dielectric boundary. In

calculating the effective radius for atomi, the contribution of every other atomj 6= i

to the integral is determined as a function ofρ j and the distance between atomsi and

j. Summation of these terms yields an overestimate of the total integral, due to overlap

between descreening atoms. To correct for these overlaps, multiplicative scaling factors,

Sx, are introduced to reduce the intrinsic radius of each descreening atom.

In contrast, PB calculations generally use a Lee-Richards molecular surface dielec-

tric boundary, defined by rolling a solvent sphere over the surface of the molecule.1
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Although there is no uniquely correct definition of the dielectric boundary, a van der

Waals surface creates regions of interstitial high dielectrics that are smaller than a wa-

ter molecule, while the Lee-Richards surface has the conceptually attractive advantage

of excluding high dielectric from regions into which a water molecule is too large to

fit. Differences between the Lee-Richards and VDW surface definitions are minimal for

small molecules, where all atoms are well solvated, but become more substantial for

macromolecules, where inclusion of interstitial high dielectrics in VDW-based models

leads to overestimation of the solvation of interior atoms, relative to Lee-Richards re-

sults.56 This may partially explain why early GB models that had good results for small

molecules were less effective when applied to macromolecules.41,47,52 Additionally,

implicit solvent models that allow interstitial high dielectrics produce incorrect poten-

tials of mean force between non-bonded atoms.56 However, it is not practical to use the

Lee-Richards surface directly in a GB model as it is fairly computationally intensive and

can produce unstable or infinite forces for some molecular configurations.19,26

Attempts to reduce or eliminate the problems of interstitial high dielectrics in GB

models have followed two paths. One approach, embodied by the GBMV2 model

developed by Leeet al.,5 has been to use numerical integration with adaptations for

calculating forces in combination with an analytic surface definition that closely ap-

proximates the properties of the Lee-Richards surface. A CFA correction term is also

employed in the integration. This GB model yields stable dynamics while providing

excellent agreement with PB Lee-Richards surface results. However, both the analytic

surface definition and the numerical integration are relatively slow, such that the fastest

PB models approach the performance of GBMV2.55 Furthermore, the reliance on nu-

merical integration introduces artifacts, such as a lack of rotational invariance.

A different method (OBCGB), developed by Onufriev, Bashford and Case,47 sought

to extend the pairwise integration method (HCT GB) of Hawkins, Cramer, and Truh-

lar18,29 to reduce the effect of interstitial high dielectrics. Based on the observation

that effective radii for buried atoms are larger than for surface atoms, but much smaller

than PB-derived “perfect” effective radii, this method modifies the radius calculation in
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equation3.3by rescaling the integral from equation3.2according to

Ri =
(

ρ̃−1
i −ρ−1

i tanh
(
αI ρ̃i−β(I ρ̃i)2 + γ(I ρ̃i)3))−1

(3.4)

whereρ̃i = ρi −0.09Å andα, β andγ are tunable parameters. When these parameters

are set such that most radii are scaled up, the rescaled radii substantially improve agree-

ment with PB solvation free energies, and the computational expense of the rescaling

function is minimal so the efficiency of the Hawkinset al. model is retained. In ad-

dition, effective radii calculated with equation3.4 are smoothly capped at about 30Å,

avoiding problems with numerical instability and negative radii that can be encountered

when using equation3.3. However, by design, the rescaling function only affects atoms

that are sufficiently buried that the interstitial high dielectrics can be accounted for in

an averaged, geometry-independent manner. Uncompensated interstitial high dielectrics

between more highly solvated surface atoms still affect solvation energies and potentials

of mean force.

The work in this chapter attempts to combine the best aspects of both of these ef-

forts in development of a GB model that adds a geometrically based molecular volume

correction term accounting for interstitial high dielectrics to the pairwise approximated

integration method. Since the correction term is, itself, a computationally efficient pair-

wise approximation, the performance and numerical benefits of analytical GB models

are retained.

The shortcomings of the CFA are now well known, but rigorously derived non-CFA

pairwise approximated GB models have only recently been described54 and their stabil-

ity and performance have not yet been extensively tested on biomolecules, so the model

described here extends the Coulomb field-basedHCT GB model.

3.2 Theory

An ideal volume correction term for a GB model based on VDW volume and the

CFA would yield the integral ofr−4 over the region inside the Lee-Richards molecular

surface and outside the van der Waals surface. This region is designated the correction
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Figure 3.1: The neck region (shaded) is defined by the radius of atom 1, R1, the ra-
dius of atom 2, R2, the distance that separates them, d, and the radius of the solvent
molecule, Rw. The coordinate system used for performing integration is also illustrated.
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r−4d3r =

Z

VDW
r−4d3r +

Z

correction
r−4r−4d3r (3.5)

Since theHCT GB integration scheme calculates the value of the integral within the

van der Waals surface, adding this correction term would yield an integral over the

region within the molecular surface. In the general case, the correction region cannot be

analytically defined. However, in the simple case of two closely spaced or overlapping

atoms, the correction region forms an analytically definable “neck” region between the

two atoms, as seen in figure3.1. The general case of the correction region can be

approximated by a union of these neck regions calculated pairwise between atoms. In

the simplest form of this approximation, developed here, the integral for each atom

includes corrections for only the neck regions in which the atom is directly involved.

This simple form is a reasonably good approximation because the value of the integrand

(r−4) is much higher in the nearby neck regions with which the atom is directly involved

than in the distant portions of the correction region formed by interactions between other

pairs of atoms.

Figure3.1illustrates how the geometry of the neck region is defined by four param-

eters: the radii of the two atoms,R1 andR2; the radius of the solvent molecule,Rw;

and the distance between the two atoms,d. Derivations of the expressions for the CFA
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Figure 3.2: Values of numerical integration over the neck region (black) and analytical
approximation (red) as a function of distance between atoms in angstroms. Left to right,
top to bottom, radii (in angstroms) for atoms 1 and 2, respectively are 1.2 and 1.2; 1.2
and 1.7; 1.7 and 1.2; 1.7 and 1.7.

integrals over the neck region are given in Appendix I. Although the integrands in these

expressions are fairly simple, the limits of integration are sufficiently complex to make

analytical solution of the integrals impractical. The problem is simplified by considering

that in the GB model, parametersR1, R2 andRw have a relatively small set of discrete

values (a single value, in the case ofRw = 1.4 Å), and sod is the only parameter with

continuous values. With this view in mind, the function in four variables described by

these integrals can be evaluated as a family of single variable functions ofd, with each

function determined by a particular set of values forR1, R2 andRw. These functions ofd

can be plotted by solving the integrals numerically for a range of values ofd, producing

curves as shown in figure3.2.

Numerical solution of these integrals is far too computationally costly for application

in a GB model. Instead, they are replaced with an empirically determined analytic

function shown in equation3.6

neck_integral(d) =
m0

1+(d−d0)
2 +0.3(d−d0)

6 (3.6)

This function is parameterized by the position (d0) and value (m0) of the maximum,
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which are determined by numeric optimization (maximization) of the integral ofr−4

over the neck region of figure3.1. The values ofd0 andm0 are dependent onR1, R2

andRw, but since these variables have a small set of discrete values, tabulating all pos-

sible values ofd0 andm0 is quite feasible (see Appendix II). As illustrated in figure

3.2, equation3.6 is a very good approximation over the range of atomic radii typically

encountered in biomolecules.

Applications of GB solvation models to dynamics require calculation of derivatives

with respect to distance. Equation3.6 is easily differentiated, yielding equation3.7.

neck_integral′(d) =−

(
2(d−d0)+ 9

5 (d−d0)
5
)

m0
(

1+(d−d0)
2 + 3

10 (d−d0)
6
)2 (3.7)

Ideally, neck integrals would be calculated only between atoms that are close enough to

define a neck region (d < R1+R2+2Rw): beyond this distance the neck integral and its

first derivative with respect tod should be zero. However, the analytic approximation

used here approaches zero asymptotically, and atd = R1 +R2 +2Rw its value is on the

order of10−3. Truncating the function at this point would create a discontinuity which

could lead to unstable dynamics. A variety of techniques could be employed to smooth

this discontinuity; the simplest approach has been taken of continuing to calculate the

neck correction ford > R1 + R2 + 2Rw until d is large enough that the value of the

function is sufficiently small that the error of truncating it is on the order of rounding

error.

The neck correction described by the integrals in Appendix I and approximated by

equation3.6is exact for a system of two atoms, but in the usual case of a molecule with

more than two atoms, a strict summation of neck integrals calculated pairwise between

atoms will tend to over estimate the integral over the correction region. Over estimation

of the integral is due to overlap of neck regions with atoms not participating in the

neck, as well as overlap with other neck regions, and must be corrected by scaling the

contributions to the total integral.

The GBn model (“n” for neck) presented here takes a simple, two step approach

to scaling. First, each neck integral value calculated in equation3.6 is multiplied by
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a scaling factorSneck (Sneck< 1). Second, effective radii are calculated using equation

3.4 which provides descreening dependent scaling, as well as numerical stabilization

for large effective radii. The two step scaling involves four parameters which must be

optimized,Sneck, α, β andγ. Since the neck correction alone is expected to bring the

integration volume closer to molecular volume, the optimal parameters of equation3.4

are different from those used by theOBCmodel. The key difference betweenGBnand

OBCGB can be best illustrated by a diatomic system such as that in figure3.1: theOBC

model will produce correct effective radii for only one value of atom-atom separation

distance, while theGBn model should calculate accurate radii for this simple system

across the entire range of interatomic distances.

Additionally, it is necessary to refit the intrinsic radius scaling factors,Sx. Although

formally theSx scaling factors merely correct overlaps, in practice they have been used

as free parameters to optimize GB results for agreement with PB and experimental re-

sults.18,41 As a result, the sets ofSx values used in theHCT andOBC GB models not

only correct for atomic overlaps, but also correct for some of the effects of the CFA

and interstitial high dielectrics (to the extent that this is possible on an averaged, ge-

ometry independent basis). Since theGBnmodel already accounts for interstitial high

dielectrics with the neck term and has a different degree of CFA error due to the altered

region of integration, it would clearly be inappropriate to useSx sets that were fit for

VDW regions of integration with theGBnmodel.

3.3 Results and Discussion

Parameters of theGBnmodel (Sneck, α, β, γ and theSx parameters for atom types C,

H, N and O) were optimized using the Nelder-Mead simplex algorithm.57 The objective

function that was minimized measured agreement between PB and GB solvation free

energies over a training set consisting of structures from denaturation trajectories of apo

myoglobin and protein L and structures representing potentials of mean force (PMF) for

two hydrogen bonds and a salt bridge (see Methods for details of the objective function).

The objective function has multiple local minima, so 100 minimizations were performed
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Table 3.1: Optimized scaling parameters

Parameter Value

α 1.095
β 1.908
γ 2.508

Sneck 0.362
SH 1.091
SC 0.484
SN 0.700
SO 1.066

starting from random initial points. Optimized parameter values producing the best

overall performance are given in Table3.1. Treatment of theSx values as free parameters

to optimize GB performance beyond their formal purpose of correcting overlap is made

obvious by the values ofSO andSH , which exceed 1. This represents a continuation of

previous practice, although it may at first appear to be a divergence because previous sets

of Sx values where allSx < 1 may have been incorrectly interpreted as merely correcting

overlaps.

Since the primary purpose of adding the neck correction is to improve the accuracy

with which effective radii are calculated, one simple assessment is to compare these ef-

fective radii with “perfect” radii derived from PB calculations, as previously described.

It should be noted that while GB has excellent agreement with PB when perfect radii

are used directly,51 small improvements in this agreement do not always translate to

improved performance of the model. In particular, sets of scaling parameters optimized

for minimal deviation between GB effective and perfect radii had poor performance on

the higher level tests of model quality described below. Nevertheless, radius compar-

isons are instructive as rough quality measures and in identifying sources of error that

may not be readily apparent when molecular solvation free energies are compared. It is

most useful to compare inverse radii, as this most faithfully represents the contribution

of the effective radii to the energy in equation3.1. As shown in figure3.3, the accu-

racy of effective radii calculated by theGBnmodel is improved (R−1
i RMSD 0.092 vs

0.128) when compared to theOBCGB47 model. Although there is improvement in the
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Figure 3.3: Scatter plot comparison of inverse effective radii calculated by the current
GB neck model (red +) and earlier OBC GB model (black X) to inverse “perfect” PB radii
for thioredoxin (PDB code 2TRX). Diagonal line indicates perfect agreement.

accuracy of large effective radii (left portion of the figure), these radii continue to have

the largest errors. Errors seem to be largest for atoms near crevices that are slightly too

small for a water molecule; presumably the pairwise appoximation is poorest here. The

OBCGB model is selected as a reference for comparison because it is among the most

recent and most accurate55 pair-wise GB models that do not have a molecular volume

correction beyond the “average” rescaling provided by equation3.4.

A more direct test of GB model performance is comparisons of GB solvation free

energies with those calculated by PB methods. Minimizing error across multiple con-

formations of the same system is of particular interest for GB methods that will be used

in dynamics, as conformation-dependent errors will bias sampling. Figure3.4plots the

difference between GB and PB solvation free energies for a series of conformations ob-

tained from a thermal denaturation molecular dynamics trajectory. Error is reduced for

theGBnmodel (standard deviation 6.4 kcal/mol) relative to theOBC GB model (stan-

dard deviation 7.2 kcal/mol). Solvation free energy errors are plotted as a function of

the number of native tertiary contacts for the corresponding conformation to elucidate

trends in error with respect to degree of denaturation. The GB model of Hawkinset al.
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Figure 3.4: Relative deviation from PB solvation energy for GBn and OBC GB for a
series of snapshots from a denaturation trajectory of protein A. GBn has a tighter clus-
tering of points, indicating less random error than OBC GB (stdev 6.4 vs 7.2 kcal/mol),
while maintaining a similar native state bias (trend of points across the plot). Average
errors of -9.2 (OBC GB) and 68.9 (GBn) kcal/mol removed to facilitate comparison.

has significantly more negative errors for near-native conformations than for denatured

conformations, but this native state bias is almost entirely corrected by the rescaling

function in equation3.4employed by theOBCGB model.47 As seen in figure3.4, the

GBnmodel has a very small native state bias, similar toOBCGB. Similar, slightly better

results are obtained for conformations of protein L and apo-myoglobin; these results are

not shown because they were used as part of the objective function in the optimization

process and as such are likely to be less indicative of performance on other systems than

the protein L results.

The improvements in effective radius and solvation free energy calculations de-

scribed above represent useful but fairly incremental improvement over the existing

OBC GB model. Indeed, theOBC GB model’s performance is quite good on low free

energy conformations, such as those found in crystal structures or sampled from molec-

ular dynamics trajectories, making dramatic improvements on these structures unlikely.

However, performance on higher free energy conformations is also important for com-

mon applications like dynamics and docking; here there is ample room for improvement

onOBCGB. One common high free energy conformation is encountered in the free en-
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ergy curve for separating a salt bridge or hydrogen bond, referred to here as a PMF to

reflect the averaging of solvent degrees of freedom by the implicit solvent model. It

has been shown that implicit solvent models that employ a molecular surface dielectric

boundary have a free energy barrier to separation of the bond,56 in qualitative agreement

with explicit solvent results,17 but models based on traditional pair-wise integration,

even with average volume corrections such asOBCGB, fail to reproduce this behavior.

Since theGBnmodel attempts to approximate a molecular surface dielectric bound-

ary it should be capable of reproducing the maximum in the PMF. As shown in figures

3.5 and3.6 this result is seen in most cases, a distinct departure from implicit solvent

models that allow interstitial high dielectrics.56 In general, theGBn minima are less

deep and the maxima are less high than the PB PMFs. This is probably a consequence

of the CFA. The CFA underestimates the descreening contribution of nearby regions rel-

ative to more distant regions, becauser−4 diminishes less rapidly than the higher order

integrands of more accurate expressions.36,53 Since the neck region is very close to the

atom of interest, it seems likely that its effect is underestimated by the CFA, leading

to a smaller difference between minimum and maximum. The shallow minima exhib-

ited by theGBnmodel, most notable in theβ-sheet model of figure3.5, raise concerns

that secondary structure may not be stable, possibly leading to denaturation. However,

this has not been observed in molecular dynamics trajectories (see following), perhaps

because the extent of destabilization is less in the protein environment than for these

highly solvated model systems, or because the time scales of the simulations conducted

here are not sufficient to observe these problems.

The primary purpose for the development of computationally efficient pairwise ap-

proximated GB is application in dynamcs; theGBn model, implemented in AMBER,

was tested by conducting 10 ns molecular dynamics trajectories of ubiquitin and thiore-

doxin. As expected, theGBn model retains the computational efficiency of theOBC

GB model running only 8-10% more slowly. Conformational stability of trajectories is

commonly assessed by computing the RMSD of alpha carbons from their crystal coor-

dinates; plots of the RMSD for thioredoxin and ubiquitin trajectories conducted using

theGBnandOBC GB models are shown in figure3.7. TheGBnmodel maintains ap-

proximately the same high level of stability asOBCGB, with slightly higher RMSD in
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Figure 3.5: Potentials of mean force for hydrogen bonding systems not included in
the objective function, calculated with three implicit solvent methods. Systems are two
protonated aspartic acids and two alanines (β-sheet model). Potential includes electro-
static and van der Waals energies.
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Figure 3.6: Potentials of mean force for hydrogen bonding and salt bridge systems in-
cluded in the objective function, calculated with three implicit solvent methods. Systems
are asparagine and asparagine; asparate and serine; arginine and aspartate. Potential
includes electrostatic and van der Waals energies.
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Figure 3.7: RMSD of α-carbons from crystal structure over the course of 10 ns of
molecular dynamics of ubiquitin (left) and thioredoxin (right).

the thioredoxin trajectory and lower RMSD in the ubiquitin trajectory.

Performance of a GB model is affected by the set of atomic intrinsic radii used to

define the dielectric boundary. Previous work has shown that for simulations conducted

under theHCT or OBCGB models, structural stability is slightly increased and results

are somewhat improved by increasing the intrinsic radius of hydrogens bound to ni-

trogen, H(N), from their Bondi radii16 of 1.2 Å to 1.3 Å (forming the mbondi2 radius

set).41,47 As seen in figure3.7, little benefit is realized by this change when using the

GBnmodel.
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Figure 3.8: Ubiquitin backbone hydrogen bond length data collected over 10 ns of
MD for TIP3P explicit solvent, OBC GB and GBn. Plots represent difference between
implicit and explicit solvent bond length distribution mean (left) and standard deviation
(right) as a function of mean explicit solvent bond length. Hydrogen bond lengths under
the GBnmodel are generally closer to the zero line and thus in better agreement with
explicit solvent results.
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To examine whether the improved PMFs seen in figures3.5 and3.6 translate into

improvements in the ensemble of macromlecular conformations sampled during MD,

distributions of hydrogen bond lengths were compared between 10 ns ubiquitin trajec-

tories conducted underOBCGB, GBnand TIP3P explicit solvation models. Figure3.8

illustrates the differences in mean and standard deviation of hydrogen bond length for

native backbone hydrogen bonds under the three solvation models. In nearly all cases,

theOBCGB model yields hydrogen bonds with a higher mean length and standard de-

viation than in explicit solvent. As a consequence of the narrower potential wells seen in

the PMFs, hydrogen bonds under theGBnmodel are generally shorter and their length

distributions have lower standard deviations in better agreement with explicit solvent

results thanOBCGB. These differences are particularly noticeable for the shorter, more

stable hydrogen bonds (left portions of the plots in figure3.8), where length distributions

are presumably mostly determined by the potential between bonding partners, while dis-

tributions for longer hydrogen bonds may be more affected by tertiary structural forces.

The data in figure3.8suggest that the free energy barrier introduced by the neck correc-

tion affects not only dynamics and kinetic properties, but also average properties of the

ensemble sampled by MD.

3.4 Methods

PB solvation energies and “perfect” radii were calculated using a modified version

of APBS 0.3.2. The linearized PB model was employed along with the multiple Debye-

Huckel boundary condition. Charge was discretized using the cubic B-spline method

(spl2). Dielectric values were 1.0 for solute and 80.0 for solvent regions, except for

“perfect” radii calculations, where solvent had dielectric 1000. A Lee-Richards type

dielectric boundary (mol) was used. APBS versions 0.3.2 and earlier have a flawed

molecular surface algorithm that overestimates solute volume; this flaw was fixed in the

APBS version used here. All calculations were performed initially on a coarse grid and

then on a smaller, finer grid using the coarse grid potential as boundary conditions. Grid

spacings were 0.5/0.25 (coarse/fine) for protein solvation and perfect radii calculations
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and 0.2/0.1 for PMF calculations.

GB effective radius, solvation energy and MD trajectories were calculated using a

pre-release version of AMBER 9.58 MD was carried out using the AMBER ff99 force

field modified by the backbone torsional potentials in frcmod.mod_phipsi.1.44 The

timestep was 2 fs. Electrostatics were calculated using the neck GB model described

here with a salt concentration of 0.1 M and no cut off. Non-polar solvation effects were

represented using a surface area term of 0.005 kcal/mol·Å2
. Bonds involving hydro-

gen were constrained using SHAKE. Temperature was maintained at 300K using the

Berendsen weak coupling method and a time constant of 2 ps for the thioredoxin tra-

jectory and using Langevin dynamics with a Langevin constant of 1.0 for the ubiquitin

trajectory. The crystal structures (2TRX and UBQ) were prepared for dynamics with

100 steps of steepest descent minimization during which all atoms were harmonically

restrained with a weight of 1.0 kcal/mol·Å2
, followed by a 20 ps period of equilibration

during which all atoms were harmonically restrained with a weight of 0.1 kcal/mol·Å2
.

The Sneck, α, β, γ andSx parameters were optimized using the Nelder-Mead sim-

plex algorithm57 implemented by the SciPy library.59 The objective function that was

minimized measured agreement between PB and GB solvation free energies over a train-

ing set consisting of structures from denaturation trajectories of apo-myoglobin60 and

protein L36 and structures representing varying degrees of separation of a salt bridge

between aspartate and arginine and hydrogen bonds between two asparagine side chains

and between serine and aspartate. The total value of the objective function was the sum

of each system’s contribution. For the structures from the denaturation trajectories, the

difference between PB and GB solvation free energy was calculated for each structure

and a linear regression was performed on these data points using the structure’s time

value (for apo myogloblin) or number of native tertiary contacts (for protein L) as the

independent variable, yielding a regression line slope,m, and intercept,b. Additionally,

the root mean square deviation (RMSD) between PB and GB solvation free energies

for each structure was calculated. Each system’s contribution to the objective function

was defined asRMSD−
∣∣b

2

∣∣+ |m· (#o f structures)|. This term is designed to emphasize

minimizing native state bias (represented bym) and random error while not overly pe-

nalizing systematic error for a particular system. Salt bridge and hydrogen bond systems



36

consisted of 80 configurations where the bonding partners were separated by 1 Å in the

first configuration and are moved 0.1 Å further apart in each subsequent configuration

(see figure3.6for picture of orientiations). PB and GB solvation free energies were cal-

culated for each configuration, and the PB and GB solvation free energies were set to be

equal at maximum separation by subtracting the energy calculated for maximal separa-

tion from that calculated for every other configuration. The objective function term for

these systems was the RMSD of the adjusted errors multiplied by 10. The RMSD was

increased by a factor of 10 to prevent the objective function from being dominated by

the larger absolute errors of the larger protein systems. Since the objective function has

multiple local minima, 100 minimizations were performed starting from random initial

points. Initial points were chosen from the following intervals of a uniform random dis-

tribution: Sneck∈ [0.2,0.5], α ∈ [0.5,1.5], β,γ ∈ [0.5,3.0], andS{C,H,N,O} ∈ [0.6,0.95].

