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ABSTRACT OF THE DISSERTATION

Bayesian Methods and Markov Switching Models for the Analysis of U.S. Postwar
Business Cycle Fluctuations

by

Jie Li

Doctor of Philosophy, Graduate Program in Economics
University of California, Riverside, December 2010

Dr. Marcelle Chauvet , Chairperson

This dissertation consists of five chapters addressing analytically and empiri-

cally U.S. Postwar business cycle fluctuations. Markov Switching models and Bayesian

estimation methods are used to investigate United States macroeconomic dynamics in

the last 60 years. Chapter 1 introduces the structure of this dissertation. Chapter 2

proposes a dynamic stochastic general equilibrium (DSGE) model with Markov Switch-

ing and heteroskedastic shocks to examine the role of agents’ beliefs separately from

changes in monetary policy in explaining inflation fluctuations. Bayesian analysis is

conducted with Markov Switching to support regime switches in the private sector, in

the implementation of monetary policy and in the volatility of shocks in the U.S. Post-

war economy, which are related to the “Great Inflation”, the “Great Moderation” and

the 2008 financial crisis. A counterfacutal analysis found that if agents maintained a

weak response to macroeconomic dynamics over time, there would be lower inflation

during the “Great Inflation”. In addition, irrespectively to monetary policy regimes,

supply shocks are the main driver of inflation fluctuations, while demand shocks are the

main source of changes in the output gap. However, when agents maintain a higher

risk aversion towards consumption with a higher slope in the Phillips curve, demand
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shocks also play a role in driving inflation, even though supply shocks are still the main

driver of inflation. Chapter 3 emphasizes on the monetary policy with an investigation

on the assumption that policymakers commit to a Taylor rule, using a time-varying

inflation-unemployment dynamic model on U.S. economy. This chapter is based on the

conjecture that potential policymakers’ misperception may be originated from unob-

served deviations of unemployment from its natural rate. Five processes are proposed

for policymakers’ belief under commitment to inflation and unemployment and compare

them with a baseline autoregressive process without commitment. The models are esti-

mated using Bayesian techniques. Empirical results are as follows: First, policymakers’

belief is very persistent even when it commits to a Taylor-type policy rule. Second, the

run-up of U.S. inflation around 1980 can be mostly attributed to policymakers’ mis-

perception while the peak surge of inflation in 1974 is possibly a result of non-policy

shocks. Third, models with commitment dominate models without commitment, espe-

cially in periods of large oscillations in inflation. In particular, when policymakers are

committed to respond to a Taylor-type policy rule, the average loss function is consid-

erably reduced over time, thus effectively lessening potential misperceptions. Chapter

4 introduces a simple version of adaptive expectation to a dynamic stochastic general

equilibrium (DSGE) model to evaluate the goodness of fitness and forecasting perfor-

mance on U.S. macroeconomic indicators. Analytical maximum likelihood estimation

results represent a DSGE model with adaptive expectation outperforms a DSGE model

with rational expectation. In addition to providing a better fit of inflation and output

gap in the U.S. Postwar macro economy, a DSGE model with adaptive expectation also

leads to redundant lagged inflation in fitting inflation dynamics. Chapter 5 concludes

and proposes future extension.
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Chapter 1

Introduction

U.S. Postwar business cycle fluctuations and macroeconomic dynamics has been

studied extensively over 60 years. Recent research started from theoretical exploration

such as dynamic stochastic general equilibrium(DSGE) models to empirical investiga-

tion; from monetary policy analysis to exogenous, non-policy shocks observation; from

maximum likelihood estimation to Bayesian approaches. The common recognition of

previous literature is that United States postwar business cycle experienced three pe-

riods: the “Great Inflation” period, the “Great Moderation” period and our recent

financial crisis starting from 2007 December. Simultaneously, arguments arise for the

explanation of sources resulting in “Great Inflation”, “Great Moderation” and 2008

financial crisis as well as for important policy implication. This dissertation shows ana-

lytically and empirically further investigation on U.S. postwar macroeconomic dynamics

using Markov Switching approaches and Bayesian estimations.

The “Great Inflation”, the ”Great Moderation” and 2008 financial crisis are

related to regime switches in the private sector, in the conduct of monetary policy and

in the volatility of shocks in the U.S. Postwar economy. Such a conclusion is represented
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in Chapter 2. Chapter 2, “Regime Switching, Monetary Policy and Agents’ Beliefs in

U.S. Business Cycles” investigates the evolution of inflation and output dynamics in the

United States over the last 60 years. In particular, it proposes a dynamic stochastic gen-

eral equilibrium (DSGE) with Markov Switching and heteroskedastic shocks to examine

the role of agents’ beliefs separately from changes in monetary policy in explaining in-

flation fluctuations. The model is estimated using Bayesian techniques and results shed

light on the driving sources to inflation and output gap fluctuations in the last 60 years.

How to avoid a large oscillation in inflation is also a critical issue in the “Great

Inflation” period. Chapter 3, “How Largely the Commitment can Beat Policymakers’

Misperceptions?” analyzes this question in a perspective of monetary authority. This

chapter investigates the assumption that policymakers commit to a Taylor rule, using a

time-varying inflation-unemployment dynamic model for the U.S. economy. Our model

is based on the conjecture that potential policymakers’ misperception may be originated

from unobserved deviations of unemployment from its natural rate. Five processes in

this chapter include a time-invariant Taylor rule in which policymakers can only observe

previous inflation and unemployment, a time-varying Taylor rule in which policymakers

adjust their commitment each period according to available information, a Taylor rule in

which commitment switches between high and low inflation and unemployment phases,

following a Markov Switching process, a Taylor rule in which commitment is changed

as a response to different regimes in unemployment, a Taylor rule with commitment

adjusted according to low or high inflation regimes only. The models are estimated using

Bayesian techniques. Our empirical results shows policymakers’ belief is very persistent

even when it commits to a Taylor-type policy rule. In addition, the reason of peak surge

of U.S. inflation during 1974 and 1980 is also illustrated. With the measurement of

average loss, models with commitment are found to be superior to others.

2



Chapter 4 “Adaptive Expectations and Inflation Persistence” investigates in-

flation persistence by proposing a dynamic stochastic general equilibrium(DSGE) model

with adaptive expectation. The proposed model is compared with a DSGE model in-

cluding rational expectation. Model fit and out-of-sample forecasting show DSGE model

with adaptive expectation outperforms others. Findings are summarized in the conclu-

sion section of this dissertation, that is, Chapter 5.

3



Chapter 2

Regime Switching, Monetary

Policy and Agents’ Beliefs in U.S.

Business Cycles

2.1 Introduction

It has been extensively documented in the literature that the evolution of infla-

tion and output dynamics is considerably different before and after the mid 1980s. Such

distinct phases have been denoted the “Great Inflation” and the “Great Moderation”.

There is a current controversial debate on the sources of the differences across these

periods. Recent work has examined whether these differences are due to changes in the

structure of the economy or to changes in the size of exogenous shocks.

Following previous literature, the purpose of this paper is to investigate the

role of the private sector, the Federal Reserve, and the volatility of exogenous shocks

in explaining the dynamics of U.S. inflation and output over the last 60 years. In
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particular, it proposes a small scale Dynamic Stochastic General Equilibrium model

(DSGE) with Markov Switching to investigate the role of agents separately from changes

in monetary policy - under homoskedastic or heteroskedastic shocks - in explaining

inflation fluctuations.

The “Great Inflation” period in the 1970s was characterized by an upsurge

in inflation, accompanied by high volatility in the real and nominal sectors. Inflation

was brought to moderate levels in the early 1980s with a tight monetary policy by the

Federal Reserve under the chairmanship of Paul Volcker. From the mid-1980s until

the 2008 financial crisis, the U.S. economy had been operating on a stable track with

relatively low inflation levels and unemployment rate, and a much more stable growth in

real output. Despite the fact that the economy experienced recessions in the early 1990s

and 2000s, these contractions were considerably milder and shorter than the previous

ones. The remarkable economic stability from the mid-1980s to 2007 was named the

“Great Moderation”. However, the meltdown in the U.S. housing sector spread to the

financial system and to the real economy since 2007, with strong economic consequences

worldwide. This has led to a renewal interest in understanding potential underlying

causes of the changes in stability in the economic system across the last decades.

There is a large literature investigating the sources to the “Great Inflation” and

the “Great Moderation”. Some paper finds that the “Great Moderation” is the result of

a substantial change in the monetary policy under the Fed chairmanship of Paul Volcker

and Alan Greenspan such as Judd and Rudebusch (1998), Clarida, Gali, and Gertler

(2000), Lubik and Schorfheide (2004) and Boivin and Giannoni (2008), among others.

An alternative strand finds that the decline of inflation and output variability since the

mid 1980s is the result of reduced volatilities of exogenous non-policy shocks. Some of

the representative papers are McConnell and Perez-Quiros (2000), Stock and Watson
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(2003), Cogley and Sargent (2005), Sims and Zha (2006) or Liu, Waggoner, and Zha

(2008), among others. In particular, Sims and Zha (2006) show that time variation in

structural disturbance variances is the main driver of the macroeconomic stabilization

during the “Great Moderation”.

More recently, there has been some important related research that develops

a methodology to estimate Markov Switching models under rational expectation. In

particular, Farmer, Waggoner, and Zha (2008)(FWZ) purposed a methodology to cal-

culate minimal state variable(MSV) solutions, and provided sufficient and necessary

conditions for their existence. Bianchi (2009), Liu, Waggoner, and Zha (2009), among

others, have applied this method to examine the sources of the “Great Inflation” and

the “Great Moderation” using a DSGE model with Markov Switching. On the other

hand, Davig and Leeper (2007) proposed a generalized Taylor principle that allows the

reaction coefficients in the monetary policy rule to switch across regimes according to a

Markov process. Eo (2008) and Davig and Doh (2009) used this method to examine the

role of regime switching in explaining inflation fluctuations, giving a micro foundation

interpretation.

In general, all the previous literature has focused on the role of changes in the

behavior of monetary policy under heteroskedastic shocks. This paper differs from the

existing literature in that it investigates separately the changes in agents’ beliefs across

regimes to shed light on the role of changes in monetary policy, changes in the private

sector, or changes in the volatility of shocks in explaining the “Great Inflation” and the

“Great Moderation” phases.

The proposed Markov Switching DSGE model is considered under four assump-

tions 1. First, it is assumed that the response of household and firm (agents’ beliefs)

1Our small-scale DSGE model is comprised of an intertemporal Euler equation derived from house-
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to economic fluctuation may have changed over the last 60 years. In this case, only

the structural parameters of the Euler equation and the Phillips curve are allowed to

follow Markov regime switching processes, while the parameters in the monetary policy

function are fixed. Second, changes in agents’ beliefs are considered under heteroskedas-

tic shocks to investigate the hypothesis that high inflation in the 1970s may have been

driven by larger exogenous shocks. In this case, two independent Markov chains are

considered to control the structural parameters and the disturbance variances. Third,

in order to capture changes in monetary policy separately from changes in the private

sector, only the structural parameters in the monetary policy function are permitted to

switch across regimes. Finally, it is assumed that the Federal Reserve faces shocks that

display stochastic volatility.

The methodology proposed in FWZ (2008) is used to obtain the model’s solu-

tion, which entails a VAR with time dependent coefficients. The system is cast in state

space model and the Gibbs sampling combined with Metropolis-Hasting is used to solve

the system.

Four main findings stand out from the model estimation. First, our results

support regime switches in the private sector, in the conduct of monetary policy and in

the volatility of shocks in the U.S. postwar economy, which are related to the “Great

Inflation”, the “Great Moderation”, and the 2008 financial crisis. During the “Great

Inflation”, consumers displayed a higher risk aversion to time variation in consumption

and preferred a more stable consumption path. Meanwhile, firms were adjusting prices

more flexibly due to a lower adjustment cost, as represented by a higher slope in the

hold’s optimal decision on consumption and bond holdings, a Phillips curve describing a monopolistically
competitive firm facing a downward sloping demand curve for its differentiated goods, and a monetary
policy function depicting the response of monetary authority to the deviation of the inflation and output
from their steady states respectively. The model considers three different exogenous shocks: demand,
supply (or technology shock) and monetary shocks.

7



Phillips curve. These observations lead to the conclusion that agents responded more

strongly to the economy in the 1970s. On the other hand, the Federal Reserve maintained

the output gap closed to zero at a cost of higher inflation in the 1970s, while this was

reversed from the 1980s on, with the Fed willing to accept a recession to keep inflation

low. In addition, the volatility of shocks was much higher during the “Great Inflation”

than that during the “Great Moderation”.

Second, the impulse response functions across different regimes indicate that

when agents respond strongly to economic dynamics, fluctuations in inflation and output

are much more accentuated. Such an observation does not occur when the Federal

Reserve responds more strongly to inflation.

Third, the paper also finds that, irrespectively to monetary policy regimes,

supply shocks are the main driver of inflation fluctuations, while demand shocks are the

main source of changes in the output gap. However, when agents maintain a higher risk

aversion towards consumption with a higher slope in the Phillips curve, demand shocks

also play a role in driving inflation, even though supply shocks are still the main driver

of inflation.

Finally, a counterfactual analysis finds that if agents maintained a weak re-

sponse to the economy over time, there would be lower inflation during the “Great

Inflation” period. On the other hand, if a hawk regime dominated the whole sample

with a strong response by the Federal Reserve to inflation, inflation fluctuations would

be dampened in the 1970s, with the sacrifice of a reduced output gap.

This paper is organized as follows: Section 2.2 briefly describes Markov chains

and state space models. Section 2.3 presents a benchmark DSGE model with fixed

parameters and the proposed Markov Switching DSGE models. This section also reviews

the minimum state variable solutions (MSV) proposed by Farmer, Waggoner, and Zha
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(2008). Section 2.4 discusses the estimation algorithms. The estimation results and

analysis are presented in section 2.5, and section 2.6 concludes. The prior distribution

for the DSGE model parameters and a description of the DSGE model is provided in

the Appendix.

2.2 Preliminary: Markov Chains and State Space Models

Understanding the dynamics of the U.S. postwar macroeconomic fluctuation

has always been an important topic of economic research. Some popular empirical

ways to investigate potential changes over time is to divide the sample into subperiods

based on some major policy changes or the tenure of chairman of the Federal Reserve.

The subsample method has the advantage that is easy to implement. Nevertheless, it is

subjective and exogenous to the model proposed, which has as drawbacks the possibility

of neglecting underlying unobservable factors for the possible changes. An alternative

is to allow for the possibility of endogenous Markov switching, governed by estimated

transition probabilities. This method has become widespread both in empirical and

theoretical macroeconomic research since the seminar paper by Hamilton (1989). Below

we review some simple definitions of and applications of Markov chains, which serve as

the basis for the model proposed in this paper.

Definition 1 A Markov chain is an integer time process, {ξt, t ≥ 0} for which each

random variable ξt, t ≥ 1 is interger valued and depends on the past only through the

most recent random variable ξt−1. i.e., for all integer t ≥ 1 and all integer i, j, k, . . . ,m,

Pr[ξt = j | ξt−1 = i, ξt−2 = k, . . . , ξ0 = m] = Pr[ξt = j | ξt−1 = i]
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Pr[ξt = j | ξt−1 = i] depends only on i and j (not t) and is denoted by

Pr[ξt = j | ξt−1 = i] = pij
2

A Markov chain in which each ξt has a finite set of possible sample values is a finite-

state Markov chain. Note ξt could be explained as the state of the chain at time t.

The possible values for the state at time t could be {1, 2, . . . ,m} or {0, 1, . . .}3. pij is

the probability of going to state j given that the previous state is i. The new state

conditional on the previous state is independent of all earlier states. For example, a

four-state Markov chain with probability pi,j, i, j = 1, . . . , 4 can be described in figure

2.1, where pij represents the probability switching to state j from state i. p23 is the

probability of transiting into state 3 given that the previous state is 2. 4

A probability matrix that only takes into account changes from one state to

the alternative is defined as a one-step transition probability matrix as following:

Definition 2 The matrix containing pij , the transition probabilities

H =











p11 p12 . . .

p21 p22 . . .

...
...

...











is called the one-step transition probability matrix of the process.

2To distinguish P in the state space model, in the section 2.4, we will use H stand for the probability
matrix and pij as the transition probability.

3In this paper, we consider the state starting from 1 instead of 0.
4The matrix describing figure 2.1 is

H =









p11 p12 p13 p14
p21 p22 p23 p24
p31 p32 p33 p34
p41 p42 p43 p44









10



Similarly, n-step transition probability matrix could be defined asHn = H ×H × . . . ×H
︸ ︷︷ ︸

n times

,

where when n = 1, Hn becomes one-step transition probability matrix.

