
UC Merced
Proceedings of the Annual Meeting of the Cognitive Science 
Society

Title
Adaptation to Embodied Dynamics: Evidence from Bayes' Ball

Permalink
https://escholarship.org/uc/item/9hz1066r

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 30(30)

ISSN
1069-7977

Authors
Sims, Chris R.
Gray, Wayne D.

Publication Date
2008
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9hz1066r
https://escholarship.org
http://www.cdlib.org/


Adaptation to Embodied Dynamics: Evidence from Bayes’ Ball
Chris R. Sims (simsc@rpi.edu) & Wayne D. Gray (grayw@rpi.edu)

Department of Cognitive Science
Rensselaer Polytechnic Institute

Troy, NY 12180

Abstract
In recent years researchers have begun to recognize the re-
markable intelligence of even routine interactive behavior—
the extent to which humans adapt to and exploit the low-level
dynamics of cognitive processes, perception, and motor con-
trol without conscious deliberation. We developed an experi-
ment known as Bayes’ Ball, in which subjects must estimate
short time intervals (< 1000 ms) in order to maximize a point
score in a simple ball tracking task. Optimal performance in
this task requires that subjects possess intricate knowledge of
the dynamics of uncertainty in their estimates of elapsed time
(the Weber law of interval timing). The results of our experi-
ment show human performance that approaches, but does not
fully match the predictions of an ideal performer. On average,
humans differed from the ideal performer by less than 40 ms
in their response timing.
Keywords: embodied cognition; time estimation; uncertainty;
ideal performer analysis

Introduction
Nearly all of human activity can be described as an intricately
coordinated dance of low-level cognitive, perceptual, and mo-
tor components, each taking small steps of progress towards
a larger goal. The elementary operations performed by these
components unfold on the timescale of 1/3 of a second and
form the embodiment level of cognition (Ballard, Hayhoe,
Pook, & Rao, 1997)–the level of analysis at which the con-
straints of the physical components first have implications for
the ability to achieve goals in the world. The field of psy-
chology has a long history of studying the basic properties of
each of these components in isolation, for example, the rate
of memory decay as a function of time and practice (Ebbing-
haus, 1913) or how movement duration scales with magni-
tude (Fitts, 1954). However, a related and fascinating ques-
tion has received considerably less attention. Given a lifetime
of experience reaching for objects and remembering facts, to
what extent are individuals already and implicitly aware of
the performance characteristics of their own embodied cog-
nitive processes?

Given the multitude of varying tasks that humans face over
the course of a lifetime, it is notable that the only stable
components in these interactions are the internal components
themselves. While tasks and demands on cognition are likely
to change drastically from minute to minute, the dynamics
of memory decay are fairly invariant (and thus predictable)
across a wide range of tasks, as are the dynamics of simple
reaching movements. Thus from the perspective of efficient
skill acquisition, it seems rational that much of what should
be learned in routine behavior is an accurate internal model of
one’s own embodied dynamics—the performance character-
istics and interactions among cognition, perception, and mo-
tor control—rather than knowledge of the task, as this is the

knowledge that is most likely to be relevant in future tasks.
This perspective has important implications for research on
skill acquisition, as it shifts the explanatory focus from the-
ories of learning a new task, to theories of adapting and ex-
ploiting existing internal models to changing environmental
circumstances.

The purpose of this research is to explore the extent to
which interactive behavior in a novel task is sensitive to the
performance dynamics and interactions among simple cogni-
tive, perceptual, and motor processes. The work builds on a
growing body of literature demonstrating remarkable sensi-
tivity to low-level dynamics even in the most mundane activi-
ties. For example, (Augustyn & Rosenbaum, 2005) presented
subjects with two circular targets on a computer screen. The
subjects were required to move the mouse cursor to a start-
ing position anywhere along a line connecting the two tar-
gets. After choosing a starting position, one of the two targets
(randomly chosen) disappeared, and the task for the partici-
pant was to move the mouse cursor into the remaining target
within a short response interval. Across trials, the width of
one of the targets was varied. By making one of the targets
larger, it became easier and faster to move the cursor into
that target, in accordance with Fitts law. Given the goal of
maximizing performance in terms of landing the cursor in-
side the target within the time period, optimal performance
in the task requires accounting for Fitts law, as well as nu-
merous low-level dynamics of the specific task (for example,
subjects moved a small wooden disk on a table to control
the movement of the cursor). In keeping with their predic-
tions, Augustyn and Rosenbaum found that their participants
demonstrated performance that was indistinguishable from an
optimal performer.

