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Diversity of α-helical host defense peptides (αHDPs) contributes to
immunity against a broad spectrum of pathogens via multiple func-
tions. Thus, resolving common structure–function relationships
among αHDPs is inherently difficult, even for artificial-intelligence–
based methods that seek multifactorial trends rather than founda-
tional principles. Here, bioinformatic and pattern recognition meth-
ods were applied to identify a unifying signature of eukaryotic
αHDPs derived from amino acid sequence, biochemical, and three-
dimensional properties of known αHDPs. The signature formula con-
tains a helical domain of 12 residues with a mean hydrophobic mo-
ment of 0.50 and favoring aliphatic over aromatic hydrophobes in
18-aa windows of peptides or proteins matching its semantic defi-
nition. The holistic α-core signature subsumes existing physicochem-
ical properties of αHDPs, and converged strongly with predictions of
an independent machine-learning–based classifier recognizing se-
quences inducing negative Gaussian curvature in target membranes.
Queries using the α-core formula identified 93% of all annotated
αHDPs in proteomic databases and retrieved all major αHDP fami-
lies. Synthesis and antimicrobial assays confirmed efficacies of pre-
dicted sequences having no previously known antimicrobial activity.
The unifying α-core signature establishes a foundational framework
for discovering and understanding αHDPs encompassing diverse
structural and mechanistic variations, and affords possibilities for
deterministic design of antiinfectives.

antimicrobial | host defense | antiinfective | amphipathic | bioinformatics

Antimicrobial host defense peptides (HDPs) are an evolu-
tionarily ancient arm of host immunity that first arose in

prokaryotes as a means to counter microbial competitors. Sub-
sequently, such peptides evolved through adaptive radiation to
exist in all classes of eukaryotes, where they continue to act in first-
line defense against infection (1). Extensive studies have estab-
lished that such peptides are not indiscriminant detergents, but
rather have complex and multimodal mechanisms of action (2–4).
As a group, α-helical HDPs (αHDPs) are among the most

rapidly evolving molecules characterized to date. Moreover,
genes encoding αHDPs are under strong positive selection,
affording a high degree of mutational tolerance despite being
limited by the biophysical constraints of an amphipathic helix (5–8).
When compounded over an evolutionary timescale, this process
has generated an exceptionally diverse repertoire of peptides ca-
pable of exerting multiple antimicrobial mechanisms. However,
such diversity and context-dependent activity have also presented
challenges to identifying common αHDP structure–activity rela-
tionships (SARs). While a number of groups have used computa-
tional or quantitative SAR (QSAR) methods, these efforts have
largely focused on drug candidate optimization (9–12). As a result,
other than charge or amphipathicity, resolving the unifying physi-
cochemical requisites in three-dimensional space that confer anti-
microbial activity to native αHDPs has remained elusive.
Moreover, results from machine-learning–based methods are dif-

ficult to translate into first principles. Thus, whereas machine-
learning–based classifiers can discriminate between HDPs and
non-HDPs, none to date have yielded more generalizable defini-
tions of αHDPs in a formulaic manner.
Here, knowledge-based annotation and iterative pattern rec-

ognition analyses of bioinformatic databases yielded a unifying
definition of structural elements common to native eukaryotic
αHDPs. Termed the α-core signature, this sequence formula
positions specific amino acid residue patterns on polar or non-
polar peptide facets in the context of a three-dimensional am-
phipathic helix. This signature formula retrieved all known
families of αHDPs when queried against well-established pro-
teomic databases. The veracity of the α-core signature to
recognize cognate semantic patterns was validated by machine-
learning methods in silico. Furthermore, a recently developed
support vector machine (SVM) classifier affirmed the α-core
signature corresponds with peptide ability to induce negative
Gaussian curvature (NGC) in microbial membranes. Topologi-
cally, this function enables a wide spectrum of membrane per-
turbing and ensuing mechanisms that exert direct antimicrobial
functions (13–15). As proof of concept, sequences scoring
highest relative to multiple parameters retrieved by the α-core
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signature formula, but having no known or anticipated antimi-
crobial function, were synthesized and assayed against a panel of
bacterial and fungal pathogens. All of the predicted peptides
exerted significant antimicrobial activity in vitro.
Beyond resolving a unifying structural signature among diverse

αHDPs, and its use to discover previously unknown antimicrobial
peptides, the current findings address the more foundational
question of how to define HDPs. Understanding functions me-
diated by the α-core signature can offer insights into the struc-
tural commonalities among HDPs that allow pleiotropic
mechanistic profiles of diverse αHDPs. Furthermore, the α-core
signature advances knowledge of host defense immunology and
its evolution, and enables possibilities for deterministic design of
antiinfectives to meet the challenge of drug-resistant infections.