The switching from one state to the alternative is not easily observed since

it requires observations of the underlying Markov chains. The hidden Markov mod-

els(HMM) are, thus, widely used. In a HMM model, there are two types of states: the

observable and the hidden/unobservable states. The detailed interpretation is enclosed

in the appendix.

The state space model is one of the tools that can be used to estimate the

unobservable states of hidden Markov models. The state space model starts with defin-

ing a vector of real-valued observed series {Yt} under the assumption that observations

were generated from a sequence of hidden state vectors {St}, as represented in figure

2.2. It is assumed that given the unobserved St, the observation vector Yt is condi-

tionally independent from all other variables and St is conditionally independent from

S1, . . . , St−2.

The general state space model could be written as

Yt = D + ZSt + υt (2.1)

St = TSt−1 +Rεt (2.2)

where υt ∼ N(0, U), εt ∼ N(0, Q). Equation (2.1) is defined as the measure-

ment equation and Equation (2.2) as the transition equation. Figure 2.2 illustrates the

general state space model.

The combination of the state space model with hidden Markov chains can be

obtained by specifying a distribution over observations {Yt} and {St} at each time step

t given a discrete hidden state (Markov chain ξt), and the probability of transiting from

11



one hidden state to another. If there is only one unobserved state {St}, the Kalman

filter can be applied to calculate the maximum likelihood in its standard form. However,

when we have ξt that is affecting St simultaneously, Kalman filter can not work directly

since now St is not unique. We use an approximation proposed by Kim (1994), which

basically combines the Kalman filter and Hamilton’s (1989) filter. The algorithm will

be introduced in the section 2.4.2 and for a detailed description of state space model see

Kim and Nelson (1998).

The combination of the state space model with a Markov chain and transition

probability matrix could also be represented by figure 2.3. 5

As observed, Yt depends on St and ξt. St is also affected by an independent

Markov chain ξt. We will use this model embedded in a small scale DSGE model that

tracks the underlying shifting of monetary policy and agents’ beliefs.

2.3 A small scale DSGE model

This paper considers a popular prototypical New Keynesian monetary DSGE

model, which is tested by Lubik and Schorfheide (2004). The details about it could be

found in King(2000) and Woodford (2003).

2.3.1 Benchmark model: Fixed parameters

The benchmark model starts with fixed parameters. After log linearizing

around the steady states, a small scale DSGE model can be summarized by the fol-

5The model which is described by figure 2.3 is:

Yt = D + Z(ξt)St + υt

St = T (ξt)St−1 + εt

12



lowing three equations:

ỹt = Et[ỹt+1]− τ(R̃t − Et[π̃t+1]) + gt (2.3)

π̃t = βEt[π̃t+1] + κ(ỹt − zt) (2.4)

R̃t = ρRR̃t−1 + (1− ρR)(γ1π̃t + γ2ỹt) + εR,t (2.5)

where ỹt, π̃t and R̃t are defined, respectively, as output, quarterly inflation and nominal

interest rate. The tilde denotes percentage deviations from a steady state or, in the case

of output, from a trend path.

Equation (2.3) represents an intertemporal Euler equation derived from the

households’ optimal choice of consumption and bond holdings. Since the small scale

DSGE model considered does not include investment, output is proportional to con-

sumption, and the exogenous process gt captures the net effects of these exogenous

shifts on the Euler equation. The parameter 0 < β < 1 is the households’ discount

factor and τ > 0 can be interpreted as the intertemporal substitution elasticity.

The inflation dynamics are characterized by equation (2.4) describing a con-

tinuum of monopolistically competitive firms facing a downward-sloping demand curve

for its differentiated product. Here the sticky price is due to quadratic adjustment costs

in nominal prices or a Calvo-style rigidity allowing only a fraction of firms to adjust

their prices. The expectational Phillips curve (2.4) has a slope κ, which corresponds to

a positive value for ỹt in the boom.

The behavior of the monetary authority is characterized by a tradeoff between

inflation and output in the equation (2.5). The central bank adjusts its instrument to

deviations of inflation and output from their respective target levels by controlling a

nominal interest rate. The policy implementation error or the unanticipated deviation

13



from the systematic component of the monetary policy rule is represented by εR,t with

standard error as σR.

gt = ρgt−1 + εg,t (2.6)

zt = ρzt−1 + εz,t (2.7)

where we assume zero correlation ρgz between the innovations εg,t and εz,t with

standard deviation σg and σz.

The process zt in equation (2.7) and gt in equation (2.6) are assumed to follow

univariate AR(1) processes with coefficients ρg and ρz. Note that zt captures exogenous

shifts on the marginal costs of production, and could be interpreted as a technology

shock. Similarly, gt summarizes changes in preferences or a time-varying government

spending, and can be considered as a demand shock.

The system could be solved using gensys.6 The linear rational expectations

model comprised of equations (2.3) to (2.7) can be rewritten in the canonical form

Γ0St = Γ1St−1 + C +Ψεt +Πηt (2.8)

where

St = [ỹt, π̃t, R̃t, gt, zt, Et(ỹt+1), Et(π̃t+1)]
′

εt = [εR,t, εg,t, εz,t]
′

ηt = [(ỹt − Et−1[ỹt]), (π̃t −Et−1[π̃t])]
′

6The matlab code gensys could be downloaded from: http://sims.princeton.edu/yftp/gensys
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Gensys will return a first order VAR in the state variable:

St = T (θ)St−1 +R(θ)εt (2.9)

Where the vector θ collects the parameters of the loglinearized DSGE model

as:

θ = [τ, β, κ, ψ1, ψ2, ρR, ρg, ρz, σR, σg, σz]
′

To solve the unobserved variables such as gt, Et(ỹt−1), a state space model is

deployed to solve the law of motion of the DSGE model.7

Yt = D(θ) + ZSt + υt

St = T (θ)St−1 +R(θ)εt

υt ∼ N(0, U), U = diag(σ2y , σ
2
π, σ

2
r )

Yt =











yt

∆ lnPt

lnRAt











D(θ) =











0

lnπ∗

4(ln π∗ + ln r∗)











Z =











1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 4 0 0 0 0











where υt is a vector of measurement errors.8 yt, ∆ lnPt and lnRAt describe the output

7The benchmark model is closed to the one used in Lubik and Schorfheide (2004) and Bianchi (2009).
8Note that this vector autoregression will be singular so long as the number of shocks is less than

the number of variables in the system. Sometimes, it will also be singular even when the number of
shocks is equal to the number of variables. In order to reconcile the singular equilibrium from the model
with the clearly non-singular nature of the data, Diebold and Rudebusch (1996) suggested introducing
the errors in the measurement equation. In the technical part, we drop the solution when the vector
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gap, quarterly inflation, and the nominal interest rate respectively. The likelihood of

the DSGE model is calculated as `(θ, σζ | Y
T ).

2.3.2 Solving MS-DSGE model

A linear dynamic stochastic general equilibrium model with constant parame-

ters has limited ability in addressing changes in the dynamics of the economy. Parameter

switching linear rational expectation model is an extension that dates back to Hamil-

ton(1989, 1994). In an AR process described in these papers, a Markov chain with a

transition matrix can capture different states of the condition mean, which can cap-

ture fluctuations in the economic activity. The extended autoregressive representation

with constant state-independent parameters is extended by Farmer, Waggoner, and Zha

(2008) to solve the regime switching models with rational expectation. The idea is

to compute a minimal state variable(MSV) solution to an expanded state space of a

Markov switching model. By writing an equivalent model with fixed parameters in this

expanded space, the authors prove that when a unique equilibrium exists, it is in a

class of minimum state variable solutions. Their paper also provides the sufficient and

necessary conditions for the existence of the MSV solution. Based on these conditions,

they show equivalence between an MSV solution to the original model, and an MSV

solution to the expanded state space.

The calculation of a MSV solution and the solution method is outlined below

9.

autoregression is singular.
9Please refer to Farmer et al (2008) for details.
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Let equations (2.3) to (2.5) be controlled by a Markov chain ξt as:

ỹt = Et[ỹt+1]− τ(ξt)(R̃t − Et[π̃t+1]) + gt (2.10)

π̃t = βEt[π̃t+1] + κ(ξt)(ỹt − zt) (2.11)

R̃t = ρRR̃t−1 + (1− ρR)(γ1(ξt)π̃t + γ2(ξt)ỹt + εR,t) (2.12)

Thus equation (2.10) to (2.12) represent a Markov Switching Dynamic Stochastic Gen-

eral Equilibrium (MS-DSGE) model with some parameters fixed and others following

Markov switching processes. A state space model covering equation (2.10) to (2.12)

could be represented as follows:









Γ0(ξt)

Γ0,1(ξt)
(n−l)×n

Γ0,2
l×n









St
n×1

=









Γ1(ξt)

Γ1,1(ξt)
(n−l)×n

Γ1,2
l×n









St−1
n×1

+








Ψ(ξt)

ψ(ξt)
(n−l)×k

0
l×k







εt
k×1

+








Π

0
(n−l)×n

π
l×n







ηt
l×1

(2.13)

where ξt follows an m-state Markov chain. ξt ∈ M ≡ {1, . . . ,m}. The Markov chain

evolves according to a stationary transition matrix H that defines the probability of

moving from one state to another as:

Pr[ξt = i | ξt−1 = j] = H = pij

In equation (2.13), n is the number of endogenous variables(n = 7 in this

case), k is the number of the number of exogenous shocks(k = 3), l is the number of the

rational expectations forecast errors(l = 2). The fundamental equations of (2.13) are

allowed to switch across regimes but the parameters Γ0,1, Γ1,1 and Π, which define the

non-fundamental shocks, do not depend on ξt.
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To solve the equation (2.13), FWZ provides a pair of bounded stochastic pro-

cesses {St, ηt} such that it is consistent for all realizations of {ξt, εt}. We firstly rewrite

(2.13) to an expanded state vector St with fixed parameters:

Γ0St = Γ1St−1 +Ψut +Πηt (2.14)

where

Γ0
nm×nm

=











diag(a1(1), . . . , a1(m))

a2, . . . , a2

Φ











(2.15)

Γ1
nm×nm

=











diag(b1(1), . . . , b1(m))(H ⊗ In)

b2, . . . , b2

0











(2.16)

Π
nm×l

=











0

π

0











, Φ
(l−1)m×nm

=











e
′

2 ⊗ φ2

...

e
′

m ⊗ φm











(2.17)

Ψ
nm×(k+m−l)m











I(n−l)m diag(ψ(1), . . . , ψ(m))

0 0

0 0











(2.18)

St =











ι(ξt=1)St

...

ι(ξt=m)St










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The vector of error terms ut is defined as

ut =







Ξξt(eξt−1
⊗ (1

′

m ⊗ In)St−1)

eξt ⊗ εt







where

Ξi
(n−l)p×np

= (diag[b1(1), . . . , b1(m)])× [(ei1
′

m −H)⊗ In]

Where In denotes the n × n identity matrix, ei denotes the ith column of

In, 1m is the m-dimensional column vector of ones. There are two kinds of shocks in

the extended state space. FWZ(2008) refer to them as switching shocks and normal

shocks. In their definitions, the switching shocks Ξξt(eξt−1
⊗ (1

′

h ⊗ In)St−1) turn on or

off the appropriate blocks of the model to represent the Markov dynamics, while the

normal shocks eξt ⊗ εt carry the fundamental errors that hit the structural equations,

distributed to the appropriate block of the expanded system. They show that both

shocks have expectation equal to zero10.

Definition 3 A solution to Equation (2.14) is a stochastic process {St, ηt}
∞
t=1 such that:

(1) {St, ηt}
∞
t=1 jointly satisfy Equation (2.14).

(2) The endogenous stochastic process {ηt} satisfies the property, Et−1[ηt] = 0.

(3) St is bounded in expectation in the sense that ‖Et[St+s]‖ < Mt for all s > 0.

In a MS-DSGE model the sunspot solutions are pervasive, and FWZ focuses

on a class of minimal state variable(MSV) solutions. By introducing Φ, they prove

the equivalence between the MSV to the original model and the MSV to the expanded

10For details of Definition 3 and 4, please refer to Farmer et al (2008). Bianchi(2009) also summarized
definitions of Farmer et al.
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fixed coefficient model. To obtain a MSV solution, a matrix Z is defined such that

Z
′

St = 0. The introduction of Z considers the impact of different regimes and makes

up the zero restrictions on the variables. Suppose regime 1 occurs, the third block of

equation (2.14) will impose a series of zero restrictions on the variables referring to

regimes i = 2 . . . m. These restrictions will constraint the corresponding element of St

to zero by incorporating with the one arising from the first block of equations. If regime

i = 2, . . . m occurs, Φ will serve as a similar block of zero restrictions on regime 1. The

following definition of the unstable Γ0 and Γ1 is designed to lead up to a theorem that

enables us to compute Φ.

Definition 4 Let QSZ = Γ0 and QTZ = Γ1 be the QZ-decomposition of {Γ0,Γ1}.

Reorder the upper triangular matrices S = (si,j) and T = (ti,j) in such a way that ti,i/si,i

is in an increasing order. Let q ∈ {1, 2, . . . m} be the integer such that ti,i/si,i < 1 if

i ≤ q and ti,i/si,i > 1 if i > q. Let Zu, partitioned as Zu = [z1, . . . , zm] be the last nk− q

rows of Z. Beginning with a set of matrices {φ0i }
m
i=2 and generate the associated matrix

Γ0. Next, calculate Z0
u by computing the QZ decomposition of {Γ0

0,Γ1} and set φ1i = z1i .

Repeat this procedure until convergence.

If it converges, definition 4 implies that the solution {St, ηt} to equation (2.14)

is consistent with equation (2.13). A VAR process can, thus, be written with time

dependent coefficients as:

St = T (ξt, θ)St−1 +R(ξt, θ)εt (2.19)

The law of motion of the DSGE states depends on the structural parameters

θ and the regimes ξt. Note ξt could follow a m-state Markov chain where m could be
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greater than 2.

2.3.3 Alternative solution methods

There are alternative solution methods to a MS-DSGE model. Notice that

FWZ do not discuss the determinacy, but some other papers have addressed this issue.

Davig and Leeper (2007) and Davig and Doh (2009) map endogenous variables into

policy choices in terms of a generalization of the Taylor principle. Their solution method

makes use of the monotone map method, based on Coleman(1991). The algorithm

requires a discretized state space and a set of initial decision rules that reduce the

model to a set of nonlinear expectational first-order difference equations. They show a

condition that can rule out indeterminate equilibria in a version of the New Keynesian

model, where parameters of the policy rule follow a Markov switching process. A solution

consists of a set of functions that map the minimum set of state variables into values for

the endogenous variables. The solution method is discussed by Farmer, Waggoner, and

Zha (2008), who argues that this model suffers from an incomplete subset of fundamental

equilibria missed by their condition. Furthermore, at the stage local uniqueness of a

solution must be proved perturbing the equilibrium decision rules.

Another solution algorithm for a large class of linear-in-variable regime switch-

ing models is developed by Svensson and Williams(2005). Their method is closely related

to the class presented by FWZ. However, due to lack of a diagnostics for conditions of

a unique solution, their algorithm is considered to converge to a unique solution, to one

of a set of indeterminate solutions, or to an unbounded stochastic difference equation

that goes against the appropriate transversality conditions.

Bikbov and Chernov (2008) generalizes a method proposed by Cho and Moreno

(2006) for fixed coefficient New-Keynesian models to the case of regime switching dy-
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namics. The solution proposed by Bikbov and Chernov (2008) is achieved by working

directly on the original model through an iteration procedure. They show in the case

of a unique stationary solution, their method delivers the same solution as obtained

with the QZ decomposition method. If the rational expectations solution is not unique,

the method yields the minimum state variable solution. It is not quite clear whether a

similar argument applies to the case with Markov Switching dynamics and how to check

if a unique stationary equilibrium exists.

Cho (2009) provides a technical foundation for a fairly general class of Markov

Switching General Equilibrium (MSGE) models by developing a conceptually straight-

forward and technically simple solution methodology to those models, based on the

forward method of Cho and Moreno (2009). They show a sufficient solution selection

criterion within the class of fundamental solutions, regardless of model determinacy.