In a somewhat more complex task, Gray and colleagues
(Gray, Sims, Fu, & Schoelles, 2006) examined behavior in a
block copying paradigm, where subjects had to memorize and
replicate a pattern of eight colored blocks seen in one location
of the computer screen at another location. The original pat-
tern of blocks and the workspace area where the pattern was
to be reproduced were both normally covered by occluding
boxes. To uncover the target or workspace area the subject
needed to move the mouse cursor inside the occluding box.
As a between-subjects manipulation, the investigators added
a lockout time to the target window that varied between 0 and
3.2 seconds, such that the subject had to move the mouse cur-
sor inside the box and wait the lockout duration before the
target pattern could be viewed.

Gray et al recorded the duration that subjects studied the
target pattern, the number of blocks of the pattern that were
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successfully copied to the workspace following the first un-
covering of the target window, as well as the total number
of visits required to complete each trial. Subject performance
according to each of these measures systematically varied be-
tween conditions, with the finding that as the lockout time
increased, subjects spent more time studying the target pat-
tern on each visit, placed more blocks following that visit,
and required fewer accesses of the pattern to complete each
trial. These adaptations to the lockout period reflected a near-
optimal tradeoff between the ability to successfully study and
recall all eight blocks on the one hand, and the temporal and
motor cost of re-accessing the pattern if some of the blocks
are forgotten or not encoded. In this paradigm, the observed
performance cannot be attributed to either perceptual-motor
or cognitive skill alone, but rather adaptation to the low level
dynamics of each, combined with the unique properties of the
specific task artifact with which the subjects interacted.

Other studies have found sensitivity and adaptation to the
time course of simple arithmetic (Shin & Rosenbaum, 2002),
the motor variability associated with rapid pointing move-
ments (Trommershäuser, Maloney, & Landy, 2003)(Maloney,
Trommershäuser, & Landy, 2007), and even the detailed
mechanical properties of a photocopier machine (Agre &
Shrager, 1990). Taken together, they support the idea that hu-
mans possess, adapt, and exploit intricate knowledge of their
own embodied dynamics in routine interactive behavior. As
an attempt at extending these findings, we constructed an ex-
periment to investigate whether humans adapt to and exploit
another embodied dynamic; namely the uncertainty associ-
ated with estimating short time intervals (< 1000 ms), embed-
ded in the context of a simple perceptual-motor ball tracking
task. This paradigm was chosen as it is not intuitively obvi-
ous that humans can estimate such short intervals with any
accuracy, let alone demonstrate awareness of the uncertainty
inherent in their estimates.

Experiment: Bayes’ Ball
The Bayes’ Ball paradigm consists of a small ball displayed
on a computer screen, and an occluding window covering a
large portion of the screen (see figure 1). At the beginning
of a trial, the ball is visible to the participant. After pressing
down a key on a response pad, the ball begins moving from
left to right at constant velocity. When the ball reaches the
occluding window it becomes hidden from view and contin-
ues moving. When the key is released, the ball immediately
stops moving and its position is revealed to the participant.

If the subject’s goal is to release the key such that the ball
stops at a particular location, then it is apparent that the sub-
ject must be able to estimate both the velocity of the ball as
well as the amount of time that has elapsed since it moved
behind the occluder (from elementary physics, x = v · t).
Whereas ball velocity can be perceptually estimated from
its initial movement, elapsed time is fundamentally an in-
trinsic quantity. More importantly, the human ability to es-
timate short time intervals is characterized by a lawful pat-
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Figure 1: Apparatus used in the Bayes’ Ball task. (a) During
the training phase subjects attempt to stop the ball directly
at the red ‘x’. (b) During the test phase, subjects attempt to
maximize their point gain by stopping in the reward region
(green) and avoiding the penalty region(s) (red).

tern of variability, with the standard deviation of timing ac-
curacy scaling linearly with the duration of the interval to be
estimated—a finding referred to as the Weber law of interval
timing (Staddon & Higa, 1999).