3.5 Conclusion

TheGBnmodel, presented here, extends current pairwise GB models with an intu-

itively attractive property: exclusion of high dielectric (representing water) from regions

into which a water molecule is too large to fit. This extension is computationally effi-

cient, slowing MD trajectories by only about 10%. Implementation of the neck correc-

tion is simple, requiring only a lookup table and (in the present implementation) approx-

imately 30 lines of code. The neck GB model described here will be available in version

9 of the AMBER suite, and given its simplicity it should be straightforward to add the

neck correction to any pairwise volumetric integration-based GB method. Although the

correction is a pairwise approximation, it yields non-bonded PMFs with a free energy

barrier to separation, a property unique to molecular surface-like dielectric boundaries.

Additionally, non-bonded interactions have equilibrium properties in improved agree-

ment with explicit solvent in protein molecular dynamics simulations conducted under

the neck GB model.

The neck GB model is the fastest model that reproduces the essential characteristics

of molecular surface dielectric boundaries, but it does not correlate as well with PB
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results as the slower GBMV2 model of Leeet al.5,56 One potential source of error

is the fairly simplistic treatment of neck region overlaps in the current model. Some

improvement might be realized by a higher order approach to overlaps, but the largest

source of error appears to be the use of the CFA to define the integral used to calculate

effective radii. Even with a perfect region of integration, errors due to the CFA are

large, with effective radii overestimated by a factor of two in the worst case.53 Despite

the limitations imposed by the CFA, the current model serves as a proof of principle

that a simple pairwise correction can produce an accurate approximation of molecular

surface-like solvation properties. It is anticipated that a pairwise GB model based on

the neck correction and a non-CFA integral, currently under development, will yield

substantially improved accuracy.

3.6 Appendix: Neck region integrals

The neck region can be analytically defined using only basic trigonometry, but as

the derivation is somewhat tedious, the details are provided here. As shown in figure

3.1, a triangle is formed by the centers of the atoms and the solvent molecule; the angles

of the vertices centered at atoms 1 and 2 are defined as angleA and angleB, and their

cosines can be expressed in terms of the four parametersd, R1, R2 andRw, using the law

of cosines, as shown in equation3.8.

cosA =
d2 +(R1 +Rw)2− (R2 +Rw)2

2d(R1 +Rw)
cosB =

d2− (R1 +Rw)2 +(R2 +Rw)2

2d(R2 +Rw)
(3.8)

The system is cylindrically symmetric about an axis connecting the centers of the

two atoms, so it is most naturally analyzed in cylindrical coordinates. The origin is

placed at the center of atom 1 with the positive z axis extending toward the center of

atom 2. There are three geometric cases for the neck region, illustrated in figure3.9:

(i) the atoms overlap and the neck region is ring shaped; (ii) the atoms are moderately

separated forming a contiguous region; (iii) the atoms are widely separated such that the

surface of the solvent molecule intersects the z axis, forming two discontinuous spike
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(iii)

(ii)

(i)

Figure 3.9: Three cases of neck regions (shaded) formed by atoms (solid circles) at
varying separations. Dotted lines represent the surface of the solvent sphere. The
leftmost vertex of the dashed triangle in (i) describes the angle A′ referenced in equation
3.9. Although this figure shows two atoms with the same radius, neck regions may also
be formed between atoms with unequal radii.

regions. Whend ≥ R1 +R2 +2Rw a solvent molecule can pass between the atoms and

there is no neck region.

For case (i), a second triangle can be formed between the centers of the two atoms

and a point at which the surfaces of the atoms intersect. The angle formed by the vertex

of this triangle that is located at the center of atom 1 is designatedA′ and its cosine is

defined in equation3.9.

cosA′ =
d2 +R2

1−R2
2

2dR1
(3.9)

Computation of a CFA term based on the neck region requires an expression for the

integral ofr−4 over the neck region. In the cylindrical coordinate system used here,|r |=√
r2 +z2 so when the volume element is included, the integrand becomesr

(
r2 +z2

)−2
.

Because of the cylindrical symmetry, the limits of integration overθ are always0 to 2π.

The upper limit of the integration overr is formed by the surface of the solvent molecule

(dotted line in figures3.1 and3.9). As the expression defining ther coordinate of the
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solvent surface as a function ofz (that is, the perpendicular distance from thez axis to

the dashed line in figure3.1for a givenz) is somewhat complex, the notation is clarified

by defining a function, solv, representing this expression:

solv(z, R1, R2, Rw, d) = (R1 +Rw)
√

1−cos2A−
√

R2
w− (z− (R1 +Rw)cosA)2

(3.10)

The lower limit of integration forr is defined by the surface of atom 1, the z axis (r = 0),

or the surface of atom 2, depending on the value of thez coordinate. In addition to

defining the geometric extents of the neck region, the limits of integration overz are

used to break the overall integral into pieces at the points where ther lower limit of

integration changes. Thus in case (i) the integral has two contiguous pieces defined

by threez limits: the coordinate at which the solvent molecule touches atom 1, the

coordinate for the intersection of the two atoms and the coordinate where atom 2 touches

the solvent molecule. Case (ii) has three contiguous pieces, with the extreme upper and

lower limits defined by the locations that the solvent molecule touches the atoms, as

in (i) and the two intermediate limits occurring where the lowerr limit changes at the

edges of atoms 1 and 2. Finally, case (iii) has two discontiguous spike regions, each of

which is composed of two parts, where thez limits are the intersection of the atom and

solvent molecule, the edge of the atom and the tip of the spike. The tips of the spikes

are located at the two points where the solvent sphere intersects thez axis (see figure

3.9). Thez coordinate of these intersections can be obtained by setting the function in

equation3.10equal to zero and solving forz, yielding

zinter(−)(R1, R2, Rw, d) = (R1 +Rw)cosA−
√

R1(R1 +2Rw)(−1+cos2A)+R2
wcos2A

(3.11)

zinter(+)(R1, R2, Rw, d) = (R1 +Rw)cosA+
√

R1(R1 +2Rw)(−1+cos2A)+R2
wcos2A

(3.12)

Using the preceding definitions, the integrals ofr−4 over the neck region for cases (i),

(ii) and (iii) are presented in equations3.13, 3.14and3.15.

(i) :
Z

neckregion
r−4 =

R R1cosA′
R1cosA

R 2π
0

R solv(z,R1,R2,Rw,d)√
R2

1−z2
r
(
r2 +z2

)−2
drdθdz

+
R d−R2cosB

R1cosA′
R 2π

0
R solv(z,R1,R2,Rw,d)√

R2
2−(d−z)2

r
(
r2 +z2

)−2
drdθdz

(3.13)
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(ii) :
Z

neckregion
r−4 =

R R1
R1cosA

R 2π
0

R solv(z,R1,R2,Rw,d)√
R2

1−z2
r
(
r2 +z2

)−2
drdθdz

+
R d−R2

R1

R 2π
0

R solv(z,R1,R2,Rw,d)
0 r

(
r2 +z2

)−2
drdθdz

+
R d−R2cosB

d−R2

R 2π
0

R solv(z,R1,R2,Rw,d)√
R2

2−(d−z)2
r
(
r2 +z2

)−2
drdθdz

(3.14)

(iii ) :
Z

neckregion
r−4 =

R R1
R1cosA

R 2π
0

R solv(z,R1,R2,Rw,d)√
R2

1−z2
r
(
r2 +z2

)−2
drdθdz

+
R zinter(−)(R1,R2,Rw,d)

R1

R 2π
0

R solv(z,R1,R2,Rw,d)
0 r

(
r2 +z2

)−2
drdθdz

+
R d−R2

zinter(+)(R1,R2,Rw,d)
R 2π

0
R solv(z,R1,R2,Rw,d)

0 r
(
r2 +z2

)−2
drdθdz

+
R d−R2cosB

d−R2

R 2π
0

R solv(z,R1,R2,Rw,d)√
R2

2−(d−z)2
r
(
r2 +z2

)−2
drdθdz

(3.15)
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3.7 Appendix: Coordinates of neck integral maxima

Table 3.2: Distance between atoms at which integral of r−4 over the neck region (de-
fined in equations 3.13-3.15) has the maximum value, tabulated for a range of radii for
atoms 1 and 2, assuming a solvent molecule (Rw) radius of 1.4 Å. These are the values
used for d0 in equations 3.6 and 3.7. Distances and atom radii in angstroms.

Atom1
Atom2 1.20 1.25 1.30 1.35 1.40 1.45 1.50

1.20 2.6797 2.7250 2.7719 2.8188 2.8656 2.9125 2.9609
1.25 2.7359 2.7813 2.8281 2.8750 2.9219 2.9688 3.0156
1.30 2.7922 2.8375 2.8844 2.9297 2.9766 3.0234 3.0719
1.35 2.8500 2.8953 2.9406 2.9859 3.0328 3.0797 3.1266
1.40 2.9062 2.9516 2.9969 3.0422 3.0891 3.1359 3.1828
1.45 2.9625 3.0078 3.0531 3.0984 3.1437 3.1906 3.2375
1.50 3.0188 3.0641 3.1078 3.1547 3.2000 3.2469 3.2922
1.55 3.0750 3.1203 3.1641 3.2094 3.2563 3.3016 3.3484
1.60 3.1313 3.1750 3.2203 3.2656 3.3109 3.3563 3.4031
1.65 3.1875 3.2313 3.2766 3.3203 3.3656 3.4125 3.4578
1.70 3.2437 3.2875 3.3313 3.3766 3.4219 3.4672 3.5125
1.75 3.3000 3.3422 3.3875 3.4312 3.4766 3.5219 3.5688
1.80 3.3547 3.3984 3.4422 3.4875 3.5313 3.5766 3.6234

Atom1
Atom2 1.55 1.60 1.65 1.70 1.75 1.80

1.20 3.0078 3.0562 3.1047 3.1531 3.2016 3.2500
1.25 3.0641 3.1109 3.1594 3.2078 3.2563 3.3047
1.30 3.1188 3.1672 3.2141 3.2625 3.3109 3.3594
1.35 3.1750 3.2219 3.2703 3.3172 3.3656 3.4141
1.40 3.2297 3.2766 3.3250 3.3719 3.4203 3.4688
1.45 3.2844 3.3313 3.3797 3.4266 3.4750 3.5234
1.50 3.3391 3.3875 3.4344 3.4813 3.5297 3.5781
1.55 3.3953 3.4422 3.4891 3.5359 3.5844 3.6313
1.60 3.4500 3.4969 3.5438 3.5906 3.6391 3.6859
1.65 3.5047 3.5516 3.5984 3.6453 3.6922 3.7406
1.70 3.5594 3.6063 3.6531 3.7000 3.7469 3.7953
1.75 3.6141 3.6609 3.7078 3.7547 3.8016 3.8484
1.80 3.6688 3.7156 3.7625 3.8094 3.8563 3.9031
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Table 3.3: Maximum value of integral of r−4 over the neck region (defined in equa-
tions 3.13-3.15), tabulated for a range of radii for atoms 1 and 2, assuming a solvent
molecule (Rw) radius of 1.4 Å. These are the values used for m0 in equations 3.6 and
3.7. Distances and atom radii in angstroms.

Atom1
Atom2 1.20 1.25 1.30 1.35 1.40 1.45 1.50

1.20 0.35281 0.36412 0.37516 0.38594 0.39645 0.40670 0.41670
1.25 0.31853 0.32889 0.33902 0.34890 0.35855 0.36797 0.37717
1.30 0.28847 0.29798 0.30728 0.31637 0.32525 0.33392 0.34240
1.35 0.26199 0.27074 0.27930 0.28768 0.29587 0.30387 0.31170
1.40 0.23859 0.24666 0.25455 0.26228 0.26985 0.27725 0.28449
1.45 0.21783 0.22528 0.23258 0.23972 0.24673 0.25358 0.26029
1.50 0.19935 0.20624 0.21300 0.21962 0.22611 0.23247 0.23870
1.55 0.18285 0.18923 0.19550 0.20165 0.20767 0.21358 0.21938
1.60 0.16807 0.17400 0.17982 0.18553 0.19114 0.19664 0.20203
1.65 0.15480 0.16031 0.16573 0.17104 0.17626 0.18139 0.18642
1.70 0.14285 0.14798 0.15303 0.15798 0.16285 0.16764 0.17233
1.75 0.13207 0.13685 0.14155 0.14618 0.15073 0.15520 0.15959
1.80 0.12231 0.12677 0.13117 0.13549 0.13975 0.14393 0.14804

Atom1
Atom2 1.55 1.60 1.65 1.70 1.75 1.80

1.20 0.42646 0.43598 0.44527 0.45434 0.46319 0.47183
1.25 0.38615 0.39492 0.40348 0.41185 0.42001 0.42799
1.30 0.35069 0.35878 0.36669 0.37441 0.38196 0.38934
1.35 0.31936 0.32684 0.33416 0.34131 0.3483 0.35514
1.40 0.29158 0.29851 0.30529 0.31193 0.31842 0.32477
1.45 0.26686 0.27330 0.27959 0.28575 0.29179 0.29769
1.50 0.24480 0.25078 0.25664 0.26237 0.26799 0.27349
1.55 0.22505 0.23062 0.23607 0.24141 0.24665 0.25178
1.60 0.20732 0.21251 0.21759 0.22258 0.22747 0.23226
1.65 0.19135 0.19620 0.20095 0.20561 0.21018 0.21466
1.70 0.17694 0.18147 0.18591 0.19027 0.19455 0.19875
1.75 0.16390 0.16814 0.17230 0.17638 0.18039 0.18433
1.80 0.15208 0.15605 0.15995 0.16378 0.16754 0.17124

This chapter is a preprint in full ofGeneralized Born with a simple, robust molecular

volume correction.John Mongan, Carlos Simmerling, J. Andrew McCammon, David

A. Case and Alexey Onufriev. Submitted to Proteins: Structure, Function and Bioinfor-

matics. I was the primary researcher and author of this work.



Chapter 4

Biomolecular simulations at constant

pH

ABSTRACT

Like temperature and pressure, the solution pH is an important intensive thermodynamic

variable that is commonly varied in experiments, and is used by cells to influence bio-

chemical function. It is now becoming feasible to carry out practical molecular dynam-

ics simulations that mimic the thermodynamics of such experiments, by allowing proton

transfer between the system of interest and a hypothetical bath of protons at a given pH.

These are demanding calculations, both because the energetics of charge changes upon

protonation or deprotonation must be accurately modeled, and because such simulations

must sample both molecular configurations and the large number of protonation states

that are possible in a molecule with many titrating sites. Here, the history of these ideas

and recent progress in meeting such challenges are discussed, looking at the design of

algorithms and approximations that allow one to overcome some of their intrinsic diffi-

culties.
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4.1 Introduction

Solution acidity is an important thermodynamic variable that can affect biochemical

function in a way that is often as profound as that of temperature or of the concentra-

tion of other allosteric effectors such as cofactors or phosphates. Manyin vitro experi-

ments mimic cellular compartments by regulating pH closely, commonly with buffering

agents. The experimental study of titration behavior and the response of biomolecules to

changes in pH has a long history, and there is a large amount known about the thermo-

dynamics of proton binding.61,62 Structural correlations are less well-developed, but are

becoming of increasing interest as methods for monitoring site-specfic proton binding

(particularly by NMR) become more routine.

There is also a long history of theoretical and computational approaches to study of

behavior of proteins and nucleic acids as a function of solution acidity.22,63–65 This is

known to be a difficult problem, since almost all biomolecules have multiple sites that

can bind or release protons, and these are coupled to one another in complex ways. In

recent years, however, increases in computational power and new models for estimating

the energetics of protonation/deprotonation events have led a number of investigators

to seriously attempt simulations that allow the solution pH to be specified as an exter-

nal variable in a manner that parallels the ways in which temperature or pressure are

specified. This chapter outlines their history and current prospects.

4.2 Calculations of individual pKa values in proteins

4.2.1 Thermodynamic integration and other free energy methods

In principle, the most rigorous way to estimate an individual pKa value for a protein

side-chain would involve a free energy simulation connecting the protonated and de-

protonated forms of the molecule:

pKa =− log10Ka =
∆G

kBT ln10
(4.1)
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Figure 4.1: Thermodynamic cycle for calculation of protein sidechain pKa values

In a molecular mechanics approach (where covalent bonds cannot be broken) this in

practice would involve parallel, explicit solvent simulations on the protein of interest and

on a model compound with the same functionality and with a known pKa. The computed

pKa difference can then be added to the known model compound value to estimate the

macromolecular result, as shown in figure4.1. This model effectively assumes that

energetic contributions outside the molecular mechanics model (such as the strength of

the O—H chemical bond) are the same in the protein as in the model compound.

Given the importance of the problem, the large amount of experimental data that

is available, and the relative maturity of free-energy methods in molecular simulations,

it is surprising that this approach has not received more attention. The basic ideas are

all present in some of the earliest free-energy simulations on proteins,66 which antici-

pated many future developments, but which dealt with only a small piece of a protein

and 80 water molecules. The computational cost of molecular dynamics free energy

simulations is partly to blame for this neglect. Further, the use of cut-off schemes to

truncate long-range electrostatic interactions, (which were in fairly common use up to

a few years ago), gives generally unreliable results for perturbations that involve a net

change in charge.67 The adoption of periodic conditions and Ewald summations (or

related methods) avoids this truncation. It has the disadvantage of introducing an ar-

tificial periodicity into the model,68 and there are some subtle, and still controversial,

questions arising about what boundary conditions to use in systems with a net charge.

Nevertheless, simulations of the charging free energies of ions67,69have shown that pe-

riodic simulations can converge quickly (as a function of the size of the periodic unit
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cell) to results fully consistent with models based on non-periodic approaches that treat

long-range effects using a reaction field. Since such periodic simulations are now im-

plemented in an efficient and parallel fashion in many popular simulation codes, the

time seems right to re-evaluate what behavior should be expected for pKa free enegy

simulations.

Two examples of what to expect come from early studies of succinic acid70 (which

illustrates an ambitious method for handling multiple-site problems), and more recent

work on thioredoxin and ribonuclease.71 The protein results give reasonable agreement

with experiment (for both explicit solvent and generalized Born simulations), but also

show that protein response to a change in charge can take a long time (at least nanosec-

onds) to occur. Figure4.2 shows the distribution of the energy difference between the

protonated and deprotonated forms for simulations where the charge model interpolates

between the neutral (λ = 0) and anionic (λ = 1) forms for a carboxylic acid. A system

that follows linear response theory would show a Gaussian distribution.72,73 The simu-

lations obey this model closely atλ of 0.5 and 0.89, but near neutrality (atλ = 0.11) the

energy gap fluctuations are no longer Gaussian: there are two populated subconform-

ers (correpsonding to two populated sidechain orientations for ASP-26). This causes

no difficulties for the free energy simulations, as long as all such conformational sub-

states are adequately sampled, but illustrates a limitation for linear response models. As

faster computers make free energy simulations more accessible, they may be expected

to become the norm for careful studies.

4.2.2 Implicit solvent models using the Poisson-Boltzmann approach

The molecular dynamics free energy methods described above have a rigorous basis

(within the limits of the force field being used), but require large amounts of computer

time and are not readily adapted to handling the large numbers of titrating sites found in

most proteins. The great majority of computational studies on protein titration behavior

have thus used more simplified models, most commonly by treating the bulk aqueous

environment as a continuum dielectric; the effects of bulk salt can also be treated in

a continuum fashion, leading to the Poisson-Boltzmann equation for the electrostatic
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Figure 4.2: Probability profile for the enegy gap (the energy difference between the
protonated and deprotonated forms, in kcal/mol) of ASP-26 in thioredoxin. Values of λ
interpolate between the neutral form at λ = 0 and the ionized form at λ = 1. A Gaussian
distribution would look like an inverted parabola in this semi-log plot. Data taken from
Simonson et al.71

field.25,64,74,75The application of such a continuum model to theentiresolvent region

(including water molecules in direct contact with a solute) seems like a severe approx-

imation, but actually gives quite a good account of solvation free energies and pKa

behavior in small, fairly rigid molecules.76–80 This is undoubtedly due in part to a care-

ful parameterization of the boundary between the solvent and solute, so that the average

energetic consequences of even first-shell waters are incorporated into the continuum

model. Models for this dividing surface can be made that appear to be transferable,

and not overly dependent on the detailed chemical nature of the solute. (This effective

boundary varies with temperature in a way that is not easy to model; for this reason, con-

tinuum models are much less successful in predicting quantities like solvation enthalpies

and entropies.)

The extension of these ideas to proteins has a long history,64,81but the key problem



48

remains of how to describe the response of the protein itself to a change in protonation.

The simplest model describes the protein interior itself as a continuous media with low

dielectric constant.82 This is a much more drastic physical assumption than treating

water as a continuous dielectric medium: water molecules are very small and can reori-

ent fairly easily, so that a representation as a continous dipole density seems appealing.

Proteins, on the other hand, have a heterogeneous distribution of charges and dipoles,

fluctuating about a native structure that may depend upon sidechain protonation states.

In principle, a “protein dielectric constant” could provide a representation of the aver-

aged response of its charges and dipoles to electrostatic fields, but there is no unique

way to obtain the best value, and microscopic simulations usually only increase one’s

intuitive reservations about how such a simple model could possibly capture what must

be a very complex set of interactions.74,83

There have been a variety of approaches to make more realistic models without go-

ing all the way to detailed simulations. The “protein-dipole Langevin dipole” (PDLD)

model of Warshel and co-workers treats the protein as a set of particles, each bear-

ing a charge and a polarizable dipole, and the nearby solvent as a lattice of orientable

Langevin dipoles.83–86 This procedure uses a reasonable model for flexibility in the pro-

tein and the nearby solvent (the distant, bulk solvent is still treated as a dielectric contin-

uum), yet permits the efficient calculation of protonation thermodynamics. Rather than

using polarizable dipoles for the protein, others have explicitly modeled certain types of

motions, such as sidechain rotameric changes22 or shifts among possible positions for

the protons.87–89 One can also carry out some averaging over protein configurations by

applying any of these methods to snapshots from an explicit-solvent molecular dynam-

ics simulation;85,90,91such combinations of MD simulation with periodic electrostatic

analysis lead naturally to theconstant pHapproaches discussed below.

4.3 Constant pH simulations

The discussion so far has considered the thermodynamics of protonation of a single

titrating site, where it makes sense to define a pKa value as in Eq.4.1, and the fraction
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of sites that have a proton bound can be trivially calculated once Ka is known. Proteins,

of course, have multiple titrating sites, and one must consider the relative energetics

of different protonation possibilities, and then the statistics of thermal ensembles over

the possible states. A rough “pKa” can then be identified as the pH value at which

the populations of the protonated and deprotonated forms are equal. In extreme cases,

however, this may not be well-defined or unique, and it is really the properties of the

entire titration curve that are of greatest interest.61,65,92,93 Generally, proton binding

is slightly anti-cooperative (because repulsive charge-charge interactions grow as more

protons bind), but significant excursions from “normal” behavior can occur, either as the

result of strong coupled interactions between nearby sites, or as a result of pH-dependent

changes, such as global unfolding at low or high pH.

There are two main ways in which the multiple-site problem can be addressed. One

approach makes a mean-field (or Tanford-Roxby) approximation, in which sites interact

not with the particular protonation states of other sites, but with their (pH-dependent)

average protonation; in effect, sidechains with a pKa value near the solution pH will be

represented with charge distributions that are intermediate between the protonated and

deprotonated forms.64,94 This is an appealing approximation, which forms the basis

for the “continuous” constant pH models discussed below, but can break down when

strongly coupled sites titrate in the same pH range.95

For a small number of titrating sites, it is feasible to avoid the mean-field approach,

and to compute the complete partition function over all possible protonation states. For

larger numbers of protonation states, one can use Monte Carlo (MC) sampling to es-

timate thermal averages.64,96 This idea forms the basis for the “discrete protonation”

constant pH models.