Results
Derivation of the α-Core Sequence Formula. Proteomic databases
searched using the logic-based strategy identified consensus
motifs in proteins or peptides having α-helical sequence and three-
dimensional structure (Fig. 1A). A mathematical formula was then
derived and iteratively refined to fulfill consensus positional and
physicochemical patterns of amino acid residues characteristic of
known αHDPs (Fig. 1B). These analyses revealed that the in-
clusion of proline interrupted helical spans, while glycine and al-
anine are typically well tolerated in helices in membrane mimetic
environments (refs. 16–18 and Fig. 1C). For this reason, proline
was excluded from the explicit α-core formula, although degen-
eracy at positions 1 and 10 allows for this residue, whereas glycine
and alanine were allowed at all positions (Fig. 1).
Next, a systematic approach enabled optimization of the linear

α-core sequence formula (Fig. 2). This process iteratively refined
18 successive residue positions of a canonical right-handed
α-helix consistent with consensus patterns of antimicrobial se-
quences. When translated into three dimensions, this formula
describes an idealized amphipathic helix, with distinct hydro-
phobic and hydrophilic facets (Fig. 1A). Positions interposing the
polar and nonpolar faces were assigned a value of “X” within the
linear formula, yielding a polar angle (θ) minimum of 120° and
maximum of 180°. Through this iterative pattern recognition and
refinement process, an 18-residue generalized amphipathic for-
mula was resolved that fulfilled the α-core consensus sequence
and integrated a positional, hydrophobic, and hydrophilic resi-
due pattern as distributed along a three-dimensional amphi-
pathic helix. Sequences adherent to this signature ranged from
11 to 16 residues in length, corresponding to a span of 3–
4.5 turns across an α-helix. This pattern was ultimately termed
the α-core signature formula and represented all major classes
and families of eukaryotic αHDPs.

Primary Database Searches Using the α-Core Sequence Formula. The
refined α-core sequence formula was used as a query against
public domain sequence databases (UniProtKB, Swiss-Prot).
The formula was implemented using successive 12-residue
scanning windows (Fig. 1A), and searches were further refined
to sequences eukaryotic in origin, within proteins of less than 200
residues in length, containing a signal sequence, and within
50 residues of the C terminus. These characteristics enriched
biological plausibility, as the vast majority of eukaryotic αHDPs
are secreted into the extracellular environment.
Resulting raw data consisted of more than 70,000 sequences,

often representing multiple target hits shifted along amphipathic
helical spans of a single protein. Hits were compiled and dupli-
cations extracted to yield a nonredundant dataset of ∼13,000
unique sequences for subsequent studies. Dataset proteins
lacking a signal sequence motif were excluded to generate a final
dataset of ∼5,200 sequences (Table 1). Inclusion of the signal
peptide allowed for enrichment of sequences that are secreted for
potential activity toward extracellular targets. To retain a sharp

focus, protein sequences not containing a signal sequence are the
topic of our separate studies.

Efficiency of the α-Core Sequence Formula. The α-core signature
exhibited excellent sensitivity and specificity, retrieving all major
classes of αHDPs and 106 distinct helical peptide families, in-
cluding 93% of all known individual αHDPs (more than 800
peptides). Further specificity of the α-core signature was
affirmed by the observation that peptides not retrieved by the
formula were typically very short mature peptides of <12–
14 residues, or containing incomplete or interrupted helical do-
mains, such as amphibian “ranabox” peptides categorized as
helix–turn–helix in structure.
Beyond its considerable sensitivity, the formula was also tun-

able in terms of specificity or biochemical classification. For
example, in selected searches, sequences were gated as having an
isoelectric point (pI) of ≥8.5, and carried out in stages of either 0–
50 or 51–200 residues. For the 0- to 50-residue set, ∼71% of re-
trieved sequences were known αHDPs; whereas ∼27% of the
identified sequences were α-helical antimicrobial proteins in the 51-
to 200-residue set. Illustrating the veracity of this approach, the
α-core formula retrieved 827 of the ∼885 known αHDPs repre-
sented in the 555,594-sequence UniProtKB/Swiss-Prot database
(93% of known sequences). This outcome is equivalent to an in
silico enrichment of ∼90-fold. Moreover, the formula retrieved an
additional 4,412 sequences representing peptides having hypothet-
ical antimicrobial functions. The α-core algorithm retrieved only
0.17% of all sequences in the known Swiss-Prot/UniProt database,
attesting to its high specificity.

Residue Composition Frequency Within Search Hits. Sequences re-
trieved using the α-core signature formula were diverse, but
logically categorized and analyzed as belonging to one of three
distinct groups: αHDPS, Toxins, or Other (Table 1).
αHDPs.Within the αHDP group, the most abundant residues were
the low–molecular-mass amino acids, glycine and alanine, pre-
sent at frequencies of 14% and 13%, respectively. Of the polar
amino acids, lysine was the most abundant residue (14%), pre-
ferred over the cationic residue arginine at a 5:1 ratio (Fig. 3A).
In a more detailed analysis (Fig. 3 B and C), this preference was
greatest in amphibians (10:1), and somewhat less in arthropods
and mammals (3:1). Of the hydrophobic residues, leucine was
most abundant and preferred over isoleucine or valine at a ratio
of ∼2:1.
Toxins and Other peptides. In addition to αHDPs, Toxins, and Other
peptide sequences were also retrieved using the α-core formula
(Tables 1 and 2). One highly represented family was that of
toxin/venom peptides, making up ∼17% of the dataset. In the
Toxin group, glycine (14%), cysteine (12%), and alanine (10%)
were the predominant residues, whereas cationic lysine (10%)
and arginine (6%) residue frequencies were lower compared
with αHDPs (Fig. 3A). The abundance of cysteine within the
Toxin group reflects the fact that the vast majority of these
proteins are stabilized by disulfide arrays and have multiple
structural domains including β-sheet, γ-core, as well as α-helical
domains in their modular topology (19). Within the Other group,
residue frequency trends were generally similar to αHDPs and
Toxins; however, this group had comparatively lower frequencies
of glycine.