The Bayes’ Ball paradigm is designed to test whether hu-
mans are sensitive to this embodied dynamic, by presenting
interval estimation under risk as a simple decision-making
task. During the test phase of the experiment, subjects must
time their responses such that the ball stops in one of three
point regions (figure 1b). Some of the regions are worth pos-
itive points, while others yield losses. On some trials, the
center reward region is surrounded on both sides by penalty
regions, while on other trials there is one penalty region and
one region worth zero points surrounding the center region.
In addition to varying the configuration of reward and penalty
regions, the experiment also varies the distance of the tar-
gets. Faced with uncertainty about the exact interval of time
that has elapsed, the optimal strategy in Bayes’ Ball is not to
aim for the center of a target, but rather to aim for a loca-
tion shifted slightly in the direction away from neighboring
penalty regions. The magnitude of this compensation should
be sensitive to both the uncertainty in the estimated interval
as well as the costs and gains associated with the different
possible outcomes.

In particular, if subjects have an internal estimate, τ, of the
amount of time that has passed since the ball disappeared
from view, then according to the Weber law of timing, this
estimated time is related to the physical elapsed time t ac-
cording to a probability distribution p(t|τ) with standard de-
viation increasing linearly with τ. In the simplest case, we
assume a Gaussian distribution with mean τ and standard de-
viation σ0 +σ1τ > 0:

p(t|τ) =
e
− (t−τ)2

2(σ0+σ1τ)2

(σ0 +σ1τ)
√

2π
.
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Assuming the ball’s velocity is known with certainty1, then
the location of the ball given physical time t is p(x|t) =
δ(x− vt), where δ is the Dirac delta function. From these
two distributions, it follows that the distribution of the ball’s
position given the internal time estimate is given by

p(x|τ) =
Z +∞

−∞

p(x|t)p(t|τ)dt =
e
− (x−vτ)2

2v2(σ0+σ1τ)2

v(σ0 +σ1τ)
√

2π
.

Facing a set of target regions with different point values,
the Bayesian optimal decision strategy is therefore to stop the
ball at subjective time τ maximizing expected value:

U(τ) =
Z

R
u(x)p(x|τ)dx,

where the integration is carried out over the set of regions R,
and the point value of stopping at a location x is given by u(x).
In this case the utility function u(x) is directly specified to the
subject as the point value associated with each region. If the
boundaries between regions are given by x1 and x2, and the
reward values associated with the three regions are r1, r2, and
r3, then

u(x) =

 r1, x≤ x1
r2, x1 < x < x2
r3, x≥ x2

 .

The optimal decision time, τopt , is the value maximizing
U(τ) and is a function of the subject’s internal estimation
dynamics, the distance to the target on the current trial, as
well as the configuration of point regions on the current trial.
Presumably, while humans cannot eliminate the uncertainty
in their estimation, given opportunity and motivation they
should be able to compensate for it by adjusting their intended
stopping position closer or farther from the penalty zones.
Figure 2 compares the optimal distribution of stopping posi-
tions, p(x|τopt) to actual human performance on that trial con-
figuration. The histogram displays observed human perfor-
mance for a single subject at a particular distance and penalty
configuration, while the smooth curve shows the expected
performance of an optimal decision-maker constrained to the
estimation uncertainty of the human subject. The reward
and penalty configuration is overlaid at the top of the figure.
In this example, both the human and ideal performer have
shifted their stopping position away from the penalty region,
although the magnitude of the shift is slightly smaller for the
human than for the ideal performer.

The preceding analysis demonstrates that optimal perfor-
mance in Bayes’ Ball requires estimating not only the pas-
sage of time, but the uncertainty inherent in this estimate, and

1This simplifying assumption is made to keep the equations in a
tractable form. In theory, after the practice phase of the experiment a
Bayesian observer would have an accurate estimate of velocity, since
it is constant on each trial. In practice, any residual uncertainty in
velocity is absorbed in fitting the parameters σ0 and σ1 to human
data.

deploying this information in a perceptual-motor task with
task-specific utilities. By comparing human performance in
the Bayes’ Ball paradigm we can explore the extent to which
humans are capable of adapting to and exploiting these low-
level dynamics in routine interactive behavior. In conducting
the experiment, we held a number of predictions. First, if
people have either explicit or implicit knowledge that there is
variability in their estimation of elapsed time, then subjects
should demonstrate a shift or compensation in their mean
stopping position away from penalty regions. Second, if their
implicit awareness captures some approximation to Weber’s
law and not a more crude belief (for example, constant un-
certainty independent of target distance), then the magnitude
of strategic compensation away from penalty regions should
be greater for more distant targets (which require estimating
longer intervals) and less for closer targets. Finally, by using
an ideal performer analysis for each subject, we can compare
the extent to which the observed behavior is optimal.