In general, protonation state sampling in all of these methods is driven by an equation

describing the free energy of a protonation state transition

∆G = ∆GMM +pHkBT ln10+∆GQM, proton solv (4.2)

where the first term describes the free energy change within the molecular mechanics

force field, the second incorporates the pH dependence through the chemical potential

of the proton bath and the third is term is a constant based in part on experimental data
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that accounts for the proton solvation and quantum mechanical bond free energies. In

general,∆GMM must be averaged over the solvent degrees of freedom—in many models

this averaging is accomplished by use of implicit solvent.

4.3.1 Continuous protonation states with explicit solvent

The earliest published work on constant pH MD was conducted by Mertz and Pet-

titt.97 They describe an explicit solvent, grand canonical MD method in which a reaction

extent parameter,ξ, interpolates continuously between two Hamiltonians describing the

protonated and deprotonated states. An equation of motion is derived forξ. The ad-

justable parameter in this model is not the pH directly, but rather the difference in chem-

ical potential between the reservoir representing the reactants (e.g. protonated solute

and water) and the reservoir representing the products (e.g. deprotonated solute and hy-

dronium). The pH of a simulation is calculated after the fact based on the average value

of ξ and the knownKa for the system. Unique to this model is the explicit represen-

tation of free protons as hydronium ions (H3O+). This has the benefit of keeping the

total charge constant between the two endpoint Hamiltonians. On the other hand, since

each titratable group is coupled to a specific hydronium ion, changing the protonation

state (changing the value ofξ) involves transferring charge from the titratable group to

wherever the hydronium ion may be. This may not be a problem in simple systems,

such as the application to acetic acid presented by Mertz and Pettitt, but in larger sys-

tems the non-physical dependence between protonation extent of a titratable group and

electrostatic environment of the coupled hydronium ion may be expected to present a

significant barrier to convergence.

A more recent development is the “acidostat” method of Börjesson and Hünen-

berger.98 It involves continuous protonation states that are relaxed toward an equilibrium

fractional protonation by weak coupling to a proton bath. This weak coupling is analo-

gous to methods used for constant temperature and constant pressure MD. The method

employs explicit solvation for MD as well as determining the equilibrium fractional pro-

tonation. Baptista has pointed out flaws in the theoretical basis of the acidostat method,

and suggested that it involves an implicit mean field approximation.99 Given this, he



51

suggests that the method is best evaluated empirically. Titration of a series of small

amines using the acidostat method yields substantially correct fractional protonations

at three different pH values, corresponding to predicted pKa values within about 0.3 of

experimental values. Fractional protonation is systematically higher than appropriate at

low pH and lower than appropriate at high pH, indicating that titration curves produced

under this method do not have the correct Henderson Hasselbalch shape. The authors

attribute this to solvation differences between the model compounds and the titrated

compounds, but this does not explain why the effect is still seen when the titrated com-

pound is the same as the model compound. When the weak coupling time constant is set

to be sufficiently long to prevent oscillation of fractional protonations (10 ps), it takes

approximately 1 ns for methylamine to equilibrate to 10/11 protonation when starting

from 1/11 protonation. Such slow equilibration may limit the ability of titratable groups

in macromolecules to respond to changes in electrostatic environment, slowing conver-

gence. In a second paper, Börjesson and Hünenberger explore titration of coupled sites

under the acidostat method.100 Titration of 1,4-diaminobutane from pH 8 to 12 produces

a titration curve indicative of site-site correlation rather than one that would be expected

from a mean field based method. These results were obtained by starting the simula-

tions with the two titrating sites equilibrated to different fractional protonations based

on apparent pKa values from experiment. The appropriateness of equilibrating the two

symmetry-related sites to different fractional protonations is questionable, given that

their average fractional protonations should be the same. It is unclear whether or not re-

sults suggesting site-site correlations would have been obtained if both sites were started

with the same fractional protonation. The method is also applied to polylysine, where

helicity at a range of pH values shows good correlation with experimental observations.

4.3.2 Continuous protonation states with implicit solvent

A potential of mean force (PMF) based method, titled “Implicit Titration,” has been

presented by Baptista and co-workers.101 In implicit titration, MD is conducted using

a force field based on a PMF averaged over the protonation state distribution appropri-

ate for the selected pH. This averaging effectively produces a continuous representation
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of the protonation state at each titratable site. The distribution of protonation states is

calculated with a continuum electrostatics (CE) method, and since the distribution is de-

pendent on the configuration of the system, it is recomputed at intervals throughout the

MD. The implementation of this method that is applied to bovine pancreatic trypsin in-

hibitor (BPTI) employs rather crude CE and MD electrostatics (Tanford-Kirkwood and

distance-dependent dielectric), but these could easily be substituted with more rigorous

methods, including explicit solvent MD. The implementation that is presented also uses

a mean field approximation. Baptista et al. discuss how this approximation could be

eliminated, but under the proposed method, the partial charge used for calculating the

Coulombic interaction of an atom in a titratable group may depend on the atom with

which it is interacting. The implications for dynamics and analysis of having multiple

partial charges simultaneously assigned to the same atom are unclear and not explored

in the paper. Further difficulties with the method involve the use of CE to compute the

distribution of protonation states used for the PMF. It is computationally infeasible to

run the CE calculations at each MD step, so most MD steps occur under a PMF that

is appropriate for a recent configuration in the trajectory, but not exactly correct for the

current one. Also, since CE is used to calculate the distribution of protonation states,

this distribution is determined only by the configuration of the solute, not the solvent,

which is not entirely correct if the MD is conducted in explicit solvent.

A recent work by Leeet al.102 describes a novel approach for avoiding mean field

approximations in a continuous protonation state model, drawing on the ideas ofλ-

dynamics. In this constant pH model, a potential is constructed along aλ coordinate in-

terpolating between the protonated and deprotonated states. The potential for each titrat-

able group is based on a model compound’s experimentally known pKa and previously

calculated PMF along theλ coordinate. As in the Mertz and Pettitt model,97 equations of

motion are used to propagate a fictitious particle along theλ coordinate. Mean field ap-

proximations are avoided by introducing an energetic barrier centered atλ = 1/2, which

forces protonation states away from intermediate, mixed protonation states and toward

values representing full protonation or deprotonation. Timesteps where titratable groups

have intermediate protonation states are excluded from predicted pKa calculations. Bar-

rier height is a tunable parameter, trading off between protonation state transition rate
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and fraction of simulation time spent in intermediate protonation states. Titration of the

aspartate model compound produces a titration curve that is well fit by the Henderson

Hasselbalch equation, but the curve is shifted 0.3 pKa units above the model compound

pKa of 4.0. The authors attribute this error to poor convergence. Given that the points on

the titration curve were taken from 10 ns simulations, this suggests that even very sim-

ple molecules may converge quite slowly under this model. Another limitation of the

current implementation is that since protonation coordinates are interpolated between

the extreme protonation states, accurate representation of titratable groups having more

than two protonation states requires propagating the protonation state fictitious particle

in higher dimensional spaces. An extension of the original method shows significant im-

provement with three-state protonation models of carboxylic acids and histidines imple-

mented with a two dimensional protonation coordinate space103 However, continuation

of this approach to three or more dimensions seems to involve prohibitive difficulties

with sampling of the protonation space and calculation of the model potential function.

Details of the protonation state fictitious particle trajectories have not been published,

but it is likely that there is significant oscillation of protonation states within the energy

wells representing protonation and deprotonation. Convergence problems are apparent

in application to proteins, where 1 ns titrations starting from different initial velocities

produced predicted pKa values differing by more than 1 pKa unit for many residues.

Despite the convergence issues, the model produces predicted pKa values that are in

good agreement with experimental values. The average absolute error is 1.6 for hen egg

white lysozyme, 1.2 for turkey ovomucoid, 0.9 for bovine pancreatic trypsin inhibitor

(BPTI). The published implementation of this method employs generalized Born (GB)

solvent, but in principle the method could be used with explicit solvent. Explicit solvent

would be expected to further slow convergence, though, so use of the current model with

explicit solvent is probably not computationally feasible.

4.3.3 Discrete protonation states with explicit solvent

The method put forth by Bürgiet al. is notable for being the only published approach

that uses MC sampling of discrete protonation states without using CE to determine tran-
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sition energies.104 Instead, transition energies are calculated using thermodynamic inte-

gration (TI) in explicit solvent. Use of a single, consistent explicit-solvent electrostatics

model involves fewer approximations than CE based models and might be expected to

yield superior results. In practice, restrictions imposed by the computational demands

of explicit solvation limit the effectiveness of the model. To increase the number of

MC trials that can be performed, TI occurs over short periods of approximately 20 ps

of dynamics. The meaning of the free energy difference calculated this way is unclear:

the period of TI is neither short enough that it represents the protonation state transition

free energy of any single conformation, nor long enough that it represents the transition

free energy sampled over the entire ensemble of conformations. Since so much com-

puter time is expended on the TI, the trajectory is assembled by concatenating the TI

segments, using the “forward” direction (current protonation state to proposed state) for

MC steps that are accepted and the “reverse” direction for those that are rejected. This

has the undesirable effect of perturbing the dynamics of a titratable group every time it is

involved in an MC trial, even if the step is rejected. Bürgi et al tested the method by ap-

plying it to HEWL and comparing predicted pKa values derived from their simulations

to experimental values. Results were in rough qualitative agreement with experiment

(i.e. pKa shifts with respect to model compounds were generally in the right direction)

but quantitative accuracy and precision were poor for most residues. Even after 3 ns of

simulation, predicted pKa values seem to be far from convergence, most likely because

the computational expense of using TI in MC trials limits the number of trials that can

be performed.

4.3.4 Discrete protonation states with explicit and implicit solvent

Some of the shortcomings of the implicit titration model were addressed by Baptista

and co-workers in a second model, “stochastic titration.”105 In this method, discrete

protonation states are represented by alternate sets of partial charges. Short (0.2 - 5.0

ps) segments of MD are conducted in explicit solvent. Between MD segments, protona-

tion states are altered using Monte Carlo sampling based on protonation state energies

for the current conformation taken from Poisson Boltzmann (PB) calculations. After a
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protonation state change, the solvent is equilibrated by running a few picoseconds of

MD with the solute conformation fixed. One drawback to this method is that there is no

single, consistent Hamiltonian for the whole system, due to the use of explicit solvent

MD and PB electrostatics for protonation state sampling. The method was successfully

applied to the titration of succinic acid; but it is difficult to predict performance in titra-

tion of a protein based on results from such a simple system. As the authors point out,

optimum values of parameters may be system dependent. In particular, the finding that

results are insensitive to the length of the MD segment may not be true for proteins,

which have far more complicated energy landscapes than succinic acid.

4.3.5 Discrete protonation states with implicit solvent

A method very similar to stochastic titration has been explored in a series of papers

by Antosiewicz and co-workers.106–109They also use MC based on PB energies to sam-

ple over discrete protonation states, with MC steps separated by short MD segments. In

an initial application to ovomucoid third domain,106 they used Langevin dynamics with

a uniform dielectric constant of 15 for MD and mean-field protonation state probabilities

at each titratable site for MC sampling. This first implementation uses a complicated se-

ries of heating, cooling, and minimization phases during MD, so it is more in the spirit

of using MD as a sampling method to produce an ensemble of conformations than for

producing continuous trajectories. Titration curves for a small peptide closely match ex-

perimental results, and RMS error for pKa predictions in ovomucoid third domain is 0.8-

1.1 (depending on dielectric parameters). A revised implementation using the analytical

continuum electrostatics (ACE) method of CHARMM for dynamics and MC sampling

that eliminates the mean-field approximation has been applied to a heptapeptide derived

from ovomucoid third domain107 and succinic acid.108 The temperature changes and

minimization of the earlier implementation are eliminated, but MD is restarted with ran-

domized velocities after each protonation state change. This implementation achieves

reasonable agreement with experimental data for the peptide and an acylated derivative

and close agreement with both experimental data and the earlier results of Baptistaet

al.105 in application to succinic acid. Like Baptistaet al.’s stochastic titration, the An-
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tosiewicz methods do not have a consistent whole-system Hamiltonian, since different

implicit solvent models are used for dynamics and protonation. Due to the computa-

tional expense of PB calculations, MC steps are relatively infrequent (every 1 to 5 ps) in

these PB based methods, but still much more frequent than in Bürgiet al.’s104 TI based

constant pH.

Greater efficiency can be obtained by using the generalized Born (GB) model27 for

both the dynamics and the protonation state sampling.110 This approach, described in

detail in the following chapter, permits much more frequent Monte Carlo protonation

steps; trials are made every 10 fs, so that on average, any given sidechain would be

tested for a protonation change about ten times per picosecond. These frequent changes

of the protonation state do not appear to adversely affect the stability of the simula-

tion. Unlike the PB based methods, which sample over all relevant protonation states

at each MC step, the current implementation changes the state of at most one titratable

group on each MC step. This limitation may slow convergence for tightly coupled titrat-

able groups. Titration of the aspartate model compound by a series of 1 ns simulations

produces a very close fit to the expected Henderson Hasselbalch curve. The method

was applied to lysozyme, where 1 ns trajectories at a range of pH values are less well

converged but nevertheless yield pKa values with only 0.82 RMS error with respect to

experimental data. Side-chain titrations predicted for lysozyme after 1 ns of simula-

tion are almost independent of which crystal structure was used as a starting point, as

one would expect for a fully dynamical method. This is in contrast to models that use

a single static structure, where results can vary widely depending upon which crystal

structure is selected.111

Although constant pH MD can be used to predict pKavalues, and these predictions

are the most straightforward means of method validation, a major goal of constant pH

is improved realism for biomolecular simulations. Many interesting biomolecular pro-

cesses are pH-dependent phenomena, and the relevant protonation states are not known

in advance. Even in systems where the pH dependence is less obvious, it has been shown

that ensemble of conformations sampled in fixed protonation state MD is biased towards

the selected protonation state.112 In contrast, constant pH MD allows for sampling over

the biologically more meaningful ensemble of conformations at fixed pH.
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This chapter contains material that appeared inBiomolecular simulations at constant

pH. John Mongan and David A. Case. Current Opinion in Structural Biology,18(2),

157-63, April 2005. I was the primary author of this work.



Chapter 5

Constant pH molecular dynamics in

generalized Born implicit solvent

ABSTRACT

A new method is proposed for constant pH molecular dynamics (MD), employing gen-

eralized Born (GB) electrostatics. Protonation states are modeled with different charge

sets, and titrating residues sample a Boltzmann distribution of protonation states as

the simulation progresses, using Monte Carlo sampling based on GB derived energies.

The method is applied to four different crystal structures of hen egg-white lysozyme

(HEWL). pKa predictions derived from the simulations have root mean square (RMS)

error of 0.82 relative to experimental values. Similarity of results between the four crys-

tal structures shows the method to be independent of starting crystal structure; this is in

contrast to most electrostatics-only models. A strong correlation between conformation

and protonation state is noted and quantitatively analyzed, emphasizing the importance

of sampling protonation states in conjunction with dynamics.

Reproduced fromConstant pH Molecular Dynamics in Generalized Born Implicit Solvent. John Mongan,
David A. Case and J. Andrew McCammon. Journal of Computational Chemistry,25(16), 2038-48, De-
cember 2004. Copyrightc© 2004 John Wiley & Sons, Inc. Reproduced with permission of John Wiley &
Sons, Inc.
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5.1 Introduction

Protein structure and function are strongly dependent on solvent pH. This depen-

dence is due to changes in the predominant protonation state of titratable groups (chiefly

side chains of certain amino acids and termini of peptide chains) as solvent pH changes.

The protonation state of a titratable group is determined by the solvent pH, and the rela-

tive acidity of the group, measured by its pKa. The instantaneous pKa of a given group is

influenced by its electrostatic environment, which is determined by the protein confor-

mation and protonation state of other titratable groups. Protonation state, in turn, has a

strong effect on protein conformation, due principally to the charge differences between

different protonation states.

Due to the tight coupling between protein conformation and protonation state, the

importance of solvent pH in molecular dynamics (MD) simulations of proteins has long

been recognized. Traditionally, treatment of pH in MD has been limited to setting a

constant protonation state for each titratable group. This approach has many drawbacks.

First, assigning protonation states requires knowledge of pKa values for the protein’s

titratable groups. Second, if any of these pKa values are near the solvent pH there may

be no single protonation state that adequately represents the ensemble of protonation

states appropriate at that pH. Finally, since the assumed protonation states are constant,

this approach decouples the dynamic dependence of pKa and protonation state on con-

formation.

The solution pH is an important extrinsic thermodynamic variable, analogous to

temperature or pressure, that is readily controlled experimentally and has considerable

spatial and temporal variation in living organisms. It is natural to seek simulation meth-

ods that allow the user to directly specify the pH as an input variable. In the past decade,

a number of models have been proposed for performing MD at constant pH with dy-

namic protonation states. These methods have been reviewed in detail in the preceding

chapter.

This chapter introduces a model using generalized Born (GB) implicit solvation35

that combines the best aspects of discrete protonation state constant pH models. The

same GB electrostatics are used for calculating protonation state transition energies and
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dynamics, so the potentials are consistent. Furthermore, calculation of transition en-

ergies using GB is fast and there is no need for solvent equilibration, so sampling is

fast. This model is tested using simulations of hen egg-white lysozyme, examining con-

vergence, stability, agreement with experimental pKa values and correlation between

conformation and protonation. Close agreement between predicted and experimental

pKa values suggest that this method accurately samples protonation states, providing a

more physically realistic basis for studying dynamics of systems with titratable groups.

5.2 Theory and Methods

5.2.1 Algorithm

The proposed method employs GB solvated MD, with periodic Monte Carlo sam-

pling of protonation states. Between Monte Carlo steps, the system evolves according

to standard generalized Born solvated MD.51,113This sampling scheme and the justifi-

cation for it are essentially the same as those described by Baptistaet al.,105 with the

exception that there is no solvent equilibration step since the MD is conducted in implicit

solvent.

At each Monte Carlo step, a titratable site and a new protonation state for that site

are randomly chosen. A transition free energy for the protonation or deprotonation is

calculated according to

∆G = kBT
(
pH−pKa,ref

)
ln10+∆Gelec−∆Gelec,ref (5.1)

wherekB is the Boltzmann constant, T is temperature, pH is the specified solvent pH,

pKa,ref is the pKa of the appropriate reference compound (see section5.2.4and table

5.1), ∆Gelec is the electrostatic component of the free energy calculated for the titrat-

able group in the protein, and∆Gelec,ref is the electrostatic component of the transition

free energy for the reference compound, a free dipeptide amino acid described in sec-

tion 5.2.4. This equation is based on a division of the total transition free energy into

electrostatic and non-electrostatic portions. The non-electrostatic transition free energy

comprises all free energy contributions not accounted for in the GB electrostatics, in-
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cluding the quantum mechanical bond free energy and proton solvation free energy. It

is difficult to calculate the non-electrostatic transition free energy, but it can be assumed

to have approximately the same value independent of electrostatic environment. Under

this assumption, a reference compound with known pKa can be introduced to cancel

the non-electrostatic portion of the transition free energy, resulting in equation5.1. The

electrostatic portion of the transition free energy (∆Gelec) is calculated by taking the

difference between the potential calculated with the charges for the current protonation

state and the potential calculated with the charges for the proposed state; since there is no

need for solvent equilibration, this is done in a single step. Equation5.1can then be used

to calculate the total transition free energy, as all other terms are known. This method of

calculating transition free energies is similar to that employed by Bürgiet al.,104 except

that in this model only charges change between different protonation states, while they

change van der Waals radii as well. Changing van der Waals radii may be added in a

further refinement of this model, but good results are seen with changing only charges.

The total transition free energy,∆G, is used as the basis for applying the Metropolis

criterion to determine whether the transition will be accepted. If the transition is ac-

cepted, MD is continued with the titratable group in the new protonation state; if not,

MD continues with no change to the protonation state.

Computationally, the time to evaluate a Monte Carlo step is less than that required

for an MD step, so constant pH MD using this approach is only slightly slower than

traditional constant protonation state GB MD.

Under this model, the total charge on the molecule is generally non-zero and changes

when a titratable group changes protonation state. Since GB solvation does not employ

periodic boundary conditions and the free energy associated with introducing and sol-

vating a charge are included in the non-electrostatic portion of the transition free energy

accounted for above, the changing total charge does not present a problem.

5.2.2 Molecular dynamics

MD was performed using a pre-release version of AMBER 8,113 modified to im-

plement the algorithm described above (these modifications have been included in the
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released version of AMBER 8). The ff99 force field114 was employed. The first GB

model developed by Onufriev, Bashford and Case47,51,52(igb=2) was used for solvation.

Salt concentration (Debye-Hückel based) was set at 0.1 M. The cutoff for non-bonded

interactions and computation of effective Born radii was 30 Å. Solute temperature was

weakly coupled to a Berendsen temperature bath at 300 K with a time constant of 2 ps.

Lengths of bonds including hydrogen were constrained using SHAKE. The time step

was 2 fs.

5.2.3 Protonation state models

Titratable group models were developed for the side chains of aspartate, glutamate,

histidine, lysine and tyrosine. Protonation states for a given group differ only in par-

tial charges. When a group’s protonation state changes, charges on all of its sidechain

atoms are changed to reflect the new state. Titratable hydrogens have zero charge in the

deprotonated state. The titratable hydrogens in aspartate, glutamate and tyrosine have

zero van der Waals radius in the AMBER force field, so when their charge is zero they

have no non-bonded interactions with the system, although they retain defined positions.

Van der Waals radii for titratable hydrogens on lysine and histidine were left unchanged

at their ff99 value of 0.6 Å. This does not seem to substantially affect results, since

pKa predictions for amine (LYS) and carboxylic acid (ASP and GLU) residues were of

comparable quality (see section5.3.3).

Partial charges were taken from the protonated and deprotonated residue defini-

tions in AMBER 99 force field. This force field does not define a deprotonated tyro-

sine; charges for the deprotonated tyrosine were calculated using Antechamber115 with

the RESP charge method based on HF/6-31G* calculations conducted with Gaussian

98.116 Although the largest charge changes in these charge sets are concentrated near

the titratable proton, every atom has some charge difference between protonated and de-

protonated forms. If peptide backbone charges are changed when the protonation state

changes, it is not possible to use a single reference free energy. Due to the 1-4 elec-

trostatic interactions defined in the AMBER force field, backbone atoms have specific

electrostatic interactions with side chain atoms of neighboring residues. If backbone
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charges are allowed to change, then the free energy difference between protonated and

deprotonated forms becomes sequence dependent. To avoid this problem, backbone

charges were fixed at the values defined for the protonated state across all protonation

states. A charge correction was added to the beta carbon of the deprotonated state such

that the total charge difference between protonated and deprotonated states was 1.

In this charge-change only model of protonation states, a deprotonated group can

gain a proton only at the location of a zero charge “ghost” proton. A titratable group may

unrealistically favor the deprotonated state if its ghost proton rotates into an unfavorable

position for protonation. This problem is especially severe for carboxylic acids, where

the syn location for the proton is much more favorable than theanti. When a ghost

proton moves into theanti position it is unlikely to protonate, and unlikely to move

until it protonates, since no forces act on a ghost proton. This problem is addressed

by building a carboxylic acid model with two protons on the oxygen, kept 180 degrees

apart by an improper torsion. Since rotation of the carboxylic group to exchange the

oxygen atoms is also slow, two protons are defined on each oxygen of the carboxylic

groups. The protonation state charge sets are defined such that no more than one of the

four protons has a non-zero charge at any time.