We choose to apply the method proposed by FWZ due to its computation

efficiency. In addition, although the uniqueness of the MSV solution does not imply

uniqueness in a larger class of solutions, it provides necessary conditions to establish

existence and boundness of the minimum state variable solution. As for the problem

of indeterminacy/determinacy in a MS-DSGE model, this is a very complicated issue

that has not yet been solved in the literature. Davig and Leeper(2007) proposed a

condition to rule out indeterminate equilibria. However, as Farmer et al(2008) shows,

their condition rules out a subset of indeterminate equilibrium but does not establish

uniqueness of the fundamental equilibrium.
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2.4 Estimation Strategies

The solutions solved by FWZ on a small-scale MS-DSGE model return a VAR

with time dependent coefficients. We combine the VAR with the measurement equation

that is cast in a state space form:

Yt = D(θss) + ZSt + υt (2.20)

St = T (ξsat )St−1 +R(ξsat )εt (2.21)

εt ∼ N(0, Q(ξert )), Q(ξert ) = diag(θer(ξert )) (2.22)

υt ∼ N(0, U), U = diag(σ2x, σ
2
π, σ

2
R) (2.23)

Hsa(·, i) ∼ D(asaii , a
sa
ij ),H

er(·, i) ∼ D(aerii , a
er
ij ) (2.24)

where ξsat is an unobserved state capturing the agents’ beliefs regime and ξert de-

notes an unobserved state that describes the evolution of the stochastic volatility regime

11. It is easy to estimate the likelihood of a state space model with fixed parameters

using Kalman filter and then calculate the posterior combined with prior distribution,

using Bayesian methods. However, notice that in a MS-DSGE model, the underlying

DSGE state vector St is not unique given an observation for Yt due to the uncertainty of

the Markov state. Hamilton’s filter, which is usually used for evaluating the likelihood

of Markov Switching models, can not be applied directly here when Markov states are

not history independent. The probability controlled by a Markov state depends on the

value of St−1 and its distribution relies on {ξs}
t−1
s=1.

However, if we can observe ξsa,T and ξer,T , the Kalman filter could be applied to

capture the distribution of St given Yt and it will be possible to return an unequivocal

11ξspt defines the state of monetary regime.
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state of St. At the same time, if ST is now observable, then Hamilton filter could

be used to extract the probability of a Markov state. The Gibbs sampling algorithm

combined with Metropolis-Hasting, suggested in Bianchi(2009), is considered as one

way to calculate the posterior in a MS-DSGE model. However, Bianchi(2009) does not

address the case in which the solution does not converge. This paper follows Lubik and

Schofheide(2004), which assigns a very small likelihood in the absence of convergence so

that only converged solutions will be kept. Here we will still introduce Gibbs sampling

and Kim’s approximation in this section, as illustrated in Bianchi(2009).

Note that the posterior density function is non-Gaussian and complicated in

shape, it is very important to find the appropriate posterior mode. We base our com-

putation of likelihood on Kim’s approximation(Kim (1994)) whose filter for the state

space model entails a combination of Kalman filter and Hamilton filter, along with an

approximation. The algorithm is illustrated in section 2.4.2.

The algorithm used here is as follows:

2.4.1 Gibbs sampling

The basic algorithm of Gibbs sampling is summarized as follows:

At the beginning of iteration n we have: θsan−1, θ
ss
n−1,θ

er
n−1, S

T
n−1,ξ

sa,T
n−1 ,ξ

er,T
n−1 ,H

sa
n−1,H

er
n−1.

1. Given θ, Hsa
n−1 and Her

n−1, use Kim’s filter to get a filtered estimate of the

Markov switching states and then use the backward drawing method to get ξsa,Tn and

ξer,Tn .

2. Given ξsa,Tn and ξer,Tn , draw probability matrix Hsa
n and Her

n according to a

Dirichlet distribution.

3. Draw ϑsa, ϑss and ϑer as new θ from the proposed distribution. Assign

a very small likelihood if the solution solved by FWZ doesn’t converge. The updated
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parameters of θ are accepted or rejected according to a Metropolis-Hasting algorithm

with a probability min{1, r} where

r =
`
(

ϑsa, ϑer, ϑss | Y T , ξsa,Tn−1 , ξ
er,T
n−1

)

p (ϑsa, ϑer, ϑss)

`
(

θsan−1, θ
er
n−1, θ

ss | Y T , ξsa,Tn−1 , ξ
er,T
n−1

)

p
(
θsan−1, θ

er
n−1, θ

ss
n−1

)

We can also observe the filtered estimates of the DSGE states: S̃tn in each

period.

4. if n < nsim, go back to 1, otherwise stop, where nsim is the desired number

of iterations.

In the algorithm described above, the likelihood is approximated when max-

imizing the posterior mode. The detailed algorithm is described in section 2.4.2 with

Kim’s approximation.

2.4.2 Kim’s approximation

In this section we describe Kim’s approximation of the likelihood function.

To simplify, we combine the Markov Switching states of structural parameters and of

heteroskedastic shocks in a unique chain ξt with m states. ξt could be explained to hold

m different values with m = msp ×mer, and evolves according to a transition matrix

H = Hsa ⊗Her with two independent Markov chains Hsa and Her. For a given set of

parameters, and some assumptions about the initial DSGE state variables and Markov

Switching latent variables, we can recursively run the following filter.
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S
(i,j)
t|t−1 = TjS

i
t−1|t−1

Tj = T (ξt = j)

P
(i,j)
t|t−1 = TjP

i
t−1|t−1T

′

j +RjQjR
′

j

Qj = Q(ξt = j), Rj = R(ξt = j)

e
(i,j)
t|t−1 = yt −D − ZS

(i,j)
t|t−1

f
(i,j)
t|t−1 = ZP

(i,j)
t|t−1Z

′

+ U

We update St−1|t and Pt−1|t by adding more information till time t.

S
(i,j)
t|t = S

(i,j)
t|t−1 + P

(i,j)
t|t−1Z

′

(

f
(i,j)
t|t−1

)−1
e
(i,j)
t|t−1

P
(i,j)
t|t = P

(i,j)
t|t−1 − P

(i,j)
t|t−1Z

′

(

f
(i,j)
t|t−1

)−1
ZP

(i,j)
t|t−1

Some approximations are introduced to make the above Kalman operational.

At the end of iteration, the M × M posteriors S
(i,j)
t|t and P i,jt|t are collapsed into M

posteriors Sjt|t and P
j
t|t to complete the Kalman filter.

Sjt|t =

∑M
t=1 Pr[ξt−1 = i, ξt = j | Yt]S

(i,j)
t|t

Pr[St = j | Yt]

P jt|t =

∑M
i=1 Pr[St−1 = i, St = j | Yt]

(

P
(i,j)
t|t

+
(

Sj
t|t

− S
(i,j)
t|t

)(

Sj
t|t

− S
(i,j)
t|t

)′
)

Pr[ξt = j | Yt]
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Finally, we can calculate the likelihood density of observation yt as:

`(yt | Yt−1) =

m∑

j=1

m∑

i=1

f(yt | ξt−1 = i, ξt = j, Yt−1)Pr[ξt−1 = i, ξt = j | Yt]

f(yt | ξt−1 = i, ξt = j, Yt−1) = (2π)−N/2 | f
(i,j)
t|t−1 |

−1/2 exp

{

−
1

2
e
(i,j)′

t|t−1f
(i,j)
t|t−1e

(i,j)
t|t−1

}

2.5 Empirical results

The section reports empirical results for five models considered. The first one

is taken as a benchmark model with all parameters fixed. The other four specifications

extend the constant parameters model to allow for underlying Markov switching pro-

cesses. The first extension allows structural parameters of expectational Phillips curves

and intertemporal Euler equation to change across regimes according to the Markov pro-

cess ξsat . The second extension adds heteroskedastic shocks to the first extension with

parameters and heteroskedastic shocks evolving according to two independent Markov

chains ξsat and ξert . In the third extension, policymakers’ response to the inflation and

output gap in the Taylor Rule is assumed to switch in across different regimes following

the Markov chain ξspt whereas the last extension consider heteroskedastic shocks with

switching structural parameters controlled by two independent Markov chains ξspt and

ξert . The five models are summarized by table 2.1.

The data used are from 1954Q3 to 2009Q2. The series are obtained from the

website of Federal Reserve of Saint Louis. Output gap is measured as the percentage

deviations of real per capita GDP from a trend obtained with the HP filter. Inflation is

the quarterly percentage change of the CPI(Urban, all items). Nominal interest rate is

the Effective Federal Funds Rate.
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2.5.1 Parameters estimates and regime probabilities

The DSGE model with constant parameters is taken as the start of the inves-

tigation on macroeconomic dynamics. The priors are specified according to those in the

previous literature, which are summarized in the appendix A.1. It is important to notice

that in the case of the fixed coefficient DSGE model, only when the Federal Reserve

reacts strongly to deviations of inflation from its target will this allow for determinacy.

In order to avoid the impact of indeterminancy, we restrict γ1 in equation (2.5) to have

a mean of 1.5 and a standard deviation of 0.5. This implies the central bank raises

the nominal rate by 1.5 percent in response to a 1-percent discrepancy between actual

and desired inflation. We set the prior of output gap targeting γ2 as 0.8 and interest

smoothing ρR as 0.7. The estimation of the benchmark model is reported in the table

2.2.

Over the whole sample, the Federal Funds Rate reacts strongly to deviations

of inflation from its target with γ1 = 2.17 while output gap receives less weight with the

coefficient of 0.89. The coefficient of the Phillips curve is estimated as only, k = 0.073,

which may imply a relatively flat Phillips curve in which the firm faces a stickier price

in the good market. The inflation target in the benchmark model is 0.946, implying

a target for annual inflation around 4%. τ = 0.419 represents the risk aversion of

consumers towards the time variation of consumption is around 212. The technology

shock is estimated as being much higher than monetary shock and demand shock.

There is a great interest in clarifying what happens when the consumers change

their attitude towards current consumption and the firms alter the rigidity or stickiness

of prices. Here I allow structural parameters τ and κ to switch across regimes evolving

12The risk aversion of consumers is represented by τ−1.

28



according to a Markov chain ξsa13. The transition matrix Hsa in this model used by

agents to change their beliefs is assumed to be a one-step transition probability matrix.

Table 2.3 reports means and 90% error bands for DSGE parameters and transi-

tion matrices when we have τ and κ switching across regimes, which corresponds to the

second extension proposed. In this model, the remaining structural parameters are kept

constant and the Federal Funds Rate is assumed with a strong response to deviation of

inflation from its target in order to obtain a determinacy solution 14. The estimation

indicates striking differences between two regimes. Regarding parameters of the private

sector, we observe that under regime 1 (ξsat =1), the household has a lower intertemporal

substitution elasticity with τ(ξsa = 1) = 0.121, which implies that the consumer is more

averse to variations in consumption and prefer a stable consumption path. That is, she

will be less willing to substitute consumption intertemporally. On the other hand, the

elasticity of output κ has a larger value under regime 1. A larger slope-coefficient on the

output gap in the Phillips curve indicates that the firm is facing a more flexible price in

the good market with a lower cost of price adjustment. Prices are considered more flexi-

ble in the U.S. during the high and volatile inflation of the 1970 as discussed in Gali and

Gertler (1999), Cogley and Sbordone (2005), Fernandez-Villaverde and Rubio-Ramarez

(2007). Figure 2.4 shows (filtered) probabilities assigned to ξsat = 1 takes place around

1958, during the “Great Inflation” and around 2008. Regime 1 is characterized as the

one in which agents respond more strongly to the economy. In this regime, agents have

a higher risk aversion and a steeper Phillips curve.

13Note Clarida, Gali, and Gertler (2000) mention that there is no widespread consensus on the value κ
and values found in the literature range from 0.05 to 1.22. To be consistent with Lubik and Schorfheide
(2004), I assume there are smaller τ and higher κ under the first regime with potential larger volatility
at that time.

14An interesting thing is if we allow indeterminacy in the model 2, the regime 1 will be much wider
than my current result. Agents have to maintain their beliefs much longer if they accept a monetary
authority with passive monetary policy
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In addition to switching in agents’ beliefs, we allow for heteroskedastic shocks

in the model. Structural parameters of the private sector and heteroskedastic shocks

are controlled by two independent Markov chains. Following Bollen, Gray, and Whaley

(2000), a convenient way to represent two independent Markov chains is to introduce a

four-state probability transition matrix. The process is described as follows:

Firstly, define ξsa as the agents’ beliefs switching regime with the probability

Pr[ξsat = j | ξsat−1 = i] = pij, i, j = 1, 2 and ξer as the variance change regime with the

probability Pr[ξert = j | ξert−1 = i] = qij, i, j = 1, 2. Both ξsat and ξert evolve according to

a first-order one-step Markov scheme with transition matrix

Hsa =







p11 1− p22

1− p11 p22







for the agents’ beliefs regime, and

Her =







q11 1− q22

1− q11 q22







for the variance regime. Now define a regime indicator variable that spans the regime

space for both agents variables and variance regimes as

ξt =







1, ξsa = 1, ξer = 1

2, ξsa = 2, ξer = 1

3, ξsa = 1, ξer = 2

4, ξsa = 2, ξer = 2

where ξt evolves according to a first-order Markov process with the transition probability
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matrix

Π =















p11q11 (1− p11)q11 p11(1− q11) (1− p11)(1 − q11)

(1 − p11)q11 p22q11 (1− p11)(1− q22) p22(1− q22)

p11(1− q11) (1− p22)(1− q11) p11q22 (1− p22)q22

(1− p11)(1 − q11) p22(1− q11) (1− p11)q22 p22q22















The transition parameters p22 and q11 can be easily obtained from the above

transition probability matrix. Table 2.4 presents the results with two Markov Switch-

ing processes. The results in table 2.4 are similar to those in table 2.3 with a higher

τ and smaller κ under regime 1, and the opposite under regime 2. The difference be-

tween κ across regimes becomes slightly greater compared to the case with only agents’

beliefs changing. Another difference in this model is that the response of the Federal

Reserve to the inflation is much smaller– there is a lower inflation target. Regime 1

(ξer = 1) for heteroskedastic shocks is assigned higher standard deviation in the priors

of the model. The estimation results show a clear distinction between the two volatility

regimes. Similar to the model 1, technology shock is still the highest one.

The top panel in figure 2.5 shows that regime 1 of agents’ beliefs occurs around

1957, 1960, during the “Great Inflation”, and around 2008. The bottom panel repre-

sents the low volatility of shocks which takes place elsewhere except during the “Great

Inflation”, the early of 1990s, the early 2000s and around 2008. There is a reduction

in the size of exogenous shocks during the “Great Moderation” compared with other

periods. Note that the figure captures large shocks that hit the U.S. economy in the

last two years.

The next extension of the benchmark model investigated is the case in which

policy changes across regimes. Table 2.5 reports the results when we have different
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regimes for policy parameters. Under regime 1(ξspt = 1), the Federal Funds Rates

react more strongly to inflation with γ1 = 2.17 while the output gap has lower weight

(γ2 = 0.758). We define this as the “Hawk regime”, that is, the one describing the

situation in which the government reacts more than one-for-one to a change in inflation.

Similarly, when there is a smaller reaction of the Federal Reserve to inflation with

γ1 = 0.885, we have the alternative regime (ξspt = 2) denominated the “Dove Regime”.

There are not great differences between coefficients on output gap across the regimes.

The behavior of the Federal Reserve is mainly reflected by a change of response to

inflation. Figure 2.6 shows the probability of policy switching. The figure depicts a

passive monetary policy by the Federal Reserve from 1955 to 1958, from 1974 to 1980,

and from 2005 to 2008. There is a large literature showing evidence that during the

“Great Inflation”, policymakers were relatively unresponsive to deviations of inflation

from the target, following a loose monetary policy. On the other hand, during the Post-

Volcker period the Fed showed a stronger commitment to bring the economy back to

the steady state in order to achieve low inflation with a cost of reduced output.

In the last proposed extension, we assume that the Fed faces heteroskedastic

shocks. Compared with the case of only policy parameters switching, in this case these

estimates indicate that there is a slightly higher response to inflation and a smaller

inflation target over the sample.

The probability in the top panel of figure 2.7 represents the policy switching

regimes. It is well-known that the Federal Reserve accommodated the inflation around

the 1970s and started to raise the interest rate in the early year of 1980s. The interesting

thing is there were some changes before our current crisis - the estimates indicate that

Federal Reserve was following a loose monetary policy around 2005. The probability

of lower volatility over the sample is shown in the lower panel. A higher probability is
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assigned to the period after the year of 1984. We also notice there was high volatility

of shocks around the 2007.

2.5.2 Impulse response analysis

Figure 2.8 shows impulse response functions to different shocks. Since there are

four states, we plot the regime of high volatility and low volatility together in red and

blue, respectively. Thus, the first two rows of figure 2.8 show the impulse responses to

a monetary shock under the strong response and weak response of agents, respectively.

Both output and inflation decrease following an increase in the Federal Funds Rate.

Under regime 1, output drops initially by almost 0.2 percent and inflation decreases by

0.3 percent to an unanticipated tightening of monetary policy. In this regime, agents

respond more strongly to keep the output gap close to zero at a cost of higher inflation.

The third and the fourth rows show the impulse responses to a demand shock.