Method

Participants Twenty three undergraduates volunteered to
participate in the experiment for course credit.
Materials The experiment was displayed on an LCD mon-
itor with resolution set to 1280× 1024 pixels. Each trial
was initiated by pressing and holding a key on a response
pad (Cedrus R© RB-834). The ball travelled at a fixed veloc-
ity of 1.0 pixels/ms on each trial (SD = 0.004, measured
across trials) and stopped as soon as the key was released.
The experiment consisted of two phases, a training phase
and a test phase. During the training phase, a small red
‘x’ was displayed at one of three fixed distances (distance
= {295,485,803} pixels) from the start of the occluding win-
dow, shown in Figure 1a. The task for the participant was
to time their response (key release) such that the hidden ball
stopped at the center of the ‘x’. During the test phase subjects
attempted to maximize a point score by stopping the ball in
one of three regions on the screen. The center region was al-
ways worth 100 points. On both-penalty trials, the regions to
the left and right of the center region yielded a loss of 200
points. On penalty-before trials, the region to the left of the
center region yielded -200 points while the region to the right
was worth 0 points. This mapping was reversed for penalty-
after trials. In addition, if the ball reached the right side of
the screen it was counted as a penalty. The ball’s stopping
position and point outcome were displayed to the participant
after each trial.
Design & Procedure There were no between-subject con-
ditions in the experiment. The practice phase consisted of
750 trials, grouped into blocks of three. Each block contained
one trial at each target distance, in random order. During the
practice phase, subjects were told to stop the ball as close as
possible to the red ‘x’. Following the practice phase, subjects
completed 900 trials in the test phase. Trials were grouped
into blocks of nine, with each block containing one trial at
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Figure 2: Comparing performance of a single subject to an ideal performer calibrated to that subject. (Top) The smooth
curve shows the predicted optimal stopping point distribution, p(x|τopt), while the histogram shows the observed distribution.
(Bottom) Expected value (in points) as a function of mean stopping position. The maximum of the dashed curve corresponds
to U(τopt). The marked point shows the mean stopping position and score for the human subject’s data shown in the histogram
at top. Error bars indicate 95% confidence intervals in mean position (x error bars) and score (y error bars).

each combination of target distance and penalty configuration
({near, middle, far}×{penalty-before, both-penalty, penalty-
after}), presented in random order. During the test phase,
subjects were instructed only to maximize their total point
score. Trials were self-paced, and given the velocity of the
ball, each trial lasted a maximum of 1200 ms.

Results
In the analyses that follow we concentrate on performance on
the test trials. On average, subjects won 13.87 points per trial
(SD = 21.56), out of a theoretical maximum of 100 points
per trial, suggesting that the task was rather challenging for
the participants. Indeed, 6 out of the 23 subjects ended the
task with negative scores. As far as the main hypotheses of
the experiment however, it is possible that even these low-
scoring subjects might be optimal in the sense of optimally
compensating for a poor ability to accurately estimate inter-
vals.

To address this issue, we examined the ball’s stopping po-
sition for each target distance and penalty configuration. To
facilitate comparison among the three target distances, we de-
fined the ball’s stopping position on a given trial relative to the
center of the reward region. By this measure, positive values
indicate stopping to the right of the center of the green re-
ward region, and negative values to the left. The mean target-
relative stopping position for each trial distance and config-
uration is presented in Table 1. A 3× 3 ANOVA comparing
relative stopping position by distance and penalty configura-
tion yielded a significant interaction between configuration
and distance (F [4,20254] = 48.558, p < 0.001). Post-hoc
analysis revealed that the interaction stemmed from a greater

Table 1: Target-relative stopping position (pixels) for humans
and ideal performers.

