UC Merced

Proceedings of the Annual Meeting of the Cognitive Science Society

Title

Learning abstractions from discrete sequences

Permalink

https://escholarship.org/uc/item/9hx9q7n0

Journal

Proceedings of the Annual Meeting of the Cognitive Science Society, 46(0)

Authors

Wu, Shuchen Thalmann, Mirko Schulz, Eric

Publication Date

2024

Copyright Information

This work is made available under the terms of a Creative Commons Attribution License, available at https://creativecommons.org/licenses/by/4.0/

Peer reviewed

Learning abstractions from discrete sequences

Shuchen Wu

Max Planck Institute for Biological Cybernetics, Tuebingen, Germany

Mirko Thalmann

Max Planck Institute for Biological Cybernetics, Tuebingen, Baden-Wuerttemberg, Germany

Eric Schulz

Max Planck Institute for Biological Cybernetics, Tübingen, Germany

Abstract

Understanding abstraction is a stepping stone towards understanding intelligence. We ask the question: How do abstract representations arise when learning sequences? From a normative perspective, we show that abstraction is necessary for an intelligent agent when the perceptual sequence contains objects of similar interaction properties appearing in identical contexts. A rational agent should identify categories of objects of similar properties as an abstract concept, enabling the discovery of higher-order sequential relations that span a longer part of the sequence. We propose a hierarchical variable learning model (HVM) that learns chunks and abstract concepts from sequential data in a cognitively plausible manner. HVM gradually discovers abstraction via a conjunction of variable discovery and chunking, resembling the process of concept discovery during development. In a sequence recall experiment that demands learning and transferring variables, we observe that the model's sequence complexity can explain human behavior in a sequence memorization experiment.