Spatial Distribution of Residues in αHDPs. The distribution of resi-
dues in three-dimensional space of the α-core signature placed
polar amino acids at positions 2, 5, 6, 9, 12, 13, 16, and 17, and
nonpolar residues at positions 3, 4, 7, 8, 11, 14, 15, and 18 (Fig.
3C). Molecules returned using this signature revealed distinct
patterns recurring within phylogenetic classes. For example, at
positions 5, 6, and 9 in arthropods, the most common polar
residue is lysine, with positions 5 and 6 typically bracketed by
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Fig. 1. The α-core consensus signature and scanning window of prototypic αHDPs. (A) Helical wheel and linear depiction of the 18-residue α-core sequence
formula. For alignment with αHDP prototypes, 18 initiation points for the 12-residue scanning window of the formula are shown, representing the process by
which the ProSite pattern search tool was utilized to query UniProtKB databases. Hydrophobic residues (F, W, Y, V, I, L, M, and C) are in various shades of
green, with greater hydrophobicity indicated by increasingly darker hues. Hydrophilic residues (K, R, H, E, D, N, Q, S, and T) are represented by the following:
blue, cationic; red, anionic; and orange, uncharged polar. Alanine (light green) and glycine (yellow) are included with both hydrophilic and hydrophobic
groups. H, hydrophobic; P, polar. (B) Mathematical representation of the α-core formula. (C) Optimization of α-core sequence formula by localization of
glycine and alanine residues. Iterative refinement of the α-core formula was carried out to assess the requirement for glycine and/or alanine as a component
of either the polar (hydrophilic) or nonpolar (hydrophobic) residue set. Percentage of returned sequences from a control αHDP dataset of more than
600 peptides are shown.
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leucine residues. By comparison, amphibian αHDPs share a high
frequency of lysine at position 5, but much less so at positions 6
or 9. This trend is extended in mammals, with position 4 domi-
nated by glutamine. On the contrary, lysine occurs much more
frequently at positions 2 and 12 in mammals than in amphibians
or arthropods. Furthermore, the observed enrichment of trypto-
phan at the first nonpolar residue at helix position 3 is in agree-
ment with prior findings that documented an increased level of
tryptophan near the beginning of α-helical spans (20). Thus, the
α-core signature identified unforeseen patterns of spatial distri-
bution and periodicity among seemingly diverse αHDPs.

Physicochemical Parameters Distinguishing αHDPs. Study proteins
were analyzed for individual or composite parameters dis-
tinguishing αHDPs: hydrophobic moment (μH), net charge (Q),
hydrophobicity (H), pI, and lysine-to-arginine ratio (NK/NK + NR;
Table 1). Univariate analyses revealed that μH and either Q or pI
were important parameters discriminating αHDPs from other
sequences (Fig. 4). Multivariate analyses revealed that one of the
most distinguishing characteristics of αHDPs results from an in-
tegration of hydrophobic moment and charge (μHQ). When μHQ
data were binned, rankings representing the top 25th (μHQ25) and
50th (μHQ50) percentiles were most predictive of sequences hav-
ing antimicrobial activity (Table 2). Similarly, direct positive cor-
relations between NK/NK + NR and mean hydrophobicity were
observed in sequences retrieved by the α-core signature (Fig. 5),
consistent with sequence trends deduced from geometric and to-
pological requirements for membrane permeation (21, 22).

Correlation of αHDP Signature and NGC Propensity. Datasets
returned by the α-core formula were categorized by μHQ (μHQ25;
μHQ50) and screened with a recently developed SVM-based
machine-learning classifier to assess propensity to induce NGC in
target membranes (13–15). A strong, statistically robust correlation
was seen between sequences identified by the α-core formula and
those predicted by the SVM protocol to be membrane active (σ
score; Fig. 6 and Table 2). Comparison of the two methods in
relative monotonic ranking of the datasets achieved highly signifi-
cant correlations (P = 2.2 × 10−6 to 1.2 × 10−46) for nearly all
groups (Fig. 6). The αHDPs were predicted to be membrane active
with an average probability of 0.93 (scale 0–1) for the μHQ25
dataset, and 0.91 for the μHQ50 subset by the SVM. Similarly, the
Toxin and Other datasets were also predicted to be membrane
active by the SVM, with average probabilities of 0.94 (μHQ25) or
0.88 (μHQ50) for the Toxins, and 0.95 (μHQ25) or 0.89 (μHQ50) for

the Other sequences. As a negative control, a nonsense version of
the α-core formula that prevented amphipathic helicity was used to
probe a randomized sample of the UniProtKB database. On SVM
analysis, the probability of this sequence ensemble to have anti-
microbial activity was only 0.06 (Table 2 and SI Appendix).