Distance Penalty config. Mean ±95%CI Ideal perf.
Near Penalty-Before 25.94 1.53 11.60

Both-Penalty 12.65 1.48 -2.94
Penalty-After 4.40 1.50 -14.97

Middle Penalty-Before 18.06 2.52 33.48
Both-Penalty 0.24 2.32 -4.63
Penalty-After -13.39 2.25 -32.62

Far Penalty-Before 12.23 3.49 50.42
Both-Penalty -9.11 3.49 -7.38
Penalty-After -42.99 3.41 -73.97

effect of distance on relative stopping position for the penalty-
after than for the both-penalty configuration. This interaction
was expected, as there should be be little or no change in
relative stopping position for the both-penalty configuration
across the three target distances. Unsurprisingly, the main ef-
fect of penalty configuration was significant (F [2,20254] =
571.825, p < 0.001). The main effect of target distance was
also significant (F [2,20254] = 334.592, p < 0.001).

The main effect of distance was unexpected, as the aver-
age stopping position across all three penalty configurations
was expected to be close to zero. Relative stopping posi-
tion on penalty-before and penalty-after trials should be sym-
metrical and therefore cancel, while stopping position on the
both-penalty configurations was expected to be zero (subjects
should aim for the center of the target). Across all three
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Figure 3: Compensation relative to mean stopping position
on both-penalty trials for each target distance. Error bars in-
dicate 95% confidence intervals.

penalty configurations however, the relative stopping position
shifted from positive for near targets, to negative values for
the distant targets. Subjects thus appeared to overshoot the
center of the target on the close trials, and undershoot the tar-
get on the far trials, regardless of penalty configuration.

To untangle this bias from the main question of interest
(compensation due to uncertainty in interval estimation), each
subject’s mean stopping position on the both-penalty configu-
ration was subtracted from their stopping position on penalty-
before and subtracted from their stopping position on penalty-
after trials. This yielded two measures of stopping position,
both relative to stopping position on both-penalty trials. By
looking at relative compensation, we can directly test the
effect of uncertainty on stopping position. If subjects are
completely ignorant of their uncertainty, then compensation
should equal zero for the asymmetrical trials. If they have
some awareness of uncertainty in their estimates, but not of
the intricacies of the Weber law relation, then compensation
might remain constant across target distances. If their per-
formance does reflect implicit awareness of the dynamics of
temporal uncertainty, then compensation should scale linearly
with distance.

In keeping with the predictions for the experiment, a one-
way ANOVA comparing compensation on the penalty-before
trials showed a significant effect of distance (F [2,6731] =
9.653, p < 0.001). Post-hoc analyses using Tukey’s test re-
vealed a significant increase in compensation between near
and middle targets (p < 0.05), but no further increase between
middle and far targets. Similar analysis of the penalty-after
trials showed a significant effect of distance (F [2,6780] =
113.124, p < 0.001), with significant increases in compensa-
tion across each target distance (all p < 0.01). These results
are illustrated in Figure 3.

Comparison to an Ideal Performer

The results from the experiment show that humans possess
some awareness (implicit or explicit) of the relationship be-
tween temporal intervals and temporal uncertainty. To arrive
at a more precise assessment of human performance, ideal
performer models were calibrated to each participant. Recall
that the two key parameters in the ideal performer analysis,
σ0 and σ1, determine how uncertainty scales with the mag-
nitude of a temporal interval. Since these parameters cannot
be directly measured, they were separately fit to each sub-
ject. The parameters σ0 and σ1 were held constant for each
subject, while τ varied for each target distance and penalty
configuration. The parameter values were then chosen that
maximized the likelihood p(x|τ,σ0,σ1) of each participant’s
data across all target distances and penalty configurations. In
fitting the ideal performer models, it was discovered that the
human reaction time data included outliers that could not ad-
equately be captured by a Gaussian distribution. To deal with
this, outliers differing more than 2 standard deviations from
the mean were removed, and the maximum likelihood estima-
tion was performed using a truncated Gaussian distribution
(Ratcliff, 1993).