Output and inflation increase under both regimes but are more volatile under the regime

1. In particular, the response of inflation is higher under regime 1 pushed by a demand

shock. It is easy to understand the movement by observing the firm will adjust the

prices more frequently when facing a demand shock.

The last two rows contain impulse responses to an adverse supply shock, i.e. to

an unexpected decrease in zt. The fluctuation of inflation and output is stronger under

the regime corresponding to strong agents’ beliefs. This is also due to more flexible

prices and stable consumption preference during this regime.

There is a larger literature that investigates the role of unfavorable supply-side

shocks as causes of the high inflation of the 1970s. Output decreases and becomes nega-

tive under both regimes, but at a larger extent under regime 1. Inflation fluctuates more

in response to a supply shock under the regime 1 than regime 2. This result is similar
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to Lubik and Schorfheide (2004). The conjecture that the 1970s were characterized by

important supply shocks is confirmed by the variance decomposition in section 2.5.3,

discussed below.

Figure 2.9 summarizes the impulse responses to different shocks when policy

parameters switch with heteroskedastic shocks for both high and low volatility regimes.

A positive monetary policy will reduce the output gap and inflation, and raise the

interest rate. The difference between the hawk and dove regime lies in the magnitude of

the response. The impulse response of inflation is lower in the dove region. The result is

consistent with the view that monetary policy is more effective in an environment with

a low inflation target(Bernanke and Mishkin (1997), Mishkin (2007), Goodfriend and

King (2005)). As shown in Figure 2.9, a demand shock pushes output to a higher level,

and also generates a higher inflation. The responses are stronger under the Dove regime.

This is consistent with the response of the Federal Funds rate that is larger under the

Hawk regime. The dynamics of the variables are similar across two regimes, and thus

the Fed does not face any trade-off when deciding how to respond to a demand shock.

A positive supply shock will increase the output gap under Dove regime and decrease it

under the Hawk regime. The result is also consistent with Bianchi (2009), who interprets

how the behavior of the Federal Reserve differs across two regimes. Under the Hawk

regime the Fed is willing to accept a recession in order to control inflation. On the

contrary, under the Dove regime the policy response is much weaker because the Fed

tries to keep the output gap around zero, at the cost of higher inflation. If the expected

inflation is very high, a negative real interest rate will boost the economy in the short

run.
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2.5.3 Variance decomposition

Variance decompositions for output gap, inflation, and interest rates are sum-

marized in figure 2.10, which represents contributions of structural shocks to the volatil-

ity of macroeconomic variables for all possible combinations of agents’ beliefs regimes

and volatility regimes. Such a decomposition enables better understanding of what kind

of shock contributes more in different regimes. The first two values, on the left of the

blue dashed line, refer to the high volatility regime, while the third and the fourth value

assume that the low volatility regime is in place. In each sub-group, the first point

marks the standard deviation under the stronger reaction regime of agents’ beliefs and

the second point marks the agents’ weak response. The figure presents the variance

decomposition for four possible regime combinations. Output is mainly driven by the

demand shock, especially under the low volatility regime. We can note that change of

agents’ beliefs does matter in explaining the volatility of inflation. When the firm is

facing more flexible prices, the inflation could be driven by the demand shock while at

the same time the supply shock still play a dominant role.

Figure 2.11 shows variance decompositions under switching policy parameters

and heteroskedastic shocks. Similarly to figure 2.10, the dashed blue line separates sub-

group as high and low volatility regime. The first point in each sub-group refers to

the hawk region. As we can observe, in the case of output a large fraction of volatility

comes from the demand shock, especially under the Dove-High regime. Supply shocks

are mainly responsible for the volatility of inflation while monetary policy shocks play a

marginal role. Supply shocks explain more under the hawk region. When dove regime

is in effect, the contribution of demand shocks is basically null. We arrive at the same

conclusion as the evidence from impulse response functions: under the Dove regime, the
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Fed accommodates supply shocks to dampen the inflation. When we consider policy

switching, monetary policy shocks explain a small fraction of the Federal Funds Rate

volatility under hawk regime, considering the Fed has a stronger incentive to bring the

economy back on track.

2.5.4 Counterfactual analysis

This section implements counterfactual analysis in the extended regime switch-

ing models, in order to simulate what would have happened if regime changes had not

occurred. This kind of analysis brings us more meaningful interpretation in the context

of the MS-DSGE model. The entire law of motion changes in a way that is consistent

with new assumptions around the behavior of switching. Since we can observe different

switching probabilities , we can investigate what would have happened if agents’ beliefs

or monetary policy about the probability of moving across regimes had been different.

This has important implications for counterfactual simulations in which a regime is as-

sumed to have been in place throughout the sample because the expectation mechanism

and the law of motion are consistent with the fact that no other regime would have been

observed. By implementing counterfactual analysis, two main conclusions can be drawn

according to results of this section. First, inflation would be lower during the “Great

Inflation” if agents persist in a weak response with more sticky prices over the sample.

Second, if the hawk regime had been in place through the entire regime, a little would

have changed for the dynamics of inflation at the sacrifice of the production.

Two main conclusions can be drawn from the results of implementing counter-

factual analysis. First, inflation would be lower during the “Great Inflation” if agents

displayed a weak response with more sticky prices over the sample. Second, if the hawk

regime had been in place through the entire regime, little would have changed with
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respect to inflation dynamics at the sacrifice of output.

Three analysis were undertaken in the counterfactual analysis. Figure 2.12

shows the results when consumers always have a lower risk aversion and firms adjust

the price less frequently. It is noticeable that if agents had always behaved in this

manner, inflation would have been lower during the “Great Inflation” period.

Figure 2.13 is the result under the assumption that the hawk region is always

in place. The higher interest rate in the 70s causes output to decrease slightly while

it is difficult to curb inflation. In order to further study the behavior of the Federal

Reserve, we consider augmenting the policy parameters by doubling the values in the

Hawk region. Figure 2.14 shows the results of this experiment. In order to reduce

inflation, the Federal Reserve needs to react much more strongly, while at the same

time there is a risk of a recession.

2.5.5 Model comparison

This section reports the maximum likelihood of each model. As in table 2.7,

regime switching models display similar maximum likelihood values, while the DSGE

model with fixed parameters displays a much lower one.

2.6 Conclusions

This paper investigates a small-scale dynamic stochastic general equilibrium

model with regime switches on structural parameters. It extends the benchmark model

of fixed parameters by considering the role of agents’ beliefs, changes in the behavior

of the Federal Reserve and the stochastic volatility of exogenous shocks. A Gibbs-

sampling with Metropolis-Hasting algorithm is implemented as the estimation strategy
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after solving the minimum state variable solutions. In an application to postwar U.S.

inflation and output dynamics, the results indicate that there were substantial different

shifts in monetary policy, agents’ beliefs, and in the volatility of non-policy shocks in

the last 60 years. If the agents always maintain a weak response to economic dynamics,

inflation would have been lower during the 1970s. The more intense response to inflation

by the Federal Reserve would also have helped mitigate the great inflation. Supply

shocks are found as the main drivers of the inflation if there were no switches in the

agents’ beliefs. Finally, there were substantial changes in agents’ beliefs, and in the

volatility of shocks in the recent years. Such an occurrence could be potential early

signals of the 2008 financial crisis.
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Table 2.1: DSGE Models with Regime Switching Descriptions

Model Regime-Switching parameters

M1 None
M2 τ and κ
M3 τ , κ, σR, σg and σz
M4 γ1 and γ2
M5 γ1, γ2, σR, σg and σz

Table 2.2: Benchmark model

Parameter Estimation

γ1
2.174

( 2.096 , 2.233 )

γ2
0.893

( 0.821 , 0.979 )

ρR
0.848

( 0.754 , 0.978 )

τ
0.419

( 0.419 , 0.462 )

β
0.922

( 0.842 , 1.000 )

κ
0.073

( 0.030 , 0.114 )

ρg
0.831

( 0.805 , 0.862 )

ρz
0.899

( 0.871 , 0.960 )

Parameter Estimation

r∗
0.246

( 0.201 , 0.254 )

π∗
0.946

( 0.899 , 1.000 )

σR
0.391

( 0.297 , 0.501 )

σg
0.354

( 0.191 , 0.468 )

σz
1.973

( 1.946 , 2.000 )

σy
0.413

( 0.000 , 0.668 )

σp
0.440

( 0.338 , 0.563 )

σr
0.073

( 0.000 , 0.182 )

Benchmark model: Means and 90 percent error bands of the DSGE parameters
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Table 2.3: Only agents’ beliefs change

Parameter ξsat = 1 ξsat = 2

τ
0.121

( 0.037 , 0.176 )
0.533

( 0.408 , 0.667 )

κ
0.681

( 0.455 , 0.934 )
0.085

( 0.059 , 0.103 )

β
0.982

( 0.962, 0.998)

γ1
1.964

( 1.748, 2.189)

γ2
0.789

( 0.657, 0.903)

ρR
0.774

( 0.753, 0.795)

ρg
0.860

( 0.803, 0.918)

ρz
0.880

( 0.846, 0.900)

r∗
0.383

( 0.121, 0.654)

π∗
0.836

( 0.715, 0.958)

Parameter ξ̄ert = 1

σR
0.445

( 0.351 , 0.581 )

σg
0.334

( 0.203 , 0.431 )

σz
1.833

( 1.667 , 1.998 )

σy
0.141

( 0.007 , 0.323 )

σp
0.498

( 0.245 , 0.742 )

σr
0.209

( 0.016 , 0.462 )

diag(Her)

0.928
( 0.834, 1.000)

0.984
( 0.971, 1.000)

Only agents’ beliefs change: Means and 90 percent error bands of the DSGE and transition matrix

parameters

Table 2.4: Different regimes on agents’ beliefs and stochastic volatilities

Parameter ξsat = 1 ξsat = 2

τ
0.128

( 0.126 , 0.131 )
0.577

( 0.575 , 0.583 )

κ
0.672

( 0.671 , 0.675 )
0.052

( 0.053 , 0.054 )

β
0.858

( 0.858, 0.859)

γ1
2.161

( 2.177, 2.192)

γ2
0.962

( 0.962, 0.963)

ρR
0.739

( 0.739, 0.740)

ρg
0.836

( 0.836, 0.836)

ρz
0.952

( 0.954, 0.956)

r∗
0.462

( 0.462, 0.463)

π∗
0.754

( 0.754, 0.755)

Parameter ξert = 1 ξert = 2

σR
0.707

( 0.715 , 0.723 )
0.379

( 0.387 , 0.394 )

σg
0.576

( 0.575 , 0.579 )
0.390

( 0.389 , 0.392 )

σz
1.677

( 1.645 , 1.739 )
0.497

( 0.495 , 0.501 )

σy
0.017

( 0.019, 0.020)

σp
0.310

( 0.300, 0.328)

σr
0.394

( 0.408, 0.421)

diag(Hsa) diag(Her)

0.963
( 0.950, 0.968)

0.974
( 0.963, 0.977)

0.982
( 0.976, 0.981)

0.925
( 0.928, 0.965)

Different regimes on agents’ beliefs and stochastic volatilities: Means and 90 percent error bands of the

DSGE and transition matrix parameters.
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Table 2.5: Only policy changes

Parameter ξspt = 1 ξspt = 2

γ1
2.170

( 2.099 , 2.228 )
0.758

( 0.668 , 0.881 )

γ2
0.885

( 0.836 , 0.943 )
0.630

( 0.510 , 0.714 )

ρR
0.737

( 0.692, 0.778)

τ
0.772

( 0.675, 0.865)

β
0.955

( 0.925, 0.981)

κ
0.124

( 0.090, 0.145)

ρg
0.797

( 0.770, 0.838)

ρz
0.874

( 0.856, 0.892)

r∗
0.589

( 0.386, 0.714)

π∗
0.873

( 0.748, 0.999)

Parameter ξ̄ert = 1

σR
0.519

( 0.370 , 0.610 )

σg
0.398

( 0.322 , 0.468 )

σz
1.782

( 1.482 , 1.993 )

σy
0.371

( 0.010 , 0.780 )

σp
0.453

( 0.378 , 0.522 )

σr
0.029

( 0.000 , 0.073 )

diag(Her)

0.889
( 0.785, 0.992)

0.956
( 0.913, 0.996)

Only policy changes: Means and 90 percent error bands of the DSGE and transition matrix parameters.

Table 2.6: Different regimes on policy and stochastic volatilities

Parameter ξspt = 1 ξspt = 2

γ1
2.215

( 2.165 , 2.289 )
0.985

( 0.971 , 1.000 )

γ2
0.885

( 0.871 , 0.900 )
0.853

( 0.831 , 0.875 )

τ
0.562

( 0.480, 0.652)

β
0.987

( 0.965, 1.000)

κ
0.068

( 0.049, 0.082)

ρR
0.730

( 0.703, 0.752)

ρg
0.851

( 0.818, 0.890)

ρz
0.928

( 0.894, 0.962)

r∗
0.505

( 0.450, 0.546)

π∗
0.826

( 0.799, 0.846)

Parameter ξert = 1 ξert = 2

σR
0.776

( 0.655 , 0.869 )
0.383

( 0.371 , 0.398 )

σg
0.831

( 0.719 , 0.906 )
0.354

( 0.340 , 0.362 )

σz
1.837

( 1.699 , 1.953 )
0.505

( 0.450 , 0.546 )

σy
0.057

( 0.016, 0.083)

σp
0.278

( 0.232, 0.337)

σr
0.035

( 0.015, 0.054)

diag(Hsp) diag(Her)

0.970
( 0.946, 0.995)

0.955
( 0.912, 0.998)

0.965
( 0.938, 0.996)

0.895
( 0.811, 0.980)

Different regimes on policy and stochastic volatilities: Means and 90 percent error bands of the DSGE

and transition matrix parameters
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Table 2.7: DSGE models with Maximum Likelihood

Model Regime Switching parameters Maximum Likelihood

M1 None −1334
M2 τ and κ −828.96
M3 τ , κ, σR, σg and σz −716.44
M4 γ1 and γ2 −734.69
M5 γ1, γ2, σR, σg and σz −817.75
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Figure 2.1: Graphical representation of a 4-state Markov Chain
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Note: Some directed arcs from i to j are included in the graph. pij > 0

Figure 2.2: State space model specifying conditional independence relations

S1 S2 S3 ST

Y1 Y2 Y3 YT

Note: Yt is conditionally independent from all other variables given the state St, St only

depends on St−1. The tinted nodes in orange represent hidden variables and unfilled nodes represent

observed variables.
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Figure 2.3: A figure of switching state space model

ξ1 ξ2 ξ3 ξT

S1 S2 S3 ST

Y1 Y2 Y3 YT

Note: Both the measurement equation and transition equation evolve according to a Markov

chain. The tinted nodes in orange represent hidden variables and unfilled nodes represent observed

variables.
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Figure 2.4: MS-DSGE model: Only Private Sector changes
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Figure 2.5: MS-DSGE model: Agents’ beliefs and stochastic volatilities
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Figure 2.6: MS-DSGE model: Only Policy changes.
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Figure 2.7: MS-DSGE model: Monetary policy and stochastic volatilities.
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Figure 2.8: Impulse responses functions. Agents’ beliefs and stochastic volatilities.
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Figure 2.9: Impulse responses functions. Monetary policy and stochastic volatilities.
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Figure 2.10: Contributions of the different structural shocks: Agents’ beliefs switching

1 2 3 4
0

0.1

0.2

output
M

on
et

ar
y 

sh
oc

k

1 2 3 4
0

0.1

0.2

Inflation

1 2 3 4
0

0.1

0.2

FFR

1 2 3 4
0

0.5

1

D
em

an
d 

sh
oc

k

1 2 3 4
0

0.5

1

1 2 3 4
0

0.5

1

1 2 3 4
0

0.5

1

T
ec

hn
ol

og
y 

sh
oc

k

1 2 3 4
0

0.5

1

1 2 3 4
0

0.5

1

Contributions of the different structural shocks to the volatility of the macroeconomic variables for

different regime combinations: Agents’ beliefs switching.

1-[strong response, high volatility]; 2-[weak response, high volatility], 3-[strong response, low volatility],

4-[weak response, low volatility]

49



Figure 2.11: Contributions of the different structural shocks: Policy switching
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Figure 2.12: Counterfactual simulation: Low risk aversion and Phillips curve slope
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Figure 2.13: Counterfactual simulation: Always in the Hawk regime
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Figure 2.14: Counterfactual simulation: Augmented Hawk regime
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Chapter 3

How Largely the Commitment

can Beat Policymakers’

Misperceptions?