αHDP Prediction and Proof of Concept. The α-core signature formula
retrieved many sequences having no prior known or anticipated
antimicrobial function. To test predictive accuracy, 10 candidate
sequences representing diverse functional families retrieved by the
formula were synthesized by standard F-moc chain assembly, pu-
rified, authenticated, and assessed for antimicrobial efficacy in vitro
(ref. 23 and Fig. 7A). All test peptides exerted potent activity
against one or more of the prototypic human pathogens studied
(Fig. 7B). Many of these peptides exerted activities greater than a
prototypic control αHDP (LL-37) at either pH 7.5 (simulating
bloodstream) or pH 5.5 (simulating abscess). Of great interest,
several peptides exhibited preferential pH or target organism ac-
tivity. For example, anti-staphylococcal activity of the sequence
from human IFN-γ was essentially specific to pH 7.5, while minimal
at pH 5.5. Alternatively, the anti-candidal activities of sequences
from human IL-13 or IL-21 were minimal at pH 7.5 but significant
at pH 5.5. By comparison, sequences such as Pp2 from Phytoph-
thora demonstrated striking activity against all organisms tested at
both pH 7.5 and 5.5. Other interesting patterns included Acineto-
bacter being susceptible to all test peptides under either pH con-
dition. A comparative statistical analysis of the activities of study
peptides is included in SI Appendix, Fig. S1.

Discussion
The present findings define the α-core signature as a multidimen-
sional pattern integrating physicochemical and three-dimensional
relationships common to evolutionarily diverse αHDPs. Further-
more, this signature represents a foundational structure–activity
framework for delineating necessary or sufficient determinants of
antimicrobial activity. For example, the present data identify key
physicochemical and structural patterns that appear requisite for
antimicrobial activity of αHDPs, including the following: (i) a pe-
riodic enrichment of low–molecular-weight amino acids glycine,
alanine, and to a lesser extent serine; (ii) a pI typically >8 with a
preference for lysine over arginine; by comparison, β-sheet HDPs
tend to use arginine vs. lysine (21); (iii) a minimum helical core
domain spanning ∼12 residues (∼18 Å; ref. 20), with a mean hy-
drophobic moment of ∼0.50; and (iv) propensity for aliphatic over
aromatic hydrophobic residues. Collectively, these signature ele-
ments enable the quantitative definition of αHDPs, which have
previously been described generally as cationic, amphiphilic pep-
tides. Therefore, the α-core signature affords unique insights into
evolutionary, phylogenetic, and molecular effectors of antiinfective
immunology, as well as fundamental strategies for rapid discovery,
prototyping, and optimization of antiinfective peptide or biologic
designs.
The current findings also extend beyond prior understanding

of properties that correlate with microbicidal activities of
αHDPs, such as small mass, cationic charge, and amphipathicity
(2, 4, 24). While they can exhibit varied effects on distinct
pathogens, all αHDPs initiate their antimicrobial mechanisms by
engaging, perturbing, and/or transcending the target cell mem-
brane. Importantly, the α-core signature correlates with the

Fig. 2. The α-core signature iterative optimization algorithm. Development
and implementation of the α-core signature formula and its application
proceeded through quantitative and logic-driven steps to optimize sensi-
tivity and specificity in retrieval of known and hypothetical αHDPs.

Table 1. Biophysical properties of retrieved dataset proteins

Group n Q NK/NK + NR μH H pI

αHDPs 907 2.0 0.82 0.50 0.42 9.23
Toxins 787 1.1 0.62 0.48 0.32 7.44
Other 3,539 0.5 0.57 0.49 0.41 6.98
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ability of a peptide to induce NGC in microbial target mem-
branes, such that deviations away from the signature diminishes
their ability to do so. Positive charge is thought to contribute to
antimicrobial selectivity, given relative electronegative charge
and inward-rectified potential (δψ) of prokaryotic cell mem-

branes or mitochondria of eukaryotic pathogens (2, 25–28).
Moreover, the high concentration of lipids with negative intrinsic
curvature in a target membrane, as is the case for most bacteria,
also contributes to specific activity of αHDPs (29–31) by modi-
fying the Gaussian modulus. The present finding that lysine is

Fig. 3. Positional and spatial amphipathic residue frequency by organism class and functional group. (A) αHDP residue frequency by functional group.
Relative amino acid percentages are displayed for the αHDP (red), Toxin (blue), and Other (green) groups. (B) αHDP residue frequency by organism class.
Relative amino acid percentages for amphibians (green), arthropods (blue), and mammals (red). Int, intermediate. (C) Percentages of individual residues on
either the polar or nonpolar peptide face of study peptides are represented as various color blocks. Residues above the x-axis are found on the polar face of
retrieved peptides, and residues below the axis are found on the nonpolar face.