For the results of the ideal performer analysis to be mean-
ingful, it must be the case that the models accurately capture
the constraints on performance for each participant. As one
test of this, the predicted total scores were computed for each
participant using only the parameters σ0, σ1, and τ. A paired
t-test comparing predicted and observed total scores found
no significant difference (p > 0.05) between the two. Af-
ter determining σ0 and σ1 for each participant, optimal per-
formance was predicted by computing τopt , or the stopping
criterion that maximizes the expected value U(τ). The ob-
served human data was then compared to the model’s pre-
diction, given by the distribution p(x|τopt). Comparisons be-
tween the observed data and optimal performers are given in
Table 1 (target-relative stopping position) and Figure 3 (com-
pensation relative to both-penalty trials). It is immediately
apparent that while human subjects demonstrated appropri-
ate compensation due to the asymmetrical penalty configura-
tions, the magnitude of their compensation was well below
the Bayesian optimal strategy.

Subjects clearly adapted their behavior to the dynamics of
uncertainty in interval estimation and were able to exploit this
knowledge to improve performance, though failed to do so in
a fully optimal manner. Unfortunately, it is not clear if the
failure stems from imperfect knowledge of their variability,
or imperfect ability to combine this knowledge with a task-
specific utility structure and determine an optimal stopping
point. A third possibility is that subjects simply had little
to gain by compensating more than they did. To address this
possibility, a measure of performance relative to the ideal per-
former was computed by determining the difference between
the subject’s total score and the score expected by adopting
an optimal compensation strategy. Across subjects, the mean
score difference was -8.96 points (SD = 5.11). Thus, despite
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their deviation from optimal performance in terms of stopping
position, the difference in terms of score was small relative to
the potential outcomes of each trial (-200, 0, or +100 points).
Taken from another perspective, the largest discrepancy be-
tween observed and ideal performance occurred for penalty-
before trials at the furthest target distance, with the difference
equal to 38 pixels. Given the ball’s velocity, this discrepancy
amounts to an error in timing of of less than 40 ms. Given the
seemingly high difficulty of adjusting one’s response latency
by tens of milliseconds, and the relatively small gain to be
had for doing so, it seems possible that the observed behavior
demonstrates a cost-benefit tradeoff in performance.

Conclusions
Recently, researchers have begun to focus on the profound
intelligence of routine interactive behavior—the remarkable
human adaptation to the low-level dynamics of perception,
cognition, and motor control. Understanding and explaining
these findings requires detailed consideration of not just the
isolated mechanisms of human cognition, but how humans
might routinely acquire and exploit accurate predictive mod-
els of their own performance constraints.

Our experiment was designed to explore whether humans
could exploit knowledge of the dynamics of uncertainty in
time estimation in a simple ball tracking task. Presumably,
our subjects all came in to the experiment with a lifetime of
experience with events and intervals lasting less than 1,000
ms. It is unlikely, however, that their experience extended to
the specific features and utilities of the Bayes’ Ball paradigm.
Optimal performance in this environment requires adapting
behavior to the combination of embodied and task dynamics.
In our experiment we found that our subjects demonstrated
awareness of the relationship between interval duration and
uncertainty known as the Weber law of interval timing. How-
ever, human behavior did not fully match that of an ideal
performer calibrated to each subject. In particular, humans
showed an overall bias—overshooting near targets while un-
dershooting far targets. Further, the magnitude of compensa-
tion was roughly half of that predicted by the ideal performer.

While future experiments will be needed to fully explore
the deviation from optimal performance observed in this ex-
periment, there are a number of potential explanations. Our
experiment utilized a random order of target distances and
penalty configurations. It seems highly plausible that our sub-
jects were adopting an ‘averaged’ strategy, where the stop-
ping point on any given trial was influenced by the preceding
trial configuration. This explanation can be tested by compar-
ing performance with trial configurations presented in blocks
of consecutive trials rather than randomized. Another possi-
bility is that our experiment simply did not provide enough
incentive for subjects to fully adopt Bayesian optimal per-
formance. Matching optimal performance in this experiment
would have required adjusting response timing by tens of mil-
liseconds, but only yielded on the order of an extra five points
per trial. As the subjects were not given any monetary reward

for their performance, it is also possible that they lacked suf-
ficient motivation (though this explanation is unlikely given
that most subjects reported finding the task both challenging
and enjoyable). The basic finding from the experiment, how-
ever, supports the conclusion that understanding even rou-
tine interactive behavior requires theories of skill acquisition
that incorporate adaptation to low-level embodied and task
dynamics as a basic rather than extraordinary phenomenon.
Developing computational models that can learn this capac-
ity given only self-guided experience with a task environment
remains a significant challenge for future research.
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