5.2.4 Reference compounds

Reference free energy differences for the titratable groups were calculated for sin-

gle amino acids as dipeptide (blocked) molecules, having the sequence acetyl—amino

acid—methyl amine. A titration of the dipeptide reference compound was performed

with solution pH set topKa,ref. (Reference pKa values are listed in table5.1.) ∆Gelec,ref

was adjusted based on the results of this titration to give equal populations in the proto-

nated and deprotonated states for titrations of the reference compound having pH equal

to pKa. For the simple case of a titratable group with only two protonation states,

∆Gelec,ref should be equal to the free energy difference calculated between the states

by thermodynamic integration (TI). Calculations of∆Gelec,ref were checked by perform-

ing TI between the protonated and deprotonated states using the parameters described

in section 2.2 to calculate∆GTI according to
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Table 5.1: Reference pKa values for titratable side chains. Reference pKa values for
aspartate, glutamate, lysine and tyrosine were taken from Bashford et al .117 The refer-
ence pKa values for histidine were taken from Kyte.118

Residue pKa,ref

Aspartate 4.0
Glutamate 4.4
Histidine-δ 6.5
Histidine-ε 7.1

Lysine 10.4
Tyrosine 9.6

∆GTI =
Z 1

0

〈
∂V
∂λ

〉

λ
dλ (5.2)

whereV is the potential andλ is the coupling parameter between the charges for the

protonated and deprotonated states. Eleven equally spaced values were used forλ. At

each value ofλ, the reference compound was equilibrated for 40 ps and sampled for 1.6

ns. The free energy difference was calculated in Mathematica119 by numerical integra-

tion of a fourth degree polynomial fit to the∂V
∂λ values. In all simple cases∆GTI matched

∆Gelec,ref to within 0.05 kcal/mol. This consistency is of course expected, and is really

just a check on the correctness of the implementation of the Monte Carlo algorithm. It

has recently been demonstrated that∆GTI values calculated using the GB model adopted

here are similar to those computed using explicit solvent models.71

Calculations for the carboxylic residues were complicated by having four protonated

states defined (synandanti on each of the oxygens). For these residues,∆GTI (which

was calculated between the deprotonated state and one of thesynprotonated states) dif-

fered from∆Gelec,ref by approximatelykBT ln2 due to the statistical effects of multiple

protonated states; (only the twosynsites see appreciable populations.) In addition to

balancing the relative populations of the protonated and deprotonated states, it is im-

portant that the relative proton affinities of thesynandanti states are correct. Based on

relative populations of thesynandanti states in test titrations of the model compound,

the free energy of thesynstate was calculated to be 1.6-1.9 kcal/mol lower than theanti

state. This is in close agreement with quantum mechanical calculations and experimen-
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tal estimates,120 so it was assumed that the force field accurately accounts for the free

energy difference between thesynandanti states and no adjustment was made to the

relative energies of these states.

5.2.5 Test system molecular models

Hen egg white lysozyme (HEWL) was selected as the test system because it is well

studied104,111,121and has a number of residues with pKa values that differ markedly

from their reference values. Structures 1AKI, 1LSA, 3LZT and 4LYT from the PDB

were selected as starting crystal structures. The structures were chosen to facilitate com-

parison with earlier work104 and provide a diversity of crystal properties. The structures

are from orthorhombic, tetragonal, triclinic and monoclinic space groups, respectively.

3LZT is at high resolution (0.92 Å), 4LYT is at low resolution (2.5 Å) and 1LSA has

crystal contacts that have been problematic in earlier studies.

Each structure was prepared using WHAT IF122 to optimize the hydrogen bond net-

work123 (by flipping side chains of HIS, ASN and GLN) and strip crystal waters. Hydro-

gens were added to the structures using the LEaP module of AMBER. They were then

minimized with 100 steps of steepest descent followed by 100 steps of conjugate gra-

dient using the sander module of AMBER and the MD parameters described in section

5.2.2.

Simulations starting from the 1AKI structure were performed at 0.5 pH increments

from pH 2.0 to 4.0 with aspartates and glutamates titrating, from pH 4.5 to 6.5 with

aspartates, glutamates and histidine titrating, and from pH 9.0 to 12.0 with tyrosines

and lysines titrating. Simulations starting from 1LSA, 3LZT and 4LYT were performed

at 1.0 pH increments from pH 2.0 to 7.0 with all aspartates, glutamates and histidines

titrating and from 9.0 to 12.0 with all tyrosines and lysines titrating. There were 10 fs

between Monte Carlo steps. Non-titrating residues were fixed at their most probable

protonation states (protonated for basic residues and deprotonated for acidic residues).

Protonation state models for terminal residues have not yet been created, so terminal

residues are fixed at their most likely neutral pH protonation state in all simulations: pro-

tonated for the N-terminus and LYS-1 side chain and deprotonated for the C-terminus.
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This is approximation is expected to have little effect on the titrating sidechains. The

C-terminal residue is approximately 10 Å from the nearest acid-pH titrating group and

the N-terminal residue is nearly 15 Å from the nearest basic-pH titrating group, so di-

rect interactions are small. There may also be an indirect interaction in the high pH

simulations due to perturbation of the conformations sampled because the N-terminus

(experimental pKa of 7.8–8.0121) is held in the protonated state. The C-terminus is suf-

ficiently acidic (experimental pKa of 2.63–2.87121) that the indirect interaction should

be negligible.

5.2.6 pKa prediction calculations

Constant pH simulations can be analyzed in a fashion entirely analogous to that

used for experiments that give protonation information for individual side chains as

a function of pH. As long as the protonation fraction is a monotonic function of pH,

the pKa of a side chain can be defined as the pH value for which the protonated and

deprotonated populations are equal. The special case of an ideal titratable group having

no interactions with other titratable groups has a sigmoidal titration curve, and behavior

characterized by the Henderson-Hasselbalch (HH) equation

pKa = pH− log10

(
[A−]
[HA]

)
(5.3)

Following the reasoning of Baptistaet al.,105 the system is assumed to be ergodic, so

the ratio of time that a titratable group spends in the protonated and deprotonated states

can be used as a ratio of concentrations. This can be combined with the pH according

to equation5.3to yield a prediction of the pKa. When a titratable group has sufficiently

weak interactions with other titratable groups, its behavior is well described by the HH

equation, and pKa values calculated from simulations at different pH values will differ

only by random error. As interactions increase, the HH equation will not adequately

describe the titration curve.

Titration data are often represented in a Hill plot, wherelog10

(
[A−]
[HA]

)
is plotted ver-

sus pH. A titration curve for a titratable group governed by the HH equation has the

form of a straight line with a Hill coefficient (slope) of 1. Titrating groups with non-HH
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behavior will have Hill coefficients that differ from 1. The Hill coefficient can be deter-

mined by linear regression of the titration data points on a Hill plot. Since the coefficient

calculated by regression may differ from 1 due to random error or non-HH titration be-

havior, at-test should be used to decide whether the Hill coefficient suggests statistically

significant non-HH behavior. In such cases, further simulations can be conducted to plot

a full titration curve.

5.3 Results and Discussion

A method for constant pH MD simulations should be computationally efficient and

capable of reproducing accurate titration curves. Furthermore, when applied to macro-

molecules, an ideal method would yield pKa predictions in close agreement with exper-

imental values, converge rapidly to these predictions and maintain the stability of the

trajectory. As previously mentioned, the proposed method is only slightly more com-

putationally expensive than traditional GB MD. Here, the proposed method is evaluated

based on how well it meets the remainder of these criteria, and non-HH behavior and

conformation-protonation state correlations suggested by the results are investigated.

5.3.1 Convergence

Small systems, such as the reference compounds, converge to the relative protona-

tion state populations predicted by the HH equation within a few nanoseconds of simu-

lated time. For example, a titration curve for five 1 ns simulations of the aspartate model

compound, shown in figure5.1, closely matches the predicted titration curve.

Convergence in larger systems, such as HEWL, is much more difficult to achieve.

As seen in figure5.2, the predicted pKa value for most residues stabilizes within a

few hundred picoseconds. This stabilization does not represent convergence; the same

residue may stabilize at a significantly different pKa value if a different random seed

is used in an otherwise identical simulation. Since the random error due to incomplete

convergence may produce larger effects than those caused by a small change in pH,

titration curves for titrating groups in proteins can be noisy. This is demonstrated by
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Figure 5.1: Deprotonated fraction for five 1 ns simulations with different initial velocities
of aspartate model compound at pH values between 2 and 6. Data points represent
average deprotonation over the five simulations, error bars illustrate standard deviations
and the solid line is a best-fit curve.

comparing the protein titration curve seen in figure5.3 to the model compound data

of figure 5.1, noting that the protein data are for GLU-7, one of the better converged

residues in HEWL. Despite the precision problems posed by these random errors, pKa

predictions are generally fairly accurate, and the impact of noise can be reduced by

combining results from multiple simulations, as seen in section5.3.3.

The major limiting factor on convergence appears to be conformational sampling.

As shown in section5.3.5, the instantaneous pKa is strongly dependent on conforma-

tion, so if two simulations sample conformation space differently, it should be expected

that they would have differing protonation state populations. Sufficiently complete con-

formational sampling is achievable for small systems, but is currently computationally

infeasible for systems the size of HEWL.

Accepting that complete conformational sampling is out of reach for HEWL, titra-

tions of 1 ns were performed to allow sufficient time for predicted pKa stabilization, if

not convergence. For the simulation shown in figure5.2, each of the titrating residues

was evaluated for a protonation state transition an average of 11,000 times, of which

between 160 and 840 transitions were accepted.
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Figure 5.2: Time evolution of predicted pKa for acidic residues in simulation of HEWL at
pH 3.0, starting from structure 1AKI. Each point represents the predicted pKa calculated
from all protonation data collected up to that time in the simulation. Residues ASP-
52 and GLU-35 do not converge due to H-bonding issues and large offset (see text),
respectively, and are not shown on this plot.
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Figure 5.3: Deprotonated fraction for GLU-7 at pH values between 2.0 and 6.0. Each
data point represents the average deprotonation of four 1 ns simulations starting from
one of four crystal strucutres (1AKI, 1LSA, 3LZT and 4LYT). Solid lines are best-fit
curves; the dashed line shows the expected titration curve based on experiment.
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5.3.2 Simulation stability

Since this method involves instantaneous changes in protonation state, which result

in non-physical discontinuities in energy and force, system stability across protonation

state changes was examined. When the protonation state changes, there is a discontin-

uous change in total energy reported by AMBER equal to∆Gelec. Most of this energy

change represents transfer of energy between the energy modes governed by the force

field and those outside the scope of the force field (e.g. quantum mechanical energy of

the bond and solvation free energy of the proton). The remainder of the change rep-

resents Boltzmann sampling of the energy levels of different protonation states. Even

when temperature regulation is removed, there is no trend to the changes in total energy.

Average kinetic energy does follow the fluctuations in total energy, so temperature fluc-

tuations are increased somewhat by this method. However, even in the worst case of a

very small system (the reference compound) with no temperature regulation, root mean

square temperature fluctuations were only about twice as high for a simulation where

protonation state changed rapidly as they were for a simulation where protonation state

was fixed. In the more common case of a larger system with temperature regulation

and slower protonation state changes, temperature fluctuations are fairly small—on the

order of 5 K for the HEWL titrations described here.

Conformational stability, as well as energetic stability, is of interest in biomolecule

simulations. Experimentally, HEWL is a stable protein across a wide range of solvent

pH values, and this should be reflected in the trajectories of the titrations. Figure5.4

compares alpha carbon root mean square deviation (RMSD) versus crystal structure for

titrations starting from 1AKI at a range of pH values to a non-titrating trajectory. Most

importantly, this plot shows that after an initial relaxation period, RMSD stabilizes for

each trajectory. One simulation was continued to 3 ns to confirm stability: there were

no significant excursions beyond an RMSD of 2.5 Å. In general, RMSD for titrating tra-

jectories increased more rapidly and stabilized at higher values than for the non-titrating

trajectory. Traditional MD trajectories are known to be biased toward conformations

that are compatible with their fixed protonation state;112 it seems reasonable that allow-

ing protonation states to change would reduce this bias and allow greater conformational
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Figure 5.4: α-carbon RMSD from crystal coordinates for residues 4-125 of 1AKI struc-
ture of HEWL at five different solvent pH values. Plots are representative of behavior of
other simulations. RMSD for constant protonation state (no titration) MD under similar
conditions is shown for comparison.

sampling, producing a higher RMSD. One might also expect that simulations conducted

at pH values close to the pH of the crystal structure would tend to sample conformations

closer to the crystal structure. Indeed, figure5.4shows that the pH 4.0 trajectory stabi-

lizes at the lowest RMSD relative to the 1AKI crystal structure, which was solved at pH

4.5.

5.3.3 pKa predictions

Although the primary aim of this work is to improve the physical realism of dy-

namics, it is difficult to validate the quality of simulated dynamics as a function of pH,

since HEWL appears to have no major structural changes in the pH range considered

here. HEWL was selected because it has been well studied, so it provides a good test

system for determining whether protonation states are accurately sampled, and accurate

sampling is a prerequisite for simulating pH-dependent conformational changes. There-

fore, pKa values, which can be calculated from the simulations using equation5.3, are

compared to experimentally measured values as the primary quality measure used to

validate the proposed method.

In comparing predicted pKa values to experimental measurements, it is useful to
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have a method for combining predictions from simulations conducted at different sol-

vent pH values into a single composite pKa prediction, taking account of their relative

accuracies. This is commonly achieved by plotting the data at each pH on a Hill plot

and performing linear regression. In regression, each data point is weighted according

to the inverse of its variance (more properly, the variance of the distribution from which

the data point is drawn). It is expected that the variance of a data point will be depen-

dent on the absolute difference between the pH at which it was taken and the predicted

pKa. This follows from equation5.3, which becomes increasingly sensitive to small

changes in the number of time steps spent in each protonation state as the quotient of

these numbers becomes very large or very small. It is computationally infeasible to run

sufficient simulations to determine a separate variance model for each titratable group,

so data for all titratable groups were pooled to determine a global variance model for

the method. Figure5.5 shows a scatter plot of absolute difference between the pH and

predicted pKa (offset) versus pKa prediction error. The running (windowed) variance

line on this plot shows that variance is roughly uniform when the offset is less than 2.0

pH units, and increases rapidly outside of this range. Since there are insufficient data

to empirically determine a variance at each offset, a simplified variance model is drawn

from these data: uniform variance for offsets less than 2.0 pH units and very high (ef-

fectively infinite) variance for larger offsets. This leads to uniform weights for the small

offset data points and zero weight for those with large offset. Since the non-HH behav-

ior in this system is small and in general does not affect the predicted pKa, the number

of free parameters in the fit is reduced by restricting the slope of the fitted line to 1. The

composite pKa calculated by the fitting process described here can be determined by the

mathematically equivalent operation of averaging all pKa predictions with an offset less

than 2.0 pH units.

Tables5.2 and5.3 show pKa values predicted from 1 ns simulations starting from

the 1AKI structure of HEWL. In general, the composite predictions show close corre-

spondence to experimental data, and variation between simulations at different solvent

pH values is small. A few problematic cases are worthy of mention. ASP-52 has a

hydrogen bond to ASN-46 in all four crystal structures. While this bond is maintained,

ASP-52 is prevented from protonating. In most simulations, this hydrogen bond is sta-
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Figure 5.5: Scatter plot of difference between predicted pKa and solvent pH (offset)
versus difference between predicted and experimental pKa (prediction error). Points
represent all predictions with offsets between -5 and 5 made. Variance is calculated
with a window size of 40 data points.

ble throughout all or nearly all of the simulation, leading to a very low predicted pKa.

The simulations yielding the best results for ASP-52 (pH 2.0, 2.5 and 3.5) were those

in which ASP-52 and ASN-46 were dissociated for much of the simulation. A similar

effect of hydrogen bonding leading to erroneously low pKa predictions was seen with

GLU-35, but to a lesser extent. Results for the three tyrosine residues were markedly

poorer than results for the other residue types. This may be due to slower conformational

sampling due to steric hindrance of the large aromatic ring, and ignoring the effect of

the polarizability of the aromatic ring.

The overall quality of the pKa value predictions can be measured by the root mean

square (RMS) error of predicted pKa values relative to experimental values, which is

0.86 for simulations starting from the 1AKI structure, as shown in table5.4. RMS error

for null model predictions, where each residue’s pKa is predicted to be equal to the

reference value given in table5.1, are also shown in table5.4. The current method gives

predictions that are an overall improvement on the null model, and superior for each

type of titrating residue, except lysine. Prediction results for lysine are actually more

accurate than for any other residue (RMS error 0.64), but due to the very small shifts of

these residues’ pKa values from reference values, the null model RMS error is very low.
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Table 5.4: RMS errors of predicted pKa values from experimental values. All structures
refers to composite pKa predictions using data from all simulations on 1AKI, 1LSA,
3LZT and 4LYT. Null model RMS errors are provided for comparison; in the null model,
all residues are predicted to have the reference pKa values given in table 5.1.

All structures 1AKI 1LSA 3LZT 4LYT Null model

All residues 0.82 0.86 0.77 0.88 0.95 1.19

Aspartates 0.69 0.80 0.72 0.86 0.78 1.34
Glutamates 0.88 0.94 0.97 1.01 0.54 1.68
Histidine 0.21 0.74 0.11 0.10 0.01 0.69
Tyrosines 1.29 0.88 1.10 1.23 1.69 1.50
Lysines 0.64 0.83 0.57 0.51 0.78 0.21

The results reported here are a significant improvement on the explicit solvent TI-

based constant pH MD pKa predictions reported for 1AKI HEWL by Bürgiet al.,104

which have RMS error of 2.8-3.8 and seem to be far from convergence in 3 ns titrations.

They are also more accurate than Leeet al.’s continuous protonation state results for

HEWL, which had RMS error of 1.31 for non-terminal residues.102 The constant pH

method employing Poisson-Boltzmann protonation state sampling described by Wal-

czak and Atosiewicz had RMS error of 0.81-1.12 (depending on parameters) in appli-

cation to ovomucoid third domain.106 The ovomucoid third domain may represent an

easier prediction problem than HEWL, as it has fewer residues with pKa values that

are substantially shifted relative to reference pKa values; these strongly shifted residues

have the greatest errors in the Walczak and Atosiewicz method. It is difficult to compare

the quality of the proposed GB constant pH MD method to that of Baptistaet al.,105

as they have only reported on application of their method to succinic acid, and not to

proteins.

The Poisson-Boltzmann-based pKa prediction methods employed by Baptistaet al.

and Walczak and Atosiewicz for protonation state sampling have a long history124 and

continue to be an active area of research.112,121,125Non-PB-based electrostatics meth-

ods have also found success.126,127 When the best of these electrostatics-only methods

are applied to crystal structures they provide somewhat more accurate predictions of

pKa values (RMS error of 0.5-0.7) in less computer time than the proposed GB constant
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Table 5.5: Composite pKa predictions for simulations starting from the 1AKI, 1LSA,
3LZT and 4LYT crystal structures. No value is shown for ASP-66 in the 3LZT simulations
because none of the predictions had offsets with magnitude less than 2.

1AKI 1LSA 3LZT 4LYT Exp.

ASP-18 1.83 1.69 2.38 2.55 2.66
ASP-48 1.87 2.48 2.04 2.38 2.5
ASP-52 2.08 2.68 1.75 2.65 3.68
ASP-66 2.00 1.18 - 2.19 2.0
ASP-87 2.69 2.66 2.32 3.34 2.07
ASP-101 3.80 3.74 3.76 3.96 4.09
ASP-119 2.60 2.45 2.17 1.98 3.2
GLU-7 3.85 3.72 3.89 3.58 2.85
GLU-35 5.32 5.14 5.23 5.97 6.2
HIS-15 6.45 5.82 5.61 5.70 5.71
TYR-20 10.86 10.82 10.98 11.62 10.3
TYR-23 11.30 11.42 11.39 12.21 9.8
TYR-53 10.90 11.25 10.84 11.10 12.1
LYS-13 9.58 9.87 9.97 9.56 10.5
LYS-33 9.63 9.66 9.94 9.47 10.6
LYS-96 9.97 10.33 10.15 10.04 10.8
LYS-97 10.02 10.04 9.94 9.86 10.3
LYS-116 10.17 10.12 10.19 10.12 10.4

pH MD method. Although these methods are fairly accurate, they can be very sensitive

to details of the crystal structure because all atomic positions are fixed, and they of-

ten produce widely varying pKa value predictions for different crystal structures of the

same protein.111 Models (PB and non-PB-based) that allow for some conformational

rearrangement have much less dependence on crystal structure,85,87,88and a dynamics-

based method should be immune to these effects. This was tested by running simula-

tions starting from three additional crystal structures (PDB identifiers 1LSA, 3LZT and

4LYT). These structures were chosen for maximum diversity of crystal characteristics,

as described in section5.2.5. As seen in table5.5 and summarized in table5.4, pKa

value predictions were highly consistent across the four structures, with a total variation

in RMS error of only 0.18 pH units. This stands in contrast to a recent electrostatics

study of these structures, which yielded RMS errors of 1.01, 1.44, 1.15 and 2.03 for

1AKI, 1LSA, 3LZT and 4LYT, respectively.111
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5.3.4 Non-Henderson-Hasselbalch behavior

Titrating residues were tested for non-HH behavior (titration curves that do not

match the sigmoidal shape defined by equation5.3) using the procedure described in

section5.2.6; these results are shown in table5.6. First, it should be noted that, as in

most proteins, the magnitude of non-HH behavior is small—in all significant cases, it

is less than 0.35 deviation in pKa prediction for every 1 unit change in solution pH.

Furthermore, any error will tend to be canceled by the opposing effects of predictions

made from simulations with pH above and below the residue’s pKa, so ignoring non-HH

behavior in the lysozyme pKa calculations above is a reasonable approximation. The re-

sults in table5.6also justify the use of only single-site MC moves for this system—none

of the interactions are strong enough for any titratable group to block protonation state

changes in a nearby group. Nevertheless, some interaction between titrating residues

leading to non-HH behavior is expected for lysozyme, and it is reassuring that the pro-

posed method reproduces these effects.

The bold lines in table5.6 indicate which residues have statistically significant non-

HH behavior. LYS-96 and LYS-97 interact with each other due to their obvious prox-

imity in both primary and tertiary structure. LYS-116 projects toward TYR-23 (titrating

N to O distance 7.7 Å in 1AKI); the non-HH effect on TYR-23 is presumably lost in

noise due to the poor tyrosine results. ASP-87 most likely interacts with HIS-15, which

reaches 90% confidence for non-HH behavior. ASP-101 does not appear to have specific

interactions with any single titrating group. However, weak interactions have statistical

significance for ASP-101 because it is one of the best converged residues, and as such

has little noise. The analysis for GLU-35 is dominated by three data points with very

negative errors, representing simulations in which GLU-35 was significantly H-bonded.

Eliminating these outliers increases the p-value from 0.017 to 0.7.

5.3.5 Conformation-protonation correlation

A major motivation for the implementation of this method is the idea that protona-

tion state and conformation are strongly coupled, such that they cannot be adequately

studied in isolation (e.g. electrostatics-based pKa predictions and traditional molecular
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Table 5.6: Hill coefficients for titration data determined by linear regression. P-value
is the significance level at which the Hill coefficient differs from one. Residues with
p-values less than 0.05 are indicated in boldface.

Residue Hill coefficient P-value

GLU-7 1.006 0.897
LYS-13 0.966 0.755
HIS-15 0.816 0.100
ASP-18 0.763 0.149
TYR-20 0.740 0.131
TYR-23 0.955 0.864
LYS-33 0.939 0.446
GLU-35 0.670 0.017
ASP-48 0.995 0.984
ASP-52 0.838 0.528
TYR-53 0.908 0.393
ASP-66 1.003 0.993
ASP-87 0.751 0.039
LYS-96 0.796 <0.001
LYS-97 0.865 0.004
ASP-101 0.885 0.030
LYS-116 0.908 0.002
ASP-119 1.076 0.575
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dynamics). Results of these simulations support this idea: the protonation and con-

formation of ASP-18 in the pH 2.5 simulation starting from 1AKI is examined as an

example.