6948 | www.pnas.org/cgi/doi/10.1073/pnas.1819250116 Yount et al.
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preferred in αHDPs corroborates the observation that there exist
regions in amino acid sequence space with specific ratios of ly-
sine, arginine, and hydrophobic residues that are conducive to
topological remodeling of the membrane (21, 32, 33). Serine
residues also contribute, but appear to play a more supporting
role as spacers and mediators of hydrogen bonding (19, 34).
Cross-validation using ML suggests the α-core signature re-

veals basic principles not previously accessible regarding essen-
tial structural elements of αHDPs. For example, these peptides
have periodic distribution of low–molecular-weight and low-steric
bulk residues glycine, alanine, and to a lesser extent serine. The
systematic interposition of these residues among larger charged
and hydrophobic residues likely accounts for the three-dimensional
conformational optimization of αHDPs in membrane target en-
vironments (17, 18) to achieve local charge density (e.g., +1/70 Å2

to +1/350 Å2) necessary to maximize entropy gain for initial
membrane binding (29). Consistent with this view, proline residues
disrupt requisite helical periodicity in the α-core signature, and
native αHDPs lack proline in the helical domains (positions 2–
9 and 11–18 within the α-core signature). This efficiency in iden-
tifying helical spans compares favorably with algorithms reported
to correctly identify helices, with accuracies ranging from 81.5 to
94% (35–37). Previous QSAR and other in silico methods have
been useful to assess SARs in specific peptide-based libraries (9–
12). However, these approaches leave the unique biophysical and
three-dimensional properties conferring antimicrobial mecha-
nisms in the native peptide realm relatively unexplored. Similarly,
artificial-intelligence–based methods are typically optimized to
identify multifactorial trends rather than common principles. In
contrast, the present investigation integrated knowledge-driven as
well as stochastic bioinformatic and pattern recognition strategies
to resolve the α-core signature as it is conserved throughout the
eukaryotic proteome. Thus, the α-core signature overcomes his-
toric limitations that no general model had defined what αHDPs
are, especially given their complex and diverse mechanistic profile.
Adaptation of the α-core signature within specific phyloge-

netic groups revealed interesting insights into evolution of
αHDPs and other host defense molecules. While an abundance
of lysine as a preferred cationic residue in αHDPs has been
reported (21), the present data revealed frequencies of lysine
differ among αHDPs in distinct phylogenetic groups. For ex-
ample, lysine–arginine ratios in arthropods or mammals (3:1)
differ significantly from those of amphibians (10:1). In general,
arginine-rich HDPs tend to have β-sheet secondary structure
(e.g., β-sheet defensins of higher mammals), whereas lysine-rich
peptides tend to be α-helical. There are interesting functional
consequences of lysine vs. arginine substitution as well. For
example, as the arginine-to-lysine ratio is increased in a α-helical
peptides, less hydrophobicity is needed to generate NGC required
for membrane perturbation. Consequently, the membrane res-

idence time of the peptide is decreased, and it begins to func-
tion progressively more like a cell-penetrating peptide that
transcends the membrane without killing the cell, rather than a
cidal peptide that kills the target cell via long-lived pores (32).
Moreover, glycine and alanine were highly represented in

αHDP helices from arthropods or amphibians (G + A content,
30% or 26%, respectively), whereas their frequency is much lower
in mammals (12%). The evolutionary basis for such residue
preferences is unknown; however, there are intriguing hypotheti-
cal possibilities. Given their propensity to allow conformational
freedom that deforms α-helical structure in aqueous environ-
ments, it is conceivable that glycine and alanine may allow pep-
tides to remain in relatively unstructured, inactive (e.g., nontoxic)
conformations before interacting with the microbial target (38). A
number of studies have demonstrated that αHDPs can be un-
structured in aqueous environments, adopting their strong
α-helical conformation only upon encountering hydrophobic lipid
membrane environments characteristic of microorganisms (2, 17,
18, 39, 40). Likewise, the fact that amphibian, arthropodian, and
mammalian αHDP sequences all fulfill the saddle-splay selection
rule for lysine, arginine, and hydrophobes (ref. 21 and Fig. 5)
suggests different sequence selection pressures imparted struc-
tural adaptations that optimized antimicrobial function in context
of the specific physiology of the host.
Based on the sensitivity and specificity with which the α-core

signature formula retrieved αHDPs, it was applied as a discovery
tool to seek: (i) unknown or uncharacterized antimicrobial
proteins; (ii) sequences with an assigned function that also
have a previously unidentified antimicrobial function; or (iii)
helical antimicrobial peptide domains within larger proteins.
This analysis uncovered a large number of sequences having
no previously known direct antimicrobial functions and exhibited
high scores on the ML classifier. Confirming the predictive accu-
racy of the α-core signature formula, all study sequences synthe-
sized and assayed were found to have robust antimicrobial activity
in vitro. Examples included members of the γ-chain–dependent IL
family, along with type II IFNs. These results are consistent with
unforeseen antimicrobial activities discovered in chemokines (2, 4,
26) and selected ILs (4, 17, 18, 41, 42). Of the ILs, sequences
derived from turkey IL-5 (tIL-5) exhibited striking efficacy against
all pathogens at pH simulating bloodstream (pH 7.5) and abscess
(pH 5.5) environments. Sequences derived from human ILs (hIL-7,
hIL-13, hIL-21) also exerted significant activity, enhanced at pH 5.5.