3.1 Introduction

Policymakers have a trade-off on inflation and unemployment. This episode, is

described as “a discretionary policymaker can create surprise inflation, which may reduce

unemployment and raise government revenue” in Barro and Gordon (1983). The 1960s

to 1980s saw such an occurrence known as the “Great Inflation” while the following 26

years distinguished itself in a certain state of low inflation and shallow recessions named

as the “Great Moderation”. These stylized facts caused much interest which attempted

to explain the behavior of inflation and unemployment, especially the reason resulting

in the “Great Inflation”. Previous studies could be basically categorized as “bad luck”

view, “lack of commitment” view and “policy mistakes” view. While previous research
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focuses more on the reason of inflation fluctuation, our paper investigates how to allevi-

ate such a bad situation in the economy. Since it is difficult to avoid bad luck originating

from exogenous and non-policy shocks, this paper aims to model the evolution of policy-

makers’ belief, which combines their commitment with policy mistakes. Results of this

paper demonstrate that a commitment to the Taylor-type monetary rule can effectively

reduce policymakers’ misperceptions and thus contribute to a stabilization policy.

The source of “bad luck” is well stated as higher exogenous, non-policy shocks

occurring in the 1960s and 1970s. Ahmed, Levin, and Wilson (2002) stated that reduced

innovation variances resulted in largely decline in aggregate output volatility. Cogley

and Sargent (2005) achieved similar conclusion that innovation variances fluctuated sub-

stantially larger in the late 1970s. Other research such as Kim and Nelson (1998), Sims

and Zha (2006) and Stock and Watson (2003) also supported the findings of greater dis-

turbances during the “Great Inflation”. The argument “lack of commitment” originates

from such a consideration that policymakers have no incentive to keep inflation low.

Barro and Gordon (1983) referred it as a “long-term contracts between the government

and the private sector”. This conclusion was also supported by research from Chris-

tiano and Fitzgerald (2003), Christiano and Gust (2000) and etc. Moreover, Bullard

and Eusepi (2005) assumed that monetary policymakers were committed to a Taylor-

type policy rule in a general equilibrium, sticky price economy and found a substantial

increase in inflation during the 1970s attributed to this source. The last explanation to

the “Great Inflation” is the “policy mistakes”, in which addresses U.S. monetary policy

was less responsive to inflationary in the 1960s and 1970s. Policymakers under the Fed

chairmanship of Arthur Burns failed to respond to inflation as appropriately as those un-

der Paul Volcker and Alan Greespan (for example, Boivin and Giannoni (2002), Clarida,

Gali, and Gertler (2000) and Orphanides (2002)). Primiceri (2005) found when policy-
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makers underestimated both the natural rate of unemployment and the persistence of

inflation in the Phillips curve, a prolonged high inflation ending with rapid disinflation

will occur. Similarly, although Ahmed, Levin, and Wilson (2002) marked reduced inno-

vation contributed to the decline in aggregate output volatility, they admitted that good

policy played a more important role in explaining the post-1984 decline in the volatility

of inflation.

Our paper investigates the assumption that policymakers commit to a Taylor

rule, using an inflation-unemployment dynamic model for the US economy. Our ap-

proach differs from previous work as we model policymakers’ belief as a latent variable

rather than as represented by observed nominal interest rate. Our paper is based on the

conjecture that policymakers’ misperceptions originate from unobserved deviations of

unemployment from its natural rate. We propose four processes for policymakers: belief

under commitment to inflation and unemployment and compare them with a baseline

autoregressive process without commitment. The models are: 1) a time-invariant Taylor

rule in which policymakers can only observe previous inflation and unemployment; 2)

a time-varying Taylor rule in which policymakers adjust their commitment each period

according to available information; 3) a Taylor rule in which commitment switches be-

tween high and low inflation and unemployment phases, following a Markov switching

process; 4) a Taylor rule with commitment adjusted according to low or high inflation

regimes only. 5) a Taylor rule in which commitment is changed as a response to different

regimes in unemployment only. We specify a loss function derived from a constrained

minimization of the divergence in inflation and unemployment that also penalizes shifts

in the policy variables.

The models are estimated using Bayesian techniques. We find that our esti-

mated belief performs the role of real interest rate. Our empirical results are as follows.
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First, policymakers’ belief is very persistent even when it commits to a Taylor-type

policy rule. Second, the run-up of U.S. inflation around 1980 is mostly attributed to

policymakers’ misperception while the peak in the end of 1974 is possibly a result from

large non-policy shocks. Third, models with commitment dominate models without

commitment, especially in periods of large oscillations in inflation. When policymak-

ers are committed to respond to a Taylor-type policy rule, the average loss function is

efficiently reduced over the time, thus effectively lessening their misperception.

Results obtained from the proposed specifications illustrate the extent to which

different commitments mitigate policymakers’ misperceptions given the loss function.

Our results have important policy implications as they indicate how and when it is

appropriate for policymakers to choose a commitment in their reaction to inflation and

unemployment. In particular, the models indicate that a flexible or more activist policy

is more appropriate in reacting to inflation when there is high unemployment target,

whereas a policy that is consistent over time is more suitable under low unemployment

target. Moreover, our results shed light on the source of the two large rises in inflation

during the “Great Inflation” period and the prevalence of low inflation during the early

1980s.

The paper is organized as follows. Section 3.2 presents the theoretical model of

the evolution of policymakers’ misperception. Section 3.3 discusses how to estimate the

model in a Bayesian approach. Section 3.4 provides the empirical results and a model

fit. Section 3.5 closes this paper with the concluding remarks.
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3.2 Model the Policymakers’ misperception

3.2.1 The benchmark Model

We start from a simple rational expectation model that describes the dynamics

of inflation and unemployment in the private sector part. The inflation rate πt is equal

to inflation expectation Etπt+1, plus a component that depends on lag polynomial of

deviation of unemployment from its “natural rate”, ut−1 − uNt−1,

πt = Etπt+1 + θ̃(L)(ut−1 − uNt−1) + εt (3.1)

where εt is a random shock with the distribution of i.i.d. N(0, σ2ε ).

We assume policymakers’ misperception originates from the aggregate demand

equation. Policymakers adjust their belief based on the deviation of unemployment from

its natural rate. Equation (3.2) describes such a dynamic evolution as follows.

(ut − uNt ) = ρ(L)(ut−1 − uNt−1) + Vt−1 + ηt (3.2)

Vt is a control variable of policymakers and ηt is a random innovation with

i.i.d N(0, σ2η) distribution. The detailed description of Vt, as Primiceri (2005) is “unem-

ployment deviates from the natural rate either because of a random shock or because of

policymakers’ decisions about stabilization policy”.

The natural rate, uNt , is assumed to fluctuate over time in response to a shock

τt according to the autoregressive process 1

uNt = γuNt−1 + τt (3.3)

1We ignore a constant term here to simplify the model.
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where τt is serially uncorrelated and normally distributed with mean zero and

standard deviation στ .

Equation (3.1) to (3.3) describe the dynamic process of inflation and unem-

ployment augmented with a control policy variable. In the aggregate demand curve,

Vt−1 performs the role of real interest rate as the one it−Etπt+1. Vt−1 is also considered

capturing the joint effect of monetary and fiscal policy.

A rational expectation is introduced in equation (3.1), which describes a dy-

namic process between inflation and unemployment, considered as a Phillips curve. In

our model, we assume that some agents are fully rational, while the rest of them form

their expectations adaptively.

Etπt+1 = (1− α̃(1))Et−1πt + α̃(L)πt−1 (3.4)

where α̃(L) is a lag polynomial. By substituting (3.4) into (3.1), we can get a

backwarding Phillips curve as follows:

πt = α(L)πt−1 − θ(L)(ut−1 − uNt−1) + εt (3.5)

where α(L) = α̃(L)/α̃(1) and θL = θ̃L/α̃(1). Equation (3.5) captures the

inflation fluctuation originating from a “cost-push” shock or the deviation from the

natural rate.

The policy-controlled variable Vt affects deviation of unemployment from the

natural rate each period. Vt is chosen by policymakers based on available information,

that is, the inflation rate, the unemployment rate and their belief of last period.2

Policymakers are assumed to know the joint dynamic process of inflation and

2Note the natural rate of unemployment is unobserved but could be estimated by policymakers.
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unemployment very well. They estimate the natural rate of unemployment and all

coefficients in each period. Simultaneously, they respond to previous belief and adjust

it according to available information.

We assume policymakers follow a loss function derived from a constrained

minimization of the divergence in inflation and unemployment that also penalizes shifts

in the policy variables.

Et−1{(1/2)(ut − kuNt ) + (b/2)π2t + (1/2)(Vt − Vt−1)
2} (3.6)

where 1 ≥ k ≥ 0 and b > 0. k = 1 could be taken as an efficient criterion which

penalizes any departures of ut from uNt . In this case, the target becomes the natural rate

of unemployment. k < 1 represent the possibility that the natural rate has intention to

exceed the efficient level when there exists distortion. When k = 0, policymakers ignore

the natural rate of unemployment. In this situation, unemployment target disappears

and policymakers’ time-consistency problem becomes most powerful.

Many authors solve the problem of loss function by minimizing policy variable

such as Ireland (1999), Primiceri (2005), Reis (2003)) and among others. That is, when

we have a loss function as

min
Vt

Et−1{(1/2)(ut − kuNt ) + (b/2)π2t + (1/2)(Vt − Vt−1)
2} (3.7)

subject to

πt = α1πt−1 + α2πt−2 − θ1(ut−1 − uNt−1)− θ2(ut−2 − uNt−2) + εt (3.8)
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and

(ut − uNt ) = ρ1(ut−1 − uNt−1) + ρ2(ut−2 − uNt−2) + Vt−1 + ηt (3.9)

Since Vt doesn’t enter directly into constraints, the functional form of Vt is

hard to express accurately. At the same time, it is unrealistic for policymakers to

react to many coefficients and variables in the solved form of Vt
3. To distinguish from

other research, we investigate policymakers’ belief by firstly assuming they follow an

autoregressive process as

Vt = φVt−1 + ξt (3.10)

where ξt is assumed as an i.i.d N(0, σ2ξ ). A state-space model covering (3.3),

(3.8), (3.9) and (3.10) could be written as

dt = CFt (3.11)

Ft = AFt−1 +Bet (3.12)

where dt = [πt, ut]
′ and Ft = [πt, πt−1, ut, ut−1, Vt, u

N
t , u

N
t−1]

′.

In this model, policymakers choose Vt based on previous belief Vt−1. The

greater φ in equation (3.10) is, the more persistent policymakers’ belief is. If policy-

makers only respond to previous belief, equation (3.10) approximates a random walk

with φ close to the unity. φ is expected smaller when the policymakers synthesize more

information into their reaction equation. In the Phillips curve (3.8), θ1 and θ2 deter-

mine whether policymakers perceive a very costly inflation-unemployment trade-off and

whether they would like accept a higher unemployment for a limited relief from inflation.

An autoregressive process in policymakers’ belief is obviously too simple to

3The optimized Vt in the equation (3.7) is policymakers’ previous belief Vt−1, however, to further
explore, Vt is actually affected by (ut − uN

t )− ρ1(ut−1 − uN
t−1)− ρ2(ut−2 − uN

t−2)− ηt.
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model the complicated decision evolution. In addition to previous belief, there is lagged

value of inflation and unemployment that could be observed by policymakers. Based on

this information, we introduce five extensions in the following subsection.

3.2.2 Five Extensions

We firstly assume policymakers commit to a time-invariant Taylor rule. In this

commitment, policymakers can only observe previous inflation and unemployment4.

Vt = φVt−1 + (1− φ)[απt−1 + δut−1] + ξt (3.13)

Equation (3.13) represents policymakers can observe previous inflation and

unemployment, and thus adjust current belief based on them. Meanwhile, they are also

able to estimate the natural rate of unemployment corresponding to (3.8) and (3.9).

A more powerful commitment is a time-varying Taylor rule. Policymakers

update their belief each period as follows:

Vt = φVt−1 + (1− φ)[αt−1πt−1 + δt−1ut−1] + ξt (3.14)

One hand, this commitment depicts a very quick response of policymakers

each period. On the other hand, a quick adjustment may lead to unstable performance

of monetary policy. Thus, except a time-varying commitment, we are also interested

in observing policymakers responding to inflation and unemployment across different

regimes. The introduction of regime switching is considered as follows:

Vt = φVt−1 + (1− φ)[αst−1
πt−1 + δst−1

ut−1] + ξt (3.15)

4Since Vt is an unobservable variable. To distinguish parameters and latent variables, we only let
parameters on inflation or unemployment follow a time-varying approach or regime-switching.
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where

αst−1
= α0(1− st−1) + α1st−1

δst−1
= δ0(1− st−1) + δ1st−1

st−1 = 0 or 1 represents regime 0 or 1 respectively. This means, under regime

1, policymakers’ belief is controlled by α1 and δ1, while under regime 0, it is reacted by

α0 and δ0.

One issue arises when we assume inflation and unemployment perform across

same regimes. Figure 3.1 shows the evolution inflation and unemployment from 1954Q3

to 2007 Q4. Inflation obviously performs a leading indicator compared to unemployment.

Such an stylized fact is captured by equation (3.16) and (3.17), which assume only

inflation or unemlpoyment switches across regimes.

Vt = φVt−1 + (1− φ)[αst−1
πt−1 + δut−1] + ξt (3.16)

Vt = φVt−1 + (1− φ)[απt−1 + δst−1
ut−1] + ξt (3.17)

Estimation results of five extensions from equation (3.13) to (3.17) will be

discussed in section 3.4.

3.3 Bayesian Estimation

This section describes the estimation method of Bayesian approaches. A

state-space model covering equation (3.11) and (3.12) is estimated by a random walk

Metropolis-Hastings algorithm. In equation (3.11) and (3.12), matrices A, B and C are
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functions of structural parameters ∆:

∆ = [α1, α2, θ1, θ2, ρ1, ρ2, φ, α, δ, γ, σε , ση , σξ, στ ]
′

Then the likelihood of the model can be obtained via an application of the

Kalman filter

p(dt | dt−1,∆) =

T∏

t=1

p(dt | dt−1,∆), t = 1, 2, ..., T (3.18)

To simulate posterior distribution of the parameter, we reparameterize ∆ as

∆∗. We draw ∆∗ from specified distribution 5 and calculate the acceptance rate as

min

{
p(∆∗)p(dT | ∆∗)

p(∆(i−1))p(dT | ∆(i−1))
, 1

}

(3.19)

where i = 1, 2, ..., N and N is the number of draws from the posterior distri-

bution of ∆.

In the regime switching model, transition probabilities are also calculated by

a Bayesian approach. We calculate posterior distribution as follows:

p(∆)p(sT | ∆)p(d | ∆, sT ) (3.20)

To solve p(sT | dT ,∆), we draw whole sequence from p(sT | dT ,∆) using

backward (in time) sequential partition sT ∼ p(sT | dT ,∆). p(sT | dT ,∆) could be

calculated as

p(sT | dT ,∆) = p(sT | dT ,∆)×

T−1∏

t=1

p(st | st+1, . . . , sT , dT ,∆) (3.21)

5The prior distribution is represented in Table 3.1 and 3.2
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Given Markov property of unobservable variables, we have

p(st | st+1, . . . , sT , dT ,∆) = p(st | st+1, dt,∆) (3.22)

Using Bayes’ Theorem, the transition probability could be calculated as

p(st = i | st+1 = j, dt,∆) (3.23)

=
pij × πi,t|t

πj,t+1|t
(3.24)

where pij = p(st+1 = j | st = i,∆) and πi,t|t = p(st = i | dt,∆). The filtered

probability is calculated by iteration as

πj,t+1|t = p(st+1 = j | dt,∆) (3.25)

=

m∑

i=1

p(st+1 = j, st = i | dt,∆) (3.26)

=
m∑

i=1

p(st+1 = j | st = i, dt,∆)× p(st = i | dt,∆) (3.27)

=

m∑

i=1

pij × πi,t|t (3.28)

and we update predicted probability by Bayes Theorem as follows

πj,t+1|t+1 = p(st+1 = j | dt+1,∆) (3.29)

= p(st+1 = j | dt, dt+1,∆) (3.30)

=
πj,t+1|t × p(dt+1 | st+1=j,∆)

p(dt+1 | dt,∆)
(3.31)

Time-varying parameter(TVP) model is similar to a Markov switching (MS)

model but unobservable variable is a continuous variable. The posterior simulation of
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time-varying model is conceptually similar to that of Markov switching model: we draw

unobservable variables conditional on data and parameters, and draw parameters given

data and unobservable variables.

Since we have

Vt = φVt−1 + (1− φ)[αt−1πt−1 + δt−1ut−1] + ξt

We assume varying parameters follow a random walk with error terms

αt = αt−1 + εαt (3.32)

δt = δt−1 + εδt (3.33)

where εαt ∼ N(0,Hα) and εδt ∼ N(0,Hδ).