Essential dynamics (ED)—principal component analysis (PCA) of trajectory data—

is a useful technique for separating functionally important, slow, large scale motions

from local fluctuations,128 discussed in detail in chapter7. Projections of a particu-

lar snapshot from the trajectory onto the most significant principal components (the

eigenvectors having the largest eigenvalues) can be used as a dimensionally reduced

representation of a molecular conformation. Best results in correlating conformation to

protonation for a particular residue are obtained when the atoms included in the PCA

are limited to the residue and its immediate neighbors. The results presented here are

based on PCA129 of ASP-18 and all atoms within 7.5 Å of ASP-18 in the 1AKI crystal

structure. In figure5.6, position of the data points represents conformation (projection

onto the two eigenvectors with the largest eigenvalues) while shade represents degree

of protonation (darker is more protonated). A strong qualitative association between

conformation and protonation is apparent: the conformational cluster in the upper left

is almost entirely deprotonated, while the cluster in the lower right is predominantly

protonated.

Plots such as figure5.6illustrate correlation between conformation and protonation,

but deriving quantitative data directly from such a plot necessitates partitioning into con-

formational clusters which, if done by hand, is subjective and effectively limited to two

or three dimensions. Clustering algorithms provide an objective means for identifying

clusters and can operate in high-dimensional spaces that are not readily visualized. Ak-

means clustering algorithm130 (Euclidean distance) was employed to conformationally

cluster one thousand 1 ps snapshots, represented by their projections onto the 10 largest

eigenvectors, and pKa was calculated separately for each cluster. There is no obvious

choice for the value ofk (the number of clusters): values that are too low may force dis-

tinct conformations with different protonation characteristics into a single cluster, while

values that are too high may divide what should be a single cluster into two clusters. It

seems prudent to try a range of values, increasingk until it is clear that further increases

will not identify clusters with unique protonation properties. For instance, in table5.7
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Figure 5.6: Coupling of conformation and protonation are illustrated in this plot, where
spot location represents conformation and shade represents protonation. Specifically,
principal component analysis was performed on a 1 ns trajectory at pH 2.5 beginning
from 1AKI. Only atoms within 7.5 Å of ASP-18 were included in the analysis. This plot
shows the projections of 1 ps snapshots from the trajectory onto the first two (largest
eigenvalues) principal components. Shading represents fraction of time spent proto-
nated in the 1 ps window surrounding the snapshot: black represents fully protonated,
lightest gray represents fully deprotonated.
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Table 5.7: pKa values calculated for conformational clusters. Clusters were generated
using the k-means algorithm with Euclidean distances. Data points to be clustered
were projections of trajectory snapshots onto the first 10 principal components (see
text). pKa values were calculated for each cluster from the combined protonation state
data for each snapshot assigned to the cluster.

k=2 k=3 k=4 k=5 k=6 k=7

1 1.95 1.48 0.85 0.91 0.75 0.55
2 2.07 1.95 1.49 1.53 1.39 1.39
3 2.15 2.15 1.64 1.61 1.61
4 2.24 2.26 1.66 1.66
5 2.35 2.24 2.16
6 2.34 2.27
7 2.34

it is clear that k of 2 or 3 is too small to separate distinct protonation properties.k = 4

identifies a very acidic cluster with pKa of less than 1.0, a cluster with pKa near 1.5

and two more clusters with pKa greater than 2.0. Increasingk beyond 4 serves only to

non-productively subdivide these clusters.

Mapping the clusters from principal component space back to atomic coordinates us-

ing Interactive Essential Dynamics, described in chapter7, provides a means to identify

the physical basis for the protonation behaviors exhibited by the different clusters. The

centroid of each cluster is taken as the representative of the conformations in the cluster.

The process of projecting a snapshot onto the principal components is reversed to gen-

erate atomic coordinates in Cartesian space from the centroid coordinates in principal

component space.

Representations of thek = 4 cluster centroids in atomic coordinates are illustrated

in figure 5.7. These images show that in this trajectory, LYS-13 adopts three distinct

conformations, with varying distances from ASP-18 leading to a difference in pKa of

1.4 between cluster 1 and cluster 4. The dramatic differences in the protonation states

sampled in these conformational clusters demonstrates the coupling of protonation state

and conformation and emphasizes the need to use techniques that maintain this coupling

by analyzing protonation state in conjunction with dynamics.
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Figure 5.7: Rendered images131 representing atomic coordinates corresponding to
centroids of clusters 1, 2 and 4 (left to right, having pKa values 0.85, 1.49, 2.24) from
k=4 clustering in table 5.7. ASP-18 is top center, ASN-19 is in the upper left and LYS-13
is in the upper right. Note that bond lengths and angles are somewhat distorted due to
the averaging effects of taking the centroid.

5.3.6 Summary

The method described here, combining GB MD with Monte Carlo sampling of dis-

crete protonation states, provides a computationally efficient means for performing con-

stant pH MD. As evidenced by close agreement between predicted and experimental pKa

values, this method accurately samples protonation states while producing a conforma-

tionally and energetically stable trajectory. Convergence is rapid for small molecules,

but much slower for larger biomolecules. Slow convergence is due to slow conforma-

tional sampling and, in systems that have more strongly interacting titratable groups

than HEWL, barriers to moving in protonation-state space.

The analysis of correlation between conformation and protonation state in these re-

sults illustrates the strong coupling between these aspects of molecular configuration;

the ability to sample protonation states concurrently with conformation is an important

step in improving the physical realism of MD simulations. The accurate constant pH

MD achieved by this method will facilitate the study of pH and protonation state depen-

dent dynamics that have been inaccessible with traditional MD.

This chapter is a reprint in full of material that appeared inConstant pH Molecular

Dynamics in Generalized Born Implicit Solvent. John Mongan, David A Case and J.

Andrew McCammon. Journal of Computational Chemistry,25(16), 2038-48, December

2004. I was the primary author and researcher for this work.
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5.4 Appendix: Partial charges of titratable groups

5.4.1 Aspartate charges

deprotonated O2syn O2anti O1syn O1anti
N -0.4157 -0.4157 -0.4157 -0.4157 -0.4157
H 0.2719 0.2719 0.2719 0.2719 0.2719

CA 0.0341 0.0341 0.0341 0.0341 0.0341
HA 0.0864 0.0864 0.0864 0.0864 0.0864
CB -0.1786 -0.0316 -0.0316 -0.0316 -0.0316
2HB -0.0122 0.0488 0.0488 0.0488 0.0488
3HB -0.0122 0.0488 0.0488 0.0488 0.0488
CG 0.7994 0.6462 0.6462 0.6462 0.6462
OD1 -0.8014 -0.5554 -0.5554 -0.6376 -0.6376
OD2 -0.8014 -0.6376 -0.6376 -0.5554 -0.5554
1HD2 0.0000 0.4747 0.0000 0.0000 0.0000

C 0.5973 0.5973 0.5973 0.5973 0.5973
O -0.5679 -0.5679 -0.5679 -0.5679 -0.5679

2HD2 0.0000 0.0000 0.4747 0.0000 0.0000
1HD1 0.0000 0.0000 0.0000 0.4747 0.0000
2HD1 0.0000 0.0000 0.0000 0.0000 0.4747

5.4.2 Glutamate charges

deprotonated O2syn O2anti O1syn O1anti
N -0.4157 -0.4157 -0.4157 -0.4157 -0.4157
H 0.2719 0.2719 0.2719 0.2719 0.2719

CA 0.0145 0.0145 0.0145 0.0145 0.0145
HA 0.0779 0.0779 0.0779 0.0779 0.0779
CB -0.0398 -0.0071 -0.0071 -0.0071 -0.0071
HB2 -0.0173 0.0256 0.0256 0.0256 0.0256
HB3 -0.0173 0.0256 0.0256 0.0256 0.0256
CG 0.0136 -0.0174 -0.0174 -0.0174 -0.0174
HG2 -0.0425 0.0430 0.0430 0.0430 0.0430
HG3 -0.0425 0.0430 0.0430 0.0430 0.0430
CD 0.8054 0.6801 0.6801 0.6801 0.6801
OE1 -0.8188 -0.5838 -0.5838 -0.6511 -0.6511
OE2 -0.8188 -0.6511 -0.6511 -0.5838 -0.5838
2HE2 0.0000 0.4641 0.0000 0.0000 0.0000

C 0.5973 0.5973 0.5973 0.5973 0.5973
O -0.5679 -0.5679 -0.5679 -0.5679 -0.5679

2HE2 0.0000 0.0000 0. 4641 0.0000 0.0000
1HE1 0.0000 0.0000 0.0000 0. 4641 0.0000
2HE1 0.0000 0.0000 0.0000 0.0000 0. 4641
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5.4.3 Histidine charges

δ,ε protonated δ protonated ε protonated
N -0.1506 -0.1506 -0.1506
H 0.1749 0.1749 0.1749

CA -0.1394 -0.1394 -0.1394
HA 0.1036 0.1036 0.1036
CB -0.1057 -0.2276 -0.2710
HB2 0.1021 0.0863 0.0546
HB3 0.1021 0.0863 0.0546
CG 0.0511 -0.0015 0.2784
ND1 0.0021 -0.2058 -0.4233
HD1 0.2584 0.3183 0.0000
CE1 -0.0333 0.1473 0.0260
HE1 0.2189 0.1222 0.1268
NE2 -0.1410 -0.6015 -0.0980
HE2 0.3534 0.0000 0.2669
CD2 -0.1438 0.0437 -0.2976
HD2 0.2135 0.1102 0.1604

C 0.6756 0.6756 0.6756
O -0.5421 -0.5421 -0.5421
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5.4.4 Tyrosine charges

protonated deprotonated
N -0.4157 -0.4157
H 0.2719 0.2719

CA -0.0014 -0.0014
HA 0.0876 0.0876
CB -0.0152 -0.0858
HB2 0.0295 0.0190
HB3 0.0295 0.0190
CG -0.0011 -0.2130
CD1 -0.1906 -0.1030
HD1 0.1699 0.1320
CE1 -0.2341 -0.4980
HE1 0.1656 0.1320
CZ 0.3226 0.7770
OH -0.5579 -0.8140
HH 0.3992 0.0000
CE2 -0.2341 -0.4980
HE2 0.1656 0.1320
CD2 -0.1906 -0.1030
HD2 0.1699 0.1320

C 0.5973 0.5973
O -0.5679 -0.5679
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5.4.5 Lysine charges

protonated deprotonated
N -0.3479 -0.3479
H 0.2747 0.2747

CA -0.2400 -0.2400
HA 0.1426 0.1426
CB -0.0094 -0.1096
HB2 0.0362 0.0340
HB3 0.0362 0.0340
CG 0.0187 0.0661
HG2 0.0103 0.0104
HG3 0.0103 0.0104
CD -0.0479 -0.0377
HD2 0.0621 0.0115
HD3 0.0621 0.0115
CE -0.0143 0.3260
HE2 0.1135 -0.0336
HE3 0.1135 -0.0336
NZ -0.3854 -1.0358
HZ1 0.3400 0.0000
HZ2 0.3400 0.3860
HZ3 0.3400 0.3860

C 0.7341 0.7341
O -0.5894 -0.5894



Chapter 6

Accelerated Molecular Dynamics

ABSTRACT

Many interesting dynamic properties of biological molecules cannot be simulated di-

rectly using molecular dynamics due to the limitations of the computationally feasible

timescale. Such properties involve transitions over high free energy barriers, which are

rare events in a simulation. To address this problem, a robust biasing function is pro-

posed that can be used to increase the frequency of transitions over free energy barriers.

The potential energy landscape is altered by adding a bias potential to the true potential

such that the escape rates from potential wells are enhanced, which accelerates sam-

pling in molecular dynamics simulations. The biased potential echoes the shape of the

underlying true potential, focusing sampling on the minima. This approach, which can

be extended to biomolecules, samples the conformational space more efficiently than

conventional molecular dynamics simulations, and converges to the correct canonical

distribution.

6.1 Introduction

Molecular dynamics simulation is one of the most widely used techniques in com-

putational chemistry due, in part, to its simplicity and ability to accurately sample the

conformational space of a molecular system. By integrating Newton’s equations of mo-

tion, this technique evaluates the time-dependent behavior and evolution of a molecular

88
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system as it samples conformational space. Therefore, with an accurate representation

of the system’s potential energy landscape, the conformational space can be easily sam-

pled, and thermodynamic and kinetic properties can be calculated while studying a host

of other structural and dynamic phenomena. As a result, molecular dynamics simula-

tions have provided thorough information on local motions and conformational changes

of proteins132 and DNA133–138

However, for most biological systems of interest, available computational resources

limit the simulation time to the nanosecond timescale, so conventional molecular dy-

namics cannot be used to adequately explore portions of the energy landscape separated

by high barriers from the initial minimum. Furthermore, for most biological molecules,

the energy landscape has multiple minima or potential energy wells separated by high

free energy barriers, and during a molecular dynamics simulation the system is trapped

in one or another local minimum for long periods of simulation time. Consequently,

thermodynamic properties of interest for large biological systems cannot be directly cal-

culated from simulations because of the non-ergodic nature of conventional molecular

dynamics for systems with high free energy barriers.139

The dynamic evolution of biological molecules and many other molecular systems

occurs through series of rare events as the systems move from sampling one potential

energy basin to another.140,141 Therefore, in order to perform realistic simulations of

molecular systems, one has to be able to simulate series of rare transitions between po-

tential energy minima. There have been a number of approaches introduced that are

aimed at addressing this problem. These methods include conformational flooding,142

replica exchange,143 umbrella sampling,144 self-guided MD,145 and others reviewed by

Berne and Straub.146 Umbrella sampling, one of the more widely used approaches, in-

volves construction of a compensating function, known as the umbrella, which is added

to the true potential energy function in order to bias the sampling toward a particular set

of conformations. However, construction of the umbrella requires prior knowledge of

the conformations of interest.

This chapter introduces a molecular dynamics approach based on earlier work by

Voter140,141that simulates infrequent events of molecular systems without any advance

knowledge of the location of either the potential energy wells or barriers. Voter140,141
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recently proposed a hyperdynamics method to speed up molecular dynamics simula-

tions by reducing the amount of computational time systems spend in potential energy

minima between crossing potential barriers. The scheme modifies the potential energy

surface,V(r), by adding a bias potential,∆V(r), to the true potential such that the po-

tential surfaces near the minima are raised and those near the barrier or saddle point are

left unaffected. Statistics sampled on the biased potential are then corrected to remove

the effect of the bias. In Voter’s implementation of the bias potential, the Hessian ma-

trix is diagonalized at each step, so that the transition state regions can be identified.

This limits its use to small systems because of the computational cost of assembling

and diagonalizing the Hessian. Alternatively, a prescription for a simple bias potential

was proposed by Steineret al.147 and later used by Rahman and Tully148 in which the

bias potential is chosen such that the modified potentials is constant if the unmodified

potential falls below a theshold. This simple definition of the bias potential does not

require the diagonalization of the Hessian matrix at each step, and hence makes it pos-

sible for it to be applied to larger systems. This chapter presents a simple, robust way

of altering the potential energy landscape that preserves the underlying shape of the po-

tential energy surface, and allows for the simulation to be extended to larger molecular

systems, like proteins. It is shown that this approach accurately and efficiently explores

conformational space with improved sampling and converges to the correct canonical

probability distribution.

6.2 Theory

The general idea behind the accelerated molecular dynamics scheme is depicted in

figure 6.1. A continuous non-negative bias boost potential function∆V(r) is defined

such that when the true potentialV(r) is below a certain chosen valueE, the boost

energy, the simulation is performed on the modified potentialV∗(r) = V(r) + ∆V(r),

represented using dashed lines, and whenV(r) is greater thanE, the simulation is per-

formed on the true potentialV∗(r) = V(r). This leads to an enhanced escape rate from

local minima when the simulation is performed onV∗(r). The modified potentialV∗(r)
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Figure 6.1: Schematic representation of the unmodified potential (solid line), the biased
potential (broken line), and the threshold energy, E.

is related to the true potential, bias potential, and boost energy by

V∗(r) =

{
V(r),V(r)≥ E

V(r)+∆V(r),V(r) < E
(6.1)

During conventional molecular dynamics simulations of biological molecules on the

unmodified potential surface, the systems extensively sample conformations around a

local minimum without adequately sampling conformations elsewhere on the potential

energy surface. Therefore, the primary goal of this work is to develop a method for

large biological systems that is capable of accelerating the state to state evolution of a

system relative to normal molecular dynamics. The bias potential increases the escape

rate of the system from potential basins, and the subsequent state to state evolution of

the system on the modified potential occurs at an accelerated rate with a non-linear time

scale of∆t∗, where

∆t∗i = ∆teβ∆V[r(ti)] (6.2)

This allows advancement of the clock at each step depending on the strength of∆V(r),

where∆t is the actual time step of the simulation on the unmodified potential. Hence, the

total estimated simulation time becomes a statistical property and is given by equations

6.3and6.4.

t∗ =
N

∑
i

∆t∗i = ∆t
N

∑
i

eβ∆V[r(ti)] (6.3)
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t∗ = t〈eβ∆V[r(ti)]〉 (6.4)

where N is the total number of molecular dynamics steps carried out during the whole

simulation, and〈eβ∆V[r(ti)]〉 is termed the boost factor. The boost factor is a measure of

the extent to which the simulation has been accelerated. At each step, the time step,

∆t∗, is non-linearly dependent on the value of the bias potential,∆V(r). It follows from

equation6.2 that∆t∗ = ∆t when the system is on the true potential,V(r), that is when

∆V(r) = 0. If the choice of the boost energyE is very high, then the boost factor will

be very large, leading to noisy statistics because the wells will not be sampled suffi-

ciently. However, correct statistics will be obtained after many transitions and adequate

sampling of the potential energy wells. Note that the times described here represent

relative times spent sampling different portions of the conformational ensemble; in gen-

eral, kinetic properties measured when the simulation is performed onV∗(r) will not be

correct.

It is important that this method yields correct canonical averages of an observable

A(r), so that thermodynamics and other equilibrium properties can be accurately deter-

mined from accelerated MD simulations. The equilibrium ensemble average value of

any observableA(r) on the normal potentialV(r) is given by

〈A〉=
R

drA(r)e−βV(r)
R

dre−βV(r) (6.5)

Similarly, the ensemble average value of any observableA(r) taken on the modified

potential can be written as

〈A∗〉=
R

drA(r)e−βV∗(r)
R

dre−βV∗(r) (6.6)

substituting forV∗(r), yields

〈A∗〉=
R

drA(r)e−βV(r)−β∆V(r)
R

dre−βV(r)−β∆V(r) (6.7)

Re-weighting the phase space of the modified potential by multiplying each configura-

tion by the strength of the bias at each position, results in equations6.8 and6.9, the

corrected ensemble average, which is equivalent to the equilibrium observable ofA(r)

on the normal potential.

〈AC〉=
R

drA(r)e−βV(r)−β∆V(r)eβ∆V(r)
R

dre−βV(r)−β∆V(r)eβ∆V(r) (6.8)
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〈AC〉=
R

drA(r)e−βV(r)
R

dre−βV(r) = 〈A〉 (6.9)

Therefore, it can be seen that the accelerated molecular dynamics simulation method

converges to the canonical distribution, and the corrected canonical ensemble average

of the system is obtained by simply re-weighting each point in the configuration phase

space on the modified potential by the strength of the Boltzman factor of the bias energy,

eβ∆V[r(ti)], at that particular point. When the system is on the normal potential, the bias

is zero.

Various approaches on how to define the bias potential,∆V(r), have been stud-

ied.144,145,149,150The bias or boost potential,∆V(r), was defined asE−V(r) by Rah-

man and Tully,148 such that the modified potential becomesV∗(r) = E: a flat modified

potential surface that they termed “puddles” covering energy wells. This implementa-

tion is very simple and computationally inexpensive, because the force while on the

“puddle” potential is zero. However, there are some problems associated with this

choice: the derivatives of the potential,dV(r)/dr, are discontinuous at points where

the unmodified potential,V(r), merges with the modified potential,V∗(r), that is where

V(r) = E. Therefore, Rahman and Tully devised a special integration technique used to

traverse points whereV(r) = E, which subtantially reduces the gain in computational

efficiency. Also, at high values of the boost energy,E, the flat modified potential en-

ergy surface is raised above most transition state regions. The majority of the potential

energy surface becomes flat, and the system experiences a random walk. Under these

conditions, the system converges very slowly.

In contrast to the flat “puddles” employed by Rahman and Tully to fill energy min-

ima, the modification of the potential energy surface proposed here is more akin to snow

drifts. These “snow drifts” smooth the landscape by filling minima, but maintain the un-

derlying shape of the unmodified potential energy surface and merge smoothly with the

original potential at the threshold “boost energy” valueE. Therefore,∆V(r) is chosen

such that the first derivative ofV∗(r) has no discontinuity, and the modified potential

reproduces the shape of the minima even at high values ofE. The choice of∆V(r) is
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Figure 6.2: Schematic representation of a hypothetical potential energy function and
several bias potentials plotted at various values of α and a relatively low value of the
threshold boost energy, E.

given by

∆V(r) =
(E−V(r))2

α+(E−V(r))
(6.10)

whereα is a tuning parameter that determines how deep the modified potential energy

basin will be. Whenα is zero, the modified potential is flat,V∗(r) = E, and equivalent

to that adopted by Rahman and Tully.

Selection ofE andα is important to the method and determines how aggressively

the molecular dynamics will be accelerated. Therefore, appropriate choices ofE and

α are suggested by examining the effect of the bias potential on a hypothetical one-

dimensional energy function at various values ofE andα as shown in figures6.2 and

6.3. One prescription for choosingE is that it should be greater than the local minima of

V(r), Vmin, near the starting structure. IfE is less thanVmin, then the simulation will al-

ways be performed on the true potential which is simply a conventional MD simulation.

Furthermore, since large molecules tend to have multiple minima very close together,

calculating an average potential energy,〈V[r(ti)]〉, on the true potential over a short pe-

riod of time starting with the initial structure, and using that as the minimum,Vmin, is

an effective strategy. At low values ofE as represented by the potential energy profiles

presented in figure6.2, the modified potential falls below most of the transition state

regions and the relative probability of escape remains the same for the modified and un-

modified potentials. Therefore the choice ofα is not that critical to the overall potential
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Figure 6.3: Schematic representation of a hypothetical potential energy function and
several bias potentials plotted at various values of α and a relatively high value of the
threshold boost energy, E.

energy landscape as long asα is not so small that the modified potential becomes flat

(figure 6.2; α = 1). Flat modified potential surfaces cause the calculated force to be

discontinuous at points whereV∗(r) = E.

On the other hand, whenE is chosen to be high (figure6.3), the value ofα becomes

important because at low values ofα, as in the case whenα = 0, the modified potential

becomes isoenergetic in most places, and the molecular system experiences a random

walk. Also, as discussed earlier, the first derivative of the modified potential becomes

discontinuous at points where the modified potential is equal toE. Therefore, in order to

maintain the basic shape of the potential energy surface at high values ofE, and preserve

the same potential energy wells that are present on the unmodified potential surface,α

has to be set to a much higher value than zero. As shown by the plot in figure6.3, α

seems to produce the desired effect when it is set to a value close toE−Vmin (figure6.3;

α = 1000). Therefore,E should be chosen to be greater thanVmin, with the magnitude

depending on how aggressively one wants to sample the conformational space. A choice

of α = E−Vmin will allow the modified potential energy surface to echo the shape of

the potential wells and merge smoothly with the original potential.



96

6.3 Methods and Applications

Molecular dynamics simulations were carried out using the Cornell et al.151 all-atom

force field as shown in its simple form in equation6.11:

V(r) = ∑
bonds

Kr(r− req)2 + ∑
angles

Kθ(θ−θeq)2+

∑
dihedrals

Vn
2 [1+cos(nφ− γ)]+ ∑

i< j

[
Ai j

R12
i j
− Bi j

R6
i j

]
+ ∑

i< j

qiq j
εRi j

(6.11)

where the summations represent the harmonic bond and angle energy terms, the dihedral

torsions, and nonbonded van der Waals and electrostatics interactions terms respectively.