Table 2. Biophysical properties of retrieved dataset proteins

Total μH*Q > 1.5 SVM

Group n n % μH Q H pI %

αHDPs 907 237 26 0.57 4.5 0.29 10.3 93
Toxins 787 123 16 0.54 4.0 0.21 8.9 94
Other 3,539 376 11 0.65 3.8 0.37 8.7 95

μH*Q > 1.0

αHDPs 907 426 47 0.54 3.6 0.36 10.1 91
Toxins 787 200 25 0.54 3.4 0.24 8.7 88
Other 3,539 659 19 0.61 3.2 0.36 8.4 89

Nonsense 1,820 6

Fig. 4. Prioritization of predicted α-helical peptide sequences selected for
experimental assessment. Values for net charge (Q) versus hydrophobic
moment (μH) are shown for the retrieved peptide dataset. All retrieved se-
quences are shown in gray. Peptide groups among which prototypic se-
quences were selected for further characterization are shown in color. For
comparison, prototypic αHDPs are shown in pink and olive.
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Likewise, peptides derived from human or bat IFN-γ had signifi-
cant activity against most test organisms, with an efficacy profile
somewhat greater at pH 7.5 than 5.5. Unanticipated αHDP se-
quences were also discovered in nonvertebrate species. For ex-
ample, among the highest scoring peptides were discovered in the
ubiquitous plant pathogen, Phytophthora parasitica. Of these, Pp-
2 was particularly active against bacteria and fungi at pH 7.5 and
pH 5.5.
It should be noted that methods in which peptides are assessed

for antimicrobial activity in artificial media significantly underesti-
mate the potent efficacy of many HDPs. Therefore, the antiinfec-
tive roles of these peptides may be even greater in vivo. For
example, we have previously shown the efficacy of representative
HDPs to be logarithmically greater in whole human blood, plasma,
or serum compared with artificial media (43). Similarly, ionic
strength can significantly influence HDP efficacy (44). Divalent and
monovalent ions behave very differently in their interactions with
peptide sequences that form electrostatically distinct domains as is
evident in the α-core. These effects may extend beyond contribu-
tions imposed by the Poisson–Boltzmann formalism (45).
Current findings also suggest insights into evolution and mul-

tifunctionality of HDPs across the phylogenetic spectrum. For
example, we have shown that amphiphilic α-helical HDPs having
specific sequence patterns can assemble into superhelical coiled-
coil protofibrils that organize dsDNA into ligands that optimally
engage TLR9 receptors (46, 47). Therefore, beyond their direct
antimicrobial activities, such αHDPs appear to activate synergistic
immune responses that promote holistic host defense. In these
ways, the α-core signature discovered in the present study may
enable precise definition of these SARs, which, along with target
membrane perturbation, are likely integrated into HDP sequences
and their multiplex superstructures.
The α-core signature, and its demonstrated ability to identify

antimicrobial sequences (Fig. 8), underscores its practical im-
plications to mine proteomic databases for antimicrobial se-
quences. In this respect, it reveals structural determinants that
are essential for membrane-specific antimicrobial activity, com-
pared with those which have been adapted to a given host. In turn,
this knowledge should enable peptide or biologic designs that
optimize antimicrobial activity and pharmacology relative to tox-
icity. As there have been historical challenges in translating HDPs
into antiinfectives, a clearer understanding of their structure–
mechanism relationships is of high priority. For example, as

discovered in the current work, enhanced insights into pharma-
cophores of HDP sequences—beyond simply positive charge and
amphiphilicity—will be invaluable to drive next steps toward de-
velopment of antiinfectives that address the threat of pathogen-
resistant conventional antibiotics. In this respect, of special
interest is the ability of the α-core signature formula to recognize
cryptic or antimicrobial sequences embedded in larger proteins. In
these ways, the α-core signature may accelerate the identification
or engineering of innovative antiinfectives that are urgently
needed to meet the rising challenge of antibiotic resistance.

Materials and Methods
Bioinformatic Identification of the α-Core Formula. To identify a consensus
formula that encompassed all major classes of αHDPs, successive sequence
alignments were carried out using prototypical α-helical antimicrobial peptides
in CLUSTAL W (https://www.ebi.ac.uk/Tools/msa/clustalw2/). Alignments were
refined for consensus optimization using MEGA 6 (48). Through iterative
analyses, an 18-residue generalized amphipathic formula was resolved that
fulfilled the overall consensus sequence and integrated the positional hydrophobic

Fig. 6. Spearman correlation analysis of study peptide μHQ and SVM σ.
Spearman correlations for the α-core μHQ50, μHQ25, and scrambled peptide
groups and SVM σ are shown. Panels depict μHQ25 and μHQ50 for αHDP (A
and B), Toxin (C and D), Other (E and F), and scramble groups, respectively.
P values indicate level of significance.