Let β̃ = [α, δ]′, we follow Carter and R.Hohn (1994) and factorize the full

conditional posterior distribution of the state vectors belonging to the sample period as:

p(β̃T | dT ,∆) = p(β̃T | dT ,∆)

T∏

t=1

(β̃t | dT ,∆) (3.34)

By iteration, we have

β̃t+1 = β̃t+1|t + et+1|t (3.35)

= β̃t+1|t + et|t (3.36)

where et|t is simulated each time based on extracted variables by Kalman filter and the

acceptance rate of equation (3.19).
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3.4 Empirical Results

The section represents empirical results of our model. Quarterly changes in

seasonally adjusted GDP deflator, converted as 400 ∗ log(Pt/Pt−1), serve to measure

inflation. The seasonally adjusted civilian unemployment rate averaged over each three

months is taken as quarterly unemployment rate here. The whole sample is from 1954:Q3

to 2007:Q4.

In this section, we compare and investigate different assumptions of policy-

makers’ misperception, estimated by a Bayesian approach. Four main conclusions are

obtained: first, policymakers’ misperception is very persistent, even though it commits

to a Taylor rule. Second, policymakers’ misperception was observed highest around

1979. The run-up of U.S. inflation around 1980 is mostly attributed to policymakers’

misperception while the peak in the end of 1974 is possibly a result from large non-policy

shocks. Severe oil shocks could be considered as one of main reasons resulting in fierce

inflation fluctuation in 1974. Third, models with commitment dominate models with-

out commitment, especially in periods of large oscillations in inflation. Over the whole

sample, the time-invariant commitment can reduce policymakers’ misperception highest

to 8.5%. The time-varying commitment can reduce much more when there is a high

target on unemployment. Policymakers are expected to keep consistent with a commit-

ment to the Taylor rule, especially in periods of large inflation fluctuation. Last, we

subtract misperception from nominal interest rate. The left component is quite similar

to Survey of Professional Forecasters(SPF) that underestimates inflation in the 1970s

while overestimates inflation in the 1980s and 1990s. The estimation of policymakers’

misperception in our model, captures the characteristics of the real interest rate.

Table 3.1 and 3.2 represents Bayesian estimations of the model without com-
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mitment and with time-invariant commitment6. As observed, the estimated natural

rate of unemployment and policymakers’ misperception are very persistent since φ and

γ are quite close to the unity. γ in the model without commitment is slightly greater

than that of time-invariant commitment. Other estimated parameters are similar al-

though difference is observed. For both models, α1 is slightly greater than α2 and θ1,

which demonstrates inflation responds more to the last period inflation instead of unem-

ployment. However, a large estimate of θ2 reveals that inflation was greatly influenced

by unemployment in the last two period. Such a observation confirms that inflation

performs as a leading indicator in U.S. economy. In the IS curve, the dynamics of un-

employment originates more from the previous period since we have a greater estimate

of ρ1. Moreover, in our estimation, demand shock in the Phillips curve dominates other

shocks.

Table 3.3 reports average loss over the whole sample from 1954:Q3 to 2007:Q4.

We compute different average loss given different b and k. When k is as small as 0.5,

there is no big difference between models without commitment and with commitment.

If policymakers choose to put less weight on the target of unemployment, it won’t hurt

them much without commitment. However, in previous literature, k was estimated

more than 0.8 (for instance, Barro and Gordon (1983), Primiceri (2005)). When k

is greater than 0.8, it means a slight departure of ut from uNt will be penalized. As

we can observe in table 3.3, a commitment to a Taylor rule will help policymakers

reduce their loss effectively. Models with time-varying commitment as well as Markov

switching commitment perform the best. Compared to the model without commitment,

model with Markov switching on inflation will decrease average loss over 25%. Table

3.6 summarizes maximum likelihood for all proposed models. Among them, model with

6More results are available upon request.
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time-varying commitment returns the largest maximum likelihood.

We also investigate estimation in different subsamples. Results are represented

in table 3.4 and 3.5 respectively. Table 3.4 represents results of Pre-Volcker period from

1954:Q3 to 1979:Q4 whereas table 3.5 represents results of Post-Volcker period from

1980:Q1 to 2007:Q4. Average loss in table 3.5 in comparison to table 3.4 is smaller in

the Post-Volcker period. Such a result comes not only from low inflation rate in the Post-

Volcker period but also from less deviation from natural rate of unemployment. Models

with time-varying commitment and Markov switching commitment still dominate others

when k is over 0.8 in both subsamples. Similarly, we can observe when policymakers

respond flexibly to inflation, the average loss will be reduced more than 35% during Post-

Volcker period. When k is equal to 0.5, that is, when policymakers have a low target

of unemployment, it is difficult for model with commitment to beat model without

commitment.

Figure 3.2 and 3.3 depict the misperception of policymakers in different mod-

els in comparison with inflation and unemployment. During periods of large oscillations

in inflation and unemployment, misperceptions from models with time-varying com-

mitment and Markov switching commitment are obviously smaller than others. When

inflation rate is low, there is no big difference between different models. We also note

that during the “Great Inflation” period, misperception around 1979 is greater than

that around 1974. Obviously, policymakers’ misperception could not completely inter-

pret the high peak in 1974. The run-up of U.S inflation around 1979 is mostly attributed

to policymakers’ misperception while the peak in the end of 1974 is possibly a result

from large non-policy shocks such as oil shocks.

Figure 3.4 analyze misperception in comparison with interest rate. The re-

lationship between nominal interest rate it, inflation πt and real interest rate rt is as
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follows:

it − πt = rt

Then inflation could be represented as

πt = it − rt

The effective federal funds rate averaged over each three months is taken as

quarterly nominal interest rate it and we model inflation as it − Vt, that is, interest

rate subtracts misperception. The modeled inflation with interest rate is plotted in

figure 3.4 and compared with SPF. As we can observe, in a model without considering

interest rate, the modeled inflation is very similar to SPF, which underestimates inflation

around 1974, catches the peak in the 1979 and overestimates in the 1980s. The predicted

misperception in our model actually performs the role of real interest rate.

Figure 3.5 shows a model fit of inflation and unemployment. Our model pro-

vides a better fit for unemployment.

3.5 Concluding Remarks

There is always a trade-off between inflation and unemployment faced by poli-

cymakers. They expect to have a stable economy without violent fluctuation on inflation

and unemployment in the world. During their reaction to inflation and unemployment,

it is unavoidable for policymakers to make mistakes. Thus, how to avoid serious mistakes

is proceeded to the agenda. Our models demonstrate that policymakers should commit

to a Taylor rule, which in a large extent, can prevent them from serious mistakes. In
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addition, our results have important policy implications as they indicate how and when

it is appropriate for policymakers to choose a commitment in their reaction to inflation

and unemployment. Our models indicate that a flexible or more activist policy is more

appropriate when there is high unemployment target while a more consistent policy is

more suitable under low unemployment target. The distinguished interpretation on two

large rises in inflation in 1974 and 1979 also contributes to the investigation of sources

to the “Great Inflation”.
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Table 3.1: Time invariant model without the commitment

Coefficients Initial Value Prior Posterior

Density Mean std Mean std [25%, 95%]

α1 0.7 B 0.4 0.2 0.1211 0.0253 [0.08, 0.190]
α2 0.5 B 0.3 0.2 0.0862 0.0139 [0.06, 0.11]
θ1 0.4 B 0.1 0.05 0.0590 0.0087 [0.05, 0.09]
θ2 -0.2 B 0.3 0.2 0.5947 0.0319 [0.53, 0.68]
ρ1 0.7 B 0.6 0.2 0.3564 0.0284 [0.31, 0.41]
ρ2 -0.5 B 0.3 0.2 0.1088 0.0186 [0.05, 0.13]
φ 0.8 B 0.9 0.2 0.9814 0.0026 [0.97, 0.99]
γ 0.5 B 0.9 0.2 0.9996 0.0001 [0.9993, 0.9997]
σε 0.8 G 0.15 0.15 1.2126 0.0400 [1.17, 1.28]
ση 0.8 G 0.15 0.15 0.0282 0.0274 [0.015, 0.12]
συ 0.8 G 0.15 0.15 0.2339 0.0226 [0.21, 0.29]
στ 0.8 G 0.15 0.15 0.2320 0.0155 [0.21, 0.26]

Prior densities and posterior estimates: Time invariant model without the commitment.

Table 3.2: Time invariant model under the commitment

Coefficients Initial Value Prior Posterior

Density Mean std Mean std [25%95%]

α1 0.7 B 0.4 0.2 0.1106 0.0319 [0.050.17]
α2 0.5 B 0.3 0.2 0.0969 0.0283 [0.050.15]
θ1 0.4 B 0.1 0.05 0.0835 0.0222 [0.050.14]
θ2 -0.2 B 0.3 0.2 0.6046 0.0780 [0.450.75]
ρ1 0.7 B 0.6 0.2 0.4479 0.0870 [0.300.60]
ρ2 -0.5 B 0.3 0.2 0.1222 0.0537 [0.060.23]
φ 0.8 B 0.9 0.2 0.9856 0.0048 [0.970.99]
α 1.5 N 1.5 0.25 1.0978 0.1951 [0.751.56]
δ 0.7 N 0.5 0.25 -0.6229 0.1446 [−0.98− 0.32]
γ 0.5 B 0.9 0.2 0.9994 0.0002 [0.9990.9995]
σε 0.8 G 0.15 0.15 1.1674 0.0661 [1.061.30]
ση 0.8 G 0.15 0.15 0.0318 0.0085 [0.0180.05]
συ 0.8 G 0.15 0.15 0.1616 0.0321 [0.110.23]
στ 0.8 G 0.15 0.15 0.2660 0.0264 [0.210.31]

Prior densities and posterior estimates: Time invariant model under the commitment.
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Table 3.3: Mean Value of Loss Function

k=0.5 k=0.8 k=1

b=0.5 b=1 b=2 b=0.5 b=1 b=2 b=0.5 b=1 b=2

No commitment 5.4157 9.8996 18.868 7.7839 12.268 21.236 14.5378 19.0217 27.9896
TIV commitment 5.3856 9.8696 18.837 7.1695 11.653 20.621 13.2908 17.7747 26.7426
TVP commitment 5.5358 10.0197 18.9876 6.5634 11.0473 20.0152 11.8270 16.3110 25.2788
MS commitment 5.3461 9.83 18.7979 7.1706 11.6545 20.6224 13.344 17.828 26.796

MS on inflation parameter 5.7574 10.241 19.209 5.7406 10.225 19.192 9.8164 14.3 23.268
MS on unemployment parameter 5.3435 9.8274 18.795 7.4252 11.909 20.877 13.879 18.363 27.331

Relative TIV 0.9944 0.9970 0.9984 0.9211 0.9499 0.9711 0.9142 0.9344 0.9554
Relative TVP 1.0222 1.0121 1.0064 0.8432 0.9005 0.9425 0.8135 0.8575 0.9031
Relative MS 0.9871 0.9930 0.9963 0.9212 0.9500 0.9711 0.9179 0.9372 0.9574

Relative MS on inflation 1.0631 1.0345 1.0181 0.7375 0.8335 0.9038 0.6752 0.7518 0.8313
Relative MS on unemployment 0.9867 0.9927 0.9962 0.9539 0.9708 0.9831 0.9547 0.9574 0.9765

Note: Here we use the loss function as follows: Loss = Et−1{(1/2)(ut − kun
t )

2 + (b/2)π2
t + (1/2)(Vt − Vt−1)

2}

Relatived TIV is calculated as (TIV commitment/no commitment).
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Table 3.4: Mean Value of Loss Function: Pre-Volcker subsample

k=0.5 k=0.8 k=1

b=0.5 b=1 b=2 b=0.5 b=1 b=2 b=0.5 b=1 b=2

No commitment 6.9755 12.951 24.903 9.7527 15.729 27.68 16.381 22.357 34.309
TIV commitment 6.7762 12.752 24.704 9.2523 15.228 27.18 15.601 21.577 33.529
TVP commitment 6.8747 12.851 24.802 8.5688 14.545 26.496 14.046 20.022 31.973
MS commitment 6.7855 12.761 24.713 9.1481 15.124 27.076 15.372 21.348 33.299

MS on inflation parameter 7.0297 13.006 24.957 7.5956 13.571 25.523 11.811 17.787 29.739
MS on unemployment parameter 6.7996 12.775 24.727 9.4264 15.402 27.354 15.933 21.909 33.861

Relative TIV 0.9714 0.9846 0.9920 0.9487 0.9681 0.9819 0.9524 0.9651 0.9773
Relative TVP 0.9855 0.9923 0.9959 0.8786 0.9247 0.9572 0.8575 0.8956 0.9319
Relative MS 0.9728 0.9853 0.9924 0.9380 0.9615 0.9782 0.9384 0.9549 0.9706

Relative MS on inflation 1.0078 1.0042 1.0022 0.7788 0.8628 0.9221 0.7210 0.7956 0.8668
Relative MS on unemployment 0.9748 0.9864 0.9929 0.9665 0.9792 0.9882 0.9727 0.9800 0.9869

Note: Here we use the loss function as follows: Loss = Et−1{(1/2)(ut − kun
t )

2 + (b/2)π2
t + (1/2)(Vt − Vt−1)

2}

Relatived TIV is calculated as (TIV commitment/no commitment).

Pre-Volcker period: 1954:Q3-1979:Q4.
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Table 3.5: Mean Value of Loss Function: Post-Volcker subsample

k=0.5 k=0.8 k=1

b=0.5 b=1 b=2 b=0.5 b=1 b=2 b=0.5 b=1 b=2

No commitment 3.8429 6.8103 12.745 5.7387 8.7061 14.641 12.485 15.452 21.387
TIV commitment 4.1078 7.2208 13.4468 5.2555 8.3686 14.5946 11.1675 14.2805 20.5065
TVP commitment 4.1701 7.1375 13.072 4.5149 7.4823 13.417 9.4875 12.455 18.39
MS commitment 3.8859 6.8533 12.788 5.1328 8.1002 14.035 11.151 14.118 20.053

MS on inflation parameter 4.4531 7.4205 13.355 3.8542 6.8216 12.756 7.7318 10.699 16.634
MS on unemployment parameter 3.8676 6.835 12.77 5.3589 8.3263 14.261 11.649 14.616 20.551

Relative TIV 1.0333 1.0188 1.0100 0.8774 0.9192 0.9519 0.8681 0.8934 0.9230
Relative TVP 1.0851 1.0480 1.0257 0.786 0.8594 0.9164 0.7599 0.8060 0.8599
Relative MS 1.0112 1.0063 1.0034 0.8944 0.9304 0.9586 0.8932 0.9137 0.9376

Relative MS on inflation 1.1588 1.0896 1.0479 0.6716 0.7835 0.8713 0.6193 0.6924 0.7778
Relative MS on unemployment 1.0064 1.0036 1.0020 0.9338 0.9564 0.9740 0.9330 0.9459 0.9609

Note: Here we use the loss function as follows: Loss = Et−1{(1/2)(ut − kun
t )

2 + (b/2)π2
t + (1/2)(Vt − Vt−1)

2}

Relatived TIV is calculated as (TIV commitment/no commitment).

Post-Volcker period: 1980:Q1-2007:Q4.

74



Table 3.6: Maximum Likelihood in different models

Model Maximum Likelihood

No commitment -704.27
TIV commitment -654.78
TVP commitment -496.24

Markov Switching commitment -672.31
Markov Switching on Inflation -541.39

Markov Switching on Unemployment -520.79
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Figure 3.1: Inflation and Unemployment

1954Q3 1959Q3 1964Q3 1969Q3 1974Q3 1979Q3 1984Q3 1989Q3 1994Q3 1999Q3 2004Q3
0

2

4

6

8

10

12
Inflation
Unemployment

76



F
igu

re
3.2:

M
isp

ercep
tion

s
in

d
iff
eren

t
cases

in
com

p
arison

w
ith

in
fl
ation

1954Q3 1959Q3 1964Q3 1969Q3 1974Q3 1979Q3 1984Q3 1989Q3 1994Q3 1999Q3 2004Q3
−5

−4

−3

−2

−1

0

1

M
is

pe
rc

ep
tio

n

time
1954Q3 1959Q3 1964Q3 1969Q3 1974Q3 1979Q3 1984Q3 1989Q3 1994Q3 1999Q3 2004Q3

0

2

4

6

8

10

12

In
fla

tio
n

no commitment
inflation
TIV commitment
TVP commitment
MS commitment
MS commitment on inflation
MS commitment on unemployment

77



F
igu

re
3.3:

M
isp

ercep
tion

s
in

d
iff
eren

t
cases

in
com

p
arison

w
ith

u
n
em

p
loy

m
en
t

1954Q3 1959Q3 1964Q3 1969Q3 1974Q3 1979Q3 1984Q3 1989Q3 1994Q3 1999Q3 2004Q3
−5

0

5

M
is

pe
rc

ep
tio

n

time
1954Q3 1959Q3 1964Q3 1969Q3 1974Q3 1979Q3 1984Q3 1989Q3 1994Q3 1999Q3 2004Q3

0

10

20

un
em

pl
oy

m
en

t

no commitment
unemployment
TIV commitment
TVP commitment
MS commitment
MS commitment on inflation
MS commitment on unemployment

78



Figure 3.4: Inflation, Interest Rate and SPF
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Figure 3.5: Fitted and Actual Value
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Chapter 4

Adaptive Expectations and

Inflation Persistence

4.1 Introduction

In the literature, the most common way to relax rational expectations is to

assume that agents learn about parameters using constant gain, least squares learn-

ing and then predict future variables with estimated parameters. In particular, Milani

(2007) estimated a DSGE model by assuming that agents behave as econometricians to

forecast future inflation and output gaps with the reduced form of an economic model,

and learn the reduced form parameters over time. This paper deviates from this model

of learning by employing the simple adaptive expectations proposed by Cagan (1956), in

which expectations evolve by correcting errors in the expectations themselves. We pro-

pose a small-scale DSGE model with a simple version of adaptive expectations (see, e.g.,

Cagan, 1956) to evaluate the goodness of fitness and forecasting performance. Adaptive

expectations allow us not only to estimate the DSGE model directly without solving

rational expectation problems, but also to estimate inflation and output expectations,
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since expectations can be treated as state variables in our model. Estimation is imple-

mented by the maximum likelihood estimation (MLE).