Since conformational changes in proteins involve changes in torsions to a much greater

extent than any other degrees of freedom, this accelerated MD method has been applied

to the sum of the dihedral torsions and the 1–4 non-bonded interactions as shown in

equation6.12, instead of the whole potential.

VD(r) = ∑
dihedrals

Vn
2 [1+cos(nφ− γ)]+

∑
i< j

[
Ai j

R12
i j
− Bi j

R6
i j

]

1−4
+ ∑

i< j

[
qiq j
εRi j

]
1−4

(6.12)

Therefore, equations6.1and6.10become:

V∗(r) =

{
Vo(r)+VD(r),VD(r)≥ ED

Vo(r)+VD(r)+∆VD(r),VD(r) < ED

(6.13)

∆VD(r) =
(ED−VD(r))2

α+(ED−VD(r))
(6.14)

whereVo(r) is the sum of the interaction potential without that of the dihedral torsions

and the non-bonded 1–4 interactions, andED is the threshold energy or boost energy

that is analogous toE.

Because this study was carried out using implicit solvation, the collisions of the

molecular system with solvent are approximated by using the Langevin dynamics equa-

tion

m
d2x
dt2

= F (t)− γm
dx
dt

+R(t) (6.15)

whereγ is the collision frequency,γm is the frictional coefficient, and R(t) is a random

Gaussian force with zero mean. A value of 2.0 ps−1 was used for the collision frequency
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as suggested by Loncharich et al.152 The electrostatic interaction was treated using the

generalized Born35,51 implementation (igb = 2) in AMBER 7,153 and the apolar solva-

tion term was also included in the potential function with the surface tension parameter

set to the default value of 0.005 kcal/mol Å2. The SHAKE algorithm154 was applied

to all bonds involving hydrogen atoms, and an integration time step of 2.0 fs was used

for the integration of the Langevin equation. All calculations were carried out using a

version of the sander module in the AMBER 7 suite of programs that was modified to

perform the accelerated molecular dynamics simulation. Several accelerated molecular

dynamics simulations were carried out using various values ofED. During the acceler-

ated molecular dynamics simulations the configuration correction term was calculated

at each step.

6.4 Results and Discussion

6.4.1 Correct Canonical probability distribution

Presently, conventional molecular dynamics simulations of biomolecules are gener-

ally unable to sufficiently sample the conformational space. Therefore, the proposed ac-

celerated molecular dynamics approach extends the time scale of the simulation without

prior knowledge of the potential energy surface. In order for this approach to be effec-

tive, the first question that needs to be addressed is whether this approach reproduces

the canonical probability distribution after re-weighting the statistics of the accelerated

molecular dynamics simulations. A normal MD simulation (with no bias potential) and

several accelerated MD simulations using blocked alanine dipeptide (figure6.4) were

performed. This system was chosen because it is small, so complete conformational

sampling is computationally feasible, and it represents the essential attributes of the

backbone conformations seen in proteins.

One normal MD simulation and three accelerated MD simulations were carried

out on the blocked alanine dipeptide.〈VD(r)〉 was calculated to be approximately 60

kcal/mol, and the values of the boost energy,ED, and the tuning parameter,α, for the

three accelerated simulations were set at 80, 90, and 100, and 20, 30, and 40 kcal/mol
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Figure 6.4: Alanine dipeptide

respectively. The simulations were carried out at 800K, so that the simulation could

achieve convergence and to ensure sufficient transitions over high potential energy bar-

riers. Each simulation was carried out over 5 x 107 steps of MD simulation (equivalent

to 0.1µs of normal MD simulation), and snapshots were collected for analysis every 50

steps.

The conformational free energy plots shown as a function of backbone torsional

angles are depicted in figure6.5. The plot of the normal MD simulation represented in

figure6.5a shows that the alpha-helical region with the broadest energy minimum, where

φ is less than 0 andψ is between 0 and -60, is strongly populated when compared to other

regions. Figures6.5b-d show the free energy plot as a function of the backbone torsional

angles of the three accelerated molecular dynamics simulation asED is increased from

80 to 100 kcal/mol. Also, it can be seen that the plots of the accelerated MD simulations

shown are quite similar to that of the normal MD simulation in figure6.5a. Therefore,

it can be inferred that this approach leads to the proper calculation of the canonical

distribution after re-weighting of the conformational space, and that the potential energy

wells are accurately sampled for the accelerated MD simulations.

As previously discussed, the choice ofα is very important in preserving the under-

lying shape of the potential energy surface at high values ofED, so that the potential

energy wells can be adequately sampled, as can be seen for a relatively high value ofED

in figure6.5d. In order to thoroughly investigate the effect ofα on the shape of the un-

derlying potential energy landscape and the implication on the statistics generated, two

additional sets of four accelerated MD simulations were carried out with varying values

of α while keepingED constant at a relatively high value of 100 kcal/mol and low value
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(a) Normal MD (50x106 steps) (b) ED = 80 kcal/mol; � = 20 kcal/mol

(c) ED = 90 kcal/mol; � = 30 kcal/mol (d) ED = 100 kcal/mol; � = 40 kcal/mol

Figure 6.5: Alanine dipeptide backbone torsional free energy surface (kcal/mol) derived
from histogram of snapshots from normal MD simulation and several accelerated MD
simulations at various values of ED.
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(b) ED = 100 kcal/mol; � = 30 kcal/mol(a) ED = 100 kcal/mol; � = 50 kcal/mol

(c) ED = 100 kcal/mol; � = 20 kcal/mol (d) ED = 100 kcal/mol; � = 5 kcal/mol

Figure 6.6: Alanine dipeptide backbone torsional free energy surface (kcal/mol) de-
rived from histogram of snapshots from several accelerated MD simulations at with high
ED(100 kcal/mol) and a range of α values: (a) 50, (b) 30, (c) 20, and (d) 5 kcal/mol.

of 80 kcal/mol. At a relatively high value ofED and high values ofα, figure6.6a, the

plot is very similar to that of the normal MD simulation and represents the correct distri-

bution of blocked dipeptide alanine. However, asα is decreased, the statistics generated

become noisy and give rise to a spotty density plot (figure6.6d). The noisy statistics

at highED and lowα are due to the modified potential energy landscape becoming flat

and isoenergetic (figure6.3). On this flat, isoenergetic potential surface, alanine dipep-

tide experiences a random walk and does not sufficiently sample the potential energy

minima. The potential energy minima are not well defined on the flat modified potential

surface, and the statistics are dominated by a few heavily weighted points.
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(b) ED = 80 kcal/mol; � = 15 kcal/mol(a) ED = 80 kcal/mol; � = 25 kcal/mol

(c) ED = 80 kcal/mol; � = 10 kcal/mol (d) ED = 80 kcal/mol; � = 2.5 kcal/mol

Figure 6.7: Alanine dipeptide backbone torsional free energy surface (kcal/mol) derived
from histogram of snapshots from several accelerated MD simulations at with low ED(80
kcal/mol) and a range of α values: (a) 25, (b) 15, (c) 10, and (d) 2.5 kcal/mol.

On the other hand, whenED is relatively low as shown in figure6.2, the re-weighted

probability distributions for several values ofα (high and low) converge to the correct

canonical distribution (figure6.7) and are quite similar to that of the normal MD sim-

ulation (figure6.5). Low values ofED position the modified surface below most of

the transition state regions (figure6.2), thus maintaining the accurate sampling of each

well with the correct probability irrespective of the choice ofα. Therefore, at relatively

low values ofED (figure6.7) the potential energy wells are accurately sampled and the

re-weighted free energy plots are similar to that of the unmodified potential.
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6.4.2 Enhanced Sampling

This chapter has introduced an approach to extend the time scale of MD simula-

tions and has shown that it converges to the correct canonical probability distribution.

Another question that needs to be answered is whether this technique accelerates the

sampling of the conformational space. This question has been addressed by carrying

out a normal MD simulation and several accelerated molecular dynamics simulations

at various values ofED on hepta-alanine starting with the helical structure, since that

is the predominant configuration for polyalanine. These simulations were conducted at

300K and then repeated at 400K. Each simulation was carried out over5×106 steps of

MD simulation (equivalent to 10 ns of normal MD simulation), with snapshots taken for

analysis every 100 steps. The relative conformational free energy plots of the backbone

angles of the third (ALA 3) and fourth (ALA 4) residues for the simulations are plotted

in figures6.8 and6.9 respectively. During the normal MD, the peptide stayed close

to the starting structure and sampled mainly the alpha-helical conformations. AsED

is increased, other potential energy wells are sampled that are not observed in the nor-

mal MD. It can be seen that after re-weighting, the alpha-helical conformation, which

is known to be the predominant species in solution, tends to be sampled heavily. The

conformational space of the peptide is extensively explored using the accelerated MD

method, and more configurations are sampled as the value of the boost energy,ED, is

increased. Therefore, the higher the boost energyED is set, the more aggressive the

sampling becomes. Similar effects are observed at 400 K. This is reflected in the extent

of acceleration of the molecular dynamics, as estimated by the boost factor calculated

for each simulation using equations6.3and6.4.

Another interesting and informative way of looking at the simulation results is by

performing a multivariate analysis such as principal components analysis (PCA), as de-

scribed in chapter7, on the concatenated snapshots of the normal and accelerated MD

simulations. The positional covariance matrix of the Cartesian atomic coordinates of

the backbone atoms of the three central alanine residues was calculated and then diago-

nalized to provide a set of eigenvectors representing different modes of conformational

change and their corresponding eigenvalues. Each eigenvalue indicates the relative con-
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(a) ALA 3 at 300K

Normal MD (5x106 steps); <e
�
∆V> = 0.0 ED = 575 kcal/mol; � = 30 kcal/mol; <e

� �
V> = 127

ED = 625 kcal/mol; � = 80 kcal/mol; <e
� �

V> = 1.6x1011 ED = 650 kcal/mol; � = 105 kcal/mol; <e
� �

V> = 9.4x1014

(b) ALA 3 at 400K

Normal MD (5x106 steps); <e
�
∆V> = 0.0 ED = 575 kcal/mol; � = 30 kcal/mol; <e

� �
V> = 36

ED = 625 kcal/mol; � = 80 kcal/mol; <e
� �

V> = 2.9x107 ED = 650 kcal/mol; � = 105 kcal/mol; <e
� �

V> = 9.2x1010

Figure 6.8: Backbone torsional free energy surface (kcal/mol) for ALA-3 of hepta-
alanine derived from histogram of snapshots from normal and accelerated MD simu-
lations at (a) 300K and (b) 400K.
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Normal MD (5x106 steps); <e
�
∆V> = 0.0

(a) ALA 4 at 300K

ED = 575 kcal/mol; � = 30 kcal/mol; <e
� �

V> = 127

ED = 625 kcal/mol; � = 80 kcal/mol; <e
� �

V> = 1.6x1011 ED = 650 kcal/mol; � = 105 kcal/mol; <e
� �

V> = 9.4x1014

Normal MD (5x106 steps); <e
�
∆V> = 0.0

(b) ALA 4 at 400K

ED = 575 kcal/mol; � = 30 kcal/mol; <e
� �

V> = 36

ED = 625 kcal/mol; � = 80 kcal/mol; <e
� �

V> = 2.9x107 ED = 650 kcal/mol; � = 105 kcal/mol; <e
� �

V> = 9.2x1010

Figure 6.9: Backbone torsional free energy surface (kcal/mol) for ALA-4 of hepta-
alanine derived from histogram of snapshots from normal and accelerated MD simu-
lations at (a) 300K and (b) 400K.
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Figure 6.10: Eigenspectrum for principal component analysis of central three residues
of hepta-alanine from accelerated MD trajectory with ED = 650kcal/mol.

tribution of the corresponding mode to the overall dynamics. The ranking of the eigen-

values is shown in figure6.10, and it can be seen that the first two modes are the most

dominant and contribute over 70% to the overall motion. Therefore, projections of the

trajectory on the first and second modes for the normal and accelerated MD simula-

tions at 300 K were analyzed and plotted in figure6.11as unweighted scatter plots and

reweighted density plots. The multidimensional phase space reduced to 2D sampled

by the peptide during the normal MD simulation is smaller than that sampled during the

accelerated MD simulations as is evident from figure6.11. Conformations from the nor-

mal MD simulation fall into two clusters, while the accelerated MD simulations sample

these two clusters as well as two others not seen in the normal MD simulation.

For thorough insight into the sampling of the accelerated MD simulations and the

conformations that are present in each cluster of the plots of the two dominant modes in

figure6.11, the plot of the accelerated MD when ED = 650 kcal/mol was quantitatively

separated into four clusters using a simple k-means clustering algorithm, as shown in fig-

ure6.12. Furthermore, the phi and psi backbone angles of the third and fourth residues

for the conformations in each cluster were plotted in figure6.13. The cluster shown

in black represents helical conformations where the backbone angles of the third and

fourth residues are in the alpha helical region as shown in figure6.13. The normal MD
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(a)

Normal MD (5x106 steps) ED = 575 kcal/mol; � = 30 kcal/mol

ED = 625 kcal/mol; � = 80 kcal/mol ED = 650 kcal/mol; � = 105 kcal/mol

(b)

Figure 6.11: Projection of snapshots from normal and accelerated MD of hepta-alanine
onto first and second principal components. Principal components were calculated
based on the combined trajectories. Projections presented as (a) unweighted scatter
plots and (b) Boltzmann reweighted density plots.
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Figure 6.12: k-means conformational clustering of snapshots from accelerated MD of
hepta-alanine.

simulation is predominately made up of the black and blue clusters. The blue cluster

is primarily made up of configurations with backbone angle of the fourth residue in

the alpha helical region and that of the third residue in the extended strand region. In

addition, the accelerated molecular dynamics simulations extensively sample other con-

formations not sampled by the normal MD simulation that fall in two additional clusters

shown in figure6.12as red and green. The green cluster represents structures with back-

bone conformations of the fourth residue in the extended strand region and that of the

third residue in the alpha helical region. Fully extended structures with the backbone

conformations of the fourth and third residues in the extend strand region on the phi/psi

map fall in the red cluster. Therefore, from the above results, it can be seen that the

accelerated molecular dynamics method samples the phase space more extensively than

the normal molecular dynamics. Conformations that are not sampled by the normal

molecular dynamics simulation are seen in the accelerated MD simulations.

The accelerated molecular dynamics approach falls into the class of enhanced sam-

pling methods in which the energy barriers are effectively lower, so the system transi-
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Figure 6.13: Backbone torsional angles sampled by ALA-3 and ALA-4 separated by
conformational cluster.
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tions between energy wells more rapidly. Two major advantages of the accelerated MD

approach over many others are that little or no prior knowledge of the potential energy

landscape is required, and that the boost is consistently applied throughout the poten-

tial energy surface. The latter property distinguishes this method from conformational

flooding, wherein a “flooding potential”—similar to the bias potential—is added to the

effective Hamiltonian of the system only around the configuration of the initial struc-

ture. This is done so as to only destabilize the initial configuration and allow the system

to escape to another potential energy well in fewer computational steps.

Many simple techniques, including raising the temperature, have been devised to

accelerate MD simulations and explore the conformational space of molecular systems.

One of these techniques involves carrying out several short MD simulations on a par-

ticular system in which the starting conditions are different. Although some of these

approaches may be quite useful to search for conformations, they may not be relied on

to generate a Boltzmann distribution of conformations which is required for calculating

thermodynamic quantities. Nonetheless, to fully assess the ability of the accelerated

MD approach to explore the conformational space, multiple short normal MD simu-

lations starting with the same initial structure but with different initial velocities have

been carried out. The5×106 steps of normal MD was split up into five1×106 steps

of normal MD simulations and then combined to analyze the backbone conformations

of the third and fourth residues. This technique slightly improves the sampling of the

conformational space, but not as extensively as the accelerated MD simulations (figures

8 and 9). The sampling of the conformational space can further be enhanced by starting

the five different simulations with different conformations, but the combined trajectories

will be unlikely to lead to a Boltzmann distribution of conformations. The accelerated

molecular dynamics method not only has the ability to extensively sample the confor-

mational landscape, but also results in the generation of a Boltzmann distribution of

conformations.
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6.5 Conclusion

Computational methods like molecular dynamics simulation are the only techniques

that can be used to follow the time evolution of biological molecules, because there

are presently no experimental techniques that can track precise dynamics in atomic de-

tail. However, the timescale of molecular dynamics simulations is currently limited to

nanoseconds, and simulations of biomolecules appear to be nonergodic because transi-

tions between energy wells are rare, due to high energy barriers. This causes incom-

plete sampling for nanosecond length simulations. The approach presented here eases

this problem by increasing the escape rate of a molecular system from potential energy

wells while still accurately sampling the conformational space. By defining a simple

and robust bias potential which raises the potential energy surface in regions where

conventional molecular dynamics simulations spend many computational steps, it has

been shown that molecular dynamics can be accelerated with a defined boost factor and

converge to the correct canonical probability distribution. The definition of the bias po-

tential echoes the shape of the potential energy landscape even at high boost energy,ED,

thus allowing the potential energy wells to be accurately sampled. Also, this approach

is computationally efficient: a single step of accelerated molecular dynamics requires

less than 5% more computation than a normal MD step, but on average represents far

more conformational sampling. Therefore, present nanosecond timescale simulations of

large biological systems can be accelerated greatly in approximately the same amount

of computational time.

In this study, the dihedral torsions alone were accelerated, since conformational

changes in proteins mostly involve changes in torsions. However, the acceleration could

be applied to regions of the potential energy function that correspond to the degrees of

freedom that are significantly responsible for changes to the configurations of the system

under consideration.

This chapter is a reprint in full of material that appeared inAccelerated Molecu-

lar Dynamics: A promising and efficient simulation method for biomolecules. Donald

Hamelberg, John Mongan and J. Andrew McCammon. Journal of Chemical Physics

120(24), 11919-29, June 2004. I was the secondary author and researcher for this work.



Chapter 7

Interactive Essential Dynamics

ABSTRACT

Essential dynamics is a useful method for analyzing trajectories generated by molecular

dynamics, but current tools are awkward to use, limiting the usefulness of the technique.

This paper describes a new interactive graphical interface for visualization of essential

dynamics results, including filtering a trajectory on an arbitrary set of eigenvectors and

manipulation of a structure’s projection along any eigenvector.

7.1 Introduction

Trajectories generated from molecular dynamics (MD) simulations provide a means

to identify and study motions crucial for protein function.155 Separating functionally im-

portant motions from random thermal fluctuations is a major challenge in analyzing MD

trajectories. Principal component analysis of MD trajectory data, often calledessential

dynamics(ED),128,156is frequently used to separate large-scale correlated motions from

local harmonic fluctuations.157–162

ED analysis constructs a new orthogonal basis set for the atomic coordinates in a tra-

jectory, such that the greatest variance occurs along the first vector, with monotonically

decreasing variance along successive vectors. These vectors are often called principal

components or eigenvectors, since their derivation involves an eigen decomposition.

111
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The eigenvalues from the eigen decomposition represent the relative amount of molec-

ular motion that occurs along each eigenvector. The eigenvalue spectrum is sharply

peaked for molecular trajectory data, indicating that most of the molecular motion can

be described by displacements along the first few eigenvectors.128,157–159,162A trajec-

tory can be projected onto a subset of selected eigenvectors so only motion along the

selected vectors is allowed. The most commonly selected subset is the firstn eigenvec-

tors such that a given percentage of the molecular motion occurs within the subspace

formed by the selected eigenvectors. Projection onto these vectors filters out thermal

noise, making the functionally interesting motions easier to appreciate. Smaller subsets

may be selected to isolate a particular aspect of the molecule’s motion. One can also

examine the functional meaning of a single eigenvector by generating a trajectory with

atomic positions interpolated between extreme projections on the selected eigenvector.

ED is a standard method of analysis that is widely implemented in molecular sim-

ulation packages.113,122,129,163Tools in these packages take trajectory and eigenvector

files as input and produce a new trajectory as output, which must be loaded into an

integrated122 or external113,129,163viewer. A more flexible approach,164 implemented

within a limited viewer, is not widely available. In the available tools, a separate tra-

jectory file of interpolations between extreme projections must be generated for each

eigenvector, and a separate filtered trajectory file must be generated for each set of

eigenvectors selected for filtering. Some tools122,163 are limited to filtering along a

single eigenvector at a time, which may be problematic since rotational motion cannot

be adequately represented with a single eigenvector.

Generating and loading a separate trajectory file for each aspect of the ED results

is cumbersome and discourages complete understanding of the ED analysis. Interactive

Essential Dynamics (IED) is a new program that addresses these problems, providing

fully interactive analysis of ED results through a graphical interface. Filtering eigenvec-

tors can be rapidly added or removed from within the viewer, even while the trajectory

is being played. The functional meaning of an eigenvector can be examined from within

the viewer by dragging the atomic positions along the eigenvector using a slider control.

Arrows representing an atom’s motion along an eigenvector can be drawn to provide a

static representation of an eigenvector, as in the work of Huitema and van Liere.164 IED
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can calculate eigenvectors and projections directly, or read the results of calculations

performed in GROMACS129 or the ptraj module of AMBER 8.113 IED also allows sets

of vectors that do not have accompanying projections to be loaded so results of normal

modes analysis performed by AMBER or GROMACS can be visualized. The Python

scripting interface of Visual Molecular Dynamics (VMD)131 is used for display. The

extensive visualization, animation, rendering and analysis capabilities of VMD remain

available while using IED.

7.2 Theory and Methods

To perform ED, coordinate data from each timestep is fitted to a reference structure

to remove translational and rotational motion. The fitted trajectory data are used to

construct a covariance matrixC according to equation7.1

C =
〈
(x−〈x〉)(x−〈x〉)T

〉
(7.1)

where 〈〉 represents the mean across all timesteps, and theT superscript represents

transpose. An eigen decomposition (or diagonalization) of the symmetric matrixC is

performed to identifyΛ, a diagonal matrix of eigenvalues andT, a matrix of column

eigenvectors forming a new orthonormal basis set,128 satisfying

C = T ΛTT (7.2)

A zero-mean trajectory matrix,X, can be constructed by subtracting〈x〉 from the coor-

dinate vector for each timestep to form the rows ofX. The matrix of the projections of

each timestep onto each eigenvector,P, is obtained by multiplying the trajectory matrix,

X by T

P = X T (7.3)

For use with IED, these calculations may be performed using the AMBER or GRO-

MACS suites. IED is also capable of performing these calculations itself, but is less

efficient than AMBER or GROMACS.
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The trajectory matrix,X, can be reconstructed from the eigenvectors and projection

matricesT andP, by right multiplying equation7.3by TT

PTT = X T TT = X I = X (7.4)

where I is an identity matrix. More usefully, a matrix of filtered trajectory data,F ,

can be calculated by multiplying a subset of the (column) projection vectors inP by

the corresponding subset of the eigenvectors inTT. This wayF contains only motions

that occur along the eigenvectors selected fromP and T, since motions along other

eigenvectors are represented by projections omitted from the calculation ofF . IED

employs this method to calculate filtered trajectories, adding〈x〉 to the coordinate vector

in each row ofF to translate the coordinates back to their original origins. When a single

eigenvector is to be examined by interpolation between extreme projections, coordinates

are calculated by varying the (scalar) projection value for the selected eigenvector at the

current time step and recalculating the appropriate row fromF for each value of the

projection.