Fig. 5. Comparative physicochemical properties of α-core helices. Percent-
age of lysine (NK) relative to arginine (NR) expressed as (NK/NK + NR) versus
hydrophobicity (H) in study αHDPs and toxins. Preference of lysine compared
with arginine is reflected in an increased value of H for peptides capable of
generating NGC in membranes as predicted by the saddle-splay rule (21).
Binned along x-axis into 31 bins based on mean hydrophobicity; helical AMPs
in black are from the APD2 database.
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and hydrophilic residue pattern. This pattern was ultimately termed the α-core
signature formula, representing all major classes and families of eukaryotic αHDPs.

Assignment of Residue Polarity in the α-Core Formula. Within the α-core
formula, individual residues were categorized as either hydrophobic or
hydrophilic as per the Wimley–White hydrophobicity scale (49) that has
been empirically derived and includes contributions from the peptide bond.

One exception was for alanine (A), which was also included with the hydro-
phobic residues as per the Eisenberg (50) and Kyte and Doolittle (51) hydro-
phobicity scales. This assignment was made in part due to preliminary data
that localized alanine to hydrophobic facets of many αHDPs.

Accuracy of the α-Core Formula in αHDP Recognition. The α-core formula was
queried against the Protein Data Bank 3D database (www.wwpdb.org/) to

Fig. 7. Efficacy of predicted antimicrobial peptides retrieved by the α-core signature formula. (A) Helical wheel depiction of synthesized study peptides.
Peptides derived from the following proteins were assayed for antimicrobial activity: ILs [IL-5, Meleagris gallopavo (common turkey); IL-7, human; IL-13,
human; IL-21, human]; IFNs [IFN-γ, Myotis davidii (vesper bat); IFN-γ, human]; Phytophthora parasitica uncharacterized sequences (Pp-1, Pp-2, Pp-3, and Pp-4).
Hydrophobic moment (μH), charge (Q), and moment magnitude and direction are indicated. Coloration: cationic full charge (KR), blue; partial charge (H),
light blue; anionic, red; polar, yellow; tiny, gray; polar (NQ), pink, and (TS), purple. (B) Microbicidal activity of study test peptides versus a panel of prototypic
Gram-positive (S. aureus), Gram-negative (S. typhimurium, P. aeruginosa, and A. baumannii) and fungal (C. albicans) pathogens at two pH conditions sim-
ulating bloodstream (pH 7.5) or phagolysosomal (pH 5.5) environments.
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assess the fidelity of the formula in recognizing the helical domain signature
within proteins or peptides. One hundred nonredundant retrieved struc-
tures were evaluated for helicity of the target sequence. Hits were consid-
ered to be positive if the target sequence was ≥75% helical based on known
or predicted structure (www.wwpdb.org/).

In addition to optimizations for the retrieval of three-dimensional struc-
tural elements, the α-core formula was also iteratively refined to assess the
requirement for glycine and/or alanine as a component of either the polar
(hydrophilic) or nonpolar (hydrophobic) residue set. Variant versions of the
formula containing all possible G/A combinations localized to either the
polar, nonpolar, or both residue groups were queried against a control
αHDP dataset of more than 600 peptides that was manually collated from
documented αHDPs from the UniProtKB database.

Use of α-Core Formula as a Database Query Tool. The α-core sequence formula
was used with the ScanProsite search tool (https://prosite.expasy.org/scan-
prosite/) to seek iterative patterns in the UniProtKB Swiss-Prot database.
Iterative searches with varying lengths of the α-core formula found that a
scanning sequence motif of 12 positions in length was most efficient at re-
trieving the majority of known αHDP sequences (Fig. 1B).

The minimized sequence motif was then used to probe the UniProtKB
Swiss-Prot and TrEMBL protein databases. The formula was advanced one
position at a time through 18 iterations to represent an entire 18-residue
helical wheel span. To explore structural and biological relationships, the
ScanProsite search results were also filtered by the following: (i) sequence
length <200 residues; (ii) eukaryotic origin; and (iii) localization to the C-
terminal region of the target protein using a “X(0,50)>” logical operator.
α-Core formula (first iteration of 18). [KREDNQSTHAG]-[VILMCFWYAG]-
[VILMCFWYAG]-[KREDNQSTHAG]-[KREDNQSTHAG]-[VILMCFWYAG]-[VILMCF-
WYAG]-[KREDNQSTHAG]-X-[VILMCFWYAG]-[KREDNQSTHAG]-[KREDNQSTHAG]-
X(0,50)>
Nonsense formula (first iteration of 18). [KREDNQSTHAG]-[VILMCFWYAG]-
[KREDNQSTHAG]-[VILMCFWYAG]-[KREDNQSTHAG]-[VILMCFWYAG]-[KREDNQS-
THAG]-[VILMCFWYAG]-X-[VILMCFWYAG]-[KREDNQSTHAG]-[VILMCFWYAG]-X(0,50)>

Signal Peptide and Physicochemical Parameter Assessment. Retrieved datasets
were screened for the presence or absence of a signal peptide structural
domain using SignalP 4.1 (www.cbs.dtu.dk/services/SignalP/). Additionally,
hydrophobic moment (μH) (52), mean hydrophobicity (H) (53), net charge [Q,
K, and R (+1); H (+0.5); D and E (−1)], and K and R residue frequency were
determined in batch using Python algorithms specifically created for this
study. The Wimley–White hydrophobicity scale values were used for hy-

drophobicity and hydrophobic moment calculations (49). Sequence pI was
determined using ExPasy Compute PI (https://web.expasy.org/compute_pi/).