Our results indicate that estimated expectations outperform VAR forecasts

in forecasting future inflation and output gaps. Furthermore, estimated expectations

appear to perform very well even though we assume that agents formulate their expec-

tations based on their imperfect and naive knowledge about the true economy. We show

that replacing rational expectations with adaptive expectations leads to an increase in

likelihood, supporting our learning over the rational expectations model in fitting the

U.S. data.

This paper also investigates whether adaptive expectations could replace the

role of lagged inflation or output gap with respect to persistence. The purely forward-

looking new Keynesian models are well known for their failure to generate persistence in

the key macroeconomic variables. For example, Gali and Gertler (1999) and Christiano,

Eichenbaum, and Evans (2005) incorporate lagged inflation into the Phillips curve to

generate persistence as well as to improve the goodness-of-fit of inflation dynamics. To

incorporate a lagged inflation term into the Phillips curve, they assume that a fraction

of firms adjust their prices by automatic indexation to the past period’s inflation rate.

For output gap persistence, habit in consumption, as proposed by Fuhrer and Moore

(1995), is often used to incorporate a lagged output gap term into the IS curve in a model

economy. However, it is still controversial whether lagged inflation and output gap terms

are necessary to generate persistence in the Keynesian models. In particular, Sbordone

(2005) favors the purely forward-looking Phillips curve in terms of its goodness-of-fit.

Chari, Kehoe, and McGrattan (2009) doubt the hybrid new Keynesian Phillips curve

due to its failure to provide micro-foundations. Milani (2007) examines this issue within

a DSGE model allowing agents to learn about parameters in the reduced form of a
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DSGE model, and concludes that indexation and habit formation are redundant. We

investigate this issue and find that adaptive expectations could limit the role of lagged

inflation in fitting inflation dynamics. But a lagged output gap term turns out to be

necessary even after the introduction of adaptive learning.

Simulations show that our model generates plausible responses to demand,

cost-push and interest rate shocks. We introduce expectations shocks to the model,

which can affect inflation and the output gap. One of the important features in the

survey of inflation expectations reflecting people’s beliefs is that expectations lag behind

variables. Our simulation results demonstrate that the lag-behind property can be

generated by adaptive learning.

The contents of the paper are as follows. Section 4.2 investigates the hybrid new

Keynesian Phillips curve under adaptive expectations. Section 4.3 sets up a DSGE model

under learning and examines the issues of inflation and output persistence. In Section

4.4, we evaluate the goodness-of-fit of DSGE models under adaptive expectations and

rational expectations. Section 4.4 also presents estimation results of the DSGE model

with respect to inflation and output persistence. We evaluate forecasting performance in

terms of the root mean squared error. Section 4.5 provides impulse response functions.

The last section concludes the paper.

4.2 Inflation Expectations and Inflation Persistence

The new Keynesian Phillips curve (NKPC) relates current inflation to both

the output gap and inflation expectations in a profit-maximizing framework featur-

ing staggered price contracts and forward-looking behavior in price-setting. However,

the NKPC is often criticized due to its inability to generate inflation persistence, and
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therefore costly disinflation. In response to this challenge, Gali and Gertler (1999) and

Christiano, Eichenbaum, and Evans (2005) try to correct this failure of the NKPC by

adding a lagged inflation term to the model. They incorporate lagged inflation into

the NKPC by assuming that a fraction of firms adjust their prices by rule-of-thumb or

automatic indexation to the past period’s inflation rate. The hybrid NKPC, derived by

assuming that there are two types of agents, forward- and backward-looking agents, is

of the form

πt = µπEtπt+1 + (1− µπ)πt−1 + λyt + επt , (4.1)

where πt and yt denote inflation and the output gap, and επt represents the cost-push

shock, which has heteroskedasticity, επt |Ωt−1 ∼ N(0, h2t ). We model time-varying vari-

ance with GARCH(1,1), of the form

ht = α1 + α2(ε
π
t−1)

2 + α3ht−1. (4.2)

The use of lagged inflation to generate inflation persistence is still controversial in terms

of its goodness-of-fit and micro-foundations. After investigating the closed-form solution

of the purely forward-looking Phillips curve, Sbordone (2005) concludes that lagged

inflation is not necessary for the goodness-of-fit. Gali and Gertler (1999) report that

lagged inflation plays a limited role in accounting for inflation dynamics. In addition,

Woodford (2007), Rudd and Whelan (2007), Cogley and Sbordone (2008), Benati (2008),

and Chari, Kehoe, and McGrattan (2009) consider the addition of lagged inflation to the

Phillips curve by indexation or by rule-of-thumb to be an ad hoc solution. The source

of the inflation persistence remains open to question. This paper explores whether a

simple version of adaptive expectations is able to replace the role of lagged inflation in
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explaining inflation dynamics. When we set Etπt+1 ≡ βπt for the state space model,

then the adaptive learning is of the form

βπt = βπt−1 + α̃π(πt−1 − βπt−1) + ωπt , (4.3)

where ωπt ∼ N(0, σ2ωπ). We denote by ωπt the expectation shock. In correcting forecast

errors to formulate inflation expectations, we use lagged inflation rather than current

inflation in this section, as current inflation may not be observed (see, e.g., Sargent,

Williams, and Zha (2009)). On the other hand, one may object to using lagged inflation

and prefer current inflation in correcting errors (see, e.g., Evans and Ramey (2006)).

For this reason, we also adopt current inflation to correct forecast errors in the next

section.

We construct a state-space model, because the path of inflation expectations is

not observed. One of the convenient features of adaptive expectations is that they allow

us to estimate both inflation expectations and model parameters directly, by using the

Kalman filter. In estimating the model, we assume that επt follows GARCH(1,1). The

state space model can be written as follows:

πt = [µπ 1]







βπt

επt






+ (1− µπ)πt−1 + λyt (4.4)







βπt

επt






=







1− α̃π 0

0 0













βπt−1

επt−1






+ α̃π







πt−1

0






+







ωπt

επt .







(4.5)

When we assume that agents formulate their expectations using adaptive learning rather

than rational expectations, we can estimate the hybrid NKPC and the path of inflation

expectations using the state space model in Equations (4.4) and (4.5). For the estima-
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tion, we use the Congressional Budget Office (CBO) output gap measure. The output

gap is defined as the percentage deviation of real GDP from potential output as mea-

sured by the Congressional Budget Office. The implicit GDP deflator is adopted to

calculate the inflation rate.

Table 4.1 displays the maximum likelihood estimation results. The coefficient

associated with inflation expectations is estimated to be around 1. This result suggests

that adaptive expectations make the role of lagged inflation unnecessary in explaining

inflation dynamics. The finding thus indicates that inflation persistence may result from

adaptive expectations rather than lagged inflation. The value of α̃π is estimated to be

0.60, with standard error, 0.06, suggesting that the learning model is supported by the

data. The estimates of α2 and α3 are also significantly different from zero, supporting

heteroskedasticity in the error term of the Phillips curve.

Figure 4.1 displays inflation expectations from the Survey of Professional Fore-

casters (SPF), realized one-quarter-ahead inflation and estimated inflation expectations

from the state space model. Estimated inflation expectations seem to provide a good

approximation of people’s beliefs about future inflation that are observed from the SPF.

Estimated inflation expectations capture the well-known feature that the observed infla-

tion expectations “lag behind” inflation. This behavior is clearly observed in the 1970s

and the early 1980s, when inflation was changing drastically. The second figure presents

the heteroskedasticity, which is measured by GARCH(1,1). The uncertainty of inflation

started to increase in the early 1970s and was staying continuously high by the early

1980s.
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4.3 A DSGE model under adaptive expectations

This section introduces a small-scale DSGE model under adaptive expectations.

We employ Equation (4.1) for the Phillips curve, but assume that the cost-push shock

follows a first order autoregressive process, επt = δπε
π
t−1 + vπt , as in the literature, and

that vπt is N(0, σ2π). We employ the same adaptive expectations shown in Equation

(4.3), but we replace the lagged inflation with current inflation, assuming that economic

agents adjust their expectations using current inflation rather than lagged inflation. We

employ the IS curve of the form

yt = µyEtyt+1 + (1 − µy)yt−1 − σ(it − Etπt+1) + εyt , (4.6)

where it denotes the nominal interest rate, εyt represents the demand shock, and is as-

sumed to follow an AR(1) process, and εyt = δyε
y
t−1 + vyt . v

y
t is assumed to be N(0, σ2y).

The baseline IS curve, as a special case (µy = 1) of Equation (4.6) derived from a utility-

maximization problem, is able to generate a “jump” in the output gap in response to a

change in the expected future output gap while output gap measures are persistent. As

addressed by Fuhrer (2000), this problem can be cured by the inclusion of habit forma-

tion in consumption. It plays an important role in incorporating a lagged output gap

term in the IS curve as a source of output persistence. Empirical studies of DSGE models

under rational expectations have often reported significant degrees of habit formation in

consumption (e.g., Smets and Wouters (2007) and Christiano, Eichenbaum, and Evans

(2005)). On the other hand, Milani (2007) provides empirical evidence that allowing

agents to learn about parameters makes habit formation redundant. In this respect, we

reinvestigate whether Cagan’s adaptive expectations mechanism is able to replace the

role of habit formation in consumption. Adaptive expectations for the output gap take
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the form

βyt = βyt−1 + α̃y(yt − βyt−1) + ωyt , (4.7)

where Etyt+1 ≡ βyt . Equations (4.3) and (4.7) impose dynamics in expectations

and therefore allow us to treat expectations as state variables, so we can directly estimate

expectations without solving rational expectation problems. We assume that ωπt is

N(0, σ2ωπ).

We adopt a monetary policy rule of the form,

it = ρit−1 + (1− ρ)(αππt + αyyt) + εit, (4.8)

where the interest rate shock follows an AR(1) process, εit = δiε
i
t−1 + vit, and vit ∼

N(0, σ2i ). The coefficient associated with the lagged nominal interest rate measures the

degree of smoothing in monetary policy. The Taylor rule shows that the nominal interest

rate adjusts in response to economic activity and inflation.

The state-space form can be written as

dt = CSt (4.9)

St = ASt−1 +Bet, (4.10)

where dt = [πt, yt, it]
′ and st = [πt, yt, it, Etπt+1, Etyt+1, ε

π
t , ε

y
t , ε

i
t]
′. The param-

eters of the model are collected in the parameter vector ΘL={λ, µπ, µy, σ, ρ, απ, αy, α̃π,

α̃y, σωπ, σωy, σπ, σy, σi, δπ, δy, δi} of the learning model. We also estimate the DSGE

model under rational expectations, in which the parameters of the model are included

in the following vector, ΘRE={λ, µπ, µy, σ, ρ, απ, αy, σπ, σy, σi, δπ, δy, δi}.
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4.4 Empirical Results

This section presents the estimates of the DSGE model under adaptive expec-

tations. Our data, covering the time period from 1954Q3 to 2007Q4 includes inflation,

the CBO output gap and the interest rate. The effective federal funds rate is adopted

for the interest rate.

For comparison, Table 4.2 reports the estimates of the DSGE model under both

rational expectations and adaptive expectations. The results are obtained using the

maximum likelihood estimator.1 The findings indicate that the coefficient on inflation

expectations in the learning model is approximately 0.89, which reveals that the role

of lagged inflation is quite limited in explaining inflation dynamics. Compared to the

estimate of µπ from Section 4.2, the coefficient appears to be lower. However, both

results suggest that a lagged inflation term is not important when adaptive expectations

are introduced. Turning to the rational expectations model, the coefficient (µπ) on

inflation expectations is estimated to be 0.74, which is lower than the estimate from the

learning model. The estimated coefficient is consistent with the findings of Gali and

Gertler (1999).2 On the other hand, a model introduced by Christiano, Eichenbaum,

and Evans (2005) implies that this coefficient is closer to 0.5. In the learning model,

a higher estimate of µπ reveals that the lagged inflation intended to generate inflation

persistence could be replaced with adaptive learning.

The estimates of µy from the learning and rational expectations models are

very similar, which implies that the role of the lagged output gap is still necessary in

generating persistence. That is, the introduction of adaptive learning does not make the

1Table 4.1 and 4.2 are estimates of the model without inflation targets. We also check the estimation
results of the model with inflation targets in the Taylor rule. Although we do not report, estimation
results are similar.

2Gali and Gertler (1999) employ the labor’s share of income represented by as a proxy for the real
marginal cost in estimating the hybrid new Keynesian Phillips curve.
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lagged output gap unnecessary. Habit formation in consumption seems to be required to

generate output gap persistence. This finding is different from that of Milani (2007). In

his model, in which agents forecast future variables using the reduced form of a DSGE

model and learn about the reduced form parameters over time, a lagged output gap

term is reported to be redundant in generating persistence. In our model, the role of

adaptive output gap expectations does not seem to be sufficient, on the grounds that

the estimated coefficient α̃y measuring the speed of correcting errors is not statistically

significant. Therefore, the expectations are modeled as a random work process. In

contrast to the estimate of α̃y, the estimated value of α̃π is statistically significant and

robust to the model specifications, that is, in both the DSGE model and the Phillips

curve.

For the monetary policy parameters, the parameter estimate of ρ capturing the

degree of interest rate smoothing is 0.92. Under the assumption of rational expectations,

the coefficient on lagged interest rate is estimated to be 0.68. This parameter is often

reported to be around 0.75 in the literature (e.g., Clarida, Gali, and Gertler (2000)).

The coefficient on inflation expectations in the Taylor rule is estimated to be 1.67 for

the adaptive learning and 1.95 for the rational expectations model. In the learning

model, the response of the Fed to inflation seems to be less aggressive. The parameter

αy displaying the Fed’s response to the economic activity is obtained similarly from the

learning and rational expectations models.

It is worth highlighting that the introduction of the adaptive learning leads

to an increase in likelihood from −1027.6 to −968.8, suggesting our model provides a

better performance than the rational expectations model in fitting the data. Turning

to the variances of shocks, we could conjecture the source of this improvement. When

adaptive expectations are employed, the estimate of σπ is reported to be 0.50, which is

89



lower than 0.77 from rational expectations model. On the other hand, the parameter

σy is estimated to be higher in learning model. While adaptive learning plays a crucial

role in reducing errors from the Phillips curve, it does not seem to perform better than

rational expectations model in the IS curve. The variance of interest rate shock σi is

estimated to be lower with learning model employed. Overall, when considering a higher

likelihood, the improvement of the goodness-of-fit from the Phillips curve and the Taylor

rule may dominate that from the IS curve.

Table 4.3 provides simple descriptions of the root mean square error of the

estimated adaptive expectations in the learning model and the one step ahead out-

of-sample VAR forecast respectively. The evaluation period for VAR forecast is from

1954Q1 to 1959Q4 and we forecast the inflation and the output gap of next period

recursively. To compare the forecast performance of the adaptive expectations with

VAR forecast, we choose the same window size from 1960Q1 to 2007Q4. The results

in Table 4.3 present the better performance of the learning model with a much smaller

root mean square error.