When IED calculates ED directly, it can operate on trajectory data in any format that

VMD is able to load. When loading results of ED analysis carried out in GROMACS,

it requires a molecular topology file (in any VMD acceptable format), an eigenvec-

tors file in GROMACS TRR binary format generated by g_covar, and a projections file

generated by g_anaeig. The first timestep of the eigenvectors file is ignored, the sec-

ond contains the molecule’s average coordinates over the trajectory and the remaining

timesteps contain eigenvectors in decreasing order of their eigenvalues. The projections

file is formatted as text input to Grace, a plotting tool. Each eigenvector has a separate

block of projection data within the file; within each block there is one projection per

line, consisting of a time value followed by a projection value, separated by whitespace.

When loading ED results from AMBER, the requirements are similar: a topology file,

an eigenvectors file and a projections file. The eigenvectors file and projections file are

both produced by ptraj and are in text format. The eigenvectors file contains two header

lines, which are ignored, the average coordinates, and then the eigenvectors. Each eigen-

vector has a two line header consisting of a line containing 4 asterisks (****), followed

by a line giving the ordinal number of the eigenvector and its eigenvalue. Numeric data
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for the average coordinates and eigenvectors are whitespace delimited, with 7 values per

line. The projections file has a two line header which is ignored. Each successive line

contains a timestep number, followed by projection values onto each eigenvector for that

timestep. The values are whitespace delimited.

Internally, IED represents the eigenvector data in a VMD trajectory object and the

projection data in an Python Numeric array object. IED is an open source application,

and is easily extended to other file formats by writing parsing routines to read data into

the aforementioned data structures.

7.3 User Interface

IED is started either by selecting a trajectory in VMD for ED analysis, or by loading

files containing the results of an ED analysis previously performed in ptraj or GRO-

MACS. Once the ED data are loaded, a window is displayed with a checkbox and slider

for each eigenvector (see figure7.1). When necessary, the eigenvector slider area of the

window can be scrolled to allow for arbitrarily large numbers of eigenvectors. Selecting

a checkbox allows motion along the corresponding eigenvector and activates the eigen-

vector’s slider, setting its position to the projection on the eigenvector for the current

frame of the trajectory. Check boxes can be selected independently, allowing simulta-

neous analysis of any combination of eigenvectors. When the VMD animation controls

are used to play the trajectory, the molecular display shows the filtered trajectory: the

projection of the trajectory on the currently selected eigenvectors. Slider positions cor-

responding to selected eigenvectors are updated as each frame of the trajectory is dis-

played. The movement of the sliders provides an animated, graphical representation of

the projection of the trajectory on each eigenvector. When the animation is stopped, the

sliders for any selected eigenvector can be moved manually, which temporarily changes

the projection value on the eigenvector for the displayed frame. The molecular display

is updated as the slider is moved, making it easy to appreciate any eigenvector’s contri-

bution to the molecular motion. A comma delimited list of projections can be entered

in the text box near the bottom of the window to rapidly set the projections along all
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Figure 7.1: Screen shot of Interactive Essential Dynamics. Top right window is the
main IED window, window immediately below contains the checkboxes and sliders for
selecting eigenvectors and manipulating projections. Remaining windows are VMD win-
dows: main window and animation controls at bottom left, console at bottom right and
molecular display at top left.

eigenvectors.

Interactive manipulation of the molecule’s projection along an eigenvector provides

the clearest visualization of the eigenvector, but is not possible in cases where a static

image is required for publication or presentation. Static visualizations can be produced

by selecting a single eigenvector and clicking on representative atoms. An arrow is

drawn through the clicked atoms, with the arrow’s head representing the atom’s position

at the most positive projection and the tail representing the most negative projection.

When IED is used to visualize normal modes data, there is no associated trajectory,

and no projections file is loaded. In this case, trajectory playing and filtering features

are disabled, but all other features are available.
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7.4 Summary

IED allows interactive visualization and manipulation of projections of protein mo-

tion on selected eigenvectors and easy selection and filtering on different discontinuous

sets of eigenvectors. It increases efficiency in working with ED results and enables

appreciation of aspects of the dynamics that might be missed with more limited tools.

IED is available at no charge under the Gnu Public License (GPL) athttp://

mccammon.ucsd.edu/software.html . The language, applications and libraries on

which it depends are also freely available.

This chapter is a reprint in full of material that appeared inInteractive Essential

Dynamics.John Mongan. Journal of Computer-Aided Molecular Design,18(6), 433-

36, June 2004. I was the sole author and researcher for this work.

http://mccammon.ucsd.edu/software.html
http://mccammon.ucsd.edu/software.html


Chapter 8

Computational design of pyrone-based

inhibitors of stromelysin-1

ABSTRACT

In an effort to develop alternatives to hydroxamate-based matrix metalloproteinase in-

hibitors (MPIs), we have utilized the drug discovery program LUDI enhanced with the

structural coordinates of a bioinorganic model complex. This method has yielded the

first pyrone-based MPIs. The inhibitors demonstrate nanomolar potency against MMP-

3 and are selective for MMP-3 over MMP-2 and MMP-1. The potency and unusual

selectivity profile of these MPIs are postulated to be attributable to the pyrone chelating

group.

8.1 Introduction

The zinc(II)-dependent MMPs have been pursued as chemotherapeutic targets for

the treatment of illnesses such as cancer, arthritis, and heart disease. Consequently, over

the past two decades attempts to interfere with MMP activity have yielded numerous

Reproduced with permission fromPotent, Selective Pyrone-Based Inhibitors of Stromelysin-1.David T.
Puerta, John Mongan, Ba L. Tran, J. Andrew McCammon, and Seth M. Cohen. Journal of the American
Chemical Society,127(41), 14148-49, October 2005. Copyrightc© 2005 American Chemical Society.
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inhibitors.165 MMP inhibitors (MPIs) are based on a two-part strategy: chelation of the

catalytic zinc(II) ion combined with non-covalent interactions within subsite pockets in

the MMP active site.165,166

The majority of MPIs synthesized to date contain a hydroxamic acid as the chelating

or zinc-binding group (ZBG).165,166Hydroxamate-based MPIs suffer from a number of

drawbacks including low oral availability, and poor in vivo stability, and consequently

have not succeeded in clinical trials.167 These limitations have prompted the investiga-

tion of a small number of non-hydroxamate-based MPIs.168–170 This chapter describes

inhibitors that utilize a pyrone ZBG, which results in improved potency and novel se-

lectivity relative to similar hydroxamate-based MPIs.168

Pyrones were selected for this study due to their synthetic versatility,171 known bio-

compatibility,172 and good aqueous solubility. An earlier study examining the use of

maltol (3-hydroxy-2-methyl-4-pyrone) as a ZBG, indicated the 2-methyl substitutent

was favorably oriented toward the hydrophobic S1′ pocket of stromelysin-1 (MMP-

3).173,174 Several studies show that targeting the S1′ pocket of MMPs yields potent

and selective MPIs.165,166Therefore, simple aryl groups were attached to the 2-position

of maltol in order to exploit this interaction.

8.2 Methods

To design pyrone-based inhibitors, the drug discovery program LUDI (Accelrys)

augmented with parameters from a bioinorganic model complex was employed.175 LUDI

uses a constrained docking approach that identifies optimal fragments to link to the

pyrone moiety at a specified point of attachment. Structural data of maltol bound to

a tris(pyrazolyl)borate model complex173 were integrated into a known MMP crystal

structure to generate the initial receptor complex.175 The point of attachment to the

ZBG was defined as an N-H bond from an amide moiety on the 2-position of the maltol

ring (the amide group was built in silico on the ZBG). Fragments were screened and

ranked using a LUDI scoring function.176

PDB structures 1G4K (MMP-3) and 1QIB (MMP-2) were used for docking with
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Figure 8.1: Crystal structure of maltol bound to (TpPh,Me)Zn, a model of zinc(II) ion
coordination in the MMP active site.

LUDI version 60a, as part of the InsightII 2000L framework. For structures having more

than one protein in the asymmetric unit, the “A” chain was selected. Proteins were proto-

nated using the “Hydrogens” command of the Biopolymer module of InsightII. Crystal

waters and inhibitors were removed from each structure. The zinc binding group (ZBG)

3-hydroxy-2-methyl-4-pyrone (maltol) was positioned in the active site of each pro-

tein based on crystal structure coordinates of maltol bound to [(TpPh,Me)Zn] (TpPh,Me =

hydrotris(3,5-phenylmethylpyrazolyl)borate), a model of the zinc(II) ion coordination in

the MMP active site.175 Positioning was performed by minimizing RMSD between the

protein and model compound for the active site zinc and coordinating nitrogen atoms.

Due to the rotational symmetry of the model compound, three alignments are possible.

Only one alignment allows the R groups (see figure8.3) access to the S1′ pocket;177 this

alignment was used in all docking studies. Hydrogen atoms were added to the aligned

maltol molecule and an amide group was built at the 2-position of the ring using Cerius2

4.8.1.

All docking was performed using LUDI link mode, where docked fragments are

constrained such that a methyl group on the fragment must be aligned with a link site.

The N–H amide bonds on the maltol ZBG were selected as the link sites. Initial docking

used the default LUDI link library of fragments, and the following parameters: maxi-

mum alignment angle 20˚; maximum alignment RMSD 0.6 Å; search radius 11 Å; rotate

bonds two at a time; preselect 4.0; minimum separation 3.0; lipophilic density 40; polar
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density 40; minimum surface 0; link weight 1.0; lipophilic weight 1.0; H-bond weight

1.0; aliphatic aromatic off; reject bifurcated off; no unpaired polar off; electrostatic

check off; minimum score 0; maximum fits 8000; maximum hits all; maximum unfilled

cavity 0; energy estimate 1 scoring function;176 and best fit. These parameters were

chosen to maximize the quality and thoroughness of the docking. Despite this, it was

found that results were somewhat dependent on the search sphere center, and favorable

fragment poses could be missed with some search sphere centers, particularly for the

larger fragments. To minimize this problem, multiple dockings were performed using

different search sphere centers within the S1′ pocket; the results presented represent the

union of these results.

Further docking was performed using a custom link library primarily based on the

work of Hadjuket al.,178 consisting of the substituents illustrated in figure8.3. Due to

the limited ability of LUDI to handle rotational flexibility in fragments (only 120˚ or

180˚ rotations can be performed), all possible rotamers with 30˚ increments of rotation

were generated for each substituent, and each rotamer was added to the library as a

separate fragment. Bonds between phenyl groups were treated as non-rotatable, and

rotamers with steric clashes or eclipsed conformations were excluded. Docking with

this custom library was performed using the same parameters as above, except bond

rotation was set to one at a time. It would seem that because the library already included

all rotamers, bond rotation could be set to none, but using one at a time seemed to reduce

the differences in results caused by using different search sphere centers.

8.3 Results and Discussion

Results from docking the custom library are presented in table8.1. Reported LUDI

scores represent the highest scoring pose for a fragment in the specified protein structure,

rounded to the nearest 10. Higher scores indicate higher predicted affinity, with each 100

points representing a predicted order of magnitude decrease in IC50.

The result of the LUDI docking for one of the high scoring compounds (AM-5 , vide

infra) is shown in figure8.2. The fragment in figure8.2 was found to reside in the S1′
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Figure 8.2: LUDI docking image of backbone fragment (green, in S1′ subsite) with
pyrone ZBG (colored by element) in the active site of MMP-3 (gray). This fragment
combination leads to the compound designated AM-5 (see figure 8.3). The zinc(II) ion
is shown as a magenta sphere.

pocket of MMP-3. The high and low scoring fragments from the custom library were

similar in structure; therefore, all six compounds were synthesized to test the accuracy

of the LUDI docking and scoring function.

Synthesis of the pyrone-based MPIs was performed as illustrated in figure8.3. Two

synthetic routes were utilized, based on the commercial availability of the desired amine

backbones. 2-Carboxy-3-benzyloxy-6-methyl-pyran-4(1H)-one (1) was prepared by a

literature method.171 Compound1 was then activated with NHS, followed by cou-

pling to the desired amine, and removal of the benzyl protecting group to yield com-

poundsAM-1 , AM-2 , AM-3 , andAM-4 . The synthesis ofAM-5 andAM-6 was ac-

complished similarly, but required the Suzuki coupling of 3-benzyloxy-6-methyl-pyran-

4(1H)-one-2-carboxy-N-(4-iodobenzylamide) (2) with 4-cyanophenylboronic acid and

4-biphenylboronic acid, respectively, as an intermediate step.

The inhibitory activity of compoundsAM-1 throughAM-6 was evaluated using

a fluorescence-based assay;179 the IC50 values are listed in table8.1. AM-2 , AM-5 ,

andAM-6 were the most potent compounds against MMP-3, with IC50 values in the

nanomolar range. The IC50 values against MMP-3 correlate well with the scores ob-
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Figure 8.3: Synthetic scheme for MPIs. Key: (I) a) NHS, DCC, dry THF; b) ‘amine’,
dry THF, 88%; c) 10% Pd/C, H2 35psi, MeOH or 1:1 HCl:CH3COOH, 60–89%. (II) d)
ArB(OH)2, 2M K2CO3, Pd(C2H3O2)2, PPh3, toluene, 135 oC, 40–85%; e) 10% Pd/C,
H2 35psi, MeOH or 1:1 HCl:CH3COOH, 60–91%.

tained for each fragment using the program LUDI. Although the LUDI scores do not

perfectly parallel the relative inhibitory activity, the approach used here does clearly

distinguish between poor, moderate, and exceptional MPIs.

Interestingly, the pyrone-based MPIs presented here are more potent than the anal-

ogous hydroxamate-based inhibitors,180 which is contrary to the accepted dogma that

hydroxamic acids are the best ZBGs.181 As expected, the effects of linker length (com-

pareAM-1 , AM-2 , andAM-3 ) and backbone substituents (AM-5 relative toAM-2 ) are

consistent with analogous hydroxamate-based MPIs.178 These results strongly support

the concept that ZBGs equal or superior to hydroxamates can be identified and utilized

in novel MPI designs.170,180

The observed trends in the IC50 values of the MPIs described here against MMP-

3 suggest that the large aromatic backbone substituents of these compounds occupy

the S1′ subsite. This hypothesis was further examined by determining the selectivity

of these compounds against different MMPs. Traditionally, the incorporation of bulky

groups directed toward the S1′ pocket results in selectivity over MMP-1, which has a

shallow S1′ pocket.165 All six MPIs were found to be poor inhibitors of MMP-1 (table

8.1). The poor activity of these compounds against MMP-1 is wholly consistent with
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Table 8.1: IC50 Values (µM) and LUDI scores for MPIs against MMP-1, MMP-2 and
MMP-3. Higher LUDI scores indicate better predicted affinity (lower IC50).

Inhibitor MMP-1
MMP-2 MMP-3

IC50 LUDI IC50 LUDI
AM-1 > 50 36(5) — > 50 —
AM-2 > 50 9.3(0.5) 530 0.24(0.01) 600
AM-3 > 50 27(2) — 36(1) —
AM-4 > 50 > 50 440 2.4(0.2) 440
AM-5 > 50 0.61(0.01) 570 0.010(0.002) 640
AM-6 > 50 > 50 690 0.019(0.002) 700

the aryl backbone groups occupying the S1′ pocket, which supports the LUDI results

(figure8.2) and ZBG orientation predicted by the bioinorganic modeling studies.173

The inhibitors were also tested for potency against MMP-2. Like MMP-3, MMP-2

has a deep S1′ pocket and potency against these two enzymes is expected to be compara-

ble, as found with hydroxamate-based MPIs.165,166Interestingly, althoughAM-2 , AM-

4, AM-5 , andAM-6 showed a range of potencies against MMP-3, all four compounds

were substantially less potent against MMP-2. Indeed,AM-5 showed >2500-fold selec-

tivity for MMP-3, which is the highest selectivity reported for an MPI for MMP-3 over

MMP-2.

The observed selectivity of these compounds for MMP-3 over MMP-2 is in contrast

to the selectivity observed for most deep S1′ pocket MPIs. Hydroxamate-based MPIs

that occupy the S1′ pocket are almost exclusively more potent for MMP-2 than MMP-3,

with few exceptions.165,166,182MPIs reported to be selective for MMP-3 over MMP-2

generally target the S3′ subsite;182 however, based on the LUDI docking, the MPIs pre-

sented here have no significant interactions in the S3′ subsite, and indeed give similar

LUDI scores when docked to MMP-2 or MMP-3 (Table8.1). Therefore, it is plausible

that the observed selectivity originates from the pyrone ZBG. It has been reported that

more acidic ZBGs, such as carboxylates (a weaker ZBG than the hydroxamate),181 are

generally more potent for MMP-3 than MMP-2,168,182which is attributed to the differ-

ence in the optimal pH for the two enzymes. MMP-3 prefers a more acidic environment

(pH ~6.0) compared with other MMPs (including MMP-2), which favor a higher pH
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Figure 8.4: Neonatal cardiac fibroblast (CF) invasion assay results. Fluorescent mea-
surement (in RFUs) of lysed cells after invasion with: no inhibitor (Control), 250 nM
AM-5, and 250 nM AM-6. Increased RFUs indicates increased cell invasion.

(~7.5).183 By analogy, the selectivity of the MPIs reported here is likely due to the

greater acidity of the pyrone versus hydroxamate chelator (∆pKa ~1).184 These results

suggest that the ZBG, and not only the MPI backbone, can provide selectivity between

different MMPs without compromising potency. Furthermore, the selectivity of the py-

rone MPIs could be advantageous in the environment of hypoxic tumors, where a more

acidic ZBG may prove more effective.

The ability ofAM-5 andAM-6 to inhibit invasion of neonatal rat cardiac fibroblasts

through a collagen membrane was examined, as a gauge of the in vivo potential of these

MPIs. At a concentration of 250 nm, the two inhibitors were found to reduce invasion by

67% (AM-5 ) and 55% (AM-6 ) (figure8.4). In summary, the use of pyrone ZBGs results

in more potent inhibitors than those produced with the widely employed hydroxamate

group. These results also indicate that the use of a non-hydroxamate ZBG reveals a

novel route to MMP inhibitor selectivity. Overall, the findings reported here suggest a

chelator-driven approach to metalloprotein drug design can produce potent and selective

metalloprotein inhibitors.
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This chapter is a reprint in full of material that appeared inPotent, Selective Pyrone-

Based Inhibitors of Stromelysin-1. David T. Puerta, John Mongan, Ba L. Tran, J. Andrew

McCammon, and Seth M. Cohen. Journal of the American Chemical Society,127(41),

14148-49, October 2005. I was the secondary author and conducted the computational

portion of the research for this work. Co-authors of the article conducted the synthesis

and assays or supervised and directed the work.



Chapter 9

Evaluation and binding mode

prediction of thiopyrone-based

inhibitors of anthrax lethal factor

ABSTRACT

Anthrax lethal factor (LF) is one of three proteins involved in anthrax pathogenesis

and lethality. Inactivation of the LF gene inB. anthracisleads to a thousand-fold or

greater reduction in virulence, which suggests that anthrax pathology is highly depen-

dent on LF.185 This chapter presents an effective inhibitor of anthrax lethal factor based

on a heterocyclic chelator scaffold, computational predictions of the binding mode for

this inhibitor and evidence that accurate prediction of binding modes requires use of a

molecular surface-like boundary between solute and solvent.

9.1 Introduction

Anthrax LF is a zinc(II)-dependent, hydrolytic enzyme that cleaves the N-terminus

of the D-domain of mitogen-activated protein kinase kinases (MAPKK), which im-

pairs essential signal transduction pathways and results in macrophage apoptosis along

with other harmful consequences for the host.186–188 The potential for bioterrorism

127
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and inadequate treatments for anthrax, especially at late stages of infection, have am-

plified interest in finding effective anthrax lethal factor inhibitors (LFi). Several ap-

proaches have led to the identification of a variety of LFi189–192including library screen-

ing and optimization,193,194 fragment-based NMR screening (BI-11B3, figure9.1),195

mass spectrometry-based screening,196 and re-examination of inhibitors of other met-

alloproteases and related hydroxamate-based compounds.193,197–199An example of the

latter class is the broad spectrum matrix metalloproteinase (MMP) inhibitorGM6001

(figure 9.1), which was found to be an effective inhibitor of LF in vitro and in cell

culture.193 Structural characterization ofGM6001 in the LF active site shows that the

hydroxamate group of the inhibitor chelates the catalytic zinc(II) ion.193 Indeed, the

direct binding of the active site zinc(II) ion is proposed to be important in the majority

of LFi described to date.191,193–195Based on the use of hydroxamate-based inhibitors, a

bioinorganic approach to the design of LFi is applied here. The strategy focuses on the

metal-ligand interactions of a metalloprotein inhibitor,170 which appear to be central to

the inhibition of LF. The effectiveness of several previously described ligands as zinc-

binding groups (ZBGs)181 for incorporation into LFi are reported. The ZBGs, shown in

figure 9.1, were selected based on their inhibition of MMPs, as well as their potential

to overcome the limitations associated with hydroxamate-based inhibitors.170 Finally,

the potency and binding mode of a novel LFi based on a thiopyrone chelator (AM-2S,

figure9.1) is reported.

9.2 Experimental assays

The in vitro potency of compounds1–11 (figure 9.1) against LF was evaluated in

an assay based on established procedures using a fluorescent peptide substrate (table

9.1).200 Compounds1–11 were compared relative to the hydroxamate group used in

many LFi and metalloproteinase inhibitors, as represented by acetohydroxamic acid

(AHA , figure 9.1). It is important to recognize that compounds1–11 represent only

the ZBG portion of a metalloproteinase inhibitor (figure9.1). These ZBGs will be used

as a platform to which a backbone substituent can be added to provide additional po-
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Figure 9.1: New (AM-2S) and previously described (BI-11B3 , GM6001) inhibitors of
LF (top). AM-2S is based on one of the heterocyclic zinc-binding groups (ZBG, 1 – 11)
examined in this study (bottom). The ZBG of each full-length inhibitor is highlighted in a
raised box.

tency and selectivity, resulting in a complete LFi. The O,O donor ligands1, 2, 4, and

6, on average, showed comparable inhibition toAHA (compound3 was not soluble and

compound5 showed no inhibition up to its solubility limit of ~6 mM). This suggests that

inhibitors based on these heterocycles will have comparable potency to hydroxamate-

based LFi, but may avoid some of the clinical shortcomings of hydroxamate-based met-

alloproteinase inhibitors.170 Furthermore, O,S donor ligands (7–11) showed improved

LF inhibition overAHA . This is consistent with earlier findings, which show that sulfur-

containing ligands inhibit zinc-dependent metalloproteinases more effectively than their

O,O analogues.181

To obtain potent, selective metalloproteinase inhibitors, the ZBG must be appended

to a backbone moiety to target the protein of interest.GM6001(figure9.1) has a hydrox-

amate ZBG that is attached to a complex backbone with a hydrophobic leucine mimetic

at the P1′ position;193 the result is thatGM6001 is a very potent, broad spectrum MMPi

as well as a potent LFi. This motif, of a ZBG appended with a hydrophobic P1’ sub-
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stituent, has been suggested as a general strategy for obtaining potent LFi.193 Based

on this construct, a biphenyl backbone was attached to a thiopyrone ZBG (10, 11) to

obtain the inhibitorAM-2S. Evaluation ofAM-2S in the LF assay gave an IC50 value

of ~14µM against LF (table9.1). This value is comparable to several reported LFi,201

includingGM6001, which has been found to have an IC50 value of 2–20µM.193,195

Table 9.1: IC50 values for ZBGs (1, 2, 4, 6–11) and AM-2S against LF measured us-
ing a fluorescence-based assay. IC50 values are based on at least three independent
experiments.