The equation for mean hydrophobicity (H) is as follows:

ÆHæ=
1
N

XN
n=1

Hn.

The equation for hydrophobic moment (μH), δ = 100°, is as follows:

ÆμHæ=
1
N

2
4 XN

n=1

Hn sinðnδÞ
!2

+

 XN
n=1

Hn cosðnδÞ
!2
3
5

1
2

.

Machine-Learning Validation of Datasets. To further characterize the datasets
retrieved by the α-core formula, a previously developed SVM-based classifier
(13–15) was used to screen the obtained sequences for antimicrobial activity.
Briefly, the SVM classifier was trained to optimally partition 243 known
α-helical sequences present in the Antimicrobial Peptide Database (ref. 54;
APD, aps.unmc.edu/AP/main.php) from 243 decoy peptides with no reported
antimicrobial activity. A minimal model consisting of 12 physicochemical
descriptors was obtained using feature selection from 1,588 starting de-
scriptors (55, 56). The SVM generated 12 descriptors from the peptide se-
quence and output a score σ specifying the distance of the peptide from the
11-dimensional hyperplane separating antimicrobial and nonantimicrobial
sequences. Experimental validation of computational predictions of mem-
brane activity was carried out using small-angle X-ray scattering (SAXS) ex-
periments. Here, model membranes were incubated with synthesized
α-helical test peptides, and induced NGC was quantified. Comparison of σ
scores with calibrating SAXS data revealed a strong correlation between the
ability to generate NGC in membranes and σ. Thus, a large, positive σ score
correlates with the ability to induce NGC in membranes, whereas a negative
σ score indicates a lack of membrane-permeating activity. These features
also correspond with the presence or absence of antimicrobial activity, re-
spectively (13–15). Sequences retrieved from the α-core search tool were
screened using this algorithm, and σ scores calculated. Spearman correla-
tions were quantified between σ and α-core metrics using Mathematica.

Synthesis of Candidate Peptides. Selected candidate αHDPs were synthesized
using standard automated F-moc chain assembly, purified by reverse-phase
HPLC, and authenticated by mass spectroscopy as previously detailed (43,
57). Lyophilized peptides were resuspended in ddIH20 and stored in
aliquots at −20 °C.

Assay for Antimicrobial Activity. Putative αHDP or like peptides were assayed
for microbicidal activity using a well-established radial diffusion method
adjusted to pH 5.5 or 7.5 (58). Sequences representing αHDP μHQ25 and
μHQ50 prototypes and not known to have antimicrobial activity were pri-
oritized for study. Sequences representing three diverse high-scoring groups
were selected: ILs (tIL-5, hIL-7, hIL-13, and hIL-21); IFNs (bIFN-γ, hIFN-γ); and
uncharacterized sequences from P. parasitica. These sequences were syn-
thesized and tested for microbicidal activity against prototypic bacterial and
fungal pathogens in vitro. Cathelicidin LL-37 (Peptides International), a
prototypic human αHDP, was used as a comparator. The efficacy of these
peptides was evaluated against a panel of human pathogens, including
αHDP susceptible and resistant isogenic pairs: Staphylococcus aureus
[ISP479C/ISP479R (59)]; Salmonella typhimurium [MS5996s/MS14028 (43)];
Pseudomonas aeruginosa (PA01); Acinetobacter baumanni (19606); and
Candida albicans [36082S/36082R (60)]. In brief, logarithmic-phase organisms
were inoculated (106 CFU/mL) into molten buffered molecular-grade aga-
rose plates. Peptides (10 μg) were introduced into wells in the seeded matrix
and incubated for 3 h at 37 °C. Nutrient overlay medium was applied, and
assays incubated at 37 or 30 °C for bacteria or fungi, respectively. After 24 h,
zones of inhibition were measured. Independent experiments were re-
peated a minimum of two times.
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Fig. 8. Classification of αHDPs and other HDP classes retrieved by the α-core
signature from the UniProtKB database. Data represent results from a query
of all UniProtKB sequences retrieved with the search terms: keyword [anti-
microbial] + length [0–200] + organism class [Eukaryota]. Peptides manually
scored for structure and type and sequences within each group are enu-
merated. Sequences were categorized as follows: (i) α-helical returned by
the α-core formula (α-helical α-core); (ii) α-helical not returned by the α-core
formula (non–α-core); (iii) linear cysteine-free sequences with many being
enriched for individual amino acids (linear peptides); (iv) β-sheet defensin or
defensin-like peptides (β-sheet peptides); (v) other disulfide-containing
peptides (S–S peptides); (vi) Cys-stabilized peptides containing α-helix and
β-sheet domains (CS−αβ); and (vii) other group including proteins with no
known structure or homology to other known sequences, as well as groups
that are not traditionally categorized as HDPs such as enzymes, DNA binding
proteins, protease inhibitors, lectins, and toxins.
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