The upper panel of Figure 4.2 reports the developments of adaptive inflation ex-

pectations and VAR forecast with the actual series. The estimated expectations provide

a good approximation of realized future inflation, closely following each turning point of

inflation without underestimating or overestimating the observed inflation. The lower

panel of Figure 4.2 depicts the dynamic behavior of output gap expectations and the

VAR forecast with the realized value of the output gap. As we observe here, the VAR

forecast is quite close to people’s estimated expectations. However, as confirmed in

Table 4.3, adaptive expectations seem to outperform the VAR forecast. Both adaptive

learning and VAR forecast capture each turning point of the output gap although there

is a lag from the realized series.
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Figure 4.3 displays actual and predicted values for inflation and the output

gap. As we confirm from the likelihoods, the model with adaptive expectations fits the

data very well in general. In particular, the estimated Phillips curve performs quite well

in tracking inflation, even predicting each turning point. The predicted output gap also

provides a good approximation of the output gap. Overall, the predicted values appear

to suggest that adaptive learning works to match the data quite well.

This section arrives at four conclusions. First, the higher likelihood in the learn-

ing model demonstrates its better performance in the estimation compared to rational

expectations model. Second, adaptive expectations are confirmed as a major source of

inflation persistence that is confirmed by the relatively larger coefficient on inflation

expectation in the learning model. On the other hand, similar estimates on output

gap expectations in both learning and rational expectation model reveal the continuing

importance of the lagged output gap even though we introduce adaptive expectations

into the model. Third, although we assume that agents have naive knowledge about

the economy, people’s beliefs, measured by adaptive expectations outperform VAR fore-

casts in terms of the root mean square errors. Finally, the predicted inflation and the

output gap work very well in fitting the actual data, which are presented in Figure 4.3.

Overall, estimation results and figures confirm the importance of adaptive expectation,

especially in modeling inflation, which is an indispensable part of DSGE models. In the

next section, we simulate the model based on estimation results.

4.5 Impulse Response Functions

This section explores whether the learning model is able to generate plausible

responses to shocks. We employ the estimates from Table 4.2 to obtain impulse response
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functions with two exceptions. We set σ to the value of 1, as in Clarida, Gali, and

Gertler (2000) because the estimate of σ is not statistically significant. The estimate of

ρ is higher than that reported in the literature. We therefore set ρ to be 0.79, which

is consistent with the estimate of Clarida, Gali, and Gertler (2000) for the Volcker-

Greenspan period.

Figure 4.4 displays impulse response functions to one-standard-deviation shocks.

Red lines present the effects of each shock on the endogenous variables and blue lines

show responses of expectations to each shock. The learning model has the property that

expectations tend to move with a lag behind variables due to adaptive learning, as is

often observed in the surveys of inflation expectations.

The first row presents the responses of inflation, the output gap, the interest

rate, and the dynamics of expectations in response to a cost-push shock. The shock leads

to an immediate increase in inflation. The effect of the cost-push shock on inflation starts

to decrease over time. Following a cost-push shock, inflation expectations initially rise

before reaching a peak and then start to decrease. After several quarters, inflation and

inflation expectations seem to be on a similar path. The figure in the first row and

second column shows the response of the output gap and its expectations to a cost-push

shock. After a slight increase, the output gap starts to decrease due to the increase in

the interest rate that results from the Fed’s response to stabilize inflation. Output gap

expectations move with a lag behind the output gap. In response to a cost-push shock,

the nominal interest rate initially increases due to rising inflation and then it starts to

fall in response to the decrease in inflation and the output gap.

Figures in the second row display responses of variables to a demand shock.

The shock has a positive, persistent effect on inflation. Inflation expectations appear

to follow the inflation path with a lag. This feature could be observed in the surveys
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of inflation expectations, such as the SPF and Livingston survey. A positive demand

shock causes the output gap to increase, and the effect of the shock on output sharply

decreases over time. Since inflation and the output gap increase in response to a demand

shock, the interest rate increases.

The third row presents the impact of an interest rate shock on the variables

and expectations. Following an interest rate shock, both the actual inflation and its

expectations show hump-shaped responses. Despite the limited role of lagged inflation

in the Phillips curve, the model is able to generate a hump-shared response of inflation

to an interest rate shock. The interest rate has a negative effect on inflation, leading to

a persistent decrease over time before reaching its bottom. The pattern of response of

inflation expectations is very similar to that of inflation. An interest rate shock leads to

a decrease in the output gap and its expectations.

Figure 4.5 reports the responses of key economic variables to one-standard-

deviation expectation shocks. An inflation expectation shock causes inflation to increase,

as does the cost-push shock. The patterns of responses of the variables are very similar to

those generated in response to a cost-push shock. Turning to an output gap expectation

shock, as reported in the second row, a positive output gap expectation shock raises the

inflation and output, therefore leading to an increase in the interest rate.

4.6 Conclusion

This paper examines the role of adaptive expectations in inflation and output

gap dynamics in the DSGE model. Interestingly, our estimates of inflation and output

gap expectations using naive adaptive learning appear to outperform VAR forecasts.

These results are meaningful, since DSGE models under rational expectations can be
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expressed as VAR systems with parameter restrictions. Our findings also indicate that

the learning model outperforms the rational expectations DSGE model in terms of its

goodness of fitness. Finally, the main contribution of this paper is to show that adaptive

expectations can replace the role of lagged inflation in generating inflation persistence.

When the model includes learning, the coefficient on lagged inflation in the Phillips

curved is estimated to be around zero. However, the lagged output gap seems to play a

role in generating persistence, regardless of adaptive expectations.
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Table 4.1: Maximum Likelihood for a Phillips Curve Estimation: A single equation

Parameters Estimates Standard Errors

λ 0.325 0.049
µπ 1.005 0.085
α̃π 0.603 0.064
α1 0.154 0.099
α2 0.201 0.103
α3 0.674 0.155
σπ 0.000 0.127

MaximumLikelihood -313.159

Note: This Table shows maximum likelihood estimates of the DSGE model from Equation (4.4) to
(4.5), including dynamic systems of inflation, output gap, interest rate and expectation dynamic process.
Different output gaps including linearly detrended output and quadratically detrended output are also
estimated and the results are similar. Here we only report the results of the output detrended using the
CBO measure of potential output. The sample period is 1954:Q3-2007:4Q. The estimated equations are
as follows:

πt = µπEtπt+1 + (1− µπ)πt−1 + λyt + επt

Etπt+1 = Et−1πt + α̃π(πt−1 − Et−1πt) + ωπ
t

ht = α1 + α2(ε
π
t−1)

2 + α3ht−1
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Table 4.2: Maximum Likelihood Estimation in a DSGE model

Parameters learning Rational Expectations

Estimates Standard Error Estimates Standard Error

λ 0.040 0.024 0.009 0.005
µπ 0.888 0.253 0.738 0.164
µy 0.780 0.238 0.774 0.075
σ 0.032 0.039 0.044 0.008
ρ 0.922 0.043 0.678 0.077
απ 1.670 0.320 1.945 0.350
αy 1.088 0.961 1.054 0.274
α̃π 0.536 0.159 - -
α̃y 0.283 0.862 - -
σωπ 0.512 0.562 - -
σωy 0.318 0.406 - -
σπ 0.503 0.382 0.767 0.052
σy 0.601 0.444 0.407 0.001
σi 1.352 0.092 1.746 0.124
δπ 0.000 0.010 -0.001 0.085
δy 0.413 0.084 0.552 0.099
δi 0.020 0.090 0.507 0.090

Maximum Likelihood -969.8 -1027.6

Note: This table shows the maximum likelihood estimates of a complete DSGE model in Equation (4.3)
and (4.6) − (4.10). The sample period is 1954:Q3-2007:Q4. The equations of the learning model are as
follows:

πt = µπEtπt+1 + (1− µπ)πt−1 + λyt + επt

yt = µyEtyt+1 + (1− µy)yt−1 − σ(it − Etπt+1) + εyt

Etπt+1 = Et−1πt + α̃π(πt −Et−1πt) + ωπ
t

Etyt+1 = Et−1yt + α̃y(yt − Et−1yt) + ωy
t

it = ρit−1 + (1− ρ)(αππt + αyyt) + εit

επt = δπε
π
t−1 + vπt

εyt = δyε
y
t−1 + vyt

εit = δiε
i
t−1 + vit
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Table 4.3: Root Mean Square Error: Learning vs. one-step ahead VAR Forecasts

RMSE Learning VAR

Inflation 0.3179 1.1537

Output Gap 0.2351 0.7824
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Figure 4.1: Inflation and Expectation in the Phillips Curve: A single equation
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Figure 4.2: Inflation, Output gap and their Expectations in a DSGE model
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Figure 4.3: Fitted values of Inflation and Output Gap
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Figure 4.4: Shocks and Impulse Response Functions
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Figure 4.5: Expectation Shocks and Impulse Response Functions
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Chapter 5

Conclusions

This dissertation contributes to the literature on the analysis of United States

Postwar business cycle fluctuations in a perspective of Markov Switching and Bayesian

estimation. First, in Chapter 2, we propose a dynamic stochastic general equilibrium

(DSGE) model with the assumption of regime switches in the private sector, in the

conduct of monetary policy and in the volatility of shocks. A Gibbs-sampling with

Metropolish-Hasting algorithm is used to estimate this model. Our estimation results

support changes occurring in the private sector, in the monetary policy and in the

volatility of exogenous, non-policy shocks which are related to the “Great Inflation”,

the “Great Moderation” and the 2008 financial crisis. Variance decomposition and

impulse response functions are conducted to reveal the role of different shocks. Our

results find irrespectively to monetary policy regimes, supply shocks are the main driver

of inflation fluctuations, while demand shocks are the main source of changes in the

output gap. If there were no switches in the agents’ beliefs, supply shocks are also

main drivers of the inflation. This chapter also demonstrates that if the agents always

maintain a weak response to economic dynamics, inflation would have been lower during
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the 1970s. The more intense response to inflation by the Federal Reserve would also

have helped mitigate the great inflation. In addition, there were substantial changes in

agents’ beliefs, and in the volatility of shocks in the recent years. Such an occurrence

could be potential early signals of the 2008 financial crisis.

Second, in Chapter 3, we propose a baseline dynamic model with five exten-

sions to investigate policymakers’ commitment to inflation and unemployment. Those

models are based on the conjecture that potential policymakers’ misperception may be

originated from unobserved deviations of unemployment from its natural rate. Five

processes are purposed, which have been illustrated in the introduction part of this dis-

sertation. In addition to five processes, this chapter specifies a loss function derived

from a constrained minimization of the divergence in inflation and unemployment that

also penalizes shifts in the policy variables. Bayesian estimation is also applied in this

chapter. Findings support our estimated belief performs the role of real interest rate.

Empirical results are summarized as follows: 1) policymakers’ belief is very persistent

even when it commits to a Taylor-type policy rule. 2) the run-up of U.S. inflation

around 1980 is mostly attributed to policymakers’ misperception while the peak in the

end of 1974 is possibly a result from large non-policy shocks. 3) models with commit-

ment dominate models without commitment, especially in periods of large oscillations

in inflation. When policymakers are committed to respond to a Taylor-type rule, the

average loss function is efficiently reduced over the time, thus effectively lessening their

misperception. In addition to those findings, this chapter also contributes to important

policy implication as it indicates how and when it is appropriate for policymakers to

choose a commitment in their reaction to inflation and unemployment. That is, a flex-

ible or more activist policy is more appropriate in reacting to inflation when there is

high unemployment target, whereas a policy that is consistent over time is more suitable
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under low unemployment target. Moreover, our results shed light on the source of the

two large rises in inflation during the “Great Inflation” period and the prevalence of low

inflation during the early 1980s.

Third, in Chapter 4, we investigate the inflation persistence based a dynamic

stochastic general equilibrium (DSGE) model with adaptive expectation. We observe

in this chapter that model with adaptive expectation makes lagged inflation redundant

in fitting inflation dynamics. Simultaneously, maximum likelihood estimation supports

a DSGE model with adaptive expectation is superior to a DSGE model with rational

expectation in model fit and out-of-sample forecasting.

Overall, our analytical and empirical analysis based on three small dynamic

stochastic general equiilbrium (DSGE) models with Markov Switching contributes to in-

terpret the United States Postwar business cycle fluctuations, especially for the evolution

of inflation, unemployment, output gap and interest rate. This dissertation identifies

sources in driving inflation, unemployment and output gap as well as provides impor-

tant policy implications. Further analysis and investigation on medium and large DSGE

models in explaining U.S. macroeconomic dynamics as well as how to improve the model

fit and forecasting performance based on Bayesian estimation will be interesting topics

for future research.
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Appendix A

Appendix of Chapter 2

A.1 Priors

Prior distribution for DSGE parameters and transition matrices are summa-

rized in Table A.1.

Parameter Density Range Mean Std.deviation

τ Gamma R
+ 0.6 0.5

κ Gamma R
+ 0.1 0.1

β Beta [0, 1) 0.9 0.1
γ1 Normal R

+ 1.5 0.5
γ2 Normal R

+ 0.8 0.1
ρR Beta [0, 1) 0.5 0.2
ρg Beta [0, 1) 0.8 0.1
ρz Beta [0, 1) 0.7 0.1
r∗ Gamma R

+ 0.6 0.3
π∗ Normal R

+ 0.75 0.17

σR Inv.Gamma R
+ 0.25 0.14

σg Inv.Gamma R
+ 0.4 0.3

σz Inv.Gamma R
+ 1 0.5

σy Inv.Gamma R
+ 0.15 0.1

σp Inv.Gamma R
+ 0.15 0.1

σr Inv.Gamma R
+ 0.1 0.05

Table A.1: Prior distribution for DSGE model parameters
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Assume Markov Switching transition matrices follow a Dirichlet distribution:

Hsp(·, i) ∼ D(aspii , a
sp
ij )

Hsa(·, i) ∼ D(asaii , a
sa
ij )

Her(·, i) ∼ D(aerii , a
er
ij )

Similar to Bianchi(2009), we choose aspii = asaii = aerii = 10 and aspij = asaij =

aerij = 1.

A.2 Hidden Markov Models

Given the hidden states Ξ = {ξ1, ξ2, . . . , ξN}, the state at the length t as Qt

and the observation symbols V = {v1, v2, . . . , vM} and the symbol at the length t as Ot,

we can have the state transition probability distribution [A]ij = {aij} where

aij = P (Qt+1 = sj | Qt = si), 1 ≤ i, j ≤ N

Similarly, we can define the observation symbol probability distribution as

[B]jk = {bj(vk)}, where

bj(vk) = P (Ot = vk | Ot = sj), 1 ≤ j ≤ N, 1 ≤ k ≤M
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A.3 The model

We consider a prototypical New Keynesian monetary DSGE model in which

details can be found in King(2000) and Woodford(2003). Details of model description

could be referred to Bianchi(2009).

Consider a continuum of monopolistic firms, a representative household, and

a monetary policy authority in our economy. The household maximizes the following

utility function:

Et

[
∞∑

s=t

βs−t
(
C1−τ
s − 1

1− τ
+ χ log

Ms

Ps
− hs

)]

(A.1)

subject to

Ct +
Bt
Pt

+
Mt

Pt
+
Tt
Pt

=Wtht +
Mt−1

Pt
+Rt−1

Bt−1

Pt
+Dt (A.2)

For each monopolistically competitive firm, a quadratic adjustment cost is

derived from a downward-sloping demand curve:

Yt(j) =

(
Pt(j)

Pt

)−1/υ

Yt (A.3)

and we have quadratic adjustment cost as

ACt(j) =
ϕ

2

(
Pt(j)

Pt−1(j)
− π

)2

Yt(j) (A.4)

Firms use a linear production function as:

Yt(j) = Atht(j) (A.5)
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where total factor productivity At evolves according to a random walk:

lnAt = ln γ + lnAt−1 + ãt (A.6)

ãt = ãt−1 + εa,t (A.7)

Firms maximize the present value of future profits by choosing the price Pt(j):

Et

[
∞∑

s=t

Qs

(

Ps(j)

Ps
Ys(j)−Wshs(j) −

ϕ

2

(
Ps(j)

Ps−1(j)
− π

)2
)

Ys(j)

]

(A.8)

whereQs is the marginal value of a unit of the consumption good: Qs/Qt = β[uc(s)/uc(t)] =

βs−t(Ct/Cs)
τ .

The nominal interest rate is affected by deviations of inflation and output from

their target levels:

Rt
R∗

=

(
Rt−1

R∗

)ρR [

(
πt
π∗

)ψ1(
Yt
Y ∗
t

)ψ2

](1−ρR)

eεR,t (A.9)

In addition, government expenditure follows a stationary AR(1) process as

follows:

g̃t = ρgg̃t−1 + εg,t (A.10)

Therefore εg,t can be interpreted as a shock to Government expenditure. The government

collects a lump-sum tax(or provides a subsidy) to balance the fiscal deficit:

ζtYt +Rt−1
Bt−1

Pt
+
Mt−1

Pt
=
Bt
Pt

+
Mt

Pt
+
Tt
Pt

(A.11)
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