UC Irvine

SSOE Research Symposium Dean's Awards

Title

Fluid Packs for Pediatric Intravenous Fluids

Permalink

https://escholarship.org/uc/item/9hw7807n

Authors

Bhise, Rucha Elzik, Lisa Hight, Justin <u>et al.</u>

Publication Date

2022-03-21

Copyright Information

This work is made available under the terms of a Creative Commons Attribution License, available at https://creativecommons.org/licenses/by/4.0/

Peer reviewed

Department of Biomedical Engineering

Fluid Packs for Pediatrics Intravenous Fluids

BioENGINE Team 38: Rucha Bhise (BME), Lisa Elzik (BME), Justin Hight (BME), Rithika Meka (BME), David Pham (BME), Samantha Sanchez (BME) Mentors: Jacqueline Lee, M.D. (Children's Wisconsin Hospital) and Christine King, Ph.D (UCI Department of Biomedical Engineering)

Project Goal: We aim to employ empathic engineering to give pediatric patients mobility and freedom from the constraints of their IV pole. Our product offers a compact and portable alternative to standard infusion systems while maintaining complete compatibility with current hospital IV infusion systems. With PEDS-PAK, pediatric patients can seamlessly transition between treatment and playtime, while enhancing their recovery.

Background

- Intravenous (IV) fluid delivery limits pediatric patients' mobility [1].
- Breaks in IV lines posel dangers to patients: tripping and infection [2]
- There are currently no wearable inpatient fluid infusion systems specifically designed for pediatric patients [3].
- **Solution**: Create a lightweight, wearable infusion system that maximizes pediatric patient mobility while receiving IV treatments.

Fig. 1. Pediatric patient walking with IV pole [4]

Essential Features:

- Maximum **comfort**
 - Compact Ο
 - - equal distribution
- **Safety** features
 - Bubble detection
 - \cap
 - guardrails
 - Alarm system Ο
 - Quick chest Ο
 - access
- 6+ hours of **battery life**

Ο

- Ο

Project Design, Verification, and Validation Plans

- Lightweight with
- Flow rate

Fig. 2. CAD model of current design

Clinicians, nurses, and parents **ease of use** Hospital PC Unit system integration Excess IV line storage Data collection

Design Verification and Validation:

- Verification and validation of **IV circuit** in SolidWorks:
 - and circuit housing slots
- Validate flow rate readouts and outputs
 - or flow is otherwise disrupted/inaccurate
- Verification and validation of **design intuitivity**: • Unassisted setup trials with pediatric nurses

Corresponding Standards:

- ISO 10993 (Biocompatibility): Sterile line with no breaks
- electronic components
- software/alarm testing

FEDS RAK

• Verify critical diameter for IV line to prevent kinking • Fatigue/failure testing for drip chamber, IV bag support,

• Verification and validation of **flow controller** software:

• Test alarms function when IV line kinks, bubbles form,

Fig. 3. Static stress testing of PVC IV tubing

• ISO 14971 (Risk Management of Medical Devices): Safety features like bubble detection, flow rate guardrails, functional alarms • EC 60601 (Medical Electronic Safety): Minimal current/voltage in

• ASTM F04.15 (Material Test Methods): Fatigue, materials, and

	References
	 Cochran, E. B., Phelps, S. J., & Helms, R. A. (1988). Parenteral nutrition in pediatric patients. <i>Clinical pharmacy</i>, 7(5), 351–366. Ray-Barruel, G., Xu, H., Marsh, N., Cooke, M., & Rickard, C. M. (2019). Effectiveness of insertion and maintenance bundles in preventing
Entrepreneurial	peripheral intravenous catheter-related complications and bloodstream infection in hospital patients. <i>Infection, disease & health,</i> 24(3), 152–168.
	[3] Intravenous Infusion Pumps Market Share Report, 2021-2028. (n.d.). Retrieved from http://www.grandviewresearch.com/industry- analysis/intravenous-infusion-pump-market
E) David Pham (BME) Business Advisor Software Team <u>dlphaml@uci.edu</u>	[4] Home. (2017, October 4). ACCO. https://www.acco.org/