ZBG IC50 against LF (µM) Potency vs. AHA
AHA 11400± 1000 n/a
1 6570± 160 1.7-fold
2 32000± 3000 0.36-fold
4 27000± 3000 0.42-fold
6 6100± 500 1.9-fold
7 3900± 200 2.9-fold
8 690± 70 16-fold
9 1460± 60 7.8-fold
10 204± 16 56-fold
11 260± 30 43-fold
AM-2S 13.9± 0.3 820-fold

9.3 Computational methods

Binding modes ofAM-2S within the LF active site were investigated computation-

ally using AMBER.58 Docking was accomplished by using an extension of the previ-

ously described restrained exhaustive minimization approach.175 The work presented

here extends the previously described method in three important ways. First, a brief ini-

tial minimization was conducted to attempt to resolve steric conflicts, rather than elim-

inating all starting structures with conflicts. Second, solvent effects were represented

during the minimization using the generalized Born model. Third, due to the increase

in computational cost involved with generalized Born, structures were minimized to an

intermediate level of convergence, clustered, and then a single representative from each

cluster was minimized to full convergence, to avoid duplicating computational efforts.
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LF coordinates were taken from Protein Data Bank structure 1PWQ. Chain A of the

asymmetric unit was selected. Residues numbered less than 302 were removed to reduce

the atom count. All deleted atoms are on the opposite face of the protein from the active

site and are more than 30 Å away from the active site zinc(II) ion, so this simplification

is expected to have minimal effects on the results.

The zinc-binding group (ZBG) 3-hydroxy-2-methyl-4-thiopyrone (thiomaltol) was

positioned in the active site of LF based on crystal structure coordinates of thiomal-

tol bound to the active site model [(TpPh,Me)ZnOH] (TpPh,Me = hydrotris(3,5-phenyl-

methylpyrazolyl)borate).181 Positioning was performed by minimizing the RMSD be-

tween the protein and model compound for the active site zinc ion and coordinating

nitrogen atoms. Due to the rotational symmetry of the model compound, three align-

ments with the protein are possible. Two of these alignments lead to reasonable inhibitor

poses, while the third produces unresolvable steric clashes with the protein. A methyl

group, the peptide biphenyl unit, and hydrogen atoms not present in the model com-

pound crystal structure were added to theAM-2S model based on standard equilibrium

bond lengths and angles using Cerius2 (Accelrys).

For each of the two plausible alignments of the ZBG in the LF active site, a set of

all possible rotamers of the backbone portion of the inhibitor was generated. The two

bonds adjacent to the methylene carbon and the bond connecting the two phenyl groups

were rotated in 15˚ increments, while the bond connecting the ZBG with the carbonyl

carbon was rotated in 180˚ increments (to maintain ring conjugation). Rotamers having

steric clashes within the inhibitor were eliminated, leaving approximately 12,000 unique

inhibitor positions.

Energy minimizations were conducted using the sander module of the AMBER 8

suite. The LF protein was represented using the ff99 force field, modified with the

phi/psi potential of Simmerling, Strockbine, and Roitberg.44 The inhibitor was modeled

using the GAFF force field,202 with parameter assignments conducted by the antecham-

ber module of AMBER. Inhibitor partial charges were determined using the AM1-BCC

method, based on a net inhibitor charge of -1.

For each inhibitor starting position, an initial gas phase minimization (10 steps steep-

est descent followed by 90 steps conjugate gradient) was performed to attempt to alle-



132

viate steric clashes with the protein. During this minimization, positions of the protein,

active site zinc(II) ion, and ZBG portion of the inhibitor were fixed by applying har-

monic restraints with a force constant of 100 kcal/mol/Å2. Structures that successfully

completed this minimization yielding a favorable (negative) van der Waals energy were

passed on to the second stage of minimization.

In the second minimization stage, harmonic restraints were relaxed to 10 kcal/mol/Å2,

and solvent effects were introduced using theOBC generalized Born model (igb=5)47

with Bondi radii16 to define the dielectric boundary. Minimization began with 10 steps

of steepest descent and continued with conjugate gradient steps until the root mean

square of the Cartesian elements of the gradient were less than5× 10−3 kcal/mol/Å.

This fairly lenient convergence criterion was employed because full minimization of

every structure was computationally prohibitive.

After the second minimization, minimized inhibitor structures were clustered based

on their Cartesian coordinates with thek-means clustering algorithm using Euclidian

distances and arithmetic means to define cluster centroids.130 Because the purpose of

clustering was to eliminate redundant computation rather than to identify an optimal

clustering, cluster number was adjusted such that the representative (lowest energy)

member of each cluster had an RMSD of no more than 1 Å from the representative

member of the nearest cluster. 25 clusters were sufficient to achieve this maximum

separation.

For each cluster, the lowest energy member was selected, and minimization was

continued separately under the previously usedOBC GB model as well as theGBn

model described in chapter3. For this final stage of minimization, the convergence

criterion was1×10−4 kcal/mol/Å.

The two different GB models that were employed,OBCGB47 andGBn(see chapter

3), differ in how they define the dielectric boundary between the solute and solvent.

Their boundaries are related to two of the most commonly used surface definitions,

the van der Waals surface (vdWS) and the molecular surface (MS). With a vdWS, any

point not inside a solute atom is defined as solvent; with an MS only points outside the

surface defined by rolling a solvent sphere over the solute are defined as solvent. The

MS has the attractive property of excluding any space smaller than a water molecule
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from the solvent region, while the vdWS defines these small crevices between solute

atoms as containing water. vdWS (or related smoothed surfaces) are commonly used

in implicit solvent models because they are computationally more tractable than MS,

but as discussed in chapter2, the non-physical solvent pockets allowed by vdWS can

cause errors in protein solvation free energies and hydrogen bonding potentials. Both

theOBCGB andGBnmodels are based on a vdWS with correction terms that attempt

to emulate the properties of a MS.OBCGB employs a geometry independent correction

that makes corrections on an averaged basis and has little effect on surface atoms, while

GBn uses a geometrically-based pairwise correction that corrects for solvent pockets

near the surface as well as within the core of the protein.

The method described here is among the most physically rigorous methods for re-

strained docking, but is very computationally intensive. Total computer time was ap-

proximately 100 processor-weeks using 3.2 GHz Intel Xeon processors. The vast ma-

jority of this time was spent in the second minimization stage.

Poisson-Boltzmann calculations were conducted with a pre-release version of APBS

0.4.0.11 The linearized PB model was employed along with the multiple Debye-Huckel

boundary condition. Charge was discretized using the cubic B-spline method (spl2).

Dielectric values were 1.0 for solute and 80.0 for solvent regions. Calculations were

perfomed initially on a coarse grid with a resolution of 0.8 Å and then on a smaller

grid with resolution of 0.1 Å using the coarse grid potential as boundary conditions.

Molecular surface calculations used a minimum sampling point density (sdens) of 50

points per Å.186

9.4 Computational results and discussion

Both GB models identified the structure shown in figure9.2as having the lowest free

energy. This structure is 3.4 kcal/mol lower in energy than the next best conformer when

calculated by theOBCGB model and 2.5 kcal/mol lower when calculated byGBn. The

biphenyl group is found in the substrate binding groove of LF, near the binding location

of that observed for the LF20 peptide.193 In contrast, for the second alignment of the
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Figure 9.2: Lowest energy configuration of AM-2S in LF active site, identified by both
GB models. Orange sphere is zinc(II) ion.

ZBG, the inhibitor conformation with the lowest free energy was dependent on which

dielectric boundary was used. The lowest energy conformers calculated byGBn and

OBC GB are shown in figure9.3. The lowest energy conformer calculated usingOBC

GB places the biphenyl group into a narrow groove, which is highlighted in figure9.4.

Considering only the non-solvation components of the energy, configuration I iden-

tified by OBC GB (figure9.3, purple) is lower energy than configuration II calculated

usingGBn (figure 9.3, colored by atom type), due mostly to more favorable van der

Waals interactions between the biphenyl group and the protein. However, configuration

I highlighted in figure9.4entails a significant energetic penalty for desolvating the po-

lar groups in the groove by displacing water with the non-polar biphenyl group. When

using the more vdWS-likeOBC GB model, this penalty is underestimated due to the

crevices between the biphenyl group and protein (figure9.4), and configuration I is cal-

culated to have a solvation energy only 2.8 kcal/mol higher than that of configuration II,

such that configuration I is incorrectly identified as having the lowest total energy. When

using the more MS-likeGBnmodel, solvent is excluded from these crevices leading to

a larger difference in solvation energies of 5.8 kcal/mol, which is sufficient to identify

configuration II as having the lowest energy.

Because GB models involve approximations of both the dielectric boundary and
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Figure 9.3: Lowest energy configurations of AM-2S in LF active site for alternate ZBG
orientation. Configuration I (purple) appears to be lower in energy only when using
vdWS-like solvent-solute boundary such as that employed by OBC GB; configuration II
(colored by atom type) is the correct configuration, identified by GBn.

Figure 9.4: Detail view of positioning of biphenyl group (purple) for configuration I from
figure 9.3. Atom type colored spheres are LF atoms, with transparent grey LF MS
superimposed to aid visualization. Note the small crevices between the biphenyl group
and the LF binding groove that are defined as solvent with a vdWS-like boundary but
not with a MS, as well as the partially obscured polar oxygens (red spheres) near the
bottom of the groove.
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electrostatic interactions, the results were confirmed using the less efficient but more

physically rigorous Poisson-Boltzmann (PB) method implemented in APBS.11 PB cal-

culations with an uncorrected vdWS show little difference in solvation energy, with

configuration I more favorable than II by 0.4 kcal/mol. When the PB calculation em-

ployed a true MS, the solvation energy of configuration II is 36.6 kcal/mol lower than

that of I, confirming the selection of configuration II byGBnas the correct result.

The configuration illustrated in figure9.2 is approximately 28 kcal/mol lower in en-

ergy than the best alternative with the alternate ZBG orientation illustrated in figure9.3.

Nevertheless, figure9.3may represent a relevant configuration as there are unfavorable

steric interactions between the ZBG and protein for both ZBG orientations, but they are

considerably worse in figure9.3. It was necessary to keep the protein fairly rigid so that

the minimizations would be computationally tractable, so these unfavorable interactions

could not be relaxed in the computational modeling. Although it seems likely that the

protein would be sufficiently flexible to reduce or eliminate these interactions, there is

no straight-forward way to calculate the resulting conformations or energies. Therefore,

while it is reasonable to compare the relative energies of different configurations with

the same ZBG orientation, no fair comparison can be made between poses having dif-

ferent ZBG orientations on the basis of the results presented here. Until further studies

have been conducted that incorporate greater protein flexibility or alternate protein con-

formations that do not clash with the ZBG, the poses illustrated in Figures9.2 and9.3

should both be considered valid possibilities.

The results presented here illustrate the importance of a physically realistic solvent-

solute boundary in docking and binding studies. The work with small molecule hy-

drogen bonding and salt bridge models presented in chapter2 showed that errors due

to solvent pockets were mostly for high energy configurations (i.e. transition states),

but these results show that for small molecule-protein interactions, even minimum en-

ergy conformations can be sufficiently affected to produce erroneous ranking of binding

modes. It may be noted that a non-polar small molecule and a polar, concave protein

surface, as found in the system examined here, are likely to produce the greatest dispar-

ity between MS and vdWS results. However, these properties are sufficiently common

in systems of interest that the problems caused by non-physically small solvent pockets
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cannot be safely ignored.

This chapter is a preprint in full ofEvaluation and binding mode prediction of

thiopyrone-based inhibitors of anthrax lethal factor. Jana A. Lewis, John Mongan, J.

Andrew McCammon and Seth M. Cohen. Submitted to Angewandte Chemie Interna-

tional. I was co-primary author and conducted the computational portion of the research

for this work. Co-authors of the article conducted the assays or supervised and directed

the work.



Chapter 10

Future Directions

All the results and discoveries in the preceding chapters have built on the work of

others, as evidenced by the over 200 bibliography entries that follow. It is my hope that

this work will likewise be a foundation for myself and others to build on. This chapter

explores some of the directions that further advances in these areas might take.

10.1 Implicit solvation and generalized Born models

The importance of a Lee-Richards-like1 molecular surface boundary between sol-

vent and solute was illustrated in chapter2, and the generalized Born (GB) model de-

veloped in chapter3 provides a proof of concept that key aspects of such a boundary

can be incorporated into a fast, analytical GB model. The results in chapter3 show that

this new model is an improvement over earlier GB models on a wide variety of qual-

ity measures, and chapter9 illustrates an example where the degree of improvement is

sufficient to effect a qualitative change in the calculated result. Nevertheless, the im-

provements of theGBnmodel presented in chapter3 are somewhat more modest than

might be hoped, given the substantial differences between molecular and atom-centered

or van der Waals-like surfaces illustrated in chapter2.

Like most GB models, theGBn model is based on the Coulomb field approxima-

tion (CFA). The CFA provides a conceptually simple basis for GB that achieves fairly

good results for small molecules, but proves to be a very poor approximation for macro-

138
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molecules. To achieve reasonable results for large molecules, the free parameters of a

CFA GB model must be carefully fit to experimental or Poisson-Boltzmann (PB) results

to reduce the effect of error introduced by the CFA. This fitting process substantially

reduces the generality of the resulting GB model, and errors can only be partially cor-

rected, not eliminated. A far better approach is to start with a more accurate approxima-

tion of electrostatic field density. Charlie Brooks, Michael Lee, Michael Feig, Freddie

Salsbury and Wonpil Im, have pioneered this, with a series of refinements of an empir-

ically derived correction term to the CFA.5,8,36Tomasz Grycuk has derived a different

non-CFA expression53 with physical basis in the Kirkwood electrostatic model.81 Ex-

tension of the molecular surface-like integration method developed here to these more

accurate approximations should provide a marked improvement in GB accuracy with

very little loss of efficiency.

It has recently been suggested that as PB methods improve in computational effi-

ciency and ability to calculate numerically stable and accurate forces, they may soon

become a preferred alternative to GB.25 With further advances in PB methods, this may

yet occur. However, at the present time this suggestion fails to recognize that most of

these advances in PB have been enabled by the adoption of the atom-centered dielec-

tric boundaries discussed in chapter2. As illustrated by the results in that chapter, the

differences between results generated with molecular and atom-centered surfaces may

be significantly greater than the differences between PB and a high-quality GB model.

Until this problem is solved, these new PB methods may be both less efficient and less

accurate than the best GB methods. Early efforts to address this issue by Lu and Luo

illustrate the difficulty of the problem, making it clear that solution cannot be achieved

by a simple force field reparameterization.4 Rather than PB supplanting GB, it seems

more likely that both families of methods will evolve, developing into multiple imple-

mentations that span the spectrum of performance-accuracy tradeoffs.
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10.2 Constant pH molecular dynamics

Perhaps the biggest challenge facing constant pH molecular dynamics methods is

convergence. Convergence is a difficult issue for molecular dynamics (MD) methods

in general, and the addition of protonation state degrees of freedom makes the prob-

lem worse. No current method shows fully converged protonation state populations for

proteins, and some methods apparently do not even produce converged results for small

molecule model compounds in reasonable amounts of computer time. Since the most

common and straightforward validation method for constant pH schemes is comparison

of protonation state populations (or the related predicted pKa values) to experimental

data, it is difficult to assess the relative merits of different approaches: legitimate sys-

tematic differences can be lost in a sea of random sampling error due to poor conver-

gence.

Correct averages are achieved from simulation only when the number of transitions

between energy wells is sufficient that the time average of conformations over the sim-

ulation approximates the ensemble average. Therefore calculating correct ensemble av-

erage protonation populations will require reaching convergence multiple times for the

electrostatic environment of each of a large number of conformations.

Improving the rate at which protonation populations converge in a single electro-

static environment may yield some gains, but at some point convergence is limited by

the rate of conformational sampling. Use of implicit solvent MD accelerates sampling

while reducing computational cost, and forms the basis of many of the most success-

ful constant pH methods, including the model introduced in chapter5. It may also

be fruitful to combine accelerated sampling methods (e.g. replica exchange,203 locally

enhanced sampling,204 accelerated MD157) with constant pH to increase rates of confor-

mational sampling.

Implicit solvent MD is generally more computationally efficient than explicit sol-

vent MD, and provides faster conformational sampling.27 However, these methods are

relatively recent, and have not been parameterized as carefully and extensively as their

explicit solvent counterparts. Protonation of a titratable group is very sensitive to the

strength of salt bridges and hydrogen bonds involving the titratable group. The strength
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of these non-bonded interactions is determined largely by the solvent model. Both of

GB-based constant pH methods reviewed in chapter4, model developed by Leeet al.102

and the model presented in chapter5, encountered significant difficulties involving hy-

drogen bonding. Substantial improvements in protonation state populations may be

achieved with implicit solvent models that employ the advances described in the pre-

ceding section to model the strengths of non-bonded interactions more accurately.

The most interesting aspect of constant pH MD will not be the development or im-

provement of methods, but the ability to address unanswered and previously inaccessible

biological questions that is provided by sufficiently advanced methods. Examples of the

many important systems where pH plays a key role in triggering conformational rear-

rangements are the GALA peptide, engineered as a model of a viral fusion peptide; the

c subunit of the F0 part of F0F1 ATP synthase, responsible for driving ATP synthesis;

hemoglobin and hemagglutinin, the influenza protein that mediates fusion of the viral

envelope with the cell membrane.

10.3 Accelerated molecular dynamics

The biased-potential sampling method developed in chapter6 provides a simple

means for accelerating conformational sampling on potential energy landscapes where

the locations of important minima may not be known. The method as described in chap-

ter 6 provides for accelerated convergence to Boltzmann population distributions (after

reweighting), but does not allow for the recovery of kinetic information from the acceler-

ated trajectory. A recent extension of the method by Hamelberg, Shen and McCammon

shows that kinetics data can, in fact, be extracted from accelerated MD simulations with

appropriate analysis and characterization of the roughness of the energy landscape.205

Both chapter6 and the recent Hamelberget al. paper involve application of accel-

erated MD to small peptide systems. There are a number of open questions regarding

scaling the method to larger proteins. It remains to be determined what values of the

tunable energy threshold and well depth parameters,E andα, are optimal for achieving

the most efficient sampling. Additional studies are also needed to examine the tradeoffs
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between modifying the potential energy for the entire system with a single threshold

energy and modifying components of the potential separately (e.g.a separate threshold

for each torsion).

The importance and effectiveness of accelerated MD will be best judged in applica-

tion to problems where sampling with conventional MD is too slow to reach acceptable

levels of convergence, such as in the constant pH methods described above and in chap-

ters4 and5.

10.4 Zinc(II) protease inhibitor design

The drug design process described in chapter8 was successful in producing in-

hibitors with IC50 values in the nanomolar range, as generally required for lead com-

pounds. A number of avenues remain open for improvement of both the inhibitors and

the methods used to design them. While the affinities are quite good, the specificities

between different matrix metalloproteinase (MMP) subtypes is fairly low for most of the

inhibitors, with the notable exception ofAM-6 . This is not unexpected, as all of the in-

hibitors designed as part of this work interact primarily with the zinc and the hydropho-

bic S1’ pocket, which have highly conserved structure across the MMP subtypes. The

MMPs comprise a large family of enzymes with distinct expression patterns, so effec-

tive therapeutic applications will likely require specific inhibitors. Improved specificity

may be obtained by designing inhibitors that interact with binding sites opposite the S1’

pocket, which show greater variability between MMP subtypes.

LUDI, the program used for design of the MMP inhibitors described in chapter8,

yielded predictions having good correlation with experimental assays, but it may not be

the best choice for future work. The program often yields inconsistent results, and as a

close-source commercial application cannot be improved, extended or easily debugged.

Furthermore, there is no clear path for improving the knowledge-based scoring function

employed by LUDI. A better approach may involve the use of physically-based implicit

solvent methods such as the GB method developed in chapter3. While GB is probably

too slow for general docking problems, the constrained docking approach developed
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in chapter8 eliminates all six external degrees of freedom, narrowing the search space

sufficiently that it should be possible to use GB.

The lethal factor (LF) inhibitor studied in chapter9 has surprisingly high affinity

considering that it was not originally designed for LF. The relatively polar nature of

the binding pockets near the LF catalytic zinc suggest that polar substituents with the

ability to form hydrogen bonds may be more successful than the purely hydrophobic

groups that have been successful in MMP inhibitor design. Future inhibitors stand to

benefit from efforts targeted specifically at LF using the methods and improvements

outlined above.

An additional major methodological improvement will come from incorporating

protein flexibility into the design efforts. All the drug design work described here has

held the protein rigid, since full protein flexibility is currently computationally infeasi-

ble. An intermediate approach may be taken, where the protein is still held fixed, but

calculations are repeated for multiple rigid structures representing the protein’s con-

formational ensemble. Such structures may be taken from MD simulations. Since

proteins often sample significantly different conformational ensembles in ligand-bound

and unbound states, it is desirable that some or all of these structures be drawn from

simulations of ligand-bound proteins. The difficulty of determining accurate forcefield

parameters for ligand-metal interactions around the zinc has hampered these simula-

tions. However, forthcoming improvements in quantum mechanical/molecular mechan-

ical (QM/MM) methods should allow for these troublesome interactions to be treated

with semi-empirical QM methods, so metal-ligand forcefield parameters will be unnec-

essary.

10.5 Conclusion

This dissertation has explored the importance of appropriately defining the solvent-

solute boundary in implicit solvent models, and the improvements that may be realized

by incorporating more correct boundary definitions into GB models. Additional meth-

ods and applications made feasible by the computational efficiency provided by implicit



144

solvation have been examined, including fast, accurate constant pH MD and prediction

of protein-ligand binding for rational drug design.

Most computational scientific methods involve approximations that are made to gain

computational efficiency, and implicit solvation clearly belongs to this class. It is occa-

sionally suggested that approximate methods are really only an interim solution, useful

only until the rising tide of computational power makes it possible to eliminate the er-

rors inherent in the approximation through the use of more fundamental methods. I

believe that this is short-sighted, for a number of reasons. First, it should be recognized

that while computational power continues to increase, it may do so more slowly in the

future. While the work presented here was being conducted, all of the world’s major

microprocessor manufacturers shifted their focus from increasing the speed of individ-

ual processors to increasing the number of processors in a computer. Further advances

in computational power will be realized not by loading the same program onto a newer,

faster processor, but by the far more difficult process of designing new programs that

can effectively make use of very large numbers of processors. Second, the history of

biomolecular simulation is less one of increasingly accurate simulations of the same

systems and much more one of applying increasing computational power to ever larger

systems and longer simulations. There is a very very long way to go before feasibly

simulated systems become large enough and timescales long enough to encompass most

questions of biological interest. If the target is set at simulations of a system the size of

a cell for a period of one second, then there are approximately 9 orders of magnitude in

duration and 4 orders of magnitude in each of three dimensions in size beyond what can

be easily accomplished today.

Without question, there are limitations and errors inherent in any approximation.

Some instances where these limitations are particularly noticeable for implicit solvation

involve cases where specific interactions between solute atoms and individual solvent

molecules are important, such as in solvent-mediated hydrogen bonds, and simulation

of high salt concentrations, especially those containing divalent ions. While these sorts

of difficulties may limit the application of implicit solvent, the errors introduced seem

to be small enough to be negligible in most cases.

I envision a future of biomolecular simulation where implicit solvation does not
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become obsolete, but plays an important role as part of a hierarchy of methods employed

in hybrid simulations. Such hybrid simulations would be in the spirit of today’s QM/MM

simulations, where a region of interest is simulated using quantum mechanics while

the remainder of the system is treated with less accurate but more efficient molecular

mechanics. Expanding on this theme, future hybrid simulations may employ a wider

spectrum of methods. In addition to QM and MM, treatment of the solute might be

extended to include coarse-grained modeled regions, where whole residues are modeled

as a single particle with simplified force calculations. Likewise, hybrid solvent modeling

could involve a combination of methods with implicit methods used to treat most of

the system and explicit, or even more fundamental empirical valence bond or quantum

mechanical methods, used in regions where greater resolution and fidelity is required.

In this way, maximum accuracy can be achieved in the parts of the system that require

it, while maximum efficiency is achieved in the portions of the system that allow it, so

that the greatest possible use of the available computational power can be made.
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